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Abstract

We consider smooth three-dimensional spherically symmetric Eulerian flows of ideal polytropic gases outside an impermeable
sphere, with initial data equal to the sum of a constant flow with zero velocity and a smooth perturbation with compact support.
Under a natural assumption on the form of the perturbation, we obtain precise information on the asymptotic behavior of the
lifespan as the size of the perturbation tends to 0. When there is no sphere, so that the flow is defined in all space, corresponding
results have been obtained in [P. Godin, The lifespan of a class of smooth spherically symmetric solutions of the compressible
Euler equations with variable entropy in three space dimensions, Arch. Ration. Mech. Anal. 177 (2005) 479–511].
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons des écoulements eulériens tridimensionnels lisses à symétrie sphérique de gaz parfaits polytropiques à l’exté-
rieur d’une sphère imperméable, avec des données initiales somme d’un écoulement constant de vitesse nulle et d’une perturbation
lisse à support compact. Sous une hypothèse naturelle sur la forme de la perturbation, nous obtenons une information précise sur
le comportement asymptotique de la durée de vie quand la taille de la perturbation tend vers 0. S’il n’y a pas de sphère, de sorte
que l’écoulement est défini dans tout l’espace, des résultats correspondants ont été obtenus dans [P. Godin, The lifespan of a class
of smooth spherically symmetric solutions of the compressible Euler equations with variable entropy in three space dimensions,
Arch. Ration. Mech. Anal. 177 (2005) 479–511].
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

For Eulerian compressible flows in all space with initial data suitably close to a constant flow with zero velocity,
precise estimates for the lifespan have been obtained in the 2D axisymmetric isentropic case [1,12], and in the 3D
spherically symmetric case for ideal polytropic gases with variable entropy [3]. The purpose of the present paper is to
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obtain results analogous with those of [3] outside an impermeable sphere. To achieve this, we shall adapt the methods
and proofs of [3,4] to the needs of the present paper.

As in the boundaryless case [3], we shall introduce a suitable approximate flow, satisfying here the impermeability
boundary condition, and obtained by combining a suitable isentropic flow with a suitable steady flow with constant
pressure. Because of the boundary condition, some extra care will be needed to ensure that the approximate flow
satisfies suitable compatibility conditions. Estimates for the approximate flow will follow from the results of [4]. To
study the error (that is, the difference between the actual flow and the approximate flow), we shall adapt arguments
of [3,4]. We shall rely heavily (as in [3,4]) on Sobolev type estimates with decay from [9].

Our paper is organized as follows. In Section 2, we state our results precisely and give some indication on notations
to be used in this paper. In Section 3, we treat short time existence and introduce our approximate solution, which is
studied in Section 4 with the help of results of [4]. An asymptotic lower bound for the lifespan is obtained in Sections 5
and 6. In Section 7 it is shown that this asymptotic lower bound actually is an asymptotic upper bound.

2. Statement of the results

Set DR = {x ∈ R
3, |x| > R}, write ∂j = ∂/∂xj , ∇ = (∂1, ∂2, ∂3), and denote by · the Euclidean scalar product

in R
3. We consider the compressible Euler equations

∂tρ + u · ∇ρ + ρ∇ · u = 0 if 0 < t < T and x ∈ DR, (2.1)

∂tu + u · ∇u + 1

ρ
∇P = 0 if 0 < t < T and x ∈ DR, (2.2)

∂tS + u · ∇S = 0 if 0 < t < T and x ∈ DR, (2.3)

where t is the time variable, ρ the density, u the velocity, P the pressure, S the entropy. If u(1), u(2), u(3) are the
components of u, ∇ · u of course means

∑
1�j�3 ∂ju

(j), u · ∇ is
∑

1�j�3 u(j)∂j and u · ∇u = (u · ∇)u. Throughout

this paper we shall deal with ideal polytropic gases, namely we shall assume that P = P(ρ,S) = K1ρ
γ eK2S , where

K1, γ , K2 are strictly positive constants with γ > 1. We shall also set r = |x|. Throughout this paper, a function of
(t, x) will be called radial if it depends only on (t, r). We shall say that (ρ,u,S) is spherically symmetric if u = Ux/r

with U real-valued and ρ, U , S are radial functions. Fix M > 0, ρ̄ > 0, S̄ > 0, and let ε > 0 be a small parameter,
always assumed to belong to (0, ε0] for some small ε0 > 0 throughout this paper. We shall consider the impermeability
boundary condition

u · x = 0 if 0 < t < T and r = R (2.4)

(which of course will take a much simpler form for the spherically symmetric solutions to be considered in the present
paper) and the family of spherically symmetric initial conditions

ρ(0, x) = ρ̄ + ερ0(x, ε) if x ∈ DR, (2.5)

u(0, x) = εu0(x, ε) if x ∈ DR, (2.6)

S(0, x) = S̄ + εS0(x, ε) if x ∈ DR, (2.7)

where ρ(0, x) > 0, ρ0(x, ε) = ρ0(r) + ερ1(r, ε), u0(x, ε) = (u0(r) + εu1(r, ε))x/r , S0(x, ε) = S0(r) + εS1(r, ε) for
some functions ρj , uj , Sj (fixed throughout this paper) which are C∞([R,+∞)) functions of r and vanish when
r � R + M , with ρ0, u0, S0 independent of ε. We shall assume that the initial data (2.5)–(2.7) satisfy the usual
compatibility conditions of all orders when t = 0, r = R, for the boundary value problem (2.1)–(2.4). Recall that this
means that if (ρ,u,S) is a smooth solution of (2.1)–(2.3) for some T > 0 such that (2.5)–(2.7) hold, then ∂k

t u · x = 0
if k ∈ N, t = 0 and r = R. We shall also assume that |∂α

x ρ1| + |∂α
x u1| + |∂α

x S1| � Ĉα if α ∈ N
3, with Ĉα independent

of ε (and of x ∈ DR) and fixed throughout the paper. Set Iε = {T > 0, (2.1)–(2.7) has a unique C∞([0, T ) × DR)

solution (ρ,u,S) (hence ρ > 0)}. In Section 3, the following theorem will be proved easily with the help of the
results of [5].

Theorem 2.1. If ε is small, then Iε �= ∅. Moreover, if T ∈ Iε , then (ρ,u,S) is spherically symmetric if 0 � t < T .
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Set Tε = sup Iε . The purpose of this paper is to obtain precise information on the behavior of Tε as ε
>→ 0. To

describe our results, we need to introduce certain quantities. Set c̄ = ( ∂P
∂ρ

(ρ̄, S̄))1/2, cρ = ∂
∂ρ

( ∂P
∂ρ

)1/2(ρ̄, S̄). No-

tice that ρ̄cρ + c̄ > 0. Define for r � R: f0(r) = − ∫ R+M

r
u0(y) dy, f1(r) = −c̄(

ρ0

ρ̄
+ K2

S0

γ
)(r), and, for q ∈ R:

F0(q) = 1
2 (R + |q − R|)f0(R + |q − R|) + 1

2

∫ R+M

R+|q−R| yf1(y) dy + eq/R−2
∫ R+(R−q)+
R ey/Ry(f1(y) − 1

R
f0(y)) dy;

throughout this paper,
∫ b

a
means − ∫ a

b
if b < a, and a+ = max(a,0) if a ∈ R. It follows from results of [4], re-

called in Section 4 below, that F0 ∈ C∞(R), F0 and all its derivatives are bounded, and maxq∈R(−F ′′
0 (q)) � 0. Set

τ ∗ = c̄2(c̄ + ρ̄cρ)−1(maxq∈R(−F ′′
0 (q)))−1 if maxq∈R(−F ′′

0 (q)) > 0, τ ∗ = +∞ otherwise. So τ ∗ ∈ (0,+∞] and it

follows from results of [4] recalled in Section 4 below that τ ∗ < +∞ if and only if |u0| + |ρ0

ρ̄
+ K2

S0

γ
| �≡ 0. The

purpose of the present paper is to prove the following long time existence result, whose boundaryless analogue has
been obtained in [3].

Theorem 2.2. lim
ε

>→0
(ε lnTε) = τ ∗.

As announced in the introduction, Theorem 2.2 will be proved by adapting the method used in [3]. We shall
construct an approximate solution of (2.1)–(2.7), from which we shall obtain the following result, which is the first
half of Theorem 2.2.

Theorem 2.3. lim inf
ε

>→0
(ε lnTε) � τ ∗.

Then we shall show how to modify the arguments of [3] to prove the next result:

Theorem 2.4. lim sup
ε

>→0
(ε lnTε) � τ ∗.

Theorem 2.2 follows at once from Theorem 2.3 and Theorem 2.4.
In the following sections we shall introduce a number of useful notations which will be used throughout this paper.

Functions θ , w, z are defined at the beginning of Section 3 and corresponding functions Θ , W , Z just before (3.9).
Functions θ1, w1, z1, vector fields Γj , X, and some norms are introduced after the proof of Lemma 3.1, just before

the statement of Theorem 3.1. Functions θ2, w2, z2 are defined just before (3.20) and norms E
1/2
m (t) just before

Theorem 3.2. Norms E
1/2
m,l (t) and (semi-)norms Qm,l(t) are introduced at the beginning of Section 5. W2 appears

in the proof of Proposition 5.1(6), Θj , W1, Zj are defined just before Lemma 5.3 and norms Ẽ
1/2
m,l (t) just before

Proposition 5.3. In Section 6, useful notations are grouped just before (6.30).

3. Proof of Theorem 2.1. The approximate solution

In this section we shall show that Theorem 2.1 follows easily from the results of [5], and we shall describe our
approximate solution.

As in the boundaryless case [3], it is convenient to introduce new dependent variables θ , w, z defined by θ(t, x) =
2

γ−1 ((P (t/c̄, x)/P̄ )(γ−1)/2γ − 1), w(t, x) = u(t/c̄, x)/c̄, z(t, x) = eK2(S−S̄)(t/c̄,x)/γ − 1, where P̄ = K1ρ̄
γ eK2S̄ . Set

C1 = (γ − 1)/2. Then, from (2.1)–(2.7), we obtain with a new T :

∂t θ + w · ∇θ + (1 + C1θ)∇ · w = 0 if 0 < t < T and x ∈ DR, (3.1)

∂tw + w · ∇w + (1 + C1θ)(1 + z)∇θ = 0 if 0 < t < T and x ∈ DR, (3.2)

∂t z + w · ∇z = 0 if 0 < t < T and x ∈ DR. (3.3)

w · x = 0 if 0 < t < T and |x| = R, (3.4)

θ(0, x) = εθ0(x, ε) if x ∈ DR, (3.5)

w(0, x) = εw0(x, ε) if x ∈ DR, (3.6)

z(0, x) = εz0(x, ε) if x ∈ DR, (3.7)
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where θ0(x, ε) = ((P (0, x)/P̄ )(γ−1)/2γ − 1)/C1ε, w0 = u0/c̄, z0(x, ε) = (eεK2S0(x,ε)/γ − 1)/ε. Notice for later use
that θ0(x, ε) = θ0(r) + εθ1(r, ε), w0(x, ε) = (w0(r) + εw1(r, ε))x/r , z0(x, ε) = z0(r) + εz1(r, ε), where θj , wj ,
zj are C∞([R,+∞)) functions of r vanishing when r � R + M with |∂α

x θ1| + |∂α
x w1| + |∂α

x z1| � C̃α for all x ∈
DR and ε small. Now the operator on the left-hand side of (3.1)–(3.3) is symmetrizable hyperbolic (cf. [3]). In
fact let w(1),w(2),w(3) be the components of w in the canonical basis of R

3 and consider the 5 × 1 matrix φ =
tr(θ (w(i))1�i�3 z), where tr means transpose. Define the 5 × 5 matrices Aj(φ), 0 � j � 3, with elements A

k,l
j (φ),

1 � k, l � 5, in the following way: A
1,1
0 (φ) = A

5,5
0 (φ) = 1, A

k,k
0 (φ) = 1/(1 + z) if 2 � k � 4, A

k,l
0 (φ) = 0 otherwise;

if 1 � j � 3, A
1,1
j (φ) = A

5,5
j (φ) = w(j), A

k,k
j (φ) = w(j)/(1 + z) if 2 � k � 4, A

1,j+1
j (φ) = A

j+1,1
j (φ) = 1 + C1θ ,

A
k,l
j (φ) = 0 otherwise. (3.1)–(3.3) read

A0(φ)∂tφ +
∑

1�j�3

Aj(φ)∂jφ = 0 if 0 < t < T and x ∈ DR; (3.8)

each Aj(φ), 0 � j � 3, is (real) symmetric and A0(φ) > 0.
The formulation (3.8), (3.4)–(3.7) will be suitable to obtain L2 estimates, but in our case (θ,w, z) will be spher-

ically symmetric, which means that θ(t, x) = Θ(t, r), w(t, x) = W(t, r)x/r , z(t, x) = Z(t, r), with Θ , W , Z real-
valued. So (3.1)–(3.7) will yield

∂tΘ + W∂rΘ + (1 + C1Θ)

(
∂rW + 2

r
W

)
= 0 if 0 < t < T and r > R, (3.9)

∂tW + W∂rW + (1 + C1Θ)(1 + Z)∂rΘ = 0 if 0 < t < T and r > R, (3.10)

∂tZ + W∂rZ = 0 if 0 < t < T and r > R, (3.11)

W(t,R) = 0 if 0 < t < T , (3.12)

Θ(0, r) = εΘ0(r, ε) if r > R, (3.13)

W(0, r) = εW0(r, ε) if r > R, (3.14)

Z(0, r) = εZ0(r, ε) if r > R, (3.15)

where Θ0(r, ε) = θ0(x, ε), W0(r, ε)x/r = w0(x, ε), Z0(r, ε) = z0(x, ε).
It is now easy to prove Theorem 2.1.

Proof of Theorem 2.1. Assume that ε is small enough. (3.9)–(3.15) is a mixed problem with characteristic boundary
of constant multiplicity for the symmetrizable hyperbolic system on the left-hand side of (3.9)–(3.11). It follows with
the help of Theorems 2 and 4 of [5] and a standard uniqueness argument that (3.9)–(3.15) has a unique C∞ solution
which gives rise to the only solution of (3.8), (3.4)–(3.7), so that Iε �= ∅ if ε is small enough. (For short time existence
results, see also [10,11] and the references given in [10,5,11].) �

We now turn to the construction of the approximate solution of (3.1)–(3.7). As a first step, we want to approximate
θ , w, replacing z by 0 (i.e. taking an isentropic flow). However the initial data (εθ0, εw0,0) need not satisfy the
compatibility conditions for (3.1)–(3.4) when t = 0 and r = R when (εθ0, εw0, εz0) do. So we first have to modify
θ0, w0 and this is the purpose of the next lemma.

Lemma 3.1. If ε is small, one can find θ̃0(x, ε) = Θ̃0(r, ε), w̃0(x, ε) = W̃0(r, ε)x/r (where Θ̃0 and W̃0 are real-valued
and C∞ with respect to r ∈ [R,+∞)) which satisfy the following conditions:

(1) |∂α
x θ̃0| + |∂α

x w̃0| � Cα if α ∈ N
3 (with Cα independent of ε),

(2) θ̃0 = 0 and w̃0 = 0 if r � R + M ,
(3) (εθ0 + ε2θ̃0, εw0 + ε2w̃0,0) are infinitely compatible initial data for (3.1)–(3.4).

