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Abstract

We consider a model introduced in [S. Luckhaus, L. Triolo, The continuum reaction–diffusion limit of a stochastic cellular
growth model, Rend. Acc. Lincei (S.9) 15 (2004) 215–223] with two species (η and ξ ) of particles, representing respectively
malignant and normal cells. The basic motions of the η particles are independent random walks, scaled diffusively. The ξ particles
move on a slower time scale and obey an exclusion rule among themselves and with the η particles. The competition between the
two species is ruled by a coupled birth and death process. We prove convergence in the hydrodynamic limit to a system of two
reaction–diffusion equations with measure valued initial data.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons un modèle introduit dans [S. Luckhaus, L. Triolo, The continuum reaction–diffusion limit of a stochastic
cellular growth model, Rend. Acc. Lincei (S.9) 15 (2004) 215–223] avec deux espèces de particules (η et ξ ) représentant respecti-
vement les cellules malignes et saines. Les mouvements de base des cellules η sont des marches aléatoires indépendantes, sur une
échelle diffusive. Les particules ξ se déplacent sur une échelle plus lente et obéissent à une règle d’exclusion entre elles et avec les
particules η. La compétition entre les deux espèces est définie par un processus couplé de naissances et morts. Nous prouvons la
convergence au sens de la limite hydrodynamique vers un système de deux équations de réaction–diffusion avec données initiales
à valeurs mesures.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We are investigating a model of competition between malignant and normal cells for tumor growth that was intro-
duced in [10]. The two main qualitative features which distinguish the behavior of normal and tumoral cells according
to [10] are: a lateral contact inhibition for normal cells which is instead absent for malignant cells and that malig-
nant cells have a significantly higher mobility than normal cells. Lateral contact inhibition means roughly that normal
cells stop growing when coming in contact with another cell and cannot move on top of another cell, so they stay in
a layer (as indicated by the vitro cultivation). Malignant cells on the other hand divide and move without restrictions.
Competition arises by supposing that the death-birth rates of a cell depend on the total (local) cell density.

To model such features we consider as in [10] a particles system on Z
d , d = 2, in the biological case, with two

species of particles. Normal cells are represented by an exclusion process ξ(x), x ∈ Z
d , ξ(x) = 0,1. Malignant cells

instead have no exclusion and they are described by variables η(x) taking values in N.
The evolution is described by three processes, the motion of the η particles, the motion of the ξ particles and

a birth-death process involving ξ and η particles. Motivated by the above considerations we suppose that there is
a sharp time-scale separation between the three processes and this will be the key assumption which in the end will
allow us to derive a continuum description of the model in terms of a system of reaction–diffusion equations. The
fastest process is that of the η particles which move as independent symmetric random walks. At a much slower rate
but still very fast in macroscopic time units move the ξ particles which are also symmetric random walks, but with the
rule that jumps on sites occupied either by ξ or η particles or both are suppressed (we will refer to this for brevity as
a coupled exclusion). Notice that including the exclusion also against η particles introduces a first interaction between
the two species which in fact will be the most dangerous one, as it is as frequent as the motion of the ξ particles and
thus very strong in macroscopic time units. Finally, the slowest time scale, the macroscopic scale, is the one where
births and deaths occur, modelling the competition between the two species.

There are many works in the literature on the derivation of reaction–diffusion equations. The main assumption in
all these papers is that interactions occur on the macroscopic time scale while the particles move on a much faster scale
either as independent or as stirring. These two processes are very well studied and in particular their invariant measures
are known being products of Poisson and Bernoulli measures. Then using either “entropy methods” or “correlation
functions techniques” it is relatively easy to study the continuum limit, deriving reaction diffusion equations. To
exploit such results the coupled exclusion described above was replaced in [10] by a stirring process. Under such an
assumption, the invariant measures for the process without births and deaths are products of Poisson and Bernoulli
measures and the “classical” techniques can be adapted to derive the continuum limit, as proved in [10].

Here we deal with the original model, with coupled exclusion, where the global invariant measures are not known,
even if births and deaths are neglected. However, at least heuristically, the fact that on the time scale of the exclusion
process the random walks of the η particles have already averaged out their positions, should give rise to an effective
process which is again the stirring with slowly varying coefficient process considered in [10]. But the usual methods
of deriving hydrodynamic limits do not seem to apply here: the lack of knowledge of the invariant measures for the
process without births and deaths seems to preclude the use of entropy methods. We refer to [9] for a general survey
on entropy methods in hydrodynamic limits and to [11,12] for specific applications to reaction–diffusion equations.
On the other hand, the presence in the reaction terms of transcendental, non polynomial functions, makes awkward an
analysis of the BBGKY hierarchy of the type proposed in [4,2,1]. However even with polynomial rates the extension
of the correlation functions method to the present case is far from trivial.

So here we introduce a new method. The main point is that for our system, the energy estimate which holds for
the deterministic limit, can also be obtained for mesoscopic empirical averages of the particles occupation number
variables, obtaining H 2

1 a-priori bounds which allow to derive a substitute for the so called “two block estimate” of [8].
We also get bounds for the L2 distance of our mesoscopic field variables from the deterministic solutions, derived

by an explicit computation of the generator applied to the difference squared. To control the “most dangerous terms”
we use homogenization techniques which play the role of the “one block estimates” in hydrodynamic limits, see
again [8].

The different scales reflect also in the initial data. We suppose regularity of the η-particles initial distribution on
the macroscopic scale, while the ξ -particles distribution is only smooth on a smaller scale, related to the slower time
scaling of their time evolution. This involves yet another homogenization process which leads to a limit coupled
system of reaction–diffusion equations with measure valued initial data for the normal cells.
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In Section 2 we define the particles process, in Section 3 a discrete deterministic system of reaction–diffusion
equations and in Section 4 mesoscopic variables. In Section 5 we discuss the choice of the initial state and in Section 6
we state our main results. In Section 7 we give a brief sketch of the proofs. In Section 8 we prove a priori bounds
on exponential moments of the occupation variables and regularity in space of the mesoscopic fields. In Section 9 we
prove regularity in time, while in Sections 10 and 11 we prove local ergodic theorems (one block estimates) for the η

and, respectively, ξ particles. We have shifted to some appendices the more computational parts of the proofs.

2. The particles model

For simplicity we will consider periodic boundary conditions and thus the macroscopic system will live in a unit
torus Ω of R

d . To introduce our particles model we then discretize Ω by intersecting it with the lattice εZ
d , ε−1 ∈ N,

and denote by Ωε its image in stretched coordinates:

Ωε = {
x = (x1, . . . , xd) ∈ Z

d : 1 � xi � ε−1, 1 � i � d
}
.

As a rule we will use x, y, z, . . . for lattice sites and r, r ′, . . . for points in R
d .

Particle configurations are non negative integer valued functions on Ωε extended periodically to the whole Z
d ;

in particular we consider configurations η : Zd → N and ξ : Zd → {0,1}. η(x) and ξ(x), x ∈ Z
d , are thus the number

of η and ξ particles at any site y in Ωε equal to x modulo Ωε . η and ξ are interpreted as malignant and respectively
normal cells.

The evolution is described by a Markov process whose generator L, defined on all functions of (η, ξ) and whose
dependence on ε is not made explicit, has the expression

L = L(η) + L(ξ),

L(η) = ε−2L(η,0) + L(η,+) + L(η,−),

L(ξ) = ε−2aL(ξ,0) + L(ξ,+) + L(ξ,−), a ∈ (0,1), (2.1)

with

L(η,0)f (η, ξ) =
∑
x∈Ωε

∑
e: |e|=1

η(x)
[
f
(
ηx,x+e, ξ

)− f (η, ξ)
]
,

where, denoting by 1x the configuration with only one particle at x, ηx,x+e = η + 1x+e − 1x (same notation is used
for ξ configurations).

L(ξ,0)f (η, ξ) =
∑
x∈Ωε

∑
e: |e|=1

ξ(x)
[
1 − ξ(x + e)

]
1η(x+e)=0

[
f
(
η, ξx,x+e

)− f (η, ξ)
]
.

Denoting below by κ , κ ′ and κi positive coefficients, the latter non decreasing functions of i bounded by κi � c ebi ,
b and c positive constants, and writing ηx,± = η ± 1x , ξx,± = ξ ± 1x ,

L(η,+)f (η, ξ) =
∑
x∈Ωε

κη(x)
[
f
(
ηx,+, ξ

)− f (η, ξ)
]
,

L(η,−)f (η, ξ) =
∑
x∈Ωε

η(x)
(
κη(x)

(
1 − ξ(x)

)+ κη(x)+1ξ(x)
)[

f
(
ηx,−, ξ

)− f (η, ξ)
]
,

L(ξ,+)f (η, ξ) =
∑
x∈Ωε

κ ′

2d

∑
e: |e|=1

ξ(x)
[
1 − ξ(x + e)

]
1η(x+e)=0

[
f
(
η, ξx+e,+)− f (η, ξ)

]
,

L(ξ,−)f (η, ξ) =
∑
x∈Ωε

ξ(x)κη(x)+1
[
f
(
η, ξx,−)− f (η, ξ)

]
. (2.2)

The indices 0,+,− above refer respectively to displacements, births and deaths of particles, whose species is then
indicated by η and ξ . Notice that, as ε → 0, the scaling factors ε−2 and ε−2a make displacements occur on a much
faster scale than births and deaths with the η particles moving much faster than the ξ particles, because a ∈ (0,1).



260 A. De Masi et al. / Ann. I. H. Poincaré – PR 43 (2007) 257–297
L(η,0) is the generator of independent symmetric random walks on Ωε . Due to the presence of the characteristic
function 1η(x+e)=0, L(ξ,0) differs from the stirring generator

L(ξ,st)f (η, ξ) =
∑
x∈Ωε

∑
e: |e|=1

ξ(x)
[
1 − ξ(x + e)

][
f
(
η, ξx,x+e

)− f (η, ξ)
]

(2.3)

and the motion of the ξ particles is coupled under L(ξ,0) to the evolution of the η particles, this is the coupled exclusion
mentioned in the introduction.

3. Discrete reaction–diffusion equations

The limit reaction diffusion equations that we will derive, can be approximated on the lattice Ωε , by the two
equations

dU

dt
= F(U,V ),

dV

dt
= G(U,V ) (3.1)

(U(t),V (t)) = {(U(x, t),V (x, t)), x ∈ Ωε , t � 0}, F = F(U,V ) and G = G(U,V ) being given by

F(U,V ) = ε−2�U + κU − F−
1 (U) − F−

2 (U)V, (3.2)

G(U,V ) = e−Uε−2a�V + κ ′V (1 − V ) e−U − V G−(U) (3.3)

with � the discrete Laplacian on Z
d , �f (x) = ∑d

i=1[f (x + ei) + f (x − ei) − 2f (x)], ei the unit vector along the
positive ith coordinate direction,

F−
1 (U) = e−U

∑
i�0

Ui

i! iκi , F−
2 (U) = e−U

∑
i�0

Ui

i! i[κi+1 − κi], G−(U) = e−U
∑
i�0

Ui

i! κi+1.

In Section 6 we will rewrite (3.1) in un-stretched coordinates, x → εx, Ωε → Ω ∩ εZ
d and ε−2� → � and its limit

behavior as ε → 0 will become more transparent. (3.2) and (3.3) are obtained by averaging the rates of change of η(·)
and ξ(·) using products of Poisson measures for the η’s and product measures for the ξ ’s with parameters depending
on U and V .

Our aim is to prove closeness between (3.1) and the particles process of the previous section. Of course there is
no chance that ηt and ξt are pointwise close to U(t) and V (t) as the former are truly random variables. However
by taking empirical averages we can dampen the statistical fluctuations. We will thus introduce suitable functions
(u(x, η), v(x, ξ)), x ∈ Ωε , defined as convolutions with suitable kernels of the original η and ξ variables, and compare
their evolution with the orbits (U(t),V (t)) of (3.1). An important step in this direction will be a comparison between
the generator L and the generator D associated to (3.1), D being the transport operator with domain the space of all
functions ψ(U,V ) which are differentiable in all U(x) and V (x), and which is defined as

D = F
∂

∂U
+ G

∂

∂V
≡

∑
x∈Ωε

F (x)
∂

∂U(x)
+ G(x)

∂

∂V (x)
, (3.4)

where F(x) and G(x) are F(U,V ) and G(U,V ) computed at x. Thus if h = h(U,V ), Dh(U,V ) is the t-derivative
of h(U(t),V (t)) at t = 0, where U(t),V (t) is the solution of (3.1) starting at U,V . D(η,0), D(ξ,0) and so forth are
defined by decomposing D in the same way we did for L in the previous section and we will compare D(η,0) with
L(η,0) and so on.

4. Mesoscopic variables

We denote by πt the semigroup

πt = et� (4.1)

with � the discrete Laplacian on Ωε , so that the kernel πt (x, y) is the probability that a simple random walk which
jumps with intensity 2d with equal probability on its n.n. sites, reaches y at time t having started from x at time 0.
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With α < 1 and β < a positive parameters whose value will be specified at the end of this section, we shorthand

u(η) = pα ∗ η, v(ξ) = qβ ∗ ξ, pα = πε−2+2α , qβ = πε−2a+2β , (4.2)

where if p = p(x, y) is a kernel on Ωε and f = f (x) a function on Ωε we denote by p ∗f the function on Ωε defined
by p ∗ f (x) = ∑

y∈Ωε
p(x, y)f (y). We will denote by u(x,η) and v(x, ξ) the values at x of the functions u and v

defined in (4.2) and use throughout the paper the notation:

〈f,g〉 = εd
∑
x∈Ωε

f (x)g(x), ‖f ‖2 = 〈f,f 〉.

The key for proving closeness between (u(ηt ), v(ξt )) and (U(t),V (t)) will be a proof that L acts on functions of
(u, v) approximately as D acts on functions of (U,V ) (D as in (3.4)). We will make the statement quantitative, by
studying the quantities

(L + D)‖u − U‖2, (L + D)‖v − V ‖2 (4.3)

along the trajectories of the Markov process and the solutions of (3.1). Thus if (u, v) are close to (U,V ) and L to D,
then the quantities in (4.3) will be small. The converse is (to some extent) also true, as it follows from the martingale
theory. Indeed the expressions in (4.3) are the two compensators in the martingale relations

∥∥u(ηt ) − U(t)
∥∥2 − ∥∥u(η0) − U(0)

∥∥2 =
t∫

0

(L + D)
∥∥u(ηs) − U(s)

∥∥2 ds + M1(t), (4.4)

∥∥v(ξt ) − V (t)
∥∥2 − ∥∥v(ξ0) − V (0)

∥∥2 =
t∫

0

(L + D)
∥∥v(ξs) − V (s)

∥∥2 ds + M2(t), (4.5)

where (U(s),V (s)) solves (3.1) and M1(t), M2(t) are martingales.
We will prove bounds for the two integrals on the right-hand side of (4.4) and (4.5) in terms of

∫ t

0 (‖u(ηs) −
U(s)‖2 + ‖v(ξs) − V (s)‖2)ds. We will also show that with probability going to 1 the martingales vanish in the limit
as ε → 0. All that will allow to reach an integral inequality in closed form for ‖u(ηs) − U(s)‖2 + ‖v(ξs) − V (s)‖2

and to prove that the solution vanishes in the limit ε → 0.

Choice of α and β , assumptions on a. Recall that α < 1 and β < a < 1. Let

0 < a < min

{
d

d + 2
,

d

10
,

d2

8(d + 2)

}
,

max

{
2a,

8a

d

}
< α <

d

d + 2

and
5a

17
< β < min

{
ad

d + 2
,
α

2
,

1

2d
(1 − α)

}
.

With such a choice:

• α < d/(d + 2) (see the proof of Theorem 8.2), α > 2a and α > 8a/d (see Appendix D).
• 2a < 1, 2a < (1 − α)d , β < ad/(d + 2) (see the proof of Theorem 8.3).
• β > 5a/17 and 2β < min(α, (1 − α)/d) (see the proof of Theorem 11.1).

Properties of pα and qβ . We list below some properties of pα and qβ which follow from the local central limit
Theorem and will be often used in the sequel: There is a constant c > 0 so that∑

z

ε−2
∣∣∇pα(0, z)

∣∣2 � cε−2+2(1−α)+d(1−α)
∑

z

pα(0, z)2 � cεd(1−α), (4.6)

∑∣∣∇qβ(0, z)
∣∣2 � cε2(a−β)+d(a−β), (4.7)
z
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∑
z

qβ(0, z)2 � cεd(a−β), (4.8)

∣∣∣∣∑
z

ze · ∇qβ(0, z)

∣∣∣∣� c. (4.9)

5. Choice of the initial state

In this section we choose με , the initial law of the process. It is now convenient to underline dependence on ε and
we do that by adding a superscript ε when needed. The picture we have in mind is that the η and the ξ particles move
freely (independently of each other and with no births and deaths) till a finite time t0 when the interaction is suddenly
switched on. The evolution after t0 is then ruled by the generator L. We will count times from when the interaction
starts thus setting this time equal to 0.

