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Abstract

There is a well-known sequence of constants cn describing the growth of supercritical Galton–Watson processes Zn. By lower
deviation probabilities we refer to P(Zn = kn) with kn = o(cn) as n increases. We give a detailed picture of the asymptotic behavior
of such lower deviation probabilities. This complements and corrects results known from the literature concerning special cases.
Knowledge on lower deviation probabilities is needed to describe large deviations of the ratio Zn+1/Zn. The latter are important
in statistical inference to estimate the offspring mean. For our proofs, we adapt the well-known Cramér method for proving large
deviations of sums of independent variables to our needs.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Les auteurs présentent une analyse détaillée des probabilités de déviations inférieures. Ces dernières sont nécessaires à la des-
cription du rapport Zn+1/Zn.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction and statement of results

1.1. On the growth of supercritical processes

Let Z = (Zn)n�0 denote a Galton–Watson process with offspring generating function

f (s) =
∑
j�0

pj s
j , 0 � s � 1, (1)
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which is required to be non-degenerate, that is, pj < 1, j � 0. Suppose that Z is supercritical, i.e. f ′(1) =: m ∈
(1,∞). For simplicity, the initial state Z0 � 1 is always assumed to be deterministic, and, if not noted otherwise, we
set Z0 = 1.

It is well-known (see, e.g., Asmussen and Hering [1, §3.5]) that

there are cn > 0 such that a.s. c−1
n Zn −→

n↑∞ some non-degenerate W. (2)

In this sense, the sequence of constants cn describes the order of growth of Z. But P(W = 0) might be positive, more
precisely, it equals the smallest root q ∈ [0,1) of f (s) = s, that is, it coincides with the extinction probability of Z. On
the other hand, W restricted to (0,∞) has a (strictly) positive continuous density function denoted by w. Therefore
the following global limit theorem holds:

lim
n↑∞ P(Zn � xcn) =

∞∫
x

w(t)dt, x > 0. (3)

The normalizing sequence (cn)n�0 can be chosen to have the following additional properties:

c0 = 1 and cn < cn+1 � mcn, n � 0, (4a)

cn = mnL
(
mn
)

with L slowly varying at infinity, (4b)

lim
x↑∞L(x) exists; it is positive if and only if EZ1 logZ1 < ∞. (4c)

Because of (4b,c), we may (and subsequently shall) take

cn := mn if EZ1 logZ1 < ∞. (5)

1.2. Asymptotic local behavior of Z, and main purpose

A local limit theorem related to (3) is due to Dubuc and Seneta [8], see also [1, §3.7]. To state it we need the
following definition.

Definition 1 (Type (d,μ)). We say the offspring generating function f is of type (d,μ), if d � 1 is the greatest
common divisor of the set {j − �: j �= �,pjp� > 0}, and μ � 0 is the minimal j � 0 for which pj > 0.

Here is the announced local limit theorem. Suppose f is of type (d,μ). Take x > 0, and consider integers kn � 1
such that kn/cn → x as n ↑ ∞. Then, for each j � 1,

lim
n↑∞

(
cnP{Zn = kn|Z0 = j} − d1{kn≡jμn(modd)}wj(x)

)= 0, (6)

where wj :=∑j

�=1

(
j
�

)
qj−�w∗�, and w∗� denotes the �-fold convolution of the density function w. In particular, in

our standard case Z0 = 1 and if additionally kn ≡ μn(modd), then

P(Zn = kn) ∼ dc−1
n w(kn/cn) as n ↑ ∞ (7)

(with the usual meaning of the symbol ∼ as the ratio converges to 1).
Statement (6) [and especially (7)] can be considered as describing the local behavior of supercritical Galton–Watson

processes in the region of normal deviations (from the growth of the cn; ‘deviations’ are meant here in a multiplicative
sense, related to the multiplicative nature of branching). But what about P(Zn = kn) when kn/cn → 0 or ∞? In these
cases we speak of lower and upper (local) deviation probabilities, respectively.

There are good reasons to be interested in the behavior of these probabilities. Lower deviations of Zn are closely
related to large deviations of Zn+1/Zn (see Ney and Vidyashankar [14, Section 2.3]). The latter are important in statis-
tical inference for supercritical Galton–Watson processes, since Zn+1/Zn is the well-known Lotka–Nagaev estimator
of the offspring mean.

The main purpose of the present paper is to study lower deviation probabilities in their own right and to provide
a detailed picture (see Theorems 4 and 6 below). Applications of our results for large deviations of Zn+1/Zn can be
found in [11].
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Here is the program for the remaining part of the introduction. After introducing and discussing a basic dichotomy,
we review in Section 1.4 what is known on lower deviations from the literature, before we state our results in Sec-
tions 1.5 and 1.6.

1.3. A dichotomy for supercritical processes

Recalling that f denotes the offspring generating function, q the extinction probability, and m the mean,

set γ := f ′(q), and define α by γ = m−α. (8)

Note that γ ∈ [0,1) and α ∈ (0,∞]. We introduce the following notion, reflecting a crucial dichotomy for supercritical
Galton–Watson processes.

Definition 2 (Schröder and Böttcher case). For our supercritical offspring law we distinguish between the Schröder
and the Böttcher case, in dependence on whether p0 + p1 > 0 or = 0.

Obviously, f is of Schröder type if and only if γ > 0, if and only if α < ∞.
Next we want to collect a few basic facts from the literature concerning that dichotomy. Clearly, f can be consid-

ered as a function on the closed unit disc D in the complex plane. As usual, denote by fn the nth iterate of f .
We start with the Schröder case. Here it is well-known (see, e.g., [1, Lemma 3.7.2 and Corollary 3.7.3]) that

Sn(z) := fn(z) − q

γ n
−→
n↑∞ some S(z) =:

∞∑
j=0

νj z
j , z ∈ D. (9)

Moreover, the convergence is uniform on each compact subset of the interior D◦ of D. Furthermore, the function S
restricted to the reals is the unique solution of the so-called Schröder functional equation (see, e.g., Kuczma [13,
Theorem 6.1, p. 137]),

S
(
f (s)

)= γ S(s), 0 � s � 1, (10)

satisfying

S(q) = 0 and lim
s→q

S′(s) = 1. (11)

As a consequence of (9),

lim
n↑∞γ −nP(Zn = k) = νk, k � 1. (12)

Consequently, in the Schröder case, these extreme (k is fixed) lower deviation probabilities P(Zn = k) are positive
and decay to 0 with order γ n. On the other hand, the characteristic α ∈ (0,∞) describes the behavior of the limiting
quantities w(x) and P(W � x) as x ↓ 0. In fact, according to Biggins and Bingham [4], there is a continuous, positive
multiplicatively periodic function V such that

x1−αw(x) = V (x) + o(1) as x ↓ 0. (13)

Dubuc [6] has shown that the function V can be replaced by a constant V0 > 0 if and only if

S
(
ϕ(h)

)= K0h
−α, h � 0, (14)

for some constant K0 > 0, where ϕ = ϕW denotes the Laplace transform of W ,

ϕW(h) := E e−hW , h � 0. (15)

We mention that condition (14) is certainly fulfilled if Z is embeddable (see [1, p. 96]) into a continuous-time Galton–
Watson process (as in the case of a geometric offspring law, see Example 3 below).

Now we turn to the Böttcher case. Here μ � 2 (recall Definition 1). Clearly, opposed to (12), extreme lower
deviation probabilities disappear, even P(Zn < μn) = 0 for all n � 1. Evidently,

P
(
Zn = μn

)= P
(
Zn−1 = μn−1)p(μn−1)

μ . (16)
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Hence,

P
(
Zn = μn

)=
n−1∏
j=0

p(μj )
μ = exp

[
μn − 1

μ − 1
logpμ

]
. (17)

Next, P(Zn = μn + 1) = P(Zn−1 = μn−1)μn−1pμ+1p
μn−1−1
μ . Thus, from (16),

P
(
Zn = μn + 1

)= p−1
μ pμ+1μ

n−1P
(
Zn = μn

)
. (18)

For simplification, consider for the moment the special case pμ+j > 0, j � 0. Then, as in (18), for fixed k � 0 and
some positive constants Ck ,

P
(
Zn = μn + k

)∼ Ckμ
nkP

(
Zn = μn

)
as n ↑ ∞. (19)

Consequently, in contrast to (12) in the Schröder case, here the lower positive deviation probabilities P(Zn = μn + k)

do not have a uniform order of decay. But by (19),

μ−n log P
(
Zn = μn + k

)−→
n↑∞ logpμ, k � 0. (20)