Proof. Write a1 = 1 +C1Θ , a2 = (1 +C1Θ)(1 +Z), Φ = (Θ,W,Z). From (3.9)–(3.11) it follows by induction that

∂
j
t Φ = Pj

(
1
,
(
∂k
r Φ

)
0�k�j

)
if j � 1, (3.16)
r



P. Godin / Ann. I. H. Poincaré – AN 26 (2009) 2227–2252 2231
where Pj is an R
3-valued polynomial function with Pj (1/r,0) = 0. Write L = ∂r(∂r + 2/r). By induction, we obtain

with the help of (3.10), (3.16) that

∂
j
t W = −a2∂

j−1
t ∂rΘ − W∂

j−1
t ∂rW + Pj1

(
1

r
,
(
∂k
r Φ

)
0�k�j−1

)
if j � 1, (3.17)

and with the help of (3.9), (3.16) that

∂
j−1
t ∂rΘ = −a1∂

j−2
t LW − W∂

j−2
t ∂2

r Θ + Pj2

(
1

r
,
(
∂k
r Φ

)
0�k�j−1

)
if j � 2, (3.18)

where Pjl , l = 1,2, are polynomial functions and Λ �→ Pjl(1/r,Λ) vanish of order 2 at 0. Taking (3.18) into account
in (3.17) and using also (3.16), we easily find that

∂
2p
t W = (a1a2)

p LpW + M2p

(
1

r
,
(
∂k
r Φ

)
0�k�2p

)
if p � 1,

∂
2p+1
t W = −(a1a2)

pa2 Lp∂rΘ + M2p+1

(
1

r
,
(
∂k
r Φ

)
0�k�2p+1

)
if p � 0,

where Mj (
1
r
, (∂k

r Φ)0�k�j ) = WP̃j1(
1
r
, (∂k

r Φ)0�k�j ) + P̃j2(
1
r
, (∂k

r Φ)0�k�j−1) in which P̃jn are polynomial func-
tions and Λ �→ P̃jn(1/r,Λ) vanish of order n at 0. We easily conclude that the compatibility conditions when t = 0
and r = R (for the mixed problem (3.9)–(3.15)) read

W = 0, ∂rΘ = 0, LpW = −(a1a2)
−pP̂2p

((
∂k
r Φ

)
0�k�2p−1

)
if p � 1,

Lp∂rΘ = −(a1a2)
−pa−1

2 P̂2p+1
((

∂k
r Φ

)
0�k�2p

)
if p � 0,

where P̂j are polynomial functions which vanish of order 2 at 0. If we set Φk = (θk,wk, zk), k = 0,1, this can be
rewritten as

Lpw0(R) = Lp∂rθ
0(R) = 0 if p � 0,

w1(R, ε) = ∂rθ
1(R, ε) = 0,

Lpw1(R, ε) = −ε−2(a1a2)
−p(0,R)P̂2p

((
ε∂k

r Φ0(R) + ε2∂k
r Φ1(R, ε)

)
0�k�2p−1

)
if p � 1,

Lp∂rθ
1(R, ε) = −ε−2(a1a2)

−p(0,R)a−1
2 (0,R)P̂2p+1

((
ε∂k

r Φ0(R) + ε2∂k
r Φ1(R, ε)

)
0�k�2p

)
if p � 1.

(3.19)

Notice that if (3.19) holds and z0, z1 are replaced by new ones, we may keep the same θ0, w0 and find new θ1, w1

vanishing for r � R +M and with each r-derivative uniformly bounded in r and ε, such that (3.19) still holds; indeed,
the proof of the classical Borel theorem in Theorem 1.2.6 of [6] can readily be adapted to give such new θ1, w1.
Lemma 3.1 follows easily. �

By the arguments of the proof of Theorem 2.1, there exists T such that, for ε small, (3.1)–(3.4) has a unique
C∞([0, T ]× DR) solution (θ1,w1,0) with initial data (εθ0 + ε2θ̃0, εw0 + ε2w̃0,0) when t = 0. Actually the situation
now is even simpler than in Theorem 2.1: it suffices to consider (3.1), (3.2) with z ≡ 0, (3.4), with initial data (εθ0 +
ε2θ̃0, εw0 + ε2w̃0,0); in the formulation (3.9), (3.10) with Z ≡ 0, (3.12), the sphere r = R is now noncharacteristic
as long as 1 +C1Θ does not vanish. In fact it is convenient to reduce to a potential equation, which we shall do a little
later for obtaining long time estimates.

Now set z1(t, x) = εz0(x, ε). Notice that (0,0, z1) is also a solution of (3.1)–(3.4) (which corresponds to a solution
of (2.1)–(2.4) with zero velocity and constant pressure). (θ1,w1, z1) will be our approximate solution.

In order to describe important estimates, let us introduce some notations. Define (Γ0,Γ1,Γ2,Γ3,Γ4) = (∂t , ∂1,

∂2, ∂3,X), where X = t∂t + ∑
1�j�3 xj ∂j . If a = (a0, a1, a2, a3, a4) ∈ N

5, set Γ a = ∂
a0
t ∂

a1
1 ∂

a2
2 ∂

a3
3 Xa4 . When conve-

nient, we shall write f ′ = ∂f = (∂tf, ∂1f, ∂2f, ∂3f ), ∂0 instead of ∂t , and ∂α
x = ∂

α1
1 ∂

α2
2 ∂

α3
3 if α = (α1, α2, α3) ∈ N

3.
For an R

N -valued function f (t, x), we shall denote by f (t) the function x �→f (t, x) and set |f (t)|= supx∈DR
|f (t, x)|,

‖f (t)‖ = (
∫ |f (t, x)|2 dx)1/2, where | | is the usual Euclidean norm on R

N . For functions of x only, ‖ ‖ will be the
DR
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standard L2(DR) norm. Identifying p×q real matrices with elements of R
pq , we shall also use the notations |f (t, x)|

(or |f (t, r)| if f is a function of (t, r)), |f |, |f (t)| when f is valued in the set of p × q real matrices. Finally we shall
set 〈y〉 = 1 + |y| if y ∈ R.

With τ ∗ as in Section 2, we have the following result, which will be proved in the next section.

Theorem 3.1. Fix a ∈ N
5 and τ ∈ (0, τ ∗). One can find ε0 > 0, C > 0, and if R̄ > R, also C̄ > 0 such that

the following holds: if 0 < ε � ε0 and ε lnT � τ , then θ1, w1 exist, belong to C∞([0, T ] × DR), vanish when
r � t + R + M , and satisfy the following estimates for all t ∈ [0, T ]:

(1) ‖Γ aθ1(t)‖ + ‖Γ aw1(t)‖ � Cε,
(2) |Γ aθ1(t)| + |Γ aw1(t)| � Cε〈t〉−1,
(3) 〈t〉|∇Γ aθ1(t, x)| + |∂tΓ

aθ1(t, x)| + |Γ aw1(t, x)| � C̄ε〈t〉−2−a0 if R � r � R̄.

Suppose now that τ ∈ (0, τ ∗) is fixed and let (θ,w, z) be a C∞([0, T ] × DR) solution of (3.1)–(3.7), where
ε lnT � τ . Assume that ε is small, and let (θ1,w1, z1) be as above. Set θ2 = θ − θ1, w2 = w − w1, z2 = z − z1.
Then of course

∂t θ2 + ∇ · w2 = −(w · ∇θ − w1 · ∇θ1) − C1(θ∇ · w − θ1∇ · w1) if 0 < t < T and x ∈ DR, (3.20)

∂tw2 + ∇θ2 = −(w · ∇w − w1 · ∇w1) − C1(θ∇θ − θ1∇θ1) − (1 + C1θ)z∇θ

if 0 < t < T and x ∈ DR, (3.21)

∂t z2 = −(w1 + w2) · ∇(z1 + z2) if 0 < t < T and x ∈ DR, (3.22)

w2 · x = 0 if 0 < t < T and r = R, (3.23)

θ2(0, x) = −ε2θ̃0(x, ε) if x ∈ DR, (3.24)

w2(0, x) = −ε2w̃0(x, ε) if x ∈ DR, (3.25)

z2(0, x) = 0 if x ∈ DR, (3.26)

with θ̃0, w̃0 as in Lemma 3.1. Now, if x ∈ DR , it is easily checked that |∂k
t ∂α

x (θ,w, z)(0, x)| � Ckαε and
|∂k

t ∂α
x (θ1,w1, z1)(0, x)| � Ckαε, so by (3.24)–(3.26) and (3.20)–(3.22) we obtain that

∣∣∂k
t ∂α

x (θ2,w2, z2)(0, x)
∣∣ � Ckαε2. (3.27)

We shall use a fixed function ψ : (0,1) → (0,+∞) such that εψ(ε) is bounded and ψ(ε) → +∞ as ε
>→ 0. (Re-

placing ψ by another function ψ1 of the same type such that (ψ1/ψ)(ε) → 0 as ε
>→ 0 will improve estimates.)

Set Em(t) = ∑
|a|�m(‖Γ aθ2(t)‖2 + ‖Γ aw2(t)‖2 + ‖Γ az2(t)‖2). With the help of Theorem 3.1 we shall prove in

Sections 5 and 6 the following result, which measures the quality of the approximation of (θ,w, z) by (θ1,w1, z1).

Theorem 3.2. Fix m ∈ N. If τ ∈ (0, τ ∗), one can find C > 0, ε0 > 0 such that the following holds: if 0 < ε � ε0,
ε lnT � τ and (θ2,w2, z2) is a C∞([0, T ] × DR) solution of (3.20)–(3.26), then E

1/2
m (t) � Cε2ψ(ε) if t ∈ [0, T ].

As a system with unknown tr(θ2 w2 z2), (3.20)–(3.22) is symmetrizable hyperbolic (cf. (3.8)). Using Theorem 4
of [5] and Theorem 3.2, we find that (3.20)–(3.26) has a C∞([0, eτ/ε] × DR) solution when τ ∈ (0, τ ∗) is fixed and ε

is small. Theorem 2.3 then follows easily.

4. Proof of Theorem 3.1

In this section we shall study the approximate solution introduced in Section 3 and we shall prove Theorem 3.1.
As already said after (3.19), there exists T > 0 such that (3.1)–(3.4) has a C∞([0, T ] × DR) solution (θ1,w1,0)

with initial data (εθ0 + ε2θ̃0, εw0 + ε2w̃0,0). Assuming as we may that 1 + C1θ1 > 0, we may consider the corre-
sponding solution (ρ1, u1, S̄) of (2.1)–(2.7). We now recall some facts on the potential associated with (ρ1, u1, S̄)

(cf. [3]). Consider the potential function v1(t, x) vanishing for large |x| and defined by the relations ∇v1 = u1,
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∂tv1 = −|u1|2/2 − h(ρ1), where h(s) = ∫ s

ρ̄
∂P
∂σ

(σ, S̄)σ−1 dσ if s > 0. Then v1 ∈ C∞([0, T /c̄] × DR) and v1 is ra-

dial. Set H(s) = h−1(s), M(s) = H(s)/H′(s); then M(0) = c̄2. If we set v(t, x) = v1(t/c̄, x), it is easily checked
that

∂2
t v + 2

c̄

∑
1�j�3

∂j v∂t ∂j v + 1

c̄2

∑
1�j, k�3

∂j v∂kv∂2
jkv − 1

c̄2
M

(
−c̄∂t v − 1

2
|∇v|2

)
�v = 0

if 0 < t < T and x ∈ DR, (4.1)

∂rv = 0 if 0 < t < T and r = R, (4.2)

∂
j
t v(0, x) = εfj (r) + ε2ṽj (x, ε) if x ∈ DR and j = 0,1, (4.3)

where fj are as in the definition of F0 in Section 2, the functions x �→ ṽj (x, ε) are radial and in C∞(DR), |∂α
x ṽj | � Cα

with Cα independent of ε and of x ∈ DR , and ṽj (x, ε) = 0 if |x| � R + M . Moreover the initial data in (4.3) sat-
isfy compatibility conditions of all orders when t = 0 and r = R. So as proved in Section 3 of [4], (f0, f1) are
infinitely compatible initial data for the boundary value problem �v0 = 0 if t > 0 and x ∈ DR , ∂rv0 = 0 if t > 0
and r = R, where � = ∂2

t − ∑
1�j�3 ∂2

j , and therefore, by Lemma 3.3 of [4], F0 ∈ C∞(R), and F0 and all its

derivatives are bounded. We may write (4.1) in the form �v − ∑
0�i,j�3 f ij (∂v)∂2

ij v = 0 with f ij ∈ C∞ in an

open neighborhood of 0, f ij (0) = 0 and f ij = f ji . Denote by f ijk the partial derivative ∂f ij

∂ξk
(0) of the function

(ξ0, ξ1, ξ2, ξ3) = ξ �→ f ij (ξ) at 0. Set g = −∑
0�i,j,k�3 f ijkω̂i ω̂j ω̂k , where ω̂0 = −1 and (ω̂1, ω̂2, ω̂3) ∈ S2. We

have g = −2(ρ̄cρ + c̄)/c̄2 < 0, and, again by Lemma 3.3 of [4], maxq∈R(−F ′′
0 (q)) � 0 and maxq∈R(−F ′′

0 (q)) = 0 if
and only if |f0|+ |f1| ≡ 0. This gives at once the properties of F0 and τ ∗ stated in Section 2, just before Theorem 2.2.
Moreover, we have the following result, which follows from Theorem 3.1 of [4] and the continuation argument yield-
ing Theorem 2.2 of [4] from Theorem 3.1 of [4].

Theorem 4.1. Fix τ ∈ (0, τ ∗) and a ∈ N
5. One can find ε0 > 0, C > 0, and for each R̄ > R, also C̄ > 0, such that

the following holds: if 0 < ε � ε0 and ε lnT � τ , then (4.1)–(4.3) has a unique C∞([0, T ] × DR) solution v, which
satisfies the following estimates for all t ∈ [0, T ]:

(1) ‖Γ av′(t)‖ � Cε,
(2) |Γ av′(t, x)| � Cε〈t〉−1,
(3) |Γ av′(t, x)| � C̄ε〈t〉−a0−1 if R � r � R̄,
(4) |Γ av(t, x)| � C̄ε〈t〉−a0−2 if a1 + a2 + a3 > 0 and R � r � R̄.

With the help of Theorem 4.1, we are able to prove Theorem 3.1.

Proof of Theorem 3.1. We have w1(t, x) = ∇v(t, x)/c̄, θ1(t, x) = ((ρ1(t/c̄, x)/ρ̄)(γ−1)/2 − 1)/C1 = F((c̄∂t v +
|∇v|2/2)(t, x)), where F ∈ C∞ in an open neighborhood of 0 and F(0) = 0. Moreover, ∂t θ1 = −w1 · ∇θ1 − (1 +
C1θ1)∇ ·w1. Therefore Theorem 3.1 follows easily from Theorem 4.1 with the help of standard estimates of nonlinear
functions. �
5. Proof of Theorem 3.2: Reduction to Proposition 5.4

In this section and the next one we shall prove Theorem 3.2 by an energy method. To treat the boundary terms, it is
convenient to introduce intermediate norms (which was done in [4] for second order quasilinear wave equations) and
therefore the energy method will be somewhat more complicated than the one used for the boundaryless case in [3].

Let ψ be as in the statement of Theorem 3.2. We are going to prove the following result, which is the analogue of
Theorem 5 of [3] for our exterior mixed problem.

Theorem 5.1. Fix m ∈ N with m � 2. If τ ∈ (0, τ ∗), one can find ε0 > 0 such that the following holds: if 0 < ε � ε0,
ε lnT � τ , and (θ2,w2, z2) is a C∞([0, T ] × DR) solution of (3.20)–(3.26) with E

1/2
m (t) � ε2ψ(ε) if t ∈ [0, T ], then

E
1/2
m (t) � ε2ψ(ε)/2 if t ∈ [0, T ].
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Since E
1/2
m (0) � C̄0ε

2 for some C̄0 > 0, Theorem 3.2 follows at once from Theorem 5.1; hence the proof of
Theorem 5.1 will complete the proof of Theorem 2.3.

The rest of this section and the next section are devoted to the proof of Theorem 5.1.
Henceforth we shall set σ±(t, x) = (1 + (t ± r)2)1/2. We start with two useful lemmas.

Lemma 5.1. If F ∈ C∞([R,+∞)) is such that F(r) = 0 when r is large, and if f (x) = F(r)x/r , then
‖σ−(t)r−1f ‖ � 2(‖σ−(t)∂rf ‖ + ‖f ‖).

Proof. Set G(t, r) = σ−(t, x)F (r). If we integrate the identity G2(t, r) = ∂r(rG
2(t, r)) − 2rG(t, r)∂rG(t, r) over

[R,+∞) with respect to dr , Lemma 5.1 follows easily. �
Lemma 5.2. If j, l ∈ N, one can find C > 0 such that the following holds: if F ∈ C∞([0, T ] × [R,+∞)) and if,
for each t ∈ [0, T ], the function r �→ F(t, r) vanishes when r = R and also when r is large, we have if f (t, x) =
F(t, r)x/r :

(1) ‖(σ−∇ · ∂j
r Xlf )(t)‖ � CEj l(t),

(2) ‖(σ−∂
j+1
r Xlf )(t)‖ � CEj l(t),

where Ej l(t) = ∑
|α|+k�j+l;k�l ‖(σ−∇ · ∂α

x Xkf )(t)‖ + ∑
|β|+n�l ‖∂β

x Xnf (t)‖.

