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Abstract

In this paper we obtain a Large Deviation Principle for the occupation measure of the solution to a stochastic Burgers equation
which describes the exact rate of exponential convergence. This Markov process is strongly Feller and has a unique invariant
measure. Moreover, the rate function is explicit: it is the level-2 entropy of Donsker–Varadhan.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

On obtient un Principe de Grandes Déviations pour la mesure d’occupation associée à la solution d’une équation de Burgers sto-
chastique. Ce résultat décrit convergence exponentielle vers l’unique mesure invariante. La fonction de taux associée est l’entropie
de niveau 2 de Donsker–Varadhan.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

Let H = L2(0,1) equipped with its norm ‖ · ‖2. In this paper we are interested in the large time behavior of the
solution to the following stochastic Burgers equation:

dX(t) =
(

�X(t) + 1

2
DξX

2(t)

)
dt + GdW(t); X(0, ξ) = x0(ξ) ∈ H, (1.1)

where G :H → H is a bounded linear operator, W(t) is a standard cylindrical Wiener process on H , and � is the
Laplacian on (0,1) with the Dirichlet boundary conditions. Indeed, the problem (1.1) is supplemented by:

X(t,0) = X(t,1) = 0, t > 0.

It is well known that � is a negative, self-adjoint, non-bounded operator on H with the domain of definition given by

D(�) = {
u ∈ H 2(0,1): u(0) = u(1) = 0

} = H 2(0,1) ∩ H 1
0 (0,1),
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where

H 1
0 = {

x: [0,1] → R; x is abs. continuous, x(0) = x(1) = 0, and ∇x := Dξx ∈ H
}
.

We assume that tr(GG∗) < ∞, i.e. the energy injected by the random force is finite, and that, for Q = GG∗,

Im
(
(−�)−δ/2) ⊂ Im

(
Q1/2) for some

1

2
< δ < 1, (1.2)

where Im(Q1/2) is the range of the operator Q1/2. The last condition (1.2) means that the noise is not too degenerate.
It is equivalent to say that the domain of definition of (−�)δ/2 in H is contained in Im(Q1/2).

The above equation plays an important role in fluid dynamic for understanding of chaotic behavior. This stochastic
model has been intensively studied for 10 years, in particular by Da Prato, Debussche, Dermoune, Weinan, Gatarek,
Khanin, Mazel, Sinai and Temam among many others (from a chronological point of view, see [5,4,9,2,3,18]). About
large deviations, small noise asymptotic was investigated by Cardon-Weber [1]. More recently, Goldys and Maslowski
proved the exponential ergodicity [13].

Let M1(H) (resp. Mb(H)) be the space of probability measures (resp. signed σ -additive measures of bounded
variation) on H equipped with the Borel σ -field B(H). The usual duality relation between ν ∈ Mb(H) and f ∈
bB(H), the set of bounded and measurable functions on H , will be denoted by

ν(f ) :=
∫
H

f dν.

On Mb(H) (or its subspace M1(H)), we will consider the usual weak convergence topology σ(Mb(H),Cb(H)) and
the so called τ -topology σ(Mb(H), bB(H)), which is much stronger.

Our aim is to establish the large deviation principle (LDP in short) for the occupation measure Lt of the solution X

(or empirical measure of level-2) given by

Lt(A) := 1

t

t∫
0

δXs (A)ds, ∀A ∈ B(H)

δa being the Dirac measure at a. Notice that Lt is an in M1(H)-valued random variable. This is a traditional subject
in probability since the pioneering work of Donsker and Varadhan [11]. The main innovation is that we deal about
infinite dimensional diffusions for which their assumptions are not satisfied. For an introduction to large deviations
we refer to the books of Deuschel and Stroock [10], and Dembo and Zeitouni [8].

Under (1.2), it is known that Xt is a Markov process with a unique invariant measure μ (cf. [7]). So the ergodic
theorem says that, almost surely under Pμ, Lt converges weakly to μ. We establish in this note a much more stronger
result:

Theorem 1.1. Assume that tr(GG∗) < +∞ and (1.2) (throughout this paper). Let 0 < λ0 < π2

2‖Q‖ , where ‖Q‖ is the
norm of Q as an operator in H and

Φ(x) = eλ0‖x‖2
2 , Mλ0,L :=

{
ν ∈ M1(H)

∣∣∣ ∫
H

Φ(x)ν(dx) � L

}
. (1.3)

The family Pν(LT ∈ ·) as T → +∞ satisfies the large deviation principle (LDP) with respect to (w.r.t. in short) the
topology τ , with speed T and the rate function J , uniformly for any initial measure in Mλ0,L where L > 1 is any
fixed number. Here J :M1(H) → [0,+∞] is the level-2 entropy of Donsker–Varadhan defined by (3.2) below.

More precisely we have:

(i) J is a good rate function on M1(H) equipped with the topology τ of the convergence against bounded and
Borelian functions, i.e., [J � a] is τ -compact for every a ∈ R

+;
(ii) for all open set G in M1(H) with respect to the topology τ ,

lim inf
T →∞

1

T
log inf

ν∈Mλ0,L

Pν(LT ∈ G) � − inf
G

J ; (1.4)
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(iii) for all closed set F in M1(H) with respect to the topology τ ,

lim sup
T →∞

1

T
log sup

ν∈Mλ0,L

Pν(LT ∈ F) � − inf
F

J. (1.5)

Furthermore we have

J (ν) < +∞ �⇒ ν  μ, ν(H 1
0 ) = 1 and

∫
H 1

0

‖∇x‖2
2 dν < +∞, (1.6)

where μ is the unique invariant probability measure of (Xt ).

The LDP w.r.t. the topology τ is much stronger than that w.r.t. the usual weak convergence topology as in Donsker
and Varadhan [11]. Sometimes considered as a technical detail, the topology τ is crucial here: interesting consequences
of this LDP can be deduced for many physical quantities of the system such as ‖x‖H 1 = ‖∇x‖2, or more generally
‖x‖Hα := ‖(−�)α/2x‖2 for 0 � α � 1, which are not continuous on H . In fact, we establish

Corollary 1.2. Let B a separable Banach space, and f :H 1
0 → B a measurable function, bounded on the balls

{x; ‖∇x‖2 � R}, and satisfying

lim‖∇x‖2→∞
‖f (x)‖B

‖∇x‖2
2

= 0. (1.7)

Then, Pν(LT (f ) ∈ ·) satisfies the LDP on B, with speed T and the rate function If given by

If (z) = inf

{
J (ν); J (ν) < +∞,

∫
H 1

0

f (x)dν(x) = z

}
, ∀z ∈ B,

uniformly over initial distributions ν in Mλ0,L for any fixed L > 1.

