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Fluctuations of the front in a stochastic combustion model
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Abstract

We consider an interacting particle system on the one-dimensional lattice Z modeling combustion. The process depends on two
integer parameters 2 � a � M < ∞. Particles move independently as continuous time simple symmetric random walks except that
(i) when a particle jumps to a site which has not been previously visited by any particle, it branches into a particles, (ii) when a
particle jumps to a site with M particles, it is annihilated. We start from a configuration where all sites to the left of the origin have
been previously visited and study the law of large numbers and central limit theorem for rt , the rightmost visited site at time t .
The proofs are based on the construction of a renewal structure leading to a definition of regeneration times for which good tail
estimates can be performed.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

On considère un système de particules en interaction sur Z modélisant les particules incandescentes d’un mécanisme de com-
bustion. Le processus dépend de deux paramètres entiers 2 � a � M < ∞. Les particules se déplacent indépendamment selon des
promenades aléatoires simples symétriques à temps continu, mises à part les interactions suivantes : 1-quand une particule saute
vers un site qui n’a jamais encore été visité, elle branche et fait place à a particules ; 2-quand une particule saute vers un site
abritant M particules, elle disparait. On démarre d’une configuration où seuls les sites à gauche de l’origine ont déja été visités et
on étudie la loi des grands nombres et le théorème de la limite centrale pour rt , la position du site le plus à droite visité à l’instant t .
Les preuves reposent sur la construction d’une structure de renouvellement associée à des temps de régénération dont les queues
peuvent être convenablement estimées.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The method of regeneration times has been very successfully applied to problems of random walk in random
environment (for example see [16,17,6]); in a one-dimensional setting it was already used via a renewal structure
in [9].

In this article, we extend the method of regeneration times to the study of front propagation in an interacting
particle system. The system we consider is a one-dimensional stochastic model of combustion. Heat particles move
by symmetric nearest neighbor random walks on sites {x ∈ Z: x � r} of the integer lattice, with r representing the
position of a flame front. To the right of the flame front is a propellant. The first heat particle which reaches the
propellant at r + 1 immediately branches into a � 2 particles, and the front moves one step to the right. We also
include an upper bound M on the number of particles at each site, so that if a particle tries to jump to a site with
M particles, it is immediately killed. We show that the front in the model moves ballistically to the right, or, more
precisely, prove a law of large numbers for rt . The next question one might ask is of the fluctuations about the law of
large numbers. We prove here that these are Gaussian, with a central limit theorem for t−1/2(rt − vt).

For M = ∞ a discrete time version of the system we are considering has appeared in the literature under the
enigmatic name “frog model”, and laws of large numbers for the position of the front were proved, also in higher
dimensions, using methods based on the sub-additive ergodic theorem [1–4,8,11,12]. The continuous time case under
the name stochastic combustion process was treated in [13,14]. It appears that the sub-additivity is completely lost
when M < ∞. Our main purpose here is to develop new methods to study such models, and to go beyond methods
based on sub-additivity. Also, we are particularly interested here in the fluctuations of the fronts. If Nt represents
the number of particles at the front rt at time t , then rt moves to the right at rate Nt , and hence rt − ∫ t

0 Ns ds is
a martingale. The standard approach to the law of large numbers would then be to show that, as observed from
the front, the system has an ergodic invariant measure μ, and t−1

∫ t

0 Ns ds → Eμ[N ]. The central limit theorem
would be proved by showing that the time correlations of Ns decay fast enough. However, very few methods exist
for proving uniqueness, or ergodicity, of invariant measures of such systems. Furthermore, although one can guess
that the correlations of Ns decay quickly – likely exponentially fast – it is not at all apparent how to prove it. The
method we use to prove the law of large numbers and central limit theorem for the front, rt , is that of regeneration
times. Because the front moves ballistically while the particles move diffusively, one expects there are regeneration
times after which the trajectory of the front is decoupled from that of the particles behind the front. Note that a
concept similar to that of regeneration times, known as cluster structure, has been well know for many years in the
context of mechanically interacting one-dimensional dynamical systems of particles [5] (also see [15] and references
therein).

The combustion process that we consider is related to deterministic reaction–diffusion equations of the form ∂tu =
∂2
xu + f (u). The two key differences are the discreteness of the variable – we have a number of particles as opposed

to a continuum variable u – and the stochasticity. The effect of discreteness and/or stochasticity on the traveling waves
of reaction–diffusion equations is a question that has not received the attention it deserves, as these effects are usually
present in real systems. Therefore, we believe it is crucial to develop methods to study such systems. In the literature
of reaction–diffusion equations one separates several cases according to the behavior of f near zero. An f which
vanishes on [0, θ ] for some θ > 0 with f (u) > 0 for u > θ is said to have a combustion nonlinearity with ignition
temperature cutoff θ (see, for example [7]). Note that the discreteness of the particle models of the type we consider
makes them analogous to the combustion nonlinearity with the ignition temperature cutoff corresponding to a single
particle.

In the second section of this article, we define the combustion process and state the main result (Theorem 1). In
Section 3, we define an auxiliary and a labeled process, which will be needed to define the renewal structure leading
to the regeneration times. The labeled process can be understood as a combustion process where particles are labeled
so that if at a given site a particle has to be killed, it is the one with the smallest label. The auxiliary process moves
ballistically to the right and is coupled to the labeled combustion process in such a way that it is always to the left of the
right-most visited site rt . In Section 4, these processes are used to define the renewal structure, and the corresponding
regeneration times. Then in Section 5, it is proved that the regeneration times have finite moments of order 2, under
appropriate assumption on the threshold M . In Section 6 we complete the proof of Theorem 1.
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2. Combustion process

We define a stochastic process describing the dynamics of particles on the lattice Z which move as rate 2 continuous
time simple symmetric random walks and branch and are killed at rates depending on the configuration of neighboring
particles. The branching and killing depend on natural number parameters 2 � a � M . Each particle performs a
continuous time symmetric simple random walk independent of the others, with two twists: There is a position r ∈ Z

which is the rightmost visited site. When a particle jumps right from this site, it branches into a particles, with the
result that there are a particles at a new rightmost visited site, r + 1. In addition, we allow at most M particles at any
site, and maintain this requirement by killing any particle that attempts to jump to a site with M particles.

The state space of our system is

Ω := {
(r, η): r ∈ Z, η ∈ {0, . . . ,M}{...,r−1,r}}.