We fix a (ε dependent) initial configuration at time −t0, (ηε−t0
, ξ ε−t0

). Due to the general class of processes that we
are considering, it is convenient to assume that

sup
ε>0

sup
x∈Ωε

ηε−t0
(x) = C < ∞. (5.1)

We will not make other assumptions on the initial configuration, in particular we do not require any limit behavior
as ε → 0. Notice however that we will study the true process only for t � 0 so that the true initial state at time t = 0
will inherit some smoothness properties from the free evolution acting in the time interval [−t0,0]. In this sense the
dependence on ε is “natural” and not super-imposed from the exterior.

The probability με at time 0 is defined as the law at time t0 of the free process which starts from (ηε−t0
, ξ ε−t0

) and
has generator ε−2L(η,0) + ε−2aL(ξ,st), where L(η,0) is defined in (2.1) while L(ξ,st) in (2.3). It is well established in the
literature, see for instance [4], that με is a “local equilibrium measure”, namely, to leading order in ε, it is a product
of Poisson measures on the η’s and product of measures on the ξ ’s. Moreover, the averages of the η variables change
smoothly on the scale ε−1, while the scale of the ξ particles is ε−a , see Theorem 5.1 below. We define

Uε
0 (x) = με

(
uε(x, η)

)
, V ε

0 (x) = με
(
vε(x, ξ)

)
(5.2)

and denote by ∇ the lattice gradient:

e · ∇f (x) = f (x + e) − f (x), |e| = 1. (5.3)

The following theorem is proved in Appendix A for the η particles and in Appendix B for the ξ ’s.

Theorem 5.1. The initial law με of (η0, ξ0) is such that

lim
ε→0

με
(∥∥uε(η) − Uε

0

∥∥2 + ∥∥vε(ξ) − V ε
0

∥∥2)= 0, (5.4)

sup
ε>0

sup
x∈Ωε

(
Uε

0 (x) + ε−1
∣∣∇Uε

0 (x)
∣∣)< ∞, sup

ε>0
sup
x∈Ωε

ε−a
∣∣∇V ε

0 (x)
∣∣< ∞ (5.5)

with ∇ defined in (5.3).

6. Main results

We suppose the law με of (η0, ξ0) (at time 0) as specified in the previous section and denote by P ε
με and Eε

με law
and expectation of the process (ηt , ξt )t�0 with generator L which starts from με . By default, in the sequel a, α and β

satisfy the inequalities stated at the end of Section 4. In the sequel Uε and V ε denote the solutions of (3.1) with initial
data as in (5.2).

Theorem 6.1. There are a 2 × 2 matrix A with constant, positive entries and a two vector Rε(t) whose positive
components depend on (ηs, ξs)s�t , so that, for any t � 0,
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(‖uε(ηt ) − Uε(t)‖2

‖vε(ξt ) − V ε(t)‖2

)
�
(‖uε(η0) − Uε(0)‖2

‖vε(ξ0) − V ε(0)‖2

)
+

t∫
0

A

(‖uε(ηs) − Uε(s)‖2

‖vε(ξs) − V ε(s)‖2

)
ds + Rε(t), (6.1)

lim
ε→0

Eε
με

(
sup
s�t

Rε(s)
)

= 0. (6.2)

As a corollary of Theorems 5.1 and 6.1, there is C > 0 so that, for any δ > 0 and any T > 0,

lim
ε→0

P ε
με

(
sup
t�T

{∥∥uε(ηt ) − Uε(t)
∥∥2 + ∥∥vε(ξt ) − V ε(t)

∥∥2}� eCT δ
)

= 1

which proves that the random fields (uε(ηt ), v
ε(ξt )) become deterministic as ε → 0 approaching the same limit

behavior as (Uε(t),V ε(t)) which is described by a “two scale” reaction diffusion system as we are going to see.
Define

Uε
m(r, t) := Uε

(
ε−1r, t

)
, V ε

m(r, t) := V ε
(
ε−1r, t

)
, r ∈ εZ

d ∩ Ω

m standing for macroscopic as Uε
m and V ε

m are simply the old Uε and V ε re-expressed in macroscopic (un-stretched)
coordinates. (3.1) then becomes

dUε
m

dt
= �εU

ε
m + κUε

m − F−
1

(
Uε

m

)− F−
2

(
Uε

m

)
V ε

m,

dV ε
m

dt
= ε2−2a e−Uε

m�εV
ε
m + κ ′V ε

m

(
1 − V ε

m

)
e−Uε

m − V ε
mG−(Uε

m

)
, (6.3)

where �ε is the discrete Laplacian on εZ
d ∩ Ω , namely �εf (r) = ε−2 ∑d

i=1[f (r + εei) − f (r)], ei the unit vector
in the positive ith coordinate direction. It is indeed tempting by looking at (6.3) to conclude that the limit as ε → 0 is
simply obtained by putting ε = 0 in (6.3) and by replacing �ε by the true Laplacian �. Of course this requires that
�εV

ε
m is suitably bounded. This is the case if the initial law με makes V ε

m smooth. More precisely suppose that there
are smooth functions U0(r) and V0(r) such that

lim
ε→0

(∥∥Uε
m(·,0) − U0(·)

∥∥+ ∥∥V ε
m(·,0) − V0(·)

∥∥)= 0. (6.4)

In such a case (6.4) holds as well for any t > 0 with U(r, t) and V (r, t) solutions of (6.3) with ε = 0 (i.e. on the
torus with the true Laplacian) and with initial data U0(r) and V0(r). This is the same degenerate reaction–diffusion
system derived in [10], degeneracy refers to the fact that there is no Laplacian left in the equation for V . Written more
explicitly the equation for V is

dV (r, t)

dt
= κ ′V (r, t)

(
1 − V (r, t)

)
e−U(r,t) − V (r, t)G−(U(r, t)

)
. (6.5)

Here r appears as a parameter: for each r we have an ordinary differential equation depending on an “external func-
tion” U(r, t). Thus the solution at time t will be a functional of V0(r) and of U(r, s), 0 � s � t . The equation for
U(r, t) then becomes:

dU

dt
= �U + κU − F−

1 (U) − F−
2 (U)V, (6.6)

where V in (6.6) is the functional of U and V0(·) defined above.
Let us now turn to the general case of initial data as in Section 5 and drop hereafter the assumption (6.4). In such

a general setup there is no reason to expect convergence as ε → 0, but as we will see convergence can be regained by
going to subsequences without any extra assumption.

The limit evolution. As in the smooth case we have a family of equations for V parameterized by r , however for each
r we do not have an ordinary differential equation but a true PDE:

dV (r ′, t)
dt

= e−U(r,t)�V (r ′, t) + κ ′V (r ′, t)
[
1 − V (r ′, t)

]
e−U(r,t) − V (r ′, t)G−(U(r, t)

)
. (6.7)

As before the equation depends on the “external function” U(r, ·) and its solution defines a functional of U(r, ·) which
will then be inserted in the equation for U . The real question however is the initial datum for (6.7). If we suppose
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that (6.4) holds then we should supplement (6.7) with the initial condition V (r ′,0) = V0(r) for all r ′. The solution
V (r ′, t) is then independent of r ′ and we recover (6.5).

In the general case the initial datum for (6.7) is random, its distribution is given by a probability πr(dV ). The
origin of such a probability and its properties will be discussed in a while, we just mention here that πr(dV ) is the
frequency of appearance of the profile V , the statistics referring to a macroscopically small neighborhood of r . Under
the validity of (6.4) the statistics is trivial: profiles around r look more and more flat (constant) as ε → 0 so that the
limit distribution πr(dV ) is a Dirac delta on the constant function V (r ′) = V0(r). In the general setup of Section 5
oscillations on the scale ε1−a may survive and they will be described in the limit by the measure πr(dV ).

Call

W
(
r, t;U(r, ·))=

∫
V
(
r, t |V0,U(r, ·))πr(dV0), (6.8)

where V (r, t |V0,U(r, ·)) is the solution of (6.7) with initial datum V0; the solution will of course depend on U(r, s),
0 � s � t , as indicated by the notation. We would need to prove that V (r, t |V0,U(r, ·)) depends measurably on V0 so
that the integral in (6.8) is well defined and this requires some regularity properties on U . The equation for U is then,
analogously to (6.6),

dU

dt
= �U + κU − F−

1 (U) − F−
2 (U)W. (6.9)

We have to make sure that the solution of (6.9) is sufficiently regular as required earlier so that the “circle closes”.
The analysis of all such issues is a little off the purposes of this paper and we will be very sketchy and omit all

proofs. We start with the definition of the family πr(dV ) which is based on the Young theorem on Young measures.
We are thus in the setup of Section 5 and have:

Theorem 6.2. For any sequence ε′ → 0 there is a subsequence ε → 0 so that the following holds.

• There exists a bounded, Lipschitz function U0(r), r ∈ Ω , such that

lim
ε→0

sup
x∈Ωε

∣∣Uε
0 (x) − U0(εx)

∣∣= 0. (6.10)

• For each r ∈ Ω , there is a translational invariant probability measure πr on the space of [0,1]-valued functions
V on R

d which are uniformly Lipschitz, such that for any positive integer n, any smooth function F on R
n and

any test functions φ, φi , i = 1, . . . , n,
∫

F(. . . , φi ∗ V (0), . . .)πr(dV ) is a measurable function of r and

lim
ε→0

εd
∑
x∈Ωε

φ(εx)F

(
. . . , εad

∑
y

φi

(
εay

)
V ε

0 (x + y), . . .

)
=
∫
Ω

φ(r)

∫
F
(
. . . , φi ∗ V (0), . . .

)
πr(dV ).

(6.11)

In the sequel we will study the limit as ε → 0 of the process (uε(ηt ), v
ε(ξt ))t�0 along a subsequence which

converges at time 0 in the sense of Theorem 6.2 and ε → 0 will always mean “limit along such a subsequence”.

Theorem 6.3. There is a unique smooth function U(r, t) which solves (6.9) with W as in (6.8). Moreover, if a, α and
β are as in Theorem 6.1, then for any t and δ positive, any positive integer n, any bounded, smooth function F on R

n+
and any test functions φ,φ1, . . . , φn,

lim
ε→0

εd
∑
x∈Ωε

φ(εx)Uε(x, t) =
∫
Ω

φ(r)U(r, t)dr,

lim
ε→0

εd
∑
x∈Ωε

φ(εx)F

(
. . . , εad

∑
y

φi

(
εay

)
V ε(x + y, t), . . .

)
=
∫
Ω

φ(r)

∫
F
(
. . . , φi ∗ V (0, t), . . .

)
πr(dV ).
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7. Scheme of proof

The proof of Theorem 6.1 is based on the analysis of the two martingale relations (4.4), (4.5) and it is proved in
Appendix C and Appendix F. The proof is in a sense computational, as we need to compute the “two compensators”,
namely the two integrals on the left-hand side of (4.4), (4.5). They can be written as a sum of many terms and the
whole matter of the proof is to show that they fall in two categories. The first one is made by elements which are
bounded by time integrals of ‖uε(ηt )−Uε(t)‖2 or ‖vε(ηt )−V ε(t)‖2, multiplied by coefficients which are uniformly
bounded. These terms then contribute to the integral in (6.1). All the other terms must be proved to vanish as ε → 0,
so that they contribute to the error term Rε(t) in (6.1). Some of the estimates are straightforward but others are not
trivial. The conceptually more delicate and interesting problems which arise are “anticipated” and given in the next
sections, we outline in this section their typology and the way they can be analyzed.

A common feature to the analysis of all terms, is to control the large values of the variables η. A-priori L∞ bounds
are derived in Section 8, where we show uniform in ε integrability of exponential moments ebηt (x), for any b > 0. The
result is quite standard as the process can be stochastically bounded by one having only linear births. More subtle is
another bound that we use extensively in the proofs, namely that the probability that uε(x, ηt ) exceeds a suitably large
value M = M(t) (but independent of ε) vanishes as ε → 0. The proof of these statements is given in Appendix A,
where we also recall from the literature results on independent random walks and random walks with independent
branchings.

The other general ingredient, common to many of the proofs, is regularity in space of uε and vε . In Section 8 we
prove H 2

1 bounds uniform in ε which are obtained by mimicking the PDE proofs for the limit equations. Besides
regularity in space we also need regularity in time of uε . A result, maybe not optimal, but good enough for our
applications, is proved in Section 9.

Such regularity estimates are the main subroutines we use to bound the “two compensators” (4.4) and (4.5). The
detailed classification of all the terms which appear when computing explicitly the two compensators is reported in
Appendix C. This is just some simple, but lengthy algebra, not at all deep, but necessary for the proof of Theorem 6.1,
the compromise was to shift the computations to an appendix. Most of the terms in this expansion can be directly
bounded using the boundedness and regularity estimates mentioned above, the bounds being uniform in ε and over
compact time intervals. There are however some terms which do not fit in such an “easy class”. The origin of the
problem is the typical one found when deriving non linear hydrodynamical equations, where one needs to identify
averages of non linear microscopic observables in terms of the parameters of the limit equation: in our case we find
local functions of ηt and of ξt and we need to express them in terms of (generally different) functions of uε(ηt ) and
vε(ξt ), (which is easy if the functions are linear). The crucial point is that these non linear terms appear in the form of
time and space averages and we will solve the problem by proving local ergodic properties of the process, reminiscent
of the well known “one block estimates” in the theory of hydrodynamic limits. The “two block estimates” are here
replaced by the H 2

1 regularity already mentioned. The one block estimates are not proved using Dirichlet forms, but
closeness of the process in short time intervals to a process with no deaths and births. The main difficulty here is that
the ξ process reminds of but it is not the stirring process, because the ξ particles are allowed to jump only on sites
where no η particles are present. The local ergodic averages for the η particles are easier to study, their analysis is
reported in Section 10. The result for the ξ particles is instead given in Section 11. The core of the proof is to show
a homogenization property for which the ξ particles move feeling to main order only the empirical average of the η’s.
The real difficulty is to prove that such a property extends to such long times for the stirring to reach local equilibrium.

8. Boundedness and regularity in space

In this section we will prove L∞ and H 2
1 a priori bounds which will be extensively used in the proofs of Theo-

rem 6.1. We start from the former, which are uniform bounds on the expectations of ηt and uε(ηt ):

Theorem 8.1. There is a constant C′ so that for any b > 0 and any t � 0

sup sup Eε
με

(
ebηt (x)

)
� exp

{[
eb − 1

]
e2κtC′}, (8.1)
ε>0 x∈Ωε
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κ as in (2.2). Moreover, for any τ > 0 there are M and c so that

sup
t�τ

sup
x∈Ωε

P ε
με

(
uε(x, ηt ) � M

)
� cε(1−α)d . (8.2)

Proof. Let (η+
t )t�0 be the process with generator ε−2L(η,0) + L(η,+) which starts from με . Then η+

t dominates ηt ,
namely there is a coupling between (η+

t )t�0 and the original process (ηt , ξt )t�0 (defined by the generator L, see (2.1))
such that η+

0 = η0 and η+
t (x) � ηt (x) for all x ∈ Ωε and all t > 0. By an abuse of notation we still denote by P ε

με

and Eε
με , law and expectation w.r.t. the coupled process. In Appendix A it is proved that

sup
ε>0

sup
x∈Ωε

Eε
με

(
ebη+

t (x)
)
� 2 exp

{[
eb − 1

]
eκt

(
C + 2c

√
t
)}

, (8.3)

where C is as in (5.1) and c is a constant. Since ebηt (x) � ebη+
t (x), (8.1) follows from (8.3).

In Appendix A it is also proved that

sup
t�τ

sup
x∈Ωε

Eε
με

([
uε
(
x,η+

t

)− Eε
με

(
uε
(
x,η+

t

))]2)� cε(1−α)d . (8.4)

Let M = 2 e2κτC′, then, since Eε
με (uε(x, η+

t )) � e2κtC′,

P ε
με

(
uε
(
x,η+

t

)
� M

)
� P ε

με

(∣∣uε
(
x,η+

t

)− Eε
με

(
uε
(
x,η+

t

))∣∣� e2κτC′)
so that

P ε
με

(
uε
(
x,η+

t

)
� M

)
� 4c

M2
ε(1−α)d . (8.5)

Since uε(x, ηt ) � uε(x, η+
t ), (8.2) follows from (8.5). �

We will next prove bounds on the H 2
1 norm of uε , which will play the role of the “two blocks estimates” in the

language of hydrodynamic limit theory. Before stating definition and results, let us recall how similar bounds are
obtained for the heat equation ut = �u in the unit torus Ω . The “entropy”

∫
Ω

u2 dr gives

∫
Ω

u2(t)dr −
∫
Ω

u2(0)dr = −2

t∫
0

∫
Ω

|∇u|2 dr.

Then, supposing
∫
Ω

u2(0)dr < ∞, for any t > 0,

t∫
0

∫
Ω

|∇u|2 dr <
1

2

∫
Ω

u2(0)dr.

