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Abstract

The main subject of this work is to study the concept of very weak solution for the hydrostatic Stokes system with
boundary conditions (non-smooth Neumann conditions on the rigid surface and homogeneous Dirichlet conditions elsewhere
on the boundary). In the Stokes framework, this concept has been studied by Conca [Rev. Mat. Apl. 10 (1989)] i
non-smooth Dirichletboundary conditions.

In this paper, we introduce the dual problem that turns outto be a hydrostatic Stokes system with non-free diverge
condition. First, we obtain strong regularity for this dual problem (which can be viewed as a generalisation of the re
results for the hydrostatic Stokes system with free divergence condition obtained by Ziane [Appl. Anal. 58 (1995)]). Afterwards
we prove existence and uniqueness of very weak solution for the (primal) problem.

As a consequence of this result, the existence of strong solution for the non-stationary hydrostatic Navier-Stokes eq
proved, weakening the hypothesis over thetime derivative of the wind stress tensor imposed byGuillén-González, Masmoud
and Rodríguez-Bellido [Differential Integral Equations 50 (2001)].
 2004 Elsevier SAS. All rights reserved.

Résumé

Le but principal de ce travail est d’étudier le concept de solution très faible pour le système de Stokes hydrostati
conditions aux limites mixtes (condition de Neumann non régulière sur la surface rigide et condition de Dirichlet homogène
dans le reste). Dans le cas du problème de Stokes, ce sujet a été étudié par Conca [Rev. Mat. Apl. 10 (1989)] en imp
condition aux limites de Dirichlet non homogène et peu régulière.

E-mail addresses:guillen@us.es (F. Guillén-González), angeles@us.es (M.A. Rodríguez-Bellido), marko@ime.unicamp.br
(M.A. Rojas-Medar).
0294-1449/$ – see front matter 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpc.2003.11.002
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Dans ce papier, on introduit le problème dual qui est aussi un système de Stokes hydrostatique mais avec une condition
divergence non nulle. D’abord, on obtient la régularité forte pour le problème dual (ce résultat peut être consideré co
généralisation des résultats derégularité pour le système de Stokes hydrostatiqueavec la condition de divergence nulle, obten
par Ziane [Appl. Anal. 58 (1995)]). On montre ensuite l’existence et unicité de solution très faible pour le problème primal.

Comme conséquence de ce résultat, on montre l’existence de solution forte pour le problème de Navier-Stokes hydrostati
non-stationnaire, avec une hypothèse sur la dérivée par rapport au temps du tenseur du vent plus faible que cell
imposée par Guillén-González, Masmoudi et Rodríguez-Bellido [Differential Integral Equations 50 (2001)].
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

The hydrostatic Navier–Stokes problem (also called Primitive Equations) is a model that appears in Geo
fluid dynamics, in order to describe the general circulation in the Ocean or the Atmosphere [14]. This model
been extensively studied from a mathematical point of view by several authors [12,13,3,2,10,8,9],who in pa
have established existence and uniqueness resultsfor the stationary and non-stationary problems.

Let us recall that the Primitive Equations are variants of the Navier–Stokes system, where some simplificat
have been made based on the analysis of physical scales (because the domain of study have a depth scale negli
in comparison to horizontal scales). Concretely, rigid-lid hypothesis and hydrostatic pressure are impos
These simplifications reduce the dimension of the system from a numerical point of view. However, it do
make any easier its mathematical analysis. For instance, this system is no longer parabolic for the vertical
which depends upon derivatives for the horizontal velocity, loosing basically an order of regularity.

As far as we know, all the results concerning strong solutions for the Primitive Equations are based on
results for the hydrostatic Stokes problem [16].

In [9], Guillén-González, Masmoudi and Rodríguez-Bellido used Ziane’s results in order to obtain existe
of strong solutions (global in time for small data or local in time for any data) for the non-stationary hydr
Navier–Stokes problem. This fact forced to impose some regularity hypothesis on the data (more precisel
time derivative for the Neumann boundary condition) that we consider as not optimal.

In [6], Conca defines the very weak solution concept for the Stokes problem, analysing what kind of re
can be obtained for a Stokes system when Dirichlet boundary data only belong toL2(∂Ω) (we recall that a weak
solution has regularityH 1(Ω), therefore one has to impose Dirichlet data inH 1/2(∂Ω)). See also [1] for the
non-hilbertian case.

In the present paper, we study a very weak solution concept for the hydrostatic Stokes problem, with
Dirichlet–Neumann boundary conditions. Moreover, we apply this research as an auxiliary problem in order
obtain strong regularity for the non-stationary case.

By sections, the main contributions of this paper are the following:

– In Section 2 we set up the formulation of the (stationary) hydrostatic Stokes problem(2), and we define
the dual problem associated(3). Using a mixed formulation, we obtain, first, a weak solution for the d
problem (where the “divergence condition" does not vanish). Afterwards, we obtain strong solution
dual problem. Finally, we define the very weak solution concept for the hydrostatic Stokes problem, by
of a transposition argument (using the strong regularity for the dual problem) and we prove the existen
uniqueness) of very weak solutions.
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– In Section 3 we give a differential interpretation of the very weak solution and a meaning for the bo
conditions; Dirichlet on the bottom and Neumann on the surface.

– In Section 4 we apply the results obtained in Section 2 inorder to obtain strong solutions for the non-station
hydrostatic Stokes Problem, weakening the hypothesis on the time derivative for the wind stress tensor
in [9] (here, a very weak solution will be used to lift the time derivative of the Neumann data). Fi
the application to the nonlinear non-stationary problem (or non-stationary Primitive Equations) is sketch
rewriting the arguments used in [9].

2. Existence of very weak solutions

2.1. Formulation of the problem

We consider an open, bounded and Lipschitz-continuous domainΩ ⊆ R
3 given by

Ω = {
(x, z) ∈ R

3; x = (x, y) ∈ S, −h(x) < z < 0
}
, (1)

whereS is an open bounded domain ofR
2 andh :S → R+ is the depth function (which regularity assumptio

will be precised later on). The boundary∂Ω can be written as∂Ω = Γs ∪ Γb ∪ Γl where:

Γs = {
(x,0) | x ∈ S

}
,

Γb = {(
x,−h(x)

) | x ∈ S
}
,

and

Γl = {
(x, z)/x ∈ ∂S, −h(x) < z < 0

}
.

In the main results of this work, we are going to impose the hypothesis of minimal depth strictly positive, i.

h � hmin > 0 in S.

Concretely, a vertical section of the domain can be viewed in Fig. 1.
We start from the hydrostatic Stokes problem:

−ν�u − ν3∂
2
zzu + ∇p = f in Ω ,

∇ · 〈u〉 = 0 in S,
ν3∂zu = Υ onΓs ,
u = 0 onΓb ∪ Γl ,

(2)

where〈u〉(x) = ∫ 0
−h(x)

u(x, z) dz. The unknowns areu :Ω → R
2 the horizontal components of the velocity, a

a potentialp :S → R representing the surface pressure stress (and the centripetal forces, see [14]). The data
(2) are the external forces,f :Ω → R

2 , the wind tension stress on the surface,Υ :Γs → R
2, and the (eddy

horizontal and vertical viscosities,ν > 0 andν3 > 0, respectively.�, ∇ and ∇· denote the two-dimensiona
operators:∂2

xx + ∂2
yy , (∂x, ∂y)

t and the horizontal divergence operator, respectively.
We define the following dual problem:

−ν�Φ − ν3∂
2
zzΦ + ∇π = g in Ω ,

∇ · 〈Φ〉 = −ϕ in S,
ν3∂zΦ = 0 onΓs ,
Φ = 0 onΓb ∪ Γl,

(3)

where(Φ,π) are the unknowns and(g, ϕ) the data.
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Fig. 1. A vertical section of the domain.

2.2. Weak and strong regularity for the dual problem

The following functional spaces will be used for the velocities:

H = VL2 = {
v ∈ L2(Ω)2; ∇ · 〈v〉 = 0 in S,〈v〉 · n∂S = 0

}
,

V = VH1 = {
v ∈ H 1(Ω)2; ∇ · 〈v〉 = 0 in S,v|Γb∪Γl = 0

}
,

wheren∂S denotes the outward normal vector to the boundary ofS contained in the planez = 0,

V = {
ϕ ∈ C∞

b,l(Ω)2; ∇ · 〈ϕ〉 = 0 in S
}
,

and

C∞
b,l(Ω) = {

ϕ ∈ C∞(Ω)2; supp(ϕ) is a compact set⊆ Ω\(Γb ∪ Γl)
}
.