Here η(x) denotes the number of particles at x � r and we will write ηt (x) or η(t, x) to denote the same quantity at
time t .

The process is Markov with infinitesimal generator

Lf (r, η) =
∑

x�r,y�r, |x−y|=1

η(x)
(
f (r, Txyη) − f (r, η)

)+ η(r)
(
f (r + 1, η − δr + aδr+1) − f (r, η)

)
, (1)

where δx denotes the configuration with one particle at x and

Txyη = η − δx + δy1
(
η(y) < M

)
. (2)

In the following we will assume for technical reasons that

8 < M < ∞. (3)

We can now state the main results.

Theorem 1. Suppose the process is started with initial conditions r = 0, η(0,0) ∈ {1, . . . ,M} and η(0, x) ∈
{0, . . . ,M} arbitrary for x < 0.

(i) (Law of large numbers). There exists a nonrandom v ∈ (0,∞), which does not depend on the initial condition
{η(0, x): x � 0}, such that almost surely,

lim
t→∞

rt

t
= v. (4)

(ii) (Central limit theorem). There exists a nonrandom σ ∈ (0,∞), which does not depend on the initial condition
{η(0, x): x � 0}, such that

ε1/2(rε−1t − ε−1vt
)
, t � 0, (5)

converges in law as ε → 0 to Brownian motion with variance σ 2.

To prove this theorem we will define a renewal structure for the right-most visited site rt , in terms of regeneration
times, and then will show that such times have finite second moments.

3. Auxiliary and labeled processes

In this section, we will define an auxiliary process and a labeled process, both coupled to the combustion process.
The auxiliary process {r̃t : t � 0}, will take values on Z and will have two fundamental properties: Under appro-

priate initial conditions on the stochastic combustion process it will always be to the left of the right-most visited site
{rt : t � 0}, and its dynamics will be independent of all particles appearing to the left of r0 in the stochastic combustion
process. These properties will help us define a renewal structure for the right-most visited site {rt : t � 0} and will give
a lower bound for the limiting speed v of rt . This is the content of Lemma 4.
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The labeled process has a state space larger than the combustion process, with particles carrying labels. An explicit
rule for killing is given in which when a particle is killed, it is the one with the smallest label. We also introduce a
variant of the labeled process, called the enlarged process, in which we keep track of the killed particles as well.

We now begin the constructions. Start with a set of independent continuous time rate 2 simple symmetric random
walks Yx,i , with label (x, i), where x ∈ Z and i ∈ {1, . . . , a − 1}. Each random walk Yx,i , i ∈ {1, . . . , a − 1} starts at
site x. We order the labels by

(x, i) < (x′, i′) if x < x′ or x = x′ and i < i′. (6)

3.1. Auxiliary process

Let r ∈ Z and for each z ∈ Z, define Bz as the set of M largest labels not exceeding (z, a − 1) in the order (6).
Define Ar,z to be the labels in Bz with x � r .

We define a sequence of waiting times. Let ν0 := 0 and define ν1 as the first time one of the random walks
{Yz,i : (z, i) ∈ Ar,r}, hits the site r + 1. Next, define ν2 as the first time one of the random walks {Yz,i : (z, i) ∈ Ar,r+1},
hits the site r + 2. In general, for k � 3, we define νk as the first time one of the random walks {Yz,i : (z, i) ∈ Ar,r+k−1},
visits the site r + k. Finally, for n ∈ N, let

r̃ r
t := r + n, if

n∑
k=0

νk � t <

n+1∑
k=0

νk, (7)

where the superscript r in r̃ r
t indicates that r̃ r

0 = r .

Lemma 1. There exists an α > 0 which does not depend on r such that a.s.

lim
t→∞

r̃ r
t

t
= α. (8)

Proof. Once one notes that for every j � 0 the random variables {νk�+j : k � 1} are independent whenever
� > M/(a − 1), the proof is a simple exercise. �
3.2. Labeled process

We enlarge the state space of the stochastic combustion process so that particles carry labels which tell us where
they originated.

We will want to keep track of where particles came from, even after restarting at stopping times. Hence each
particle will have a starting position z ∈ Z and label (x, i), x ∈ Z, i ∈ {1, . . . , a − 1} describing its birthplace. We will
allow the possibility that z �= x.

At time 0, we have an r ∈ Z representing the rightmost visited site, and a subset I(0) of the labels (x, i) with
x � r , representing the set of labels of live particles at time 0. To each one of these labels is assigned a position
z = Zx,i(0) � r which is the position at time t = 0 of that particle. The position at time t is Zx,i(t) = Yx,i(t) + z − x.

To keep track of the killing in this process, we make a rule that whenever a particle jumps to a site with M particles,
the particle at that site with the smallest label is killed and the corresponding label is removed from the set I of labels
of live particles.

The first time a particle jumps to site r + 1, the labels {(r + 1,1), . . . , (r + 1, a − 1)} corresponding to particles
with initial positions r + 1, are added to the set of labels of live particles. The time this happens will be denoted ρ1.
These particles then have trajectories Zr+1,i (t) which is equal to Yr+1,i (t − ρ1) for t � ρ1.

Similarly, for k � 2, ρ1 + · · · + ρk will be the first time a particle jumps to r + k and at that time {(r + k,1), . . . ,

(r + k, a − 1)} are added to I , with trajectories Zr+k,i(t) = Yr+k,i(t − ρ1 − · · · − ρk) for t � ρ1 + · · · + ρk until such
time as the particles are killed and their label removed from the set of labels of live particles.

We denote by I(t) the set of labels of live particles at time t and by Z(t) = {Zx,i(t): (x, i) ∈ I(t)} the positions
of the corresponding random walks.

To avoid pathologies it is useful to insist that initially the set of labels of live particles includes at least one with
x = r . The rightmost visited site rt is the supremum of the x over the collection of labels, rt = sup{x: (x, i) ∈ I(t)}.
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Let us formalize the above discussion. Call L the set of triples (r,I,Z) formed by an integer r ∈ Z, a set of labels
I ⊂ {(x, i): x � r,1 � i � a − 1} and position function Z :I → {. . . , r − 2, r − 1, r} taking values in the integers
smaller than or equal to r . We now define

S :=
{
(r,I,Z) ⊂ L: max

(x,i)∈I
x = r,max

z�r

∑
(x,i)∈I

1Z(x,i)(z) � M

}
,

which will be the state space of our process.
The labeled process starting from w = (r,I(0),Z(0)), is now defined as the triple wt = {(rt ,I(t),Z(t)): t � 0},

defining a strong Markov process taking values on S, and with a law given by a probability measure Pw defined on
the Skorohod space D([0,∞);S).

