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Abstract

Consider a distinguished, or tagged particle in zero-range dynamics on Z
d with rate g whose finite-range jump probabilities p

possess a drift
∑

jp(j) �= 0. We show, in equilibrium, that the variance of the tagged particle position at time t is at least order t

in all d � 1, and at most order t in d = 1 and d � 3 for a wide class of rates g. Also, in d = 1, when the jump distribution p is
totally asymmetric and nearest-neighbor, and the rate g(k) increases, and g(k)/k either decreases or increases with k, we show the
diffusively scaled centered tagged particle position converges to a Brownian motion with a homogenized diffusion coefficient in
the sense of finite-dimensional distributions. Some characterizations of the tagged particle variance are also given.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

On considère « une particule marquée » pour des processus de zero-range sur Z
d avec un taux g dont la probabilité de saut p est

à portée finie, et possède une dérive
∑

jp(j) �= 0. On montre qu’à l’équilibre la variance de la position de la particule marquée
à l’instant t pour tout d � 1 est au plus d’ordre t si d = 1 et d � 3 pour une large classe de taux g. Ensuite, pour le cas d = 1,
en supposant que la probabilité de saut p est à plus proche voisin et totalement asymétrique, que le taux g(k) est croissant, et que
g(k)/k est soit croissant soit décroissant avec k, on montre que dans le cas d’approximations par diffusion la position centrée de la
particule marquée converge vers un mouvement Brownien avec des coefficients de diffusion homogènes (au sens des distributions
finies). Quelques caractérisations de la variance de la particule marquée sont aussi présentées.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction and results

Informally, the zero-range particle system, introduced by Spitzer [35], follows the evolution of a collection of
interacting random walks on Z

d . Namely, from a vertex with k particles, one of the particles displaces by j with rate
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(g(k)/k)p(j). The function on the non-negative integers g : N → R+ is called the process “rate,” and p(·) denotes
the translation-invariant single particle transition probability. The above interaction is in the “time-domain,” but not
“spatially,” hence the name “zero-range.” We note the case when g(k) is proportional to k describes the situation of
completely independent particles.

The problem of the asymptotics of a distinguished, or tagged particle interacting with others has a long history
and was even mentioned in Spitzer’s seminal paper. Such questions are natural and important to physics and other
applications (cf. Chapters 8.I, 6.II [36]). The main difficulty in the analysis is that the tagged particle motion is not
in general Markovian due to the interaction with other particles. However, the basic feeling is that in some scale the
tagged particle behaves as a random walk with certain “homogenized” parameters reflecting the system dynamics.
What is known in the literature, with respect to zero-range interaction, are some laws of large numbers, in equilibrium
[30,32] and non-equilibrium [26], and equilibrium invariance principles when the jump probability p is mean-zero,∑

jp(j) = 0 [30,32] (see near (1.2) for exact statements of the equilibrium results).
The goal of this article is to further characterize the equilibrium fluctuations of the tagged particle when p is

finite-range and has a drift
∑

jp(j) �= 0 on which little is known. Under natural assumptions on the rate g, we
give a characterization of the equilibrium tagged particle variance, and show it is at least diffusive in all dimensions
(Theorem 1), and at most diffusive in dimension d = 1, and under more conditions on g, also in d � 3 (Theorem 2).
In addition, finite-dimensional convergence to a Brownian motion is proved in a case in d = 1 with a “homogenized”
diffusion coefficient (Theorem 3).

In contrast, we remark, with respect to a tagged particle in simple exclusion, the asymptotics are more well-
studied. In particular, laws of large numbers, both in equilibrium [29] and non-equilibrium [26] have been shown.
Also, equilibrium central limit theorems and invariance principles when p is mean-zero [2,27,11,37], and when p

has a drift in d � 3 [33] and in d = 1 when p is in addition nearest-neighbor [9] have been proved. See also [12,15]
for fluctuations in d = 1 with respect to a non-translation invariant p. Non-trivial non-equilibrium fluctuation results
have even been derived in d � 1 when p is symmetric (excluding the d = 1 nearest-neighbor case) [25], and recently
in the exceptional case in d = 1 when p is symmetric and nearest-neighbor [7]. In addition, large deviations results
have been proved in some cases [24,31]. Some of these results and others are reviewed in [5], Section 4.VIII [17],
Chapter 4.III [18], and Sections 4.3, 8.4 and 11.5 [10].

In this context, we note that the diffusive variance bounds for a tagged particle in zero-range given here in d = 1
with respect to general rate g and finite-range p with drift (Theorem 2) have no counterpart in the simple exclusion
work at the moment. Some of the techniques used in this result may have application, after suitable modification, to
simple exclusion and related models.

To state assumptions and our results, we need to define more precisely the zero-range process. Let Σ = N
Z

d
be the

configuration space where a configuration ξ = {ξi : i ∈ Z
d} is given through occupation numbers ξi at vertex i and N

denotes the set of non-negative integers. The zero-range particle system then is a Markov process ξ(t) on the space of
right-continuous paths with left limits D(R+,Σ) with formal generator defined on certain “Lipschitz” functions,

(Lφ)(ξ) =
∑
j

∑
i

g(ξi)p(j)
(
φ
(
ξ i,i+j

)− φ(ξ)
)

where ξ i,i+j is the configuration in which a particle from i is moved to i + j . That is, ξ i,i+j = ξ − δi + δi+j where
δk is the configuration with a single particle at k.

When a particle is distinguished, or tagged, we consider the joint Markov process (x(t), ξ(t)) on D(R+,Z
d × Σ)

where x(t) is the position of the tagged particle at time t . The formal generator is given by

(Lψ)(x, ξ) =
∑
j

∑
i �=x

g(ξi)p(j)
(
ψ
(
x, ξ i,i+j

)− ψ(x, ξ)
)+∑

j

g(ξx)
ξx − 1

ξx

p(j)
(
ψ
(
x, ξx,x+j

)− ψ(x, ξ)
)

+
∑
j

g(ξx)

ξx

p(j)
(
ψ
(
x + j, ξx,x+j

)− ψ(x, ξ)
)
.

Here, the first term corresponds to particles other than at the tagged particle position x moving, the second term
corresponds to other particles moving from x, and the last term represents motion of the tagged particle itself. One
can also decompose the tagged particle motion further in terms of count processes Nj(t) which keep track of the
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number of jumps of various sizes j made up to time t and include their infinitesimal rates with respect to a more
detailed generator.

To compensate for the non-Markov character of the tagged particle motion, a convenient method is to consider
the “reference” process from the point-of-view of the tagged particle which has better properties. That is, let η(t) =
τx(t)ξ(t) where for a configuration ω ∈ Σ we define the k-shifted state τkω by (τkω)l = ωl+k for l ∈ Z

d . We note this
“reference” process η(t) is a Markov process, obtained from the map π((x(·), ξ(·))) = τx(·)ξ(·), with formal generator

(Lφ)(η) =
∑
j

∑
i �=0

g(ηi)p(j)
(
φ
(
ηi,i+j

)− φ(η)
)+∑

j

g(η0)
η0 − 1

η0
p(j)

(
φ
(
η0,j
)− φ(η)

)

+
∑
j

g(η0)

η0
p(j)

(
φ
(
τj

(
η0,j
))− φ(η)

)
.

In words, τj (η
0,j ) is the configuration obtained by displacing the tagged particle by j and then shifting accordingly

the reference frame.
The construction of these systems requires some conditions on g and p.

Basic assumptions on g and p. We will assume throughout g(0) = 0, g(k) > 0 for k � 1, |g(k + 1) − g(k)| � K for
some constant K , and lim infk→∞ g(k) > 0, and also p(0) = 0 and p is finite-range, that is p(i) = 0 for |i| > R for
some 1 � R < ∞, whose symmetrization s(x) = (p(x) + p(−x))/2 is irreducible.

We remark of these assumptions, the condition lim infg(k) > 0 is made to ensure invariant measures exist (cf. [1]).
When violated, the system evolution can lead to aggregation of particles in large piles, a sort of “condensation” effect
(cf. [8,6]).