For instance, f :H 1
0 → B := Hα with f (x) = x for any α ∈ [0,1) is allowed, so that the LDP in Hα holds for

Pν(1/T
∫ T

0 Xt dt ∈ ·). An other particular case of the above corollary is the following: for every p ∈ (0,2),

Pν

(
1

T

T∫
0

∥∥∇X(t)
∥∥p

2 dt ∈ ·
)

satisfies the LDP on R with speed T and the rate function I defined by

I (z) = inf

{
J (ν); J (ν) < +∞,

∫
H

‖∇x‖p

2 dν(x) = z

}
, ∀z ∈ R (1.8)

uniformly over initial distributions ν in Mλ0,L (for any L > 1).
Finally, we introduce (ek)k the complete orthonormal system in L2(0,1) which diagonalizes � on its domain, and

by −λk the corresponding eigenvalues. We have

ek(x) =
√

2

π
sin kπx, λk = π2k2, k ∈ N

∗ = {1,2, . . .}.

Remarks 1.3.
(i) Let us see the meaning of our assumptions: tr(Q) < +∞ and (1.2). Assume that Gek = σkek for every k � 1.

Then

GW(t) =
∞∑

σkβk(t)ek, (1.9)

k=1
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where (βk)k∈N∗ is a family of independent real valued standard Brownian motions. Then tr(Q) < +∞ and condition
(1.2) is satisfied if

c

k
� |σk| � C

k1/2+ε

for two positive constants c and C and some small ε > 0.
A more general example of noise for which our assumptions hold is

G := (−�)−βB,
1

4
< β <

1

2
,

where B is any linear bounded and invertible operator on H . Indeed tr(GG∗) � ‖B‖2
H→H tr(�−2β) < +∞ for 2β >

1/2. Since Im(G) = Im(�−β) and by the polar decomposition, Im(G) ⊂ Im(
√

GG∗), the condition (1.2) is then
verified with δ = 2β .

(ii) Our approach here is well adapted to the case of a multiplicative (or correlated) random forcing term, that is,
the noise GW(t) can be replaced by

g
(
X(t, ξ)

)
GW(t),

where g :H → [α,β] is Lipschitz continuous, 0 < α < β < ∞, G satisfies (1.2) and tr(GG∗) < +∞. Indeed, fol-
lowing [4], the strong Feller property and the topological irreducibility hold. All estimates necessary for the LDP in
Theorem 1.1 still hold in the actual case, and then all previous results remain valid.

(iii) The class (1.3) of allowed initial distributions for the uniform LDP is sufficiently rich. For example, choosing
L large enough, it includes all the Dirac probability measures δx with x in any ball of H .

(iv) Our LDP is more precise than the exponential convergence of Pt to the invariant measure μ established in [13].
Indeed the LDP furnishes the exact rate of the exponential convergence in probability of the empirical measures LT

to μ. Moreover by Theorem 6.4 in [21], under the strong Feller and topological irreducibility assumption for (Pt ), the
LDP in Theorem 1.1 is equivalent to saying that the essential spectral radius in some weighted functions spaces buB
is zero.

(v) The assumption (1.2) plays a crucial role for Theorem 1.1: if the noise acts only on a finite number of modes
(i.e., σk = 0 for all k > N in (1.9)) as in Kolmogorov’s turbulence theory, we believe that the LDP w.r.t. the τ -topology
is false. It is a challenging open question for establishing the LDP of LT w.r.t. the weak convergence topology in the
last degenerate noise case.

(vi) For the 2D-stochastic Navier–Stokes equation, we can prove, under suitable conditions, a LDP on some D(Aα),
for 1

4 < α < 1
2 . Here A is also the Laplacian, but regarded as an operator on the subspace of the L2-vector fields with

free divergence. That will be carried out in a future work.

This paper is organized as follows. In Section 2, we recall known results on existence and uniqueness of solution,
and existence of an invariant probability measure for Eq. (1.1). In Section 3 we give some general facts about large
deviations for strong Feller and irreducible Markov processes and we obtain the uniform lower bound (1.4). Then
we prove the convergence of the Galerkin approximations for the considered equation in Section 4. The exponential
tightness is investigated in Section 5, and the uniform upper bound (1.5) for the strong τ -topology in Section 6. Finally,
the extension to non-bounded functionals on H is discussed in the last Section 7.

2. Solutions of the equation and their properties

Let us specify what we understand by solution. Generally, we are concerned with two ways of giving a rigorous
meaning to solutions of stochastic differential equations in infinite dimensional spaces, that is, the variational one
[17,15] and the semigroup one [6]. Correspondingly, as in the case of deterministic evolution equations, we have two
notions of strong, and “mild” solution. In most situations, one finds that the concept of strong solution is too limited
to include important examples. The weaker concept of mild solution seems to be more appropriate. In the sequel, we
are working with this concept, that we define more precisely now.

We denote by S(t) the semigroup generated by � on L2(0,1), or from a formal point of view, S(t) = et�.
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Definition 2.1. We say that X ∈ C([0, T ],L2(0,1)) is a “mild” solution of problem (1.1) if X(t) is adapted to Ft , the
σ -algebra of the cylindrical Wiener process until time t and for arbitrary 0 � t , we have

X(t) = S(t)x0 +
t∫

0

S(t − s)
1

2
DξX

2(s)ds +
t∫

0

S(t − s)GdW(s) (2.1)

for any x0 ∈ L2(0,1), P almost surely.

Note that all the terms in (2.1) take sense since the mapping

F :u ∈ C
([0, T ],L1(0,1)

) →
t∫

0

S(t − s)
1

2
Dξu(s)ds ∈ C

([0, T ],L2(0,1)
)

is well defined (see [7] p. 260) and the stochastic convolution W� := ∫ t

0 S(t − s)GdW(s) also (see (4.4) below).
Da Prato, Debussche, Temam established in [5] for the first time existence and uniqueness for a stochastic Burgers
equation cylindrically perturbed, that is when G is the identity operator. The method they used to obtain local existence
in time of a solution consists in considering a fixed path of the noise, to get into a deterministic setting and use a fixed
point argument. Then the time of explosion is shown to be infinite, by means of a priori bounds on the solution. The
same proof gives in our setting:

Theorem 2.2. Stochastic Burgers equation (1.1) admits a unique mild solution and for all T > 0,

X ∈ C
([0, T ],L2(0,1)

) ∩ L2([0, T ],C[0,1]).
The solution satisfies Markov and strong Markov properties (see [6]). We can also consider the transition semigroup

associated to the dynamics given by

PtΦ(x) := EΦ
(
X(t, x)

) = E
xΦ

(
X(t)

)
, ∀Φ ∈ bB(H).