The combustion process described in Section 1 is the particle count η(t) := {η(t, y): y � rt } where η(t, y) =∑
(x,i)∈I(t) 1(Zx,i(t) = y). We will occasionally use the more explicit notation ηw(t) and ηw(t, y) instead of η(t) and

η(t, y) respectively, with the understanding that ηw(0) is the particle count of the initial condition w.
We already defined ρ1 to be the first time that one of these particles hits r + 1.

Lemma 2. Suppose that (r,1), . . . , (r, a − 1) ∈ I(0), and that all particles with these labels are initially at r . Then
ρ1 � ν1.

Proof. The dynamics of the a − 1 particles which start at r is the same in the labeled process as in the ones we look
at in the auxiliary process. Indeed, these are the only particles considered in the auxiliary process up to time ν1, while
the labeled process may have many others, each of which has a chance to be the first to hit r + 1. �

Recall that ρk + · · · + ρ1 is the first time one of the labeled particles in the labeled process hits r + k. Note that the
hitting could be done by one of the a new particles created at r + i at time ρi , i < k.

Lemma 3. Suppose that (r,1), . . . , (r, a − 1) ∈ I(0), and that all particles with these labels are initially at r . Then
ρk � νk .

Proof. Before giving a general proof, we describe the special case of M = a = k = 2 where the idea is more trans-
parent.

Case M = a = k = 2: Note first of all that if a = 2, we have i = 1 always and hence we can drop the i in the
labels. The labeled process starts with one particle with label r at r , possibly one other particle at site r , with a label
smaller than r , and other particles with labels smaller than r at arbitrary positions to the left of r . At time ρ1 we
have one particle labeled r + 1 at r + 1, which, after that time, has trajectory Zr+1(t) = Yr+1(t − ρ1), and another
particle, labeled r at some site x � r + 1, which, after that time, has trajectory Zr(t) = Yr(t). Note that neither particle
can be killed before time ρ1 + ρ2 because they are the two with the highest labels until that time. There could also
be other particles with other labels at positions x � r + 1. Denote by τr+1 = inf{t � ρ1: Zr+1(t) = r + 2}, by τr =
inf{t � ρ1: Zr(t) = r + 2} and by τothers the first time one of the others hits r + 2. Then ρ2 = min{τr+1, τr , τothers} −
ρ1 � min{τr+1, τr} − ρ1.

On the other hand, ν2 = min{σr, σr+1} where σr = inf{t � 0: Yr(t) = r + 2} and σr+1 = inf{t � 0: Yr+1(t) =
r + 2}. Now

τr+1 = inf
{
t � ρ1: Zr+1(t) = r + 2

} = inf
{
t � ρ1: Yr+1(t − ρ1) = r + 2

}
= inf

{
t � 0: Yr+1(t) = r + 2

}+ ρ1 = σr+1 + ρ1 (9)

and

τr = inf
{
t � ρ1: Zr(t) = r + 2

} = inf
{
t � ρ1: Yr(t) = r + 2

}
� inf

{
t � 0: Yr(t) = r + 2

}+ ρ1 = σr + ρ1.

The result follows.
General case: Let us examine the configuration in the labeled process at time ρ1 +· · ·+ρk−1. It has a − 1 particles

at site r +k−1 with labels (r +k−1,1), . . . , (r +k−1, a−1) plus one additional particle with an unknown label, the
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one which hit r + k − 1. An additional M − a + 1 particles (which might include the additional particle of unknown
label which hit r + k − 1) with the next highest labels after the first a − 1 have some unknown positions, and there
may in addition be any number of other particles in the configuration. In the time interval [0, ρ1 + · · · + ρk−1] none
of the M − a + 1 particles has hit r + k. Their trajectories in the time interval [ρ1 + · · · + ρk−1, ρ1 + · · · + ρk] are
Y(r+k−2,a−1)(t − ρ1 + · · · + ρk−2), . . . . The definition of νk , on the other hand, involves the particles with these M

leading indices, but without the time shift. Hence the first time that any of the first a − 1 particles hits is identical
to that of the auxiliary process, the first time that any of the next M − a + 1 particles hits is greater in the auxiliary
process, and one of the other possible particles in the labeled process could be the one which hit first, making the time
shorter still. �
3.3. Enlarged process

We have seen that the labeled process is defined in terms of a set of labels I(t), for t � 0, with the property
rt = sup{x: (x, i) ∈ I(t)} < ∞. Whenever a particle with a label in I(t) is killed, this label is removed. In the
enlarged process we keep track of the killed particles as well. Define for each t � 0, the set of labels of all activated
particles up to time t in the labeled process,

	I(t) =
⋃

0�s�t

I(s).

Consider the set 	Z(t) = {Zx,i(t): (x, i) ∈ 	I(t)} of all the corresponding random walks at time t . The en-
larged process is defined as the triple 	wt = {(rt ,	I(t), 	Z(t)): t � 0}. Observe that the particle count (t, y) 
→∑

(x,i)∈	I(t) 1(Zx,i(t) = y) of the enlarged process, is the combustion process without threshold (M = ∞).
Consider now the set of labels R(t), obtained after removing from I(t) all labels (x, i) with x < r = sup{y: (y, i) ∈

I(0)}. We define for y � rt the particle count

ζ(y, t) =
∑

(x,i)∈R(t)

1
(
Zx,i(t) = y

)
. (10)

Also let L(t) be the set of labels obtained after removing from I(t) all labels (x, i) x � r . We define for y � rt the
particle count

φ(y, t) =
∑

(x,i)∈L(t)

1
(
Zx,i(t) = y

)
. (11)

We similarly define 	L(t) as the set of labels obtained after removing from Ī(t) all labels (x, i) with positions x � r ,
and the corresponding particle count for y � rt as

φ̄(y, t) =
∑

(x,i)∈ 	L(t)

1
(
Zx,i(t) = y

)
. (12)

Sometimes we will write ζw , φw and φ̄w to emphasize the dependence on the initial condition w ∈ S.

Lemma 4.