That is, on a logarithmic scale, we have again a uniform order, namely the order −μn.
Turning back to the general Böttcher case,

lim
n↑∞

(
fn(s)

)(μ−n) =: B(s), 0 � s � 1, (21)

exists, is continuous, positive, and satisfies the Böttcher functional equation

B
(
f (s)

)= Bμ(s), 0 � s � 1, (22)

with boundary conditions

B(0) = 0 and B(1) = 1 (23)

(see, e.g., Kuczma [13, Theorem 6.9, p. 145]).
Recalling that μ � 2 in the Böttcher case, define β ∈ (0,1) by

μ = mβ. (24)

According to [4, Theorem 3], there exists a positive and multiplicatively periodic function V ∗ such that

− log P(W � x) = x−β/(1−β)V ∗(x) + o
(
x−β(1−β)

)
as x ↓ 0. (25)

If additionally logϕW(h) ∼ −κhβ as h ↑ ∞ for some constant κ > 0, then by Bingham [5, formula (4)],

− log P(W � x) ∼ β−1(1 − β)(κβ)1/(1−β)x−β/(1−β) as x ↓ 0. (26)

1.4. Lower deviation probabilities in the literature

What else is known in the literature on lower deviation probabilities of Z? In the Schröder case (0 < α < ∞),
Athreya and Ney [2] proved that in case of mesh d = 1 and EZ2

1 < ∞, for every ε ∈ (0, η), where

η := mα/(3+α) > 1, (27)

there exists a positive constant Cε such that for all k � 1,∣∣∣∣mnP(Zn = k) − w

(
k

mn

)∣∣∣∣� Cε

η−n

km−n
+ (η − ε)−n. (28)

The estimate (28) allows us to get some information on lower deviation probabilities. Indeed, in the general Schröder
case, from (13),

w(x)  xα−1 as x ↓ 0 (29)
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(meaning that there are positive constants C1 and C2 such that C1x
α−1 � w(x) � C2x

α−1, 0 < x � 1). Together
with (28) this implies

P(Zn = kn) = m−nw
(
kn/mn

)[
1 + O

(
mαn

kα
nηn

+ m(α−1)n

kα−1
n (η − ε)n

)]
as n ↑ ∞. (30)

We want to show that in important special cases the O-expression is actually an o(1). Recalling the definition (27)
of η, one easily verifies that mαn/kα

nηn → 0 (as n ↑ ∞) if and only if kn/mn(2+α)/(3+α) → ∞. Concerning the second
O-term, if additionally α � 1, then m(α−1)n/kα−1

n � 1 provided that kn � mn. Hence, here m(α−1)n/(kα−1
n (η − ε)n)

converges to zero if η − ε > 1. On the other hand, if α > 1 and kn/mn(2+α)/(3+α) → ∞ (which we needed for the first
term), then m(α−1)n/(kα−1

n (η − ε)n) → 0 provided that additionally ε � mα/(3+α) − m(α−1)/(3+α). Altogether, in the
Schröder case and under the assumptions in [2],

P(Zn = kn) = m−nw
(
kn/mn

)(
1 + o(1)

)
as n ↑ ∞ (31)

provided that both kn � mn and kn/mn(2+α)/(3+α) → ∞.
In [2] it is also mentioned that according to an unpublished manuscript of S. Karlin, in the Schröder case, for each

embeddable process Z of finite second moment,

lim
n↑∞

mαn

kα−1
n

P(Zn = kn) exists in (0,∞), provided that kn = o
(
mn
)
. (32)

In the present situation, as we remarked after (13), w(x) ∼ V0x
α−1 as x ↓ 0 with V0 > 0. Hence, from (32), for some

constant C > 0,

P(Zn = kn) ∼ Cm−nw
(
kn/mn

)
as n ↑ ∞, (33)

which is compatible with (31).
Intuitively, the asymptotic behavior of lower deviation probabilities should be more related to characteristics such

as α and β than to the tail of the offspring distribution. Thus one can expect that it is possible to describe lower
deviation probabilities successfully without the second moment assumption used in [2]. Actually, in [14, Theorem 1]
one finds the following claim.

Suppose p0 = 0 and EZ1 logZ1 < ∞. Then there exist positive constants C1 < C2 such that for kn → ∞ with
kn = O(mn) as n ↑ ∞,

C1 � lim inf
n↑∞

P(Zn = kn)

An

� lim sup
n↑∞

P(Zn = kn)

An

� C2, (34)

where

An :=
⎧⎨
⎩

pn
1kα−1

n if α < 1,

θnp
n
1 if α = 1,

m−n if 1 < α � ∞,

(35)

and θn := [n + 1 − logkn/ logm]. Furthermore, if kn = mn−�n for natural numbers �n = O(n) as n ↑ ∞, then

lim
n↑∞A−1

n P(Zn = kn) =: Clim exists in (0,∞). (36)

Unfortunately, this claim is not true as it stands. In fact, consider first the following example.

Example 3 (Geometric offspring law). Consider the offspring generating function

f (s) = s

m − (m − 1)s
=

∞∑
j=1

m−1(1 − m−1)j−1
sj , 0 � s � 1, (37)

(with mean m > 1). Obviously, here q = 0, γ = m−1, hence α = 1. For the nth iterate one easily gets

fn(s) = s

mn − (mn − 1)s
=

∞∑
m−n

(
1 − m−n

)j−1
sj . (38)
j=1
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Thus,

P(Zn = k) = m−n
(
1 − m−n

)k−1 � m−n, (39)

for all n, k � 1. On the other hand, since p1 = m−1, by claim (34) there is a constant C > 0 such that for the consid-
ered kn,

P(Zn = kn) � Cθnm
−n (40)

for n large enough. If, for example, kn = mn/2 then θn → ∞, and (40) contradicts (39).

Consequently, the left-hand part of claim (34) cannot be true in the case α = 1. Next, in the case 1 < α < ∞, we
compare the claim with (31). In fact, under the assumptions in [2], if additionally kn = o(mn) but

kn

mn(2+α)/(3+α)
→ ∞ as n ↑ ∞,

then by (31) and (29),

P(Zn = kn)  m−n

(
kn

mn

)α−1

. (41)

Thus, we get P(Zn = kn) = o(m−n) which contradicts the positivity of Clim in claim (36), hence of C1 in claim (34).
Finally, in the case α = ∞, the proof of Lemma 5 in [14] is incorrect. In fact, the statement (82) there is wrong. Right
calculations instead lead to C1 = 0 in this case.

Summarizing, for each value of α ∈ [1,∞], the claimed positivity of C1 in (34) is not always true. (Some more
discussion on the claim (34) can be found in our original preprint [10, Section 1.5].)

Actually, it is wrong to distinguish between velocity cases as in (35). The only needed velocity case differentiation
is the mentioned dichotomy of Definition 2. This we will explain in the next two sections. Moreover, there we also
remove the Z1 logZ1-moment assumption, used in [14].

1.5. Lower deviations in the Schröder case

We start by stating our results on lower deviation probabilities in the Schröder case. Recall that here μ = 0 or 1.

Theorem 4 (Schröder case). Let the offspring law be of the Schröder type and of type (d,μ). Then

sup
k�k̃ with k≡μ(modd), j�0

∣∣∣∣ mjcak

dw(k/(mjcak
))

P(Zak+j = k) − 1

∣∣∣∣−→
k̃↑∞

0 (42)

and

sup
k�k̃, j�0

∣∣∣∣ P(0 < Zak+j � k)

P(0 < W < k/(mjcak
))

− 1

∣∣∣∣−→
k̃↑∞

0, (43)

where for k � 1 fixed, we put ak := min{� � 1: c� � k}.

It seems to be convenient to expose the following immediate implication.