As in [5], this semigroup admits an invariant measure. Moreover, under our condition (1.2) on the noise, the following
interesting properties hold.

Lemma 2.3.

(i) The transition semigroup (Pt ) corresponding to the forced Burgers equation (1.1) satisfies the strong Feller
property. That is, for any bounded Borelian function Φ on H and any t > 0, the function PtΦ(·) is continuous
on H .

(ii) For every t > 0, Pt (x,O) > 0 for all x ∈ H and all non-empty open subset O of H . Hence, (Pt ) is also topolog-
ically irreducible.

(iii) In particular, the transition semigroup (Pt ), corresponding to the forced Burgers equation (1.1) admits a unique
invariant measure μ, which charges all non-empty open subsets of H .

Part (i) is well known when the cylindrical noise is considered (see [7]). In our case of a finite trace class noise, the
non-degeneracy condition (1.2) is essential. More precisely, δ < 1 allows to obtain a bound on the derivative of the
semigroup by using the Bismut–Elworthy formula as in [2] or [12]. The condition δ > 1

2 is borrowed from the finite
trace assumption, crucial in the application of Itô’s formula for the exponential tightness.

The point (ii) was proved by Goldys and Maslowski in [13] for our class of noise. We recall that (Pt ) is topologically
irreducible if, for all non-empty open set Γ in H , and all x ∈ H , we have Pt (x,Γ ) > 0 for some t > 0.

According to the general theory [7], we obtain (iii) as first corollary, sometimes called Doob’s theorem, of the two
preceding points together with the existence of invariant measure. In fact this result gives also the convergence of the
transition probabilities to the invariant measure.

Our aim is to complete the study of Eq. (1.1) by giving information on the rare events and the exact rate of
exponential convergence by means of a large deviation principle, one of the strongest ergodic behaviors of Markov
processes.
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3. General results about large deviations

In this section, we introduce some necessary notations and definitions and give general results (essentially follow-
ing [19]) on large deviations for Markov processes.

3.1. Notations and entropy of Donsker–Varadhan

We first compare the “topological irreducibility” defined above (often called irreducibility in the literature on
SPDE) with the probabilistic irreducibility for a Markov process which is the more general assumption under which
the large deviations result we use (as Lemma 3.2 below) holds true (see [14,19] for details).

Let ν be a probability measure on H ; a transition kernel operator P on H is said ν-irreducible (resp. ν-essentially
irreducible) if for all A in H such that ν(A) > 0, and for all x in H (resp. for ν almost all x in H ), we can find n ∈ N

such that P n(x,A) > 0. When ν charges all non-empty open subsets of H , the ν-irreducibility implies the topological
irreducibility. But for the strong Feller P , the topological irreducibility implies the ν-irreducibility for all ν such that
ν  νP (see [19]).

Thus by Lemma 2.3, for the unique invariant measure μ of our model, Pt is μ-irreducible for every t > 0. In reality
for our model, we have the much stronger property that all the probability measures in the family{

Pt (x, ·), x ∈ H, t > 0
}

are equivalent, and they are also equivalent to μ (see [7, p. 41]).
Consider the H := L2(0,1)-valued continuous Markov process(

Ω,(Ft )t�0,F ,
(
Xt(ω)

)
t�0, (Px)x∈H

)
whose semigroup of Markov transitions kernels is denoted by (Pt (x,dy))t�0, where

Ω = C(R+,H) is the space of continuous functions from R
+ to H equipped with the compact convergence

topology;
Ft = σ(Xs,0 � s � t) for any t � 0 is the natural filtration;
F = σ(Xs,0 � s) and Px(X0 = x) = 1.

Hence, Px is the law of the Markov process with initial state x in H . For any initial measure ν on H , let Pν(dω) :=∫
H

Px(dω)ν(dx).
The empirical measure of level-3 (or process level) is

Rt := 1

t

t∫
0

δθsX ds,

where (θsX)t = Xs+t for all t, s � 0 are the shifts on Ω . Hence Rt is a random element of M1(Ω), the space of
probability measures on Ω .

The level-3 entropy functional of Donsker and Varadhan H :M1(Ω) → [0,+∞] is defined by,

H(Q) :=
{

E
Q̄hF0

1
(Q̄ω(−∞,0];Pw(0)), if Q ∈ Ms

1(Ω),

+∞, otherwise,
(3.1)

where

Ms
1(Ω) is the space of those elements in M1(Ω) which are moreover stationary;

Q̄ is the unique stationary extension of Q ∈ Ms
1(Ω) to Ω̄ := C(R,H); F s

t = σ(X(u); s � u � t) on Ω̄ , ∀s, t ∈ R,
s � t ;
Q̄ω(−∞,t] is the regular conditional distribution of Q̄ knowing F−∞

t ;
hG(ν,μ) is the usual relative entropy or Kullback information of ν with respect to μ restricted on the σ -field G,
given by

hG(ν,μ) :=
{∫ dν

dμ
|G log( dν

dμ
|G)dμ, if ν  μ on G,
+∞, otherwise.
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The level-2 entropy functional J :M1(H) → [0,∞] is defined by

J (β) = inf
{
H(Q); Q ∈ Ms

1(Ω) and Q0 = β
}
, ∀β ∈ M1(H), (3.2)

where Q0(·) = Q(X(0) ∈ ·) is the marginal law at time t = 0.
Lastly introduced in [19], we define the restriction of the Donsker Varadhan entropy to the μ component, by

Hμ(Q) :=
{

H(Q), if Q0  μ,

+∞, otherwise

and for the level-2 entropy functional

Jμ(β) :=
{

J (β), if β  μ,

+∞, otherwise.

For our model, let us first establish the

Lemma 3.1. We have J (ν) < +∞ ⇒ ν  μ. Moreover, J = Jμ on M1(H) and [J = 0] = {μ}.

Proof. Consider ν such that J (ν) < ∞. We recall the expression (3.1) of the Level-3 entropy. For Q ∈ Ms
1(Ω) such

that Q0 = ν, H(Q) < ∞, and for every t > 0, noting that the entropy of marginal measure is not larger than the global
entropy, we have by Jensen inequality,

H(Q) = E
Q̄hF1

(
Q̄ω(−∞,0];Pw(0)

) = 1

t
E

Q̄hF0
t

(
Q̄ω(−∞,0];Pw(0)

)
� 1

t
hF0

t
(Q;Pν) � 1

t
hσ(w(t))(Q;Pν)

� 1

t
hB(H)(ν;νPt ).

Taking infinimum over such Q, we get

J (ν) � 1

t
hB(H)(ν;νPt ). (3.3)

So the Kullback information of ν with respect to νPt is finite, which implies by definition that ν  νPt . Since all
Pt (x,dy), t > 0, x ∈ H are equivalent to μ ([7]), we have

νPt (·) =
∫
H

P (t, x, ·)ν(dx)  μ.