The proof of Theorem 8.2 below mimics the above argument, but let us first introduce some notation and definitions
which translate to the lattice the analogous notions in the continuum. If f is a function on Ωε , we write

‖f ‖2
H 2

1
:= ε−2‖∇f ‖2 (8.6)

with ∇f the lattice gradient of f , which has been defined in (5.3). We also recall that the same rules as in the
continuum hold as well for the discrete gradient and Laplacian. Namely, denoting by E+ the set of unit vectors e

with positive components, we have, recalling (5.3) for notation and resisting to the temptation of writing (−e) · ∇f =
−(e · ∇f ), which is false,

�f (x) =
∑
e∈E+

[
(−e) · ∇ + e · ∇]

f (x) = −
∑
e∈E+

{
(−e) · ∇}{

(e · ∇)
}
f (x), (8.7)

〈g, e · ∇f 〉 = 〈
(−e) · ∇g,f

〉
, 〈g,�f 〉 = −〈∇g,∇f 〉, (8.8)

the last equality following from the second one in (8.7) and the first one in (8.8).
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Theorem 8.2. For any t > 0, there is c so that

sup
ε>0

Eε
με

( t∫
0

∥∥uε(ηs)
∥∥2

H 2
1

ds

)
� c. (8.9)

Proof. We start from the martingale relation:

∥∥uε(ηt )
∥∥2 = ∥∥uε(η0)

∥∥2 +
t∫

0

L
∥∥uε(ηs)

∥∥2 ds + Mε
t , Eε

με

(
Mε

t

)= 0. (8.10)

After a simple computation which exploits the fact that discrete gradient and Laplacian satisfy the same relations as
in the continuum, see (8.7), (8.8),

ε−2L(η,0)
∥∥uε

∥∥2 = −2
∥∥uε

∥∥2
H 2

1
+ Rε

1(η),

Rε
1(η) = 2εd

∑
x,z

ε−2
∣∣∇pα(x, z)

∣∣2η(z), (8.11)

L(η,+)
∥∥uε

∥∥2 = 2κ
∥∥uε

∥∥2 + Rε
2(η), L(η,−)

∥∥uε
∥∥2 � Rε

5(η, ξ),

Rε
2(η) = κεd

∑
x

∑
z

pα(x, z)2η(z), (8.12)

Rε
5(η, ξ) = εd

∑
x

∑
z

pα(x, z)2η(z)
[
κη(z) + ξ(z)(κη(z)+1 − κη(z))

]
(8.13)

(the seemingly random labelling of the remainder terms Rε
i is for “historical reasons”). By taking the expectation

in (8.10),

2Eε
με

( t∫
0

∥∥uε(ηs)
∥∥2

H 2
1

ds

)
� Eε

με

(∥∥uε(η0)
∥∥2)+ Eε

με

( t∫
0

Rε
1(ηs) + Rε

2(ηs) + Rε
5(ηs, ξs) + 2κ

∥∥uε(ηs)
∥∥2 ds

)
.

(8.14)

By (8.1) there is c1 = c1(t), independent of ε, so that the right-hand side of (8.14) is bounded by c1(1 +∑
z[ε−2|∇pα(0, z)|2 + pα(0, z)2]). By (4.6) it vanishes as ε → 0 because of the assumption α < d/(d + 2) and (8.9)

is proved. �
We have a H 2

1 bound for vε as well, see Theorem 8.3 below, but we need first the following corollary of Theo-
rem 8.2:

Corollary 8.1. For any z ∈ Ωε and t > 0

t∫
0

εd
∑
x∈Ωε

∣∣uε(x + z, ηs) − uε(x, ηs)
∣∣� √

tdε|z|
( t∫

0

∥∥uε(ηs)
∥∥2

H 2
1

)1/2

. (8.15)

Proof. For any z, there is “a coordinate curve” {yi}i=0,...,N such that y0 = 0, yN = z, with ei := yi+1 − yi ,
i = 0, . . . ,N − 1, a unit vector, and

∑ |ei | = |z1| + · · · + |zd |, having denoted by zi the ith component of z. Then,
recalling (5.3) for notation,

uε(x + z, η) − uε(x, η) =
∑

i

ei · ∇uε(x + yi, η).

Hence
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εd
∑
x∈Ωε

∣∣uε(x + z, η) − uε(x, η)
∣∣�∑

i

εd
∑
x∈Ωε

∣∣ei · ∇uε(x + yi, η)
∣∣

�
√

d

(∑
i

εd
∑
x∈Ωε

∣∣ei · ∇uε(x + yi, η)
∣∣2)1/2

�
√

d ε|z|∥∥uε(η)
∥∥

H 2
1

(8.16)

and (8.15) follows by Cauchy–Schwartz. �
Theorem 8.3. For any t > 0 there is c so that

sup
ε>0

Eε
με

( t∫
0

ε−2a
∥∥∇vε(ξs)

∥∥2 ds

)
� c. (8.17)

Proof. We will often use the following inequality:∣∣∇e−f
∣∣� |∇f |, if f � 0. (8.18)

To prove the theorem, we start once again from a martingale relation:

∥∥vε(ξt )
∥∥2 = ∥∥vε(ξ0)

∥∥2 +
t∫

0

L
∥∥vε(ξs)

∥∥2 ds + Mε
t , Eε

με

(
Mε

t

)= 0. (8.19)

We have that

ε−2aL(ξ,0)
∥∥vε

∥∥2 = 2ε−2aT ε + 2Sε + 2Cε + Rε
4,

where

Sε(ξ, η) =
∑

e: |e|=1

εd
∑
x

vε(x)ε−2a
∑

z

[
e · ∇qβ(x, z)

]
ξ(z)

(
1 − ξ(z + e)

)[
1η(z+e)=0 − e−uε(z+e)

]
,

Cε(ξ, η) = ε−2a
∑

e: |e|=1

εd
∑
x

vε(x)
∑

z

ξ(z)
(
1 − ξ(z + e)

)[
e−uε(z+e) − e−uε(x)

]
e · ∇qβ(x, z),

Rε
4(ξ, η) = ε−2a

∑
e: |e|=1

εd
∑
x

∑
z

ξ(z)
(
1 − ξ(z + e)

)
1η(z+e)=0

(
e · ∇qβ(x, z)

)2
. (8.20)

Finally, (below E+ is the set of unit vectors in Z
d with non negative components)

T ε := εd
∑
x

vε(x) e−uε(x)
∑

e: |e|=1

∑
z

ξ(z)
(
1 − ξ(z + e)

)[e · ∇]qβ(x, z)

= εd
∑
x

vε(x) e−uε(x)
∑
e∈E+

∑
z

ξ(z)
[
(−e) · ∇ + e · ∇]

qβ(x, z)

− εd
∑
x

vε(x) e−uε(x)
∑
e∈E+

{∑
z

[
ξ(z)ξ(z − e)

[
(−e) · ∇]

qβ(x, z) + ξ(z)ξ(z + e)[e · ∇]qβ(x, z)
]}

.

By (8.7), in the last term the quantity in curly brackets is zero, while for the first one we have that
∑

e∈E+
∑

z ξ(z) ·
[(−e) · ∇ + e · ∇]qβ(z − x) = �vε(x). Thus

ε−2aL(ξ,0)
∥∥vε

∥∥2 = 2ε−2a
〈
vε, e−uε

�vε
〉+ 2Sε + 2Cε + Rε

4 .

The proof that limε→0 | ∫ t

0 Eε
με (Sε(ξs, ηs)ds)| = 0 follows from Theorem 10.1 below (details are left to Appendix D).

We will use the present theorem only after Theorem 10.1, so that there is no circularity in our arguments.
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By Corollary 8.1, Theorem 8.2, (8.18) and (4.9) we then have∣∣∣∣∣
t∫

0

Eε
με

(
Cε(ξs, ηs)

)
ds

∣∣∣∣∣� cε1−2a.

By (4.7),∣∣Rε
4(ξ, η)

∣∣� cε−2a+2(a−β)+d(a−β) (8.21)

which also vanishes in the limit ε → 0 because of the assumption β < d
d+2a. Let χM = {χM,x(s), x ∈ Ωε} where

χM,x(s) denotes the characteristic function of {uε(x, ηs) � M}. We use the integration by parts formula (8.8) to write

2ε−2a
〈
e−uε

vε,�vε
〉
� −2ε−2a e−M

∥∥∇vε
∥∥2 +Rε

5 +Rε
6,

where

Rε
5 = −2ε−2a

〈
vε
(∇e−uε )

,∇vε
〉
, Rε

6 = −2ε−2a
〈[1 − χM ]∇vε,

(
e−uε − e−M

)∇vε
〉
. (8.22)

By (8.9), (8.18) and Corollary 8.1, since |vε | � 1, |∇vε | � 2d

t∫
0

∣∣Rε
5

∣∣� cε1−2a.

By (8.2), we have

sup
s�t

Eε
με

(∣∣Rε
6(ξs, ηs)

∣∣)� cεd(1−α)−2a.

We next observe that L(ξ,+)‖vε‖2 � 2κ ′‖vε‖2 + Rε
8 and L(ξ,−)‖vε‖2 � Rε

9, where

Rε
8 = κ ′εd

∑
x

1

2d

∑
e: |e|=1

∑
z

qβ(x, z + e)2ξ(z)
[
1 − ξ(z + e)

]
1η(z+e)=0, (8.23)

Rε
9 = εd

∑
x

∑
z

qβ(x, z)2ξ(z)κη(z)+1. (8.24)

By (4.8) and since κn � cebn, then, by (8.1), also R8 and R9 give a vanishing contribution. We have therefore proved
that there is a positive function ϕε(t) → 0 as ε → 0 such that

t∫
0

Eε
με

(
L(ξ)

∥∥vε(ξs)
∥∥2)ds � −2ε−2a e−M

t∫
0

Eε
με

(∥∥∇vε(ξs)
∥∥2 + 2κ ′∥∥vε(ξs)

∥∥2)ds + ϕε(t). (8.25)

Thus from (8.19) and (8.25) we get

e−MEε
με

( t∫
0

ε−2a
∥∥∇vε(ξs)

∥∥2 ds

)
� Eε

με

(∥∥vε(ξ0)
∥∥2)+ κ ′t + ϕε(t).

Theorem 8.3 is proved. �
We conclude the section with the following corollary of Theorem 8.2, which will be needed in the computation of

the compensators (4.3).

Corollary 8.2. For any t > 0 there is �C so that

sup
ε>0

sup
x∈Ωε

sup
s�t

∣∣Uε(x, s)
∣∣� �C. (8.26)

Furthermore for any t > 0 there is c so that for any s � t
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〈[
vε(ξs) − V ε(s)

]
,
[
e−uε(ηs) − e−Uε(s)

]
ε−2a�V ε(s)

〉
� e−�C

10
ε−2a

∥∥∇{
vε(ξs) − V ε(s)

}∥∥2 + c
(∥∥uε(ηs) − Uε(s)

∥∥2 + ∥∥vε(ξs) − V ε(s)
∥∥2

+ ε2−2a
{∥∥uε(ηs)

∥∥2
H 2

1
+ ∥∥Uε(s)

∥∥2
H 2

1

})
. (8.27)

Proof. Since Uε and V ε are solutions of (3.1) with initial data which satisfy (5.5), by “standard arguments” (8.26) is
verified and for any t there is C so that

sup
ε>0

sup
x∈Ωε,s�t

ε−a
∣∣∇V ε(x, s)

∣∣= C < ∞.

Then, by (8.8)〈[
vε − V ε

]
,
[
e−uε − e−Uε ]

ε−2a�V ε
〉
� C

(〈
ε−a

∣∣∇{
vε − V ε

}∣∣, ∣∣e−uε − e−Uε ∣∣〉
+ 〈∣∣vε − V ε

∣∣, ε−a
∣∣∇{

e−uε − e−Uε}∣∣〉).
Since |e−uε − e−Uε | � |uε − Uε |, using the inequality 2|db| � δd2 + δ−1b2, with b = |uε − Uε |, d = ε−a|∇{vε −
V ε}|, and δ = e−�C(5C)−1, we get

〈[
vε − V ε

]
,
[
e−uε − e−Uε ]

ε−2a�V ε
〉
� e−�C ε−2a

10

∥∥∇{
vε − V ε

}∥∥2 + e
�C(5C2)∥∥uε − Uε

∥∥2

+ C

(∥∥vε − V ε
∥∥2 + ε−2a

2

∥∥∇uε
∥∥2 + ε−2a

2

∥∥∇Uε
∥∥2
)

having also used (8.18). Recalling the definition of ‖f ‖H 2
1

in (8.6) we then get (8.27). �
9. Regularity in time

Besides regularity in space, we will also need estimates on the regularity of uε(x, ηt ) as a function of the time t .
This is needed in Section 11 and Appendix D, and the statement we will prove here is just what is used in the sequel,
with no aim at generality. We denote by P ε

ηt ,ξt
and Eε

ηt ,ξt
, conditional law and expectation of the process (ηs, ξs)s�t ,

given the state (ηt , ξt ) at time t .

Theorem 9.1. For any τ and γ positive, with 2γ < (1 − α)d , there is c so that for any t � τ , ε > 0, x ∈ Ωε and any
s ∈ (t, t + ε2γ ]

Eε
με

(∣∣uε(x, ηs) − π(s−t)ε−2 ∗ uε(x, ηt )
∣∣)� cε2γ , (9.1)

where π is defined in (4.1) and π(s−t)ε−2 ∗ uε(x, ηt ) =∑
y π(s−t)ε−2(x, y)uε(y, ηt ).

Proof. We define an auxiliary process (θs, ξs)s�t , θs = (η
(F,a)
s , η

(F,d)
s , η

(b)
s ), and the following random variables on

this process,

ηs := η(F,a)
s + η(b)

s , η(F )
s := η(F,a)

s + η(F,d)
s . (9.2)

The main point of the definition will be that (ηs, ξs)s�t has the same law as the process of Section 2 with generator L,

while η
(F)
s has the law of the independent process with generator ε−2L(η,0). The η

(F,a)
s particles are called free and

alive; η
(F,d)
s free but dead; η

(b)
s newly born, which already hints at the way the whole process will be defined. We set

η
(F,d)
t = η

(b)
t = 0, so that ηt = η

(F,a)
t . The process (θs, ξs) at times s � t is defined in terms of the generator L̃ which

we set equal to L̃ = L1 + L(ξ), with L(ξ) as in Section 2 (reading η = η(F,a) + η(b)). L1 is ε−2L
(0)
1 + L

(+)
1 + L

(−)
1 .

L
(0)
1 is the generator of independent motion for the three types of η particles.

L
(+)
1 f (θ, ξ) =

∑
κη(x)

[
f (θ + 1x,b, ξ) − f (θ, ξ)

]
,

x∈Ωε
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where 1x,b , 1x,(F,d) and 1x,(F,a) below are the configurations with only one particle at x respectively of type b, (F, d)

and (F, a);

L
(−)
1 f (θ, ξ) =

∑
x∈Ωε

η(x)
(
κη(x)

(
1 − ξ(x)

)+ κη(x)+1ξ(x)
)

× {
1η(b)(x)=0

[
f (θ − 1x,(F,a) + 1x,(F,d), ξ) − f (θ, ξ)

]+ 1η(b)(x)>0

[
f (θ − 1x,b, ξ) − f (θ, ξ)

]}
.

It is then easy to check that (ηs, ξs) is our original process and η(F) is the independent process.
By an abuse of notation we still denote by Eε

με the expectation relative to the process which after time t has

generator L̃. Then, using (9.2),

Eε
με

(∣∣uε(x, ηs) − π(s−t)ε−2 ∗ uε(x, ηt )
∣∣)

� Eε
με

(∣∣uε
(
x,η(F )

s

)− π(s−t)ε−2 ∗ uε(x, ηt )
∣∣)+ Eε

με

(
uε
(
x,η(b)

s

)+ uε
(
x,η(F,d)

s

))
.

Recalling that uε(x, η
(b)
t ) = uε(x, η

(F,d)
t ) = 0, by (A.6),

Eε
με

(
uε
(
x,η(b)

s

)+ uε
(
x,η(F,d)

s

))
=

s∫
t

∑
y

π(s−s′)ε−2(x, y)Eε
με

((
L

(+)
1 + L

(−)
1

){
uε
(
y,η

(b)

s′
)+ uε

(
y,η

(F,d)

s′
)})

. (9.3)

Since (
L

(+)
1 + L

(−)
1

)
uε
(
y,η(b)

)
� κuε(y, η),(

L
(+)
1 + L

(−)
1

)
uε
(
y,η(F,d)

)
�
∑

z

pα(y, z)η(z)κη(z)+1

by Theorem 8.1 there is c = c(t) such that

Eε
με

(∣∣uε(x, ηs) − π(s−t)ε−2 ∗ uε(x, ηt )
∣∣)� Eε

με

(∣∣uε
(
x,η(F )

s

)− π(s−t)ε−2 ∗ uε(x, ηt )
∣∣)+ cε2γ . (9.4)

Let

η̃s(y) = η(F)
s (y) − π(s−t)ε−2 ∗ ηt (y)

then

uε
(
x,η(F )

s

)− π(s−t)ε−2 ∗ uε(x, ηt ) = pα ∗ η̃s(x)

and, by Cauchy–Schwartz and (4.6), the square of the first term on the right-hand side of (9.4) is bounded by

Eε
με

(∣∣pα ∗ η̃s(x)
∣∣2)= Eε

με

(∑
y

p2
α(x, y)η̃s(y)2

)
� c′ε(1−α)d (9.5)

because Eε
ηt ,ξt

(η̃s(y)η̃s(z)) = 0 for z �= y by (A.5)–(A.7). The last inequality in (9.5) follows from Theorem 8.1. By
assumption, (1 − α)d > 2γ and this concludes the proof of the theorem. �
10. Local ergodic theorems

In this section we will prove local equilibrium in the spirit of the so called “Gibbs–Boltzmann principle” [3], and
“one block estimate” [8], in the hydrodynamic limit literature. The question concerns time averages and the aim is to
prove closeness to equilibrium expectations with parameters determined by local empirical means (local equilibrium).
This can be reduced (the details are in Appendix D) to a proof of decay of time correlations, which is the content of
Theorems 10.1 and 10.2 below, for some bounded and unbounded local functions of ηt .