Corollary 5 (Schröder case). Under the conditions of Theorem 4, for kn � cn satisfying kn → ∞, we have

sup
k∈[kn,cn] with k≡μ(modd)

∣∣∣∣ mn−ak cak

dw(k/(mn−ak cak
))

P(Zn = k) − 1

∣∣∣∣−→
n↑∞ 0 (44)

and

sup
k∈[kn,cn]

∣∣∣∣ P(0 < Zn � k)

P(0 < W < k/(mn−ak cak
))

− 1

∣∣∣∣−→
n↑∞ 0. (45)
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The appearing of the ak in the theorem and corollary, depending on k and on the sequence of the cn, looks a
bit disturbing, so we have to discuss it. First assume additionally that EZ1 logZ1 < ∞. Since here we set cn = mn

[recall (5)], from (44) we obtain the ak-free formula

P(Zn = k) = dm−nw
(
k/mn

)(
1 + o(1)

)
. (46)

Also, comparing this with (7), we see that under this Z1 logZ1-moment condition in the Schröder case, m−nw(k/mn)

describes not only normal deviation probabilities but also lower ones.
On the other hand, without this additional moment condition, recalling property (4b), we have cn = mnL(mn)

with L slowly varying at infinity. Hence,

1

mn−ak cak

= 1

cn

L(mn)

L(mak )
, thus

k

cak
mn−ak

= k

cn

L(mn)

L(mak )
. (47)

Therefore, from (44),

cnP(Zn = k)

dw(k/cn)
= L(mn)

L(mak )

w(kL(mn)/cnL(mak ))

w(k/cn)

(
1 + o(1)

)
. (48)

Using now (13), we find

cnP(Zn = k)

dw(k/cn)
=
(

L(mn)

L(mak )

)α
V (kL(mn)/cnL(mak ))

V (k/cn)

(
1 + o(1)

)
. (49)

Next we want to expel the disturbing ak from this formula.
It is well known (Seneta [16, p. 23]) that the regularly varying function x �→ xL(x) asymptotically equals a (strictly)

increasing, continuous, regularly varying function x �→ R(x) := xL1(x) with slowly varying L1. Hence, L(x) ∼
L1(x) as x ↑ ∞. Using now [16, Lemma 1.3], we conclude that the inverse function R∗ of R equals x �→ xL∗(x),
where L∗ is again a slowly varying function.

Put xk := R∗(k). Then k = xkL1(xk) by the definition of R∗. Recalling that xk = kL∗(k), we get the identity

L∗(k)L1(xk) = 1, k � 1. (50)

For n fixed, define bk := min{� � 1: m�L1(m
�) � k}. Combined with xkL1(xk) = k we get

mbkL1
(
mbk

)
� xkL1(xk) > mbk−1L1

(
mbk−1). (51)

But x �→ xL1(x) is increasing, and the previous chain of inequalities immediately gives

mbk � xk > mbk−1. (52)

By (4b),

cbk+1 = mbk+1L
(
mbk+1)= m

L(mbk+1)

L1(mbk )
mbkL1

(
mbk

)
� k (53)

for all n sufficiently large. Here, in the last step we used m > 1, that the slowly varying functions L and L1 are
asymptotically equivalent, and the definition of bk . Now cbk+1 � k implies

bk + 1 � ak, (54)

by the definition of ak . On the other hand,

mak+1L1
(
mak+1)= m

L1(m
ak+1)

L(mak )
cak

� k (55)

for all n sufficiently large. Here, in the last step we used the definition of ak . This gives

ak + 1 � bk, (56)

by the definition of bk . Entering with (56) and (54) into (52), we get

mak+1 � xk > mak−2 for all k sufficiently large. (57)
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Therefore, recalling (50),

L(mak ) ∼ L(xk) ∼ L1(xk) ∼ 1

L∗(k)
as k ↑ ∞. (58)

Entering this into (49) gives

cnP(Zn = k)

dw(k/cn)
= [

L
(
mn
)
L∗(k)

]α V (kL(mn)L∗(k)/cn)

V (k/cn)

(
1 + o(1)

)
, (59)

which contains L∗ instead of the ak .
Note also that such reformulation of (44) reminds one of the classical Cramér theorem (see, for example, Petrov

[15, §VIII.2]) on large deviations for sums of independent random variables. There the ratio of a tail probability
of a sum of independent variables and the corresponding normal law expression is considered. The crucial role in
Cramér’s theorem is played by the so-called Cramér series λ(s) :=∑∞

k=0 λks
k , where the coefficients λk depend on

the cumulants of the summands. For the lower deviation probabilities of supercritical Galton–Watson processes we
have a more complex situation: It is not at all clear, how to find the input data L, L∗, V [entering into (59)] based only
on the knowledge of the offspring generating function f .

It was already noted after (13) that if Z is embeddable into a continuous-time Galton–Watson process then
V (x) ≡ V0. Consequently, for embeddable processes, (59) takes the slightly simpler form

cnP(Zn = k)

dw(k/cn)
= [

L
(
mn
)
L∗(k)

]α(1 + o(1)
)
. (60)

On the other hand, if V is not constant, the ratio V (kL(mn)L∗(k)/cn)/V (k/cn) gives oscillations in the asymptotic
behavior of cnP(Zn = k)/w(k/cn). But the influence of the function V is relatively small. Indeed, from the continuity
and multiplicative periodicity of V (x) we see that 0 < V1 � V (x) � V2 < ∞, x > 0, for some constants V1, V2.
Therefore, the oscillations are in the interval [V1/V2,V2/V1], that is, from (59) we obtain

V1

V2

[
L
(
mn
)
L∗(k)

]α(1 + o(1)
)
� cnP(Zn = k)

dw(k/cn)
� V2

V1

[
L
(
mn
)
L∗(k)

]α(1 + o(1)
)
. (61)

Note also that for many offspring distributions the bounds V1 and V2 may be chosen close to each other. This “near-
constancy” phenomenon was studied by Dubuc [7] and by Biggins and Bingham [3,4].

1.6. Lower deviations in the Böttcher case

Recall that μ � 2 in the Böttcher case.

Theorem 6 (Böttcher case). Let the offspring law be of the Böttcher type and of type (d,μ). Then there exist positive
constants B1 and B2 such that for all kn ≡ μn(modd) with kn � μn but kn = o(cn),

−B1 � lim inf
n↑∞ μbn−n log

[
cnP(Zn = kn)

]
(62a)

� lim sup
n↑∞

μbn−n log
[
cnP(Zn = kn)

]
� −B2, (62b)

where bn := min{�: c�μ
n−� � 2kn}. The inequalities remain true if one replaces cnP(Zn = kn) by P(Zn � kn), where

in this integral case the assumption kn ≡ μn (modd) is superflous.

Let us add at this place the following remark.

Remark 7 (Behavior of w at 0). In analogy with (29), in the Böttcher case one has

logw(x)  −x−β/(1−β) as x ↓ 0 (63)

with β from (24). This can be shown using techniques from the proof of Theorem 6; see [10, Remark 16].
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Our results in the Böttcher case are much weaker than the results in the Schröder case: We got only logarithmic
bounds. But this is not unexpected, recall our discussion around (20).

Repeating arguments as we used to obtain (59), from Theorem 6 we get

log[cnP(Zn = kn)]
(kn/cn)−β/(1−β)

 −[L∗(kn/mβn
)
L1/(1−β)

(
mn
)]β as n ↑ ∞, (64)

where L∗ is such that R1(x) := x(1−β)L(x) and R2(x) := x1/(1−β)L∗(x) are asymptotic inverses, i.e. R1(R2(x)) ∼ x

and R2(R1(x)) ∼ x as x ↑ ∞.
Taking into account (63), we conclude that

log[cnP(Zn = kn)]
logw(kn/cn)

 [
L∗(kn/mβn

)
L1/(1−β)

(
mn
)]β as n ↑ ∞. (65)

2. Cramér transforms applied to Galton–Watson processes

Our way to prove Theorems 4 and 6 is based on the well-known Cramér method (see, e.g., [15, Chapter 8]), which
was developed to study large deviations for sums of independent random variables. A key in this method is the so-
called Cramér transform defined as follows. A random variable X(h) is called a Cramér transform (with parameter
h ∈ R) of the random real variable X if

E eitX(h) = E e(h+it)X

E ehX
, t ∈ R. (66)

Of course, this transformation is well-defined if E ehX < ∞.
In what follows, we will always assume that our offspring law additionally satisfies p0 = 0. This condition is not

crucial but allows a slightly simplified exposition of auxiliary results formulated in Lemma 12 below and of the proof
of Theorem 4 in Section 3.1 (see also Remark 16 below).

2.1. Basic estimates

Fix an offspring law of type (d,μ). Let n � 1. Since Zn > 0, the Cramér transforms Zn(−h/cn) exist for all
h � 0. Clearly, E eitZn(−h/cn) = fn(e−h/cn+it )/fn(e−h/cn). We want to derive upper bounds for fn(e−h/cn+it ) on {t ∈
R: c−1

n πd−1 � |t | � πd−1}. For this purpose, it is convenient to decompose the latter set into
⋃n

j=1 Jj where

Jj := {
t : c−1

j πd−1 � |t | � c−1
j−1πd−1}, j � 1. (67)

To prepare for this, we start with the following generalization of [8, Lemma 2].