Thus ν  νPt  μ, as desired.
By definition, we have J � Jμ and they are equal on{

ν ∈ M1(H) such that ν  μ
}
.

Since any probability measure ν on H such that J (ν) < ∞ is absolutely continuous with respect to μ, we have J = Jμ

on M1(H).
At the end, if the probability measure β is such that J (β) = 0 then β  μ and β = βPt for every t > 0 by (3.3).

By the uniqueness in Lemma 2.3, we have β = μ and the proof is finished. �
3.2. The lower bound

Let us first recall the definition of the projective limit τp of the strong τ -topology,

τp := σ

(
M1(Ω),

⋃
t�0

bF 0
t

)
,

where bF 0
t is the set of functions on Ω , that are bounded and measurable for F 0

t .
The following level-3 lower bound of Large Deviations for τp was established by Wu (see [19, Theorem B.1])

under more general conditions.
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Lemma 3.2. ([19]) For any open set O in (M1(Ω), τp),

lim inf
t→∞

1

t
log Px(Rt ∈ O) � − inf

O
Hμ, μ-a.e. initial state x ∈ H.

Recall that Hμ = H by Lemma 3.1 and that a good rate function admits compact level sets (by definition). Our
goal here, is to prove the

Proposition 3.3. If J is a good rate function on (M1(H), τ ) and the uniform upper bound (1.5) is satisfied, then the
level-3 uniform lower bound holds true: for any measurable open subset O in (M1(Ω), τp),

lim inf
t→∞

1

t
log inf

ν∈Mλ0,L

Pν(Rt ∈ O) � − inf
O

H.

In particular, the desired Level-2 lower bound (1.4) holds (by the contraction principle).

Proof. For any Q ∈ O fixed, we can take a τp neighborhood of Q in M1(Ω) of form

N(Q,δ) :=
{
Q′ ∈ M1(Ω) such that

∣∣∣∣
∫

Fi dQ′ −
∫

Fi dQ

∣∣∣∣ < δ, ∀i = 1, . . . , d

}

contained in O , where δ > 0, 1 � d ∈ N and Fi ∈ bF 0
n for some n ∈ N. It is sufficient to establish that for every Q in

O such that H(Q) < ∞
lim inf
t→∞

1

t
log inf

ν∈Mλ0,L

Pν

(
Rt ∈ N(Q,δ)

)
� −Hμ(Q). (3.4)

But by Egorov’s lemma, Lemma 3.2 implies the existence of a Borelian subset K in H with μ(K) > 0 such that for
any ε > 0

inf
x∈K

1

t
log Px

(
Rt ∈ N

(
Q,

δ

2

))
� −Hμ(Q) − ε (3.5)

for all t large enough. Let us fix a > 0. For any 0 � b � a, we have∣∣∣∣
∫

Fi d(Rt ◦ θb − Rt)

∣∣∣∣ � 2(a + 1)

t
‖Fi‖∞

and then for all 0 � b � a and for all t large enough (depending on a and δ),

Pν

(
Rt ∈ N(Q,δ)

)
� Pν

(
Xb ∈ K; Rt ◦ θb ∈ N

(
Q,

δ

2

))

� Pν(Xb ∈ K) inf
x∈K

Px

(
Rt ∈ N

(
Q,

δ

2

))
.

Integrating for 0 � b � a, and dividing by a yields

Pν

(
Rt ∈ N(Q,δ)

)
� E

νLa(K) inf
x∈K

Px

(
Rt ∈ N

(
Q,

δ

2

))
. (3.6)

Hence, for proving (3.4), by (3.5) and (3.6), it is enough to establish that for any Borelian subset K with μ(K) > 0,
we can find a > 0 such that

inf
ν∈Mλ0,L

E
νLa(K) > 0.

Notice that

E
νLa(K) � μ(K)

2

(
1 − Pν

(∣∣La(K) − μ(K)
∣∣ � μ(K)

2

))
and by the assumed level 2 upper bound,

lim sup
a→+∞

1

a
log sup

ν∈Mλ0,L

Pν

(∣∣La(K) − μ(K)
∣∣ � μ(K)

2

)
� − inf

F
J (ν),
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where

F =
{
β ∈ M1(H):

∣∣β(K) − μ(K)
∣∣ � μ(K)

2

}
is closed for the τ -topology. So once infF J > 0, we shall obtain for all a large enough

inf
ν∈Mλ0,L

E
νLa(K) � μ(K)

2

(
1 − exp

(
−a

infF J

2

))
> 0.

It remains to prove that infF J > 0. To this end we may assume that infF J < +∞. In that case, since J is a good
rate function (our condition), infF J is attained by some β0 ∈ F . But J (β) = 0 ⇔ β = μ (Lemma 3.1) and μ /∈ F , so
infF J = J (β0) > 0 as desired. �
3.3. Cramer functionals and weak upper bound

Let us introduce the uniform upper Cramer functional over a non-empty family of initial measures A in M1(H),

Λ(V |A) := lim sup
t→∞

1

t
log sup

ν∈A
E

ν exp
(
tLt (V )

)
and several other Cramer functionals,

Λ(V |x) := Λ
(
V |{δx}

) = lim sup
t→∞

1

t
log E

x exp
(
tLt (V )

)
,

Λ∞(V ) := Λ
(
V |{δx;x ∈ H }) = lim sup

t→∞
1

t
log sup

x∈H

E
x exp

(
tLt (V )

)
,

Λ0(V ) := sup
x∈H

Λ(V |x) = sup
x∈H

lim sup
t→∞

1

t
log E

x exp
(
tLt (V )

)
, (3.7)

where V is a bounded and Borelian function on H .
The functionals Λ0(V ) and Λ∞(V ) are respectively the pointwise and uniform Cramer functionals introduced

already in [10]. For Λ :bB(H) → R any one of the above functionals, define its Legendre transformation:

Λ∗
w(ν) = sup

V ∈Cb(H)

(∫
H

V dν − Λ(V )

)
, ∀ν ∈ Mb(H),

Λ∗(ν) = sup
V ∈bB(H)

(∫
H

V dν − Λ(V )

)
, ∀ν ∈ Mb(H), (3.8)

where Mb(H) is the space of all signed σ -additive measures of bounded variation on (H,B).
Remark that {δx}x∈H ⊂ ⋃

L>0 Mλ0,L, we have for any bounded and measurable function V ,

Λ0(V ) � sup
L>0

Λ(V |Mλ0,L) � Λ∞(V ).

