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Abstract

In this paper, we study the model of Groma and Balogh [I. Groma, P. Balogh, Investigation of dislocation pattern formation in
a two-dimensional self-consistent field approximation, Acta Mater. 47 (1999) 3647–3654] describing the dynamics of dislocation
densities. This is a two-dimensional model where the dislocation densities satisfy a system of two transport equations. The velocity
vector field is the shear stress in the material solving the equations of elasticity. This shear stress can be related to Riesz transforms
of the dislocation densities. Basing on some commutator estimates type, we show that this model has a unique local-in-time
solution corresponding to any initial datum in the space Cr(R2) ∩ Lp(R2) for r > 1 and 1 < p < +∞, where Cr(R2) is the
Hölder–Zygmund space.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Dans ce papier, nous étudions le modèle de Groma et Balogh [I. Groma, P. Balogh, Investigation of dislocation pattern formation
in a two-dimensional self-consistent field approximation, Acta Mater. 47 (1999) 3647–3654] qui décrit la dynamique des densités
de dislocations. Il s’agit d’un modèle bidimensionnel où les densités de dislocations satisfont un système de deux équations de
transport. Le champ de vitesse dans ce système est la contrainte de cisaillement du matériau, calculée à partir de l’équation de
l’élasticité linéaire. Cette contrainte de cisaillement peut être liée aux densités de dislocations par certaines transformations de
Riesz. En se basant sur des estimations de type commutateurs, nous montrons que ce modèle admet une unique solution locale
pour toutes données initiales dans Cr(R2) ∩ Lp(R2) pour r > 1 et 1 < p < +∞, où Cr(R2) est l’espace Hölder–Zygmund.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. Physical motivation and presentation of the model

Real crystals show certain defects in the organization of their crystalline structure, called dislocations. These defects
were introduced in the Thirties by Taylor [20], Orowan [17] and Polanyi [18] as the principal explanation of plastic
deformation of materials at the microscopic scale. Dislocations can move under the action of exterior stresses applied
to the material.

Groma and Balogh in [11] considered the particular case where these defects are parallel lines in the three-
dimensional space, that can be viewed as points in a plane considering their cross-section.

In this model we consider two types of “edge dislocations” in the plane (x1, x2). Typically, for a given velocity
field, those dislocations of type (+) propagate in the direction + �e1 where �e1 = (1,0) is the Burgers vector, while
those of type (−) propagate in the direction − �e1. We refer the reader to the book of Hirth and Lothe [13], for a
detailled description of the classical notion in physics of edge dislocations and of the Burgers vector associated to
these dislocations.

In [11] Groma and Balogh have considered the case of densities of dislocations. More precisely, this 2D system
is given by the following coupled non-local and non-linear transport equations (see Cannone et al. [4, Section 2] for
more modeling details):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ρ+

∂t
(x, t) + u

∂ρ+

∂x1
(x, t) = 0 on R2 × (0, T ),

∂ρ−

∂t
(x, t) − u

∂ρ−

∂x1
(x, t) = 0 on R2 × (0, T ),

u = R2
1R2

2

(
ρ+ − ρ−)

.

(1.1)

The unknowns of this system are the two scalar functions ρ+ and ρ− at the time t and the position x = (x1, x2), that
we denote for simplification by ρ±. This term correspond to the plastic deformations in a crystal. Its derivative in

the x1-direction ∂ρ±
∂x1

represents the dislocation densities of type (±). Physically, these quantities are non-negative.
The function u is the velocity vector field which is equal to the shear stress in the material, solving the equations
of elasticity. The operators R1 (resp. R2) are the 2D Riesz transform associated to x1 (resp. x2). More precisely, the
Fourier transform of these 2D Riesz transforms R1 and R2 are given by

R̂kf (ξ) = ξk

|ξ | f̂ (ξ) for ξ ∈ R2, k = 1,2.

The goal of this work is to establish local existence and uniqueness result of the solution of (1.1) when the initial
datum

ρ±(x1, x2, t = 0) = ρ±
0 (x1, x2) = ρ̄±

0 (x1, x2) + Lx1, L ∈ R (1.2)

with ρ̄±
0 ∈ Cr(R2) ∩ Lp(R2), for r > 1, p ∈ (1,+∞), where Cr(R2) is the Hölder–Zygmund space defined in Sec-

tion 2. The choice L > 0 guarantee the possibility to choose ρ̄±
0 ∈ Lp(R2) such that the assumption is compatible with

the non-negativity of
∂ρ±

0
∂x1

. In a particular case where the initial datum is increasing, the global existence of a solution
was proved by Cannone et al. [4], using especially an entropy inequality satisfies by the dislocation densities. How-
ever, in the case where the initial datum is decreasing, the solutions of system (1.1) can create shocks, like the case in
the classical Burgers equation. Therefore, the fundamental issue of uniqueness for global solutions in the general case
remains open.

In a particular sub-case of model (1.1) where the dislocation densities depend on a single variable x1 + x2, the
existence and uniqueness of a Lipschitz solution was proved by El Hajj et al. in [10] in the framework of viscosity
solutions. Also the existence and uniqueness of a strong solution in W

1,2
loc (R × [0,+∞)) was proved by El Hajj [9] in

the framework of Sobolev spaces. For a similar model describing moreover boundary layer effects (see Groma, Csikor
and Zaiser [12]), we refer the reader to Ibrahim [14] where a result of existence and uniqueness is established, using
the framework of viscosity solutions and also entropy solution for non-linear hyperbolic equations.
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Our study of the dynamics of dislocation densities in a special geometry is related to the more general dynamics of
dislocation lines. We refer the interested reader to the work of Alvarez et al. [1], for a local existence and uniqueness
of some non-local Hamilton–Jacobi equation. We also refer to Barles et al. [2] for some long-time existence results.