Proof. We first prove (1) and (2) when l = 0. Let us check first that

(∇ · ∂j
r f

)
(t, x) =

∑
|α|�j

(
cjα∇ · ∂α

x f
)
(t, x) + cj r

−j−1F(t, r), (5.1)

where cjα ∈ C∞(DR) and are positively homogeneous of degree |α| − j , and cj ∈ R with c0 = 0. If j = 0, (5.1) is
obvious and it is easily proved by induction on j if we use the relations (∇ · ∂J+1

r f )(t, x) = ∑
1�k�3 r−1xk∂k∇ ·

∂J
r f (t, x)+ 2r−2∂J

r F (t, r), ∂J+1
r F (t, r) = (∇ · ∂J

r f )(t, x)− 2r−1∂J
r F (t, r). On the other hand, since F(t,R) = 0, it

follows from the arguments of the proof of (6.7) of [12] that
∥∥(σ−∇f )(t)

∥∥ � C
(∥∥(σ−∇ · f )(t)

∥∥ + ∥∥f (t)
∥∥)

, (5.2)

where ∇f = (∂ifj )1�i,j�3. Since |∂rf | � |∇f |, this gives (2) when j = l = 0. Using (5.1), (5.2), and Lemma 5.1,
we obtain (1) when l = 0 < j . Of course (1) is obvious when l = j = 0. To prove (2) when l = 0 < j , we write
∂

j+1
r F = ∇ · ∂j

r f − 2r−1∂
j
r F and just apply (1) (with l = 0) and the case j = l = 0 of (2). Now assume that (1), (2)

have been proved for all j when l � L, and let us show that they still hold for all j if l = L + 1. Write Xf = g1 + g2,
where g1 = (X − R∂r)f , g2 = R∂rf . With the help of the induction hypothesis on (1), (2), applied to g1 and f with
l = L, and of Lemma 5.1, we obtain (1), (2) for l = L + 1. The proof of Lemma 5.2 is complete. �

Let us define E
1/2
m,l (t), m, l ∈ N, 0 � l � m, and Qm,l(t), m, l ∈ N, 0 � l � m − 1, in the following way:

Em,l(t) =
∑

|a|�m;a4�l

(∥∥Γ aθ2(t)
∥∥2 + ∥∥Γ aw2(t)

∥∥2 + ∥∥Γ az2(t)
∥∥2)

,

Qm,l(t) =
∑

|a|�m−1;a4�l

(∥∥(
σ−∇Γ aθ2

)
(t)

∥∥ + ∥∥(
σ−∂tΓ

aw2
)
(t)

∥∥ + ∥∥(
σ−∇ · Γ aw2

)
(t)

∥∥)
.

Notice that Em,m = Em. To economize notations in the sequel, it is also convenient to write Hm,l = Qm,l + E
1/2
m−1,l

when 0 � l � m − 1. Sometimes it will be convenient to set Em,−1 = Qm,−1 = Hm,−1 = 0 if m ∈ N. Useful estimates
(mostly of Sobolev type) are contained in the following proposition (where the estimates are slightly better, regarding
the number of consumed derivatives, than in Lemma 2 of [3], because now r � R). We set σ∗(t, x) = rσ

1/2
− (t, x) +

r1/2σ−(t, x).
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Proposition 5.1. The following estimates hold:

(1) |rΓ aθ2(t)| + |rΓ aw2(t)| + |rΓ az2(t)| � CE
1/2
|a|+1,a4

(t),
(2) |r(σ−∇Γ aθ2)(t)| � CQ|a|+2,a4(t),

(3) |(σ∗∂k
t Xlθ2)(t)| + |(σ∗∂k

t Xlw2)(t)| � CHk+l+1,l(t),

(4) |r(σ−∇Γ aw2)(t)| � C(Q|a|+2,a4(t) + E
1/2
a0+a4,a4

(t)),

(5) ‖(σ−∇Γ aw2)(t)‖ � C(Q|a|+1,a4(t) + E
1/2
a0+a4,a4

(t)),
(6) 〈t〉|w2(t, x)| � CR̄Q1,0(t) if R � r � R̄.

Proof. (1) and (2) follow easily by the proof of Lemma 4.2 of [9]. (3) is a consequence of Lemma 4.1 of [4] and of
Lemma 5.2(2). To prove (4), write Γ a = ∂k

t ∂α
x Xl and observe that

∣∣∇Γ aw2
∣∣ � C

( ∑
1�p�|α|+1

∣∣∂k
t ∂

p
r Xlw2

∣∣ + r−|α|−1
∣∣∂k

t Xlw2
∣∣). (5.3)

Now by the proof of Lemma 4.2 of [9], |r(σ−∂k
t ∂

p
r Xlw2)(t)| � C

∑
0�j�1 ‖(σ−∂k

t ∂
p+j
r Xlw2)(t)‖, so by Lem-

ma 5.2(2), we find that |r(σ−∂k
t ∂

p
r Xlw2)(t)| � C(Qk+p+l+1,l(t) + E

1/2
k+l,l(t)) if p > 0. If we then estimate

|(σ−∂k
t Xlw2)(t)| by (3) and use (5.3), (4) follows. To prove (5), observe first that∥∥r−1(σ−∂k

t Xlw2
)
(t)

∥∥ � C
(∥∥(

σ−∂r∂
k
t Xlw2

)
(t)

∥∥ + ∥∥∂k
t Xlw2(t)

∥∥)
, (5.4)

by Lemma 5.1. Multiplying (5.3) by σ− and taking L2(DR) norms, we obtain (5) if we make use of Lemma 5.2(2) and
of (5.4). Finally (6) follows if we define W2(t, r) by the relation w2(t, x) = W2(t, r)x/r and write that |W2(t, r)| =
r−2| ∫ r

R
∂s(W2(t, s)s

2) ds| � Cr−2
∫
R�|y|�r

|(∇ · w2)(t, y)|dy. The proof of Proposition 5.1 is complete. �
For the sequel, let us introduce some useful notation already used in [3] in the boundaryless case. If Γ a = ∂αXk

and we apply ∂α(X + 1)k to (3.20), (3.21), we obtain that

∂tΓ
aθ2 + ∇ · Γ aw2 = ha

0,

∂tΓ
aw2 + ∇Γ aθ2 = ha,

where ha
0 = ∑

1�j�6 τa
j , ha = ∑

7�j�13 τa
j , with

τa
1 = −

∑
b�a

(
a

b

)
Γ bw1 · ∇Γ a−bθ2, τ a

2 = −
∑
b�a

(
a

b

)
Γ bw2 · ∇Γ a−bθ1,

τ a
3 = −

∑
b�a

(
a

b

)
Γ bw2 · ∇Γ a−bθ2, τ a

4 = −C1

∑
b�a

(
a

b

)
Γ bθ1∇ · Γ a−bw2,

τ a
5 = −C1

∑
b�a

(
a

b

)
Γ bθ2∇ · Γ a−bw1, τ a

6 = −C1

∑
b�a

(
a

b

)
Γ bθ2∇ · Γ a−bw2,

τ a
7 = −

∑
b�a

(
a

b

)
Γ bw1 · ∇Γ a−bw2, τ a

8 = −
∑
b�a

(
a

b

)
Γ bw2 · ∇Γ a−bw1,

τ a
9 = −

∑
b�a

(
a

b

)
Γ bw2 · ∇Γ a−bw2, τ a

10 = −C1

∑
b�a

(
a

b

)
Γ bθ1∇Γ a−bθ2,

τ a
11 = −C1

∑
b�a

(
a

b

)
Γ bθ2∇Γ a−bθ1, τ a

12 = −C1

∑
b�a

(
a

b

)
Γ bθ2∇Γ a−bθ2,

τ a
13 = −∂α(X + 1)k((1 + C1θ)z∇θ).

We are going to prove the following result.
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Proposition 5.2. Fix m, l ∈ N with m � 2 and 1 � l � m. One can find η, C > 0, and, for each τ ∈ (0, τ ∗), also C0,
ε0 > 0 such that the following holds: if 0 < ε � ε0, and, for some T ∈ (0, eτ/ε], (θ2,w2, z2) is a C∞([0, T ] × DR)

solution of (3.20)–(3.26) with E
1/2
m−1,l−1(t) � η for all t ∈ [0, T ], then Qm,l−1(t) � CE

1/2
m,l (t)+C0ε

2〈t〉−2 if t ∈ [0, T ].

Proof. We adapt the proof of Proposition 3 of [3] (where l = m and there was no boundary). First we obtain, if
Γ a = ∂αXk , |a| � m − 1, k � l − 1:

Qm,l−1(t) � CE
1/2
m,l (t) + C

∑
|a|�m−1;a4�l−1

(
t
∥∥ha

0(t)
∥∥ + ∥∥(

σ+ha
)
(t)

∥∥)
. (5.5)

Indeed, (5.5) is proved exactly as (37) of [3]. Then we easily obtain with the help of Theorem 3.1(1), (2) and of
Proposition 5.1(1), (2), (4), by elementary modifications of corresponding arguments of the proof of Proposition 3
of [3]:

∥∥(
σ+τa

j

)
(t)

∥∥ � CτεE
1/2
m,l−1(t) if j ∈ {1,2,4,5,7,8,10,11}, (5.6)∥∥(

σ+τa
j

)
(t)

∥∥ � CE
1/2
m−1,l−1(t)Hm,l−1(t) if j ∈ {3,6,9,12}, (5.7)

∥∥(
σ+τa

13

)
(t)

∥∥ � Cτ

(
ε2

〈t〉2
+ εE

1/2
m−1,l−1(t)

)
+ CQm,l−1(t)

(
E

1/2
m−1,l−1(t) + ε

)
. (5.8)

Proposition 5.2 follows from (5.5)–(5.8). �
Until the end of Section 6, we shall make the assumption that E

1/2
m,max(l,1)(t) � ε2ψ(ε) (this assumption could be

relaxed at some places, but we keep it for simplicity and it is sufficient for our purposes). When convenient, we shall
write θj (t, x) = Θj(t, r), wj(t, x) = Wj(t, r)x/r (W2 has already been defined in the proof of Proposition 5.1(6)),
zj (t, x) = Zj (t, r). The next lemma will be useful.

Lemma 5.3. Fix m, l ∈ N with m � 2 and 0 � l � m, and τ ∈ (0, τ ∗). One can find ε0 > 0, R0 � R such that
the following holds: if 0 < ε � ε0, ε lnT � τ and (θ2,w2, z2) is a C∞([0, T ] × DR) solution of (3.20)–(3.26) with
E

1/2
m,max(l,1)(t) � ε2ψ(ε) if t ∈ [0, T ], then z1(t, x) = z2(t, x) = 0 if t ∈ [0, T ] and r � R0.

Proof. We have |Wj(t, r)| �
∫ r

R
|∂sWj (t, s)|ds, so with the help of Theorem 3.1(2), Proposition 5.1(4) and Propo-

sition 5.2, we obtain that |W(t, r)| � Cτε(r − R)〈t〉−1 since εψ(ε) is bounded. Now z(t, x) = 0 if r � R̃(t) where
R̃′(t) = W(t, R̃(t)) and R̃(0) = R + M . A standard comparison argument shows that, for some R̃0 � R, R̃(t) � R̃0 if
ε ln t � τ , so Lemma 5.3 follows since z1(t, x) = 0 when r � R + M . �

Since we suppose until the end of Section 6 that ε is small and that E
1/2
m,max(l,1)(t) � ε2ψ(ε), we shall assume at

the same time that |z| � 1/2, as we may thanks to Proposition 5.1(1).
Henceforth we shall set a = (k,0,0,0, λ) so that Γ a = ∂k

t Xλ. If c ∈ N
5, it follows from (3.20)–(3.22) that

(∂t + w · ∇)Γ aθ2 + (1 + C1θ)∇ · Γ aw2 = ĥa
0, (5.9)(

1

1 + z
∂t + w

1 + z
· ∇

)
Γ aw2 + (1 + C1θ)∇Γ aθ2 = ĥa

1 + z
, (5.10)

(∂t + w · ∇)Γ cz2 = ĝc, (5.11)

where ĥa
0 , ĥa , ĝc are defined as follows: ĥa

0 = ∑
j∈{2,5} τa

j +∑
j∈{1,3,4,6} τ̂ a

j , ĥa = ∑
j∈{8,11} τa

j +∑
j∈{7,9,10,12,13} τ̂ a

j ,

where τa
j are the same as in ha

0 , ha , but now with Γ a = ∂k
t Xλ and |a| � m. If a �= 0, τ̂ a

j (j �= 13) are defined as τa
j

(with Γ a = ∂k
t Xλ and |a| � m) but with the supplementary condition that b �= 0 in the sum; τ̂ 0

j = 0 if j �= 13;

finally τ̂ a
13 = τa

13 + (1+C1θ)z∇Γ aθ2. Also ĝc = ∑
1�i,j�2 ĝc

ij , with ĝc
i1 = −∑

d�c

(
c
d

)
Γ dwi ·∇Γ c−dz1; when c �= 0,

ĝc = −∑
0�=d�c

(
c
)
Γ dwi · ∇Γ c−dz2, and ĝ0 = 0.
i2 d i2
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If ξ = (ξ (1), ξ (2), ξ (3)) ∈ R
3, let (ξ (i))1�i�3 be the row matrix of the components of ξ . Define the 5 × 1 matrices

φac = tr(Γ aθ2 (Γ aw2)
(i)
1�i�3 Γ cz2), Fac = tr(ĥa

0 (ĥa/(1 + z))
(i)
1�i�3 ĝc). With Aj(φ), 0 � j � 3, as in (3.8), (5.9)–

(5.11) can be written

A0(φ)∂tφ
ac +

∑
1�j�3

Aj(φ)∂jφ
ac = Fac. (5.12)

Taking the pointwise Euclidean scalar product (in R
5) of (5.12) with φac , integrating over DR and using the symmetry

of Aj(φ), we obtain, writing dS for the canonical surface measure on ∂DR :

1

2

d

dt

〈
A0(φ)φac,φac

〉
(t) − 1

2

∫
∂DR

∑
1�j�3

xj

r

(
Aj(φ)φac · φac

)
(t, x) dS

= 〈
Fac,φac

〉
(t) + 1

2

∑
0�j�3

〈(
∂jAj (φ)

)
φac,φac

〉
(t); (5.13)

here and in the sequel, we also denote by · the standard Euclidean scalar product of ν × 1 real matrices (whatever ν)
and, for two functions f (t, x), f̃ (t, x) valued in the set of ν × 1 real matrices, we write 〈f, f̃ 〉(t) = ∫

DR
f (t, x) ·

f̃ (t, x) dx (ν = 5 in (5.13)). It is easy to check that∫
∂DR

∑
1�j�3

xj

r

(
Aj(φ)φac · φac

)
(t, x) dS = 8πR2((1 + C1Θ)Γ aΘ2Γ

aW2
)
(t,R). (5.14)

Set Ẽm,l(t) = ∑
(‖Γ aθ2(t)‖2 + ‖Γ aw2(t)‖2 + ‖Γ cz2(t)‖2), where the sum is taken over all a = (k,0,0,0, λ) ∈ N

5,
c = (c0, c1, c2, c3, c4) ∈ N

5 with λ, c4 � l, |a|, |c| � m. The next proposition justifies the choice of a in (5.9)–(5.11).

Proposition 5.3. Fix m, l ∈ N with m � 2 and 0 � l � m, and τ ∈ (0, τ ∗). One can find ε0, C0 > 0 such that the
following holds: if (θ2,w2, z2) is a C∞([0, T ] × DR) solution of (3.20)–(3.26) with 0 < ε � ε0, ε lnT � τ , and
E

1/2
m,max(l,1)(t) � ε2ψ(ε) when t ∈ [0, T ], then E

1/2
m,l (t) � C0(Ẽ

1/2
m,l (t) + ε2〈t〉−3) if t ∈ [0, T ].