Since (Pt ) is Feller, we have by [19, Proposition B.13](
Λ0)∗

(ν) = (
Λ0)∗

w
(ν) = (

Λ∞)∗
(ν) = (

Λ∞)∗
w
(ν) = J (ν), ∀ν ∈ M1(H)

which implies the l.s.c. for J and the fact that

sup
V ∈bB(H)

(∫
H

V dν − sup
L>0

Λ(V |Mλ0,L)

)
= sup

V ∈Cb(H)

(∫
H

V dν − sup
L>0

Λ(V |Mλ0,L)

)
= J (ν), ∀ν ∈ M1(H).

So by Gärtner and Ellis theorem (see [8]), we have always the following general weak* upper bound

Lemma 3.4. Let M1(H) be equipped with the weak convergence topology. For any compact subset K in M1(H) w.r.t.
the weak convergence topology, and for any ε > 0, there is a neighborhood N(K,ε) of K in M1(H) such that
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lim sup
t→∞

1

t
log sup

ν∈Mλ0,L

Pν

(
Lt ∈ N(K,ε)

)
�

{− infν∈K J (ν) + ε, if infν∈K J (ν) < ∞,

− 1
ε
, otherwise.

Now to obtain the upper bound in Theorem 1.1 w.r.t. the weak convergence topology, we need to prove the expo-
nential tightness of Lt .

4. Convergence of a Galerkin method

Let us introduce the approximation system associated with Eq. (1.1):

dXn(t) =
(

�Xn(t) + 1

2
ΠnDξ(Xn)

2(t)

)
dt + Gn dW(t); Xn(0) = Πnx, (4.1)

where Πn is the orthogonal projection on Hn, the finite dimensional space spanned by the first n eigenvectors
(e1, . . . , en), and Gn := ΠnG.

The convergence of a similar approximation but with a non-linearity truncated by the function

fn(x) = nx2

n + x2

was investigated by Da Prato and Debussche [3]. The aim of this section is to establish some a priori estimates on Xn,
and the convergence of the approximation method (4.1).

Theorem 4.1. The solutions Xn of (4.1) converge to the solution X of (1.1) in C([0, T ];H) and in L2([0, T ];H 1
0 )

almost surely.

4.1. A priori estimate for the finite dimensional approximations

From now on, we denote by 〈· , ·〉 the inner product in H . Let us apply Itô’s formula to the finite dimensional
diffusion Xn. Since Xn(t) ∈ Hn, remark that〈

Xn(t),ΠnDξX
2
n(t)

〉 = 〈
ΠnXn(t),DξX

2
n(t)

〉 = 〈
Xn(t),DξX

2
n(t)

〉
=

1∫
0

Xn(t, ξ)DξX
2
n(t, ξ)dξ =

[
X3

n(t, ξ)

3

]ξ=1

ξ=0
= 0

because of no-slip boundary conditions. So, we obtain:

d
∥∥Xn(t)

∥∥2
2 = 2

〈
Xn(t),dXn(t)

〉 + tr(Qn)dt

= [−2
∥∥∇Xn(t)

∥∥2
2 + tr(Qn)

]
dt + 2

〈
Xn(t),Gn dW(t)

〉
.

In the same spirit, denoting by d[Y,Y ]t the quadratic variation process of a semi-martingale Y , we can also compute
with the Itô formula

deλ0‖Xn(t)‖2
2 = eλ0‖Xn(t)‖2

2

[
λ0d

∥∥Xn(t)
∥∥2

2 + λ2
0

2
d
[‖Xn‖2

2,‖Xn‖2
2

]
t

]

= eλ0‖Xn(t)‖2
2
[−2λ0

∥∥∇Xn(t)
∥∥2

2 + λ0 tr(Qn) + 2λ2
0

∥∥G∗
nXn(t)

∥∥2
2

]
dt

+ 2λ0eλ0‖Xn(t)‖2
2
〈
Xn(t),Gn dW(t)

〉
.

For any smooth function f on Hn = Πn(L
2), we define g := Lnf if

f
(
Xn(t)

) − f
(
Xn(0)

) −
t∫

0

g
(
Xn(s)

)
ds

is a local martingale. The following lemma, being a consequence of Itô’s formula, is well known to probabilists and it
is crucial.
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Lemma 4.2. ([16]) If f is smooth on Hn, and f � 1, then

Mt := e− ∫ t
0

Lnf
f

(Xn(s))ds
f

(
Xn(t)

)
is a local martingale.

In view of the above definition we have for f (x) = eλ0‖x‖2
2 (x ∈ Hn),

Lnf (x) := f (x)
[−2λ0‖∇x‖2

2 + λ0 tr(Qn) + 2λ2
0

∥∥G∗
nx

∥∥2
2

]
and

−Lnf (x)

f (x)
= 2λ0‖∇x‖2

2 − λ0 tr(Qn) − 2λ2
0

∥∥G∗
nx

∥∥2
2

� 2λ0‖∇x‖2
2 − λ0 tr(Q) − 2λ2

0‖Q‖‖x‖2
2.

Moreover, by the Poincaré inequality

‖x‖2 � ‖∇x‖2

π
, ∀x ∈ H

we obtain for 0 < λ0 � π2

2‖Q‖ , since 1 − λ0‖Q‖
π2 � 1

2

−Lnf (x)

f (x)
� 2λ0

(
‖∇x‖2

2

(
1 − λ0‖Q‖

π2

)
− tr(Q)

2

)
� λ0‖∇x‖2

2 − λ0 tr(Q).

So we conclude by Lemma 4.2 that

Nn
t := exp

(
λ0

t∫
0

∥∥∇Xn(s)
∥∥2

2 ds − λ0 tr(Q)t

)
eλ0‖Xn(t)‖2

2 (4.2)

is a supermartingale. This proves the following crucial exponential estimate:

Lemma 4.3. Let 0 < λ0 < π2

2‖Q‖ . For any x in H , we have

E
x exp

(
λ0

t∫
0

∥∥∇Xn(s)
∥∥2

2 ds

)
eλ0

∥∥Xn(t)
∥∥2

2 � eλ0 tr(Q)teλ0‖x‖2
2 , ∀t > 0. (4.3)

In particular, we have

sup
n∈N

E
xeλ0

∫ t
0 ‖∇Xn(s)‖2

2 ds < ∞

so (Xn)n is uniformly bounded in L2(Ω × [0, T ],H 1
0 ).

This kind of estimates was also investigated by Da Prato and Debussche [2] for proving some properties on deriv-
atives of the transition semigroup.