1.2. Main results

We shall show that the system (1.1) possesses a unique local-in-time solution for any initial datum satisfy (1.2)
such that ρ̄±

0 ∈ Cr(R2) ∩ Lp(R2), for r > 1 and for p ∈ (1,+∞). This functional setting allows us to control the
velocity field u in terms of ρ+ − ρ− (see the third line of (1.1)). As we wrote it before, the velocity u is related to
ρ+ − ρ− through the two-dimensional Riesz transforms R1, R2. Riesz transforms do not map Cr(R2) into Cr(R2),
but they are bounded on Cr(R2) ∩ Lp(R2), for r ∈ [0,+∞) and for p ∈ (1,+∞), as we will see later.

For notational convenience, we define the space Yr,p , for r ∈ [0,+∞) and p � 1 as follows

Yr,p = {
f = (f1, f2) such that fk ∈ Cr

(
R2) ∩ Lp

(
R2), for k = 1,2

}
,

where Cr(R2) is the inhomogeneous Hölder–Zygmund space (see Section 2, for more precise definition). This space
is a Banach space endowed with the following norm: for f = (f1, f2)

‖f ‖r,p = max
k=1,2

(‖fk‖Cr

) + max
k=1,2

(‖fk‖Lp

)
.

In order to avoid technical difficulties, we first consider (see Theorem 1.1) the case L = 0. Then (see Theorem 1.2)
we treat the general case L ∈ R.

Theorem 1.1 (Local existence and uniqueness, case L = 0). Consider the initial data

ρ0 = (
ρ+

0 , ρ−
0

) ∈ Yr,p. (1.3)

If r > 1 and p ∈ (1,+∞), then (1.1) has a unique solution ρ = (ρ+, ρ−) ∈ L∞([0, T ];Yr,p), where the time T > 0
depends only on ‖ρ0‖r,p . Moreover, the solution ρ satisfies

ρ ∈ Lip
([0, T ];Yr−1,p

)
.

In order to prove this theorem, we strongly use the fact that the Riesz transforms are continuous on Cr(R2) ∩
Lp(R2) for r ∈ [0,+∞), p ∈ (1,+∞). This result ensures that the velocity vector field remains bounded on
Cr(R2) ∩ Lp(R2). Using this property and some commutator estimates, we can prove that there exists some T > 0
such that the solution ρn of an approached system of (1.1) (see system (4.28) in Section 4.2) is uniformly bounded
in L∞([0, T ];Yr,p) for r > 1, 1 < p < +∞. Finally, we show that the sequence of the approximate solutions ρn is a
Cauchy sequence in L∞([0, T ];Yr−1,p), which gives the local existence and uniqueness of the solution of (1.1).

The next theorem treats the general case L ∈ R.

Theorem 1.2 (Local existence and uniqueness, case L ∈ R). Consider Eq. (1.1) corresponding to initial data (1.2),
where L ∈ R and ρ̄0 = (ρ̄+

0 , ρ̄−
0 ) ∈ Yr,p . If r > 1 and 1 < p < +∞, then (1.1) has a unique solution ρ = (ρ+, ρ−) ∈

L∞([0, T ];Yr,p), where the time T > 0 depends only on L and ‖ρ̄0‖r,p . Moreover,

ρ±(x1, x2, t) = ρ̄±(x1, x2, t) + Lx1,

where

ρ̄ = (
ρ̄+, ρ̄−) ∈ Lip

([0, T ];Yr−1,p

)
.

Remark 1.3. If at the initial time we have ∂ρ±
∂x1

(·,·, t = 0) � 0 two positive quantities, then this remains true for

0 � t � T , i.e., ∂ρ±
∂x1

� 0 for all (x, t) ∈ R × [0, T ].

Related to our analysis in the present paper, we get the following theorem as a by-product.
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Theorem 1.4 (Global existence and uniqueness for linear transport equations). Take g0 ∈ Cr(R2) ∩ Lp(R2) and
v = (v1, v2) ∈ L∞([0, T );Yr,p) for all T > 0, r > 1 and 1 < p < +∞. Then, there exists a unique solution

g ∈ L∞([0, T );Cr
(
R2) ∩ Lp

(
R2)) ∩ Lip

([0, T );Cr−1(R2) ∩ Lp
(
R2))

of the linear transport equation⎧⎨⎩
∂g

∂t
+ v · ∇g = 0 on R2 × (0, T ),

g(x,0) = g0(x) on R2.

(1.4)

1.3. Organization of the paper

This paper is organized as follows. In Section 2, we recall the characterization of Hölder spaces and gather several
important estimates. In particular, the boundedness of Riesz transforms on Cr(R2)∩ Lp(R2) is established. Section 3
presents two key commutator estimates (Lemma 3.1). Finally in Section 4, we prove Theorem 1.4 and a basic a priori
estimate. Then, thanks to this a priori estimate, we give in Sections 4.2 and 4.3 the proofs of Theorems 1.1 and 1.2
respectively.

2. Some results on Hölder–Zygmund spaces

This is a preparatory section in which we recall some results on Hölder–Zygmund spaces, and gather several
estimates that will be used in the subsequent sections. A major part of the following results can be found in Meyer [15]
and Meyer and Coifman [16].

We start with a dyadic decomposition of Rd , where d > 0 is an integer. To this end, we take an arbitrary radial
function χ ∈ C∞

0 (Rd), such that

suppχ ⊂
{
ξ : |ξ | � 4

3

}
, χ ≡ 1 for |ξ | � 3

4
, ‖χ‖L1 = 1.

It is a classical result that, for φ(ξ) = χ(
ξ
2 ) − χ(ξ), we have φ ∈ C∞

0 (Rd) and

suppφ ⊂
{
ξ :

3

4
� |ξ | � 8

3

}
,

χ(ξ) +
∑
j�0

φ
(
2−j ξ

) = 1, for all ξ ∈ Rd .