We denoteH 1
b,l(Ω) the space of functions ofH 1(Ω) vanishing onΓb ∪ Γl (i.e.H 1

b,l(Ω) = C∞
b,l(Ω)H

1
).

Respect to spaces for the pressure, let us introduce:

L2
0(S) =

{
q ∈ L2(S);

∫
S

q dx = 0

}
,

H =
{
q ∈ H 1(S);

∫
S

q dx = 0

}
= H 1(S) ∩ L2

0(S).

In the following, byC we will denote different positive constants.
Now, we present the main result of this subsection:

Theorem 2.1(Strong solution of(3)). SupposeS ⊆ R
2 with ∂S ∈ C3 andh ∈ C3(S) with h � hmin > 0 in S, and

the corresponding domainΩ (defined in(1)). If g ∈ L2(Ω)2 andϕ ∈H, then there exists a unique(strong) solution
of (3) with Φ ∈ H 2(Ω)2 ∩ H 1

b,l(Ω)2, π ∈ H 1(S). Moreover,

‖Φ‖2
H2(Ω)

+ ‖π‖2
H1(S)

� C
{‖g‖2

L2(Ω)
+ ‖ϕ‖2

H1(S)

}
. (4)
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First of all, we will obtain a weak solution of(3) using a mixed formulation for the problem. We introduce
notation:

X = H 1
b,l(Ω)2, M = L2

0(S),

a(u,v) = ν

∫
Ω

∇u :∇v dΩ + ν3

∫
Ω

∂zu · ∂zv dΩ, ∀u, v ∈ X,

b(u,p) = −
∫
S

p
(∇ · 〈u〉) dx, ∀u ∈ X, ∀p ∈ M,

〈L,v〉 =
∫
Ω

g · v dΩ, ∀v ∈ X,

〈R,q〉 =
∫
S

ϕ q dx, ∀q ∈ M.

It is easy to verify thata(·, ·) is a bilinear, symmetric, continuous and elliptic form onX × X, b(·, ·) is a bilinear
continuous form onX × M, L is a linear continuous form onX andR is a linear continuous form onM.

Then, we consider the (abstract) mixed problem: Find(Φ,π) ∈ X × M such that:{
a(Φ,v) + b(v,π) = 〈L,v〉 ∀v ∈ X,
b(Φ,q) = 〈R,q〉 ∀q ∈ M.

(5)

Proposition 2.2(Existence and uniqueness of solution for (5) [7]).Suppose that:

• a(·, ·) is a bilinear continuous form onX × X, satisfying theV -elliptic condition i.e. there existsa0 > 0 such
that:

a(v,v) � a0‖v‖2
X, ∀v ∈ V,

• b(·, ·) is a bilinear continuous form onX × M satisfying the inf-sup condition, i.e. there existsβ0 > 0 such
that:

inf
p∈M\{0} sup

v∈X\{0}
b(v,p)

‖v‖X‖p‖M

� β0.

Then, for each pair(L,R) ∈ X′ × M ′ (the dual space ofX × M) the mixed problem(5) has a unique solution
(Φ,π) ∈ X × M. Moreover, the following mapping is an isomorphism:

(L,R) ∈ X′ × M ′ → (Φ,π) ∈ X × M.

Therefore, in order to prove existence and uniqueness of weak solution of(3), Φ ∈ H 1
b,l(Ω)2 andπ ∈ L2

0(S),
we only have to prove that the inf-sup condition holds. For this purpose, we use the following result:

Lemma 2.3 [7]. Let Ω ⊂ R
3 be a Lipschitz-continuous domain. The three-dimensional divergence ope

∇3· :W⊥ → L2
0(Ω) is an isomorphism, whereW = {v ∈ H 1

0 (Ω)3; ∇3 · v = 0}, W⊥ is the orthogonal space o
W respect to theH 1(Ω)-norm, andL2(Ω) = {g ∈ L2(Ω),

∫
g dΩ = 0}.
0 0 Ω
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n

Lemma 2.4. AssumeΩ (defined in(1)) Lipschitz-continuous andh � hmin > 0 in S. The following inf-sup
condition holds:

sup
v∈H1

0 (Ω)2\{0}

∫
S
p ∇ · 〈v〉dx

‖v‖H1
0 (Ω)

� C
√

hmin ‖p‖L2(S), ∀p ∈ L2
0(S).

Proof. Basically, we follow here an argument introduced in [5]. Letp ∈ L2
0(S). Easily, we can deduce1

h(x)
p ∈

L2
0(Ω) (using thath � hmin � 0) and∂zp = 0. Indeed, we have:∥∥∥∥ 1

h(x)
p

∥∥∥∥
L2(Ω)

�
∥∥∥∥ 1√

h(x)
p

∥∥∥∥
L2(S)

� 1√
hmin

‖p‖L2(S).

Then, applying Lemma 2.3, there exists a functionU = (u, u3) ∈ W⊥ ⊂ H 1
0 (Ω)3 such that∇3 · U = 1

h(x)
p and (in

particular)

‖∇3U‖L2(Ω) � C‖∇3 · U‖L2(Ω) � C

∥∥∥∥ 1

h(x)
p

∥∥∥∥
L2(Ω)

� C
1√
hmin

‖p‖L2(S). (6)

Rewriting the bilinear formb(·, ·), one has that for allv ∈ H 1
0 (Ω)2

b(v,p) = −
∫
S

p
(∇ · 〈v〉) dx = −

∫
S

p 〈∇ · v〉dx = −
∫
Ω

p ∇ · v dΩ

(as∂zp = 0) = −
∫
Ω

p ∇3 · (v, v3) dΩ

wherev3 is any function belonging toH 1
0 (Ω). Then, in particular∣∣b(u,p)

∣∣ =
∣∣∣∣−∫

Ω

p ∇3 · (u, u3) dΩ

∣∣∣∣ =
∫
Ω

1

h(x)
p2dΩ =

∫
S

p2dx = ‖p‖2
L2(S)

. (7)

Therefore, using (6) and (7)

|b(u,p)|
‖∇u‖L2(Ω)‖p‖L2(S)

= ‖p‖L2(S)

‖∇u‖L2(Ω)

� C
√

hmin
‖∇3U‖L2(Ω)

‖∇u‖L2(Ω)

� C
√

hmin,

hence

sup
v∈H1

0 (Ω)2\{0}

|b(v,p)|
‖v‖H1

0 (Ω)

� C
√

hmin ‖p‖L2
0(S), ∀p ∈ L2

0(S). �

Applying Proposition 2.2 in our context, we deduce the following result:

Theorem 2.5(Weak solution of (3)).SupposeΩ Lipschitz-continuous andh � hmin > 0 in S. If g ∈ H−1
b,l (Ω)2 and

ϕ ∈ L2
0(S)′, then there exists a unique weak solution of(3), (Φ,π) ∈ H 1

b,l(Ω)2 × L2
0(S). Moreover,

‖Φ‖H1(Ω) + ‖π‖L2(S) � C
{‖g‖H1

b,l (Ω)′ + ‖ϕ‖L2
0(S)′

}
. (8)

Remark 2.1.Taking into account that the spaceL2(S)/R is isomorphic toL2
0(S)′ (see [7] for instance), we ca

replace in(8) the norm‖ϕ‖ 2 ′ by ‖ϕ‖L2(S)/R.
L0(S)
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rem
In order to prove Theorem 2.1, we will use two auxiliary regularity results; a result for elliptic problems inΩ

(see [16] and references therein cited) and Cattabriga’s result for the Stokes problem inS (see [15] for instance)
that we recall here:

Proposition 2.6 (Regularity for a elliptic problem inΩ , with mixed Neumann–Dirichlet boundary conditions)
Assumeh ∈ C3(S) with h � hmin > 0 in S and∂S ∈ C3, and the corresponding domainΩ . Let u be the unique
solution of the problem:−ν�w − ν3∂

2
zzw = d in Ω ,

ν3∂zw = Υ onΓs ,
w = Ψl (respectivelyΨb) onΓl (respectivelyΓb).

Supposed ∈ L2(Ω)2. If Υ ∈ H
s−3/2
0 (Γs)

2, Ψl ∈ H
s−1/2
0 (Γl)

2, Ψb ∈ H
s−1/2
0 (Γb)

2 with 3/2 � s < 2, then,

w ∈ Hs(Ω)2. Moreover, ifΥ ∈ H
1/2+ε

0 (Γs)
2, Ψl ∈ H

3/2+ε

0 (Γl)
2 andΨb ∈ H

3/2+ε

0 (Γb)
2, for someε: 0 < ε < 1/2,

thenw ∈ H 2(Ω)2.