4.2. Proof of Theorem 4.1

Let us introduce the stochastic convolution, or Ornstein–Uhlenbeck process

W�(t) =
t∫
S(t − s)GdW(s)
0
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which is the mild solution of the linear equation with additive noise

dW�(t) = �W�(t)dt + GdW(t); W�(0) = 0. (4.4)

Since Q = GG∗ has finite trace, it is known (see [6, p. 99 and p. 148]), that the stochastic integral W� is the limit in
L2(Ω,C([0, T ];H)) and in L2(Ω,L2([0, T ];H 1

0 )) of its finite dimensional approximation defined by

Wn
�(t) =

t∫
0

S(t − s)Gn dW(s) = ΠnW�(t).

Notice that Wn
� is the mild solution of the finite dimensional linear equation with additive noise

dWn
�(t) = �Wn

�(t)dt + Gn dW(t); W�(0) = 0. (4.5)

Let us prove that the convergences above hold in fact a.s. in C([0, T ];H) and L2([0, T ];H 1
0 ). Indeed the a.s.

convergence of Wn
� to W� in L2([0, T ];H 1

0 ) is obvious. For the convergence in C([0, T ],H), since for a.e. ω,
t �→ W�(t,ω) is continuous from [0, T ] to H , then K := {W�(t,ω); t ∈ [0, T ]} is compact in H . Notice that if
h ∈ H , Πnh → h in H and that the mappings h �→ Πnh, n � 1 are equi-continuous on H for ‖Πn‖H→H = 1. So the
above pointwise convergence is uniform over the compact subset K by Arzela–Ascoli’s theorem: as n → ∞,

sup
t∈[0,T ]

∥∥W�(t,ω) − ΠnW�(t,ω)
∥∥

H
→ 0.

Our proof below, as in [7], will be completely deterministic. Fix any ω ∈ Ω such that Wn
�(ω) → W�(ω) both in

C([0, T ],H) and L2([0, T ],H 1
0 ) and we shall remove “ω” in the proof below.

Let us define

y := X − W� = S(t)x + 1

2

t∫
0

S(t − s)Dξ (X)2(s)ds,

yn := Xn − Wn
� = S(t)Πnx + 1

2

t∫
0

S(t − s)ΠnDξ (Xn)
2(s)ds

and

zn := y − yn = X − Xn − (
W� − Wn

�

)
.

Recall that X is bounded in L∞([0, T ],H) and also in L2([0, T ],H 1
0 ) almost surely. Indeed we have the following

a-priori estimates (see [7, p. 264]):

∥∥y(t)
∥∥2

2 � e8
∫ t

0 ‖W�(s)‖2∞ ds‖x‖2
2 + 2

t∫
0

e8
∫ t
r ‖W�(s)‖2∞ ds

∥∥W�(r)
∥∥4

∞ dr

and
T∫

0

∥∥Dξy(t)
∥∥2

2 dt � 8

T∫
0

∥∥W�(t)
∥∥2

∞
∥∥y(t)

∥∥4
2 dt +

T∫
0

∥∥W�(t)
∥∥4

∞ dt

and the fact that H 1
0 ⊂ C[0,1] is a compact continuous embedding. The same proof as in [7, p. 264] yields the same

estimates for yn with W� replaced by Wn
�, so the sequence (Xn)n is bounded in L∞([0, T ],H) and L2([0, T ],H 1

0 )

almost surely (see also [3]). We can assume without loss of generality that the preceding bounds hold for our “ω”.
It remains to show the convergence of zn to 0 in the desired spaces. Notice that zn is solution of

dzn

dt
= �zn + 1

2
DξX

2 − 1

2
ΠnDξX

2
n

from which we can deduce the a priori estimate:
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1

2

d

dt
‖zn‖2

2 + ‖Dξzn‖2
2 =

〈
1

2
Dξ(X)2 − 1

2
ΠnDξ(Xn)

2, zn

〉

=
〈

1

2
Dξ

(
X2 − X2

n

)
, zn

〉
+

(
1

2
(I − Πn)Dξ

(
X2), zn

)
:= I1 + I2.

Noting that X − Xn = zn + (I − Πn)W�, we have

I1 = −1

2

〈
(Xn + X)(X − Xn),Dξzn

〉
= −1

2

〈
(Xn + X)zn,Dξzn

〉 − 1

2

〈
(Xn + X)(I − Πn)W�,Dξzn

〉
:= I11 + I12.

We can bound I11 as follows

|I11| � 1

2
‖Xn + X‖∞‖zn‖2‖Dξzn‖2

� 1

4
‖Dξzn‖2

2 + ‖Xn + X‖2∞‖zn‖2
2

and for the second

|I12| � 1

2
‖Xn + X‖∞

∥∥(I − Πn)W�

∥∥
2‖Dξzn‖2

� 1

4
‖Dξzn‖2

2 + ‖Xn + X‖2∞
∥∥(I − Πn)W�

∥∥2
2.

Similarly, for the remaining term, we have

|I2| �
∥∥(I − Πn)Dξ (X)

∥∥2
2 + ‖X‖2∞‖zn‖2

2.

Hence we obtain the inequality

d

dt
‖zn‖2

2 + ‖Dξzn‖2
2 � 2

(‖X‖2∞ + ‖Xn + X‖2∞
)‖zn‖2

2 + 2
∥∥(I − Πn)Dξ (X)

∥∥2
2

+ 2‖Xn + X‖2∞
∥∥(I − Πn)W�

∥∥2
2. (4.6)

By Gronwall’s inequality we get

∥∥zn(t)
∥∥2

2 � exp

( t∫
0

2
∥∥X(s)

∥∥2
∞ + 2

∥∥Xn(s) + X(s)
∥∥2

∞ds

)∥∥(I − Πn)x
∥∥2

2

+ 2

t∫
0

exp

( t∫
s

2
∥∥X(r)

∥∥2
∞ + 2

∥∥Xn(r) + X(r)
∥∥2

∞ dr

)∥∥Xn(s) + X(s)
∥∥2

∞
∥∥(I − Πn)W�(s)

∥∥2
2 ds

+ 2

t∫
0

exp

( t∫
s

2
∥∥X(r)

∥∥2
∞ + 2

∥∥Xn(r) + X(r)
∥∥2

∞ dr

)∥∥(I − Πn)DξX(s)
∥∥2

2 ds.

In the sequel we denote the norm in the corresponding spaces respectively by

|u|2
L2(0,T ,H)

:=
T∫

0

∥∥u(t)
∥∥2

2 dt,

|u|2
L2(0,T ,H 1

0 )
:=

T∫ ∥∥∇u(t)
∥∥2

2 dt =
T∫ ∥∥Dξu(t)

∥∥2
2 dt,
0 0
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|u|C(0,T ,H) := sup
0�t�T

∥∥u(t)
∥∥

2.