Under weaker assumptions, which include the above, Andjel constructs the process ξ(t) semigroup T L
t and gener-

ator L on a class of “Lipschitz” functions D′ defined on a subset Σ ′ ⊂ Σ of the configuration space,

Σ ′ =
{
ξ : ‖ξ‖ =

∑
i∈Zd

|ξi |βi < ∞
}

D′ = {f :
∣∣f (ξ ′) − f (ξ ′′)

∣∣� c‖ξ ′ − ξ ′′‖ for all ξ ′, ξ ′′ ∈ Σ ′, for some c = c(f )
}

where one can take βi =∑n�0 2−ns(n)(i) for instance [1]. In a similar way, one can construct the process (x(t), ξ(t))

semigroup T L
t and generator L with respect to “Lipschitz” functions f where∣∣f ((x, ξ ′)
)− f

(
(y, ξ ′′)

)∣∣� c
[|x − y| + ‖ξ ′ − ξ ′′‖]

for all x, y ∈ Z
d , ξ ′, ξ ′′ ∈ Σ ′ with ξ ′

x, ξ
′′
y � 1 for some c = c(f ). Then, from the map π , process η(t) semigroup T L

t

and generator L can be constructed on D, the space of “Lipschitz” functions on Σ ′′ = {ξ ∈ Σ ′: ξ0 � 1}, namely those
f so that |f (ξ ′) − f (ξ ′′)| � c‖ξ ′ − ξ ′′‖ for all ξ ′, ξ ′′ ∈ Σ ′′ for some c = c(f ).

The zero-range process ξ(t) has a well-known explicit family product invariant measures Rα = ∏i∈Zd μα for
0 � α < lim infg(k) with marginal supported on non-negative integers,

μα(k) = 1

Zα

αk

g(k)! for k � 1 and μα(0) = 1

Zα

where g(k)! = g(1) · · ·g(k) and Zα is the normalization [1]. These measures are all supported on Σ ′, and it can be
shown that the process begun on Σ ′ never leaves Σ ′. Also, it is not difficult to see that D′ is a dense subset of L2(Rα).
Let now ρ(α) =∑k kμα(k), be the mean of the marginal μα , that is, the “density” of particles under Rα , and let
ρ∗ = limα↑lim infg(k) ρ(α). Note that ρ∗ may be finite for some type of g’s. As ρ(α) ↑ ρ∗ for α ↑ lim infg(k), for a
given 0 � ρ < ρ∗, there is a unique inverse α = α(ρ).

For the reference process η(t), the “Palm” or origin size biased measures given by dQα = (η0/ρ(α))dRα are
invariant (cf. [23,30]). Only the marginal at the origin, supported on the positive integers and denoted by μ0

α , differs
from μα , namely

μ0
α(k) = 1 kαk

for k � 1 and μ0
α(k) = 0 otherwise.
ρZα g(k)!
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Analogous to the discussion with respect to ξ(t) and Rα , the measure Qα is supported on Σ ′′, and it can be shown
that the reference process η(t) begun on Σ ′′ never leaves Σ ′′. Also, D is a dense subset of L2(Qα).

We now comment that, with respect to an invariant Rα , one can extend the zero-range process semigroup T L
t and

generator L to a strongly continuous semigroup and closed generator with respect to L2(Rα) so that bounded functions
in D′ form a core of the domain of L; in fact, the same arguments show that D′ itself is a core (cf. Section 2 [32]; for
general reference see Chapter 1 [4]). In the same way, with respect to a Qα , the reference semigroup T L

t and generator
L can be extended to a strongly continuous semigroup and closed generator on L2(Qα) with core D for the domain
of L denoted Dα . We note also here constructions of these processes can be made through the martingale-problem
approach [30,28]. Also, in this context, we note a Hille–Yosida type approach [16].

In addition, we note both families {Rα} and {Qα} are in fact extremal measures in their respective convex set of
invariant measures, and so process evolutions starting from these invariant states are time shift-ergodic. Extremality
of Rα is proved in [32]; analogous arguments apply to Qα .

Also, we note a standard computation shows that the adjoint L∗ with respect to Qα is itself a reference process
generator but with reversed jump probability p∗(·) = p(−·). Hence, in equilibrium Qα , the time-reversed process at
time t , {η(t − u): 0 � u � t}, is also a reference process in equilibrium Qα but with respect to jump probability p∗.

In the following, to avoid degeneracies, we will work with a fixed 0 < α < lim infg(k) for which ρ = ρ(α) > 0, and
corresponding Rα and Qα . For simplicity, we denote by Eα[·] the expectation under Qα and also under the reference
process measure starting from Qα when there is no confusion; otherwise, the underlying measure is noted as a suffix.

Write now the tagged particle position x(t) at time t as the sum total displacement, that is,

x(t) =
∑
j

jNj (t)

where Nj(t) is the number of jumps of size j it makes, or in terms of the reference process, the count of size j -shifts
made up to time t . The count Nj(t) is compensated by

∫ t

0 (g(η0(s)/η0(s))p(j)ds, so that further

x(t) =
∑
j

jMj (t) +
∑
j

j

t∫
0

g(η0(s))

η0(s)
p(j)ds (1.1)

where Mj(t) = Nj(t) − ∫ t

0 (g(η0(s)/η0(s))p(j)ds, since jumps of different sizes cannot happen simultaneously, are
orthogonal martingales for j ∈ Z

d . Moreover, we note M2
j (t) − ∫ t

0 (g(η0(s))/η0(s))p(j)ds are also martingales for

j ∈ Z
d .

So, the tagged position x(t) can be thought of as a function of the reference process. For most of the paper, we will
think in terms of the reference frame, that is, the notation x(t) will denote the total reference shift

∑
jNj (t). It will

also be useful to define

M(t) =
∑
j

jMj (t) and A(t) =
t∫

0

f
(
η(s)

)
ds

where f(η) = (
∑

jp(j))[g(η0)/η0 − α/ρ]. Note, in equilibrium Qα , one obtains, as Eα[g(η0)/η0] = α/ρ, that

Eα

[
x(t)

]= tEα

[
g(η0)

η0

]∑
j

jp(j) = t
α

ρ

∑
j

jp(j)

and so x(t) − Eα[x(t)] = M(t) + A(t). Also, from orthogonality of the Mj ’s, Eα[|M(t)|2] = t (α/ρ)
∑ |j |2p(j).

Before going to the main results, we briefly review the known zero-range equilibrium tagged particle asymptotics.
In equilibrium Qα , the law of large numbers holds [30,32]:

lim
t→∞

1

t
x(t) = α

ρ

∑
jp(j) a.s. (1.2)
j
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Also, with respect to fluctuations, when the jump probabilities are mean-zero,
∑

jp(j) = 0, then x(t) =∑ jMj (t)

is a martingale as the compensator terms cancel in (1.1). Then, under equilibrium Qα , the quadratic variation is

Eα[|x(t)|2]
t

= 1

t

∑
j

|j |2Eα

[ t∫
0

g(η0(s))

η0(s)
p(j)ds

]
= α

ρ

∑
j

|j |2p(j)

and by martingale central limit theorem the invariance principle is proved [30,32]:

1√
λ

x(λt) ⇒ B(t) as λ → ∞

where B(t) is d-dimensional Brownian motion with covariance matrix [(α/ρ)t
∑

j (ei · j)(ek · j)p(j)] in terms of the

standard basis {ei} of Z
d .

We now arrive at our first result which gives a characterization of the tagged particle variance, and states that it is
at least diffusive in all dimensions. As a comparison, we note this is not true for simple exclusion, in the case d = 1
and the jump probability p is nearest-neighbor symmetric, for which the variance at time t is order t1/2 [2]. See also
[3,14] for variance representations with respect to exclusion processes.