For the purpose of isolating different Fourier frequencies, define the operators �i for i ∈ Z as follows:

�if =

⎧⎪⎨⎪⎩
0 if i � −2,

χ(D)f = ∫
χ̌ (y)f (x − y)dy if i = −1,

φ(2−iD)f = 2id
∫

φ̌(2iy)f (x − y)dy if i � 0,

(2.5)

where χ̌ and φ̌ are the inverse Fourier transforms of χ and φ, respectively.
For i ∈ Z, Si is the sum of �j with j � i − 1, i.e.

Sif = �−1f + �0f + �1f + · · · + �i−1f = 2id

∫
χ̌

(
2iy

)
f (x − y)dy.

It can be shown for any tempered distribution f that Sif → f in the distributional sense, as i → ∞.
For any r ∈ R and p,q ∈ [1,∞], the inhomogeneous Besov space Br

p,q(Rd) consists of all tempered distributions f

such that the sequence {2jr‖�jf ‖Lp }j∈Z belongs to lq(Z). When both p and q are equal to ∞, the Besov space
Br

p,q(Rd) reduces to the inhomogeneous Hölder–Zygmund space Cr(Rd), i.e. Br∞,∞(Rd) = Cr(Rd). More explicitly,
Cr(Rd) with r ∈ R contains any function f satisfying

‖f ‖Cr = sup 2jr‖�jf ‖L∞ < ∞. (2.6)

j∈Z



A. El Hajj / Ann. I. H. Poincaré – AN 27 (2010) 21–35 25
It is easy to check that Cr(Rd) endowed with the norm defined in (2.6) is a Banach space.
For r � 0, Cr(Rd) is closely related to the classical Hölder space C̃r (Rd) equipped with the norm

‖f ‖
C̃r =

∑
|β|�[r]

∥∥∂βf
∥∥

L∞ + sup
x �=y

|∂ [r]f (x) − ∂ [r]f (y)|
|x − y|r−[r] . (2.7)

In fact, if r is not an integer, then the norms (2.6) and (2.7) are equivalent, and Cr(Rd) = C̃r (Rd). The proof for
this equivalence is classical and can be found in Chemin [7]. When r is an integer, say r = k, C̃k(Rd) is the space
of bounded functions with bounded j -th derivatives for any j � k. In particular, C̃1(Rd) contains the usual Lipschitz
functions and is sometimes denoted by Lip(Rd). As a consequence of Bernstein’s Lemma (stated below), C̃r (Rd) is
a subspace of Cr(Rd). Explicit examples can be constructed to show that such an inclusion is genuine. In addition,
according to Proposition 2.2, C̃r (Rd) includes Cr+ε(Rd) for any ε > 0. In summary, for any integer k � 0 and ε > 0,

Ck+ε
(
Rd

) ⊂ C̃k
(
Rd

) ⊂ Ck
(
Rd

)
.

Proposition 2.1 (Bernstein’s Lemma). (See Meyer [15].) Let d > 0 be an integer and 0 < α1 < α2 be two real numbers.

(1) If 1 � p � q � ∞ and supp f̂ ⊂ {ξ ∈ Rd : |ξ | � α12j }, then

max|β|=k

∥∥∂βf
∥∥

Lq � C2jk+d( 1
p

− 1
q
)‖f ‖Lp,

where C > 0 is a constant depending only on k and α1.
(2) If 1 � p � ∞ and supp f̂ ⊂ {ξ ∈ Rd : α12j � |ξ | � α22j }, then

C−12jk‖f ‖Lp � max|β|=k

∥∥∂βf
∥∥

Lp � C2jk‖f ‖Lp ,

where C > 0 is a constant depending only on k, α1 and α2.

Proposition 2.2 (Inequalities in Hölder–Zygmund space). (See Meyer [15].) Let d > 0 be an integer. Then, we have
following two inequalities:

(1) There exists a constant C = C(d) such that for any r > 0 and f ∈ Cr(Rd), we have

‖f ‖L∞ � C

r
‖f ‖Cr . (2.8)

(2) There exists a constant C = C(d) such that for any r > 1 and f ∈ Cr−1(Rd), we have∥∥∥∥ ∂f

∂xk

∥∥∥∥
Cr−1

� C‖f ‖Cr for all k = 1, . . . , d. (2.9)

In the system (1.1), the velocity field u is determined by ρ+ − ρ− through the 2D Riesz transforms. These Riesz
transforms do not map a Cr(Rd) Hölder–Zygmund space to itself, but their action on Cr(Rd) is indeed bounded in
Cr(Rd) ∩ Lp(Rd) for p ∈ (1,+∞) (see Proposition 2.4). We first recall a general result concerning the boudnedness
of Fourier multiplier operators on Hölder spaces.

Proposition 2.3 (Fourier multiplier operators on Hölder spaces). (See Meyer [15].) Let d > 0 be an integer and F be
an infinitely differentiable function on Rd . Assume that for some R > 0 and m ∈ R, we have

F(λξ) = λmF(ξ)

for any ξ ∈ Rd with |ξ | > R and λ � 1. Then the Fourier multiplier operator F(D) maps continuously Cr(Rd) into
Cr−m(Rd) for any r ∈ R.
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Proposition 2.4 (Boundedness of Riesz transforms on Cr(Rd) ∩ Lp(Rd)). Let r ∈ R and p ∈ (1,+∞). Then there
exists a positive constant C depending only on r and p such that

‖Rkf ‖Cr∩Lp � C‖f ‖Cr∩Lp for k = 1,2,

where ‖ · ‖Cr∩Lp = ‖ · ‖Cr + ‖ · ‖Lp .

Proof. Using the operator �−1 defined in (2.5), we divide Rkf into two parts,

Rkf = �−1Rkf + (1 − �−1)Rkf. (2.10)

Since suppχ(ξ) ∩ suppφ(2−j ξ) = ∅ for j � 1, the operator �j�−1 = 0 when j � 1. Thus, according to (2.6),

‖�−1Rkf ‖Cr = sup
j∈Z

2jr‖�j�−1Rkf ‖L∞

= max
[
2−r‖�−1�−1Rkf ‖L∞,‖�0�−1Rkf ‖L∞

]
� max

[
1,2−r

]‖�−1Rkf ‖L∞ .