Proposition 2.7(Regularity for the Stokes problem inS). Let S ⊆ R
2 be an open set with∂S ∈ C3. Let (u,p) be

the solution for the Dirichlet–Stokes problem inS:{−�v + ∇π = a in S,
∇ · v = b in S,
v = c on∂S.

If a ∈ Lα(S)2, b ∈ Ws−1,α(S) andc ∈ Ws− 1
α ,α(∂S)2 with 1 < α < +∞ and1 � s � 2 such thats − 1

α
is not an

integer, and the compatibility condition
∫
S
b dx = ∫

∂S
c · n∂S ds holds, then:

v ∈ Ws,α(S)2 and π ∈ Ws−1,α(S).

This result was proved by Cattabriga [4], for anys � 1 integer, and can be generalized tos ∈ R using
interpolation techniques, as in Lions and Magenes [11].

Proof of Theorem 2.1. Let us consider(Φ,π) the weak solution of the dual problem (3) (obtained in Theo
2.5). Sinceπ ∈ L2

0(S), in particular∇π ∈ H−1(S). Therefore, we might consider the auxiliary functionv ∈ H 1
0 (S)2

as the (unique) weak solution of the elliptic problem inS:{
ν�v = ∇π in S,
v = 0 on∂S.

(9)

Now, we look at the elliptic problem verified byw = Φ − v (without pressure and free divergence restriction):
−ν�w − ν3∂

2
zzw = g in Ω ,

ν3∂zw = 0 onΓs ,
w = 0 onΓl,
w = −v onΓb.

(10)

Here, we have made the identificationv(x) = v(x,−h(x)) in order to considerv as a function defined inΓb.
Due to the regularity of the data (g ∈ L2(Ω)2,v ∈ H 1

0 (Γb)
2), we can apply Proposition 2.6 (fors = 3/2) and

deduce thatw ∈ H 3/2(Ω)2. Then, using Lemma B.1 (see Appendix B),〈w〉 ∈ H 3/2(S)2. As v is independent ofz,
〈v〉 = hv. Then

−∇ · (hv) = −∇ · 〈v〉 = ∇ · 〈w〉 − ∇ · 〈Φ〉 = ∇ · 〈w〉 + ϕ ∈ H 1/2(S).

Now, as

∇ · v = 1∇ · (hv) − ∇h · v
,

h h
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the
then∇ · v ∈ H 1/2(S) (using thath � hmin > 0 in S). In particular,∇ · v ∈ H 1/2−ε(S) for all ε > 0. Therefore, if we
consider the Stokes problem inS that satisfies(v,π):{−ν�v + ∇π = 0 in S,

∇ · v ∈ H 1/2−ε(S) in S,
v = 0 on∂S,

(11)

from Proposition 2.7 (for s = 1/2 − ε andα = 2) one hasv ∈ H
3/2−ε
0 (S)2 andπ ∈ H 1/2−ε(S), for all ε > 0.

Returning to system(10) (and (11)), using again Proposition 2.6 for s = 2 − ε (and Proposition 2.7), one has
w ∈ H 2−ε(Ω)2 (andv ∈ H 2−ε

0 (S)2 andπ ∈ H 1−ε(S)).
Notice that, following with this “bootstrap” argument, it is not possible to obtainw ∈ H 2(Ω)2 by means of

Proposition 2.6, sincev /∈ H
3/2+ε

0 (Ω)2 because in general∂v
∂n �= 0 on∂S.

Therefore, we change the argument. In order to increase the regularity of the pressure toπ ∈ H 1(S), we integrate
(3)1 in thez-variable, arriving at:{−ν�〈Φ〉 + h(x)∇π = G in S,

∇ · 〈Φ〉 = −ϕ in S,
〈Φ〉 = 0 on∂S,

where

G = 〈g〉 + ν3∂zΦ(x,0) − ν3∂zΦ
(
x,−h(x)

) + (∇Φ)
(
x,−h(x)

)∇h(x).

The last term ofG is the vector whoseith component is the scalar product(∇Φi)|Γb ·∇h, coming from the equality
〈�Φi〉 = �〈Φi〉 − (∇Φi)|Γb · ∇h (i = 1,2) (here,Φ|Γb = 0 is used). We will see thatG ∈ L2(S)2.

Sincew ∈ H 2−ε(Ω)2, in particular,

∂zΦ = ∂zw ∈ H 1−ε(Ω)2. (12)

From g ∈ L2(Ω)2 and(12), we have that〈g〉 + ν3∂zΦ(x,0) − ν3∂zΦ(x,−h(x)) ∈ L2(S)2. Therefore, we focus
our attention on the term(∇Φi)(x,−h(x)) · ∇h(x). Deriving with respect to thex-variables the equalityΦ|Γb =
Φ(x,−h(x)) = 0, we obtain:

(∇Φi)|Γb = (∂zΦi)|Γb ∇h(x).

Then,

(∇Φi)|Γb · ∇h = (∂zΦi)|Γb

∣∣∇h(x)
∣∣2.

Therefore, it suffices to analyze the regularity of|∇h(x)|2 (∂zΦ)|Γb .
Since h ∈ H 2(S), in particular |∇h|2 ∈ Lp(S) for all p > 1. From (12), (∂zΦ) |Γb ∈ H 1/2−ε(Γb)

2 ↪→
L4/(1+2ε)(Γb)

2. In particular,(∂zΦ)|Γb ∈ Lq(S)2 for a certainq > 2. Then|∇h(x)|2 (∂zΦ) |Γb ∈ L2(S)2, hence
we can conclude thatG ∈ L2(S)2.

Notice that, using the equalityh∇π = ∇(hπ) − π ∇h, the previous problem can be rewritten as the Sto
problem inS:{−ν�〈Φ〉 + ∇(hπ) = G + π ∇h in S,

∇ · 〈Φ〉 = −ϕ in S,
〈Φ〉 = 0 on∂S.

SinceG + π∇h ∈ L2(S)2 (recall thatπ ∈ H 1/2−ε(S)) andϕ ∈ H 1(S) such that
∫
S
ϕ dx = 0, by Proposition 2.7,

〈Φ〉 ∈ H 2(S)2 andhπ ∈ H 1(S). In particular,π ∈ H 1(S) (using once again thath � hmin > 0).
Now, we go back to the dual problem(3). Moving the pressure term to the right hand side, we conside

corresponding elliptic problem with the unknownΦ. Then, using the new regularityπ ∈ H 1(S) and applying
Proposition 2.6, one hasΦ ∈ H 2(Ω)2. Finally, inequality(4) can be deduced by construction, thanks to
continuous dependence of the auxiliary problems(9), (10) and(11). �
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2.3. Very weak regularity for the primal problem

Suppose the following regularity hypothesis for the data:

f ∈ (
H 2(Ω)2 ∩ H 1

b,l(Ω)2)′
, Υ ∈ H−3/2(Γs). (H)

Denote by〈·, ·〉S the duality betweenH 1(S)′ andH 1(S), by 〈·, ·〉Ω the duality between(H 2(Ω) ∩ H 1
b,l(Ω))′

andH 2(Ω) ∩ H 1
b,l(Ω) and by〈·, ·〉Γs the duality betweenH−3/2(Γs) andH

3/2
0 (Γs).

Definition 2.8.A pair (u,p) is said avery weak solution of(2) if u ∈ L2(Ω)2, p ∈ H 1(S)′/R and satisfies:{∫
Ω u · (−ν�Φ − ν3∂

2
zzΦ + ∇π)dΩ − 〈p,∇ · 〈Φ〉〉S = 〈f,Φ〉Ω + 〈Υ,Φ〉Γs

∀Φ ∈ H 2(Ω)2 ∩ H 1
b,l(Ω)2 with ∂zΦ|Γs = 0, ∀π ∈ H 1(S).

(13)

Remark 2.2. Notice thatp ∈ H 1(S)′/R means thatp ∈ H 1(S)′ is defined up to an additive constant. Fro
Φ ∈ H 2(Ω)2 ∩H 1

b,l(Ω)2 one has∇ · 〈Φ〉 ∈ H 1(S) and
∫
S ∇ · 〈Φ〉 = 0 (therefore,〈p,∇ · 〈Φ〉〉S = 〈p + c,∇ · 〈Φ〉〉S

for all c ∈ R).