Lemma 8 (Preparation). Fix ε ∈ (0,1). There exists θ = θ(ε) ∈ (0,1) such that∣∣f�

(
e−h/c�+it/c�

)∣∣� θ, � � 0, h � 0, t ∈ Jε := {
t : επd−1 � |t | � πd−1}.

Proof. Put gh,t (x) := e−hx+itx , h,x � 0, t ∈ R. Evidently,∣∣gh,t (x) − gh,t (y)
∣∣= ∣∣e−hx

(
eitx − eity)+ eity(e−hx − e−hy

)∣∣
�
∣∣eitx − eity

∣∣+ ∣∣e−hx − e−hy
∣∣� (

h + |t |)|x − y|. (68)

This means that for H � 1 and T � πd−1 fixed, G := {gh,t ;0 � h � H, |t | � T } is a family of uniformly bounded
and equi-continuous functions on R+. Therefore, by (2),

f�(e
−h/c�+it/c�) = Egh,t (Z�/c�) → Egh,t (W) as � ↑ ∞, (69)

uniformly on G (see, e.g., Feller [9, Corollary in Chapter VIII, §1, p. 252]). Since W > 0 has an absolutely continuous
distribution, and t ∈ Jε implies |t | � T ,

sup
∣∣E e−hW+itW

∣∣< 1. (70)

0�h�H, t∈Jε
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From (69) and (70) it follows that there exist δ1 ∈ (0,1) and �0 such that

sup
0�h�H, t∈Jε

∣∣f�

(
e−h/c�+it/c�

)∣∣� δ1, � > �0. (71)

On the other hand,
⋃�0

�=0{e−h/c�+it/c�;h � 0, t ∈ Jε} is a subset of a compact subset K of the unit disc D, where K

does not contain the d th roots of unity. Thus for some δ2 ∈ (0,1),

sup
0�h�H, t∈Jε

∣∣f�

(
e−h/c�+it/c�

)∣∣� δ2, � � �0. (72)

In fact, from Definition 1,

f�(z) =
∞∑

j=0

P
(
Z� = μ� + jd

)
zμ�+jd , � � 0, z ∈ D, (73)

implying

∣∣f�(z)
∣∣�

∣∣∣∣∣
∞∑

j=0

P
(
Z� = μ� + jd

)
zjd

∣∣∣∣∣. (74)

But the latter sum equals 1 if and only if z is a d th root of unity, that is, if it is of the form e2π i/d .
Combining (71) and (72) gives the claim in the lemma under the addition that h � H . Consider now any h > H .

In this case∣∣f�

(
e−h/c�+it/c�

)∣∣� f�

(
e−1/c�

)
. (75)

By (2) we have

f�

(
e−h/c�

)= E e−hZ�/c� → E e−hW ∈ (0,1] as � ↑ ∞, (76)

uniformly for h in compact subsets of R+. In particular,

sup
��1

f�

(
e−1/c�

)
< 1. (77)

This completes the proof. �
The following lemma generalizes [8, Lemma 3].

Lemma 9 (Estimates on J1, . . . Jn). There are constants A > 0 and θ ∈ (0,1) such that for h � 0, t ∈ Jj , and
1 � j � n,

∣∣fn

(
e−h/cn+it)∣∣� {

Ap
n−j+1
1 in the Schröder case,

θ(μn−j+1) in all cases.
(78)

Proof. By (4a), we have ε := inf��1 c�−1/c� ∈ (0,1). If t ∈ Jj , j � 1, then evidently,

πd−1 � cj−1|t | � cj−1c
−1
j πd−1 � επd−1, (79)

hence cj−1t ∈ Jε . Thus, by Lemma 8,

U :=
∞⋃

j=1

{
fj−1

(
e−h+it);h � 0, t ∈ Jj

}⊆ θD with 0 < θ < 1. (80)

From the representation (73), f�(z) � |z|(μ�) for all � � 0 and |z| � 1. Hence, for all z ∈ U ⊆ θD we have the bound
|f�(z)| � θ(μ�). Thus, for h � 0, t ∈ Jj , and 1 � j � n,∣∣fn

(
e−h/cn+it)∣∣� fn−j+1

(∣∣fj−1(e
−h/cn+it )

∣∣)� θ(μn−j+1), (81)

which is the second claim in (78).
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If additionally p1 > 0, then by (9) (and our assumption p0 = 0) we have that p−�
1 f�(z) converges as � ↑ ∞,

uniformly on each compact K ⊂ D◦. Therefore, there exists a constant C = C(K) such that∣∣f�(z)
∣∣� Cp�

1, � � 0, z ∈ K. (82)

Consequently, iterating as in (81),∣∣fn

(
e−h/cn+it)∣∣� Cp

n−j+1
1 , h � 0, t ∈ Jj , 1 � j � n, (83)

finishing the proof. �
2.2. On concentration functions

Fix for the moment h � 0 and n � 1. Denote by {Xj(h,n)}j�1 a sequence of independent random variables which
equal in law the Cramér transform Zn(−h/cn), that is

P
(
X1(h,n) = k

)= e−kh/cn

fn(e−h/cn)
P(Zn = k), k � 1. (84)

Put

S�(h,n) :=
�∑

j=1

Xj(h,n), � � 1. (85)

Note that

E eitS�(h,n) = (
fn

(
e−h/cn+it)/fn

(
e−h/cn

))�
. (86)

Recall the notation α ∈ (0,∞] from (8).

Lemma 10 (A concentration function estimate). For every h � 0, there is a constant A(h) such that

sup
n,k�1

cnP
(
S�(h,n) = k

)
� A(h)

�1/2
, � � �0 := 1 +

[
1

α

]
. (87)

Proof. It is known (see, for example, [15, Lemma III.3, p. 38]) that for arbitrary (real-valued) random variables X

and every λ,T > 0,

Q(X;λ) := sup
y

P(y � X � y + λ) �
(

96

95

)2

max
(
λ,T −1) T∫

−T

∣∣ψX(t)
∣∣dt (88)

(with ψX the characteristic function of X). Applying this inequality to X = S�0(h,n) with T = πd−1 and λ = 1/2,
using (86) we have

sup
k�1

P
(
S�0(h,n) = k

)
� C

πd−1∫
−πd−1

|fn(e−h/cn+it )|�0

f
�0
n (e−h/cn)

dt (89)

for some constant C independent of h,n. By (76), for h fixed, fn(e−h/cn) is bounded away from zero, and conse-
quently, there is a positive constant C(h) such that

sup
k�1

P
(
S�0(h,n) = k

)
� C(h)

πd−1∫
−πd−1

∣∣fn

(
e−h/cn+it)∣∣�0 dt. (90)

Fist assume that α < ∞ (Schröder case). Using the first inequality in (78), we get for 1 � j � n,∫
J

∣∣fn

(
e−h/cn+it)∣∣�0 dt � A�0p

(n−j+1)�0
1 |Jj | � 2πd−1A�0p

(n−j+1)�0
1 c−1

j−1. (91)
j
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On the other hand,

πd−1/cn∫
−πd−1/cn

∣∣fn

(
e−h/cn+it)∣∣�0 dt � 2πd−1

cn

. (92)

From (91) and (92), for some constant C,

cn

πd−1∫
−πd−1

∣∣fn

(
e−h/cn+it)∣∣�0 dt � C

(
1 +

n∑
j=1

p
(n−j+1)�0
1 cnc

−1
j−1

)
. (93)

But by (4a),

cn � mn−j+1cj−1, 1 � j � n. (94)

Also, by the definition of �0 in (87) and α in (8), p
�0
1 m = p

1+[1/α]−1/α

1 < 1. Hence the right-hand side of (93) is
bounded in n. Thus, from (90) it follows that

sup
n,k�1

cnP
(
S�0(h,n) = k

)
� C(h). (95)

This estimate actually holds also in the Böttcher case, where �0 = 1. Indeed, proceeding in the same way but using
the second inequality in (78) instead, the sum expression in (93) has to be replaced by

n∑
j=1

θ(μn−j+1)cnc
−1
j−1 �

n∑
j=1

θ(μn−j+1)mn−j+1 =
n∑

j=1

θ(μj )mj , (96)

which again is bounded in n.
Note that (95) is (87) restricted to � = �0. Hence, from now on we may focus our attention to � > �0. Let Y1, . . . , Yj

be independent identically distributed random variables. Then by Kesten’s inequality (see, e.g., [15, p. 57]), there is a
constant C such that for 0 < λ′ < 2λ the concentration function inequality

Q(Y1 + · · · + Yj ;λ) � Cλ

λ′j1/2
Q(Y1;λ)

[
1 − Q(Y1;λ′)