Proof. We may assume that l � m − 1 since the case l = m follows at once if we know that the proposition holds
when l � m − 1. Set Φp,k,λ(t) = ∑

n�p(‖∂n
r Γ aθ2(t)‖ + ‖∂n

r Γ aw2(t)‖), ξp,k,λ(t) = ∑
n�p(‖∂n

r ĥa
0(t)‖ + ‖∂n

r ĥa(t)‖),
where Γ a = ∂k

t Xλ with λ � l and k + λ � m. Taking ε0 small and using Theorem 3.1(2) and Proposition 5.1(1), we
may and shall assume that C1|θ | � 1/2. Recall that we also assume that |z| � 1/2. We obtain from (5.9), (5.10) that

tr
(
∂rΓ

aΘ2 ∂rΓ
aW2

) = B(Θ,W,Z)tr

(
Ha

0 Ha ∂tΓ
aΘ2

(
∂

j
t Γ aW2

r1−j

)
0�j�1

)
, (5.15)

where B is a C∞ 2 × 5 matrix, Ha
0 (t, r) = ĥa

0(t, x), Ha(t, r) = ĥa(t, x) ·x/r . Applying ∂
p
r to (5.15), with p � m− 1,

we obtain with the help of Theorem 3.1(2) and Proposition 5.1(1):

Φp+1,k,λ(t) � C
(
Φp,k+1,λ(t) + Φp,k,λ(t) + ξp,k,λ(t)

)
. (5.16)

It is not hard to check with the help of (5.16) that

E
1/2
m,l (t) � CẼ

1/2
m,l (t) + C

∑
p+|d|�m−1;d=(k̄,0,0,0,λ̄); λ̄�l

(∥∥∂
p
r ĥd

0(t)
∥∥ + ∥∥∂

p
r ĥd(t)

∥∥)
, (5.17)

so it remains to bound the factor of the second C on the right-hand side of (5.17). Until the end of the proof of
Proposition 5.3, we assume that p, d are as in (5.17). With the help of Theorem 3.1(2), we obtain

∥∥∂
p
r τ d

j (t)
∥∥ � C

ε

〈t〉E
1/2
m−1,l(t) if j ∈ {2,5,8,11}, (5.18)

∥∥∂
p
r τ̂ d

j (t)
∥∥ � C

ε
E

1/2
m−1,l(t) if j ∈ {1,4,7,10}. (5.19)
〈t〉
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Since m � 2, we have

∥∥∂
p
r τ̂ d

j (t)
∥∥ � C

〈t〉
(
E

1/2
m,l (t)Hm−1,l−1(t) + E

1/2
m,1(t)E

1/2
m−1,l(t)

)
if j ∈ {3,6,9,12}. (5.20)

Let us check (5.20) when j = 9 since the other cases are similar. Write Anbpd = ∂n
r Γ bw2 · ∂

p−n
r ∇Γ d−bw2; here

and in the sequel P1f · P2∇g means of course the vector function
∑

1�j�3 P1f
(j)P2∂jg if P1, P2 are scalar dif-

ferential operators, f , g are R
3-valued functions, and f (j) are the components of f in the canonical basis. We

have ∂
p
r τ̂ d

9 = −C1
∑

0�=b�d,0�n�p

(
p
n

)(
d
b

)
Anbpd . If d4 − b4 � l − 1, we can use Proposition 5.1(1), (5) to bound

|r∂n
r Γ bw2(t)|‖(σ−∂

p−n
r ∇Γ d−bw2)(t)‖ and obtain

∥∥(σ+Anbpd)(t)
∥∥ � CE

1/2
m,l (t)Hm−1,l−1(t). (5.21)

If now d4 − b4 = l, then Γ b = ∂
|b|
t and d4 = l. Set χ = ∂

|b|−1
t ∂n

r w2 (recall that b �= 0). Writing ∂tχ = t−1Xχ −
t−1r∂rχ and using Proposition 5.1(1), we obtain∥∥(σ+Anbpd)(t)

∥∥ � CE
1/2
m,1(t)E

1/2
m−1,l(t) if t � 1. (5.22)

On the other hand it is easy to check with the help of Proposition 5.1(1) that∥∥(σ+Anbpd)(t)
∥∥ � CE

1/2
m,0(t)E

1/2
m−1,0(t) if t � 1. (5.23)

(5.20) for j = 9 follows from (5.21)–(5.23). Finally we also have

∥∥∂
p
r τ̂ d

13(t)
∥∥ � C

〈t〉
((

E
1/2
m,1(t) + ε2

〈t〉
)

E
1/2
m−1,l(t) + εQm−1,l−1(t) + ε2

〈t〉2

)
. (5.24)

Let us check (5.24). If Γ d = ∂k̄
t Xλ̄, λ̄ � l, we have τ̂ d

13 = ∑
1�j�3 Bj , where B1 = −∂k̄

t (X + 1)λ̄(z∇θ) + z∇Γ dθ ,

B2 = −∂k̄
t (X + 1)λ̄(C1θz∇θ) + C1θz∇Γ dθ , B3 = −(1 + C1θ)z∇Γ dθ1. If 0 �= b � d and n � p, set Dijbn =

∂n
r Γ bzi∂

p−n
r ∇Γ d−bθj . With the help of Lemma 5.3 and of Theorem 3.1(3), we easily obtain that

∥∥(σ+D11bn)(t)
∥∥ � C

ε2

〈t〉2
,

∥∥(σ+D21bn)(t)
∥∥ � C

ε

〈t〉2
E

1/2
m−1,l(t). (5.25)

Now set κ1 = ε, κ2 = E
1/2
m,l . We readily obtain with the help of Proposition 5.1(1) that

∥∥(σ+Di2bn)(t)
∥∥ � Cκi(t)Qm−1,l−1(t) if d4 − b4 � l − 1. (5.26)

If d4 − b4 � l, then Γ b = ∂
|b|
t and so D12bn ≡ 0. Set now χ = ∂

|b|−1
t ∂n

r z2. Writing again ∂tχ = t−1Xχ − t−1r∂rχ ,
we easily obtain with the help of Proposition 5.1(1):

∥∥(
σ+∂tχ∂

k̄−|b|
t ∂

p−n+1
r Xlθ2

)
(t)

∥∥ � CE
1/2
m,1(t)E

1/2
m−1,l(t) if t � 1 and d4 − b4 = l. (5.27)

If t < 1 and d4 −b4 = l, a still better bound clearly holds; combining this with (5.26), (5.27) and the fact that D12bn ≡ 0
if d4 − b4 = l (recall that b �= 0), we obtain in particular that∥∥(σ+Di2bn)(t)

∥∥ � C
(
E

1/2
m,1(t)E

1/2
m−1,l(t) + κi(t)Qm−1,l−1(t)

)
. (5.28)

Using (5.25), (5.28), we find that

∥∥(
σ+∂

p
r B1

)
(t)

∥∥ � C

(
E

1/2
m,1(t)E

1/2
m−1,l(t) + εQm−1,l−1(t) + ε2

〈t〉2

)
.

Replacing zi by θzi in B1, we obtain B2. Set Fijbn = ∂n
r Γ b(θzi)∂

p−n
r ∇Γ d−bθj . We can repeat the arguments leading

to (5.25), (5.26), with zi replaced by θzi now, using furthermore Lemma 3.1(2), to obtain that ‖(σ+F11bn)(t)‖ �
Cε3〈t〉−2, ‖(σ+F21bn)(t)‖ � Cε2E

1/2
m−1,l(t)〈t〉−2; and ‖(σ+Fi2bn)(t)‖ � Cεκi(t)Qm−1,l−1(t) if d4 − b4 � l − 1. On

the other hand, to estimate ‖(σ+Fi2bn)(t)‖ if d4 − b4 = l, we notice that |(σ+∂ν
r θ1)(t)| � Cε by Theorem 3.1(2),

that |(σ+∂ν
r ∂

μ
t θ1)(t)| � Cε〈t〉−1 if μ > 0 and r has a fixed bound, by Theorem 3.1(3), and that, for ν + μ � m − 1
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(and ε small), |(σ+∂ν
r ∂

μ
t θ2)(t)| � C(E

1/2
m,1(t)+ ε2〈t〉−2) by Proposition 5.1(2), (3) and Proposition 5.2. Making use of

Lemma 5.3 and of Proposition 5.1(1), we obtain that ‖(σ+Fi2bn)(t)‖ � Cε(E
1/2
m,1(t) + ε〈t〉−1)E

1/2
m−1,l(t). Collecting

estimates, we find that

∥∥(
σ+∂

p
r B2

)
(t)

∥∥ � Cε

((
E

1/2
m,1(t) + ε

〈t〉
)

E
1/2
m−1,l(t) + εQm−1,l−1(t) + ε2

〈t〉2

)
.

Moreover, with the help of Proposition 5.1(1), Lemma 5.3 and Theorem 3.1(3), recalling that C1|θ | � 1/2, we also
find that

∥∥(
σ+∂

p
r B3

)
(t)

∥∥ � C
ε2

〈t〉2
.

(5.24) follows from the estimates of ‖(σ+∂
p
r Bj )(t)‖, 1 � j � 3. Finally (5.17)–(5.20) and (5.24) yield Proposition 5.3

if we make use of Proposition 5.2. �
Theorem 5.1 will readily follow from the next proposition.

Proposition 5.4. Fix m, l ∈ N with m � max(l,2), and τ ∈ (0, τ ∗). One can find ε0, C > 0, and for each R̄ > R, also
C̄ > 0, such that the following holds. If 0 < ε � ε0 and if (θ2,w2, z2) is a C∞([0, T ] × DR) solution of (3.20)–(3.26)
with ε lnT � τ , such that E

1/2
m,max(l,1)(t) � ε2ψ(ε) when t ∈ [0, T ], then we have:

(1, l) if a = (k,0,0,0, λ) ∈ N
5, c ∈ N

5 with |a|, |c| � m and λ, c4 � l, one can write 〈Fac,φac〉 = dHc
1

dt
+ Hac

2 in

[0, T ], where Hc
1 , Hac

2 ∈ C∞([0, T ]), Hc
1 (0) = 0, and

∣∣Hc
1 (t)

∣∣ � Cε5ψ2(ε),
∣∣Hac

2 (t)
∣∣ � C

(
ε

〈t〉E
1/2
m,l (t)E

1/2
m,max(l,1)(t) + ε4

〈t〉2
ψ(ε)

)
;

(2) |∑0�j�3(∂jAj (φ))(t)| � C ε
〈t〉 if t ∈ [0, T ];

(3, l) if a = (k,0,0,0, l) ∈ N
5 with l � 1 and k + l � m, then

−
T∫

0

(
(1 + C1Θ)Γ aΘ2Γ

aW2
)
(t,R)dt � C−1

T∫
0

t2l−1(∂k+l
t Θ2

)2
(t,R)dt − Cε4ψ(ε);

(4, l) E
1/2
m,l (t) � Cε2ψ1/2(ε) when t ∈ [0, T ], and

∫ T

0 t2l−1(∂k+l
t Θ2)

2(t,R)dt � Cε4ψ(ε), if l � 1 and k + l � m;

(5, l) 〈t〉k+1(|∂k
t ∂αθ2(t, x)| + |∂k

t ∂αw2(t, x)|) � C̄ε2ψ1/2(ε) if k + |α| � m − 1, l � 1, k � l − 1, t ∈ [0, T ], and
R � r � R̄;

(6, l) 〈t〉k+1|∂k+1
t ∂αz2(t)| � Cε2 if k + |α| � m − 2, l � 1, k � l − 1, and t ∈ [0, T ].

The first half of (4,0) also holds and is of course a consequence of (4,1); we have chosen the above formulation
since, for each fixed l � 1, we shall obtain all of (4, l) at the same time. (6,m) is identical with (6,m − 1) and is
introduced for notational convenience. The proof will show that (5,1) still holds with [R, R̄] replaced by [R,+∞).

Notice that Theorem 5.1 follows at once from the first inequality of Proposition 5.4(4,m). So the proof of Theo-
rem 3.2 (and therefore also that of Theorem 2.3) will be completed if Proposition 5.4 is proved. The next section is
devoted to the (fairly long) proof of Proposition 5.4.

6. Proof of Proposition 5.4

In this section we shall prove Proposition 5.4.
Proposition 5.4(1, l) will be proved by adapting the arguments of the boundaryless case (see [3], where l = m);

in the present situation, we have to keep in mind that we cannot consume more than l derivatives with respect to
X in L2, which will somewhat complicate the proof. Proposition 5.4(3, l)–(6, l) will be proved by induction on l.
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A corresponding induction procedure was used in [4] for solutions of quasilinear wave equations satisfying Neumann
boundary condition.

Throughout this section, we shall suppose that θ2, w2, z2 satisfy the assumptions of Proposition 5.4, and that
0 < ε � ε0, with ε0 small allowed to depend on τ ; in particular, throughout this section, we shall suppose that ε0
is so small that (i) Theorem 3.1, Propositions 5.2 and 5.3, and Lemma 5.3 can be applied, and (ii) C1|θ | � 1/2 and
|z| � 1/2. We shall denote by C various strictly positive constants (which might depend on τ ) but are independent of
ε, T when ε lnT � τ .

Proof of Proposition 5.4(1, l). Set P a
j = 〈τa

j ,Γ aθ2〉 if j ∈ {2,5}, P a
j = 〈τ̂ a

j ,Γ aθ2〉 if j ∈ {1,3,4,6}, P a
j = 〈(1 +

z)−1τa
j ,Γ aw2〉 if j ∈ {8,11}, P a

j = 〈(1 + z)−1τ̂ a
j ,Γ aw2〉 if j ∈ {7,9,10,12,13}, P̂ c

ij = 〈ĝc
ij ,Γ

cz2〉 if i, j ∈ {1,2}.
Then 〈Fac,φac〉 = ∑

1�j�13 P a
j + ∑

1�i,j�2 P̂ c
ij . With the help of Theorem 3.1(2), we readily obtain that

∣∣P a
j (t)

∣∣ � C
ε

〈t〉Em,l(t) if j ∈ {1,2,4,5,7,8,10,11}. (6.1)

We have

∣∣P a
j (t)

∣∣ � C

〈t〉Em,l(t)Hm,(l−1)+(t) if j ∈ {3,6,9,12}. (6.2)

Let us prove (6.2) for j = 9; the other cases can be handled in the same way. Set T = ‖(σ+Γ bw2 · ∇Γ a−bw2)(t)‖,
where 0 �= b � a. If |b| � m − 1 and a4 − b4 � l − 1, then T � C|rΓ bw2(t)|‖(σ−∇Γ a−bw2)(t)‖; hence we obtain
with the help of Proposition 5.1(1), (5) that

T � CE
1/2
m,l (t)Hm,l−1(t). (6.3)

If |b| � m − 1 and a4 − b4 � l (so a4 = l, b4 = 0), we write T � C|(σ+∂
|b|
t w2)(t)|‖∇∂

|a−b|−l
t Xlw2(t)‖, hence we

obtain with the help of Proposition 5.1(3) that

T � CE
1/2
m,l (t)Hm,0(t). (6.4)

Finally, if |b| = m and b4 � l, then a = b and T � C‖Γ bw2(t)‖|r(σ−∇w2)(t)|, whence we obtain with the help of
Proposition 5.1(4) that

T � CE
1/2
m,l (t)

(
Q2,0(t) + E

1/2
0,0 (t)

)
. (6.5)

(6.3)–(6.5) give (6.2) when j = 9. Let us show that

∣∣P a
13(t)

∣∣ � C

〈t〉E
1/2
m,l (t)

(
Ψm,l(t) + ε4ψ(ε)

〈t〉
)

, (6.6)

where Ψm,l(t) = ε2ψ(ε)E
1/2
m,l (t) + εQm,l−1(t) + ε2〈t〉−2. To prove (6.6), we are going to adapt arguments which led

to (5.24). Let B1, B2, B3 be as in the proof of (5.24), but now with d replaced by a = (k,0,0,0, λ) with |a| � m

and λ � l. Set Dijb = Γ bzi∇Γ a−bθj if 0 �= b � a. With the help of Lemma 5.3 and Theorem 3.1(3), we obtain

‖(σ+D11b)(t)‖ � Cε2〈t〉−2, ‖(σ+D21b)(t)‖ � Cε〈t〉−2E
1/2
m,l (t). If a4 − b4 � l, then Γ b = ∂

|b|
t , so D12b ≡ 0 since

b �= 0. If a4 − b4 � l − 1, then ‖(σ+D12b)(t)‖ � CεQm,l−1(t). To estimate D22b , assume first that a4 − b4 � l − 1.
If |a − b| � m − 2, we can write with the help of Lemma 5.3 that ‖(σ+D22b)(t)‖ � C‖Γ bz2(t)‖|(σ−∇Γ a−bθ2)(t)|,
which can be bounded above by CE