Remark 2.3. It is easy to see that if the data(f,Υ ) are regular and(u,p) ∈ H 1
b,l(Ω)2 × L2(Ω)/R is a weak

solution of(2), then(u,p) is also a very weak solution of(2) (i.e., the previous definition is a generalization of t
variational formulation).

Let l :L2(Ω)2 ×H → R defined by:

l(g, ϕ) = 〈f,Φ〉Ω + 〈Υ,Φ〉Γs ,

with (Φ,π) the strong solution for the dual problem(3) with data(g, ϕ) (given in Theorem 2.1). It is easy to prove
that l is a linear and continuous operator fromL2(Ω)2 ×H into R. Indeed, from (4) one has

‖l‖(L2(Ω)×H)′ � C
{‖f‖(H2(Ω)∩H1

b,l (Ω))′ + ‖Υ ‖H−3/2(Γs)

}
.

Applying the classical Riesz’ identification, one can easily prove the following:

Lemma 2.9.Assuming(H) and the hypothesis of Theorem2.1, there exists a unique pair(u, p̃) ∈ L2(Ω)2 × H′
verifying:∫

Ω

u · gdΩ + 〈p̃, ϕ〉H′,H = l(g, ϕ), ∀g ∈ L2(Ω)2, ∀ϕ ∈ H. (14)

Moreover, one has:

‖u‖L2(Ω) + ‖p̃‖H′ � C
{‖f‖(H2∩H1

b,l )
′ + ‖Υ ‖H−3/2(Γs)

}
. (15)

In order to rewrite the linear form of (14) in terms of(Φ,π), one needs the following result

Proposition 2.10.The spaceH 1(S)′/R is isomorphic toH′.

Proof. In Appendix A. �
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Now, we are able to show the result about existence (and uniqueness) of very weak solutions.

Theorem 2.11.Under conditions of Lemma2.9, there exists a unique very weak solution(u,p) of (2) in
L2(Ω)2 × (H 1(S))′/R. Moreover, one has:

‖u‖L2(Ω) + ‖p‖H1(S)′/R � C
{‖f‖(H2(Ω)∩H1

b,l (Ω))′ + ‖Υ ‖H−3/2(Γs)

}
. (16)

Proof. From Lemma 2.9, there exists a unique pair(u, p̃ ) ∈ L2(Ω)2 ×H′ verifying (14).
Using the isomorphism between(H 1(S))′/R andH′, we can identifyp̃ with a distributionp in (H 1(S))′/R

such that〈p̃, ϕ〉H′,H = 〈p,ϕ〉H1(S)′,H1(S), ∀ϕ ∈ H. Therefore, we conclude that(u,p) is a solution of(13), i.e. a
very weak solution of(2). The uniqueness is deduced from the linearity of the problem. Finally,(16) is deduced
from (15) and the isomorphism betweenH 1(S)′/R andH′. �

3. Interpretation for the differential problem

3.1. Differential equation

From now on, we fixf ∈ L2(Ω)2 instead off ∈ (H 2(Ω) ∩ H 1
b,l)

′ (in order to have a space of distributions). L
us consider(u,p) the very weak solution of(2). Takingπ = 0 andΦ ∈D(Ω) in (13), one has:∫

Ω

u · (−ν�Φ − ν3∂
2
zzΦ) dΩ − 〈

p,∇ · 〈Φ〉〉
S

=
∫
Ω

f · Φ dΩ,

hence we can deduce the system(2)1 in the distributional sense. TakingΦ = 0 andπ ∈D(S) in (13),∫
Ω

u · ∇π dΩ = 0

hence we can deduce∇ · 〈u〉 = 0 in D′(S). Therefore, we have:

Proposition 3.1.Assumef ∈ L2(Ω)2. Let (u,p) ∈ L2(Ω)2 × (H 1(S))′/R be the unique very weak solution of(2).
Thenu andp verify Eqs.(2)1−2 in the distributional sense inΩ andS, respectively.

3.2. Sense for the boundary conditions

Fromu ∈ L2(Ω)2, we have that〈u〉 ∈ L2(S)2. On the other hand, since∇ ·〈u〉 = 0, in particular∇ ·〈u〉 ∈ L2(S).
Then we can conclude that〈u〉 · n∂S ∈ H−1/2(S). Moreover, takingΦ = 0 andπ ∈ H 1(S) in (13), we get:∫

Ω

u · ∇π dΩ = 0,

hence

0 =
∫
S

〈u〉 · ∇π dS = 〈〈u〉 · n∂S,π
〉
∂S

, ∀π ∈ H 1(S)

where〈·, ·〉∂S denotes the dualityH−1/2(∂S),H 1/2(∂S). Therefore,

〈u〉 · n∂S = 0 in H−1/2(∂S). (17)
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3.2.1. Dirichlet boundary conditions
In order to give a sense at the Dirichlet boundary conditions(2)4 onΓb ∪ Γl , we define the operator

D(u,p) :H 1/2(Γb ∪ Γl)
2 → R,

D(u,p)(Ψ ) =
∫
Ω

u · (−ν�Φ − ν3∂
2
zzΦ) dΩ − 〈

p,∇ · 〈Φ〉〉
S

− 〈f,Φ〉Ω, ∀Ψ ∈ H 1/2(Γb ∪ Γl)
2,

whereΦ = Φ(Ψ ) is the unique weak solution,Φ ∈ H 2(Ω)2 ∩ H 1
0 (Ω)2, of the problem:�2Φ = 0 in Ω ,

Φ = 0 on∂Ω ,
∂Φ
∂n = Ψ onΓb ∪ Γl, ∂zΦ = 0 onΓs .

It is easy to show thatD(u,p) is a linear continuous operator, i.e.:

D(u,p) ∈ (H 1/2(Γb ∪ Γl)
2)′.

Notice that if(u,p) is a weak solution of(2), then:

D(u,p)(Ψ ) =
∫

Γb∪Γl

u · Ψ dσ, ∀Ψ,

therefore we can denote this operator as thegeneralized trace overΓb ∪ Γl .
Replacingπ = 0 andΦ = Φ(Ψ ) in (13), we obtain that:

D(u,p)(Ψ ) = 0, ∀Ψ ∈ H 1/2(Γb ∪ Γl)
2.

Thus, it follows thatD(u,p) = 0 in (H 1/2(Γb ∪ Γl)
2)′.

3.2.2. Neumannboundary condition
In this case, in order to give a meaning to the Neumann boundary conditions(2)3 onΓs , we define the operato

N(u,p) :H 3/2
0 (S)2 → R,

N(u,p)(Ψ ) =
∫
Ω

u · (−ν�Φ − ν3∂
2
zzΦ) dΩ − 〈

p,∇ · 〈Φ〉〉
S

− 〈f,Φ〉Ω,

whereΦ = Φ(Ψ ) is the unique weak solution,Φ ∈ H 2(Ω)2, of the problem:�2Φ = 0 in Ω ,
Φ = Ψ onΓs, Φ = 0 onΓb ∪ Γl ,
∂Φ
∂n = 0 on∂Ω.

Now, assuming that(u,p) is a weak solution of(2), one has:

N(u,p)(Ψ ) =
∫
Γs

∂zu · Ψ dσ, ∀Ψ,

therefore we can denote this operator asgeneralized normal trace overΓs .
Replacingπ = 0 and this newΦ = Φ(Ψ ) in (13), we obtain that:

N(u,p)(Ψ ) = 〈Υ,Ψ 〉Γs , ∀Ψ ∈ H
3/2
0 (S)2

Thus, it follows thatN(u,p) = Υ in (H
3/2

(S)2)′ ≡ H−3/2(S)2.
0
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4. Application to non-stationary problems

4.1. The linear case

In this subsection, we are going to apply the result obtained for the stationary case in order to get strong s
for the linear non-stationary Primitive Equations (also called non-stationary hydrostatic Stokes problem):

∂tu − ν�u − ν3∂
2
zzu + ∇p = F in (0, T ) × Ω ,

∇ · 〈u〉 = 0 in (0, T ) × S,
u|t=0 = u0 in Ω ,
ν3∂zu = Υ on (0, T ) × Γs ,
u = 0 on (0, T ) × (Γb ∪ Γl).