Define the measure μ′
α supported on the positive integers by

μ′
α(k) = 1

Z′
α

αk−1

g(k − 1)! for k � 2 and μ′
α(1) = 1

Z′
α

with normalization Z′
α . The interpretation is that μ′

α puts a particle at the origin and distributes other particles there
according to μα . Let Q′

α =∏i �=0 μα × μ′
α and let E′

α denote expectation under the reference process begun at Q′
α .

Theorem 1. Under initial distribution Qα , we have in all dimensions d � 1 for t � 0 that

Eα

[∣∣x(t) − Eα

[
x(t)

]∣∣2]= α

ρ

∑
j

|j |2p(j)t + Eα

[∣∣A(t)
∣∣2]� α

ρ

∑
j

|j |2p(j)t. (1.3)

The lower bound is strict unless g(k) is proportional to k. Also, the term Eα[|A(t)|2] is further evaluated as

Eα

[∣∣A(t)
∣∣2]= α

ρ

[∑
j

jp(j)

]
· 2

t∫
0

{
E′

α

[
x(s)

]− Eα

[
x(s)

]}
ds. (1.4)

The first term in (1.3), (α/ρ)
∑ |j |2p(j)t , is the mean quadratic variation of the martingale M(t), and can be

thought of as a “dynamical” contribution to the tagged particle variance. The second term Eα[|A(t)|2], on the other
hand, from (1.4), as a difference in expected tagged particle positions from different initial measures, represents in a
sense variation due to initial conditions. We also note when g(k) = ck is proportional to k, the case of independent
particles, that α/ρ = c, Q′

α = Qα and f ≡ 0, and so the tagged particle variance reduces to the variance of a single
random walk with jump rates cp.

Now, to give upperbounds on the tagged particle variance, we describe a class of rate functions g.

Assumption (SP). Let Ln be the generator of the symmetric zero-range process on a cube Bn = {i ∈ Z
d :

maxl (|il |) � n}, namely (Lnφ)(ξ) = ∑i,j∈Bn
g(ξi)(φ(ξ i,j ) − φ(ξ))s(j − i). Let W(n,M) be the inverse of the

spectral gap of Ln when there are M particles in Bn. Then, we assume the rate g is such that there is a constant
C = C(α,g,p, d) where ERα [(W(n,

∑
i∈Bn

ξi))
2] � Cn4.

We observe rates g where W(n,M) � Cn2 for a constant C independent of M , satisfy (SP) trivially, and include
those rates where, for some a � 1 and b > 0, g(k + a) − g(k) � b for all k � 0 [13]. Also, for the rate g(k) = 1[k�1],
it is known W(n,M) � C(1 + M/n)2n2 for some constant C [19], and so (SP) holds. It is most likely true that all
rates g satisfy (SP), although this is open.



220 S. Sethuraman / Ann. I. H. Poincaré – PR 43 (2007) 215–232
Theorem 2. Under initial distribution Qα , when
∑

jp(j) �= 0, we have in d = 1 (without further assumptions), and
in d � 3 under Assumption (SP) that there is a constant C = C(α,g,p, d) where, for t � 0,

Eα

[∣∣x(t) − Eα

[
x(t)

]∣∣2]� Ct.

We note, unfortunately, our estimates made in d = 1 and d � 3 do not seem to carry over straightforwardly to
dimension d = 2. An open question then is to investigate the tagged particle variance in d = 2 which should also be
diffusive.

We now state finite-dimensional convergence to a Brownian motion in a special case in d = 1.

Assumption (ID↓). The rate function g is such that g(k) increases and g(k)/k decreases with k.

Assumption (ID↑). The rate function g is such that both g(k) and g(k)/k increase with k.

Examples under (ID↓) include the well-studied case g(k) = 1[k�1]. We note also, under (ID↑), and our basic
assumptions (which preclude “super-linearity”), g(k)/k increases to a bounded limit.

Theorem 3. Under initial distribution Qα , in d = 1 when the jump probability is totally asymmetric p(1) = 1 and g

satisfies either Assumption (ID↓) or (ID↑), we have the tagged particle variance V (t) = Eα[(x(t) − Eα[x(t)])2] is
super-additive in t � 0, and also finite-dimensional convergence

lim
λ→∞

1√
λ

(
x(λt) − Eα

[
x(λt)

])= B(t)

to a Brownian motion B with diffusion coefficient σ 2 = σ 2(α, g) satisfying

C � σ 2 = α

ρ

[
1 + sup

t>0

2

t

t∫
0

{
E′

α

[
x(s)

]− Eα

[
x(s)

]}
ds

]
� α

ρ

where C is the constant from Theorem 2. Also, the lower bound is strict unless g(k) is proportional to k.

We note an ingredient in the proof of Theorem 3 is to show the corresponding tagged particle position has weakly
positively correlated increments (Lemma 4.2). In comparison, however, a tagged particle in d = 1 simple exclusion
with totally asymmetric nearest-neighbor transitions has negatively correlated increments, and in fact is a Poisson
process (cf. Section 4.VIII [17]). But, in the above zero-range context, exactly when the system is that of independent
particles (when g(k) is proportional to k) is the tagged particle a Poisson process, as otherwise σ 2(ρ) > α/ρ =
Eα[x(1)].

Also, we note a natural open question is to show tightness of the scaled centered positions in D[0,∞).

Remark on extensions. Presumably, one should expect diffusive variance bounds, and corresponding central limit
theorems and invariance principles on the tagged position under only our initial basic assumptions on g and p in all
dimensions not just the cases considered here. Also, in principle, one should expect the “finite-range” condition on p

could be relaxed to a “second-moment” condition with analogous results. Finally, what possible different behaviors
might arise under further weakening of the basic assumptions would be of interest and have not been considered.

We now comment on the proofs of these results, and the plan of the paper. The proof of Theorem 1, in Section 2,
follows from a short argument using time-reversal. The proof of Theorem 2, which forms the bulk of the paper,
follows from an analysis of certain resolvent or H−1 norms, and is found in Section 3. On a technical level, we note
the application of H−1 norm estimates in the asymmetric zero-range context differs somewhat from previous simple
exclusion methods (cf. [33]) which use concepts of “dual” basis functions to reduce calculations. Last, the proof
of Theorem 3, in Section 4, makes use of the diffusive variance bounds in Theorem 2, and follows by applying a
Newman–Wright theorem. These proofs can be read independently of each other.
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2. Proof of Theorem 1

Most of the proof follows from explicit calculations. We have

Eα

[∣∣x(t) − Eα

[
x(t)

]∣∣2]= Eα

[∣∣M(t) + A(t)
∣∣2]

= Eα

[∣∣M(t)
∣∣2]+ 2Eα

[
M(t) · A(t)

]+ Eα

[∣∣A(t)
∣∣2]

= α

ρ

∑
|j |2p(j)t + 2

t∫
0

Eα

[
M(s) · f(η(s)

)]
ds + Eα

[∣∣A(t)
∣∣2]. (2.1)

Now, as noted in the introduction, under time reversal at time s, with respect to the process begun under Qα ,
{η∗(u) = η(s − u): 0 � u � s} is a reference frame zero-range process in equilibrium Qα with reversed rates p(−·).
Note also that the number of j -shifts up to time s in the forward realization equals the number of −j -shifts in the time-
reversed realization up to time s, that is Nj(s;η(·)) = N−j (s;η∗(·)) where denoted in each count is the directed real-
ization to which it refers. Also, in this notation, M∗(s;η(·)) =∑ jN−j (s;η(·))−∑ j

∫ s

0 (g(η0(u))/η0(u))p(j)du is
a martingale with respect to the reversed process with reversed rates p(−·).

So, we have

Eα

[
M(s) · f(η(s)

)]= Eα

[
M∗(s;η∗(·)) · f(η∗(0)

)]= E∗
α

[
M∗(s;η(·)) · f(η(0)

)]
=
∫

E∗
η

[
M∗(s;η(·))] · f(η)dQα(η)

after conditioning on time 0 where E∗
α and E∗

η denote expectations with respect to the reversed process with initial dis-
tribution Qα and initial state η respectively. As E∗

η[M∗(s;η(·)] = 0, we have Eα[M(s) · f(η(s))] = 0, and substituting
into (2.1) we obtain (1.3).