Let q be the conjugate of p, namely 1
p

+ 1
q

= 1. It then follow, since Riesz transforms are bounded on Lp(Rd),
that for all p ∈ (1,+∞):

‖�−1Rkf ‖Cr � max
[
1,2−r

]‖χ̌ ∗ Rkf ‖L∞

� max
[
1,2−r

]‖χ̌‖Lq ‖Rkf ‖Lp

= C‖f ‖Lp ,

where C is a constant depending only on r and p. To estimate the second part in (2.10), we apply Proposition 2.3
with F(ξ) = (1 − χ(ξ))

ξk|ξ | and m = 0, and hence we conclude that it maps Cr(Rd) into Cr(Rd). This gives that

Riesz transforms are continuous from Cr(Rd) ∩ Lp(Rd) into Cr(Rd), for r ∈ R and p ∈ (1,+∞). Moreover, using
the fact that the Riesz transforms are bounded on Lp(Rd), for all p ∈ (1,+∞), we terminate the proof of Proposi-
tion 2.4. �

Finally, we recall the notion of Bony’s paraproduct (see Bony [3]). The usual product uv of two functions u and v

can be decomposed into three parts. More precisely, using v = ∑
j∈Z

�jv, u = ∑
j∈Z

�ju and

�j�kv = 0 if |j − k| � 1, �j (Sk−1v�kv) = 0 if |j − k| � 5,

we can write

uv = Tuv + Tvu + R(u, v),

where

Tuv =
∑
j�1

Sj−1(u)�jv, R(u, v) =
∑

|i−j |�1

�iu�jv.

We remark that the previous decomposition allows one to distinguish different types of terms in the product of uv.
The Fourier frequencies of u and v in Tuv and Tvu are separated from each other while those of the terms in R(u, v)

are close to each other. Using this decomposition, one can show that

‖uv‖Cs � ‖u‖Cs ‖v‖L∞ + ‖u‖L∞‖v‖Cs for s > 0. (2.11)

For the proof of (2.11) see Chen et al. [8, Proposition 5.1].
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3. Two commutator estimates

Two major commutator estimates are stated and proved in this section. We remark that this commutator estimates
was often used to resolve the Navier–Stokes equations (see for instance Cannone et al. [5,6]). Here, we apply these
techniques on our system (1.1).

Lemma 3.1 (L∞ commutator estimates). Let j � −1 be an integer and r > 0. Then, for some absolute constant C,
we have

(1)

∥∥∥∥[
u

∂

∂xα

,�j

]
f

∥∥∥∥
L∞

� C2−jr

(∥∥∥∥ ∂f

∂xα

∥∥∥∥
L∞

‖u‖Cr + ‖∇u‖L∞‖f ‖Cr

)
, for α = 1,2,

(2)

∥∥∥∥[
u

∂

∂xα

,�j

]
f

∥∥∥∥
L∞

� C2−jr
(‖f ‖L∞‖u‖Cr+1 + ‖∇u‖L∞‖f ‖Cr

)
, for α = 1,2,

where the bracket [ , ] represents the commutator, namely[
u

∂

∂xα

,�j

]
f = u

∂

∂xα

(�jf ) − �j

(
u

∂f

∂xα

)
, for α = 1,2. (3.12)

Proof. (1) Using the paraproduct notations T and R, we decompose [u ∂
∂xα

,�j ]f , for α = 1,2, into five parts,[
u

∂

∂xα

,�j

]
ρ = I1 + I2 + I3 + I4 + I5,

where

I1 =
[
Tu

∂

∂xα

,�j

]
f = Tu

(
∂

∂xα

(�jf )

)
− �j

(
Tu

∂f

∂xα

)
,

I2 = −�jT ∂f
∂xα

(u),

I3 = T∂(�j f )

∂xα

(u),

I4 = R

(
u,

∂(�jf )

∂xα

)
,

I5 = −�jR

(
u,

∂f

∂xα

)
.

Back to the definition of T , we can write

I1 =
∑
k�1

Sk−1(u)�k

(
∂(�jf )

∂xα

)
− �j

(∑
k�1

Sk−1(u)�k

∂f

∂xα

)

=
∑
k�1

[
Sk−1(u)�j

(
∂(�kf )

∂xα

)
− �j

(
Sk−1(u)

∂(�kf )

∂xα

)]
. (3.13)

Since �j�k = 0 for |j − k| > 1 and

supp

[
̂

Sk−1(u)
∂(�kf )

∂xα

]
⊂

{
ξ :

1

3
2k−2 � |ξ | � 5

3
2k+1

}
,

the sum in (3.13) only involves those terms with k satisfying |j − k| � 4. We only take j � 0 since the case j = −1
can be handled similarly. Applying the definition of �j in (2.5), we obtain

I1 =
∑

|j−k|�4

2jd

∫
φ̌
(
2j (x − y)

)[
Sk−1

(
u(x)

) − Sk−1
(
u(y)

)]∂(�kf )

∂xα

(y) dy

=
∑ ∫

φ̌(y)
[
Sk−1

(
u(x)

) − Sk−1
(
u
(
x − 2−j y

))]∂(�kf )

∂xα

(
x − 2−j y

)
dy.
|j−k|�4
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Using the fact that φ̌ ∈ S(Rd) and Sj are continuous from L∞ onto itself, we get for r ∈ R and an absolute constant C:

‖I1‖L∞ � C2−j‖∇u‖L∞
∥∥∥∥∂(�jf )

∂xα

∥∥∥∥
L∞

� C‖∇u‖L∞‖�jf ‖L∞

� C2−jr‖∇u‖L∞‖f ‖Cr , (3.14)

where we have used Proposition 2.1 in the second inequality. To estimate I2 and I3, we first write them as

I2 = −
∑

|j−k|�4

�j

(
Sk−1

(
∂f

∂xα

)
�ku

)
, I3 =

∑
|j−k|�4

Sk−1

(
∂(�jf )

∂xα

)
�ku.