]−1/2 (97)

holds. We specialize to Y1 = S�0(h,n) and λ′ = λ = 1/2. Note that Q(Y1;1/2) = supk�1 P(S�0(h,n) = k) < 1 in this
case, since the random variable X1(h,n) is non-degenerate. But also as n ↑ ∞ this quantity is bounded away from 1,
which follows from (95). Consequently, infn�1[1 − Q(Y1;1/2)] > 0. Thus, using again (95), we infer

sup
n,k�1

P
(
Sj�0(h,n) = k

)
� C1(h)

j1/2
= C2(h)

(j�0)1/2
, j � 1, (98)

for some positive constants C1(h) and C2(h). If X and Y are independent random variables, then, Q(X + Y ;λ) �
Q(X;λ) (see [15, Lemma III.1]). Thus for every � > �0 we have the inequality

sup
n,k�1

cnP
(
S�(h,n) = k

)
� sup

n,k�1
cnP

(
S[�/�0]�0(h,n) = k

)
. (99)

Combining this bound once more with (98), the proof is finished. �
Remark 11 (Special case h = 0). Note that S�(0, n) equals in law to Zn conditioned to Z0 = �. Therefore, by
Lemma 10,

sup
k�1

P(Zn = k|Z0 = �) � A(0)

�1/2cn

, n � 1, � � �0. (100)

In particular, if α > 1, implying �0 = 1, in (100) all initial states Z0 are possible. In the special case Z0 = 1, inequality
(100) generalizes the upper estimate in [14, (10)] to processes without the Z1 logZ1-moment condition.
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Lemma 10 can also be used to get very useful bounds for P(Zn = k|Z0 = �) which are not uniform in k. This will
be achieved in the next lemma by specializing Lemma 10 to h = 1.

Lemma 12 (Non-uniform bounds). There exist two positive constants A and δ such that

cnP(Zn = k|Z0 = �) � A ek/cn�−1/2 e−δ�, n, k � 1, � � �0, (101)

[with �0 defined in (87)].

Proof. By the branching property and the definition (85) of S�(h,n),

P(Zn = k|Z0 = �) = ekh/cn
[
fn

(
e−h/cn

)]�P
(
S�(h,n) = k

)
. (102)

Putting here h = 1 and multiplying both sides by cn, we have

cnP(Zn = k|Z0 = �) � ek/cn
[
fn

(
e−1/cn

)]� max
n,k�1

cnP
(
S�(1, n) = k

)
. (103)

Using Lemma 10 gives

cnP(Zn = k|Z0 = �) � A(1)�−1/2 ek/cn
[
fn

(
e−1/cn

)]�
. (104)

From (77) the existence of a δ > 0 follows such that fn(e−1/cn) � e−δ for all n � 1. Entering this into (104) finishes
the proof. �
2.3. On the limiting density function w

Recall from Section 1.1 that w denotes the density function of W , and ψ = ψW its characteristic function.

Lemma 13 (Bounds for the limiting density). There is a constant A > 0 such that

w∗�(x) � A

( x∫
0

w(t)dt

)�−�0

, x > 0, � � �0. (105)

Proof. Suppose α < ∞, the case α = ∞ can be treated similarly. By the inversion formula,

w∗�0(x) = 1

2π

∞∫
−∞

e−itxψ�0(t)dt, x > 0. (106)

Hence,

A := sup
x>0

w∗�0(x) � 1

2π

∞∫
−∞

∣∣ψ(t)
∣∣�0 dt. (107)

We want to convince ourselves that A < ∞. It is well-known that ψ solves the equation

ψ(mu) = f
(
ψ(u)

)
, u ∈ R (108)

(e.g. [1, formula (6.1)]). Iterating, we obtain

ψ
(
m�u

)= f�

(
ψ(u)

)
, u ∈ R, � � 1. (109)

Thus, for j � 0,

mj+1∫
j

∣∣ψ(t)
∣∣�0 dt = mj

m∫ ∣∣ψ(tmj
)∣∣�0 dt = mj

m∫ ∣∣fj

(
ψ(t)

)∣∣�0 dt. (110)
m 1 1
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Since W > 0 has an absolute continuous law, |ψ(t)| � C < 1 for t ∈ [1,m]. Moreover, by (82), |fj (z)| � Cp
j

1 for z

in a compact subset of D◦. Therefore,

mj+1∫
mj

∣∣ψ(t)
∣∣�0 dt � Cmjp

j�0
1 = Cmj(1−α�0) (111)

by definition (8) of α. Consequently,

∞∫
1

∣∣ψ(t)
∣∣�0 dt � C

∞∑
j=0

mj(1−α�0) < ∞, (112)

since 1 − α�0 < 0. Analogously,

−1∫
−∞

∣∣ψ(t)
∣∣�0 dt < ∞. (113)

Hence, A in (107) is finite. But w∗(�+1)(x) = ∫ x

0 w∗�(x − y)w(y)dy, x > 0, and the claim follows by induction. �
2.4. A local central limit theorem

Recall the notation (85) for S�(h,n), h � 0, �,n � 1. By an abuse of notation, denote by ψ� = ψ
h,n
� the character-

istic function of the random variable

�−1/2σ−1(h,n)
(
S�(h,n) − ES�(h,n)

)
, (114)

where σ(h,n) :=√
E(X1(h,n) − EX1(h,n))2. Note that by (86),

ψ
h,n
� (t) =

(
e−it�−1/2σ−1(h,n)EX1(h,n) fn(e−h/cn+it�−1/2σ−1(h,n))

fn(e−h/cn)

)�

. (115)

Lemma 14 (An Esseen type inequality). If 0 < h1 � h2 < ∞, then there exist positive constants C = C(h1, h2) and
ε = ε(h1, h2) < 1 such that

sup
h∈[h1,h2], n�1

∣∣ψh,n
� (t) − e−t2/2

∣∣� C�−1/2|t |3 e−t2/3, |t | < ε�1/2, � � 1. (116)

Proof. Put �Xj(h,n) := Xj(h,n) − EXj(h,n). Using the global limit theorem from (3), one easily verifies that for
some positive constants C1, . . . ,C4,

C1 � σ(h,n)

cn

� C2 uniformly in h ∈ [h1, h2] and n � 1 (117)

and

C3 � E|�X1(h,n)|3
c3
n

� C4 uniformly in h ∈ [h1, h2] and n � 1. (118)

Consequently, the Lyapunov ratio E|�X1(h,n)|3/σ 3(h,n) is bounded away from zero and infinity. Applying now

Lemma V.1 from [15] to the random variables �X1(h,n), . . . , �X�(h,n), we get the desired result. �
The next lemma is a key step in our development concerning the Böttcher case. Recall the notations S� := S�(h,n)

and σ := σ(h,n) defined in (85) and after (114), respectively.
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Lemma 15 (Local central limit theorem). Suppose the offspring law is of type (d,μ). If 0 < h1 � h2 < ∞, then

sup
h∈[h1,h2]

n�1

sup
k: k≡�μn(modd)

∣∣∣∣�1/2σ(h,n)P
(
S�(h,n) = k

)− d√
2π

e−x2
k,�(h,n)/2

∣∣∣∣−→
�↑∞ 0,

where xk,� := xk,�(h,n) := �−1/2σ−1(h,n)(k − �EX1(h,n)).

Note that a local limit theorem, which would correspond to our case h = 0 but concerning an offspring law with
finite variance and with initial state tending to ∞, was derived by Höpfner [12, Theorem 1]. The following proof of
our lemma is a bit simpler, since for h > 0 the random variables X1(h,n) have finite moments of all orders (even if
the underlying Z does not have finite variance).