To derive (1.4), we write using stationarity that

Eα

[∣∣A(t)
∣∣2]= 2

t∫
0

Eα

[
f
(
η(0)

) ·
s∫

0

f
(
η(u)

)
du

]
ds = 2

t∫
0

Eα

[
f
(
η(0)

) · A(s)
]

ds

= 2

t∫
0

Eα

[
f
(
η(0)

) · ((x(s) − Eα

[
x(s)

])− M(s)
)]

ds = 2

t∫
0

Eα

[
f
(
η(0)

) · x(s)
]

ds

as f is mean-zero, and Eα[f(η(0)) · M(s)] = Eα[f(η(0)) · Eη(0)[M(s)]] = 0.
Now, by a simple calculation, for a function h ∈ L2(Qα), we have

Eα

[(
g(η0)/η0

)
h(η)

]= α

ρ
ERα

[
Eη+δ0

[
h(η)

]]= α

ρ
EQ′

α

[
h(η)

]
.

Hence, noting the definition of f (cf. near (1.1)),

Eα

[
f
(
η(0)

) · x(s)
]= Eα

[
f
(
η(0)

) · Eη(0)

[
x(s)

]]= α

ρ

(∑
jp(j)

)
· {E′

α

[
x(s)

]− Eα

[
x(s)

]}
.

We now consider when Eα[|A(t)|2] is positive. When g(k) is proportional to k, as noted in the remark after the
Theorem 1 statement, f ≡ 0, and so Eα[|A(t)|2] = 0 for all t � 0 in this case. When g(k) is not linear in k, f is non-
trivial, and lims↓0 s−2Eα[|A(s)|2] = Eα[|f|2] > 0. Hence, in this case, Eα[|A(t)|2] > t2Eα[|f|2]/2 > 0 for all t > 0
small. Now, suppose Eα[|A(t0)|2] = 0 for some t0 > 0. Then,

∫ t0
0 f(η(s))ds = 0 a.s. By stationarity,

∫ t0+a

a
f(η(s))ds =

0 a.s. for each a > 0. By simple addition and subtraction, for 0 < ε < t0, we have
∫ ε

0 f(η(s))ds = ∫ kt0+ε

kt0
f(η(s))ds

a.s. for each integer k � 1. Then,

ε∫
f
(
η(s)

)
ds = 1

n

n∑
k=1

kt0+ε∫
f
(
η(s)

)
ds a.s.
0 kt0
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for each n � 1. Now, the limit limn→∞ n−1∑n
k=1

∫ kt0+ε

kt0
f(η(s))ds = Eα[∫ ε

0 f(η(s))ds] = 0 a.s. as the process evolu-

tion starting from Qα is time-shift ergodic, as noted in the introduction. Hence,
∫ ε

0 f(η(s))ds = 0 a.s. Choosing now
ε > 0 small enough so that Eα[|A(ε)|2] > 0 however yields a contradiction, finishing the proof. �
3. Proof of Theorem 2

We first discuss some definitions and estimates involving variational formulas for some resolvent quantities involv-
ing notation Eα[f ψ] = 〈f,ψ〉α , and Eα[f 2] = ‖f ‖2

0.
The generator L, with respect to Qα , can be decomposed into symmetric and anti-symmetric parts, L = S + A

where S = (L+L∗)/2 and A = (L−L∗)/2 are well defined on D. One can check that the symmetric operator S is
in fact the generator of the reference frame zero-range process with symmetrized jump probabilities s(·). Moreover,
−S is a non-negative operator whose Dirichlet form can be computed, for ψ ∈ D, as

〈
ψ, (−S)ψ

〉
α

= 1

2

∑
j

∑
i �=0

Eα

[
g(ηi)

(
ψ
(
ηi,i+j

)− ψ(η)
)2]

s(j)

+ 1

2

∑
j

Eα

[
g(η0)

η0 − 1

η0

(
ψ
(
η0,j
)− ψ(η)

)2]
s(j)

+ 1

2

∑
j

Eα

[
g(η0)

η0

(
ψ
(
τj

(
η0,j
))− ψ(η)

)2]
s(j). (3.1)

We now consider some useful Hilbert spaces. For λ > 0 and ψ ∈ D, define the norm ‖ψ‖1,λ by

‖ψ‖2
1,λ = 〈ψ, (λ − S)ψ

〉
α
.

The Hilbert space H1,λ then is the completion over D with respect to this norm.
To define a dual norm, consider, for f ∈ L2(Qα) and ψ ∈ D, that 〈f,ψ〉α � ‖f ‖0‖ψ‖0 � λ−1/2‖f ‖0‖ψ‖1,λ.

Hence, for f ∈ L2(Qα), the dual norm

‖f ‖−1,λ = inf
{
κ: 〈f,ψ〉α � κ‖ψ‖1,λ for all ψ ∈D

}
(3.2)

is always finite with bound ‖f ‖2−1,λ � λ−1‖f ‖2
0. In particular, for ψ ∈D, we have

〈f,ψ〉α � ‖f ‖−1,λ‖ψ‖1,λ �
[

1

λ
‖f ‖2

0

]1/2

‖ψ‖1,λ. (3.3)

Define, correspondingly, H−1,λ as the Hilbert space with respect to the norm ‖ · ‖−1,λ. [Although we will not need it,
we remark that ‖f ‖−1,λ can be evaluated as ‖f ‖2−1,λ = 〈f, (λ − S)−1f 〉α ; see also [22] for other contexts.]

It will also be convenient to define (semi-)norm ‖ψ‖1 for ψ ∈ D by ‖ψ‖2
1 = 〈ψ, (−S)ψ〉α , and corresponding

Hilbert space H1 as the completion over D with respect to this norm, after modding out by zero-norm functions. Also,
for f ∈ L2(Qα), define the associated H−1 dual norm

‖f ‖−1 = inf
{
κ: 〈f,ψ〉α � κ‖ψ‖1 for all ψ ∈ D

}
(3.4)

with usual convention inf∅ = ∞. We note a large class of functions with finite norm ‖ · ‖−1 has been identified in [34]
(see also Proposition 3.2). Let H−1 be the corresponding Hilbert space completion over ‖ · ‖−1 norm finite functions,
after modding out by zero-norm quantities.

There are clear relations between H1,λ, H−1,λ, H1 and H−1 norms, namely, for ψ ∈ D and f ∈ L2(Qα),

‖ψ‖1 � ‖ψ‖1,λ and ‖f ‖−1,λ � ‖f ‖−1. (3.5)

Consider now the resolvent operator (λ −L)−1 :L2(Qα) → Dα well defined in terms of the semigroup,

(λ −L)−1f =
∞∫

e−λsT L
s f ds.
0
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Define, for f ∈ L2(Qα), that σ 2
t (f ) = Eα[(∫ t

0 f (η(s))ds)2], and observe from the decomposition (1.3), to get diffu-
sive bounds on the tagged particle variance, one need only bound

σ 2
t (h) = Eα

[( t∫
0

h
(
η(s)

)
ds

)2]
< Ct

where h(η) = g(η0)/η0 − α/ρ for some constant C = C(α,g,p, d). The next result relates σ 2
t (f ) to H−1,λ and H−1

norms.

Proposition 3.1. For f ∈ L2(Qα), and t > 0, there is a universal constant C1 such that

σ 2
t (f ) � C1t

〈
f,
(
t−1 −L

)−1
f
〉
α

� C1t‖f ‖2
−1,t−1

� C1t‖f ‖2−1.