1/2
m,l (t)Qm,l−1(t) with the help of Proposition 5.1(2). If |a − b| = m − 1, then

|a| = m and |b| = 1, so we obtain with the help of Lemma 5.3 that ‖(σ+D22b)(t)‖ � C|Γ bz2(t)|‖(σ−∇Γ a−bθ2)(t)‖,
which can be bounded above by CE

1/2
2,1 (t)Qm,l−1(t) with the help of Proposition 5.1(1). If now a4 − b4 � l, then

Γ b = ∂
|b|
t and a4 = l. Set χ = ∂

|b|−1
t z2. Assume first that |b| � m−1. If t � 1, we argue as we did for (5.27); we write

∂tχ = t−1Xχ − t−1r∂rχ , and using Proposition 5.1(1), we obtain that ‖(σ+D22b)(t)‖ � CE
1/2
m,1(t)E

1/2
m,l (t), which

clearly still holds if t < 1. If |b| = m, then l = 0 and a = b; in that case ‖(σ+D22b)(t)‖ � ‖∂m
t z2(t)‖|(σ+∇θ2)(t)|

which can be bounded above by CE
1/2

(t)Q2,0(t) with the help of Proposition 5.1(2). Summing up, we obtain that
m,0
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‖(σ+D22b)(t)‖ � C(E
1/2
m,l (t)E

1/2
m,1(t) + E

1/2
m,0(t)Q2,0(t)) if a4 − b4 � l. From the estimates of the various σ+Dijb, we

conclude that∥∥(σ+B1)(t)
∥∥ � CΨm,l(t). (6.7)

Let us handle B2. Set Fijb = Γ b(θzi)∇Γ a−bθj , where 0 �= b � a. We can check with the help of Theorem 3.1(1),
(2) and Proposition 5.1(1) that ‖Γ b(θzi)(t)‖ � Cεκi(t), whence it follows with the help of Lemma 5.3 and
Theorem 3.1(3) that ‖(σ+Fi1b)(t)‖ � Cε2〈t〉−2κi(t). Now Fi2b is a linear combination of terms of the form
Eikbd = Γ dziΓ

b−dθk∇Γ a−bθ2, where d � b. With the help of Lemma 5.3, Theorem 3.1(2), (3) and Proposi-
tion 5.1(1), (2), (3), it is not hard to check that ‖(σ+E11bd)(t)‖ � Cε2〈t〉−1(E

1/2
m,l (t) + Qm,l−1(t)), ‖(σ+E21bd)(t)‖ �

CεE
1/2
m,l (t)(E

1/2
m,l (t) + Q2,0(t)〈t〉−1), ‖(σ+Ei2bd)(t)‖ � CE

1/2
m,l (t)(Hm,l−1(t) + Qm,0(t))κi(t). This yields an estimate

of ‖(σ+Fi2b)(t)‖. Collecting the estimates of ‖(σ+Fijb)(t)‖, we find that

∥∥(σ+B2)(t)
∥∥ � C

(
ε4ψ(ε)

〈t〉 + εΨm,l(t)

)
. (6.8)

Finally, with the help of Lemma 5.3 and Theorem 3.1(3), recalling that C1|θ | � 1/2, we find that
∥∥(σ+B3)(t)

∥∥ � C
ε

〈t〉2

(
ε + E

1/2
1,0 (t)

)
. (6.9)

(6.6) immediately follows from (6.7)–(6.9). Now we have
∣∣P̂ c

1j (t)
∣∣ � C

ε

〈t〉2
κj (t)E

1/2
m,l (t). (6.10)

Indeed, with the help of Lemma 5.3 and Theorem 3.1(3), we see that ‖(Γ dw1 · ∇Γ c−dzj )(t)‖ � Cε〈t〉−2κj (t) when
d � c if d �= 0 when j = 2; (6.10) follows at once.

We now start with the long estimate of P̂ c
2j . Set νcd

j = Γ dw2 · ∇Γ c−dzj where d � c, and where also d �= 0 if
j = 2. We claim that

∥∥νcd
j (t)

∥∥ � C

〈t〉Hm,(l−1)+(t)κj (t) if d4 � (l − 1)+. (6.11)

Indeed, let R0 � R be such that z1(t, x) = z2(t, x) = 0 when r � R0 (cf. Lemma 5.3). Define the function χR0 by
the relations χR0(x) = 1 if R � r � R0, χR0(x) = 0 if r > R0. Assume that d4 � (l − 1)+. If χ = χR0 in the case
that d0 + d1 + d2 + d3 = 0 and χ ≡ 1 otherwise, we obtain with the help of Proposition 5.1(3) (or (6) if d = 0),
(5) that ‖χ(σ−Γ dw2)(t)‖ � CHm,(l−1)+(t), which gives (6.11) in view of Proposition 5.1(1) if we assume also that
|c − d| � m − 2 in the case that j = 2. If now |c − d| = m − 1 and j = 2, we have |c| = m, |d| = 1 since d �= 0, and
(6.11) is easily obtained with the help of Proposition 5.1(3), (4).

In order to be able to control P̂ c
2j , we are going to study νcd

j Γ cz2 when d4 = l � 1. So from now on and until this

task is completed, we assume that d4 = l � 1, so that Γ d = ∂βXl , Γ c = ∂β+μXl . Then νcd
j = ∂βXlw2 ·∇∂μzj , where

|β| + |μ| + l � m. If we set ν̃cd
j = X∂βXl−1w2 · ∇∂μzj , it follows with the help of Proposition 5.1(3), (4) that

∥∥(
νcd
j − ν̃cd

j

)
(t)

∥∥ � C

〈t〉Hm,l−1(t)κj (t). (6.12)

Henceforth, let R1 � R be such that z2(t, x) = 0 if r � R1 (one could take e.g. R1 = R0 with R0 as in Lemma 5.3). Set
ϕcd

j (t) = ∫
DRR1

ν̃cd
j (t, x)Γ cz2(t, x) dx, where DRR1 = {x ∈ R

3, R < r < R1}. We have written ϕcd
j (t) as an integral

over DRR1 (and not over DR) because this will allow a somewhat more concise description of some long estimates.
We can write ϕcd

j (t) = d(tI cd
j (t))/dt − I cd

j (t) + J cd
j (t) + Ncd

j (t), where

I cd
j (t) =

∫
DRR1

(
∂βXl−1w2 · ∇∂μzj

)
(t, x)Γ cz2(t, x) dx,

J cd
j (t) =

∫
DRR

(
r∂r∂

βXl−1w2 · ∇∂μzj

)
(t, x)Γ cz2(t, x) dx,
1
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Ncd
j (t) = −t

∫
DRR1

∂βXl−1w2(t, x) · ∂t

(
Γ cz2∇∂μzj

)
(t, x) dx.

It is convenient to set κ̃1 = ε, κ̃2 = E
1/2
m,0. Let us handle I cd

j . If j = 1 or |μ| � m − 2, we estimate the second factor

under the integral sign in L∞ and each other factor in L2, using Proposition 5.1(1), (3), (5). We obtain that

∣∣I cd
j (t)

∣∣ � C

〈t〉Hm,l−1(t)κ̃j (t)E
1/2
m,l (t) (6.13)

if j = 1 or |μ| � m − 2. If now j = 2 and |μ| = m − 1, we have l = 1, β = 0, and we estimate the first factor under
the integral sign in L∞ and each other factor in L2, and we find with the help of Proposition 5.1(6) that (6.13) still
holds. Using similar arguments for J cd

j , we easily obtain that also

∣∣J cd
j (t)

∣∣ � C

〈t〉Hm,l−1(t)κ̃j (t)E
1/2
m,l (t). (6.14)

Write Ncd
j = Ncd

j1 + Ncd
j2 , where

Ncd
j1 (t) = −t

∫
DRR1

(
∂βXl−1w2 · ∂t∇∂μzj

)
(t, x)Γ cz2(t, x) dx,

Ncd
j2 (t) = −t

∫
DRR1

(
∂βXl−1w2 · ∇∂μzj

)
(t, x)∂tΓ

cz2(t, x) dx.

Notice that Ncd
11 ≡ 0. As for Ncd

21 , if |μ| � m − 2, we may estimate the first factor under the integral sign in L∞ and
each other factor in L2, writing that t‖∂t∇∂μz2(t)‖ � ‖X∇∂μz2(t)‖ + ‖r∂r∇∂μz2(t)‖. We readily obtain with the
help of Proposition 5.1(3), (4):

∣∣Ncd
21 (t)

∣∣ � C

〈t〉Hm,l−1(t)E
1/2
m,1(t)E

1/2
m,l (t) if |μ| � m − 2. (6.15)

If now |μ| = m − 1, then l = 1 and β = 0, so Γ c = ∂μX. Set gcd
1 = t∂t ∂

μz2, gcd
2 = r∂r∂

μz2, gcd
3 = (m − 1)∂μz2,

Gcd
j (t) = −t

∫
DRR1

W2(t, r)(∂t ∂r∂
μz2g

cd
j )(t, x) dx, so that Ncd

21 = ∑
1�j�3 Gcd

j . Now observe that if r �→ g(r) and

x �→ F(x) are smooth scalar functions such that the function x �→ g(r)F (x) vanishes when r = R and when r is
large, integration by parts readily shows that∫

DR

g(r)∂rF (x) dx = −
∫

DR

∇ ·
(

g(r)
x

r

)
F(x)dx. (6.16)

Using (6.16), we obtain that Gcd
1 (t) = 2−1t2

∫
DRR1

(∂r + 2/r)W2(t, r)(∂t ∂
μz2)

2(t, x) dx. Let us check that

∥∥∂t ∂
μz2(t)

∥∥ � C

〈t〉
(

ε

〈t〉 + Hm,0(t)

)(
ε + E

1/2
m,0(t)

)
if |μ| � m − 1. (6.17)

Indeed, it follows from (5.11) that ∂t∂
μz2 = −w · ∇∂μz2 + ĝμ∗

if Γ μ∗ = ∂μ. (6.17) easily follows with the
help of Lemma 5.3, Theorem 3.1(3) and Proposition 5.1(3), (4). Now using Proposition 5.1(6) and (6.17), we
find that |Gcd

1 (t)| � C〈t〉−1(Q2,0(t) + E
1/2
0,0 (t))(ε〈t〉−1 + Hm,0(t))

2(ε + E
1/2
m,0(t))

2. From (5.11) it also follows

that ∂r∂t ∂
μz2 = −W∂2

r ∂μz2 + ∑
1�j�3 xj ĝ

μj
/r if Γ μj = ∂j ∂

μ. Hence Gcd
2 = ∑

1�k�2 Gcd
2k , where Gcd

21(t) =
2−1t

∫
DRR1

r(W2W)(t, r)∂r (∂r∂
μz2)

2(t, x) dx and Gcd
22(t) = −t

∑
1�j�3

∫
DRR1

W2(t, r)xj (ĝ
μj

∂r∂
μz2)(t, x) dx. Ap-

plying (6.16) to Gcd
21(t) and estimating x �→ (∇ · (W2Wx))(t, x) in L∞, we obtain with the help of Theorem 3.1(3)

and Proposition 5.1(4), (6) that |Gcd
21(t)| � C〈t〉−1(ε〈t〉−1 + Q1,0(t))(Q2,0(t) + E

1/2
0,0 (t))Em,0(t). Using Theo-

rem 3.1(3) and Proposition 5.1(1), (3), (4), (5), (6), we estimate each of the last two factors under the inte-
gral sign of Gcd(t) in L2 and each other factor in L∞, and we find that |Gcd(t)| � C〈t〉−1Q1,0(t)(ε〈t〉−1 +
22 22
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Qm,0(t) + E
1/2
m−1,0(t))(ε + E

1/2
m,0(t))E

1/2
m,0(t). So we now have an upper bound for |Gcd

2 (t)| by adding the up-

per bounds we have just obtained for |Gcd
21(t)| and |Gcd

22(t)|. Let us handle Gcd
3 . Using (6.16), we obtain

that Gcd
3 = ∑

1�k�2 Gcd
3k , with Gcd

31(t) = 2(m − 1)t
∫

DRR1
r−1W2(t, r)(∂

μz2∂t ∂
μz2)(t, x) dx and Gcd

32(t) = (m −
1)t

∫
DRR1

∂r(W2(t, r)∂
μz2(t, x))∂t ∂

μz2(t, x) dx. In Gcd
31(t), we estimate each of the last two factors under the inte-

gral sign in L2 and each other factor in L∞. For Gcd
32(t), we write ∂r (W2(t, r)∂

μz2(t, x)) = ∂rW2(t, r)∂
μz2(t, x) +

W2(t, r)∂r∂
μz2(t, x) and estimate each of the factors ∂μz2, ∂r∂

μz2, ∂t ∂
μz2 under the integral sign in L2 and

each other factor in L∞. Using Proposition 5.1(4), (6) and (6.17), we obtain that |Gcd
3 (t)| � C〈t〉−1(Q2,0(t) +

E
1/2
0,0 (t))E

1/2
m,0(t)(ε + E

1/2
m,0(t))(ε〈t〉−1 + Hm,0(t)). Collecting the estimates of the Gcd

j , we find that

∣∣Ncd
21 (t)

∣∣ � C

〈t〉
(

ε

〈t〉 + Hm,0(t)

)2(
ε + E

1/2
m,0(t)

)(
ε2 + E

1/2
m,0(t)

)
if |μ| = m − 1. (6.18)

Let us pass to Ncd
j2 . Using (5.11), we can write Ncd

j2 = ∑
1�k�5 Ncd

j2k , where Ncd
j21(t) = t

∫
DRR1

(∂βXl−1w2 ·
∇∂μzj )(t, x)(w · ∇∂β+μXlz2)(t, x) dx, Ncd

j2k(t) = −t
∫

DRR1
(∂βXl−1w2 · ∇∂μzj )(t, x)g̃c

k−1(t, x) dx if k � 2, where

g̃c
1 = ĝc

11, g̃c
2 = ĝc

12, g̃c
3 = ĝc

21, g̃c
4 = ĝc

22. If |c| � m − 1, we estimate the first and third factors under the integral sign
in L∞ and each other factor in L2, and we find with the help of Theorem 3.1(3) and Proposition 5.1(3), (4), (6) that

∣∣Ncd
j21(t)

∣∣ � C

〈t〉Hm−1,l−1(t)κ̃j (t)

(
ε

〈t〉 + Q1,0(t)

)
E

1/2
m,l (t) if |c| � m − 1. (6.19)

If now |c| = m, we obtain by integration by parts that Ncd
j21 = ∑

1�k�3 Ncd
j21k , where

Ncd
j211(t) = −t

∫
DRR1

(
∂β+μXlz2(w · ∇)∂βXl−1w2 · ∇∂μzj

)
(t, x) dx,

Ncd
j212(t) = −t

∫
DRR1

(
∂β+μXlz2(w · ∇)∇∂μzj · ∂βXl−1w2

)
(t, x) dx,

Ncd
j213(t) = −t

∫
DRR1

(
∂β+μXlz2(∇ · w)

(
∂βXl−1w2 · ∇∂μzj

))
(t, x) dx.

But we have
∣∣Ncd

j21k(t)
∣∣ � C

〈t〉E
1/2
m,l (t)Hm,l−1(t)

(
ε

〈t〉 + Q2,0(t) + E
1/2
0,0 (t)

)
κ̃j (t)

if |c| = m, and if furthermore |μ| � m − 2 when j = k = 2. (6.20)

Actually (6.20) is easily obtained with the help of Lemma 5.3, Theorem 3.1(3) and Proposition 5.1(1), (3), (4),
(5), (6). Indeed, if furthermore |β| + l � m − 1 when k = 1, we estimate the factors containing z2 or zj (under
the integral sign in the definition of Ncd

j21k) in L2 and each other factor in L∞. If now k = 1 and |β| + l = m, then

μ = 0, and in this case we estimate the first and third factors (under the integral sign in the definition of Ncd
j211)

in L2 and each other factor in L∞. (6.20) follows easily. (6.20) yields an upper bound of |Ncd
j21(t)| if |c| = m

provided furthermore |μ| � m − 2 when j = 2. If now |c| = m and |μ| = m − 1, we have β = 0, l = 1, and so
Ncd

221(t) = t
∫

DRR1
(W2W)(t, r)(∂r∂

μz2∂r∂
μXz2)(t, x) dx. With Gcd

21 as above, we have Ncd
221 = Gcd

21 +Gcd
4 +Gcd

5 , with

Gcd
4 (t) = (|μ| + 1)t

∫
DRR1

(W2W)(t, r)(∂r∂
μz2)

2(t, x) dx, Gcd
5 (t) = t2

∫
DRR1

(W2W)(t, r)(∂r∂
μz2∂t ∂r∂

μz2)(t, x) dx.