Proof of Lemma 15. By (86) and the inversion formula,

P(S� = k) = 1

2π

π∫
−π

e−itk
[
fn(e−h/cn+it )

fn(e−h/cn)

]�

dt. (119)

Decomposing the unit circle,

{
eit : −π < t � π

}=
d−1⋃
j=0

{
�j eit : −πd−1 < t � πd−1}, (120)

where � := e2π i/d , the latter integral equals

d−1∑
j=0

πd−1∫
−πd−1

�−jke−itk
[
fn(�

j e−h/cn+it )

fn(e−h/cn)

]�

dt. (121)

It is known (see, for instance, [1, p.105]) that for an offspring law of type (d,μ) we have

fn

(
�j z

)= �jμn

fn(z), n, j � 1, z ∈ D. (122)

Therefore the latter sum equals

πd−1∫
−πd−1

e−itk
[
fn(e−h/cn+it )

fn(e−h/cn)

]�

dt

d−1∑
j=0

�−j (k−�μn). (123)

But �−j (k−�μn) ≡ 1 for k ≡ �μn(modd). Altogether, for (119) we get

P(S� = k) = d

2π

πd−1∫
−πd−1

e−itk
[
fn(e−h/cn+it )

fn(e−h/cn)

]�

dt, k ≡ �μn(modd). (124)

Using the substitution t → t/�1/2σ and (115), we arrive at

P(S� = k) = d

2π�1/2σ

πd−1�1/2σ∫
−πd−1�1/2σ

e−itxk,�ψ�(t)dt, k ≡ �μn(modd). (125)

Fix 0 < h1 � h2 < ∞. Recall from (117) that

C1 � inf
h∈[h1,h2], n�1

σ(h,n)

cn

� sup
h∈[h1,h2], n�1

σ(h,n)

cn

� C2 (126)

for some 0 < C1 < C2 (depending on h1, h2). Choose a positive

ε = ε(h1, h2) < C1πd−1 (127)
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as in Lemma 14. Take any A = A(h1, h2) > ε (to be specified later). Then the identity
∫∞
−∞ e−itx−t2/2 dt = √

2π e−x2/2

and representation (125) imply that

sup
k: k≡�μn(modd)

∣∣∣∣�1/2σP(S� = k) − d√
2π

e−x2
k,�/2

∣∣∣∣� d(I1 + I2 + I3 + I4), (128)

where

I1 :=
ε�1/2∫

−ε�1/2

∣∣ψ�(t) − e−t2/2
∣∣dt, I2 :=

∫
|t |>ε�1/2

e−t2/2 dt,

I3 :=
∫

ε�1/2<|t |<A�1/2

∣∣ψ�(t)
∣∣dt, I4 :=

∫
A�1/2<|t |<πd−1�1/2σ

∣∣ψ�(t)
∣∣dt.

(129)

[Of course, I4 disappears if A(h1, h2) > πd−1σ(h,n).]
Trivially, I2 → 0 as � ↑ ∞. Further, due to Lemma 14, there is a C = C(h1, h2) such that

I1 � C�−1/2

ε�1/2∫
0

t3 e−t2/3 dt � C�−1/2 −→
�↑∞ 0. (130)

Thus, it remains to show that the integrals I3 and I4 converge to zero as � ↑ ∞, uniformly in the considered h and n.
First of all, using again (115) and substituting t → t�1/2σ/cn, by (126) we obtain the following estimates

I3 � C2�
1/2

∫
ε/C2<|t |<A/C1

∣∣∣∣∣fn(e−h/cn+it/cn)

fn(e−h/cn)

∣∣∣∣∣
�

dt, (131a)

I4 � C2�
1/2

∫
A/C2<|t |<πd−1cn

∣∣∣∣∣fn(e−h/cn+it/cn)

fn(e−h/cn)

∣∣∣∣∣
�

dt. (131b)

First we fix our attention on I3. By (69),

fn

(
e−h/cn+it/cn

)→ E e−hW+itW as n ↑ ∞, (132)

uniformly in h ∈ [0, h2] and t ∈ [0,A/C1] [recall (127)]. It follows that

fn(e−h/cn+it/cn)

fn(e−h/cn)
−→
n↑∞

E e−hW+itW

E e−hW
= E eitW(−h), (133)

uniformly in h ∈ [0, h2] and t ∈ [0,A/C1] (with W(−h) the Cramér transform of W ). Since the W(−h) have ab-
solutely continuous laws, we have |E eitW(−h)| < 1 for all h � 0 and |t | > 0. This inequality and continuity of
(h, t) �→ E eitW(−h) imply that

sup
0�h�h2, ε/C2�|t |�A/C1

|E e−hW+itW |
Ee−hW

< 1. (134)

Using (133) and (134) we infer the existence of a positive constant η = η(h1, h2) < 1 and an n1 = n1(h1, h2) � 1
such that for n � n1,

sup
0�h�h2, ε/C2�|t |�A/C1

∣∣fn(e−h/cn+it/cn)

fn(e−h/cn)

∣∣� η. (135)

Applying (135) to the bound of I3 in (131a), we conclude that

I3 � CA�1/2η� → 0 as � ↑ ∞, (136)

uniformly in h ∈ [h1, h2] and n � n1. (The remaining n will be considered below.)
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Next, we prepare for the estimation of I4. Since fn(e−h/cn) � fn(e−h2/cn) for 0 � h � h2, and fn(e−h2/cn) →
E e−h2W > 0 as n ↑ ∞ [recall (132)], there is a positive constant C = C(h2) such that∣∣∣∣fn(e−h/cn+it )

fn(e−h/cn)

∣∣∣∣� C
∣∣fn

(
e−h/cn+it)∣∣ (137)

for all t ∈ R, 0 � h � h2, and n � 1.
At this point we have to distinguish between the Schröder and Böttcher cases. Actually, we proceed with the

Böttcher case α = ∞, which is the only case we need later, and leave the other case for the reader. Applying the
second case of (78) to (137), we obtain the estimate

∣∣fn(e−h/cn+it )

fn(e−h/cn)

∣∣� C exp
[−μn−j+1 log θ−1], (138)

0 � h � h2, t ∈ Jj , and 1 � j � n. Since μ � 2, the right-hand side of (138) is bounded by

C exp
[−μn−j log θ−1] exp

[−μn−j log θ−1]. (139)

Evidently, there exists an n2 = n2(h2) such that C exp[−μn−j log θ−1] � 1 for 1 � j � n − n2. Therefore,∣∣∣∣fn(e−h/cn+it )

fn(e−h/cn)

∣∣∣∣� exp
[−μn−j log θ−1], (140)

if 0 � h � h2, t ∈ Jj , and 1 � j � n − n2. But |Jj | � 2c−1
j−1πd−1, hence

∫
Jj

∣∣∣∣fn(e−h/cn+it )

fn(e−h/cn)

∣∣∣∣
�

dt � 2c−1
j−1πd−1 exp

[−�μn−j log θ−1]. (141)

Summing over the considered j gives∫
c−1
n−n2

πd−1�|t |�πd−1

∣∣∣∣fn(e−h/cn+it )

fn(e−h/cn)

∣∣∣∣
�

dt � 2πd−1
n−n2∑
j=1

c−1
j−1 exp

[−�μn−j log θ−1],
0 � h � h2 and n � n2. Substituting t → t/cn and using (94), we arrive at

∫
πd−1mn2�|t |�πd−1cn

∣∣∣∣fn(e−h/cn+it/cn)

fn(e−h/cn)

∣∣∣∣
�

dt � 2πd−1
n−n2∑
j=1

mn−j+1 exp
[−�μn−j log θ−1]

� 2πd−1
∞∑

j=1

mj+1 exp
[−�μj log θ−1]� Ce−C′� (142)

with constants C, C′, uniformly in h ∈ [h1, h2] and n � n2. Choosing now A so large that πd−1mn2 � A/C2, we
conclude from (131b) that

I4 � C�1/2 e−C′� → 0 as � ↑ ∞, (143)

uniformly in h ∈ [h1, h2] and n � n2.
Finally, we consider all n � n∗ := n1 ∨ n2. By definition, as in (73),

fn(e−h/cn+it/cn)

fn(e−h/cn)
=

∞∑
j=0

P
(
X1(h,n) = μn + jd

)
e(it/cn)(μn+jd). (144)

Hence, since the set {e−it/cn : t ∈ [ε/C2,πd−1cn]} does not contain the d th roots of unity,

sup
−1

∣∣∣∣∣fn(e−h/cn+it/cn)

fn(e−h/cn)

∣∣∣∣∣=: θn(h) < 1. (145)

t∈[ε/C2,πd cn]
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From the continuity (h, t) → fn(e−h/cn+it/cn) it follows that the function θn is continuous, too. Therefore,

sup
h∈[h1,h2]

θn(h) =: θ̄n < 1. (146)

Combining (145) and (146),

max
n�n∗ sup

h∈[h1,h2]
t∈[ε/C2,πd−1cn]

∣∣∣∣fn(e−h/cn+it/cn)

fn(e−h/cn)

∣∣∣∣� θ̄ (147)

for some θ̄ < 1. Substituting this into (131) gives

I3 + I4 � C�1/2θ̄ � → 0 as � ↑ ∞, (148)

and the proof is finished. �
3. Proof of the main results

3.1. Schröder case (proof of Theorem 4)

Let f , k, and ak be as in Theorem 4. Recall that p0 = 0 by our convention. By the Markov property,

P(Zak+j = k) =
∞∑

�=1

P(Zj = �)P(Zak
= k|Z0 = �) (149)

and

P(Zak+j � k) =
∞∑

�=1

P(Zj = �)P(Zak
� k|Z0 = �). (150)