Proof. Let u = (λ −L)−1f . The first line is a computation with the resolvent equation f = λu −Lu. First note, by
multiplying through by u and integrating, that 〈f, (λ −L)−1f 〉α = Eα[f u] = λEα[u2] + Eα[u(−Lu)]. Then, write

t∫
0

f ds =
t∫

0

λuds + Mλ(t) + u
(
η(0)

)− u
(
η(t)

)

where Mλ(t) = u(η(t))−u(η(0))−∫ t

0 Luds is a martingale. Note σ 2
t (f ) � 3σ 2

t (λu)+3Eα[M2
λ(t)]+3Eα[(u(η(0)−

u(η(t))2]. Using stationarity, σ 2
t (λu) � λ2t2Eα[u2], the quadratic variation Eα[M2

λ(t)] = tEα[u(−Lu)], and
Eα[(u(η(0) − u(η(t))2] � 4Eα[u2]. Hence, by collecting terms, and choosing λ = t−1, we obtain the first estimate
with say C1 = 15 (cf. Section 6, Appendix 1 [10]).

For the second bound, as u ∈ Dα , we can find a sequence of functions {ψn} ⊂ D in the core such that ψn → u

and Lψn → Lu in L2(Qα). Then, 〈f,ψn〉α → 〈f, (λ − L)−1f 〉α and 〈ψn, (λ − S)ψn〉α = 〈ψn, (λ − L)ψn〉α →
〈f, (λ −L)−1f 〉α , and so, by substitution into (3.2), 〈f, (λ −L)−1f 〉α � ‖f ‖2−1,λ.

The third bound is given in (3.5). �
Proof of Theorem 2. The strategy to bound σ 2

t (h) falls into two cases d = 1, and d � 3 under (SP). We first comment
on the case d = 1, and then on the d � 3 case.

Case d = 1. (1) We will find a sequence of functions (in Subsection 3.1.1) {φλ: 0 < λ < 1} ⊂ Dα such that

sup
0<λ<1

‖h −Lφλ‖−1,λ < ∞ (3.6)

and also

sup
0<λ<1

(‖φλ‖2
1 + λ‖φλ‖2

0

)
< ∞. (3.7)

(2) Note Mt(f ) = f (η(t)) − f (η(0)) − ∫ t

0 (Lf )(η(s))ds is a martingale for f ∈ Dα with quadratic variation (by
stationarity) Eα[(Mt(f ))2] = 2tEα[f (−Lf )] = 2t‖f ‖2

1. Then, we can write

−
t∫

0

Lφλ

(
η(s)

)
ds = Mt(φλ) + φλ

(
η(0)

)− φλ

(
η(t)

)

and so (by stationarity)

σ 2
t (Lφλ) � 6

(
t‖φλ‖2

1 + ‖φλ‖2
0

)= 6t

(
‖φλ‖2

1 + 1

t
‖φλ‖2

0

)
.

(3) Hence, by choosing λ = t−1, we have from Proposition 3.1 that
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σ 2
t (h) � 2σ 2

t (h −Lφt−1) + 2σ 2
t (Lφt−1)

� 2C1t‖h −Lφt−1‖2
−1,t−1 + 12t

(
‖φt−1‖2

1 + 1

t
‖φt−1‖2

0

)
. (3.8)

Then, by estimates in (1), σ 2
t (h) � Ct for some constant C = C(α,g,p) and t > 1. For 0 � t � 1, bounds are

immediate. This finishes the proof in this case.
Case d � 3 and (SP). By Proposition 3.1, we need only show ‖h‖−1 < ∞. One may be able to do this directly

by “integration-by-parts” but as the Qα marginal at the origin differs from the other marginals, one cannot apply
immediately results in the literature. So, we “modify” the function h and then apply these results.

Let j0 �= 0 be a point in the support of p where p(j0) �= 0. Consider the function φ(η) = (ηj0 − ρ)/(ρp(j0)) ∈ D.
In Subsection 3.1.2, we show that ‖h − Lφ‖−1 < ∞. Clearly ‖φ‖1 < ∞ and ‖φ‖0 < ∞. Then, by following the
sequence (3.8) (noting ‖ · ‖−1,λ � ‖ · ‖−1), we have

σ 2
t (h) � 2C1t‖h −Lφ‖−1 + 12t

(
‖φ‖2

1 + 1

t
‖φ‖2

0

)
< Ct

for a constant C = C(α,g,p, d) and t > 1. Bounds when 0 � t � 1 are clear. This finishes the proof. �
3.1. Some estimates

We now turn to supplying the needed estimates in the two cases. We first make a calculation valid in any dimension
d � 1. Let {ai : i ∈ Z

d} be numbers with
∑ |ai | < ∞, and define

φ(η) =
∑
i∈Zd

ai(ηi − ρ).

Note that φ absolutely converges Qα a.s. and, as
∑

a2
i < ∞, that also φ is the L2(Qα) limit φ = limn→∞ φ(n) of

functions φ(n) =∑|i|max�n ai(ηi − ρ) ∈ D where |i|max = max{|i1|, . . . , |id |}. Consider now, n > R larger than the
range of p, and i, j where |i|max, |i + j |max � n, that

φ(n)
(
ηi,i+j

)− φ(n)(η) = ai+j − ai

and, as τj (η
0,j ) = τj (η + δj − δ0) = τjη + δ0 − δ−j , that φ(n)(τj (η

0,j )) =∑|i|max�n ai(ηi+j − ρ) + a0 − a−j and

φ(n)
(
τj

(
η0,j
))− φ(n)(η) =

∑
|i|max�n

|i+j |max�n

(ai − ai+j )(ηi+j − ρ) + (a0 − a−j )

+
∑

|i|max�n
|i+j |max>n

ai(ηi+j − ρ) −
∑

|i|max>n
|i+j |max�n

ai+j (ηi+j − ρ).

These computations allow us to write

(
Lφ(n)

)
(η) =

∑
j

∑
i �=0, |i|max�n
|i+j |max�n

(ai+j − ai)g(ηi)p(j) +
∑
j

(aj − a0)g(η0)
η0 − 1

η0
p(j)

−
∑
j

∑
|i|max�n

|i+j |max�n

(ai+j − ai)(ηi+j − ρ)
g(η0)

η0
p(j) +

∑
j

(a0 − a−j )
g(η0)

η0
p(j)

−
∑
j

∑
|i|max�n

|i+j |max>n

ai

(
g(ηi) − (ηi+j − ρ)

g(η0)

η0

)
p(j)

+
∑
j

∑
|i|max>n

ai+j

(
g(ηi) − (ηi+j − ρ)

g(η0)

η0

)
p(j)
|i+j |max�n
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where the last two lines correspond to boundary terms. As Eα[Lφ(n)] = 0, we can subtract the mean from all terms,
and deduce, from orthogonality relations and the finite-range of p, that the L2(Qα) limit limn→∞ Lφ(n) = Φ con-
verges, and so, as L is closed, that φ ∈ Dα and Φ = Lφ. Moreover, we have

(Lφ)(η) =
∑
j

∑
i �=0

(ai+j − ai)g(ηi)p(j) +
∑
j

(aj − a0)g(η0)
η0 − 1

η0
p(j)

−
∑
j

∑
i

(ai+j − ai)(ηi+j − ρ)
g(η0)

η0
p(j) +

∑
j

(a0 − a−j )
g(η0)

η0
p(j)

=
∑
j

∑
i �=0,−j

(ai+j − ai)

[
g(ηi) − ηi+j

g(η0)

η0

]
p(j) +

∑
j

(a0 − a−j )

[
g(η−j ) − g(η0)

η0 − 1

η0

]
p(j)

+
∑
j

(aj − a0)g(η0)

[
1 − ηj + 1

η0

]
p(j).

Here, we used
∑

j

∑
i (ai+j − ai)p(j) = 0 to reduce the first sum in the second line to

−
∑
j

∑
i

(ai+j − ai)ηi+j

(
g(η0)

η0

)
p(j).

We remark in the following, we could work with φ(n) itself but going to the limit here avoids treating boundary terms
later on.

We now note the following basic useful relations.