Theorem 10.1. For any τ > 0 there is c so that for any ε > 0, x, y ∈ Ωε , |x − y| � ε−1+α/2 and t � τ ,∣∣Eε
με

({
1η

t+ε2α (x)=0 − e−uε(x,ηt )
}{

1η
t+ε2α (y)=0 − e−uε(y,ηt )

}) ∣∣� cε2α. (10.1)
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Proof. The proof uses the same auxiliary process introduced in the beginning of the proof of Theorem 9.1,
to which we refer for notation. To compute the expectation we shorthand 1z,> = 1

η
(F,d)

t+ε2α (z)+η
(b)

t+ε2α (z)>0
and since

η
(F)

t+ε2α = η
(F,a)

t+ε2α + η
(d)

t+ε2α and ηt+ε2α = η
(F,a)

t+ε2α + η
(b)

t+ε2α , see (9.2),

{
η

(F)

t+ε2α (z) �= ηt+ε2α (z)
}⊂ {

η
(F,d)

t+ε2α (z) + η
(b)

t+ε2α (z) > 0
}
. (10.2)

Since Eε
με (1z,>) � Eε

με (η
(F,d)

t+ε2α (z) + η
(b)

t+ε2α (z)) and since the curly brackets in (10.1) have absolute value � 1,

l.h.s. of (10.1) �
∣∣Eε

με

({
1
η

(F)

t+ε2α (x)=0
− e−uε(x,ηt )

}{
1
η

(F)

t+ε2α (y)=0
− e−uε(y,ηt )

})∣∣
+ ∣∣Eε

με

(
η

(F,d)

t+ε2α (x) + η
(b)

t+ε2α (x) + η
(F,d)

t+ε2α (y) + η
(b)

t+ε2α (y)
)∣∣. (10.3)

Recalling that by definition η
(F,d)
t = η

(b)
t = 0, then, similarly to (9.3),

Eε
με

(
η

(F,d)

t+ε2α (z) + η
(b)

t+ε2α (z)
)
� cε2α (10.4)

and (10.3) yields

l.h.s. of (10.1) �
∣∣Eε

με

({
1
η

(F)

t+ε2α (x)=0
− e−uε(x,ηt )

}{
1
η

(F)

t+ε2α (y)=0
− e−uε(y,ηt )

})∣∣+ cε2α.

Call ηt,x(z) = ηt (z)1|z−x|�ε−1+α/2/4 and η
(F)

t+ε2α,x
the free evolution starting from ηt,x . ηt,y and η

(F)

t+ε2α,y
are defined

analogously.∣∣Eε
με

({
1
η

(F)

t+ε2α (x)=0
− e−uε(x,ηt )

}{
1
η

(F)

t+ε2α (y)=0
− e−uε(y,ηt )

})∣∣
�
∣∣Eε

με

({
1
η

(F)

t+ε2α,x
(x)=0

− e−uε(x,ηt,x )
}{

1
η

(F)

t+ε2α,y
(y)=0

− e−uε(y,ηt,y )
})∣∣

+ Eε
με

({ ∑
|z−x|>ε−1+α/2/4

ηt (z)πε−2+2α (z, x)

})
+ Eε

με

({ ∑
|z−y|>ε−1+α/2/4

ηt (z)πε−2+2α (z, y)

})
.

Then, by Theorem 8.1 and classical properties of single random walks, there are positive constants c and c′ so that∣∣Eε
με

({
1
η

(F)

t+ε2α (x)=0
− e−uε(x,ηt )

}{
1
η

(F)

t+ε2α (y)=0
− e−uε(y,ηt )

})∣∣
�
∣∣Eε

με

({
1
η

(F)

t+ε2α,x
(x)=0

− e−uε(x,ηt,x )
}{

1
η

(F)

t+ε2α,y
(y)=0

− e−uε(y,ηt,y )
})∣∣+ c e−c′ε−α

.

The conditional expectation given ηt of the product of the two curly brackets factorizes and

P ε
ηt

({
η

(F)

t+ε2α,x
(x) = 0

})=
∏

|z−x|�ε−1+α/2/4

(
1 − πε−2+2α (z, x)

)ηt (z)

= exp

{ ∑
|z−x|�ε−1+α/2/4

ηt (z) log
[
1 − πε−2+2α (z, x)

]}

= e−uε(x,ηt,x )(1+Rx),

|Rx | � cε(1−α)d .

An analogous bound holds when x is replaced by y, so that the left-hand side of (10.1) is bounded by∣∣Eε
με

({
e−uε(x,ηt,x )(1+Rx) − e−uε(x,ηt,x )

}{
e−uε(y,ηt,y )(1+Ry) − e−uε(y,ηt,y )

})∣∣+ cε2α.

We distinguish uε(x, ηt,x) > M and uε(x, ηt,x) � M . The contribution of the former is bounded using Theorem 8.1,
while in the latter case we bound by (8.18) |e−uε(x,ηt,x )(1+Rx) − e−uε(x,ηt,x )| � M|Rx |. Same procedure is used for the
term with y, thus concluding the proof of (10.1) because (1 − α)d > 2α. �



A. De Masi et al. / Ann. I. H. Poincaré – PR 43 (2007) 257–297 273
Denoting by Pρ and Eρ law and expectation w.r.t. the product of identical Poisson measures with mean ρ > 0,
given a function g = g(n), n ∈ N, we shorthand

fε

(
ηt , ηt+ε2α (x), ηt+ε2α (y)

) := 1uε(x,ηt )�M,uε(y,ηt )�M

{
g
(
ηt+ε2α (x)

)− Euε(x,ηt )(g)
}

× {
g(ηt+ε2α (y)) − Euε(y,ηt )(g)

}
(10.5)

with M as in (8.2).

Theorem 10.2. With the notation of (10.5), suppose g(n) � ebn, b > 0, then, for any τ > 0 there is c so that, for any
ε > 0 and t � τ ,

lim
ε→0

sup
x �=y

∣∣Eε
με

(
fε

(
ηt , ηt+ε2α (x), ηt+ε2α (y)

))∣∣= 0.

Proof. By (10.2) and (10.4), using Cauchy–Schwartz,∣∣Eε
με

(
fε

(
ηt , ηt+ε2α (x), ηt+ε2α (y)

))− Eε
με

(
fε

(
ηt , η

(F )

t+ε2α (x)η
(F )

t+ε2α (y)
))∣∣

� Eε
με

(
f 2

ε

)1/2
cεα � c′εα. (10.6)

The last inequality uses first that the functions 1uε(z,ηt )�MEuε(z,ηt )(g), z = x, y, are bounded and then Theorem 8.1

(as f 2
ε is exponentially bounded). By (10.6) we are then reduced to the analysis of Eε

με (fε(ηt , η
(F )

t+ε2α (x)η
(F )

t+ε2α (y)))

where the process after t is free.
To simplify the computations, it is now convenient to expand g in Poisson polynomials. Referring to Appendix A

for definitions and properties, we recall here that the Poisson polynomial of order n, denoted by dn(·) and defined
in (A.1), is such that Eu(dn) = un. By (A.3) (and recalling that g(n) � ebn),

g
(
η(x)

)=
∞∑

n=0

an

n! dn

(
η(x)

)
, |an| � |eb + 1|n. (10.7)

For any ω ∈ N
Ωε , let Dω(η) =∏

z∈Ωε
dω(z)(η(z)), call

ψn

(
ηt+ε2α (z)

)= dn

(
ηt+ε2α (z)

)− u(z, ηt )
n

and denote by Eε
ηt ,ξt

the conditional expectation given ηt , ξt at time t . By (A.5)

Eε
ηt ,ξt

(
ψn

(
η

(F)

t+ε2α (x)
)
ψm

(
η

(F)

t+ε2α (y)
))

=
∑

ω′
n,ω′

m

π
(0)

ε−2+2α

(
ωn,x,ω

′
n

)
π

(0)

ε−2+2α

(
ωm,y,ω

′
m

){
Dω′

n+ω′
m
(ηt ) + uε(x, ηt )

nuε(y, ηt )
m

− Dω′
n
(ηt )u

ε(y, ηt )
m − Dω′

m
(ηt )u

ε(x, ηt )
n
}
, (10.8)

where ωk,z is the configuration with k particles at z and π
(0)
t (ω,ω′) is the kernel of etL(η,0)

. By (A.10), there is c(t)

bounded on the compacts, so that calling Aε,t (n) = c(t)n[1 + n!εn1n�ε−1],∣∣Eε
με

(
1uε(x,ηt )�M,uε(y,ηt )�Mψn

(
η

(F)

t+ε2α (x)
)
ψm

(
η

(F)

t+ε2α (y)
))∣∣

� Aε,t (n + m) + Aε,t (n)Mm + Aε,t (m)Mn + Mn+m.

Thus, recalling (10.7), given any δ > 0 there is N so that∣∣Eε
με

(
f
(
ηt , η

(F )

t+ε2α (x)η
(F )

t+ε2α (y)
))

−
∑

n�N, m�N

anam

n!m! Eε
με

(
1uε(x,ηt )�M,uε(y,ηt )�Mψn

(
η

(F)

t+ε2α (x)
)
ψm

(
η

(F)

t+ε2α (y)
))∣∣� δ.

Theorem 10.2 will then follow from showing that for any fixed N ,
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lim
ε→0

sup
x �=y

sup
n,m�N

∣∣Eε
με

(
1uε(x,ηt )�M,uε(y,ηt )�Mψn

(
η

(F)

t+ε2α (x)
)
ψm

(
η

(F)

t+ε2α (y)
))∣∣= 0. (10.9)

The proof of (10.9) is reported at the end of Appendix A; it is based on a cancellation on the right-hand side of (10.8).
The cancellation involves the terms which appear when ω′

n and ω′
m are such that ω′

n(x), ω′
m(x) and ω′

n(x) + ω′
m(x)

are all � 1 for all x ∈ Ωε . The other terms involved in the cancellation are the non diagonal terms in the expansions
of uε(z, ηt )

k , k = n,m, z = x, y (recall the definition (4.2) of uε as a sum of terms). All the terms mentioned above
cancel with each other exactly and, in Appendix A, it is proved that the contribution of all the other terms vanishes
proportionally to a positive power of ε. The proportionality coefficient has a “bad dependence” on N , but since N is
held fixed as ε → 0, this does not give problems. �
11. Homogenization and convergence to the stirring process

In this section we will prove that the process ξt is close to the stirring process on sufficiently long time intervals
for the latter to reach local equilibrium. By a triangular inequality then ξt is also locally (close to) Bernoulli, see
Theorem 11.1 below. There are essentially two steps in the proof. In the first one we prove a homogenization property
at “short times”. Recalling that the displacements of the ξ particles are ruled by the generator ε−2aL(ξ,0), an effective
motion of the ξ particles is only after times of order ε2a . We will see that on the time scale ε2a the ξ particles are close
to stirring with a time dependent intensity determined by the local empirical averages of the η-particles. The result
is then extended to times of order ε2β (recall β < a), thus proving that the ξ -particles, like the stirring ones, become
(approximately, locally) exchangeable.

The result will be used in Appendix E to control a term Q which is the most dangerous one among those which
appear in the computation of (4.3). After some maquillage operations whose details are given in Appendix E, the space
time averages involved in the expression (4.4) lead to study expectations of a measure νε

τ , τ > 0, which is a space time
average of the original με . νε

τ is in fact defined as the probability on N
Ωε × {0,1}Ωε whose expectations are

νε
τ (f ) = εd

∑
x∈Ωε

−
τ∫

0

Eε
με

(
Sxf (ηt , ξt )

)
, −

τ∫
0

= 1

τ

τ∫
0

, (11.1)

with Sx the shift by x on the torus Ωε .
We fix a large constant C (C = eM , see Appendix E), and shorthand

T = Cε2β, B = {
x: |x| � ε−a+β/2}. (11.2)

We also write x for a subset of Ωε , |x| for its cardinality and call

gx(ξ) =
∏
x∈x

ξ(x). (11.3)

We can now state the main theorem in this section.

Theorem 11.1. Let T as in (11.2), then

lim
ε→0

sup
x⊂B, |x|=4

∣∣∣∣Eε
νε
τ

(
gx(ξT ) −

∏
x∈x

{∑
z

πT ε−2a (x, z)ξ0(z)

})∣∣∣∣= 0. (11.4)

We will first prove the theorem for d � 3 and then discuss its extension to d < 3. The proof is divided in three steps
and, from the same proof it will be clear that the result extends to |x| � n, for any fixed positive integer n.

Step 1: Stirring process and duality. We will prove (11.4) using extensively the self-duality property of the stirring
process. Denote by xz,z′

, z �= z′ both in Ωε , the subset of Ωε equal to x if either z, z′ are both in x or both in Ωε \ x.
If instead z ∈ x and z′ ∈ Ωε \ x then xz,z′ = z′ ∪ x \ z and if z ∈ Ωε \ x then xz,z′ = z ∪ x \ z′. Define

Lstf (x) =
∑

′ ′

[
f
(
xz,z′)− f (x)

]
(11.5)
z,z : |z−z |=1 on Ωε
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the sum in (11.5) being over ordered pairs of nearest neighbor sites on the torus Ωε (a bond is counted twice, in
agreement with (2.3)). We will also shorthand

pt(x, y) = etLst
(x, y). (11.6)

Let L(ξ,st) be the stirring generator defined in (2.3), then L(ξ,st)gx(ξ) = Lstgx(ξ) the former acting on ξ , the latter
on x. As a consequence

etL(ξ,st)
gx(ξ) =

∑
y

pt (x, y)gy(ξ). (11.7)

To relate (11.4) and (11.7) we should substitute the true process with the stirring one and pt with πt . The sense in
which something like this can be done will become clear in the sequel. Its validity as we will see is limited to suitably
short times. The analysis is simpler for d � 3, which is the case we are considering first.

We compare ε−2aL(ξ,0)gx(ξt ) and ε−2acLstgx(ξt ), the former acting on ξt the latter on x, the choice of the intensity
c will be crucial. We write

L(ξ,0)gx(ξ) =
∑

z,z′: |z−z′|=1

∣∣ξ(z) − ξ(z′)
∣∣(ξ(z)1η(z′)=0 + ξ(z′)1η(z)=0

)(
gx

(
ξz,z′)− gx(ξ)

)
and, calling

wε(t, η0) =
{∑

y π(t−ε2α)ε−2(0, y)uε(y, η0) if t � ε2α,

uε(0, η0) otherwise

we telescopic sum

1ηt (z)=0 = [
1ηt (z)=0 − e−uε(z,η

t−ε2α )]+ [
e−uε(z,η

t−ε2α ) − e−uε(0,η
t−ε2α )]

+ [
e−uε(0,η

t−ε2α ) − e−wε(t,η0)
]+ e−wε(t,η0) (11.8)

doing the same for 1ηt (z′)=0. Since gx(ξ
z,z′

) = g
xz,z′ (ξ) we get

L(ξ,0)gx(ξt ) = e−wε(t,η0)Lstgx(ξt ) + H1(x, t) + · · · + H3(x, t), (11.9)

where Hi comes from the ith square bracket term of (11.8), dependence on ξ and η is not explicit here. Since the
actual generator of the process is ε−2aL(ξ,0), “the error terms” Hi will be eventually multiplied by ε−2a .

Step 2: Reduction to stirring. (11.9) is the desired duality relation which establishes that modulo “the errors” Hi

we can compute the expectation of gx(ξt ) by applying the stirring to gx thought of as a function of x. Define the “total
intensity”

A(η0) :=
T∫

0

e−wε(t,η0), T = Cε2β,

and recall that in the whole sequel, x0 ⊂ B and |x0| = 4 (we rename by x0 the set x in (11.2) where B is also defined).
We set 2B = {x: |x| � 2ε−a+β/2}. Using (11.9) and recalling (11.6), we get

Eε
νε
τ

(
gx0(ξT )

)= Eε
νε
τ

(∑
y

pA(η0)ε
−2a

(
x0, y

)
gy(ξ0)

)
+R, (11.10)

R=
T∫

0

∑
y

p(T −s)ε−2a

(
x0, y

)
Eε

νε
τ

({
L′gy(ξs) + ε−2a

[
H1(y, s) + H2(y, s) + H3(y, s)

]})
,

where L′ = L(ξ,+) + L(ξ,−).
We will next prove that there is c > 0 so that

|R| � cε2β−2a+2β . (11.11)
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The contribution of the times t � ε2α is bounded by cε−2aε2α and since α > 2β , this is compatible with (11.11). Let
us now consider t � ε2α .