(i) For every initial condition w ∈ S and every t � 0 and x � rt

φw(x, t) � φ̄w(x, t). (13)

(ii) For every w = (r,I(0),Z(0)) ∈ S with labels (r,1), . . . , (r, a − 1) at site r and corresponding initial positions
Zr,i(0) = r for 1 � i � a − 1,

r̃ r
t � rt . (14)

(iii) For every w = (r,I(0),Z(0)) ∈ S, the processes φ̄w and r̃ r
t are independent.

Proof. Part (i) follows directly from the definitions. Part (ii) is a consequence of Lemma 3. Part (iii) follows from the
observation that φ̄ and r̃ r

t are defined in terms of the random walks {Yx,i : x < r} and {Yx,i : x � r} respectively, which
are independent. �
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4. The renewal structure

At a heuristic level, regeneration occurs every time the front moves forward and the particles behind never catch it
up later on. After such a time, the trajectory of the front depends only on the a − 1 newly created particles sitting on
the front, and the new particles they will create in the future.

In order to estimate the tails of regeneration times, it is useful to decouple particles initially on the front from
particles to the left of it. We require that, from such a time on, the a − 1 new particles on the front, and the ones they
will create, move fast enough, and particles initially to the left do not move fast. The precise definition is given now
in a sequence of definitions leading to (18).

Consider the enlarged process 	wt and its natural filtration 	Ft , with an initial condition w0 having particles with
labels (r,1), . . . , (r, a − 1) at site r , and any allowable configuration of particles with labels to the left of r . Let
α = limt→∞ r̃t /t be as in (8) and choose any 0 < α′ < α. Define

U := inf
{
t � 0: r̃t − r < �α′t + 1/2�}

where �x� denotes the greatest integer less than or equal to x.
Define V as the first time one of the particles initially strictly to the left of r hits {x: x > �α′t� + r},

V := inf
{
t � 0: sup

x>�α′t�+r

φ̄w0(x, t) > 0
}
.

U and V in [0,∞] are stopping times with respect to {	Ft : t � 0}. Let

D := min{U,V }. (15)

Note that when {D = ∞}, since rt � r̃t , the jumps in the front rt are never produced by particles initially strictly to
the left of r . For each y ∈ Z, let

Ty := inf{t � 0: rt � y}
denote the hitting time of y by the rightmost visited site in the labeled process wt .

We will also need the first time U and V happen after time s � 0,

U ◦ θs := inf
{
t � 0: r̃

rs
t − rs < �α′t + 1/2�}, (16)

V ◦ θs := inf
{
t � 0: sup

x>�α′t�+rs

φ̄ws (x, t) > 0
}
, (17)

and D ◦ θs := min{U ◦ θs,V ◦ θs}.
Choose an integer L := M and define sequences {Sk: k � 0} and {Dk: k � 1} of 	Ft -stopping times as follows.

Start with S0 = 0 and R0 = r . Then define

S1 := TR0+L, D1 := D ◦ θS1 + S1, R1 := rD1,

and, for k � 1,

Sk+1 := TRk+L, Dk+1 := D ◦ θSk+1 + Sk+1, Rk+1 := rDk+1 .

Note that these times are not necessarily finite and we make the convention that r∞ = ∞. Similarly, we define Uk :=
U ◦ θSk

+ Sk and Vk := V ◦ θSk
+ Sk for k � 1. Let

K := inf
{
k � 1: Sk < ∞,Dk = ∞}

,

and define the regeneration time,

κ := SK. (18)

Note that κ is not a stopping time with respect to 	Ft .
Denote by G the information up to time κ , defined as the completion with respect to Pw of the smallest σ -algebra

containing all sets of the form {κ � t} ∩ A, A ∈ 	Ft .
In Section 5, we will show that Ew[κ2] < ∞ and hence, in particular

Pw[κ < ∞] = 1. (19)
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Newly created particles (and the ones they will further create) start afresh from regeneration times, ignoring all
other active particles.

Proposition 1. Let A be a Borel subset of D([0,∞);Ω). Then,

Pw

[
τ−rκ ζ(κ + ·) ∈ A|G] = P(a−1)δ0

[
η(·) ∈ A|U = ∞]

,

where (a − 1)δ0 denotes a configuration with a − 1 particles at 0 and none anywhere else.

Proof. We have to show that for any B ∈ G,

Pw

[
B,

{
τ−rκ ζ(κ + ·) ∈ A

}] = Pw[B]P(a−1)δ0

[
η(·) ∈ A|U = ∞]

. (20)

Now, using (19),

Pw

[
B,

{
τ−rκ ζ(κ + ·) ∈ A

}] = Pw

[{κ < ∞},B,
{
τ−rκ ζ(κ + ·) ∈ A

}]
=

∞∑
k=1

Pw

[{Sk < ∞,Dk = ∞},B, τ−rκ ζ(κ + ·) ∈ A
]

=
∞∑

k=1

∑
x∈Z

Pw

[
rSk

= x,Sk < ∞,Dk = ∞,B, τ−xζ(Sk + ·) ∈ A
]
. (21)

From the definition of G there is an event Bk ∈ 	FSk
such that Bk = B on κ = Sk . Therefore, we can continue developing

(21) to obtain,

=
∞∑

k=0

∑
x∈Z

Pw

[
rSk

= x,Sk < ∞,Dk = ∞,Bk, τ−xζ(Sk + ·) ∈ A
]

=
∑
k,x

Ew

[
1rSk

=x,Sk<∞,Bk
Pw

[
Dk = ∞, τ−xζ(Sk + ·) ∈ A| 	FSk

]]
,

where Ew is the expectation defined by Pw . But on the events Sk < ∞ and rSk
= x, we have by parts (i) and (ii) of

Lemma 4, that

ζw(Sk + ·) = η(a−1)δx (·) (22)

when Uk = Vk = ∞, and that η(a−1)δx (·) is independent of the configuration of particles initially to the left of x. Here,
(a − 1)δx , is the configuration with (a − 1) particles at site x with labels (x,1), . . . , (x, a − 1) and none elsewhere.
Indeed, part (i) of Lemma 4, and the event Vk = ∞, imply that the particles with initial positions z to the left of x,
are never at the right of �α′t� + x. And part (ii) of Lemma 4, and the event Uk = ∞, imply that the front rt is never
to the left of �α′t + 1/2� + x. Hence, there is no effect of the particles initially to the left of x on the front rt , so
that ζw(Sk + ·) = η(a−1)δx (·). Then, (22) combined with the independence of Uk and Vk given 	FSk

by part (iii) of
Lemma 4, the translation invariance, and the strong Markov property imply that on the events Sk < ∞ and rSk