Similarly, only terms with k satisfying |j − k| � 4 are considered in the above sums. Thus, since �j and Sj are
continuous from L∞ onto itself, we have for r ∈ R:

‖I2‖L∞ � C

4∑
k1=−4

∥∥∥∥�j

(
Sj+k1−1

(
∂f

∂xα

)
�j+k1u

)∥∥∥∥
L∞

� C

4∑
k1=−4

∥∥∥∥Sj+k1−1

(
∂f

∂xα

)
�j+k1u

∥∥∥∥
L∞

� C

∥∥∥∥ ∂f

∂xα

∥∥∥∥
L∞

‖u‖Cr

4∑
k1=−4

2−(j+k1)r � C2−jr

∥∥∥∥ ∂f

∂xα

∥∥∥∥
L∞

‖u‖Cr , (3.15)

‖I3‖L∞ � C

4∑
k1=−4

∥∥∥∥Sj+k1−1

(
∂(�jf )

∂xα

)
�j+k1u

∥∥∥∥
L∞

� C

∥∥∥∥ ∂f

∂xα

∥∥∥∥
L∞

‖u‖Cr

4∑
k1=−4

2−(j+k1)r � C2−jr

∥∥∥∥ ∂f

∂xα

∥∥∥∥
L∞

‖u‖Cr , (3.16)

where the C’s in the above inequalities are absolute constants. From the definition of R, we have

I4 =
∑

|k1−k2|�1, |j−k2|�1

(
�k1(u)�k2

(
∂(�jf )

∂xα

))
.

Obviously, only a finite number of terms involved in the above sums are non-zeros. Then,

‖I4‖L∞ � C2−jr sup
j∈Z

(
2jr‖�ju‖L∞

)∥∥∥∥�j

∂f

∂xα

∥∥∥∥
L∞

� C2−jr‖u‖Cr

∥∥∥∥ ∂f

∂xα

∥∥∥∥
L∞

. (3.17)

Note that from the definition of R and �j , j � −1, we can write I5 as

I5 = −
∑

k�j−3

k+1∑
k1=k−1

�j

(
�k(u)�k1

(
∂f

∂xα

))
.

Therefore, for an absolute constant C, we have

‖I5‖L∞ � C
∑

k�j−3

k+1∑
k1=k−1

‖�ku‖L∞
∥∥∥∥�k1

∂f

∂xα

∥∥∥∥
L∞

� C

∥∥∥∥ ∂f

∂xα

∥∥∥∥
L∞

‖u‖Cr

∑
k�j−3

2−kr

� C2−jr

∥∥∥∥ ∂f

∂x

∥∥∥∥ ‖u‖Cr . (3.18)

α L∞
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Gathering the estimates in (3.14)–(3.18), we establish the desired inequality in (1).
(2) As in the proof of (1), we decompose [u ∂

∂xα
,�j ]f as the sum of I1, I2, I3, I4 and I5. The estimate on I1

remains untouched, while different bounds are needed for I2, I3, I4 and I5. Indeed, for j � 1:

‖I2‖L∞ � C‖�ju‖L∞
∥∥∥∥∂Sj−1f

∂xα

∥∥∥∥
L∞

� C2j‖�ju‖L∞‖Sj−1f ‖L∞

� C2−jr‖u‖Cr+1‖f ‖L∞, (3.19)

where we have used Proposition 2.1 in the second inequality. I3 and I4 can be similarly estimated as I2:

‖I3‖L∞ � C

∥∥∥∥∂�jf

∂xα

∥∥∥∥
L∞

‖�ju‖L∞ � C2j‖�ju‖L∞‖�jf ‖L∞

� C2−jr‖u‖Cr+1‖f ‖L∞, (3.20)

‖I4‖L∞ � C‖�ju‖L∞
∥∥∥∥∂�jf

∂xα

∥∥∥∥
L∞

� C2j‖�ju‖L∞‖�jf ‖L∞

� C2−jr‖u‖Cr+1‖f ‖L∞ . (3.21)

Finally, we have

‖I5‖L∞ � C
∑

k�j−3

k+1∑
k1=k−1

‖�ku‖L∞
∥∥∥∥∂�k1f

∂xα

∥∥∥∥
L∞

� C
∑

k�j−3

k+1∑
k1=k−1

2k1‖�ku‖L∞‖�k1f ‖L∞ � C‖f ‖L∞
∑

k�j−3

2k‖�ku‖L∞

� C‖f ‖L∞‖u‖Cr+1

∑
k�j−3

2−kr � C2−jr‖f ‖L∞‖u‖Cr+1 . (3.22)

Combining (3.19)–(3.22) yields (2). �
4. Local existence and uniqueness results

This section is devoted to the proofs of Theorems 1.1 and 1.2. For the sake of a clear presentation, we divide it into
three subsections. In the first subsection, we show a basic a priori estimate and we prove Theorem 1.4. With the aid
of this estimate, we prove Theorems 1.1 and 1.2 in the next subsections.

4.1. An a priori estimate

Proposition 4.1 (A priori estimate). Let r > 1 and p > 1. For all T > 0, ρ0 = (ρ+
0 , ρ−

0 ) ∈ Yr,q and u ∈
L∞([0, T );Cr(R2) ∩ Lp(R2)), there exists a unique solution ρ = (ρ+, ρ−) ∈ L∞([0, T );Yr,p) of the following sys-
tem of linear transport equations

∂ρ±

∂t
± u

∂ρ±

∂x1
= 0. (4.23)

Moreover, for all t ∈ [0, T ], we have

∥∥ρ(·, t)∥∥
r,p

� ‖ρ0‖r,p exp

(
C

t∫
0

∥∥u(·, τ )
∥∥

Cr∩Lp dτ

)
,

where C > 0 is a constant depending only on r and p.
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Proof. From the fact that u(·, t) ∈ Cr(R2) ∩ Lp(R2), for t ∈ [0, T ], we can define the flow map X±(·, t) satisfying⎧⎨⎩
∂X±(x, t)

∂t
= ±ū

(
X(x, t), t

)
, where ū = (u,0),

X±(x,0) = x.