Since |e−uε(0,η
t−ε2α ) − e−wε(t,η0)| � c|uε(0, ηt−ε2α ) − wε(t, η0)|, by using Theorem 9.1 the term containing H3

(H3 is the third square bracket on the right-hand side of (11.8)) is bounded by cε2β−2aT . All the other terms are
smaller. In fact, by (10.1) the term with H1 is bounded proportionally to ε2β−2a+2α , so that, by the choice of α, it is
� cε2β−2a+2β .

We decompose the sum over y in the term with H2 as over y ⊂ 2B and the complement:∑
y

p(T −s)ε−2a

(
x0, y

)
H2(y, s) =

∑
y⊂2B

p(T −s)ε−2a

(
x0, y

)
H2(y, s) +

∑
y �⊂2B

p(T −s)ε−2a

(
x0, y

)
H2(y, s).

The first term is bounded using (8.18) and (8.15), proportionally to ε2β−2a+1−a +β/2. The second term is bounded by
the probability that there is at least a particle which travels by ε−a+β/2 in a time ε−2a+2β and it is therefore bounded
by c exp{−c′ε−β}. Finally, the term with L′gy(ξs) is bounded by cε2β , because, by Theorem 8.1, Eε

νε
τ
(κηs(·)+1) � c.

The bound in (11.11) vanishes as ε → 0 if 2β > a. Since β must satisfy the inequality β < d
d+2a (see for instance

the proof of Theorem 8.3), we must then have

d

d + 2
a >

a

2
(11.12)

hence the restriction to d � 3.
Step 3: Conclusion. By (11.10) and (11.11),∣∣∣∣Eε

νε
τ

(
gx0(ξT ) −

∑
y

pA(η0)ε
−2a

(
x0, y

)
gy(ξ0)

)∣∣∣∣� cεδ, (11.13)

where cεδ , δ > 0, shorthands the bound (11.11) on the remainders and

ε−2aA(η0) = ε−2a

Cε2β∫
0

e−wε(t,η0)

with wε(t, η0) =∑
y π(t−ε2α)ε−2(0, y)uε(y, η0) for t � ε2α and wε(t, η0) = uε(0, η0) for t < ε2α . We claim that the

following two inequalities hold:

νε
τ

(
ε−2aA(η0) � C e−Mε−2a+2β

)
� cεβ, (11.14)

Eνε
τ

(
−
Cε2β∫
0

∣∣e−wε(t,η0) − e−uε(0,η0)
∣∣)� cεβ. (11.15)

Proof of (11.14), (11.15). By (8.2),

νε
τ

(
e−uε(0,η) � e−M/2

)
� cε(1−α)d

so that

l.h.s. of (11.14) = νε
τ

(
−
Cε2β∫
0

e−wε(t,η0) < e−M

)

� cε(1−α)d + νε
τ

(
−
Cε2β∫
0

∣∣e−wε(t,η0) − e−uε(0,η0)
∣∣� e−M

2

)

and, since (1 − α)d > β , (11.14) follows from (11.15), which we prove next:
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νε
τ

(
−
Cε2β∫
0

∣∣e−wε(t,η0) − e−uε(0,η0)
∣∣)� −

Cε2β∫
0

νε
τ

(∑
y

π(t−ε2α)ε−2(0, y)
∣∣uε(y, η0) − uε(0, η0)

∣∣)

� ε
√

d

{
−
Cε2β∫
0

∑
y

π(t−ε2α)ε−2(0, y)|y|
}

νε
τ

(∥∥uε(η0)
∥∥

H 2
1

)

having used (8.16). Since
∑

y π(t−ε2α)ε−2(0, y)|y| � cε−1(t − ε2α)1/2 � cε−1+β and

νε
τ

(∥∥uε(ηs)
∥∥

H 2
1

)= −
τ∫

0

Eε
με

(∥∥uε(ηt )
∥∥

H 2
1

)
� cτ−1/2

(the last inequality follows from (8.9) and Cauchy–Schwartz), (11.15) and hence (11.14), (11.15) are proved.
Using (11.13), (11.14) and (B.2) (recall that A(η0) � Cε2β ), we have∣∣∣∣Eε

νε
τ

(
gx0(ξT ) −

{∏
x∈x

∑
y

πA(η0)ε
−2a (x, y)

}
gy(ξ0)

)∣∣∣∣� c
[
εδ + εβ + ε(−2a+2β)/12].

We are going to use the following classical estimate on random walks,∑
y

∣∣πt ′(x, y) − πt (x, y)
∣∣� c

|t − t ′|
min{t, t ′} .

c a suitable constant. We take t = A(η0)ε
−2a and t ′ = Cε−2a+2β e−uε(0,η). Then, by (11.15),

|t − t ′| � εβ/2[Cε−2a+2β
]

with probability � 1 − cεβ/2

and by (11.14)

min{t, t ′} � C e−Mε−2a+2β − εβ/2[Cε−2a+2β
]

with probability � 1 − cεβ/2 − cεβ.

Then

Eνε
τ

(∑
y

∣∣πA(η0)ε
−2a (x, y) − π

Cε−2a+2β e−uε (0,η0) (x, y)
∣∣)� Cε−2a+2β+β/2

(C e−M/2)ε−2a+2β
+ cεβ/2

thus completing the proof of the theorem for d � 3.
The cases d = 1,2. In d = 1,2 the bound in (11.11) does not vanish and the idea is to apply the previous analysis

for a time shorter than ε2β , say ε2γ , γ > β . The error is then bounded as in (11.11) but with ε2γ−2a+2γ . If an iterative
procedure applied we would repeat such an error ε2β−2γ times, thus we need ε2γ−2a+2γ ε2β−2γ to vanish, namely
γ + β > a. Let ϑ > 0 be so small that d−ϑ

d+2 > 5
17 (the last inequality will be needed at the end, to have (11.22)

vanishing as ε → 0) and set for d = 1,2,

γ = 2 + 2ϑ

d + 2
a, β = d − ϑ

d + 2
a

so that, with such a choice,

a > γ > a − β,
d

d + 2
a > β >

5a

17
. (11.16)

We divide the time interval [0, T ] into intervals of lengths ε2γ except maybe the last one which has length � ε2γ .
The intervals are called [tn, tn+1), n � N , and the last one is [tN , tN+1], tN+1 = T . Instead of wε(t, η0) we now
consider the quantities

wε(t, tn−1, ηtn−1) =
∑
y

π(t−ε2α−tn−1)ε
−2(0, y)uε(y, ηtn−1), t ∈ (tn, tn+1].

Analogously to (11.8) we write
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1ηt (z)=0 = [
1ηt (z)=0 − e−uε(z,η

t−ε2α )]+ [
e−uε(z,η

t−ε2α ) − e−uε(0,η
t−ε2α )]

+ [
e−uε(0,η

t−ε2α ) − e−wε(t,tn−1,ηtn−1 )
]+ e−wε(t,tn−1,ηtn−1 )

and get instead of (11.9),

L(ξ,0)gx(ξt ) = e−wε(t,tn−1,ηtn )Lstgx(ξt ) + H1(x, t) + · · · + H3(x, t).

A(η0) is now replaced by

Atn,tj (ηtj ) :=
tn+1∫
tn

e−wε(t,tj ,ηtj
)
, j < n,

and, analogously to (11.10) we have

Eε
νε
τ

(
gx0(ξT )

)= Eε
νε
τ

(∑
y

pAtN ,tN−1 (ηtN−1 )ε−2a

(
x0, y

)
gy(ξtN )

)
+R(1)

N , (11.17)

R(1)
n =

tn+1∫
tn

∑
y

p(tN−t)ε−2a

(
x0, y

)
Eε

νε
τ

({
L′gy(ξs) + ε−2a

[
H1(y, s) + · · · + H3(y, s)

]})
.

We are not yet ready for the iteration, because the first term on the right-hand side of (11.17) has not the same
expression as the term we started from, due to its dependence on ηtN−1 . To fix the problem we do a Taylor–Lagrange
expansion to first order in the small parameter ε−2a[AtN ,tN−1(ηtN−1) − AtN ,0(η0)]: indeed, using Theorem 9.1,

ε−2a
[
AtN ,tN−1(ηtN−1) − AtN ,0(η0)

]
� cε−2a+2γ+2β .

Shorthand

bn(λ) := λAtn,tn−1(ηtn−1) + (1 − λ)Atn,0(η0)

then

Eε
νε
τ

(
gx0(ξtN+1)

)=
∑
y

pAtN ,0(η0)ε
−2a

(
x0, y

)
Eε

νε
τ

(
gy(ξtN )

)+R(1)
N +R(2)

N , (11.18)

where

R(2)
N =

1∫
0

Eε
νε
τ

(∑
y

[
AtN ,tN−1(ηtN−1) − AtN ,0(η0)

]
ε−2apbN (λ)ε−2a

(
x0, y

)
Lstgy(ξtN )

)
dλ. (11.19)

The first term on the right-hand side of (11.18) has now the same structure as its left-hand side so we can iterate.
Calling

A(n)(η0) := AtN ,0(η0) + · · · + Atn,0(η0), n � N, A(N+1)(η0) ≡ 0, A(0)(η0) = A(η0)

we get

Eε
νε
τ

(
gx0(ξtN+1)

)= Eε
νε
τ

(∑
y

pA(0)(η0)ε
−2a

(
x0, y

)
gy(ξ0)

)
+

2∑
i=1

N∑
n=0

R(i)
n , (11.20)

where, analogously to (11.19),

R(2)
n =

1∫
Eε

νε
τ

(∑
y

[
Atn,tn−1(ηtn−1) − Atn,0(η0)

]
ε−2ap[A(n+1)(η0)+bn(λ)]ε−2a

(
x0, y

)
Lstgy(ξtn)

)
dλ.
0
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By the same arguments used in d � 3, the contribution of R(1)
n is bounded by cε2γ−2a+2γ . The contribution of

R(2)
n is bounded by

cε2γ−2a+2β
[
(tN − tn)ε

−2a
]−1/2−1/12 (11.21)

c a positive constant. The bound is derived in Appendix B by exploiting estimates on the stirring process known in
the literature.

The total contribution of all the remainders is then bounded by

c
{
ε2γ−2a+2γ ε2β−2γ + ε−2a+2βT 1/2−1/12ε2a(1/2+1/12)

}
(11.22)

with T = Cε2β . The first term vanishes by (11.16), the second one because β > 5a/17, see again (11.16). We have
thus proved (11.13) and since the rest of the proof is like in the last step of the case d � 3, Theorem 11.1 is proved. �
Appendix A. Independent and branching random walks

We will prove here the statements in the text which refer to independent random walks without and with indepen-
dent branchings. We start by recalling the main properties of the former.

Poisson polynomials. The Poisson polynomials dk(·) of degree k � 0 are

d0(n) ≡ 1, d1(n) = n, dk(n) = n(n − 1) · · · (n − k + 1), k > 1, (A.1)

and we restrict n ∈ N. The following remarkable identities hold for any non negative integer η(x),

1η(x)=i =
∞∑

n=0

(−1)n

n! dn+i

(
η(x)

)
,

ebη(x) =
∞∑

n=0

(eb − 1)n

n! dn

(
η(x)

)
. (A.2)

If f (n) is exponentially bounded, say |f (n)| � ebn, then

f
(
η(x)

)=
∞∑

n=0

an

n! dn

(
η(x)

)
, |an| �

∣∣eb + 1
∣∣n. (A.3)

The above will be applied to κη(x) (and to κn
η(x), n ∈ N, as well), recalling that κη(x), which is the function which

appears in the generator L in Section 2, is supposed to be exponentially bounded.
Poisson multi-polynomials. The Poisson multi-polynomial Dω, ω :Ωε → N, is

Dω(η) =
∏

x∈Ωε

dω(x)

(
η(x)

)
.

Duality. Referring to [4] for details, the self-duality property of the independent process is expressed by the equality

L(η,0)Dω(η) = L(ω,0)Dω(η). (A.4)

Namely the independent generator gives the same result when applied to Dω(η) both if it acts on ω or on η. Denoting
by

π
(0)
t (·, ·) = etL(·,0)

(·, ·)
the kernel of etL(·,0)

, it then follows from (A.4) that∑
η′

π
(0)
t (η, η′)Dω(η′) =

∑
ω′

π
(0)
t (ω,ω′)Dω′(η). (A.5)

Using (A.5) in connection with the integration by parts formula, we get
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e(L(η,0)+L′)tDω =
∑
ω′

π
(0)
t (ω,ω′)Dω′ +

t∫
0

∑
ω′

π
(0)
t−s(ω,ω′) e(L(η,0)+L′)s{L′Dω′ } (A.6)

where L′ is a generator acting on functions of (η, ξ).
Notation. We will use the following notation: 1x stands for the configuration ω with only one particle at x; ω ±

ω′ for the configuration with ω(x) ± ω′(x) at x (the relation with the minus sign being defined only if ω′ � ω);
|ω| =∑

x∈Ωε
ω(x). Then

π
(0)
t (ω,ω′) =

∑
y1,...,yn

{
n∏

i=1

πt (xi, yi)

}
1ω′=∑

i 1yi
, ω =

∑
i

1xi
, xi ∈ Ωε. (A.7)

In particular π
(0)
t = πt when restricted to ω: |ω| = 1.

Proof of Theorem 5.1. We will prove here only the statements of the theorem relative to the variables η. Recall-
ing (5.2), by (A.5),

Uε
0 (x) = με

(
uε(x, η)

)=
∑
y

pα(x, y)με
(
η(y)

)=
∑
y

pα(x, y)
∑

z

πε−2t0
(y, z)ηε−t0

(z).

Thus |Uε
0 (x)| � C, if C is the sup in (5.1). Moreover,

ε−1
∣∣∇Uε

0 (x)
∣∣� ε−1

∑
z

∣∣∇πε−2t0
(0, z)

∣∣� c√
t0

which proves the first inequality in (5.5).
For future reference we also observe that the same argument used above shows that

με
(
Dω(η)

)=
∑
ω′

π
(0)

ε−2t0
(ω,ω′)Dω′(η−t0) � C|ω|. (A.8)

Call η̃(x) = η(x) − με(η(x)), then

με
(∥∥uε − Uε

∥∥2)= εd
∑
x∈Ωε

∑
z,z′

pα(x, z)pα(x, z′)με
(
η̃(z)η̃(z′)

)
.

Shorthanding ωz = 1z and ωz,z′ = 1z + 1z′ ,

με
(
η̃(z)η̃(z′)

)= με(Dωz,z′ ) − με(Dωz)μ
ε(Dωz′ ) + 1z=z′με

(
η(z)

)
so that

με
(∥∥uε − Uε

∥∥2)= εd
∑
x∈Ωε

{∑
z∈Ωε

pα(x, z)2με
(
η(z)

)−
∑
z∈Ωε

[∑
y∈Ωε

pα(x, y)πε−2t0
(y, z)

]2

η−t0(z)

}
� cε(1−α)d .

The last inequality follows using the local central limit theorem to bound

sup
z∈Ωε

pα(0, z) � c

ε−(2−2α)d/2
, sup

z∈Ωε

[∑
y∈Ωε

pα(x, y)πε−2t0
(y, z)

]
� c

[ε−(2−2α) + ε−2t0]d/2
.

The statements in Theorem 5.1 relative to the η variables are proved. �
The next theorem will be used in the proof of Theorem 8.1. We recall for the reader’s convenience the Stirling

formula

n! = nn+1/2 e−n
√

2π

(
1 + O

(
1√
n

))
(A.9)

observing that the last bracket in (A.10) below is then bounded by 1 (for ε small enough). Then (A.10) extends the
bound (A.8) to all times, provided the constant C is replaced by eκt (C + 2c

√
t ).
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Theorem A.1. There is a constant c > 0 so that for any t > 0 and any ω,

Eε
με

(
Dω(ηt )

)
� Eε

με

(
Dω

(
η+

t

))
�
(
eκt (1 + 2t)

(
C + 2c

√
t
))|ω|(1|ω|�ε−1 + |ω|!(eε)|ω|1|ω|�ε−1

)
, (A.10)

where η+
t is the process with generator ε−2L(η,0) + L(η,+).

Proof. We will first prove that:

L(η,+)Dω(η) = κ|ω|Dω(η) + κ
∑
x∈Ωε

ω(x)
[
ω(x) − 1

]
Dω−1x (η) (A.11)

(recall that |ω| =∑
x ω(x), [ω − 1x](z) = ω(z) for all z �= x and [ω − 1x](x) = ω(x) − 1). Indeed

L(η,+)Dω(η) = κ
∑
x

[∏
y �=x

dω(y)

(
η(y)

)]
η(x)

[
dω(x)

(
η(x) + 1

)− dω(x)

(
η(x)

)]
and (A.11) follows because Dω(η) = 0 unless η � ω and because for k � 1,

k
[
dn(k + 1) − dn(k)

]= ndn(k) + n[n − 1]dn−1(k).