= x,

Pw

[
Uk = ∞,Vk = ∞, τ−xζ(Sk + ·) ∈ A| 	FSk

] = Pw

[
Uk = ∞, τ−xη(a−1)δx (·) ∈ A| 	FSk

]
Pw[Vk = ∞|	FSk

]
= P(a−1)δ0

[
U = ∞, η(·) ∈ A

]
Pw[Vk = ∞|	FSk

].
Summarizing, we have,

Pw[κ < ∞]Pw

[
B,τ−rκ ζ(κ + ·) ∈ A

]
= P(a−1)δ0

[
U = ∞, η(·) ∈ A

]∑
k,x

Pw[Vk = ∞, rSk
= x,Sk < ∞,Bk]. (23)

Letting A = Ω gives

Pw[κ < ∞]Pw[B] = P(a−1)δ0 [U = ∞]
∑
k,x

Pw[Vk = ∞, rSk
= x,Sk < ∞,Bk]. (24)

(23) and (24) together imply (20). �
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Now define κ1 � κ2 � · · · by κ1 := κ and for n � 1

κn+1 := κn + κ(	wκn+·). (25)

where κ(	wκn+·) is the regeneration time starting from 	wκn+· and we set κn+1 = ∞ on κn = ∞ for n � 1. We will call
κ1 the first regeneration time and κn the nth regeneration time.

For each n � 1 the σ -algebra, Gn will be the completion with respect to Pw of the smallest σ -algebra containing
all sets of the form {κ1 � t1} ∩ · · · ∩ {κn � tn} ∩ A, A ∈Ftn . Clearly G1 = G.

Lemma 5. {U = ∞} ∈ G1.

Proof. Note that {κ1 = ∞} is a null event for Pw and hence, since G1 is complete, it is enough to show that {U < ∞}∩
{κ1 < ∞} ∈ G1.

For notational convenience, we write r̃k· instead of r̃
rSk· . Note that whenever U < ∞, Sk < ∞ and r̃U > rSk

happen,
for some k � 1, then necessarily κ1 > Sk . Indeed, from the observation that r̃Sk+· = r̃k· , we see that if the events
U < ∞, Sk < ∞ and r̃U � rSk

happen, then we must have that Uk < ∞, and hence Dk < ∞. By summing over the
intersection with {κ1 = Sk} we see that it follows that {U < ∞} ∩ {κ1 < ∞} ∩ {r̃U > rκ1} = ∅. So

{U < ∞} ∩ {κ1 < ∞} = {r̃U � rκ1} ∩ {κ1 < ∞}. (26)

Since r̃U � rt implies that U < ∞, it follows that

{r̃U > rκ1} ∩ {r̃U � rt } ∩ {κ1 � t}
is empty. Hence

{r̃U � rt } ∩ {κ1 < t} = {r̃U � rκ1} ∩ {r̃U � rt } ∩ {κ1 < t} = {r̃U � rκ1} ∩ {κ1 < t}.
Thus

{r̃U � rκ1} ∩ {κ1 < ∞} =
∞⋃

n=1

{r̃U � rn} ∩ {κ1 < n}. (27)

The result then follows from the fact that {r̃U � rt } ∈ 	Ft for each t > 0 which is a direct consequence of the construc-
tion of the processes. �
Proposition 2. Let A be a Borel subset of D([0,∞);Ω). Then,

Pw

[
τ−rκn

ζ(κn + ·) ∈ A|Gn

] = P(a−1)δ0

[
η(·) ∈ A|U = ∞]

.

Proof. Let ψ :D[[0,∞);S) → D[[0,∞);S) be the map given by,

ψ(	w)(·) = τ−rκ1
	w(

κ1
(	w(·))+ ·). (28)

Then note that, Gk+1 is generated by G1 and ψ−1(Gk), and that the σ -algebras G1 and ψ−1(Gk) are independent.
The proof of this theorem now follows from the above observations, induction on n ∈ Z

+ using Proposition 1, and
Lemma 5. �

We can now describe the full renewal structure.

Proposition 3. Let w ∈ S. (i) Under Pw , κ1, κ2 − κ1, κ3 − κ2, . . . are independent, and κ2 − κ1, κ3 − κ2, . . . are
identically distributed with law identical to that of κ1 under P(a−1)δ0 [ · |U = ∞]. (ii) Under Pw , r·∧κ1 , r(κ1+·)∧κ2 −
rκ1 , r(κ2+·)∧κ3 − rκ2, . . . are independent, and r(κ1+·)∧κ2 − rκ1, r(κ2+·)∧κ3 − rκ2 , . . . are identically distributed with law
identical to that of rκ1 under P(a−1)δ0 [ · |U = ∞].

Proof. This follows directly from Proposition 2. �
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5. Expectations and variances of the regeneration times

5.1. Estimates for the auxiliary process

In this subsection we obtain some estimates for the auxiliary process. The process will always start from (a − 1)δ0
and we denote the corresponding measure on the trajectories of the auxiliary process by P , and expectations by E.

Lemma 6. For 1 � p < M/2 and j � M , there exists a constant C = C(p) < ∞ such that

E
[|νj |p

]
< C. (29)

Proof. For j � M the auxiliary process has its full complement of M particles attempting to hit j + 1. νj is then the
minimum of γ1, . . . , γM which are the hitting times of 1 of M random walks starting in {−M/a � x � 0}. Standard
estimates for random walks give P [γi > t] � Ct−1/2 for some C < ∞. Hence P [νj > t] � CMt−M/2. �
Lemma 7. For 1 � p < M/2, there exists a constant C = C(p) < ∞ such that for all initial conditions w, and all
t > 0

P [t < U < ∞] � Ct−(p/2). (30)

Proof. By translation invariance we can assume r = 0. Let t1 be such that �α′t1 + 1/2� = M . Then, when t � t1, we
have that

P [t < U < ∞] � P

[
r̃0
t1

� M,
⋃
s>t

{
r̃0
s <

⌊
α′s + 1

2

⌋}]
. (31)