In Gcd
4 (t), we estimate the first two factors under the integral sign in L∞, and we obtain with the help of

Theorem 3.1(3) and Proposition 5.1(6) that |Gcd
4 (t)| � C〈t〉−1Q1,0(t)Em,0(t)(ε〈t〉−1 + Q1,0(t)). Now it follows

from (5.11) that Gcd
5 (t) = ∑

1�j�2 Gcd
5j (t), where Gcd

51(t) = −2−1t2
∫

DRR1
(W2W

2)(t, r)∂r (∂r∂
μz2(t, x))2 dx and

Gcd
52(t) = t2 ∑

1�i�3

∫
DRR1

(W2W)(t, r)r−1xi(∂r∂
μz2ĝ

μi
)(t, x) dx, in which Γ μi = ∂i∂

μ. In Gcd
51(t), we use (6.16),

and then estimate the function x �→ (∂r∂
μz2)

2(t, x) in L1 and each other factor under the integral sign in L∞ with
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the help of Theorem 3.1(3) and Proposition 5.1(4), (6). In Gcd
52(t) we estimate each of the last two factors under the

integral sign in L2 and each other factor in L∞, using Theorem 3.1(3) and Proposition 5.1(1), (5), (6). This gives
that |Gcd

5 (t)| � C〈t〉−1(ε〈t〉−1 + Q1,0(t))E
1/2
m,0(t)((Q2,0(t) + E

1/2
0,0 (t))E

1/2
m,0(t)(ε〈t〉−1 + Q1,0(t)) + Q1,0(t)(ε〈t〉−1 +

Hm,0(t))(ε + E
1/2
m,0(t))). From the estimates of Gcd

21, Gcd
4 , Gcd

5 , we obtain that

∣∣Ncd
221(t)

∣∣ � C

〈t〉
(

ε

〈t〉 + Q1,0(t)

)
H2,0(t)E

1/2
m,0(t)

(
E

1/2
m,0(t) +

(
ε

〈t〉 + Hm,0(t)

)(
ε + E

1/2
m,0(t)

))

if |c| = m and |μ| = m − 1. (6.21)

Let us pass to Ncd
j2k , where k ∈ {2,3}. We estimate the first factor under the integral sign in L∞ and each other factor

in L2, making use of Theorem 3.1(3) and Proposition 5.1(3), (4). We obtain

∣∣Ncd
j2k(t)

∣∣ � C

〈t〉2
εHm,l−1(t)κ̃j (t)κk−1(t) if k ∈ {2,3}. (6.22)

We now consider Ncd
j2k when k ∈ {4,5}. Recall that Γ c = ∂β+μXl , |c| � m, and g̃c

k−1 = ∑
h�c

(
c
h

)
Γ hw2 · ∇Γ c−hzk−3

(so that Γ h = ∂νXλ with ν � β +μ and λ � l), where furthermore h �= 0 in the sum if k = 5. For k ∈ {4,5}, set g̃
c,−
k−1 =

−∑
h�c;λ�l−1

(
c
h

)
Γ hw2 · ∇Γ c−hzk−3, where furthermore h �= 0 in the sum if k = 5; set also g̃

c,+
k−1 = g̃c

k−1 − g̃
c,−
k−1,

and define N
cd,±
j2k as Ncd

j2k (k ∈ {4,5}), but with g̃c
k−1 replaced by g̃

c,±
k−1. If λ � l − 1, we obtain with the help of

Proposition 5.1(3), (4) that ‖(Γ hw2 · ∇Γ c−hzk−3)(t)‖ � C〈t〉−1Hm,l−1(t)κk−3(t), whence it follows, again with the
help of Proposition 5.1(3), (4), that

∣∣Ncd,−
j2k (t)

∣∣ � C

〈t〉H
2
m,l−1(t)κ̃j (t)κk−3(t). (6.23)

Now, if λ (= h4) = l, we have Γ h = ∂νXl with ν � β + μ, and so N
cd,+
j2k (t) = −t

∑
h�c;h4=l;1�n�3

(
c
h

)
Scdh

jkn (t),
where

Scdh
jk1 (t) = t

∫
DRR1

(
∂βXl−1w2 · ∇∂μzj

)
(t, x)

(
∂t ∂

νXl−1w2 · ∇∂β+μ−νzk−3
)
(t, x) dx,

Scdh
jk2 (t) =

∫
DRR1

(
∂βXl−1w2 · ∇∂μzj

)
(t, x)r

(
∂r∂

νXl−1w2 · ∇∂β+μ−νzk−3
)
(t, x) dx,

Scdh
jk3 (t) = |ν|

∫
DRR1

(
∂βXl−1w2 · ∇∂μzj

)
(t, x)

(
∂νXl−1w2 · ∇∂β+μ−νzk−3

)
(t, x) dx.

Let us start with the case n = 1, in which finding a suitable bound is less simple because of the additional fac-
tor t in front of the integral in the definition of Scdh

jk1 . It is convenient to write Γ c = ∂ξXl (recall that Γ d = ∂βXl).

Then we have (for each j ∈ {1,2} and each k ∈ {4,5}): t
∑

d,h�c;d4=h4=l

(
c
d

)(
c
h

)
Scdh

jk1 (t) = ∑
β,ν�ξ Φ

ξβν

j,k−3(t), where

Φ
ξβν

j,k−3(t) = (
ξ
β

)(
ξ
ν

)
t2

∫
DRR1

(∂βXl−1w2 ·∇∂ξ−βzj )(t, x)(∂t ∂
νXl−1w2 ·∇∂ξ−νzk−3)(t, x) dx. Now Φ

ξβν

j,k−3 +Φ
ξνβ

k−3,j =(
ξ
β

)(
ξ
ν

)
(dF

ξβν

jk1 /dt − 2t−1F
ξβν

jk1 + F
ξβν

jk2 + F
ξβν

jk3 ), with

F
ξβν

jk1 (t) = t2
∫

DRR1

(
∂βXl−1w2 · ∇∂ξ−βzj

)
(t, x)

(
∂νXl−1w2 · ∇∂ξ−νzk−3

)
(t, x) dx,

F
ξβν

jk2 (t) = −t2
∫

DRR1

(
∂βXl−1w2 · ∂t∇∂ξ−βzj

)
(t, x)

(
∂νXl−1w2 · ∇∂ξ−νzk−3

)
(t, x) dx,

F
ξβν

jk3 (t) = −t2
∫

DRR

(
∂βXl−1w2 · ∇∂ξ−βzj

)
(t, x)

(
∂νXl−1w2 · ∂t∇∂ξ−νzk−3

)
(t, x) dx.
1
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To handle F
ξβν

jk1 , we estimate the first and third factors under the integral sign in L∞ and each other factor in L2. With
the help of Proposition 5.1(3), (4), we obtain

∣∣Fξβν

jk1 (t)
∣∣ � C

〈t〉2
t2H 2

m,l−1(t)κ̃j (t)κ̃k−3(t). (6.24)

We have F
ξβν

1k2 = 0. On the other hand, if |ξ − β| � m − 2, we can estimate in L∞ the first and third factors under the

integral sign of F
ξβν

2k2 (t), making use of Proposition 5.1(3), (4), and each other factor in L2, using (6.17) for the third
factor. This gives

∣∣Fξβν

2k2 (t)
∣∣ � C

〈t〉H
2
m,l−1(t)

(
ε

〈t〉 + Hm,0(t)

)(
E

1/2
m,0(t) + ε

)
κ̃k−3(t) if |ξ − β| � m − 2. (6.25)

If now |ξ − β| = m − 1, recall that |ξ | � m − l and l � 1; so actually |ξ | = m − 1, β = 0, l = 1. In that case we
integrate by parts and write F

ξ0ν
2k2 = ∑

1�i�3 F
ξν
2k2i , where

F
ξν
2k21(t) = t2

∫
DRR1

(
(∇ · w2)∂t ∂

ξ z2
)
(t, x)

(
∂νw2 · ∇∂ξ−νzk−3

)
(t, x) dx,

F
ξν
2k22(t) = t2

∫
DRR1

((
w2 · ∇∂νw2

) · ∇∂ξ−νzk−3
)
(t, x)∂t ∂

ξ z2(t, x) dx,

F
ξν
2k23(t) = t2

∫
DRR1

(
∂νw2 · ((w2 · ∇)∇∂ξ−νzk−3

))
(t, x)∂t ∂

ξ z2(t, x) dx.

To handle F
ξν
2k21, we estimate the first and third factors under the integral sign in L∞ and each other factor in L2.

Thanks to Proposition 5.1(3), (4) and (6.17), we obtain that |Fξν
2k21(t)| � C〈t〉−1(Q2,0(t) + E

1/2
0,0 (t))(ε〈t〉−1 +

Hm,0(t))H|ν|+1,0(t)(E
1/2
m,0(t) + ε)κ̃k−3(t). Let us consider now F

ξν
2k22. If |ν| � m − 2, we estimate the first two

factors under the integral sign in L∞ and each other factor in L2, and therefore we find that |Fξν
2k22(t)| �

C〈t〉−1Q1,0(t)(ε〈t〉−1 +Hm,0(t))H|ν|+2,0(t)(E
1/2
m,0(t)+ε)κ̃k−3(t) if |ν| � m−2. If now |ν| = m−1 (hence ν = ξ ), we

estimate the first and third factors under the integral sign in L∞ and each other factor in L2, using Proposition 5.1(1),
(5), (6) and (6.17), and we find that |Fξν

2k22(t)| � C〈t〉−1Q1,0(t)Hm,0(t)(ε〈t〉−1 + Hm,0(t))(E
1/2
m,0(t) + ε)κ̃k−3(t) if

|ν| = m−1. To handle F
ξν
2k23 (with |ξ −ν| � m−2 if furthermore k = 5), we estimate the first and second factors under

the integral sign in L∞ and each other factor in L2 with the help of Proposition 5.1(3), (4), (6) and (6.17), and we ob-
tain that |Fξν

2k23(t)| � C〈t〉−1Q1,0(t)(ε〈t〉−1 +Hm,0(t))(E
1/2
m,0(t)+ ε)H|ν|+1,0(t)κ̃k−3(t) if k = 4, or if |ξ − ν| � m− 2

and k = 5. Collecting estimates, we find that

∣∣Fξ0ν
2k2 (t)

∣∣ � C

〈t〉
(
Q2,0(t) + E

1/2
0,0 (t)

)( ε

〈t〉 + Hm,0(t)

)
Hm,0(t)

(
E

1/2
m,0(t) + ε

)
κ̃k−3(t),

when |ξ | = m − 1 and l = 1, if k = 4 or if k = 5 and ν �= 0. (6.26)

Finally, if |ξ | = m − 1 and l = 1, F
ξ00
252 is equal to −Gcd

5 above (in the study of Ncd
221) with W replaced by W2 and μ

by ξ , so by arguments similar to those used above for Gcd
5 , we find that

∣∣Fξ00
252 (t)

∣∣ � C

〈t〉Q1,0(t)
(
Q2,0(t) + E

1/2
0,0 (t)

)
E

1/2
m,0(t)

(
ε

〈t〉 + Hm,0(t)

)(
E

1/2
m,0(t) + ε

)
if |ξ | = m − 1 and l = 1. (6.27)

Set k1 = k − 3, j1 = j + 3 (recall that k ∈ {4,5} now and j ∈ {1,2}). Since F
ξβν

jk3 = F
ξνβ

k1j12, (6.25)–(6.27) yield

estimates for F
ξβν

jk3 . Summing up, if we set Aξβν
jk = (

ξ
β

)(
ξ
ν

)
F

ξβν

jk1 , Bξβν
jk = (

ξ
β

)(
ξ
ν

)
(−2t−1F

ξβν

jk1 + F
ξβν

jk2 + F
ξβν

jk3 ), then

Aξβν
, Bξβν can be estimated by (6.24)–(6.27). Notice that Aξβν

(0) = 0. But Φ
ξβν + Φ

ξνβ = dAξβν
/dt + Bξβν ,
jk jk jk j,k−3 k−3,j jk jk
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and t
∑

1�j,k−3�2;d,h�c;d4=h4=l

(
c
d

)(
c
h

)
Scdh

jk1 = ∑
1�j,k−3�2;β,ν�ξ (Φ

ξβν

j,k−3 + Φ
ξνβ

k−3,j )/2, so to complete the estimate

of
∑

1�j,k−3�2;d�c

(
c
d

)
N

cd,+
j2k , it remains to handle −t

∑
1�j,k−3�2;d,h�c;d4=h4=l

(
c
d

)(
c
h

)
Scdh

jkn for n ∈ {2,3}. Let us

start with Scdh
jk2 . If |ν| + l � m − 1, we estimate the first and fourth factors under the integral sign in L∞ and the

second and fifth factors in L2, using Proposition 5.1(3), (4) (the third factor is r). If |ν| + l = m, then ν = β + μ and
we estimate the first and fifth factors under the integral sign in L∞ and the second and fourth factors in L2, using
Proposition 5.1(1), (3), (4), (5). Altogether we obtain that |Scdh

jk2 (t)| � C〈t〉−2H 2
m,l−1(t)κ̃j (t)κ̃k−3(t). As for Scdh

jk3 ,

we estimate the first and third factors under the integral sign in L∞ and each other factor in L2, using Proposi-
tion 5.1(3), (4). We obtain that |Scdh

jk3 (t)| � C〈t〉−2H 2
m,l−1(t)κ̃j (t)κ̃k−3(t). Using the estimates of Aξβν

jk , Bξβν
jk , Scdh

jkn ,

we find that
∑

1�j,k−3�2;d�c;d4=l�1

(
c
d

)
N

cd,+
j2k (t) = dMc

1(t)/dt + Mc
2(t), where Mc

1 ,Mc
2 ∈ C∞([0, T ]),Mc

1(0) = 0,
and

∣∣Mc
1(t)

∣∣ � Cε6ψ2(ε),
∣∣Mc

2(t)
∣∣ � C

(
ε2

〈t〉Em,l(t) + ε6

〈t〉5

)
. (6.28)

By assumption, E
1/2
m,max(l,1)(t) � ε2ψ(ε) if 0 � t � T . Hence it follows from Proposition 5.2 that

Qm,λ−1(t) � C
(
E

1/2
m,λ(t) + ε2〈t〉−2) if 1 � λ � l. (6.29)

In order to complete the proof of Proposition 5.4(1, l), we are going to use (6.29) in the estimates we have proved in
this section. From (6.1), (6.2), (6.29) we obtain that

∑
1�j�12 |P a

j (t)| � CεEm,l(t)〈t〉−1, whereas (6.6), (6.29) yield

that |P a
13(t)| � C(εEm,l(t)〈t〉−1 +ε4ψ(ε)〈t〉−3 +ε6ψ2(ε)〈t〉−2). (6.10) gives that

∑
1�j�2 |P̂ c

1j (t)| � Cε4ψ(ε)〈t〉−2.

If l = 0, we obtain with the help of (6.11), (6.29) that |∑1�j�2 P̂ c
2j (t)| � C(εE

1/2
m,0(t)E

1/2
m,1(t)〈t〉−1 + ε5ψ(ε)〈t〉−3).

On the other hand, if l � 1, (6.11)–(6.15), (6.18)–(6.23), (6.28) and (6.29) yield that
∑

1�j�2 P̂ c
2j (t) = dAc(t)/dt +

Bc(t) with Ac,Bc ∈ C∞([0, T ]), Ac(0) = 0, and |Ac(t)| � Cε5ψ2(ε), |Bc(t)| � C(εEm,l(t)〈t〉−1 + ε5ψ(ε)〈t〉−3).
This proves Proposition 5.4(1, l), 0 � l � m. �

We can now prove Proposition 5.4(2).