Lemma 3.1. Let j ∈ Z
d be a non-zero vertex, j �= 0. Then, for ψ ∈ L2(Qα), we have

Eα

[
g(ηj )ψ(η)

]= αEα

[
ψ(η + δj )

]
, Eα

[
g(η0)

η0 − 1

η0
ψ(η)

]
= αEα

[
ψ(η + δ0)

]
,

and

Eα

[
g(η0)

η0
ψ(η)

]
= Eα

[
g(η0)

η0
ψ
(
τj

(
η0,j
))]

, Eα

[
(ηj + 1)

g(η0)

η0
ψ(η)

]
= Eα

[
g(η0)ψ

(
τ−j

(
η0,−j

))]
.

Proof. We show the last equality as the others are similar. Write

Eα

[
(ηj + 1)

g(η0)

η0
ψ(η)

]
= α

ρ
ERα

[
(ηj + 1)ψ(η + δ0)

]= 1

ρ
ERα

[
g(ηj )ηjψ

(
ηj,0)]

= Eα

[
g(η0)ψ

(
(τ−j η)j,0

)]= Eα

[
g(η0)ψ

(
τ−j

(
η0,−j

))]
. �

Let now ψ ∈ D be a function. We can write, with Lemma 3.1,

Eα

[
(Lφ)ψ

]=∑
j

∑
i �=0,−j

(ai+j − ai)Eα

[(
g(ηi) − ηi+j

g(η0)

η0

)
ψ(η)

]
p(j)

+ α
∑
j

(a0 − a−j )Eα

[
ψ(η + δ−j ) − ψ(η + δ0)

]
p(j)

+
∑
j

(aj − a0)Eα

[
g(η0)

(
ψ(η) − ψ

(
τ−j

(
η0,−j

)))]
p(j). (3.9)

It will be convenient, for later purposes, to observe that in the above computation we can take Eα[ψ] = 0 without loss
of generality as Eα[Lφ] = 0.
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3.1.1. Estimates in d = 1
We now work in dimension d = 1, and choose the sequence

ai =
{

0 for i � 0,

c0(1 − λ)i−1 for i � 1

with c0 = (ρ
∑

jp(j))−1 and 0 < λ < 1. Then, φ now also depends on λ, φ = φλ. For ease of notation, define
∇ak,j = ak − aj and note

∇ai+j,i =

⎧⎪⎨
⎪⎩

0 for i, i + j � 0,

c0(1 − λ)i+j−1 for i + j � 1 and i � 0,

−c0(1 − λ)i−1 for i � 1 and i + j � 0,

c0
[
(1 − λ)j − 1

]
(1 − λ)i−1 for i, i + j � 1.

Clearly |∇ai+j,i | � |c0| for all i, j ∈ Z.
Recall now the range R of the distribution p, and write, following (3.9),

Eα

[
(Lφ)ψ

]=∑
j

∑
i�R+2

∇ai+j,iEα

[(
g(ηi) − ηi+j

g(η0)

η0

)
ψ(η)

]
p(j)

+
∑
j

∑
|i|�R+1
i �=0,−j

∇ai+j,iEα

[(
g(ηi) − ηi+j

g(η0)

η0

)
ψ(η)

]
p(j)

+
∑
j

∇a0,−jEα

[
g(η0)

η0 − 1

η0

(
ψ
(
η0,−j

)− ψ(η)
)]

p(j)

+
∑
j

∇aj,0Eα

[
g(η0)

(
ψ(η) − ψ

(
τ−j

(
η0,−j

)))]
p(j)

= I1 + I2 + I3 + I4.

Consider now the term I1. Since Eα[ψ] = 0, we can write

I1 =
∑
j

∑
i�R+2

∇ai+j,iEα

[((
g(ηi) − α

)− (ηi+j − ρ)
g(η0)

η0

)
ψ(η)

]
p(j)

− ρ
∑
j

∑
i�R+2

∇ai+j,iEα

[
g(η0)

η0
ψ(η)

]
p(j)

= J1 + J2.

After a calculation, the last term J2 equals, using Eα[ψ] = 0 again and that p(0) = 0,

J2 = ρEα

[
g(η0)

η0
ψ(η)

]{∑
j�1

1+j∑
k=2

aR+kp(j) −
∑

j�−1

1∑
k=2+j

aR+kp(j)

}

= ρc0Eα

[
g(η0)

η0
ψ(η)

]{∑
j�1

p(j)(1 − λ)R+1
j−1∑
k=0

(1 − λ)k −
∑

j�−1

p(j)(1 − λ)R+1+j

−1−j∑
k=0

(1 − λ)k
}

= ρc0

(∑
jp(j)

)
Eα

[
g(η0)

η0
ψ(η)

]
+ ρc0Eα

[
g(η0)

η0
ψ(η)

]{∑
j�1

p(j)

[
(1 − λ)R+1 1 − (1 − λ)j

λ
− j

]

−
∑

j�−1

p(j)

[
(1 − λ)R+1+j 1 − (1 − λ)−j

λ
+ j

]}

= Eα

[
hψ(η)

]+ J3.
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Hence, we have that

Eα

[
(h −Lφ)ψ

]= −(I2 + I3 + I4 + J1 + J3).

To show the bound in (3.6), by the variational form of ‖ · ‖−1,λ (cf. (3.2)), we need only verify

|I2 + I3 + I4 + J1 + J3| � C‖ψ‖1,λ (3.10)

for some constant C = C(α,g,p).
To this end, observe, by Schwarz inequality, using Eα[g(η0)(η0 − 1)/η0] = α and p(j) � 2s(−j), that

|I3| �
(∑

j

|c0|2p(j)

)1/2(∑
j

αEα

[
g(η0)

η0 − 1

η0

(
ψ
(
η0,−j

)− ψ(η)
)2]

p(j)

)1/2

� C‖ψ‖1

for a constant C = C(α,g,p) noting (3.1). Similarly,

|I4| �
(∑

j

|c0|2p(j)

)1/2(∑
j

Eα

[
g(η0)η0

]
Eα

[
g(η0)

η0

(
ψ(η) − ψ

(
τ−j

(
η0,−j

)))2]
p(j)

)1/2

� 2|c0|
√

Eα

[
g(η0)η0

]‖ψ‖1.

For the second term I2, note, with Lemma 3.1,

Eα

[(
g(ηi) − ηi+j

g(η0)

η0

)
ψ(η)

]

= Eα

[
g(η0)

η0 − 1

η0

(
ψ
(
η0,i
)− ψ(η)

)+(g(η0) − g(η0)
ηi+j + 1

η0

)
ψ(η)

]

= Eα

[
g(η0)

η0 − 1

η0

(
ψ
(
η0,i
)− ψ(η)

)+ g(η0)
(
ψ(η) − ψ

(
τ−(i+j)

(
η0,−(i+j)

)))]
.

Then,

|I2| �
(∑

j

∑
|i|�R+1
i �=0,−j

|c0|2p(j)

)1/2(∑
j

∑
|i|�R+1

2αEα

[
g(η0)

η0 − 1

η0

(
ψ
(
η0,i
)− ψ(η)

)2]
p(j)

+ 2Eα

[
g(η0)η0

]
Eα

[
g(η0)

η0

(
ψ(η) − ψ

(
τ−(i+j)

(
η0,−(i+j)

)))2]
p(j)

)1/2

.

Note, as s is irreducible, u ∈ Z can be written u =∑m
n=1 ln for points ln in the support of s, s(ln) > 0. Let r0 = 0 and

rk =∑k
n=1 ln for 1 � k � m. Then, with Lemma 3.1,

Eα

[
g(η0)

η0 − 1

η0

(
ψ
(
η0,u
)− ψ(η)

)2]= αEα

[(
ψ(η + δu) − ψ(η + δ0)

)2]

� mα

m−1∑
k=0

Eα

[(
ψ(η + δrk ) − ψ(η + δrk+1)

)2]
� C‖ψ‖2

1

for some constant C = C(p) as mini:p(i)>0 p(i) > 0 given p is finite-range. Also,

Eα

[
g(η0)

η0

(
ψ(η) − ψ

(
τu

(
η0,u
)))2]� m

m−1∑
k=0

Eα

[
g(η0)

η0

(
ψ
(
τrk

(
η0,rk

))− ψ
(
τrk+1

(
η0,rk+1

)))2]

= m

m−1∑
Eα

[
g(η0)

η0

(
ψ(η) − ψ

(
τlk+1

(
η0,lk+1

)))2]� C‖ψ‖2
1

k=0
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for a C = C(p) again as p is finite-range. Then, as the sums in I2 are finite, I2 is bounded |I2| � C‖ψ‖1 for some
constant C = C(α,g,p).