But, if r̃0
s < �α′s + 1/2� for s > t , then

∑�α′s+1/2�
j=1 νj > s, which in turn implies that, 1

n

∑n
j=1 νj � 1

α′ (1 − 1
2n

) for

some n � �α′t + 1/2�. Similarly, r̃0
t1

> M , implies that
∑M

j=1 νj � (M + 1)/α′. Therefore, whenever �α′t + 1/2� �
M + 1, we have

P [t < U < ∞] � P

[
M∑

j=1

νj � M + 1

α′ ,

∞⋃
n=�α′t+1/2�

{
1

n

n∑
j=1

νj � 1

α′

(
1 − 1

2n

)}]

� P

[ ∞⋃
n=�α′t+1/2�

{
1

n

n∑
j=M+1

νj � 1

α′

(
1 − M + 1/2

n

)}]
. (32)

Now remark that for j � M , the random variables νj are identically distributed and have finite moments of order
p < M/2 by Lemma 6. Each has expected value 1/α. Define γj = νj − 1/α. Choose t2 as any real number such that

β = 1

α′

(
1 − M + 1/2

�α′t2�
)

− 1

α
> 0

and �α′t2 + 1/2� � M + 1. Then, whenever t � t2, if N = �α′t + 1/2�, we have that,

P [t < U < ∞] � P

[
sup
n�N

1

n

n∑
j=M+1

γj � β

]
. (33)

Recall that for each 0 � i < �, � = �M/(a − 1)� + 1, the random variables {νk�+i : k � 1} are independent. Observe
from (33) that, if β ′ = βa/M ,

P [t < U < ∞] �
�−1∑
i=0

P

[
sup
n�N

1

n

n∑
j=M+1, j=k�+i

γj � β ′
]
. (34)

Suppose X1,X2, . . . are independent and identically distributed random variables with mean 0. By Kolmogorov’s
inequality,



F. Comets et al. / Ann. I. H. Poincaré – PR 43 (2007) 147–162 157
P

[
sup
n�N

1

n

n∑
i=1

Xi � ε

]
�

∞∑
k=0

P

[
sup

2kN�n�2k+1N

1

2kN

n∑
i=1

Xi � ε

]

�
∞∑

k=0

(
2kNε

)−p
E

[∣∣∣∣∣
2k+1N∑
i=1

Xi

∣∣∣∣∣
p]

. (35)

Now, for p � 2, if E[|Xi |p] < ∞ then E[|∑2k+1N
i=1 Xi |p] � C(2k+1N)p/2 for some C < ∞ (see item 16, page 60

of [10]), and hence for another C < ∞,

P

[
sup
n�N

1

n

n∑
i=1

Xi � ε

]
� Cε−pN−p/2. (36)

Applying (36) to (34), by Lemma 6 we obtain (30). �
5.2. Estimates for the enlarged process

We start with a few standard estimates for hitting times of random walks.

Lemma 8. Let {Xt : t � 0} be a continuous time simple symmetric random walk on Z, of total jump rate 2, starting
from x � 0, c > 0, and

τ := inf
{
t � 0: Xt > �ct�}. (37)

Then

P [τ = ∞] �
{

1 − exp{xθc}, x � −1,

exp{−2/c}(1 − exp{−θc}), x = 0,

where θc > 0 is the nonzero solution of cθ − 2(cosh θ − 1) = 0, and there exist 0 < C,C′ < ∞ such that

P [t < τ < ∞] < C′ exp{−Ct}
(

exp

{
−θc|x + 1|

2

}
+ exp

{
−I

( |x + 1|
2t

)})
, (38)

where I (u) = 2 + u sinh−1(u/2) − √
4 + u2 is the rate function for the random walk.

Proof. For θ ∈ R, exp{θXt − 2(cosh θ − 1)t} is a martingale. By the optional stopping time theorem,

E
[
exp

{
θXτ∧n − 2(cosh θ − 1)τ ∧ n

}] = exp{θx}. (39)

Now, Xτ∧n � �cτ ∧ n� + 1, hence θXτ∧n − 2(cosh θ − 1)τ ∧ n � (cθ − 2(cosh θ − 1))τ ∧ n + θ . It follows that if
θ � θc, we can apply the bounded convergence theorem in equality (39) taking the limit when n → ∞, to conclude
that,

E
[
1(τ < ∞) exp

{
θXτ − 2(cosh θ − 1)τ

}] = exp
{
θ(x − 1)

}
. (40)

When τ < ∞, we have Xτ = �cτ� + 1 and therefore θXτ − 2(cosh θ − 1)τ � (cθ − 2(cosh θ − 1))τ . Letting θ ↓ θc

in (40) and applying the bounded convergence theorem, we obtain,

P [τ < ∞] � exp{xθc}. (41)

To get the bound for x = 0, note that the probability that the random walk does not move before time t = 1/c is
exp{−2/c}. Then use the Markov property and the result for x = −1.

To prove (38):

P [t < τ < ∞] � P [Xt > B] + P [t < τ < ∞,Xt � B]. (42)

Now, whenever B − x > 0,

P [Xt > B] � exp

{
−tI

(
B + |x|)}
t
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and by the strong Markov property, translation invariance and inequality (41),

P [t < τ < ∞,Xt � B] � P−(�ct�−B)[τ < ∞] � exp
{−(�ct� − B

)
θc

}
.

Choosing B = (�ct� + x)/2, on the above inequalities, using the inequality tI (u + v) � I (v) + (t − 1)I (u) valid for
u,v � 0, and substituting back in (42), gives (38). �
Lemma 9. For each α′ < α, there exists C < ∞ such that for t � 1, and all w ∈ S,

Pw[t < V < ∞] � C exp{−Ct}. (43)

Proof. Note that in the worst case in which there are M random walks at the origin and at each site to the left of the
origin, we get the bound,

Pw[t < V < ∞] � M

−∞∑
x=0

Px[t < τ < ∞],

where τ is defined in display (37). On the other hand, it is true that
∑∞

k=1 e−I (k/(n+1)) � (n + 1)
∑∞

k=0 e−I (k). This
estimate, the previous inequality and inequality (38) of Lemma 8 give us the result. �

From Lemmas 7 and 9 we have

Corollary 1. For each 0 � p < M/2 there is a C < ∞ depending only on p, M and α′ such that for all initial
conditions w,

Pw[t < D < ∞] � Ct−p/2.

Lemma 10. There is a δ1 > 0 such that,

Pw[V < ∞] < 1 − δ1.