By (A.6) and (A.11),

Eε
με

(
Dω

(
η+

t

))=
∑
ω′

π
(0)
t (ω,ω′)με

(
Dω′(η)

)+ κ|ω|
t∫

0

∑
ω′

π
(0)
t−s(ω,ω′)Eε

με

(
Dω′

(
η+

s

))

+ κ
∑
y∈Ωε

t∫
0

∑
ω′

π
(0)
t−s(ω,ω′)ω′(y)

[
ω′(y) − 1

]
Eε

με

(
Dω′−1y

(
η+

s

))
. (A.12)

We postpone to the end of the proof that

last term in (A.12) � cεn(n − 1)

t∫
0

1√
t − s

sup
ω∗: |ω∗|=n−1

∑
ω′: |ω′|=n−1

π
(0)
t−s(ω

∗,ω′)Eε
με

(
Dω′(η+

s )
)
. (A.13)

Call vk(s) = max|ω|=k Eε
με (Dω(η+

s )). Since με(Dω(η0)) � C|ω|, by (A.12) and (A.13)

vn(t) � eκntCn + cεn(n − 1)

t∫
0

{
1√
t − s

+
t∫

s

eκn(t−s′)
√

s′ − s

}
vn−1(s)

� eκntCn + cεn(n − 1)(1 + 2t)

t∫
0

eκn(t−s)

√
t − s

vn−1(s)

and, by iteration,

vn(t) � eκnt

(
Cn +

n−1∑
k=1

[
cε(1 + 2t)

]k[
n(n − 1)2 · · · (n − k + 1)2(n − k)

]
Ik(t)C

n−k

)
,

where

Ik(t) =
t∫

0

1√
t − s1

· · ·
sk−1∫
0

1√
t − sk

= (2
√

t )k

k! .

Calling Bn(ε) = maxk�n(nε)k ,
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vn(t) � Bn(ε)
[
(1 + 2t) eκt

]n n∑
k=0

(
n

k

)[
2c

√
t
]k

Cn−k � Bn(ε)
[
eκt (1 + 2t)(C + 2c

√
t)
]n

.

Finally, Bn(ε) � 1 for n � ε−1 while for n > ε−1 (and ε small) Bn(ε) � εnn!en (indeed, by the Stirling formula,
see (A.9), n!en � nn). Hence (A.10), pending the validity of (A.13), which we will prove next.

Proof of (A.13). Let ω =∑n
i=1 1xi

. Recalling (A.7), the last term can then be written as

κ
∑
y∈Ωε

{ t∫
0

∑
y1,...,yn

{
n∏

i=1

πt−s(xi, yi)

}{
n∑

i=1

1yi=y

}{[
n∑

i=1

1yi=y

]
− 1

}
Eε

με

(
D∑

1yi
−1y

(
η+

s

))}
.

Since {∑n
i=1 1yi=y}{[∑n

i=1 1yi=y] − 1} =∑
i,j �=i1yi=yj =y , denoting by

∑
y1,...,/yj ,...,yn

the sum with yj missing, i.e.
only over y1, . . . , yj−1, yj+1, . . . , yn, we get

κ
∑
i,j �=i

∑
y1,...,yn

1yi=yj

t∫
0

{
n∏

�=1

πt−s(x�, y�)

}
Eε

με

(
D∑

��=j 1y�

(
η+

s

))

� κ
∑
i,j �=i

∑
y1,...,/yj ,...,yn

t∫
0

{∏
� �=j

πt−s(x�, y�)

}{
sup
x,y

πt−s(x, y)
}
Eε

με

(
D∑

��=j 1y�

(
η+

s

))

and since

κ sup
x,y

πt−s(x, y) � c
ε√
t − s

� cεn(n − 1)

t∫
0

1√
t − s

sup
ω∗: |ω∗|=n−1

∑
ω′: |ω′|=n−1

π
(0)
t−s(ω

∗,ω′)Eε
με

(
Dω′

(
η+

s

))

which thus completes the proof of (A.13). �
Proof of Theorem 8.1. We complete here the proof of Theorem 8.1 by proving (8.3) and (8.4). By (A.2),

Eε
με

(
ebη+

t (x)
)=

∞∑
n=0

(eb − 1)n

n! Eε
με

(
Dωn,x

(
η+

t

))
,

where ωn,x = n1x is the configuration with n particles, all at x. By (A.10),

Eε
με

(
ebη+

t (x)
)
�

∞∑
n=0

(eb − 1)n

n!
[
(1 + 2t) eκt

(
C + 2c

√
t
)]n +

∑
n�ε−1

(
e
(
eb − 1

)[
(1 + 2t) eκt

(
C + 2c

√
t
)
ε
])n

� 2 exp
{(

eb − 1
)

eκt (1 + 2t)
(
C + 2c

√
t
)}

for ε small enough, which proves (8.1).
We will next prove that for any τ > 0 there is c so that, for any t � τ ,

Eε
με

(∣∣uε
(
x,η+

t

)− Eε
με

(
uε
(
x,η+

t

))∣∣2)� cε(1−α)d . (A.14)

Proceeding as in the proof of Theorem 5.1,

l.h.s. of (A.14) =
∑
z,z′

pα(x, z)pα(x, z′)V2(z, z
′, t) +

∑
z

pα(x, z)2Eε
με

((
η+

t (z)
))

,

V2(z, z
′, t) = Eε

με

(
Dωz,z′

(
η+

t

)− Eε
με

(
Dωz

(
η+

t

))
Eε

με

(
Dωz′

(
η+

t

)))
.

Since L(η,+)d1(η(x)) = κd1(η(x)) and L(η,+)d2(η(x)) = 2κ[d2(η(x)) + η(x)],
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V2(z, z
′, t) �

∑
z1,z

′
1

πε−2t (z, z1)πε−2t (z
′, z′

1)V2(z1, z
′
1,0)

+ 2κ

t∫
0

{∑
z1,z

′
1

πε−2t (z, z1)πε−2t (z
′, z′

1)V2(z1, z
′
1, s)

+
∑
z1

πε−2+2α+ε−2(t−s)(z, z1)πε−2+2α+ε−2(t−s)(z
′, z1)E

ε
με

(
η+

s (z1)
)}

which iterated yields

l.h.s. of (A.14) �
∑

z

pα(x, z)2Eε
με

(
η+

t (z)
)+ e2κt

∑
z

πε−2+2α+ε−2(t+t0)
(x, z)2η−t0(z)

+ 2κ
∑

z

t∫
0

e2κ(t−s)πε−2+2α+ε−2(t−s)(x, z)2Eε
με

(
η+

s (z)
)
.

Using the inequality Eε
με (η

+
t (z)) � C eκt , we then get (A.14). �

Proof of (10.9). The expectation in (10.9) is computed by first conditioning on ηt , ξt , the conditional expectation
is explicitly written in (10.8). According to (10.9) we will restrict to ηt such that uε(x, ηt ) � M , uε(y, ηt ) � M and
we will prove that there is a constant c depending on m, n and t , so that∣∣∣∣uε(x, ηt )

nuε(y, ηt )
m −

∑
ω′

n,ω′
m

π
(0)

ε−2+2α

(
ωn,x,ω

′
n

)
π

(0)

ε−2+2α

(
ωm,y,ω

′
m

)
Dω′

n+ω′
m
(ηt )

∣∣∣∣� cε(1−α)d , (A.15)

∣∣∣∣uε(y, ηt )
m
∑
ω′

n

π
(0)

ε−2+2α

(
ωn,x,ω

′
n

)
Dω′

n
(ηt )

−
∑

ω′
n,ω′

m

π
(0)

ε−2+2α

(
ωn,x,ω

′
n

)
π

(0)

ε−2+2α

(
ωm,y,ω

′
m

)
Dω′

n+ω′
m
(ηt )

∣∣∣∣� cε(1−α)d , (A.16)

∣∣∣∣∑
ω′

m

π
(0)

ε−2+2α

(
ωm,y,ω

′
m

)
Dω′

m
(ηt )u

ε(x, ηt )
n

−
∑

ω′
n,ω′

m

π
(0)

ε−2+2α

(
ωn,x,ω

′
n

)
π

(0)

ε−2+2α

(
ωm,y,ω

′
m

)
Dω′

n+ω′
m
(ηt )

∣∣∣∣� cε(1−α)d . (A.17)

(10.9) then follows from (10.8) and (A.15)–(A.17) and hence it will suffice to prove the latter. As their proofs are
structurally the same we will only prove (A.17).

We fix ω′
m in (A.17) and expand the term uε(x, ηt )

n = {∑z pα(x, z)ηt (z)}n. We distinguish the cases of single
occupancy from the others which we will prove to be negligible. We thus write

uε(x, ηt )
n =

∑
z1···zn∈Xn,ω′

m, �=

n∏
i=1

pα(x, zi)ηt (zi) +
∑

z1···zn /∈Xn,ω′
m, �=

n∏
i=1

pα(x, zi)ηt (zi),

where Xn,ω′
m,�= = {z1 · · · zn: ω′

m(zi) = 0, i = 1, . . . , n; zi �= zj for all i �= j}. Thus

uε(x, ηt )
n = Tω′

m,x + Sω′
m,x, Tω′

m,x =
∑

z1···zn∈Xn,ω′
m, �=

{
n∏

i=1

pα(x, zi)

}
D∑

i 1zi
(ηt ),

Sω′
m,x =

∑
z1···zn /∈X ′

n∏
i=1

pα(x, zi)ηt (zi). (A.18)
n,ωm, �=
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We will next prove that the term with Sω′
m,x is negligible.

Sω′
m,x �

n∑
i=1

{ ∑
zi : ω′

m(zi )�1

pα(x, zi)ηt (zi)

} ∑
z1···/zi ···zn

∏
i �=j

pα(x, zj )ηt (zj )

+
∑
i �=j

{ ∑
z: ω′

m(z)=0

pα(x, z)2ηt (z)
2
} ∑

z1···/zi ···/zj ···zn

∏
� �=i,j

pα(x, z�)ηt (z�).

Recalling that uε(x, ηt ) � M , see the beginning of this proof,

Sω′
m,x � Mn−1

n∑
i=1

∑
zi : ω′

m(zi )�1

pα(x, zi)ηt (zi) + Mn−2
∑
i �=j

{ ∑
z: ω′

m(z)=0

pα(x, z)2ηt (z)
2
}
.

When multiplied by Dω′
m
(ηt ) we will have terms pdk(p) and p2dk(p), p = ηt (zi) and kω′

m(zi) � 1. We have

pdk(p) = dk+1(p) + kdk(p), p2dk(p) = dk+2(p) + (2k + 1)dk+1(p) + k2dk(p).

Since Eε
με (Dω(ηt )) � c(t)|ω|,

Eε
με

(
1uε(x,ηt )�MDω′

m
(ηt )Sω′

m,x

)
� Mn−1n

(
mcε(1−α)d

)[
c(t)m+1 + c(t)mm

]
+ Mn−2n(n − 1)cε(1−α)d

[
c(t)2 + (2m + 1)c(t) + m2]c(t)m

so that this term is bounded by c′ε(1−α)d . The term with Tω′
m,x , cf. (A.18), is∑

ω′
m,ω′′

n

1ω′′
n�1,ω′′

nω′
m≡0π

(0)

ε−2+2α

(
ωn,x,ω

′′
n

)
π

(0)

ε−2+2α

(
ωm,y,ω

′
m

)
Eε

με

(
1uε(x,ηt )�M1uε(y,ηt )�MDω′′

n+ω′
m
(ηt )

)
,

where ω′′
n � 1,ω′′

nω
′
m ≡ 0 is the set where for all z, ω′′

n(z) � 1 and ω′′
n(z)ω′

m(z) = 0. Thus

l.h.s. of (A.17) �
∣∣∣∣∑
ω′

m,

π
(0)

ε−2+2α

(
ωm,y,ω

′
m

) ∑
ω′

n∈Xn,ω′
m, �=

π
(0)

ε−2+2α

(
ωn,x,ω

′
n

)
Dω′

n+ω′
m
(ηt )

∣∣∣∣+ c′ε(1−α)d . (A.19)

As before we fix ω′
m and we bound the sum over ω′

n ∈ Xn,ω′
m,�= we distinguish the cases where a particle in ω′

n is
in a site zi : ω′(zi) � 1 and then the case of a coincidence zi = zj , i �= j , zi, zj ∈ ω′

n. As before the probability of
the former is in the end bounded by cnmε(1−α)d , while the latter is bounded by cn(n − 1)ε(1−α)d . In this way we
derive (A.17). (A.15), (A.16) are bounded similarly and (10.9) is proved. �
Appendix B. Stirring process

In [6,7] it is proved that:

Theorem B.1. Let p
(∞)
t (x, y) and π

(∞)
t (x, y) denote the kernels of the semigroups of the stirring and of the indepen-

dent processes in the whole Z
d . Then, given any n � 1 (but the case n = 1 is trivial, because pt (x, y) ≡ πt (x, y)), any

dimension d � 1, there is c so that, for any x, |x| = n,∑
y

∣∣p(∞)
t (x, y) − π

(∞)
t (x, y)

∣∣� ct−1/12. (B.1)

The bound (B.1) cannot hold in our case where the processes are defined on the torus Ωε , because pt(x, y) and
πt (x, y) have different limits as t → ∞: the former converges to the uniform distribution of n distinct sites in Ωε

while in the latter the exclusion condition is dropped. However since

∑
−1

pt(x, y) � c
e−ε−2/t

√
t

.

y: |y−x|>ε
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(B.1) remains valid for the processes in Ωε provided t � ε−2aτ and with c in (B.1) dependent on τ :

sup
ε>0

sup
t�ε−2aτ

sup
|x|=n

t1/12
∑
y

∣∣pt (x, y) − π
(0)
t (x, y)

∣∣� cn(τ ). (B.2)

Proof of Theorem 5.1. (Relative to the ξ particles.) By definition

με
(
ξ(x)

)=
∑
y

πt0ε
−2a (x, y)ξ−t0(y)

hence

ε−a
∣∣∇με

(
ξ(x)

)∣∣� c√
t0

uniformly in ε and x ∈ Ωε , which proves the second inequality in (5.5). We have∣∣vε(x, ξ) − V ε
0 (x)

∣∣2 =
∑
y

qβ(x, y)2[ξ(y) − με
(
ξ(y)

)]2

+
∑
y �=z

qβ(x, y)qβ(x, z)
[
ξ(y) − με

(
ξ(y)

)][
ξ(z) − με

(
ξ(z)

)]
.

The με expectation of the first term is bounded by cεa−β . The expectation of the second term is computed using (B.2)
and it is then bounded by c[t0ε−2a]−1/12. The second inequality in (5.4) is proved. �

Proof of (11.21). By (9.1),

ε−2a
∣∣AtN ,tN−1(ηtN−1) − AtN ,0(η0)

∣∣� cε2γ+2β−2a

which is the first factor in (11.21). The proof of (11.21) then follows from the following theorem:

Theorem B.2. For any n > 1 there is c so that for any x, |x| = n, t � ε−2τ ,

sup
‖ψ‖∞�1

∣∣∣∣∑
z

pt (x, z)Lstψ(z)

∣∣∣∣� c

t1/2+1/12
,

where the sup is over all functions ψ(z), |z| = n, which are bounded by 1.

Proof. The following bound can be found in the literature [5]: there is c so that, for any z, z′, |z − z′| = 1, and any
t � ε−2aτ ,∑

y

∣∣pt

(
x(z,z′), y

)− pt(x, y)
∣∣� c√

t
, (B.3)

where x(z,z′) is defined before (11.5). Writing eLsttLst = eLstt/2Lst eLstt/2 we get∑
y

pt (x, y)Lstψ(y) =
∑

z

pt/2(x, z)Lstφ(z), φ(z) :=
∑
y

pt/2(z, y)ψ(y). (B.4)

Let ∇i denote the gradient acting on the variable zi and E+ the set of all positively oriented unit vectors of Z
d . Then

Lstφ(z) =
n∑

i=1

∑
|e|=1

1zj �=zi+e,j �=i

{
φ
(
z(zi ,zi+e)

)− φ(z)
}= T1 + T2, (B.5)

T1(z) = −
n∑
i

∑
e∈E+

1zj �=zi±e,j �=i

[
(−e) · ∇i

][e · ∇i]φ(z),

T2(z) =
∑ ∑

1zj =zi−e,1zk �=zi+e,k �=i

{
φ
(
z(zi ,zi+e)

)− φ(z)
}
.

i,j |e|=1
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From (B.4), after “integrating by parts”,

∑
z

pt/2(x, z)T1(z) = −
n∑
i

∑
e∈E+

∑
z

{
(e · ∇i )

[
pt/2(x, z)1zj �=zi±e,j �=i

]}{
(e · ∇i )φ(z)

}
. (B.6)

Recalling the definition of φ in (B.4) and using (B.3), we bound the gradient of φ by c/
√

t . The first factor in (B.6)
is instead estimated using (B.2) to reduce to independent particles, and gives the desired bound ct−1/2−1/12. The term
with T2(z), see (B.5), is treated similarly and Theorem B.2 is proved. �
Appendix C. Proof of Theorem 6.1. First part

In this and in the next three Appendices we will bound

Eε
με

(
sup
τ ′�τ

∣∣∣∣∣
τ∫

0

(L + D)
{∥∥uε − Uε

∥∥2 + ∥∥vε − V ε
∥∥2}∣∣∣∣∣

)
. (C.1)

We will start by an explicit computation of (L+D)‖uε −Uε‖2 and (L+D)‖vε −V ε‖2 obtaining expressions which
are sums of Laplacian and Reaction terms. The latter are those produced by the L(η,0) + D(η,0) and L(ξ,0) + D(ξ,0),
with D(η,0) and D(ξ,0) the Laplacian parts of D, D is defined in Section 3. The Reaction terms instead are produced
by L(η,+) + D(η,+) and L(ξ,+) + D(ξ,+) for the births and by L(η,−) + D(η,−) and L(ξ,−) + D(ξ,−) for the deaths,
having denoted by D(η,±) and D(ξ,±) the reaction terms in D.