(4.24)

By the characteristics method, we know that, if (X±)−1 is the inverse function of X± with respect to x, then ρ±(x, t) =
ρ±

0 ((X±)−1(x, t)) is the unique solution of system (4.23) (see Serre [19] for more details).
Let j � −1. Applying the operator �j to both sides of the system (1.1) yields

∂�jρ
±

∂t
± u

∂�jρ
±

∂x1
= ±

[
u

∂

∂x1
,�j

]
ρ±,

where [u ∂
∂x1

,�j ]ρ± is defined in (3.12). This equation can be rewritten in the following form

�jρ
±(x, t) = �jρ

±
0

((
X±)−1

(x, t)
)± t∫

0

[
u

∂

∂x1
,�j

]
ρ±(

X±((
X±)−1

(x, t), s
)
, s

)
ds.

Taking the L∞-norm of both sides of this equality, we get

∥∥�jρ
±(·, t)∥∥

L∞ �
∥∥�jρ

±
0

∥∥
L∞ +

t∫
0

∥∥∥∥[
u

∂

∂x1
,�j

]
ρ±(·, s)

∥∥∥∥
L∞

ds.

Applying Lemma 3.1(1), we obtain

∥∥ρ±(·, t)∥∥
Cr �

∥∥ρ±
0

∥∥
Cr + C

t∫
0

(∥∥∥∥∂ρ±

∂x1
(·, s)

∥∥∥∥
L∞

∥∥u(·, s)∥∥
Cr + ∥∥∇u(·, s)∥∥

L∞
∥∥ρ±(·, s)∥∥

Cr

)
ds.

According to (2.8)–(2.9), we know that for r > 1 and a constant C = C(r) > 0, we have∥∥∥∥∂ρ±

∂x1

∥∥∥∥
L∞

� C
∥∥ρ±∥∥

Cr .

In a similar way, we can obtain ‖∇u‖L∞ � C‖u‖Cr . Therefore, for C = C(r) > 0,

∥∥ρ±(·, t)∥∥
Cr �

∥∥ρ±
0

∥∥
Cr + C

t∫
0

∥∥u(·, s)∥∥
Cr

∥∥ρ±(·, s)∥∥
Cr ds

� max±
(∥∥ρ±

0

∥∥
Cr

) + C

t∫
0

∥∥u(·, s)∥∥
Cr

∥∥ρ(·, s)∥∥
r,p

ds,

where ρ = (ρ+, ρ−). Moreover, integrating in time the system (4.23), we get the following Lp estimate:

∥∥ρ±(·, t)∥∥
Lp �

∥∥ρ±
0

∥∥
Lp +

t∫
0

∥∥u(·, s)∥∥
Lp

∥∥∥∥∂ρ±

∂x1
(·, s)

∥∥∥∥
L∞

ds

�
∥∥ρ±

0

∥∥
Lp + C

t∫
0

∥∥u(·, s)∥∥
Lp

∥∥ρ(·, s)∥∥
r,p

ds,

where we have used Hölder inequality in the first line and (2.8)–(2.9) in the second line. Now, adding the two previous
inequalities, we obtain
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∥∥ρ(·, t)∥∥
r,p

� ‖ρ0‖r,p + C

t∫
0

∥∥u(·, s)∥∥
Cr∩Lp

∥∥ρ(·, s)∥∥
r,p

ds.

By Gronwall’s Lemma, we obtain

∥∥ρ(·, t)∥∥
r,p

� ‖ρ0‖r,p exp

(
C

t∫
0

∥∥u(·, s)∥∥
Cr∩Lp ds

)
. (4.25)

Which completes the proof of Proposition 4.1. �
Proof of Theorem 1.4. The proof of Theorem 1.4 is a consequence of the proof of Proposition 4.1. Indeed, just
consider the characteristic equation⎧⎨⎩

∂X(x, t)

∂t
= v

(
X(x, t), t

)
,

X(x,0) = x.

(4.26)

Then, as in the proof of Proposition 4.1, we use the commutator estimates proved in Lemma 3.1(1), to show the
following estimate

∥∥g(·, t)∥∥
Cr∩Lp� ‖g0‖Cr∩Lp exp

(
C

t∫
0

∥∥v(·, s)∥∥
r,p

ds

)
, (4.27)

which proves the result. �
4.2. Proof of Theorem 1.1

The proof starts with the construction of a successive approximation sequence {ρn = (ρ+,n, ρ−,n)}n�1 satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ1 = (
ρ+

0 , ρ−
0

) = ρ0,

∂ρ±,n+1

∂t
± un ∂ρ±,n+1

∂x1
= 0, on R2 × (0, T ),

un = R2
1R2

2

(
ρ+,n − ρ−,n

)
,

ρ±,n+1(x,0) = ρ±
0 .

(4.28)

First of all, according to Proposition 2.4, ρ1 ∈ Yr,p implies that u1 ∈ Cr(R2)∩Lp(R2). Thus, applying Proposition 4.1,
we can prove that, for all T > 0, there exists a unique solution ρ2 ∈ L∞([0, T );Yr,p) for (4.28) with n = 2. Arguing
in a similar manner we can show that this approached problem (4.28) has a unique solution ρn for all n � 1.

The rest of the proof can be divided into two major steps. The first step establishes the existence of T1 > 0 such
that {ρn = (ρ+,n, ρ−,n)}n�1 is uniformly bounded in Yr,p for any t ∈ [0, T1]. The second step shows that for some
T2 ∈ [0, T1], we have {ρn = (ρ+,n, ρ−,n)}n�1 is a Cauchy sequence in C([0, T2], Yr−1,p).