Proof of Proposition 5.4(2). Since we assume that ε is so small that |z| � 1/2 (cf. Section 5), an explicit com-
putation shows that |∑0�j�3 ∂jAj (φ)| � C(|∇ · w| + |∇θ |), so Proposition 5.4(2) easily follows with the help of
Theorem 3.1(2), Proposition 5.2, and Proposition 5.1(4), (2). �

In the proof of Proposition 5.4(3, l) and (4, l), it will be convenient to make use of the following lemma.

Lemma 6.1. Let m be as in Proposition 5.4. If ε is small, (3.20)–(3.26) has a unique C∞([0,1] × DR) solution such
that E

1/2
m+1(t) � Cε2ψ1/2(ε) and

∫ 1
0 |∂j

t ∂k
r (Θ2,W2,Z2)|2(t,R)dt � Cε4ψ(ε) if j + k � m.

Proof. Set Jε = {s ∈ (0,1], (3.20)–(3.26) has a unique C∞([0, s] × DR) solution with E
1/2
m+1(t) � ε2ψ(ε) if t ∈

[0, s]}. By (3.27), E
1/2
m+1(0) � Cε2; hence, by the results of [5], Jε �= ∅ if ε is small; and Jε is closed in (0,1] thanks to

Theorem 4 of [5]. Assume that s1 ∈ Jε . We apply (5.13), (5.14), Proposition 5.3, with l = 0 and m replaced by m + 1,
and Proposition 5.4(1,0), with m replaced by m+ 1. With the help of the Gronwall inequality, we see that there exists
ε0 > 0 (independent of s1) such that E

1/2
m+1(t) � Cε2ψ1/2(ε) � ε2ψ(ε)/2 if 0 < ε � ε0 and t ∈ [0, s1]. Hence using

Theorem 4 of [5], we conclude that Jε is open in (0,1]. So Jε = (0,1], and the estimate just used above to show that
Jε is open in (0,1] also gives that E

1/2
m+1(t) � Cε2ψ1/2(ε) if t ∈ [0,1]. Using a standard trace inequality on r = R,

0 < t < 1, we complete the proof of Lemma 6.1. �
We now start with the proof of Proposition 5.4(3, l), (4, l), (5, l) and (6, l).



P. Godin / Ann. I. H. Poincaré – AN 26 (2009) 2227–2252 2247
Proof of Proposition 5.4(3,1), (4,1), (5,1) and (6,1). If r = R, then XΘ2 = t∂tΘ2 and XW2 = −R(1 +
C1Θ)−1(∂tΘ2 + C1Θ2∂rW1). (Recall that we assume, as we may, that C1|Θ| � 1/2.) Hence we can write, when
r = R: ∂k

t XΘ2 = t∂k+1
t Θ2 + k∂k

t Θ2 and ∂k
t XW2 = −R(1 + C1Θ)−1∂k+1

t Θ2 + Vk , where, since E
1/2
m,1(t) � ε2ψ(ε),

we have |∂k
t Θ2| � Cε2ψ(ε)〈t〉−1 and |Vk| � Cε3ψ(ε)〈t〉−2 if k � m − 1 and r = R, as one can easily verify with the

help of Theorem 3.1(3), Proposition 5.1(3) and Proposition 5.2. If Γ a = ∂k
t X, k � m − 1, and r = R, we therefore

find that −(1 + C1Θ)Γ aΘ2Γ
aW2 = Rt(∂k+1

t Θ2)
2 + Rk∂t (∂

k
t Θ2)

2/2 − (1 + C1Θ)t∂k+1
t Θ2Vk + Ṽk , with |Ṽk(t)| �

Cε5ψ2(ε)〈t〉−3. It follows from (3.27) that |∂k
t Θ2(0, r)| � Ckε

2. So writing −|∂k+1
t Θ2Vk| � −δ(∂k+1

t Θ2)
2 − CδV

2
k ,

we easily obtain that − ∫ T

0 ((1 + C1Θ)Γ aΘ2Γ
aW2)(t,R)dt � C0

∫ T

0 t (∂k+1
t Θ2)

2(t,R)dt − Cε4ψ(ε), since εψ(ε)

is bounded. This proves Proposition 5.4(3,1). Using (3.27), (5.13), (5.14), Proposition 5.4(1,1), (2), (3,1) and the
Gronwall inequality, we obtain Proposition 5.4(4,1). Proposition 5.4(5,1) (even with [R, R̄] replaced by [R,+∞))
follows with the help of Proposition 5.4(4,1), Proposition 5.1(2), (3), (4), and Proposition 5.2. Finally we obtain
Proposition 5.4(6,1) by differentiating the relation ∂t z2 = −(w1 +w2) ·∇(z1 +z2), using Lemma 5.3, Theorem 3.1(3),
Proposition 5.1(1), and Proposition 5.4(4,1), (5,1). �

Proceeding by induction, we shall assume until the end of this section that Proposition 5.4(3, λ)–(6, λ) has been
proved if 1 � λ � l − 1 and we shall show that it still holds if λ = l (2 � l � m). In order to be able to achieve this,
we now proceed to prove boundary estimates.

We shall have to handle Γ aΘ2Γ
aW2 when r = R, if Γ a = ∂k

t Xl . It is convenient to introduce the follow-
ing notations: D0 = ∂t , D1 = ∂r , Dα = ∂

α0
t ∂

α1
r if α = (α0, α1) ∈ N

2, ζ1 = Θ2, ζ2 = W2, ζ = tr(ζ1 ζ2), Φ(k) =
((DαΘ1)|α|�k, (D

αW1)|α|�k), Y = (Φ(0), ζ1, ζ2), H = (Θ,W,Z), G(H) = W 2 − (1 + Z)(1 + C1Θ)2. Let A(H)

be the 2 × 2 matrix defined by A11(H) = A22(H) = −W/G(H), A12(H) = (1 + C1Θ)/G(H), A21(H) = (1 +
Z)(1 + C1Θ)/G(H). It is not difficult to check the following useful identity by induction over n if n � 1:

∂n
r ζ = An(H)∂n

t ζ + Tn + Bn0(r)ζ +
∑

1�i�3

Tni; (6.30)

here T1 = 0, Tn = ∑
1�ν�n−1 Bnν(r, (D

αZ)|α|�n−ν)∂
ν
t ζ if n � 2, where Bnν are C∞ 2 × 2 matrices with

(Bn0(r))ij = 0 if (i, j) �= (2,2), and the Tni are defined as follows. T11 = 0, and, for n � 2, each entry of Tn1 is

a sum of terms of the form F(r, (Dα(Y,Z))|α|�j )Mp∂
q+1
t ζd with j + p + q = n − 1, 1 � q + 1 � n − 1, d ∈ {1,2},

where F ∈ C∞ and Mp is some derivative Dβ of order p of some component of Y . With H 0
0 as in (5.15) and τ 0

8 ,
τ 0

11 as in Section 5, T12 = tr((WH 0
0 − (1 + C1Θ)(τ 0

8 + τ 0
11) · x/r − 2r−1(1 + C1Θ)WW2)/G(H) (W(τ 0

8 + τ 0
11) ·

x/r − (1 + Z)(1 + C1Θ)H 0
0 + 2r−1W 2W2)/G(H)). In general, each entry of Tn2 is a sum of terms of the form

F(r, (Dα(Y,Z))|α|�j )Pp∂
q
t ζd with j + p + q � n − 1, where F ∈ C∞ and Pp is a derivative Dβ of order p of

some component of (Φ(1), ζ1, ζ2). Each entry of Tn3 is a sum of terms of the form F(r, (Dα(Y,Z))|α|�j )NpSq with
j + p + q � n − 1, where F ∈ C∞ and Np is some derivative Dβ of order p of Z and Sq is some derivative D� of
order q of ∂rΘ1. The representation (6.30) could be refined, but it will be sufficient for our purposes. Now it is easily
checked that

∂k
t Xlζ =

∑
δk0�i+n�l

cklint
irn∂i+k

t ∂n
r ζ, (6.31)

where cklin are strictly positive constants and δ00 = 1, δk0 = 0 if k �= 0. (We have l > 0 since we are assuming that
l � 2.) It follows from (6.30) that

∂i+k
t ∂n

r ζ =
∑

1�μ�6

Si+k,n,μ if n � 1, (6.32)

with Si+k,n,1 = ∂i+k
t (An(H)∂n

t ζ ), Si+k,n,2 = ∂i+k
t Tn, Si+k,n,3 = ∂i+k

t (Bn0(r)ζ ), Si+k,n,3+j = ∂i+k
t Tnj if j ∈ {1,2,3}.

Let A0(Z) be the 2 × 2 matrix with entries (A0(Z))11 = (A0(Z))22 = 0, (A0(Z))12 = −(1 + Z)−1, (A0(Z))21 = −1,
so that A(H) = A0(Z) + f (H), where f ∈ C∞ near 0 and vanishes if Θ = W = 0. Estimates when r = R will be
obtained with the help of the following lemma.
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Lemma 6.2. If i + n � l, k + l � m, l � 2, n � 1, and T � 1, we have:

(1) Si+k,n,1 = An(H)∂i+k+n
t ζ + Ki+k,n when r = R, with

T∫
1

t2i+1|Ki+k,n|2(t,R)dt � Cε6ψ(ε),

(2)
∫ T

1 t2i+1|Si+k,n,2|2(t,R)dt � Cε4ψ(ε),

(3) Si+k,n,3 ≡ 0 when r = R,

(4)
∫ T

1 t2i+1|Si+k,n,4|2(t,R)dt � Cε6ψ(ε),

(5)
∫ T

1 t2i+1|Si+k,n,5|2(t,R)dt � Cε6ψ(ε),

(6)
∫ T

1 t2i+1|Si+k,n,6|2(t,R)dt � Cε4.

Proof. Throughout the proof of Lemma 6.2, we assume that r = R.
(1) If I > 0, ∂I

t An(H) is a sum of terms of the form A(H)
∏

1�i�I,1�j�3(∂
i
t Hj )

βij , where A ∈ C∞, βij � 0, and∑
1�i�I,1�j�3 iβij = I . Using Theorem 3.1(2), (3), Proposition 5.1(1), Proposition 5.4(5, l − 1) and (6, l − 1), and

the fact that
∑

1�i�I,1�j�3 βij min(i, l − 1) � min(I, l − 1), we obtain that

∣∣(∂I
t An(H)

)
(t,R)

∣∣ � C
ε

〈t〉min(I,l−1)
if 0 < I � m − 1. (6.33)

When proving (1), we may and shall suppose that i + k > 0; until the end of the proof of (1), we shall
assume that 0 < I � i + k. Set Ei+k,n,I = ∂I

t An(H)∂i+k+n−I
t ζ , so that t i+1/2(Si+k,n,1 − An(H)∂i+k+n

t ζ ) =∑
0<I�i+k

(
i+k
I

)
t i+1/2 Ei+k,n,I . Define PμnI (t) = t I−n−μ+1∂I

t tr((An(H))11 (An(H))21)(t,R), so that

t i+1/2 Ei+k,n,I (t,R) = t i−I+n+μ−1/2∂i−I+n+k
t Θ2(t,R)PμnI (t).

We have |PμnI (t)| � CεtI−n−μ+1−min(I,l−1) if t � 1, thanks to (6.33).
Assume first that I � i + n − 1; hence I � l − 1. Then we choose μ = 0, so |PμnI (t)| � Cεt1−n if t � 1. Now

i−I +n � 1; also i−I +n � l−1 since i+n � l and I > 0; and i−I +n+k � m−1. So using Proposition 5.4(4, i−
I + n) we obtain

T∫
1

t2i+1|Ei+k,n,I |2(t,R)dt � Cε6ψ(ε). (6.34)

If now i + n � I , we choose μ = I − i − n + 1 (so μ � k). Then |PμnI (t)| � Cεt1−n if t � 1, and we have i − I +
n + k � m − 2. We obtain (6.34) by using Proposition 5.4(4,1). This completes the proof of Lemma 6.2(1).

(2) Set Fi+k,n,ν,I = ∂I
t Bnν(r, (D

αZ)|α|�n−ν)∂
i+k−I+ν
t ζ with 1�ν �n−1 and 0� I � i+k, and define PμnνI (t) =

t I−ν+1−μ∂I
t tr((Bnν(r, (D

αZ)|α|�n−ν))11(Bnν(r, (D
αZ)|α|�n−ν))21)(t,R), so that

t i+1/2 Fi+k,n,ν,I (t,R) = t i−I+ν+μ−1/2∂i−I+ν+k
t Θ2(t,R)PμnνI (t).

Arguing as in the proof of (6.33) with the help of Proposition 5.1(1) and Proposition 5.4(6, l − 1), we obtain that,
when I > 0 and 1 � ν � n − 1:

∣∣(∂I
t Bnν

(
r,

(
DαZ

)
|α|�n−ν

))
(t,R)

∣∣ � C

〈t〉min(I,l−1)
ε2. (6.35)

Using (6.35) in the case that I > 0, we find that |PμnνI (t)| � CtI−ν−μ+1−min(I,l−1) if t � 1. If I � i + ν − 1, we
choose μ = 0, notice that 1 � i − I + ν � l − 1 and that i − I + ν + k � m − 1, and, since |PμnνI (t)| � Ct1−ν if
t � 1, we obtain that

T∫
t2i+1|Fi+k,n,ν,I |2(t,R)dt � Cε4ψ(ε) (6.36)
1
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with the help of Proposition 5.4(4, i − I + ν). If now i + ν � I (so I > 0), we choose μ = I − i − ν + 1 (so μ � k).
Since i − I + ν + k � m−2 and |PμnνI (t)| � Cε2t−ν if t � 1, we obtain (6.36) with the help of Proposition 5.4(4,1).
This proves (2).

(3) is obvious. As for (4), notice that, when n � 2, each entry of ∂i+k
t Tn1 is a linear combination of

terms of the form Gi+k,j,p,q,I1,I2 = ∂
I1
t F (r, (Dα(Y,Z))|α|�j )∂

I2
t Mp∂

i+k−I1−I2+q+1
t ζd with F,Mp as in the def-

inition of Tn1, j + p + q = n − 1, q + 1 � n − 1, and I1 + I2 � i + k. Set I = I1 + I2, PμjpqI1I2(t) =
t I−q−μ(∂

I1
t F (r, (Dα(Y,Z))|α|�j )∂

I2
t Mp)(t,R), so that t i+1/2 Gi+k,j,p,q,I1,I2(t,R) = t i−I+q+1/2+μ ×

∂
i−I+q+1+k
t Θ2(t,R)PμjpqI1I2(t)δd1, with δ11 = 1, δ21 = 0. With the help of Theorem 3.1(2), (3), Proposi-

tion 5.1(1) and Proposition 5.4(5, l − 1) and (6, l − 1), and arguing as in the proof of (6.33) if I1 > 0, we obtain
that |PμjpqI1I2(t)| � CεtI−q−μ−min(I+1,l−1) if t � 1. If we take μ = min(l − 2 − i + I − q, k), then μ � k,
i − I + q + 1 + μ ∈ [1, l − 1], and I − q − μ � min(I, l − 2). Also i − I + q + 1 + k � m. But then we ob-
tain

∫ T

1 t2i+1 G 2
i+k,j,p,q,I1,I2

(t,R)dt � Cε6ψ(ε) with the help of Proposition 5.4(4, i − I + q + 1 + μ). This proves
Lemma 6.2(4).

Let us prove (5). Each entry of ∂i+k
t Tn2 is a sum of terms of the form Hi+k,j,p,q,I1,I2 = ∂

I1
t F (r, (Dα(Y,Z))|α|�j ) ×

∂
I2
t Pp∂

i+k−I1−I2+q
t ζd with j + p + q � n − 1 and I1 + I2 � i + k, where F , Pp are as in the definition

of Tn2. Define I = I1 + I2, μ = min(l − 1 − i + I − q, k). Observe that if q > 0, or if q = 0 and I < i + k,
then i − I + q + μ ∈ [1, l − 1]; if q = 0 and I = i + k, then i − I + q + μ = 0. Also i − I + q + k �
m − 1. Set NμjpqI1I2(t) = t I−q−μ+1(∂

I1
t F (r, (Dα(Y,Z))|α|�j )∂

I2
t Pp)(t,R), so that t i+1/2 Hi+k,j,p,q,I1,I2(t,R) =

t i−I+q−1/2+μ∂
i−I+q+k
t Θ2(t,R)NμjpqI1I2(t)δd1. With the help of Theorem 3.1(2), (3), Proposition 5.1(1) and Propo-

sition 5.4(5, l −1), (6, l −1), and arguing as in the proof of (6.33) if I1 > 0, we obtain that |NμjpqI1I2(t)| � CεtsμqI1I2 ,
where sμqI1I2 = I1 − μ − 1 − min(I1, l − 1) if n = 1 (so in this case, sμqI1I2 does not depend on I2), and sμqI1I2 =
I − q − μ + 1 − min(I + 1, l − 1) if n � 2. It is not hard to check that sμqI1I2 � −1 if n = 1, or if n � 2 and q > 0,
whereas sμqI1I2 � 0 if n � 2 and q = 0. We use Proposition 5.4(4, i − I + q + μ) if q > 0, or if q = 0 and I < i + k,

and Proposition 5.4(5,1) if q = 0 and I = i + k. We obtain that
∫ T

1 t2i+1 H2
i+k,j,p,q,I1,I2

(t,R)dt � Cε6ψ(ε).
Lemma 6.2(5) is proved.