(18)

The following result was given in [9]:

Theorem 4.1.SupposeS ⊆ R
2 with ∂S ∈ C3 and h ∈ C3(S) with h � hmin > 0 in S. If F ∈ L2((0, T ) × Ω)2,

u0 ∈ V , Υ ∈ L2(0, T ;H
1/2+ε

0 (Γs)
2) for someε > 0, with ∂tΥ ∈ L2(0, T ;H−1/2(Γs)

2), then there exists a uniqu
strong solutionu of problem(18) in (0, T ). Moreover,

‖u‖2
L∞(V ) + ‖u‖2

L2(H2(Ω))
+ ‖∂tu‖2

L2(H)

� C
{‖u0‖2

V + ‖Υ (0)‖2
H−1/2(Γs )

+ ‖F‖2
L2(L2(Ω))

+ ‖Υ ‖2
L2(H

1/2+ε

0 (Γs))
+ ‖∂tΥ ‖2

L2(H−1/2(Γs))

}
. (19)

The proof of this theorem is based on the following two results about the stationary problem(2); a weak
regularity result given by Lions, Temam and Wang in [13], and a strong regularity result due to M. Zian
respectively:

Lemma 4.2.SupposeΩ ⊆ R
3 be Lipschitz-continuous. Iff ∈ H−1

b,l (Ω)2 andΥ ∈ H−1/2(Γs)
2, then the problem

(2) has a unique weak solutionu ∈ V . Moreover,

‖u‖2
V � C

{‖Υ ‖2
H−1/2(Γs )

+ ‖f‖2
H−1

b,l (Ω)

}
. (20)

Lemma 4.3. SupposeS ⊆ R
2 with ∂S ∈ C3 and h ∈ C3(S) with h � hmin > 0 in S. If f ∈ L2(Ω)2 and

Υ ∈ H
1/2+ε

0 (Γs)
2, for someε > 0, the unique solutionu of the problem(2) belongs toH 2(Ω)2 ∩ V . Moreover,

‖u‖2
H2(Ω)

� C
{‖Υ ‖2

H
1/2+ε

0 (Γs)
+ ‖f‖2

L2(Ω)

}
. (21)

In this section, using Theorem 2.11 instead of Lemma 4.2, we will obtain strong solutions of(19) imposing less
regularity over∂tΥ (replacingH−1/2(Γs) by H−3/2(Γs)). More precisely, the new result is:

Theorem 4.4. SupposeS ⊆ R
2 with ∂S ∈ C3 domain andh ∈ C3(S) with h � hmin > 0 in S. If F ∈

L2((0, T ) × Ω)2, u0 ∈ V , Υ ∈ L2(0, T ;H
1/2+ε

0 (Γs)
2) ∩ L∞(0, T ;H−1/2(Γs)

2) for someε > 0 with ∂tΥ ∈
L2(0, T ;H−3/2(Γs)

2) andΥ (0) ∈ H−1/2(Γs)
2, then there exists a unique strong solutionu of the problem(18) in

(0, T ). Moreover,

‖u‖2
L∞(V ) + ‖u‖2

L2(H2(Ω))
+ ‖∂tu‖2

L2(H)

� C
{‖u0‖2

V + ‖Υ (0)‖2
H−1/2(Γs )

+ ‖F‖2
L2(L2(Ω))

+ ‖Υ ‖2
2 1/2+ε ∞ −1/2

+ ‖∂tΥ ‖2
L2(H−3/2(Γs))

}
. (22)
L (H0 (Γs))∩L (H (Γs))
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Remark 4.1. If S is smooth enough, the hypothesisΥ ∈ L∞(0, T ;H−1/2(Γs)
3) and Υ (0) ∈ H−1/2(Γs)

3 are
not necessary, since fromΥ ∈ L2(0, T ;H

1/2+ε
0 (Γs)

3) and ∂tΥ ∈ L2(0, T ;H−3/2(Γs)
3) we can deduceΥ ∈

C([0, T ];H−1/2(Γs)
3) with continuous dependence (see Appendix C). In particular, we arrive again at (19)

Proof. The uniqueness is obtained thanks to the linearity of the problem. To get existence, we will sepa
proof in the same steps of the proof done in [8,9]:

Step 1: Existence of weak solution. It can be obtained as the limit for the Galerkin approximate solut
um ∈ C1([0, T ];Vm) (beingVm a m-dimensional subspace ofV ) such that:

d
dt

∫
Ω

um · ϕ dΩ + ν
∫
Ω

∇um : ∇ϕ dΩ + ν3
∫
Ω

∂zum · ∂zϕ dΩ = ∫
Ω

Fm · ϕ dΩ

+ ∫
Γs

Υm · ϕ|Γs dσ ∀ϕ ∈ Vm,

um(0) ≡ projection ofu0 overVm,

where Fm ∈ C0([0, T ];H−1
b,l (Ω)2) and Υm ∈ C0([0, T ];H−1/2(Γs)

2) are smooth approximates ofF and Υ ,
respectively.

Takingϕ = um, we can deduce that the sequenceum is bounded inL∞(0, T ;H)∩L2(0, T ;V ). Then, a standar
limit process gives a weak solutionu of (18).

Step 2: Lifting of the Neumann boundary conditions. We defineB :Υ → BΥ = u the solution of the stationar
hydrostatic Stokes problem(2) with f = 0.

Then, we can define the auxiliary functione(t) = B(Υ (t)) a.e.t ∈ (0, T ) that let us made an adequate lifting
the Neumann boundary condition dataΥ . Using Lemmas 4.2 and 4.3, taking into account thatΥ (t) ∈ H

1/2+ε

0 (Γs)
2

a.e.t ∈ (0, T ), we obtain thate(t) ∈ H 2(Ω)2 ∩ V a.e.t ∈ (0, T ), and∥∥e(t)
∥∥2

V
� C

∥∥Υ (t)
∥∥2

H−1/2(Γs )
,

∥∥e(t)
∥∥2

H2(Ω)
� C

∥∥Υ (t)
∥∥2

H
1/2+ε
0 (Γs)

.

Thereforee∈ L2(0, T ;H 2(Ω)2 ∩ V ) ∩ L∞(0, T ;V ) and

‖e‖2
L∞(V ) � C‖Υ ‖2

L∞(H−1/2(Γs ))
, (23)

‖e‖2
L2(H2(Ω))

� C‖Υ ‖2
L2(H

1/2+ε

0 (Γs))
. (24)

On the other hand, using Theorem 2.11 we have that, as∂tΥ (t) ∈ H−3/2(Γs) a.e. t ∈ (0, T ), we can define
ẽ(t) = B(∂tΥ (t)) a.e.t ∈ (0, T ), with ẽ(t) ∈ L2(Ω) and‖ẽ(t)‖L2(Ω) � C‖∂tΥ ‖H−3/2(Γs )

.
Now, let us see that̃e(t) = ∂te(t); in fact, taking

uδ(t) = e(t + δ) − e(t)
δ

− ẽ(t) = B

(
Υ (t + δ) − Υ (t)

δ
− ∂tΥ (t)

)
,

as Υ (t+δ)−Υ (t)
δ

− ∂tΥ (t) ∈ H−3/2(Γs), from Theorem 2.11, we deduce that:∥∥uδ(t)
∥∥

L2(Ω)
� C

∥∥∥∥Υ (t + δ) − Υ (t)

δ
− ∂tΥ (t)

∥∥∥∥
H−3/2(Γs )

→ 0 asδ → 0.