Step 1 (A uniform bound): Using similar arguments as in the proof of Proposition 4.1, estimate (4.25) yields, by
Proposition 2.4, the following bound on {ρn = (ρ+,n, ρ−,n)}n�1:

∥∥ρn+1(·, t)∥∥
r,p

� ‖ρ0‖r,p exp

(
C0

t∫
0

∥∥un(·, s)∥∥
Cr∩Lp ds

)
,

‖ρ0‖r,p exp

(
C0

t∫
0

∥∥ρn(·, s)∥∥
r,p

ds

)
,

where r > 1, p ∈ (1,+∞) and C0 = C0(r,p). Choose T1 and M satisfying
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M = 2‖ρ0‖r,p and

(
exp(C0T1M) � 2 or T1 = ln(2)

2C0‖ρ0‖r,p

)
.

Then ‖ρn(·, t)‖r,p � M for all n � 1 and t ∈ [0, T1]. Since,∥∥ρ1
∥∥

r,p
� ‖ρ0‖r,p < M

and ‖ρk(·, t)‖r,p < M , we obtain∥∥ρn+1(·, t)∥∥
r,p

� ‖ρ0‖r,p exp(C0T1M) � M. (4.29)

Furthermore, since r > 1, we use (2.11) and Proposition 2.4 to get∥∥∥∥∂ρ±,n

∂t

∥∥∥∥
Cr−1

�
∥∥∥∥un ∂ρ±,n+1

∂x1

∥∥∥∥
Cr−1

�
∥∥un

∥∥
Cr−1

∥∥∥∥∂ρ±,n+1

∂x1

∥∥∥∥
L∞

+ ∥∥un
∥∥

L∞

∥∥∥∥∂ρ±,n+1

∂x1

∥∥∥∥
Cr−1

� C
∥∥un

∥∥
Cr−1

∥∥ρ±,n+1
∥∥

Cr

� CM2,

where we have used (2.8)–(2.9) in the third line. We can also check that the following Lp estimate on ρ±,n is valid:∥∥∥∥∂ρ±,n

∂t

∥∥∥∥
Lp

�
∥∥∥∥un ∂ρ±,n+1

∂x1

∥∥∥∥
Lp

�
∥∥un

∥∥
Lp

∥∥∥∥∂ρ±,n+1

∂x1

∥∥∥∥
L∞

� C
∥∥un

∥∥
Lp

∥∥ρ±,n+1
∥∥

Cr � CM2,

where we have used Hölder inequality in the first line, then (2.8)–(2.9) and Proposition 2.4 in the second line. Adding
the two previous inequalities, we deduce that

max±

(∥∥∥∥∂ρ±,n

∂t

∥∥∥∥
Cr−1

)
+ max±

(∥∥∥∥∂ρ±,n

∂t

∥∥∥∥
Lp

)
� CM2, (4.30)

where C = C(r). Thus, by (4.29)–(4.30), we obtain that

ρn ∈ L∞([0, T1];Yr,p

) ∩ Lip
([0, T1];Yr−1,p

)
is uniformly bounded.

Step 2 (Cauchy sequence): To show that {ρn = (ρ+,n, ρ−,n)}n�1 is a Cauchy sequence in Yr−1,q , we consider the
difference η±,n = ρ±,n − ρ±,n−1. Rigorously speaking, we should consider the more general difference η±,m,n =
ρ±,m − ρ±,n, but the analysis for ηm,n = (η+,m,n, η−,m,n) is parallel to what we shall present for ηn = (η+,n, η−,n)

and thus we consider ηn for the sake of a concise presentation. It follows from (4.28) that {ηn = (η+,n, η−,n)}n�1
satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

η±,1 = ρ±
0 ,

∂η±,n+1

∂t
± un ∂η±,n+1

∂x1
= ∓wn ∂ρ±,n

∂x1
,

wn = R2
1R2

2

(
η+,n − η−,n

)
,

η±,n+1(x,0) = η
±,n+1
0 (x) = 0.

(4.31)

Proceeding as in the proof of Proposition 4.1, we obtain for any integer j � −1,

∥∥�jη
±,n+1(·, t)∥∥

L∞ �
t∫

0

∥∥∥∥[
un ∂

∂x1
,�j

]
η±,n+1(·, s)

∥∥∥∥
L∞

ds

︸ ︷︷ ︸
+

t∫
0

∥∥∥∥�j

(
wn ∂ρ±,n

∂x1
(·, s)

)∥∥∥∥
L∞

ds.

︸ ︷︷ ︸

K1 K2
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Estimating K1 by Lemma 3.1(2), and K2 by (2.11), we get∥∥η±,n+1(·, t)∥∥
Cr−1 � C

t∫
0

(∥∥∇un(·, s)∥∥
L∞

∥∥η±,n+1(·, s)∥∥
Cr−1 + ∥∥un(·, s)∥∥

Cr

∥∥η±,n+1(·, s)∥∥
L∞

)
ds

+ C

t∫
0

(∥∥wn(·, s)∥∥
L∞

∥∥∥∥∂ρ±,n

∂x1
(·, s)

∥∥∥∥
Cr−1

+ ∥∥wn(·, s)∥∥
Cr−1

∥∥∥∥∂ρ±,n

∂x1
(·, s)

∥∥∥∥
L∞

)
ds.

Since r > 1, Proposition 2.2 implies,∥∥∇un
∥∥

L∞ � C
∥∥un

∥∥
Cr ,

∥∥η±,n+1
∥∥

L∞ � C
∥∥η±,n+1

∥∥
Cr−1 ,∥∥∥∥∂ρ±,n

∂x1

∥∥∥∥
L∞

� C
∥∥ρ±,n

∥∥
Cr and

∥∥wn
∥∥

L∞ � C
∥∥wn

∥∥
Cr−1 .