Step 1◦ (Proof of (42)). Using Lemma 12, we get for N � �0 the estimate

cak

∞∑
�=N

P(Zj = �)P(Zak
= k|Z0 = �) � C

ek/cak

N1/2
fj

(
e−δ

)
(151)

for some constant δ > 0. By (4a), and since cak−1 < k � cak
by the definition of ak ,

m−1 � cak−1

cak

� k

cak

� 1. (152)

On the other hand, by (82),

fj

(
e−δ

)
� Cp

j

1 . (153)

Thus, from (151),

p
−j

1 cak

∞∑
�=N

P(Zj = �)P(Zak
= k|Z0 = �) � C

N1/2
. (154)

By [8, Lemma 9],

lim
n↑∞

1

2π

πd−1cn∫
−πd−1cn

f �
n

(
eit/cn

)
e−itx dt = w∗�(x) (155)

uniformly in x ∈ [m−1,1]. This together with

cak
P(Zak

= k|Z0 = �) = d

2π

πd−1cak∫
−πd−1c

f �
ak

(
eit/cak

)
e−itk/cak dt, � ≡ k (mod d), (156)
ak



K. Fleischmann, V. Wachtel / Ann. I. H. Poincaré – PR 43 (2007) 233–255 251
(see [1, p. 105]) and (152) gives

sup
k�k̃: k≡�(modd)

∣∣cak
P(Zak

= k|Z0 = �) − dw∗�(k/cak
)
∣∣−→

k̃↑∞
0. (157)

Since k ≡ 1(modd), the previous statement holds for all � ≡ 1(modd). For other �, the probabilities P(Zj = �)

disappear. Thus, by (157),

N−1∑
�=1

P(Zj = �)P(Zak
= k|Z0 = �) = dc−1

ak

[
N−1∑
�=1

P(Zj = �)w∗�(k/cak
)

]
(1 + εN,k), (158)

where εN,k ∈ R satisfies sup
k�k̃

|εN,k| → 0 as k̃ ↑ ∞, for each fixed N . Further, using Lemma 13, one can easily

verify that there exist two constants C and η ∈ (0,1) such that w∗�(k/cak
) � Cη� for all � � 1 and k. Thus,

∞∑
�=N

P(Zj = �)w∗�(k/cak
) � C

∞∑
�=N

P(Zj = �)η�. (159)

But for every η1 ∈ (η,1),
∞∑

�=N

P(Zj = �)η� �
(

η

η1

)N

fj (η1) � C

(
η

η1

)N

p
j

1 , (160)

where in the last step we used (82). Inequalities (159) and (160) imply
∞∑

�=N

P(Zj = �)w∗�(k/cak
) � Cp

j

1 e−δN , (161)

for all j , k, N and some constant δ > 0. Combining (149), (158), (154) and (161), we have

P(Zak+j = k) = dc−1
ak

[ ∞∑
�=1

P(Zj = �)w∗�(k/cak
)

]
(1 + εN,k) + O

(
c−1
ak

p
j

1N−1/2), (162)

where the O-term applies to j, k,N ↑ ∞. By (109),

m−jw(x/mj ) =
∞∑

�=1

P(Zj = �)w∗�(x), j � 0, x > 0. (163)

Substituting this into (162), we arrive at

P(Zak+j = k) = dc−1
ak

m−jw
(
km−j /cak

)
(1 + εN,k) + O

(
c−1
ak

p
j

1N−1/2).
By (29), (152), and the definition (8) of α,

dc−1
ak

m−jw
(
km−j /cak

)
� Cc−1

ak
m−αj = Cc−1

ak
p

j

1 , for all k. (164)

Therefore,

P(Zak+j = k) = dc−1
ak

m−jw
(
km−j /cak

)(
1 + εN,k + O

(
N−1/2)), (165)

where the O-term now applies to N ↑ ∞, uniformly for all k, j . Letting first k̃ ↑ ∞ and then N ↑ ∞, we see that (42)
is true.

Step 2◦ (Proof of (43)). Trivially, for independent and identically distributed non-negative random variables
X1, . . . ,Xn we have

P(X1 + · · · + Xn < x) � P
(

max
j

Xj < x
)

= [
P(X1 < x)

]n
, x � 0. (166)

Hence,

P(Zak
� k|Z0 = �) �

[
P(Zak

� k)
]�

. (167)
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Further, from (152) and (3),

P(Zak
� k) � P

(
c−1
ak

Zak
� 1

)−→
k↑∞

1∫
0

w(x)dx. (168)

Therefore, since w > 0 on all of (0,∞), there exists an η ∈ (0,1) such that P(Zak
� k) � η for all n large enough.

Thus,

∞∑
�=N

P(Zj = �)P(Zak
� k|Z0 = �) �

∞∑
�=N

P(Zj = �)η� (169)

for all N sufficiently large. Taking into account (160), we conclude that

∞∑
�=N

P(Zj = �)P(Zak
� k|Z0 = �) � Cp

j

1 e−δN (170)

for N sufficiently large and some δ > 0. By the same arguments,

∞∑
�=N

P(Zj = �)F ∗�(k/cak
) � Cp

j

1 e−δN , (171)

where F(x) := P(W < x), x � 0, and F ∗� is the �-fold convolution.
On the other hand, the continuity of F and (3) yield that P(Zak

� cak
x|Z0 = �) → F ∗�(x) uniformly in x � 0.

Therefore,

lim
k↑∞ sup

i�1

∣∣P(Zak
� i|Z0 = �) − F ∗�(i/cak

)
∣∣= 0. (172)

Combining (150), (170), (171), and (172), we arrive at

P(Zak+j � k) =
[ ∞∑

�=1

P(Zj = �)F ∗�(k/cak
)

]
(1 + εN,k) + O

(
p

j

1 e−δN
)

(173)

with the same meaning of εN,k and the O-term as in the previous step of proof. Since P(Zj = 1) = p
j

1 and F(k/cak
) �

F(m−1) > 0 by (152), we obtain

p
j

1 e−δN � C e−δN
∞∑

�=1

P(Zj = �)F ∗�(k/cak
). (174)

Combining this inequality with (173) gives

P(Zak+j � k) =
[ ∞∑

�=1

P(Zj = �)F ∗�(k/cak
)

](
1 + εN,k + O

(
e−δN

))
. (175)

Integrating both parts of (163), one has

F
(
y/mk

)=
∞∑

�=1

P(Zk = �)F ∗�(y), k � 0, y > 0. (176)

Thus,

P(Zak+j � k) = F

(
k

cak
mj

)(
1 + εN,k + O

(
e−δN

))
. (177)

Letting again first k̃ ↑ ∞ and then N ↑ ∞ finishes the proof. �



K. Fleischmann, V. Wachtel / Ann. I. H. Poincaré – PR 43 (2007) 233–255 253
Remark 16 (Proof in the case p0 > 0). We indicate now how to proceed with the proof of Theorem 4 in the remaining
case p0 > 0. Here in the representation (149) one has additionally to take into account that

P(Zak
= k|Z0 = �) =

�∑
j=1

(
�

j

)
f

�−j
ak

(0)
(
1 − fak

(0)
)j P

{
j∑

i=1

Z(i)
ak

= k
∣∣Z(i)

ak
> 0, 1 � i � j

}
, (178)

where the Z(1),Z(2), . . . are independent copies of Z. Then instead of Lemma 12 we need

cnP

{
j∑

i=1

Z(i)
n = k

∣∣Z(i)
n > 0, 1 � i � j

}
� A ek/cnj−1/2 e−δj , n, k � 1, j � �0.

But this is valid by

E
{
zZ

(1)
n
∣∣Z(1)

n > 0
}= fn(z) − fn(0)

1 − fn(0)
−→
n↑∞

S(z) − S(0)

1 − q
, (179)

uniformly in z from compact subsets of D◦. This indeed follows from (9).