Taking the supremum in t , and using again the compact continuous embedding H 1
0 (0,1) ⊂ C[0,1], so that ‖x‖∞ �

C‖∇x‖2 for some constant C > 0, we obtain

sup
0�t�T

∥∥zn(t)
∥∥2

2 � e
(4C2|Xn|2

L2(0,T ,H1
0 )

+6C2|X|2
L2(0,T ,H1

0 )
)

((1) + (2) + (3))

� eM1((1) + (2) + (3)) (4.7)

for some number M1 > 0, where

(1) = ∥∥(I − Πn)x
∥∥2

2,

(2) = 4C2(|Xn|2L2(0,T ,H 1
0 )

+ |X|2
L2(0,T ,H 1

0 )

)∣∣(I − Πn)W�

∣∣2
C(0,T ,H)

� M2
∣∣(I − Πn)W�

∣∣2
C(0,T ,H)

,

(3) = 2

T∫
0

∥∥(I − Πn)DξX(s)
∥∥2

2 ds

for some constant M2 > 0.
Now, (1) → 0 is clear, (2) → 0 is assumed for our “ω”, and (3) → 0 by dominated convergence. Consequently,

zn → 0 in C([0, T ],H).
Finally, let us integrate (4.6) for t . It gives

|zn|2L2([0,T ],H 1
0 )

�
(
4C2|Xn|2L2([0,T ],H 1

0 )
+ 6C2|X|2

L2([0,T ],H 1
0 )

)
sup

0�t�T

∥∥zn(t)
∥∥2

2 + 2
∣∣(I − Πn)Dξ (X)

∣∣2
L2([0,T ],H)

+ ∥∥(I − Πn)x
∥∥2

2 + 4C2(|Xn|2L2([0,T ],H 1
0 )

+ |X|2
L2([0,T ],H 1

0 )

)∣∣(I − Πn)W�

∣∣2
C([0,T ],H)

� M1 sup
0�t�T

∥∥zn(t)
∥∥2

2 + 2
∣∣(I − Πn)Dξ (X)

∣∣2
L2([0,T ],H)

+ ∥∥(I − Πn)x
∥∥2

2 + M2
∣∣(I − Πn)W�

∣∣2
C([0,T ],H)

which yields zn → 0 in L2(0, T ,H 1
0 ) and the proof is finished. �

5. Uniform upper bound for the weak convergence topology: the exponential tightness

In this section, M1(H) is equipped with σ(M1(H),Cb(H)) the weak convergence topology, instead of τ . The aim
is to prove the following

Proposition 5.1.

(a) For any ε > 0, there is some compact subset K = Kε in M1(H) in the weak convergence topology such that

lim sup
t→∞

1

t
log sup

ν∈Mλ0,L

Pν(Lt /∈ K) � −1

ε
.

(b) Consequently for any closed set F in M1(H) equipped with the weak convergence topology σ(M1(H),Cb(H)),

lim sup
t→∞

1

t
log sup

ν∈Mλ0,L

Pν(Lt ∈ F) � − inf
F

J.
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By the weak upper bound in Lemma 3.4 and according to the general theory of large deviations, the upper bound
of large deviations in (b) follows from the uniform exponential tightness of the family of Pν(LT ∈ ·) over ν ∈ Mλ0,L

stated in part (a).
Before proving it, let us notice the following consequence of our study in Section 4.

Lemma 5.2. For any fixed 0 < λ0 < π2

2‖Q‖ ,

Nt := exp

(
λ0

t∫
0

∥∥∇X(s)
∥∥2

2 ds − λ0 tr(Q)t

)
eλ0‖X(t)‖2

2

is a supermartingale. In particular we have

E
xeλ0

∫ t
0 ‖∇X(s)‖2

2 ds � eλ0 tr(Q)teλ0‖x‖2
2 , ∀x ∈ H (5.1)

and for any fixed L > 1, and any initial measure in the set Mλ0,L, the following estimate holds

E
νeλ0

∫ t
0 ‖∇X(s)‖2

2 ds � eλ0 tr(Q)tL. (5.2)

Proof. By the almost sure convergence in Theorem 4.1 and Fatou’s Lemma, (Nt ) is a supermartingale by passing to
the limit for n → ∞ in (4.2). The estimates (5.1) and (5.2) follow immediately. �
Proof of Proposition 5.1. As said above it is sufficient to prove the uniform exponential tightness of (Pν(Lt ∈ ·), t →
+∞) over ν ∈Mλ0,L in part (a).

Step 1. Define Φ :M1(H) → [0,+∞] by

Φ(β) = λ0

∫
H

‖∇x‖2
2 dβ(x), with ‖∇x‖2 := +∞ for ∀x ∈ H\H 1

0 ,

where λ0 is a real number such that 0 < λ0 < π2

2‖Q‖ . We claim that this function admits compact level sets.

At first, x → ‖∇x‖2
2 is lower semi continuous (l.s.c. in short) on H , as a non-decreasing limit of continuous

functions x → ‖∇Πnx‖2
2. Thus, Φ is l.s.c. on M1(H), and for any a > 0, the level set [Φ � a] is closed in M1(H).

Now let us show that [Φ � a] is tight (so it will be compact in M1(H) by Prokorov’s criterion). Indeed, for any
δ > 0 consider

Aδ =
{

x ∈ H 1
0 s.t. ‖∇x‖2 �

√
a

λ0δ

}
.

It is compact in H by the compact embedding H 1
0 ⊂ H , and we have

∀β ∈ [Φ � a], β
(
Ac

δ

)
�

∫
Ac

δ

λ0δ‖∇x‖2
2

a
dβ(x) � δ

Φ(β)

a
� δ.

Step 2. For any ε > 0, K := [Φ � λ0 tr(Q) + 1/ε] is a compact subset of M1(H) by Step 1. For any ν ∈ Mλ0,L,
we have by Chebychev’s inequality and Lemma 5.2,

Pν(Lt /∈ K) � exp

(
−

[
λ0 tr(Q) + 1

ε

]
t

)
E

νetΦ(Lt )

= exp

(
−

[
λ0 tr(Q) + 1

ε

]
t

)
E

ν exp

(
λ0

t∫
0

∥∥∇X(s)
∥∥2

2 ds

)

� e−t/εL,

the desired uniform exponential tightness. �
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6. Uniform upper bound for the τ -topology

Now, we prove the desired upper bound (1.5) for the strong τ -topology. It is based on the following criterion of
the so-called hyper-exponential recurrence [20, Theorem 2.1] established by Wu for strong Feller and topologically
irreducible Markov processes.

Lemma 6.1. ([20]) For a subset K in H , let us define τK := inf{t � 0 s.t. Xt ∈ K} and τ
(1)
K := inf{t � 1 s.t Xt ∈ K}.