A finer classification of all the terms distinguishes those denoted by Bε
i which are bounded proportionally to

‖uε − Uε‖2 + ‖vε − V ε‖2 and those which when inserted in (C.1) vanish as ε → 0. They will be generically called
remainders. Among them we call Rε

i and Cε
i those which can be estimated using the a priori bounds of Section 8, Sε

i

those bounded in Appendix D exploiting the results of Section 10. There are two more terms, H which is bounded in
Remarks C.1 below using Corollary 8.2 and Q, studied in Appendix E using the analysis in Section 11. In Appendix F
we bound the martingale terms in (4.4), (4.5), thus completing the proof of Theorem 6.1.

In the sequel we will often drop ε from the notation.

C.1. Laplacian terms

A computation essentially similar to the one in the proof of Theorem 8.2 yields

ε−2(L(η,0) + D(η,0)
)‖u − U‖2 = −2‖u − U‖2

H 2
1

+ Rε
1, (C.2)

where Rε
1, defined in (8.11), vanishes as ε → 0, see (4.6), and for this reason is called a Rε term. We will not take

advantage of the negative sign of the H 2
1 term −2‖u − U‖2

H 2
1

, which will be just bounded by 0.

In an analogous way,

ε−2a
(
L(ξ,0) + D(ξ,0)

)‖v − V ‖2 = −2ε−2a
〈∇(v − V ), e−U∇(v − V )

〉+ 2H+ Rε
3 + Rε

4 + 2Sε
1 + 2Cε

1 , (C.3)

where Rε
4 is defined in (8.20) and bounded in (8.21),

H(ξ, η) = ε−2a
〈
v − V,

[
e−u − e−U

]
�v

〉
,

Rε
3(ξ, η) = −2ε−2a

〈
v − V,

(∇e−U
)∇(v − V )

〉
,

Sε
1 (ξ, η) =

∑
e: |e|=1

εd
∑
x

[
v(x) − V (x)

]
ε−2a

∑
z

e · ∇qβ(x, z)
{
ξ(z)

(
1 − ξ(z + e)

)[
1η(z+e)=0 − e−u(z+e)

]}
,

Cε
1(ξ, η) = ε−2a

∑
e: |e|=1

εd
∑
x

[
v(x) − V (x)

]∑
z

ξ(z)
(
1 − ξ(z + e)

)[
e−u(z+e) − e−u(x)

]
e · ∇qβ(x, z).
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Remarks C.1. From (8.27) we get that

−2ε−2a
〈∇(v − V ), e−U∇(v − V )

〉+ 2H � c
(‖u − U‖2 + ‖v − V ‖2 + ε2−2a‖u‖H 2

1

)
.

From (8.15), (8.9) and (4.9) it follows that

Eε
με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

Cε
1(ξt , ηt )

∣∣∣∣∣
)

� ε−2a
∑
e,z

∣∣e · ∇qβ(x, z)
∣∣ τ∫

0

εd
∑
x

∣∣e−u(z+e) − e−u(x)
∣∣� cε1−2a.

In Appendix D we prove that

lim
ε→0

Eε
με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

Sε
1 (ξt , ηt )

∣∣∣∣∣
)

= 0.

Finally, since |∇e−U | � cε, |Rε
3| � cε1−2a .

C.2. The reactions terms

• Birth process, η-particles.(
L(η,+) + D(η,+)

)‖u − U‖2 = 2κ‖u − U‖2 + Rε
2, (C.4)

where Rε
2(η) is defined in (8.12) and bounded by cε(1−α)d , see the proof of Theorem 8.2.

• Death process, η-particles.(
L(η,−) + D(η,−)

)‖u − U‖2 = T + 2
〈
u − U,

[
F−

1 (U) + F−
2 (U)V

]〉+ Rε
5 − 2Sε

2 , (C.5)

where Rε
5 is defined in (8.13), its expectation being bounded by cε(1−α)d , see again the proof of Theorem 8.2. Short-

handing by χM,z the characteristic function that u(z, η) � M ,

T = −2εd
∑
x

[
u(x) − U(x)

]∑
z

pα(x, z)χM,zF
−
1

(
u(z)

)
− 2εd

∑
x

[
u(x) − U(x)

]∑
z

pα(x, z)ξ(z)χM,zF
−
2

(
u(z)

)
and

Sε
2 (ξ, η) = εd

∑
x

[
u(x) − U(x)

]∑
z

pα(x, z)
{[

η(z)κη(z) − χM,zF
−
1

(
u(z)

)]
+ ξ(z)

[
η(z)[κη(z)+1 − κη(z)] − χM,zF

−
2

(
u(z)

)]}
. (C.6)

We next write

T = −2
〈
u − U,F−

1 (U)
〉− 2

〈
u − U,F−

2 (U)V
〉

− 2εd
∑
x

[
u(x) − U(x)

]
F−

2

(
U(x)

){∑
z

pα(x, z)ξ(z) − V (x)

}
− 2Bε

1 + Rε
6, (C.7)

where

Rε
6 = −2εd

∑
x

[
u(x) − U(x)

]∑
z

pα(x, z)
{[

F−
1

(
U(z)

)− F−
1

(
U(x)

)]+ ξ(z)
[
F−

2

(
U(z)

)− F−
2

(
U(x)

)]
− (1 − χM,z)

[
F−

1

(
U(z)

)+ ξ(z)F−
2

(
U(z)

)]}
and

Bε
1 = εd

∑
x

[
u(x) − U(x)

]∑
z

pα(x, z)χM,z

{[
F−

1

(
u(z)

)− F−
1

(
U(z)

)]
+ ξ(z)

[
F−(u(z)

)− F−(U(z)
)]}

. (C.8)
2 2
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The first two terms on the right-hand side of (C.7) simplify with the second term on the right-hand side of (C.5). We
then add and subtract v(x) in the third term on the right-hand side of (C.7), so that(

L(η,−) + D(η,−)
)‖u − U‖2 = −2Sε

2 − 2
(
Bε

0 +Bε
1

)− 2Cε
2 + Rε

5 + Rε
6 + Rε

7, (C.9)

where

Bε
0 = 〈

u − U,F−
2 (U)(v − V )

〉
,

Cε
2(ξ, η) = 〈

(pα − 1) ∗ [(u − U)F−
2 (U)

]
, v
〉
,

Rε
7(ξ, η) = 2εd

∑
x

[
u(x) − U(x)

]
F−

2

(
U(x)

)∑
z

{
pα(x, z) −

∑
y

pα(x, y)qβ(y, z)

}
ξ(z). (C.10)

Remarks C.2. In Appendix D we prove that

lim
ε→0

Eε
με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

Sε
2 (ξt , ηt )

∣∣∣∣∣
)

= 0.

Using Theorem 8.1 to control the large values of u(x) and to bound the expectation of 1 − χM,z,

sup
t�τ

Eε
με

(∣∣Rε
6(ηt , ξt )

∣∣)� cMε
∑

z

pα(0, z)|z| + cε(1−α)d .

The expression on the right-hand side of (C.8) is called Bε
1 because |Bε

1| � cM‖uε − Uε‖2, cM a constant which
depends on M . Similarly, |Bε

0| � cM(‖uε − Uε‖2 + ‖vε − V ε‖2), since F−
2 (Uε) is uniformly bounded in compact

time intervals.
From (8.15) and (8.9) it follows that

Eε
με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

Cε
2(ξt , ηt )dt

∣∣∣∣∣
)

� cε.

Calling t = ε−2+2α , s = ε−2a+2β , since∑
z

∣∣pα ∗ qβ(x, z) − pα(x, z)
∣∣=∑

z

∣∣πt+s(x, z) − πt (x, z)
∣∣� c

s

t
= cε2(1−α−a+β)

the right-hand side of (C.10) is indeed a R-term.

• Birth process, ξ particles.(
L(ξ,+) + D(ξ,+)

)‖v − V ‖2 = T1 − 2κ ′〈v − V,V (1 − V ) e−U
〉+ Rε

8, (C.11)

where Rε
8 is defined in (8.23) and

T1 = 2κ ′εd
∑
x

[
v(x) − V (x)

] 1

2d

∑
e: |e|=1

∑
z

qβ(x, z + e)ξ(z)
[
1 − ξ(z + e)

]
1η(z+e)=0.

By adding and subtracting e−u(z+e) and calling

Sε
3 = εd

∑
x

[
v(x) − V (x)

] 1

2d

∑
e: |e|=1

∑
z

qβ(x, z + e)ξ(z)
[
1 − ξ(z + e)

][
1η(z+e)=0 − e−u(z+e)

]
we get

T1 = 2κ ′Sε
3 + 2εd

∑
x

[
v(x) − V (x)

] κ ′

2d

∑
e: |e|=1

∑
z

qβ(x, z + e)ξ(z)
[
1 − ξ(z + e)

]
× {

e−U(x) + [
e−U(z+e) − e−U(x)

]+ [
e−u(z+e) − e−U(z+e)

]}
= 2κ ′Sε + T2 + Rε +Bε,
3 10 2
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where T2, Rε
10 and Bε

2 identify the corresponding terms in the previous line (Bε
2 is explicitly written in (C.14) below).

We next write

T2 = 2εd
∑
x

[
v(x) − V (x)

]
e−U(x) κ ′

2d

∑
e: |e|=1

∑
z

qβ(x, z + e)
{
V (x)

[
1 − V (x)

]+ [
v(x)

[
1 − v(x + e)

]
− V (x)

[
1 − V (x)

]]+ [
ξ(z)

[
1 − ξ(z + e)

]− v(x)
[
1 − v(x + e)

]]}
= T3 + �Bε

5 + 2κ ′Qε,

where, as before, T3, �Bε
5 and Qε identify the corresponding terms in the previous line, in particular Qε is explicitly

written in (C.13) below. Observe that T3 cancels with the first term on the right-hand side of (C.11). We rewrite �Bε
5 as

�Bε
5 = 2εd

∑
x

[
v(x) − V (x)

]
e−U(x) κ ′

2d

∑
e: |e|=1

{[
1 − v(x + e)

][
v(x) − V (x)

]
+ V (x)

[
V (x + e) − v(x + e)

]+ V (x)
[
V (x) − V (x + e)

]}
= Bε

5 + Rε
13,

where Bε
5 and Rε

13 identify the corresponding terms in the previous line.
Thus(

L(ξ,+) + D(ξ,+)
)‖v − V ‖2 = Bε

5 + 2κ ′Sε
3 + 2κ ′Qε +Bε

2 + Rε
8 + Rε

10 + Rε
13, (C.12)

where

Qε = εd
∑
x

[
v(x) − V (x)

]
e−U(x) 1

2d

∑
e: |e|=1

∑
z

qβ(x, z + e)
{
ξ(z)

[
1 − ξ(z + e)

]− v(z)
[
1 − v(z + e)

]}
,

(C.13)

Bε
2 = εd

∑
x

[
v(x) − V (x)

] κ ′

2d

∑
e: |e|=1

∑
z

qβ(x, z + e)ξ(z)
[
1 − ξ(z + e)

][
e−u(z+e) − e−U(z+e)

]
. (C.14)

Remarks C.3. In Appendix D we prove that

lim
ε→0

Eε
με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

Sε
3 (ξt , ηt )

∣∣∣∣∣dt

)
= 0. (C.15)

We further observe that |Bε
2| + |Bε

5| � c(‖uε − Uε‖2 + ‖vε − V ε‖2). In Appendix E we prove that

lim
ε→0

Eε
με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

Qε(ξt , ηt )

∣∣∣∣∣dt

)
= 0.

• Death process, ξ -particles.(
L(ξ,−) + D(ξ,−)

)‖v − V ‖2 = −2εd
∑
x

[
v(x) − V (x)

]∑
z

qβ(x, z)ξ(z)κη(z)+1

+ 2
〈
v − V,V G−(U)

〉+ Rε
9,

where Rε
9 is defined in (8.24). As before,

2εd
∑
x

[
v(x) − V (x)

]∑
z

qβ(x, z)ξ(z)κη(z)+1

= 2S4 + εd
∑
x

[
v(x) − V (x)

]∑
z

qβ(x, z)ξ(z)

× {
G−(U(x)

)+ [
G−(U(z)

)− G−(U(x)
)]+ [

χM,zG
−(u(z)

)− G−(U(z)
)]}

= 2Sε + 2
〈
v − V,vG−(U)

〉+ Rε + 2Bε,
4 12 3
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where

S4 = εd
∑
x

[
v(x) − V (x)

]∑
z

qβ(x, z)ξ(z)
{
κη(z)+1 − χM,z(η)G−(u(z)

)}
, (C.16)

B3 = εd
∑
x

[
v(x) − V (x)

]∑
z

qβ(x, z)ξ(z)χM,z(η)
[
G−(u(z)

)− G−(U(z)
)]

,

Rε
12 = −2εd

∑
x

[
v(x) − V (x)

]∑
z

qβ(x, z)ξ(z)
{[

G−(U(z)
)− G−(U(x)

)]− (1 − χM,z(η))G−(U(z)
)}

.

We thus have(
L(ξ,−) + D(ξ,−)

)‖v − V ‖2 = −2
〈
v − V, [v − V ]G−(U)

〉− 2S4 − 2B3 + Rε
9 + Rε

12. (C.17)

Remarks C.4. Since G−(Uε) is uniformly bounded in compact time intervals, there is a constant cM (which depends
on M), so that |Bε

3| � cM(‖uε − Uε‖2 + ‖vε − V ε‖2). In Appendix D it is proven that the term Sε
4 gives a vanishing

contribution as in (C.15). Finally Rε
12 is an R term because of (8.2).

C.3. Estimates of the remainders

From (C.2), (C.4) and (C.9) we get that

(L + D)‖u − U‖2 = −2‖u − U‖2
H 2

1
+ 2κ‖u − U‖2 − 2

(
Bε

0 +Bε
1

)+ Rε
1, (C.18)

where

Rε
1(ξ, η) = −2Sε

2 − 2Cε
2 +

∑
k=1,2,5,6,7

Rε
k .

We now observe that the first term in (C.18) is non positive and that from Remarks C.2 we get that given any τ > 0
there are c1 and c2 so that

∣∣∣∣∣
τ∫

0

(L + D)
{∥∥uε(ηt ) − Uε(t)

∥∥2}dt

∣∣∣∣∣�
τ∫

0

{
c1
∥∥uε(ηt ) − Uε(t)

∥∥2 + c2
∥∥vε(ξt ) − V ε(t)

∥∥2}

+
τ∫

0

Rε
1(ξt , ηt )dt, (C.19)

lim
ε→0

Eε
με

(∣∣∣∣∣ sup
τ ′�τ

τ ′∫
0

Rε
1(ξt , ηt )

∣∣∣∣∣
)

= 0. (C.20)

From (C.3), (C.12) and (C.17) we get that

(L + D)‖v − V ‖2 = −2ε−2a
〈∇(v − V ), e−U∇(v − V )

〉+ 2H
− 2

〈
v − V, [v − V ]G−(U)

〉+Bε
2 − 2Bε

3 +Bε
5 + Rε

2,

where

Rε
2(ξ, η) = 2(Sε

1 + κ ′Sε
3 − Sε

4 ) + 2Cε
1 + 2κ ′Qε +

∑
k=3,4,8,9,10,12,13

Rε
k .

We now observe that the third term is non negative and by Remarks C.1, C.3 and C.4 we get given any τ > 0 there are
c3 and c4 so that
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∣∣∣∣∣
τ∫

0

(L + D)
{∥∥vε(ηt ) − V ε(t)

∥∥2}dt

∣∣∣∣∣�
τ∫

0

{
c3
∥∥uε(ηt ) − Uε(t)

∥∥2 + c4
∥∥vε(ξt ) − V ε(t)

∥∥2}

+
τ∫

0

Rε
2(ξt , ηt )dt, (C.21)

lim
ε→0

Eε
με

(∣∣∣∣∣ sup
τ ′�τ

τ ′∫
0

Rε
2(ξt , ηt )dt

∣∣∣∣∣
)

= 0. (C.22)

Appendix D. The S terms

Denote by Xε
i , i = 1, . . . ,4, the terms in (4.4), (4.5) which contain Sε

i (their explicit expressions will be recalled
below). The most dangerous one is Xε

1 because it appears with a divergent multiplicative factor ε−2a , see (D.1). We
thus start from this one, although the following analysis covers, except for some coefficients which are different, the
easier term Sε

3 , where the dangerous factor ε−2a is absent.
Calling

aε
1(t, y) =

∑
x, |e|=1

[
vε(x, ξt ) − V ε(x, t)

]
e · ∇qβ(x, y − e)ξt (y − e)

(
1 − ξt (y)

)

the term of the remainder containing Sε
1 is

Xε
1 := ε−2aEε

με

(
sup
τ ′�τ

∣∣∣∣∣εd
∑
y

τ ′∫
0

aε
1(t, y)

[
1ηt (y)=0 − e−uε(y,ηt )

]∣∣∣∣∣
)

. (D.1)

We write

τ∫
0

aε
1(t, y)1ηt (y)=0 =

τ∫
0

aε
1

(
t + ε2α, y

)
1η

t+ε2α (y)=0 +
ε2α∫
0

aε
1(t, y)1ηt (y)=0 −

τ+ε2α∫
τ

aε
1(t, y)1ηt (y)=0.