To bound J1, we use the resolvent bound (3.3). Namely, as {g(ηi) − α : i � R + 2} is an orthogonal family,∣∣∣∣∑
j

∑
i�R+2

∇ai+j,iEα

[(
g(ηi) − α

)
ψ(η)

]
p(j)

∣∣∣∣�
∥∥∥∥∑

j

∑
i�R+2

∇ai+j,i

(
g(ηi) − α

)
p(j)

∥∥∥∥−1,λ

‖ψ‖1,λ

�
(

1

λ

∑
|j |�R

∑
i�R+2

∇2ai+j,iEα

[(
g(η1) − α

)2]
p(j)

)1/2

‖ψ‖1,λ

and, as for fixed j , {(ηi+j − ρ)(g(η0)/η0): i � R + 2} is also an orthogonal collection,∣∣∣∣∑
j

∑
i�R+2

∇ai+j,iEα

[
(ηi+j − ρ)

g(η0)

η0
ψ(η)

]
p(j)

∣∣∣∣
�
(

1

λ

∑
|j |�R

∑
i�R+2

∇2ai+j,iEα

[
(η1 − ρ)2 g2(η0)

η2
0

]
p(j)

)1/2

‖ψ‖1,λ;

then, |J1| � C(λ−1∑
i�1 ∇2ai+1,i )

1/2‖ψ‖1,λ for some C = C(α,g,p) as i + j � 2 for i � R + 2 and |j | � R.
Finally, J3 is uniformly bounded through the resolvent bound (3.3) for 0 < λ < 1 with respect to a constant C =

C(α,g,p) as

|J3| �
[
(ρc0)

2

λ

{ ∑
1�j�R

p(j)

[
(1 − λ)R+1 1 − (1 − λ)j

λ
− j

]

−
∑

−R�j�−1

p(j)

[
(1 − λ)R+1+j 1 − (1 − λ)−j

λ
+ j

]}2∥∥∥∥g(η0)

η0

∥∥∥∥
2

0

]1/2

‖ψ‖1,λ

� C‖ψ‖1,λ.

Putting these estimates together, noting ‖ψ‖1 � ‖ψ‖1,λ and using a form of Schwarz – relation 2ab = infε ε−1a2 +
εb2 – we obtain, for a constant C = C(α,g,p),

|I2 + I3 + I4 + J1 + J3| � C

(
1 + 1

λ

∑
i�1

∇2ai+1,i

)1/2

‖ψ‖1,λ.

Then, by direct computation, we have that

1

λ

∑
i�1

∇2ai+1,i = λ2|c0|2
λ

1

λ(2 − λ)

which shows (3.6) via (3.10).
To show (3.7), we observe

∑
i�1 a2

i = |c0|2/(λ(2 − λ)) and so λ‖φ‖2
0 = λ(|c0|2/(λ(2 − λ)))Eα[(η1 − ρ)2]; also,

noting computations at the beginning of Subsection 3.1 and (3.1), we have uniformly over 0 < λ < 1 that

‖φ‖2
1 = α

2

∑
j

∑
i

∇2ai+j,is(j) + 1

2

∑
j

Eα

[
g(η0)

η0

(∑
i

∇ai,i+j (ηi+j − ρ) + ∇a0,−j

)2]
s(j)

� C + C
∑
i�1

∇2ai+1,i � C′

for some constants C = C(α,g,p) and C′ = C′(α, g,p) using, as before, the orthogonality of{(
g(η0)

η0

)
(ηi+j − ρ): i ∈ Z

}
for fixed j , and that s(·) is finite-range.
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3.1.2. Estimates in d � 3 under (SP)
For the function φ(η) = (ηj0 − ρ)/(ρp(j0)) and ψ ∈ D, we have from (3.9), noting here aj0 = 1 and ai = 0 for

i �= j0, and also j0 �= 0, that ρp(j0)Eα[(Lφ)ψ] equals

−Eα

[(
g(ηj0) − η2j0

g(η0)

η0

)
ψ

]
p(j0) + Eα

[(
g(η2j0) − ηj0

g(η0)

η0

)
ψ

]
p(−j0)

+
∑

j �=±j0

{
Eα

[(
g(ηj0−j ) − ηj0

g(η0)

η0

)
ψ

]
− Eα

[(
g(ηj0) − ηj0+j

g(η0)

η0

)
ψ

]}
p(j)

− αEα

[
ψ(η + δj0) − ψ(η + δ0)

]
p(−j0) + Eα

[
g(η0)

(
ψ(η) − ψ

(
τ−j0

(
η0,−j0

)))]
p(j0).

As we can take Eα[ψ] = 0, without loss of generality, with Lemma 3.1, ρp(j0)Eα[(Lφ)ψ] equals

ρp(j0)Eα

[
g(η0)

η0
ψ

]
− Eα

[(
g(ηj0) − α

)
ψ
]
p(j0) + Eα

[
(η2j0 − ρ)

g(η0)

η0
ψ

]
p(j0)

+ Eα

[(
g(η2j0) − ηj0

g(η0)

η0

)
ψ

]
p(−j0) +

∑
j �=±j0|j |�R

{
Eα

[(
g(ηj0−j ) − ηj0

g(η0)

η0

)
ψ

]

− Eα

[(
g(ηj0) − ηj0+j

g(η0)

η0

)
ψ

]}
p(j) − Eα

[
g(η0)

η0 − 1

η0

(
ψ
(
η0,j0

)− ψ(η)
)]

p(−j0)

+ Eα

[
g(η0)

(
ψ(η) − ψ

(
τ−j0

(
η0,−j0

)))]
p(j0)

= ρp(j0)Eα

[
g(η0)

η0
ψ

]
+ K1 + K2 + K3 + K4 + K5 + K6.

Hence, to show ‖h −Lφ‖−1 < ∞, by the variational characterization (cf. (3.4)), we need only show that∣∣Eα

[
(h −Lφ)ψ

]∣∣= (ρp(j0)
)−1|K1 + K2 + K3 + K4 + K5 + K6| � C‖ψ‖1

for some constant C = C(α,g,p). To this end, the terms K3,K4,K5 and K6 are handled analogously as I2, I3 and I4
above in the d = 1 case. To bound K1 and K2, we invoke the following result.

Proposition 3.2. Consider d � 3 finite-range reference frame processes such that g satisfies assumption (SP). Let f

be a L4(Qα) function supported on a finite number of vertices of Z
d \ {0} which is mean-zero, Eα[f ] = 0. Then, for

a constant C = C(f,α,g,p, d), we have for ψ ∈D that

Eα[f ψ] � C

[∑
j

∑
i �=0,−j

Eα

[
g(ηi)

(
ψ
(
ηi,i+j

)− ψ(η)
)2]

s(j)

]1/2

� C‖ψ‖1.

In particular, ‖f ‖−1 < ∞.

Proof. The proof is virtually the same as for Theorem 1.2 [34] and accomplished by straightforwardly avoiding the
origin. �

Note now Proposition 3.2 directly applies to K1. For K2, we first condition on η0, noting Qα is product measure,
to get

|K2| = p(j0)

∣∣∣∣Eα

[
Eα

[
(η2j0 − ρ)ψ(·;η0)|η0

]g(η0)

η0

]∣∣∣∣
� p(j0)Eα

[
C

[∑
j

∑
i �=0,−j

Eα

[
g(ηi)

(
ψ
(
ηi,i+j ;η0

)− ψ(η;η0)
)2]

s(j)

]1/2
g(η0)

η0

]

where ψ(χ;η0) denotes ψ as a function of {χi : i �= 0} with η0 fixed. After applying Schwarz inequality, as Qα is
product measure, one can integrate and bound the right-side by Cp(j0)Eα[(g(η0)/η0)

2]1/2‖ψ‖1. This finishes the
proof of Theorem 2 in this case.
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4. Proof of Theorem 3

We first define a notion of a “weakly positively associated” stationary increments L2 process N(t). This is an L2

process where

E
[
φ
(
N(t + s) − N(t)

)
ψ
(
N(t)

)]
� E

[
φ
(
N(s)

)]
E[ψ(N(t)

)]
for all φ and ψ increasing. For such processes we have the Newman–Wright result (cf. [21] for a survey).