If for any λ > 0, there exists a compact subset K in H such that

sup
ν∈Mλ0,L

E
νeλτK < ∞ (6.1)

and

sup
x∈K

E
xeλτ

(1)
K < ∞ (6.2)

then [J � a] is τ -compact for every a ∈ R
+, and the upper bound (1.5) uniform on Mλ0,L for the τ -topology holds

true.

In this section we establish the estimates (6.1) and (6.2) for our model. For the compact subset K of H , we still
consider

K := {
x ∈ H 1

0 s.t. ‖∇x‖2 � M
}
, (6.3)

where the real number M will be fixed later. The definition of the occupation measure implies that for n � 2,

Pν

(
τ

(1)
K > n

)
� Pν

(
Ln(K) � 1

n

)
= Pν

(
Ln(K

c) � 1 − 1

n

)
.

With our choice for K , we remark that

Ln

(
Kc

)
� 1

M2
Ln

(‖∇x‖2
2

)
.

Hence for any fixed real 0 < λ0 < π2

2‖Q‖ , we have by Chebychev’s inequality

Pν

(
τ

(1)
K > n

)
� Pν

(
Ln

(‖∇x‖2
2

)
> M2

(
1 − 1

n

))

� e−nλ0M
2(1− 1

n
)
E

νeλ0
∫ n

0 ‖∇Xs‖2
2 ds .

For any initial measure ν ∈ M1(H), integrating (5.1) w.r.t. ν, and using it in the above expression yields

Pν

(
τ

(1)
K > n

)
�

∫
H

eλ0‖x‖2
2ν(dx)e−nλ0C, ∀n � 2,

where C := M2/2 − tr(Q).
Let λ > 0 be any fixed real number. By the integration by parts formula, we have

E
νeλτ

(1)
K = 1 +

+∞∫
0

λeλt
Pν

(
τ

(1)
K > t

)
dt

� e2λ +
∑
n�2

λeλ(n+1)
Pν

(
τ

(1)
K > n

)

� e2λ

(
1 + λ

∫
eλ0‖x‖2

2ν(dx)
∑
n�2

e−n(λ0C−λ)

)
.

H
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Now, by the definition (6.3) of K , we can choose M such that λ0C − λ � 1. Then, taking the supremum over {ν = δx ,
x ∈ K}, we get

sup
x∈K

E
xeλτ

(1)
K � e2λ

(
1 + λeλ0M

2 ∑
n�2

e−n(λ0C−λ)

)
< ∞

for ∀x ∈ K , ‖x‖2 � ‖∇x‖2/π � M . So the bound (6.1) holds true. We obtain (6.2) in the same way: since τK � τ
(1)
K ,

we have

sup
ν∈Mλ0,L

E
νeλτK � sup

ν∈Mλ0,L

E
νeλτ

(1)
K

� e2λ

(
1 + λL

∑
n�2

e−n(λ0C−λ)

)

< ∞.

Proof of Theorem 1.1. At first the good uniform upper bound of large deviations, i.e., parts (i) and (iii) follows by
Lemma 6.1 for its conditions (6.1) and (6.2) are verified above.

The uniform lower bound in part (ii) was established in Proposition 3.3.
The first claim in (1.6): “J (ν) < +∞ ⇒ ν  μ” was proven in Lemma 3.1. We conclude the proof with the second

claim in (1.6) that for ν ∈ M1(H) with J (ν) < ∞, ν(‖∇x‖2
2) < ∞. Indeed, denoting by a ∧ b the minimum of two

real numbers a and b, and for the function Vn(x) := (λ0‖∇x‖2
2) ∧ n bounded and measurable on H , we have

ν(Vn) �
(
Λ0)∗

(ν) + Λ0(Vn)

� J (ν) + λ0 tr(Q), (6.4)

where we have used the definitions (3.7), (3.8), the crucial estimate (5.1) and the fact that (Λ0)∗ = J . The conclusion
follows by Fatou’s lemma. �
7. Extension to some unbounded functionals

In this section we point out the fact that the estimate in Lemma 5.2 is sufficient to extend the LDP of Theorem 1.1,
i.e. Corollary 1.2 for unbounded functionals and its consequences.

Proof of Corollary 1.2. For the measurable function f :H 1
0 → B, let us consider fn :H → B defined by

fn(x) :=
{

f (x), if x ∈ H 1
0 , ‖∇x‖2 � n,

0, otherwise
(7.1)

which is far from being continuous, but is measurable and bounded on H by our assumptions. Since ν → ν(fn) =∫
B

zν(fn ∈ dz) is continuous from (M1(H), τ ) to B by [10, Lemma 3.3.8], then LT (fn) satisfies the LDP by Theo-
rem 1.1 and the contraction principle.

Now by the approximation lemma in large deviations (see [10, p. 37]), it remains to prove that for any L > 0

lim
n→∞ sup

β: J (β)�L

∥∥β(fn) − β(f )
∥∥

B
= 0 (7.2)

and for any δ > 0,

lim
n→∞ lim sup

T →∞
1

T
log sup

ν∈Mλ0,L

Pν

(∥∥LT (f − fn)
∥∥

B
> δ

) = −∞. (7.3)

Thanks to our condition (1.7) on f , we can construct a sequence (ε(n))n decreasing to 0 such that once ‖∇x‖2 � n,∥∥f (x)
∥∥

B
� ε(n)‖∇x‖2

2.

Denoting by 1A the characteristic function of the set A, we have for any β satisfying J (β) � L,
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∥∥β(fn) − β(f )
∥∥

B
= ∥∥β(f 1{‖∇X(s)‖2�n})

∥∥
B

� β
(
ε(n)‖∇x‖2

21{‖∇X(s)‖2�n}
)

� ε(n)

λ0
β
(
λ0‖∇x‖2

2

)
� ε(n)

λ0

(
L + λ0 tr(Q)

)
by using (6.4). Hence (7.2) follows.

Let us evaluate

Pν

(∥∥LT (f − fn)
∥∥

B
> δ

) = Pν

(∥∥∥∥∥ 1

T

T∫
0

f (Xs) − fn(Xs)ds

∥∥∥∥∥
B

> δ

)

� Pν

(
1

T

T∫
0

ε(n)
∥∥∇X(s)

∥∥2
21{‖∇X(s)‖2�n} ds > δ

)

� Pν

( T∫
0

λ0
∥∥∇X(s)

∥∥2
21{‖∇X(s)‖2�n} ds >

λ0T δ

ε(n)

)

� exp

(
−λ0T δ

ε(n)

)
E

ν exp

(
λ0

T∫
0

∥∥∇X(s)
∥∥2

2 ds

)

so that (7.3) is consequence of (5.2). �
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