Denoting by ‖a‖ := supε∈(0,1) supy∈Ωε
supt�τ+ε2α |aε

1(t, y)| < ∞,∣∣∣∣∣
τ∫

0

aε
1(t, y)1ηt (y)=0 −

τ∫
0

aε
1(t, y)1η

t+ε2α (y)=0

∣∣∣∣∣�
τ∫

0

∣∣aε
1

(
t + ε2α, y

)− aε
1(t, y)

∣∣+ 2‖a‖ε2α. (D.2)

We have that

Eε
με

(
aε

1

(
t + ε2α, y

)− aε
1(t, y)

)=
t+ε2α∫
t

Eε
με

((
L(ξ) + D(ξ)

)
aε

1(s, y)
)

and by Theorem 8.1,

ε−2aεd
∑
y

Eε
με

( τ∫
0

∣∣aε
1

(
t + ε2α, y

)− aε
1(t, y)

∣∣)� cε2(α−2a). (D.3)

Then, calling

ft (y) = [
1η

t+ε2α (y)=0 − e−uε(y,ηt )
]

from (D.2) and (D.3) we get that
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Xε
1 � ε−2aEε

με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

εd
∑
y

aε
1(t, y)ft (y)

∣∣∣∣∣
)

+ cε2(α−a) + 2‖a‖ε2(α−2a)

and with a new constant c

Xε
1 � ε−2aEε

με

( τ∫
0

∣∣∣∣∣εd
∑
y

aε
1(t, y)ft (y)

∣∣∣∣∣
)

+ cε2(α−2a)

� ε−2a

τ∫
0

Eε
με

(∣∣∣∣∣εd
∑
y

aε
1(t, y)ft (y)

∣∣∣∣∣
2)1/2

+ cε2(α−2a)

� ε−2a‖a‖τ sup
t�τ

sup
|y−y′|�ε−1+α/2

∣∣Eε
με

(
ft (y)ft (y

′)
)∣∣1/2 + cε2(α−2a) + ‖a‖τεαd/4−2a.

Indeed |ft (y)| � 1, so that ε2d
∑

|y−y′|<ε−1+α/2 |ft (y)||ft (y
′)| � εαd/2 and since there is a square root, the final bound

goes like εαd/4. By Theorem 10.1, |Eε
με (ft (y)ft (y

′))| � cε2α so that Xε
1 → 0, because α > 2a and α > 8a/d . We

have thus concluded the analysis of Sε
1 (and of Sε

3 , as well).
Recalling (C.16),

Xε
4 := Eε

με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

εd
∑
y

aε
4(t, y)

{[
κηt (y)+1 − χM,yG

−(uε(y, ηt )
)]}∣∣∣∣∣

)
,

aε
4(t, y) =

∑
x

[
vε(x, ξt ) − V ε(x, t)

]
qβ(x, y)ξ(y).

Analogously to (D.3), we get

|Xε
4| � Eε

με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

εd
∑
y

[
κη

t+ε2α (y)+1 − χM,yG
−(uε(y, ηt )

)]∣∣∣∣∣
)

+ cε2α

� Eε
με

( τ∫
0

εd
∑
y

∣∣κη
t+ε2α (y)+1 − χM,yG

−(uε(y, ηt )
)∣∣)+ cε2α

� Eε
με

( τ∫
0

εd
∑
y

χM,y

∣∣κη
t+ε2α (y)+1 − G−(uε(y, ηt )

)∣∣)+ c
[
ε2α + ε(1−α)d/2]

having used Cauchy–Schwartz and Theorem 8.1 in the last inequality. Hence

Xε
4 � τ sup

t�τ

sup
|y−y′|�ε−1+α/2

∣∣Eε
με

(
gt (y)gt (y

′)
)∣∣+ cε2α + c′εαd/4−2a,

gt (y) = χM,y

[
κη

t+ε2α (y)+1 − G−(uε(z, ηt )
)]

.

Since

G−(u) = Eu(κη(0)+1), Eu(η(0)) = u

(Eu is the expectation w.r.t. the Poisson law on N which has density u), by Theorem 10.2 we conclude that Xε
4 → 0.

We finally consider the remainder containing Sε
2 : it consists of the sum of two terms, see (C.6), whose structures

are essentially similar. For simplicity we only consider the first one. We have

Xε
2 := Eε

με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

εd
∑
x

[
uε(x, ηt ) − Uε(x, t)

]∑
z

pα(z − x)
[
ηt (z)κηt (z) − χM,zF

−
1

(
uε(z, ηt )

)]∣∣∣∣∣
)

,

0
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where

F−
1 (u) = Eu

(
η(0)κη(0)

)
and, again,

Xε
2 � Mτ sup

t�τ

sup
|y−y′|�ε−1+α/2

∣∣Eε
με

(
ht (y)ht (y

′)
)∣∣1/2 + cε2α(7/4) + c′εαd/4−2a + c′′ε(1−α)d/2,

ht (z) = ηt+ε2α (z)κη
t+ε2α (z) − F−

1

(
uε(z, ηt )

)
,

where the error cε2α(7/4) comes from having used Theorem 9.1 to express uε
t+ε2α (·) as a linear combination of uε

t (·).
We have then used Cauchy–Schwartz and Theorem 8.1 to bound the contribution of uε > M .

Appendix E. The term Q

In this appendix we will prove that for any τ > 0,

lim
ε→0

Eε
με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

Q(ξt )

∣∣∣∣∣
)

= 0 (E.1)

with Q(ξ) defined in (C.13). We obviously have

Eε
με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

Q(ξt )

∣∣∣∣∣
)

� Eε
με

(
sup
τ ′�τ

τ ′∫
0

∣∣Q(ξt )
∣∣)= Eε

με

( τ∫
0

∣∣Q(ξt )
∣∣)= τνε

τ

(∣∣Q(ξ0)
∣∣),

where νε
τ is the probability measure defined in (11.1). Since |vε(x, ξt )−V ε(x, t)| � 1 and νε

τ is translational invariant,

νε
τ

(∣∣Q(ξ0)
∣∣)� 1

2d

∑
e: |e|=1

{
vε(0, ξ0)

[
1 − vε(e, ξ0)

]− ξ0(0)
[
1 − ξ0(e)

]}
hence

Eε
με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

Q(ξt )

∣∣∣∣∣
)

� τνε
τ

(∣∣f ε
∣∣),

where

f ε(ξ) :=
{∑

z

1

2d

∑
e: |e|=1

qβ(0, z)ξ(z)
[
1 − ξ(z + e)

]}− vε(0, ξ)
[
1 − vε(e, ξ)

]

=
∑

z

1

2d

∑
e: |e|=1

qβ(0, z)
[
ξ0(z)ξ0(z + e) − vε(0, ξ)vε(e, ξ)

]
. (E.2)

For any bounded function f ,

∣∣Eε
νε
τ

(
f (ηt , ξt )

)− νε
τ

(
f (η, ξ)

)∣∣� 2t

τ
sup

s�τ+t

εd
∑
x∈Ωε

Eε
με

(∣∣Sxf (ηs, ξs)
∣∣).

By (E.2), |f ε(ξ)| � 1, then, for any T > 0,

Eε
με

(
sup
τ ′�τ

∣∣∣∣∣
τ ′∫

0

Q(ξt )

∣∣∣∣∣
)

� τEε
νε
τ

(∣∣f ε(ξT )
∣∣)+ 2T . (E.3)

By choosing T = eMε2β with M as in (8.2), we get
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l.h.s. of (E.3) � τEε
νε
τ

(
1uε(0,η)<M

∣∣f ε(ξT )
∣∣)+ 2 eMε2β + c(τ )ε(1−α)d

and we will then prove (E.1) by showing that

lim
ε→0

Eε
νε
τ

(
1uε(0,η)<Mf ε(ξT )2)= 0, T = eMε2β. (E.4)

We write x for a subset of Ωε , |x| for its cardinality and call

gx(ξ) =
∏
x∈x

ξ(x).

Then f ε(ξ)2 =∑
x c(x)gx(ξ) (c(x) numerical coefficients) and∣∣∣∣f ε(ξ)2 −
∑

x: |x|=4
x⊂B

c(x)gx(ξ)

∣∣∣∣� cε(a−β)d , B = {
x: |x| � ε−a+β/2}, (E.5)

where ∑
x: |x|=4

∣∣c(x)
∣∣� c,

∑
x: |x|<4

∣∣c(x)
∣∣� cε(a−β)d ,

∑
x �⊂B

∣∣c(x)
∣∣� c eε−β

. (E.6)

By (11.4) Eε
νε
τ
(1uε(0,η)<Mgx(ξT )) is modulo a negligible error a convolution of the form πt ∗ ξ0 with a suitable t . The

following computation shows that with a negligible error such a convolution can be rewritten as a new convolution
involving vε for which we have good smoothness properties.∑

z

π
ε−2(a−β) eM−uε (0,η0) (x, z)ξ0(z) =

∑
y

π
ε−2(a−β)[eM−uε (0,η0)−1](x, y)

{∑
z

qβ(y, z)ξ0(z)

}

=
∑
y

π
ε−2(a−β)[eM−uε (0,η0)−1](x, y)vε(y, ξ0) = vε(0, ξ0) + Rε,

Rε =
∑
y

π
ε−2(a−β)[eM−uε (0,η0)−1](x, y)

[
vε(y, ξ0) − vε(0, ξ0)

]
.

By Theorem 8.3 and the analogue of Corollary 8.1,

Eε
νε
τ

(∣∣vε(y, ξ0) − vε(0, ξ0)
∣∣)� cεa|y|

so that |Rε | � c′εaε−a+β . Then

lim
ε→0

sup
x⊂B, |x|=4

∣∣Eε
νε
τ

(
1uε(0,η)<Mgx(ξT )

)− Eε
νε
τ

(
vε(y, ξ0)

4)∣∣= 0.

Hence (E.4), using (E.5)–(E.6), thus concluding the proof of (E.1).

Appendix F. Proof of Theorem 6.1. Conclusion

With reference to (C.19) and (C.21), we call A the 2 × 2, matrix with entries c1, c2, c3, c4 and we define the
following two dimensional vector Rε(t) = (Rε

1(t),Rε
2(t))

Rε
i (t) :=

t∫
0

Rε
i (ξs, ηs)ds + Mi(t), i = 1,2, (F.1)

where M1(t) and M2(t) are the mean zero martingales defined in (4.4) and (4.5) respectively. Thus (6.1) is proven.
From (C.20) and (C.22) it follows that (6.2) holds for the first term on the right-hand side of (F.1).

We are thus left with the proof that also the martingale terms verify (6.2). We first notice that(
Eμε

(
sup

∣∣Mi(s)
∣∣))2

� Eμε

(
supMi(s)

2
)

� 4E
ε
με

(
Mi(t)

2), i = 1,2,

s�t s�t
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and then write (see for instance Chapter 2 of [4]):

Mi(t)
2 −

t∫
0

γi(s)ds =: Ni(t) is a martingale, i = 1,2, (F.2)

where the compensators γi of M2
i , i = 1,2, are given in (F.3) below,

γi(s) = LX2
i − 2XiLXi, i = 1,2, (F.3)

where

X1(s) = ∥∥uε(ηs) − Uε(s)
∥∥2

, X2(s) = ∥∥vε(ξs) − V ε(s)
∥∥2

.

Going back to (F.2), we have for all t > 0,

E
ε
με

(
Mi(t)

2)= E
ε
με

t

(
Ni(t) +

t∫
0

γi(s)ds

)
� E

ε
με

(
Xi(0)2)+ t sup

s�t

E
ε
με

(∣∣γi(s)
∣∣). (F.4)

Since by Theorem 5.1 the first term on the right-hand side of (F.4) vanishes in the limit ε → 0, the proof of Theorem 6.1
is concluded by the next Lemma.

Lemma F.1. For any t > 0,

lim
ε→0

sup
s�t

E
ε
με

(∣∣γi(s)
∣∣)= 0.

Proof. We first compute γ1 and, recalling that L(η) is the sum of three generators, we get for each of them the sum of
three terms that we classify as A, B and C remainders.

L(η)‖u − U‖4 − 2‖u − U‖2L(η)
(‖u − U‖2)=

3∑
i=1

[Ai + 4Bi + 4Ci],

where

A1 = ε−2ε2d
∑
x,y,z

η(z)
∣∣∇pα(x, z)

∣∣2∣∣∇pα(y, z)
∣∣2,

B1 = ε−2ε2d
∑
x,y,z

[
u(y) − U(y)

]
η(z)

∑
e: |e|=1

∣∣e · ∇pα(x, z)
∣∣2e · ∇pα(y, z),

C1 = ε−2ε2d
∑
x,y,z

[
u(y) − U(y)

][
u(x) − U(x)

]
η(z)∇pα(x, z) · ∇pα(y, z),

A2 = κε2d
∑
x,y,z

η(z)pα(x, z)2pα(y, z)2,

B2 = κε2d
∑
x,y,z

[
u(y) − U(y)

]
η(z)pα(x, z)2pα(y, z),

C2 = κε2d
∑
x,y,z

[
u(y) − U(y)

][
u(x) − U(x)

]
η(z)pα(x, z)pα(y, z).

Finally, calling ϕ(η, ξ ; z) = η(z)κη(z)[1 − ξ(z)] + η(z)κη(z)+1ξ(z),

A3 = ε2d
∑
x,y,z

ϕ(η, ξ ; z)pα(x, z)2pα(y, z)2,

B3 = −ε2d
∑
x,y,z

[
u(y) − U(y)

]
ϕ(η, ξ ; z)pα(x, z)2pα(y, z),

C3 = ε2d
∑[

u(y) − U(y)
][

u(x) − U(x)
]
ϕ(η, ξ ; z)pα(x, z)pα(y, z).
x,y,z
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By (8.1), the estimates at the end of Section 4 and (8.9) (details are omitted)

lim
ε→0

3∑
i=1

sup
s�t

Eμε

(∣∣Ai (s) + 4Bi (s) + 4Ci (s)
∣∣)= 0.

We next compute γ2 and, as before, for each of the three generators we get the sum of three terms that we classify
as Ā, �B and �C remainders.

L(ξ)‖v − V ‖4 − 2‖v − V ‖2L(ξ)
(‖v − V ‖2)=

3∑
i=1

[Āi + 4�Bi + 4�Ci],

where, calling ψe(ξ, η; z) = ξ(z)[1 − ξ(z + e)]1η(x+e)=0,

Ā1 = ε−2aε2d
∑
x,y,z

∑
e: |e|=1

ψe(ξ, η; z)∣∣∇qβ(x, z)
∣∣2∣∣∇qβ(y, z)

∣∣2,
�B1 = ε−2aε2d

∑
x,y,z

[
v(y) − V (y)

] ∑
e: |e|=1

ψe(ξ, η; z)∣∣e · ∇qβ(x, z)
∣∣2e · ∇qβ(y, z),

�C1 = ε−2aε2d
∑
x,y,z

[
v(y) − V (y)

][
v(x) − V (x)

]
ψe(ξ, η; z)∇qβ(x, z) · ∇qβ(y, z),

Ā2 = κ ′

2d
ε2d

∑
x,y,z

ψe(ξ, η; z)qβ(x, z − e)2qβ(y, z − e)2,

�B2 = κ ′

2d
ε2d

∑
x,y,z

[
v(y) − V (y)

]
ψe(ξ, η; z)qβ(x, z − e)2qβ(y, z − e),

�C2 = κ ′

2d
ε2d

∑
x,y,z

[
v(y) − V (y)

][
v(x) − V (x)

]
ψe(ξ, η; z)qβ(x, z − e)qβ(y, z − e).

Finally, calling φ(η, ξ ; z) = ξ(z)κη(z)+1,

Ā3 = ε2d
∑
x,y,z

φ(η, ξ ; z)qβ(x, z)2qβ(y, z)2,

�B3 = −ε2d
∑
x,y,z

[
v(y) − V (y)

]
φ(η, ξ ; z)qβ(x, z)2qβ(y, z),

�C3 = ε2d
∑
x,y,z

[
v(y) − V (y)

][
v(x) − V (x)

]
φ(η, ξ ; z)qβ(x, z)qβ(y, z).

Since the variables are bounded by 1, by (8.17) and the estimates at the end of Section 4 (details are again omitted)

lim
ε→0

3∑
i=1

sup
s�t

Eμε

(∣∣Āi (s) + 4�Bi (s) + 4�Ci (s)
∣∣)= 0. (F.5)

Lemma F.1 is proved. �
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