Therefore, we can conclude thatẽ(t) = ∂te(t) in L2(Ω) a.e.t ∈ (0, T ). Moreover, we obtain the bound:∥∥∂te(t)
∥∥

L2(Ω)
� C

∥∥∂tΥ (t)
∥∥

H−3/2(Γs)

hence

‖∂te‖L2(L2(Ω)) � C‖∂tΥ ‖L2(H−3/2(Γs ))
. (25)

Remark 4.2.Notice that this step 2 will be the fundamental stepin the proof, because the fact of using estim
(16) (and Theorem 2.11) instead of estimate(20) (and Lemma 4.2) allows us to impose weaker hypothesis on∂tΥ .
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Step 3: Strong solution for the homogeneous problem. The functiony = u − e (with a potentialq :S → R

associated) verifies the following system:
∂ty − ν�y − ν3∂

2
zzy + ∇q = h in (0, T ) × Ω ,

∇ · 〈y〉 = 0 in (0, T ) × S,
y|t=0 = y0 in S,
ν3∂zy = 0 on(0, T ) × Γs ,
y = 0 on(0, T ) × (Γb ∪ Γl),

whereh = F−∂te∈ L2(0, T ;L2(Ω)d) andy0 = u0−e(0) ∈ V . Again, arguing by a Galerkin procedure, we den
by ym : [0, T ] → Vm the Galerkin approximate functions, whereVm is the subspace ofV = {w1,w2, . . . ,wm, . . .}
spanned by the eigenfunctions of the hydrostatic Stokes operatorA : V → V ′ defined by:

〈Au,v〉V ′,V =
∫
Ω

(
ν∇u :∇v + ν3∂zu · ∂zv

)
dΩ ∀u,v ∈ V, (26)

and associated to homogeneous boundary conditions (Neumann on the surface and Dirichlet on the bottom and th
vertical sidewalls). These approximates solve the ordinary differential problem:{

d
dt

∫
Ω

ym(t) · vm dΩ + ν
∫
Ω

∇ym :∇vm dΩ + ν3
∫
Ω

∂zym · vm dΩ = ∫
Ω

hm · vm dΩ, ∀vm ∈ Vm,

ym(0) = y0m = ∑m
j=1(

∫
Ω

∇y0 : ∇wj + ∂zy0 · ∂zwj )wj ,
(27)

beinghm a smooth approximated function ofh. Let us now obtain strong estimates forym. Takingvm = Aym(t) ∈
Vm as test functions in(27), we deduce the inequality:∀t ∈ [0, T ],

d

dt

∥∥ym(t)
∥∥2

V
+ ∥∥Aym(t)

∥∥2
L2(Ω)

� ‖hm‖2
L2(Ω)

.

Integrating in time, we get:

∥∥ym(t)
∥∥2

V
+

t∫
0

∥∥Aym(s)
∥∥2

L2(Ω)
ds � ‖y0m‖2

V +
t∫

0

∥∥hm(s)
∥∥2

L2(Ω)
ds.

Therefore, the sequence(ym)m is bounded inL2(0, T ;D(A))∩L∞(0, T ;V ), so there exists a limit functiony that
belongs to the same space and verifies the inequality:

‖y‖2
L∞(V ) + ‖y‖2

L2(D(A))
� ‖y0‖2

V + ‖h‖2
L2(L2(Ω))

. (28)

Now, taking∂tym ∈ Vm as test functions in(R) and integrating in time, we have:

‖∂tym‖2
L2(H)

� ‖y0m‖2
V + ‖hm‖2

L2(L2Ω))
,

and the limit∂ty ∈ L2(H) and verifies the inequality:

‖∂ty‖2
L2(H)

� ‖y0‖2
V + ‖h‖2

L2(L2Ω))
. (29)

Adding (28) and(29), and using thaty0 = u0 − e(0) andh = F − ∂te, we conclude that:

‖y‖2
L∞(V ) + ‖y‖2

L2(D(A))
+ ‖∂ty‖2

L2(H)
� C

{‖u0‖2
V + ∥∥e(0)

∥∥2
V

+ ‖F‖2
L2(L2(Ω))

+ ‖∂te‖2
L2(L2(Ω))

}
.

Finally, replacing estimates(20) for e(0) in V and estimates(25) for ∂te in L2(0, T ;L2(Ω)), we obtain(19). �
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4.2. Application to the non-stationary nonlinear Primitive Equations

The extension of the result from Theorem 4.4 to the nonlinear case follows similar arguments as in [8
replacing the use made there of Theorem 4.1 by Theorem 4.4. Therefore, we will get the same weaker hypothe
over∂tΥ as in the previous linear case.

We want to obtain the strong regularity result for the nonlinear problem of Primitive Equations:
∂tu + u · ∇u + u3∂zu − ν�u − ν3∂

2
zzu + αu⊥ + ∇ps = F in (0, T ) × Ω ,

∇ · 〈u〉 = 0 in (0, T ) × S,
u|t=0 = u0 in Ω ,
ν3∂zu|Γs = Υ, u|Γb∪Γl = 0 in (0, T ),

(30)

whereα = 2f sin(λ) is the Coriolis coefficient and the vertical velocity is computed by

u3(t;x, z) =
0∫

z

∇ · u(t;x, s) ds. (31)

We give here an schedule of the result (see [9] for the details):Under the hypothesis of Theorem4.4, there exists
a unique solutionu of problem(30), either defined in(0, T �) for a small timeT � ∈ (0, T ), or in all the time interval
(0, T ) under smallness assumptions for the data.

For the proof, we use(e, qs) the solution of(18) in order to lift the boundary conditions. Therefore, we only
have to study the homogeneous problem that verifies(w,πs) = (u − e,ps − qs):∂tw − ν�w − ν3∂

2
zzw + ∇πs + (w + e) · ∇(w + e) + (w3 + e3)∂z(w + e) = 0 in (0, T ) × Ω ,

∇ · 〈w〉 = 0 in (0, T ) × S, w|t=0 = 0 in Ω ,
ν3∂zw|Γs = 0, w|Γb∪Γl = 0 in (0, T ),

(32)

with w3 = ∫ 0
z ∇ · wds and the same form fore3.

We approximate the functionsw by the Galerkin functionswm in them-dimensional spacesVm, which are the
orthonormal basis of dimensionm (in V ) of eigenfunctions of the hydrostatic operator. In order to obtain estim
in theH 2(Ω)-norm, we takeAwm(t) ∈ Vm as test functions, obtaining:

d

dt
‖wm‖2

V + ‖Awm‖2
L2(Ω)

� C

∫
Ω

∣∣((wm + em) · ∇)
(wm + em)

∣∣2 dΩ

+ C

∫
Ω

∣∣((w3)m + (e3)m
)
∂z(wm + em)

∣∣2 dΩ + C‖F‖2
L2(Ω)

≡
3∑

i=1

Ii . (33)

We bound theIi -terms using the estimates in strong norms ofem and the left hand side of(33). The biggest
difficulty is to bound the nonlinear terms:∫

Ω

∣∣(wm · ∇)wm

∣∣2 dΩ and
∫
Ω

∣∣(wm)3 ∂zwm

∣∣2 dΩ.

Remark thatI2 is less regular thanI1 due to the anisotropic regularity for the vertical velocity, since∂zw3 =
−∇ · w ∈ L2(Ω), and therefore (using a Poincaré inequality)w3 ∈ L2(Ω). However,∇w3 /∈ L2(Ω) in general.
If we use the usual estimates in the Sobolev spaces, as forthe Navier–Stokes equation, this lack of regularity
the vertical velocity does not allow to obtain strong regularity for(32). Searching for an alternative method, w
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d
separate the regularity inx andz, considering the anisotropic spaces and estimates that were introduced in [9] an
that we overview here:

Definition 4.5.Givenp,q ∈ [1,+∞], we say that a functionu belongs toLq
zL

p
x (Ω) if:

u(·, z) ∈ Lq(Sz) and
∥∥u(·, z)∥∥

Lq(Sz)
∈ Lp(−hmax,0),

whereSz = {x ∈ S /(x, z) ∈ Ω} for a fixedz ∈ (−hmax,0), and its norm is given by the expression:∥∥∥∥u(·, z)∥∥
Lq(Sz)

∥∥
Lp(−hmax,0)

.

Lemma 4.6(Interpolation inequalities [9]).

(a) Let v ∈ L2(Ω) be a function such that∂zv ∈ L2(Ω) and (vnz)|Γb = 0. Then,v ∈ L∞
z L2

x(Ω) and satisfy the
estimate:

‖v‖2
L∞

z L2
x
� 2‖v‖L2(Ω)‖∂zv‖L2(Ω). (34)

More generally, ifv ∈ H 1(Ω) thenv ∈ L∞
z L2

x(Ω), and there exists a constantC = C(Ω) > 0 such that:

‖v‖2
L∞

z L2
x
� C(Ω)‖v‖L2(Ω)‖v‖H1(Ω), ∀v ∈ H 1(Ω). (35)

(b) Letv ∈ L2(Ω) be a function such that∇v ∈ L2(Ω)2 and(vnxi )|Γb∪Γl = 0 (i = 1,2). Then,v ∈ L2
zL

4
x(Ω) and

verifies the estimate:

‖v‖2
L2

zL
4
x
� 4‖v‖L2(Ω)‖∇v‖L2(Ω). (36)

More generally, ifv ∈ H 1(Ω) thenv ∈ L2
zL

4
x, and there exists a constantC = C(Ω) > 0 such that:

‖v‖2
L2

zL
4
x
� C(Ω)‖v‖L2(Ω)‖v‖H1(Ω). (37)