Proof. Without loss of generality, r = 0. Now, take the worst case scenario where w has M particles at each site
x � 0. By Lemma 8,

Pw[V = ∞] � e−2M/α′(
1 − e−θc

)M ∞∏
n=1

(
1 − e−nθc

)M = δ1 > 0. �

Lemma 11. Suppose that M > 4. There is a δ2 > 0 such that for all initial conditions w with at least a − 1 particles
at the rightmost visited site r

Pw[U < ∞] < 1 − δ2.

Proof. We can also assume that r = 0. To estimate Pw[U = ∞] below, note that

Pw[U = ∞] = P

[ ∞⋂
k=1

{
k∑

j=1

νj � 2k − 1

2α′

}]
. (44)

Let n ∈ N and 0 < ε < 1/(2α′) and define G to be the event that each random walk Y(x,i) with 0 � x � n, moves
M + 1 steps to the right before time ε. When G happens, νk < 1/(2α′) and hence

∑k
j=1 νj < k/(2α′) for all k �

n + �M/a� := n′. Note that G ∩⋂∞
k=1{

∑k
j=1 νj < (2k − 1)/α′} ⊃ G ∩ H where

H :=
∞⋂

′

{
k∑
′

νj � 2k − 1

2α′ − n′ε
}

. (45)

k=n +1 j=n +1
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Furthermore, G and H are independent so Pw[U = ∞] � P [G]P [H ]. Now

P
[
Hc

]
�

∞∑
k=n′+1

P

[
k∑

j=n′+1

νj � 2k − 1

2α′ − n′ε
]

and letting γj = νj − E[νj ] = νj − 1/α, for 2 � p < M/2, with β := 1/α′(1 − 1/(2n′)) − 1/α > 0 when n is large
enough,

P

[
k∑

j=n′+1

νj � k

α′ − n′ε
]

� E

[(
k∑

j=n′+1

γj

)p]
(kβ − n′ε)−p � Ckp/2(kβ − n′ε)−p, (46)

where in the last inequality we used the same estimates explained between displays (35) and (36). Taking ε = β/(2n′)
gives kp/2(kβ − n′ε)−p � C′k−p/2. Hence P [Hc] � C

∑∞
k=n′+1 k−p/2 so as long as p > 2 (which is possible since

M > 4) we obtain that P [Hc] < 1 − δ2 < 1 for sufficiently large n. Choose such an n < ∞, and note that for this n,
P [G] � δ3 > 0 as well. �
Lemma 12. Suppose that M > 4. There is a δ > 0 such that for all initial conditions w with at least a − 1 particles at
the rightmost visited site r

Pw[D < ∞] < 1 − δ. (47)

Proof. Since U and V are independent by part (iii) of Lemma 4, Pw[D < ∞] = 1 − Pw[U = ∞]Pw[V = ∞]. �
Lemma 13. There is a C < ∞ such that for every initial condition w with r = 0, and any M ′ > M ,

Pw[rt � M ′t] � C exp{−Ct}. (48)

Proof. Note that rt is a process on Z, increasing by one whenever a particle jumps to the right from r . Since there at
most M particles there, the maximum jump rate is M . The lemma then follows from standard estimates on Poisson
processes. �
Lemma 14. For each p < M/2 there is a C < ∞ such that

P(a−1)δ0 [κ1 > t |U = ∞] � Ct−p/2. (49)

Proof. Let us first write,

P(a−1)δ0 [κ1 > t |U = ∞] =
∞∑

k=1

P(a−1)δ0 [Sk > t,K = k|U = ∞].

Applying recursively the strong Markov property to the stopping times {Sj : j � 1} we see that for every k � 1,

P(a−1)δ0 [Sk > t,K = k|U = ∞] � (1 − δ)k−1,

where δ > 0 is given by Lemma 12. For any � > 0 we therefore have,

P(a−1)δ0 [κ1 > t |U = ∞] �
�∑

k=1

P(a−1)δ0 [t < Sk < ∞|U = ∞] + δ−1(1 − δ)�. (50)

Let 1 > γ > 0 and consider the event

Ak = {
rD1 − rS1 < tγ , rD2 − rS2 < tγ , . . . , rDk−1 − rSk−1 < tγ

}
.

On Ak we have rSk
� k(L + tγ ). Since r̃t � rt , if U = ∞, then rt � �α′t + 1/2� for all t > 0. Therefore, on Ak ∩

{U = ∞},
�α′Sk� � �α′Sk + 1/2� � k

(
L + tγ

)
. (51)
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Hence for t > (�(L + tγ ) + 1)/α′ and k � �,

P(a−1)δ0 [t < Sk < ∞,Ak|U = ∞] = 0

and therefore

P(a−1)δ0 [t < Sk < ∞|U = ∞] � P(a−1)δ0

[
Ac

k, Sk < ∞|U = ∞]
. (52)

By Lemma 11, since P(a−1)δ0 [U = ∞] � δ2 > 0. So for some C < ∞, the right-hand side of (52) is bounded above
by

C

k−1∑
i=1

P(a−1)δ0

[
rDi

− rSi
� tγ , Sk < ∞]

. (53)

Now let M ′ > M and

P(a−1)δ0

[
rDi

− rSi
� tγ , Sk < ∞] = P(a−1)δ0

[
rDi

− rSi
� tγ , Sk < ∞,Di − Si � tγ

M ′

]

+ P(a−1)δ0

[
rDi

− rSi
� tγ , Sk < ∞,Di − Si >

tγ

M ′

]

� P(a−1)δ0

[
rSi+tγ /M ′ − rSi

� tγ
]+ P(a−1)δ0

[
tγ

M ′ < Di − Si < ∞
]
. (54)

Note that in the last equation we used the fact that Sk < ∞ implies that Di − Si < ∞ for i < k. By the strong Markov
property and Lemma 13,

P(a−1)δ0

[
rSi+tγ /M ′ − rSi

� tγ
]
� C exp−Ctγ .

By the strong Markov property and Corollary 1, for each p < M/2,

P(a−1)δ0

[
tγ

M ′ < Di − Si < ∞
]

� Ct−γp/2.

Choosing � = C log t with C = p(2 log(1 − δ)−1)−1 from (50) and the previous estimates we obtain (49). �
Corollary 2. Let κ1 be the first regeneration time of the stochastic combustion process.