Therefore, for a constant C depending only on r ,∥∥η±,n+1(·, t)∥∥
Cr−1 � C

t∫
0

∥∥un(·, s)∥∥
Cr

∥∥η±,n+1(·, s)∥∥
Cr−1 ds

+ C

t∫
0

∥∥wn(·, s)∥∥
Cr−1

∥∥ρ±,n(·, s)∥∥
Cr ds. (4.32)

However, it follows from a basic Lp estimate that∥∥η±,n+1(·, t)∥∥
Lp� C

t∫
0

∥∥∇un(·, s)∥∥
L∞

∥∥η±,n+1(·, s)∥∥
Lp ds + C

t∫
0

∥∥wn(·, s)∥∥
Lp

∥∥∥∥∂ρ±,n

∂x1
(·, s)

∥∥∥∥
L∞

ds.

Since r > 1, using Proposition 2.2, we deduce that∥∥η±,n+1(·, t)∥∥
Lp� C

t∫
0

∥∥un(·, s)∥∥
Cr

∥∥η±,n+1(·, s)∥∥
Lp ds + C

t∫
0

∥∥wn(·, s)∥∥
Lp

∥∥ρ±,n(·, s)∥∥
Cr ds. (4.33)

Adding the two inequalities (4.32) and (4.33), yields∥∥ηn+1(·, t)∥∥
r−1,p

� C

t∫
0

∥∥un(·, s)∥∥
Cr∩Lp

∥∥ηn+1(·, s)∥∥
r−1,p

ds

+ C

t∫
0

∥∥wn(·, s)∥∥
Cr−1∩Lp

∥∥ρn(·, s)∥∥
r,p

ds.

The components of wn are the Riesz transforms of ηn and thus, according to Proposition 2.4:∥∥wn
∥∥

Cr−1∩Lp � C
∥∥ηn

∥∥
r−1,p

.

We thus have reached an iterative relationship between ‖ηn‖r−1,p and ‖ηn+1‖r−1,p:

∥∥ηn+1(·, t)∥∥
r−1,p

� C1

t∫
0

∥∥ρn(·, s)∥∥
r,p

∥∥ηn+1(·, s)∥∥
r−1,p

ds

+ C1

t∫
0

∥∥ηn(·, s)∥∥
r−1,p

∥∥ρn(·, s)∥∥
r,p

ds, (4.34)

where the constants are labeled as C1 for the purpose of defining T2. It has been shown in Step 1 that for t � T1,
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∥∥ρn
∥∥

r,p
� M.

Now, choose T2 > 0 satisfying

T2 � T1, C1MT2 � 1

4
.

In the following, we will prove that the sequence {ρn(·, t)}n�1 is a Cauchy sequence in Yr−1,p for t � T2. Indeed, for
any given ε > 0 small enough, if we assume that ‖ηn‖r−1,p � ε for t � T2, then (4.34) implies that

∥∥ηn+1
∥∥

r−1,p
� C1εMT2 + C1M

t∫
0

∥∥ηn+1(·, s)∥∥
r−1,p

ds,

is valid for any t � T2. It then follows from Gronwall’s inequality that∥∥ηn+1
∥∥

r−1,p
� ε,

which implies that {ρn(·, t)}n�1 is a Cauchy sequence in Yr−1,p for t � T2 and then completes the proof of Step 2.
We conclude from Steps 1 and 2 that there exists ρ = (ρ+, ρ−) satisfying

ρ ∈ L∞([0, T2];Yr,p

) ∩ Lip
([0, T2];Yr−1,p

)
such that ρn converges to ρ in C([0, T2];Yr−1,p).

The proof of uniqueness follows directly from Step 2. This completes the proof of Theorem 1.1.

4.3. Proof of Theorem 1.2

It is worth mentioning that the ideas of the proof of Theorem 1.2 are already contained in the proof of Theorem 1.1.
First of all, we note that for all L ∈ R, if ρ± are solutions of (1.1) then

ρ̄±(x1, x2, t) = ρ±(x1, x2, t) − Lx1

solves the following system:⎧⎪⎨⎪⎩
∂ρ̄±

∂t
(x, t) ± u

∂ρ̄±

∂x1
(x, t) = ∓Lu on R2 × (0, T ),

u = R2
1R2

2

(
ρ̄+ − ρ̄−)

,

(4.35)

and respects the following initial data:

ρ̄±
0 (x1, x2, t) = ρ±

0 (x1, x2) − Lx1.

Now, to prove Theorem 1.2, it suffices to show that, for all initial data ρ̄±
0 ∈ Yr,p , the system (4.35) has a unique local

solution ρ̄± ∈ L∞([0, T );Yr,p) for r > 1 and p ∈ (1,+∞).
In order to do this, we proceed as in the proof of Theorem 1.1. We consider the following approached system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ̄1 = (
ρ̄0

+, ρ̄0
−) = ρ̄0,

∂ρ̄±,n+1

∂t
± un ∂ρ̄±,n+1

∂x1
= ∓Lun, on R2 × (0, T ),

un = R2
1R2

2

(
ρ̄+,n − ρ̄−,n

)
,

ρ̄±,n+1(x,0) = ρ̄0
±.

(4.36)

We remark that, the only change that appears here, compared to the approached system (4.28) is the right-hand
side Lun of the second equation of (4.36). However, by Proposition 2.4, we know that this term remains bounded in
L∞([0, T );Cr(R2) ∩ Lp(R2)) for r > 1 and p ∈ (1,+∞). Which permits us to easily follow the same steps of the
proof of Theorem 1.1. This finally proves that, for some small T > 0, we have on the one hand: the sequence ρ̄n =
(ρ̄+,n, ρ̄−,n) is uniformly bounded in L∞([0, T );Yr,p), and on the other hand, this sequence is a Cauchy sequence in
L∞([0, T );Yr−1,p). This terminate the proof.
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