(c) Let v ∈ L2(Ω)2 be a function such that∇ · v ∈ H 1(Ω). Then, if we considerv3 defined as in(31), we have
thatv3 ∈ L∞

z L4
x(Ω) and satisfies the following estimate:

‖v3‖L∞
z L4

x
� C (Ω)‖∇ · v‖1/2

L2(Ω)
‖∇ · v‖1/2

H1(Ω)
. (38)

By using the above inequalities, we can bound the termsI1 andI2 as follows:

I2 � C
∥∥(w3)m + (e3)m

∥∥2
L∞

z L4
x
‖∂zwm + ∂zem‖2

L2
zL

4
x

� C

ν3/2‖Awm‖2
L2(Ω)

‖wm‖V + C

ν3‖wm‖2
V ‖em‖2

H1(Ω)
‖em‖2

H2(Ω)
+ C‖em‖2

H1(Ω)
‖em‖2

H2(Ω)

for a constantC = C(Ω) > 0. For theI1-term, we bound in the usual (isotropic) form:

I1 � C‖wm + em‖2
L4(Ω)

‖∇wm + ∇em‖2
L4(Ω)

� C
(‖∇wm‖3/2

L2(Ω)
‖wm‖1/2

L2(Ω)
+ ‖em‖3/2

H1(Ω)
‖em‖1/2

L2(Ω)

)
× (‖∇wm‖3/2

H1(Ω)
‖∇wm‖1/2

L2(Ω)
+ ‖em‖3/2

H2(Ω)
‖em‖1/2

H1(Ω)

)
� C

(
1

ν11
‖wm‖8

V + 1

ν7‖em‖8
H1(Ω)

+ 1

ν
‖em‖1/2

H1(Ω)
‖em‖3/2

H2(Ω)

)
‖wm‖2

V

+ 1‖Awm‖2
L2(Ω)

+ C‖em‖5/2
1 ‖em‖3/2

2 .

2 H (Ω) H (Ω)
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) or for

he

)

of

projects
Plugging the above estimates in(33), we have:

d

dt
‖wm‖2

V + ‖Awm‖2
L2(Ω)

� C

ν3/2‖Awm‖2
L2(Ω)

‖wm‖V + C

ν11‖wm‖10
V + a(t)‖wm‖2

V + b(t), (39)

wherea(t) andb(t) are bounded functions inL1(0, T ), depending onν and the data.
From here, we can argue in two ways: supposing small data (to obtain global in time strong regularity

any data (to obtain local in time strong regularity).
In order to obtainglobal in time strong solution for small data, we reason as follows: First, supposing t

estimate:∥∥wm(t)
∥∥

V
< γ ν3/2 for γ small enough, (40

we can control globally in time the terms‖Awm‖2
L2(Ω)

‖wm‖V and C
ν11‖wm‖10

V appearing on the right hand side
(39), and finish the proof in a standard way. Secondly, we have to prove the estimate(40), which is obtained using
the homogeneous initial data and adequate smallness hypothesis on the data (see [9] for more details).

In order to obtainlocal in time strong solution for any data, using thatwm(0) = 0 andwm : [0, T ] → H 1(Ω)2

is a continuous function, we can chose a timeTm such that:∥∥wm(t)
∥∥

V
� ν3/2

2C
, ∀t ∈ [0, Tm]. (41)

Then, we can prove thatTm is bounded from below by a timeT∗ � 0 independent onm. Indeed, integrating(39)
between 0 andt , t ∈ [0, Tm], and using(41) we obtain ([9]):

∥∥wm(t)‖2
V +

t∫
0

∥∥Awm(s)‖2
L2(Ω)

ds � K(ν) t + Cν2

t∫
0

∥∥em(s)
∥∥2

H2(Ω)
ds.

Therefore, choosing nowT� such that:

K(ν)T� + Cν2‖em‖2
L2(0,T�;H2(Ω))

<
ν3

4C2 ,

we verify thatTm can be chosen equal toT� for eachm. Now, the proof of the existence of strong solution in(0, T�)

follows in a standard manner.�
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Appendix A. The isomorphism

Proposition A.1 (before cited as Proposition 2.10).The spaceH 1(S)′/R is isomorphic toH′.

Proof. Recall thatH = {ϕ /ϕ ∈ H 1(S),
∫
S
ϕ dx = 0}.

(a) H 1(S) = H ⊕ H⊥ (identifyingH⊥ with the space spanned by the constant functions overS). In fact, any
constant functionω = α in S (α ∈ R), verifies:(

(ω,ϕ)
)
1 =

∫
∇ω · ∇ϕ dx +

∫
ωϕ dx = α

∫
ϕ dx = 0 ∀ϕ ∈ H,
S S S



824 F. Guillén-González et al. / Ann. I. H. Poincaré – AN 21 (2004) 807–826
where((·, ·))1 denotes the inner product inH 1(S). Therefore,ω = α ∈ H⊥.
On the other hand, every functionv ∈ H 1(S) can be written in a unique manner as:

v = ϕ + α,

with α = 1
|S|

∫
S v dx ∈ R andϕ = v − α ∈ H.

(b) The isomorphism: We define the operator

T :H 1(S)′/R → H′,
q �→ T q

as

〈T q,ϕ〉H′,H = 〈q,ϕ〉H1(S)′,H1(S), ∀ϕ ∈H.

This operator iswell-definedbecause ifα is a constant,T (q + α) = T q . Indeed,〈T (q + α),ϕ〉 = 〈q + α,ϕ〉 =
〈q,ϕ〉, because of

∫
S ϕ dx for all ϕ ∈H. Therefore, it suffices to prove thatT is a continuous bijection.

T is one-to-one: Suppose thatT q = 0, i.e. 〈T q,ϕ〉 = 0 for all ϕ ∈ H. Let v ∈ H 1(S), thenv = ϕ + α with
α = 1

|S|
∫
S
v dx andϕ ∈H . Then,

〈q, v〉H1(S)′,H1(S) = 〈q,ϕ + α〉H1(S)′,H1(S) = 〈T q,ϕ〉H′,H + 1

|S| 〈q,1〉H1(S)′,H1(S))

∫
S

v dx

= 1

|S| 〈q,1〉H1(S)′,H1(S)

∫
S

v dx,

therefore, definingβ = 1
|S| 〈q,1〉H1(S)′,H1(S) ∈ R, one has〈q −β,v〉H1(S)′,H1(S) = 0 for all v ∈ H 1(S), henceq −β

belongs to the zero equivalent class inH 1(S)′/R, and thereforeq = 0 in H 1(S)′/R.
T is onto: For anyl ∈ H′, we have to prove that there exists an elementq ∈ H 1(S)′/R such thatT q = l, i.e.,

〈q,ϕ〉H1(S)′,H1(S) = 〈l, ϕ〉H′,H ∀ϕ ∈ H. Indeed, it suffices to define〈q, v〉H1(S)′,H1(S) = 〈l, ϕ〉H′,H if v = ϕ + α.
T is continuous: Using the standard norm definitions,

‖q‖H1(S)′/R
= inf

c∈R

‖q + c‖H1(S)′ = inf
c∈R

sup
v∈H1(S)

〈q + c, v〉H1(S)′,H1(S)

‖v‖H1(S)

� inf
c∈R

sup
ϕ∈H

〈q + c,ϕ〉H1(S)′,H1(S)

‖ϕ‖H1(S)

= sup
ϕ∈H

〈q,ϕ〉H1(S)′,H1(S)

‖ϕ‖H1(S)

= sup
ϕ∈H

〈T q,ϕ〉H′,H
‖ϕ‖H1(S)

= ‖T q‖H′ . �

Appendix B. Regularity in S

Lemma B.1.Supposeh ∈ H 2(S). If w ∈ Hs(Ω) for anys: 1� s � 2, then〈w〉 ∈ Hs(S).

Proof. If w ∈ L2(Ω), then integrating in(−h(x),0) we obtain:

∣∣〈w〉∣∣2 =
∣∣∣∣∣

0∫
−h(x)

w(x, z) dz

∣∣∣∣∣
2

�
( 0∫

−h(x)

∣∣w(x, z)
∣∣2 dz

)
h(x).