3.2. Böttcher case (proof of Theorem 6)

From the Markov property,

P(Zn = kn) =
∞∑

�=μn−bn

P(Zn−bn = �)P(Zbn = k|Z0 = �). (180)

Using (102) and Lemma 10, we obtain the following estimate

cbnP(Zbn = kn|Z0 = �) � A(h)�−1/2[ehkn/�cbn fbn

(
e−h/cbn

)]�
. (181)

From the definition of bn it immediately follows that

2kn � cbnμ
n−bn = cbn−1μ

n−bn+1
(

cbn

μcbn−1

)
� 2kn

m

μ
. (182)

Hence,

hkn

�cbn

� h

2
(183)

for � � μn−bn . Therefore,

cbnP(Zbn = kn|Z0 = �) � A(h)�−1/2[eh/2fbn

(
e−h/cbn

)]�
. (184)

It is known (see, for example, [1], Corollary III.5.7), that EW = 1 if EZ1 logZ1 < ∞ and EW = ∞ otherwise. This
means, that for the Laplace transform ϕ = ϕW of W we have eh/2ϕ(h) < 1 for all small enough h. Thus, due to the
global limit theorem (3), there exist δ < 1 and h0 > 0 such that eh0/2fn(e−h0/cn) � e−δ for all large enough n. Hence,

cbnP(Zbn = kn|Z0 = �) � A�−1/2 e−δ�. (185)

Inserting (185) into (180), we obtain

cbnP(Zn = kn) � Aμ−(n−bn)/2fn−bn

(
e−δ

)
, (186)

consequently,

μbn−n log
[
cnP(Zn = kn)

]
� μbn−nC + μbn−n log

(
cn

cbn

)
+ logfn(e−δ)

μn−bn
. (187)

Since cn/cbn � mn−bn and μn−bn = mβ(n−bn), μbn−n log(cn/cbn) → 0 as n ↑ ∞. Thus,

lim supμbn−n log
[
cnP(Zn = kn)

]
� lim sup

logfn−bn(e
−δ)

μn−bn
. (188)
n↑∞ n↑∞
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Using (21), we arrive at the desired upper bound.
We show now that (62b) holds for log P(Zn � kn). First of all we note that for arbitrary non-negative random

variable X and all x,h � 0,

P(X � x) � ehxE e−hX. (189)

Applying this bound to the process Z starting from � individuals and taking into account (183), we have

P(Zbn � kn|Z0 = �) �
[
ehkn/�cbn fbn

(
e−h/cbn

)]� �
[
eh/2fbn

(
e−h/cbn

)]�
. (190)

As we argued in the derivation of (185), this gives

P(Zbn � kn|Z0 = �) � e−δ�. (191)

Consequently, by the Markov property,

P(Zn � kn) � fn−bn

(
e−δ

)
. (192)

Taking logarithms and using (21), we obtain (62b).
Let us verify the lower bounds in Theorem 6. By (180),

P(Zn = kn) � P
(
Zn−bn = μn−bn

)
P
(
Zbn = kn|Z0 = μn−bn

)
. (193)

From (102),

P
(
Zbn = kn|Z0 = μn−bn

)
>
[
fbn

(
e−h/cbn

)]�nP
(
S�n(h, bn) = kn

)
, (194)

where �n = μn−bn .
Consider the equation

c−1
bn

EX1(h, bn) = f ′
bn

(e−h/cbn ) e−h/cbn

cbnfbn(e
−h/cbn )

= x. (195)

Evidently,

f ′
bn

(e−h/cbn ) e−h/cbn

fbn(e
−h/cbn )

∣∣∣∣
h=0

= mbn (196)

and

f ′
bn

(e−h/cbn ) e−h/cbn

fbn(e
−h/cbn )

∣∣∣∣
h=∞

= μbn. (197)

From these identities and monotonicity of f ′
bn

(e−h/cbn ) e−h/cbn /fbn(e
−h/cbn ) it follows that (195) has a unique solution

hn(x) for μbnc−1
bn

< x < mbnc−1
bn

. Analogously one shows that the equation ϕ′(h)/ϕ(h) = −x has also a unique solu-
tion h(x). By the integral limit theorem (3), the right-hand side in (195) converges to −ϕ′(h)/ϕ(h) and consequently,
hn(x) → h(x) as n ↑ ∞. Further, by (182),

μ

2m
� xn := kn

cbn�n

� 1

2
. (198)

Thus,

h(μ/2m) � lim inf
n↑∞ hn � lim sup

n↑∞
hn � h

(
1

2

)
, (199)

where hn := hn(xn). This means that there exist h∗ and h∗ such that h∗ � hn � h∗ for all n � 1. From the definition
of hn and from (195), it immediately follows that ES�n(hn, bn) = kn. Thus, applying Lemma 15, we get

lim

∣∣∣∣�1/2
n σ (hn, bn)P

(
S�n(hn, bn) = kn

)− d√
∣∣∣∣= 0. (200)
n↑∞ 2π
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Recall that by (117) we have σ(hn, bn) � Ccbn . Hence,

lim inf
n↑∞ �

1/2
n cbnP

(
S�n(hn, bn) = kn

)
� C > 0. (201)

Moreover, since fbn(e
−hn/cbn ) � fbn(e

−h∗/cbn ) and fj (e−h∗/cj ) → E e−h∗W > 0, there exists a θ > 0 such that

fbn

(
e−h/cbn

)
� θ (202)

for all n. Applying these bounds to the right-hand side in (194), we find that

lim inf
n↑∞ μbn−n log

[
cnP

(
Zbn = kn|Z0 = μn−bn

)]
� −C. (203)

Using this inequality and (21) to bound the right-hand side in (193), we conclude that

lim inf
n↑∞ μbn−n log

[
cnP(Zn = kn)

]
� −C, (204)

i.e. (62a) is proved.
Next we want to extend this result to P(Zn � kn). Obviously,

P(Zn � kn) � P(Zn−bn = �n)P(Zbn � kn|Z0 = �n). (205)

Then, using (102) with h = hn, we have

P(Zn � kn) � P(Zn−bn = �n)
[
fn

(
e−hn/cbn

)]�nP
(
S�n(h, bn) � kn

)
. (206)

By the central limit theorem,

lim
n↑∞ P

(
S�n(h, bn) � kn

)= 1

2
. (207)

From this statement and (202) it follows that

lim inf
n↑∞ μbn−n log P(Zn � kn) � lim inf

n↑∞ μbn−n log P
(
Zn−bn = μn−bn

)+ log θ. (208)

Recalling (17), the proof of Theorem 6 is complete. �
Acknowledgements

We are grateful to Peter Mörters and Vladimir Vatutin for a discussion of our original preprint [10]. We also thank
anonymous referees for a careful reading and their suggestions that led to an improvement of the exposition.

References

[1] A. Asmussen, H. Hering, Branching Processes, Progress in Probab. and Statistics, vol. 3, Birkhäuser Boston Inc., Boston, MA, 1983.
[2] K.B. Athreya, P.E. Ney, The local limit theorem and some related aspects of supercritical branching processes, Trans. Amer. Math. Soc. 152 (2)

(1970) 233–251.
[3] J.D. Biggins, N.H. Bingham, Near-constancy phenomena in branching processes, Math. Proc. Cambridge Philos. Soc. 110 (3) (1991) 545–558.
[4] J.D. Biggins, N.H. Bingham, Large deviations in the supercritical branching process, Adv. Appl. Probab. 25 (4) (1993) 757–772.
[5] N.H. Bingham, On the limit of a supercritical branching process, J. Appl. Probab. 25A (1988) 215–228.
[6] S. Dubuc, La densite de la loi-limite d’un processus en cascade expansif, Z. Wahrsch. Verw. Gebiete 19 (1971) 281–290.
[7] S. Dubuc, Etude theorique et numerique de la fonction de Karlin–McGregor, J. Analyse Math. 42 (1982) 15–37.
[8] S. Dubuc, E. Seneta, The local limit theorem for the Galton–Watson process, Ann. Probab. 4 (1976) 490–496.
[9] W. Feller, An Introduction to Probability Theory and its Applications, vol. II, second ed., John Wiley and Sons, New York, 1971.

[10] K. Fleischmann, V. Wachtel, Lower deviation probabilities for supercritical Galton–Watson processes, WIAS Berlin, Preprint No. 1025 of
April 28, 2005, http://www.wias-berlin.de/publications/preprints/1025/.

[11] K. Fleischmann, V. Wachtel, Large deviations for sums defined on a Galton–Watson process, WIAS Berlin, Preprint No. 1135 of May 29,
2006.

[12] R. Höpfner, Local limit theorems for non-critical Galton–Watson processes with or without immigration, J. Appl. Probab. 19 (1982) 262–271.
[13] M. Kuczma, Functional Equations in a Single Variable, PWN, Warszaw, 1968.
[14] P.E. Ney, A.N. Vidyashankar, Local limit theory and large deviations for supercritical branching processes, Ann. Appl. Probab. 14 (2004)

1135–1166.
[15] V.V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin, 1975.
[16] E. Seneta, Regularly Varying Functions, Lecture Notes in Math., vol. 508, Springer-Verlag, Berlin, 1976.