Finally Lemma 6.2(6) follows easily with the help of Proposition 5.1(1), Proposition 5.4(5, l − 1), (6, l − 1) and
Theorem 3.1(2), (3) if we use the arguments leading to (6.33) to estimate the derivatives of strictly positive order of
F(r, (Dα(Y,Z))|α|�j ). The proof of Lemma 6.2 is complete. �

Notice that we have

An(H̃ )∂i+k+n
t ζ = (−1)nMn(H̃ )∂i+k+n

t Θ2δn if r = R, (6.37)

where H̃ = (Θ,0,Z) and Mn is a C∞ scalar function in a neighborhood of (0,0,0) with Mn(0,0,0) = 1, and where
δn = tr(1 0) if n is even and δn = tr(0 1) if n is odd. Until the end of the proof of Proposition 5.4(3, l), we shall still
assume that T � 1 and that i + n � l, k + l � m. With the help of (6.32), Lemma 6.2, and (6.37), it follows at once
that

∂i+k
t ∂n

r ζ = (−1)nMn(H̃ )∂i+k+n
t Θ2δn + Li+k,n if r = R, (6.38)

where Li+k,n = Ki+k,n + ∑
2�μ�6 Si+k,n,μ and

∫ T

1 t2i+1|Li+k,n|2(t,R)dt � Cε4ψ(ε), and of course Li+k,0 = 0.
Combining (6.38) with Proposition 5.4(4, l − 1), we easily obtain the following estimate:

T∫
1

t2i+1
∣∣∂i+k

t ∂n
r ζ

∣∣2
(t,R)dt � Cε4ψ(ε) if i � l − 2 and k + n � 1, (6.39)

whereas Proposition 5.4(5, l − 1) implies that
T∫

1

t2i
(
∂i
t Θ2

)2
(t,R)dt � Cε4ψ(ε) if i � l − 2. (6.40)

With the boundary estimates we have obtained, we are now ready to complete the proof of Proposition 5.4. As
already said above, we assume until the end of this section that l � 2 and that Proposition 5.4(3, λ)–(6, λ) has already
been proved if 1 � λ � l − 1 (where l is fixed and 2 � l � m), and we show that it still holds if λ = l.
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Proof of Proposition 5.4(3, l), (4, l). We can write −(1 + C1Θ)∂k
t XlΘ2∂

k
t XlW2 = ∑

cI BI , where I = (i, j, n,p,

k, l), all cI are strictly positive constants, BI = −(1 + C1Θ)ti+j ∂i+k
t ∂n

r Θ2∂
j+k
t ∂

p
r W2 and the sum is taken over all I

with k, l fixed such that k + l � m, δk0 � i + n � l, δk0 � j + p � l, where δ00 = 1 and δk0 = 0 if k �= 0 as before.
Since W2 = 0 if r = R, it follows that j � l − 1 if BI (t,R) �≡ 0. Recall that C1|Θ| � 1/2. We have the following
estimates if T � 1 and δ > 0:

T∫
1

∣∣BI (t,R)
∣∣dt � Cε4ψ(ε) if i, j � l − 2; (6.41)

T∫
1

∣∣BI (t,R)
∣∣dt � Cε4ψ(ε) if i = l − 1 and j � l − 2, or if j = l − 1, i � l − 2 and k + n � 1; (6.42)

T∫
1

∣∣BI (t,R)
∣∣dt � δ

T∫
1

t2(l−1)
(
∂l
t Θ2

)2
(t,R)dt + Cδε

4ψ(ε) if j = l − 1, i � l − 2 and k = n = 0; (6.43)

T∫
1

BI (t,R)dt � −Cε4ψ(ε) if i = j = l − 1; (6.44)

T∫
1

∣∣BI (t,R)
∣∣dt � δ

T∫
1

t2l−1(∂l+k
t Θ2

)2
(t,R)dt + Cδε

4ψ(ε) if i = l and j � l − 2; (6.45)

T∫
1

BI (t,R)dt � C−1

T∫
1

t2l−1(∂l+k
t Θ2

)2
(t,R)dt − Cε4ψ(ε) if i = l, j = l − 1, and p = 1. (6.46)

Indeed, (6.41) follows at once from (6.39) and (6.40).
To check (6.42) when i = l − 1 and j � l − 2, we write |BI (t,R)| � C(t2l−3(∂l−1+k

t Θ2)
2(t,R) +

t2j+1(∂
j+k
t ∂

p
r W2)

2(t,R)) and apply Proposition 5.4(4, l − 1) and (6.39). If now j = l − 1 and i � l − 2, assume
first that k + n � 1. We then use (6.39) with |∂i+k

t ∂n
r ζ | replaced by |∂i+k

t ∂n
r Θ2|. But applying (6.38) and Propo-

sition 5.4(4, l − 1), we find that
∫ T

1 t2l−3(∂l−1+k
t ∂rW2)

2(t,R)dt � Cε4ψ(ε). Altogether, we obtain the second
part of (6.42). If k + n = 0 (and still j = l − 1, i � l − 2), we write |BI (t,R)| � δt2(l−1)(∂l−1

t ∂rW2)
2(t,R) +

Cδt
2i (∂i

t Θ2)
2(t,R), and using (6.38) and (6.40), we obtain (6.43).

If i = j = l − 1, we may assume that n = 0, p = 1, and we write by (6.38):

∂l−1+k
t ∂rW2 = −M1(H̃ )∂l+k

t Θ2 + L̂l−1+k,1 if r = R, (6.47)

where L̂l−1+k,1 is the second component of Ll−1+k,1, so that
∫ T

1 t2l−1L̂2
l−1+k,1(t,R)dt � Cε4ψ(ε). So if B(H̃ ) =

M1(H̃ )(1 + C1Θ), we obtain with the help of (6.47) that BI = ∂t (B(H̃ )t2l−2(∂l−1+k
t Θ2)

2/2) − ∂t (B(H̃ )t2l−2/2)×
(∂l−1+k

t Θ2)
2 − (1 + C1Θ)t2l−2∂l−1+k

t Θ2L̂l−1+k,1 when r = R. Observe that B(H̃ )(t,R) > 0 for ε small, and that
|∂tB(H̃ )(t,R)| � Cε〈t〉−1 by Theorem 3.1(3) (or (2)) and Proposition 5.4(5,1) and (6,1). (6.44) now follows easily
with the help of Proposition 5.4(4, l − 1) and (3.27).

Let us prove (6.45). Since i = l, we have n = 0. But |BI (t,R)| � δt2l−1(∂l+k
t Θ2)

2(t,R) + Cδt
2j+1 ×

(∂
j+k
t ∂

p
r W2)

2(t,R) and (6.45) easily follows with the help of (6.39).
At last, let us handle (6.46). We have i = l, hence n = 0, and j = l − 1, so we may assume that p = 1. With the

help of (6.47) it follows that BI = B(H̃ )t2l−1(∂l+k
t Θ2)

2 − (1+C1Θ)t2l−1∂l+k
t Θ2L̂l−1+k,1 when r = R, where B(H̃ )

is as in the proof of (6.44), and (6.46) follows.
Proposition 5.4(3, l) follows easily from (6.41)–(6.46) and Lemma 6.1.
We now prove Proposition 5.4(4, l). Using (5.13), (5.14), Proposition 5.3, Proposition 5.4(2), (1, λ) for 0 � λ � l,

(3, λ) for 1 � λ � l, and the Gronwall inequality, we obtain Proposition 5.4(4, l). �
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Proof of Proposition 5.4(5, l). Set ξ = tr(θ2 w2). Since E
1/2
m,l (t) � Cε2ψ1/2(ε) by Proposition 5.4(4, l), it follows

from Proposition 5.1(2)–(4) and Proposition 5.2 that
∣∣Xλ∂αξ(t)

∣∣ � Cε2ψ1/2(ε)〈t〉−1 if λ � l − 1 and |α| + λ � m − 1. (6.48)

But

t l−1∂l−1
t ∂αξ = Xl−1∂αξ −

∑
i�l−2;1�i+j�l−1

cl−1,i,j t
irj ∂i

t ∂
j
r ∂αξ, (6.49)

where cl−1,i,j are strictly positive constants. Using (6.48) to bound the first term on the right-hand side of (6.49),
Proposition 5.4(5, l − 1) to bound the other terms on the right-hand side of (6.49), and (6.48) with λ = 0, we obtain
Proposition 5.4(5, l). �
Proof of Proposition 5.4(6, l). We may assume that l � m − 1. Proposition 5.4(6, l) follows easily by applying
∂k
t ∂α to (3.22) if we make use of Theorem 3.1(3), Proposition 5.4(5, l), (4,1), Proposition 5.1(1) and Proposi-

tion 5.4(6, l − 1). �
The proof of Proposition 5.4 is complete.

7. Proof of Theorem 2.4

In this section we shall prove Theorem 2.4.
We shall use a method from [8,7,1] (cf. also [3,4]) to show that some derivative of any solution must blow up on

a certain characteristic before some time close to τ ∗. Actually we shall indicate how to adapt the proof of Theorem 3
of [3] to obtain Theorem 2.4 of the present paper. Many arguments are very similar; we concentrate on the modi-
fications due to the presence of the boundary r = R. We may assume that τ ∗ < +∞; as recalled in Section 2, this

is equivalent to saying that |u0| + |ρ0

ρ̄
+ K2

S0

γ
| �≡ 0. We shall prove the following result, which is the analogue of

Proposition 5 of [3] for the mixed problem considered in the present paper.

Proposition 7.1. Assume that τ̄ ∈ (0,+∞). Then, for each δ > 0, there exists ε0 > 0 such that the following holds: if
0 < ε � ε0 and (ρ,u,S) is a C∞([0, eτ̄/ε] × DR) solution of (2.1)–(2.7), then τ̄ � τ ∗ + δ.

Let us write u(t, x) = U(t, r)x/r , c(ρ,S) = ( ∂P
∂ρ

(ρ,S))1/2. ρ, S, c can be considered as functions of (t, r) which
we shall also denote by ρ, S, c to simplify notations (we shall hardly use x-coordinates in this section); so we shall
write ρ(t, r), S(t, r), c(t, r).

If q > R− c̄eτ̄/ε , define t �→ r+
q (t), t ∈ [((R−q)/c̄)+, eτ̄/ε], as the maximal solution of

dr+
q

dt
(t) = (U +c)(t, r+

q (t))

which satisfies the following initial condition: if q � R, we ask that r+
q (0) = q; if q < R, we ask that r+

q ((R −
q)/c̄) = R. In other words, the map t �→ (t, r+

q (t)) parametrizes the 3-characteristic curve (associated with ρ, U , S)
emanating from the only point (t0, r0) with t0(r0 −R) = 0, t0 � 0, r0 � R, such that r0 − c̄t0 = q . Adapting arguments
from Section 7 of [3] with the help of Theorem 3.1(2), Theorem 3.2 and Proposition 5.1(1), (3) of the present paper,
we see that, if τ ∈ (0, τ ∗) and q0 > R − c̄eτ̄/ε are fixed, one can find ε0 > 0 such that

∣∣r+
q (t) − c̄t − q

∣∣ � C if 0 < ε � ε0, ε ln t � τ and q � q0.

Henceforth we shall assume that ε is so small that M/c̄ � 1/ε < eτ̄/ε . Set Dε = {(t, r) ∈ R
2, 1/ε � t � eτ̄/ε,

r+
R−M(t) < r < r+

R+M(t)}. Then it is easily seen that, if ε is small, C−1 � 〈t〉−1r � C in Dε and S = S̄ there. As in Sec-

tion 7 of [3], we introduce the following functions: A = r(ρ− ρ̄), B = rU , Z1 = 1
2 ( ∂r A

ρ
+ ∂r B

c
), Z2 = 1

2 (− ∂r A
ρ

+ ∂r B
c

),

and set, if 1/ε � t � eτ̄/ε:

J (t) = sup
1
ε
�s�t

∫ ∣∣Z1(s, r)
∣∣dr,
(s,r)∈Dε
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N(t) = sup
1
ε
�s�t

sup
(s,r)∈Dε

(∣∣A(s, r)
∣∣ + ∣∣B(s, r)

∣∣),
G(t) = sup

1
ε
�s�t

sup
(s,r)∈Dε

s
∣∣Z2(s, r)

∣∣.
As in [3] but using now the estimates provided by Proposition 5.1(1), Theorem 3.1(2) and Theorem 3.2 of the present
paper, we can easily check that, if τ ∈ (0, τ ∗) is fixed,

J (t) � Cε and N(t) � Cε if 0 < ε � ε0 and 1
ε

� t � eτ/ε. (7.1)

Now fix Ψ : (0,1) → [0,+∞) such that Ψ (ε)(ln(1/ε))−1 → +∞ as ε
>→ 0. We have∣∣∂α(v − εv0)(t)

∣∣ � Cαε2Ψ (ε)〈t〉−1 if α �= 0, 0 � t � c̄
ε

and 0 < ε � ε0, (7.2)

where v is as in (4.1)–(4.3) and v0 is the solution of the linear mixed problem �v0 = 0 if t > 0, x ∈ DR , ∂rv0 = 0 if
t > 0 and r = R, ∂

j
t v0(0, x) = fj (r) if x ∈ DR and j = 0, 1, with the same fj as in (4.3). Indeed (7.2) follows at once

from Theorem 3.5 of [4] and the proof of Theorem 3.1 of [4] if we perform the change of variables (t, x) �→ (t/c̄, x/c̄).
(Actually, (7.2) still holds with Ψ (ε) = ln(1/ε), as follows from the estimates of Sections 5 and 6 of [2], but since
the present paper is already very long, we shall ignore this fact.) With the help of (7.2) and of Theorem 3.1(2) and
Theorem 3.2, we can duplicate the arguments which led to (89) of [3] and obtain that, for some G1 > 0:

G

(
1

ε

)
� G1εΨ (ε) if ε is small. (7.3)

Henceforth we fix Ψ such that furthermore εΨ (ε) → 0 as ε
>→ 0. Using (7.1), (7.3) and arguing as in the proof of

Lemma 5 of [3], we obtain the following result.

Lemma 7.1. One can find J1, N1, G1, ε0 > 0 such that the following holds: if 0 < ε � ε0, then J (t) � J1ε, N(t) �
N1ε, G(t) � G1εΨ (ε) and r � c̄t/2 in Dε .

By Lemma 3.3 of [4], one can find q0 ∈ [R − M,R + M] such that −F ′′
0 (q0) = maxq∈R(−F ′′

0 (q)) (see also
Section 4 of the present paper where other information about F0 has also been recalled). Set f (t) = −Z1(t, r

+
q0

(t)).

Repeating the arguments of Section 7 of [3], we easily obtain that f ′(t) = a0(t)f
2(t) + a1(t)f (t) + a2(t), where it

can be easily checked with the help of Lemma 7.1 above that |a0(t) − (ρ̄cρ + c̄)/c̄t | � Ct−2 and |a1(t)| + |a2(t)| �
CεΨ (ε)t−2 if 1/ε � t � eτ̄/ε and 0 < ε � ε0. On the other hand, by a straightforward adaptation of arguments used
in [3], we obtain with the help of (7.2): f (1/ε) = c̄ε/((ρ̄cρ + c̄)τ ∗) + O(ε2Ψ (ε)) as ε

>→ 0. Proposition 7.1 follows
by the same arguments as in [3]. This completes the proof of Theorem 2.4.
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