Theorem 4. Suppose N(t) is an L2 process on D[0,∞) with weakly positively associated stationary increments such
that the limit variance is finite

lim
t→∞

1

t
E
[(

N(t) − E
[
N(t)

])2]= σ 2 < ∞.

Then, we have finite-dimensional convergence to a Brownian motion B with diffusion coefficient σ 2,

1√
λ

(
N(λt) − E

[
N(λt)

])⇒ B(t).

Proof. The result is Theorem 3 [20] applied in our context. We note that although Theorem 3 [20] assumes a stronger
form of associativity, what is actually used in the proof is the notion of “weakly positive associativity” defined
above. �
Remark. We note from the assumption of stationary and positive association of increments, that the variance at time t ,
W(t) = E[(N(t)−E[N(t)])2], is super-additive in t , and so the limit limt→∞ W(t)/t = supt>0 W(t)/t already exists,
possibly as an infinite limit. Indeed, one checks

W(t + s) − W(t) − W(s) = 2E
[(

N(t + s) − N(t) − E
[
N(s)

])(
N(t) − E

[
N(t)

])]
� 0.

The plan will now be to verify that the tagged position x(t) in d = 1 under the assumptions of Theorem 3 has
associated increments. The following is a coupling which essentially says adding more particles to the system slows
down or speeds up the tagged particle under conditions (ID↓) or (ID↑) respectively.

Lemma 4.1. Suppose in d = 1 that p is totally asymmetric and nearest-neighbor, namely p(1) = 1. Then, under
Assumption (ID↓) on g, we can couple two copies of the joint process, (x1(t), ξ1(t)) and (x2(t), ξ2(t)) where ξ1(0) �
ξ2(0) coordinatewise and x1(0) � x2(0) so that ξ1(t) � ξ2(t) and x1(t) � x2(t) for t � 0.

Similarly, under Assumption (ID↑), when ξ1(0) � ξ2(0) and x1(0) � x2(0), one can couple the systems so that
ξ1(t) � ξ2(t) and x1(t) � x2(t) for t � 0.

Proof. We prove the statement under (ID↓) as the proof is analogous with respect to (ID↑). We now couple so that
when an ξ1 particle moves, a corresponding ξ2 particle also moves to the right, and also when x2 would move ahead
of x1 then x1 also moves.

More carefully, at vertex x �= x1, x2, the basic coupling applies – with rate g(ξ1
x ) a particle from x in both systems

moves; and with rate g(ξ2
x ) − g(ξ1

x ) a particle from x in system 2 moves.
When x1 �= x2, with rate g(ξ1

x1)(ξ
1
x1 − 1)/ξ1

x1 a non-tagged particle in system 1 and a particle in system 2 move

from location x1; with rate g(ξ1
x1)/ξ

1
x1 the tagged particle from system 1 and a particle from system 2 at x1 move; and

with rate g(ξ2
x1) − g(ξ1

x1) a particle in system 2 at x1 moves.

With respect to location x2, with rate g(ξ1
x2)(ξ

1
x2 − 1)/ξ1

x2 a particle from system 1 and a non-tagged particle in

system 2 move from x2; with rate g(ξ2
x2)/ξ

2
x2 the tagged particle in system 2 and a particle in system 1 move from

location x2; with rate g(ξ1
x2)/ξ

1
x2 − g(ξ2

x2)/ξ
2
x2 a particle in system 1 and a non-tagged particle in system 2 move

from x2; with the remaining rate

g
(
ξ2
x2

)ξ2
x2 − 1

ξ2
− g
(
ξ1
x2

)ξ1
x2 − 1

ξ1
− g(ξ1

x2)

ξ1
+ g(ξ2

x2)

ξ2
= g
(
ξ2
x2

)− g
(
ξ1
x2

)
(4.1)
x2 x2 x2 x2
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a non-tagged particle moves from system 2 at x2.
When x1 = x2 = x, with rate g(ξ1

x )(ξ1
x − 1)/ξ1

x a non-tagged particle from x in both systems moves; with rate
g(ξ2

x )/ξ2
x both tagged particles move; with rate g(ξ1

x )/ξ1
x −g(ξ2

x )/ξ2
x the tagged particle in system 1 and a non-tagged

particle in system 2 move; with the remaining rate g(ξ2
x ) − g(ξ1

x ) (cf. (4.1)), a non-tagged particle in system 2 moves.
We omit the generator formulation. �
The next lemma owes some intuition to Theorem 2 [9].

Lemma 4.2. In d = 1, under the assumptions of Theorem 3, the L2 process x(t) under Qα has weakly positively
associated stationary increments.

Proof. From (1.3), clearly x(t) = N1(t) is an L2 process. Also under Qα , x(t) has stationary increments. Consider
now the sequence, for increasing φ and ψ ,

Eα

[
φ
(
x(t + s) − x(t)

)
ψ
(
x(t)

)]= Eα

[
ψ
(
x(t)

)
Eη(t)

[
φ
(
x(s)

)]]
= Eα

[
ψ
(
N−1

(
t;η∗(·)))Eη∗(0)

[
φ
(
x(s)

)]]
where in the second step, we reverse time at t with η∗(u) = η(t − u) so that N1(t;η(·)), the number of right-shifts
up to time t under the forward process, equals N−1(t;η∗(·)), the number of left-shifts up to time t with respect to the
reversed process.

As noted in the introduction, the reversed process {η∗(u): 0 � u � t} begun under Qα is also a reference frame
zero-range process in equilibrium Qα but with reversed jump probability p∗(·) = p(−·) where p∗(−1) = 1. As
in Section 2, let E∗

α and E∗
η denote expectations with respect to the reversed process with initial states Qα and η

respectively.
Then, after conditioning on time 0, and noting N−1(t;η(·)) = −x(t) under the reversed process,

Eα

[
ψ
(
N−1

(
t;η∗(·)))Eη∗(0)

[
φ
(
x(s)

)]]= E∗
α

[
ψ
(
N−1

(
t;η(·)))Eη(0)

[
φ
(
x(s)

)]]
=
∫

E∗
η

[
ψ
(−x(t)

)]
Eη

[
φ
(
x(s)

)]
dQα(η).

Consider the functions E∗
η[ψ(−x(t))], and Eη[φ(x(s))] as functions of η. Both are coordinatewise in η decreasing

under (ID↓) and increasing under (ID↑) by the coupling in Lemma 4.1. Indeed, the coupling implies that by increasing
η by one particle, −x(t) under the reversed process and x(t) under the forward process both decrease/increase with
assumption (ID↓)/(ID↑) (recall that the reversed process moves to the left).

With this monotonicity, the associated property follows from the standard FKG inequality for product measures
(see Section II.2 [17]). �
Proof of Theorem 3. By Lemma 4.2, x(t) has weakly positively associated increments. Hence, by the remark after
Theorem 4, the variance V (t) is super-additive in t � 0, and the limit σ 2 = limt→∞ V (t)/t exists and is in form
limt→∞ V (t)/t = supt>0 V (t)/t . Also, by Theorem 2, supt>0 V (t)/t � C < ∞. Therefore, the finite-dimensional
convergence to a Brownian motion with coefficient σ 2 follows from the Newman–Wright Theorem 4. For the partic-
ular evaluation and lower bound on the diffusion coefficient, Theorem 1 straightforwardly applies. The strict lower
bound also follows in the case g(k) �≡ ck from super-additivity as V (1) > α/ρ. �
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