Integrating now inS, we obtain:
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e

to
∫
S

∣∣〈w〉∣∣2 dx �
∫
S

h(x)

( 0∫
−h(x)

∣∣w(x, z)
∣∣2 ds

)
dx � ‖h‖L∞(S)

∫
Ω

∣∣w(x, z)
∣∣2 dΩ = ‖h‖L∞(S)‖w‖2

L2(Ω)
,

that implies:∥∥〈w〉∥∥
L2(S)

� ‖h‖1/2
L∞(S) ‖w‖L2(Ω). (42)

Deriving 〈w〉, we get that∇〈w〉 = 〈∇w〉 + w|Γb ∇h. Taking theL2(S)-norm and using(42), we obtain:∥∥∇〈w〉∥∥
L2(S)

�
∥∥〈∇w〉∥∥

L2(S)
+ ‖w|Γb ∇h‖L2(S) � ‖h‖1/2

L∞(S)‖∇w‖L2(Ω) + ‖w|Γb‖1/2
L4(S)

‖∇h‖1/2
L4(S)

.

Let us focus our attention on the terms ofL4(S)-type:

‖w|Γb‖L4(S) =
(∫

S

∣∣w(
x,−h(x)

)∣∣4 dx
)1/4

=
(∫

Γb

∣∣w(
x,−h(x)

)∣∣4(1+ ∣∣∇h(x)
∣∣2)−1/2

dσ

)1/4

� ‖w‖L4(Γb)
� C ‖w‖H1(Ω),

where we have used the continuity of the trace function fromH 1(Ω) in L4(∂Ω). On the other hand, using th
Sobolev embeddingH 2(S) ↪→ W1,4(S), one has:

‖∇h‖L4(S) � C ‖h‖H2(S).

Therefore,∥∥∇〈w〉∥∥
L2(S)

� ‖h‖1/2
L∞(S) ‖∇w‖L2(Ω) + C ‖w‖1/2

H1(Ω)
‖h‖1/2

H2(Ω)
. (43)

Estimates(42) and(43) let us deduce that ifw ∈ H 1(Ω) andh ∈ H 2(S), then〈w〉 ∈ H 1(S).
Now, we study the case wherew ∈ H 2(Ω) and h ∈ H 2(S). From the previous estimates, we only need

estimate second order derivatives forw. Without loss of generality, we will only reason for∂2
xx〈w〉. We have:

∂2
xx〈w〉 = 〈∂2

xxw〉 + 2(∂xw)|Γb ∂xh(x) − (∂zw)|Γb

∣∣∂xh(x)
∣∣2 + w|Γb ∂2

xxh(x).

Therefore, using the same arguments as before:∥∥∂2
xx〈w〉∥∥

L2(S)
� ‖h‖1/2

L∞(S) ‖∂2
xxw‖L2(Ω)

+ C
(‖∂xw‖1/2

H1(Ω)
‖h‖1/2

H2(S)
+ ‖∂zw‖1/2

H1(Ω)
‖h‖H2(S) + ‖w|Γb‖1/2

L∞(S)‖h‖1/2
H2(S)

)
� ‖h‖1/2

L∞(S) ‖∂2
xxw‖L2(Ω) + C‖w‖1/2

H2(Ω)
‖h‖1/2

H2(S)

(
1+ ‖h‖1/2

H2(S)

)
, (44)

where we have used in the last term that ifw ∈ H 2(Ω), thenw|∂Ω ∈ H 3/2(∂Ω) ↪→ L∞(∂Ω). Expression(44)
together with(42) and(43), let us deduce that ifw ∈ H 2(Ω) andh ∈ H 2(S), then〈w〉 ∈ H 2(S).

We have just proved that, ifw ∈ H 1(Ω) then 〈w〉 ∈ H 1(S), and if w ∈ H 2(Ω) then 〈w〉 ∈ H 2(S). In
the caseHs(Ω) for s ∈ (1,2), interpolation results [11] let us seeHs(Ω) = [H 1(Ω),H 2(Ω)]θ andHs(S) =
[H 1(S),H 2(S)]θ with θ = s − 1, hence we can deduce that ifw ∈ Hs(Ω), then〈w〉 ∈ Hs(S). �

Appendix C. Interpolation results

Lemma C.1.Let S ⊆ R
2 be a bounded open set with∂S ∈ C∞. If Υ ∈ L2(0, T ;H

1/2+ε

0 (Γs)) for someε > 0 and
∂tΥ ∈ L2(0, T ;H−3/2(Γs)), thenΥ ∈ C0([0, T ];H−1/2(Γs)).
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1]:
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mics,

340.
ons,

002)

ns,

992)
In order to prove this lemma, we will use some interpolation results appearing in Lions and Magenes [1

Theorem C.2 [11, p. 79].Suppose thatΓs ∈ C∞. Let s1, s2 � 0 such thatsi �= λ + 1/2 (λ integer,i = 1,2). Let
θ ∈ [0,1] such that:

(1− θ)s1 − θs2 �= µ + 1/2 and �= −µ − 1/2 (µ integer� 0). (45)

Then,[
H

s1
0 (Γs),H

−s2(Γs)
]
θ
=

{
H

(1−θ)s1−θs2
0 (Γs) if (1− θ)s1 − θs2 � 0,

H(1−θ)s1−θs2(Γs) if (1− θ)s1 − θs2 � 0.
(46)

Proposition C.3 [11, p. 53].Let X and Y two separable Hilbert spaces such thatX ⊂ Y , X dense inY with
continuous embedding. Then:[

Ht1(Ω;X),H t2(Ω;Y )
]
θ

= H(1−θ)t1+θt2
(
Ω; [X,Y ]θ

)
.

Proof of Lemma C.1. In our case, taking in Theorem C.2,µ = 0, s1 = 1/2+ ε, s2 = 3/2+ ε′ with ε′ < ε one has[
H

1/2+ε

0 (Γs),H
−3/2−ε′

(Γs)
]
θ
= H−1/2+δ(Γs),

if one imposes that(1− θ)s1 − θs2 = −1/2+ δ < 0 with δ is small enough, then:

θ = 1+ ε − δ

2+ ε + ε′ >
1

2
(takingε > ε′ + 2δ).

From hypothesisΥ ∈ H 1(0, T ;H−3/2(Γs)) ∩ H 0(0, T ;H
1/2+ε

0 (Γs)). Then, we use Proposition C.3 fort1 = 0,

t2 = 1, X = H
1/2+ε

0 (Γs), Y = H−3/2−ε′
(Γs) and Ω = (0, T ), obtaining Υ ∈ Hθ(0, T ;H−1/2+δ(Γs)) (with

θ > 1/2), hence in particular one hasΥ ∈ C0([0, T ];H−1/2(Γs)). �

References

[1] C. Amrouche, V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslo
Math. J. 44 (119) (1994) 109–140.

[2] P. Azérad, F. Guillén, Mathematical justification of the hydrostatic approximation in the Primitive Equations of qeophysical fluid dyna
SIAM J. Math. Anal. 33 (4) (2001) 847–859.

[3] O. Besson, M.R. Laydi, Some estimates for the anisotropic Navier–Stokes equations and forthe hydrostatic approximation, M2AN-Mod.
Math. Ana. Nume. 7 (1992) 855–865.

[4] L. Cattabriga, Sur un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Mat. Sem. Univ. Padova 31 (1961) 308–
[5] T. Chacón, F. Guillén, An intrinsic analysis of existence of solutions for the hydrostatic approximation of the Navier–Stokes equati

C. R. Acad. Sci. Paris, Série I 330 (2000) 841–846.
[6] C. Conca, Stokes equations with non-smooth data, Revista de Matemáticas Aplicadas 10 (1989) 115–122.
[7] V. Girault, P.A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1986.
[8] F. Guillén-González, M.A. Rodríguez-Bellido, On the strong solutions of the Primitive Equations in 2D domains, Nonlin. Anal. 50 (2

621–646.
[9] F. Guillén-González, N. Masmoudi, M.A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the Primitive Equatio

Differential Integral Equations 14 (11) (2001) 1381–1408.
[10] R. Lewandowski, Analyse Mathématique et Océanographie, Masson, 1997.
[11] J.L. Lions, E. Magenes, Problèmes aux limitesnon homogènes et applications, vol. 1, Dunod, Paris, 1969.
[12] J.L. Lions, R. Temam, S. Wang, New formulation of the primitive equations of the atmosphere and applications, Nonlinearity 5 (1

237–288.
[13] J.L. Lions, R. Temam, S. Wang, On the equations of the large scale ocean, Nonlinearity 5 (1992) 1007–1053.
[14] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, Berlin, 1987.
[15] R. Temam, Navier–Stokes Equations: Theory andNumerical Analysis, North Holland, Amsterdam, 1977.
[16] M. Ziane, Regularity results for Stokes type systems, Appl. Anal. 58 (1995) 263–292.