(a) For M > 4, E(a−1)δ0 [κ1|U = ∞] < ∞, and E(a−1)δ0 [rκ1 |U = ∞] < ∞.
(b) For M > 8, E(a−1)δ0 [κ2

1 |U = ∞] < ∞, and E(a−1)δ0 [r2
κ1

|U = ∞] < ∞.

Proof. The statements for κ1 follow from Lemma 14, and those for rκ1 from Lemmas 13 and 14. �
6. Limit theorems

In this section we use the renewal structure to prove Theorem 1, the law of large numbers and the central limit
theorem for rt . The argument for the law of large numbers follows that of Sznitman and Zerner in [17], developed in
the context of multi-dimensional transient random walks in random environments. The argument for the central limit
theorem is from [16].

6.1. Law of large numbers

We consider the stochastic combustion process started with an initial condition r = 0, η(0,0) ∈ {1, . . . ,M} and
η(0, x) ∈ {0, . . . ,M}. We will prove that a.s.

lim
t→∞

rt = v := E(a−1)δ0 [rκ1 |U = ∞]
. (55)
t E(a−1)δ0 [κ1|U = ∞]
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Let us first note that by Proposition 3, we have a.s.,

lim
n→∞

κn

n
= E(a−1)δ0 [κ1|U = ∞], and lim

n→∞
rκn

n
= E(a−1)δ0 [rκ1 |U = ∞]. (56)

For t � 0, define nt := sup{n � 0: κn � t}, with the convention that κ0 = 0. Note that (56) ensures that nt < ∞ a.s. and
by definition we also have, κnt � t < κnt+1, and limt→∞ κnt = ∞. It follows from this inequality and the limit (56)
that, a.s., limt→∞ nt/t = 1/E(a−1)δ0 [κ1|U = ∞] and hence almost surely,

lim
t→∞

rκnt

t
= lim

t→∞
rκnt

κnt

κnt

t
= v, (57)

Now

lim
t→∞

|rt − rκnt
|

t
� lim

t→∞
rκnt +1 − rκnt

t
= 0. (58)

from (57). This proves the law of large numbers.

6.2. Central limit theorem

Starting with the same initial conditions we consider

Bε
t := ε1/2(rε−1t − ε−1vt

)
, t � 0.

Define

Rj := rκj+1 − rκj
− (κj+1 − κj )v, j � 0,

and denote for m � 0 the partial sums Σm := ∑m
j=1 Rj .

For any 0 � t � T < ∞,∣∣Bε
t − ε1/2Σnt/ε

∣∣ � 2ε1/2 sup
0�n�n�ε−1T �

(rκn+1 − rκn) + 2vε1/2 sup
0�n�n�ε−1T �

(κn+1 − κn).

For every u > 0 we have, by Proposition 3

P(a−1)δ0

[
sup

0�n�n�ε−1T �
ε1/2(κn+1 − κn) > u

]

� P(a−1)δ0

[
κ1 > ε−1/2u

]+ u−2ε
(
tε−1 + 1

)
E(a−1)δ0

[
κ2

1 1
(
κ1 > ε−1/2u

)|U = ∞]
,

which by part (b) of Corollary 2, a.s. converges to 0 as ε → 0. Hence, in probability

sup
0�n�n�ε−1T �

ε1/2(κn+1 − κn) → 0 (59)

and similarly

sup
0�n�n�ε−1T �

ε1/2(rκn+1 − rκn) → 0.

Hence, Bε
t − ε1/2Σn

ε−1 t
converges to 0 in probability, uniformly on compact sets of t . From Donsker’s invari-

ance principle, we know that
√

εΣ·/ε converges in law to a Brownian motion with variance E(a−1)δ0[(rκ1 −
κ1v)2|U = ∞], where Σs, s � 0, now stands for the linear interpolation of Σm,m � 0. From the previous proof
we have limt→∞ nt/t = 1/E(a−1)δ0[κ1|U = ∞]. Since ε−1ktε−1 is increasing in t , the convergence is uniform on
compact sets of t . This, together with the convergence in law of ε1/2Σ·/ε to a Brownian motion with variance
E(a−1)δ0 [(rκ1 − κ1v)2], implies that ε1/2Σk�ε−1 t� is tight in the Skorohod topology, and that its finite-dimensional
distributions converge to the finite-dimensional distribution of a Brownian motion with variance,

σ 2 := E(a−1)δ0 [(rκ1 − κ1v)2|U = ∞]
E(a−1)δ0[κ1|U = ∞] . (60)
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6.3. Non-degeneracy of the variance

It suffices to prove that, for some α′ < β < v,

P(a−1)δ0

[
rκ1 = L,Lβ−1 � κ1|U = ∞]

> 0.

Now,

P(a−1)δ0

[
rκ1 = L,Lβ−1 � κ1,U = ∞]

� P(a−1)δ0

[
Lβ−1 < S1 < U,D ◦ θS1 = ∞]

.

The right-hand side we can write as

E(a−1)δ0

[
1
(
Lβ−1 < S1 < U

)
E(a−1)δ0

[
1(V ◦ θS1 = ∞)1(U ◦ θS1 = ∞)|FS1

]]
.

Given FS1 , V ◦ θS1 and U ◦ θS1 are independent, so

E(a−1)δ0

[
1(V ◦ θS1 = ∞)1(U ◦ θS1 = ∞)|FS1

]
= P(a−1)δ0 [V ◦ θS1 = ∞|FS1 ]P(a−1)δ0 [U ◦ θS1 = ∞|FS1 ]. (61)

But since by Lemmas 10 and 11 we have

P(a−1)δ0 [U ◦ θS1 = ∞|FS1 ] = P(a−1)δ0 [U = ∞] � δ2 > 0

and

P(a−1)δ0 [V ◦ θS1 = ∞|FS1 ] � δ1 > 0

we have,

P(a−1)δ0

[
Lβ−1 < S1 < U,D ◦ θS1 = ∞]

� δ1δ2P(a−1)δ0

[
Lβ−1 < S1 < U

]
.

But it is easy to check that P(a−1)δ0 [Lβ−1 < S1 < U ] > 0. In fact, it is enough to lower bound this probability by the
probability that one of the random walks at site 0 moves to site L in a time t such that Lβ−1 < t < L(α′)−1, and then
stays at site L between time t and time L(α′)−1, while all other random walks between sites 0 and L do not move at
all during the time interval [0,L(α′)−1].
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