
Ann. I. H. Poincaré – PR 43 (2007) 47–76
www.elsevier.com/locate/anihpb

Annealed deviations of random walk in random scenery

Nina Gantert a, Wolfgang König b,∗, Zhan Shi c

a Fachbereich Mathematik und Informatik der Universität Münster, Einsteinstraße 62, 48149 Münster, Germany
b Mathematisches Institut, Universität Leipzig, Augustusplatz 10/11, 04109 Leipzig, Germany

c Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VI, 4, place Jussieu, 75252 Paris Cedex 05, France

Received 4 April 2005; received in revised form 21 November 2005; accepted 20 December 2005

Available online 7 July 2006

Abstract

Let (Zn)n∈N be a d-dimensional random walk in random scenery, i.e., Zn =∑n−1
k=0 Y (Sk) with (Sk)k∈N0 a random walk in

Z
d and (Y (z))z∈Zd an i.i.d. scenery, independent of the walk. The walker’s steps have mean zero and some finite exponential

moments. We identify the speed and the rate of the logarithmic decay of P( 1
nZn > bn) for various choices of sequences (bn)n in

[1,∞). Depending on (bn)n and the upper tails of the scenery, we identify different regimes for the speed of decay and different
variational formulas for the rate functions. In contrast to recent work [A. Asselah, F. Castell, Large deviations for Brownian motion
in a random scenery, Probab. Theory Related Fields 126 (2003) 497–527] by A. Asselah and F. Castell, we consider sceneries
unbounded to infinity. It turns out that there are interesting connections to large deviation properties of self-intersections of the
walk, which have been studied recently by X. Chen [X. Chen, Exponential asymptotics and law of the iterated logarithm for
intersection local times of random walks, Ann. Probab. 32 (4) 2004].
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Soit (Zn)n∈N une marche aléatoire en paysage aléatoire sur Z
d ; il s’agit du processus défini par Zn =∑n−1

k=0 Y (Sk), où (Sk)k∈N0

est une marche aléatoire à valeurs dans Z
d , et le paysage aléatoire (Y (z))z∈Zd est une famille de variables aléatoires i.i.d. indépen-

dante de la marche. On suppose que S1 est centrée et admet certains moments exponentiels finis. Nous identifions la vitesse et la
fonction de taux de P( 1

nZn > bn), pour diverses suites (bn)n à valeurs dans [1,∞[. Selon le comportement de (bn)n et de la queue
de distribution du paysage aléatoire, nous découvrons différents régimes ainsi que différentes formules variationnelles pour les
fonctions de taux. Contrairement au travail récent de A. Asselah et F. Castell [A. Asselah, F. Castell, Large deviations for Brownian
motion in a random scenery, Probab. Theory Related Fields 126 (2003) 497–527], nous étudions le cas où le paysage aléatoire n’est
pas borné. Finalement, nous observons des liens intéressants avec certaines propriétés d’auto-intersection de la marche (Sk)k∈N0 ,
récemment étudiées par X. Chen [X. Chen, Exponential asymptotics and law of the iterated logarithm for intersection local times
of random walks, Ann. Probab. 32 (4) 2004].
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. Model and motivation

Let S = (Sn)n∈N0 be a random walk on Z
d starting at the origin. We denote by P the underlying probability

measure and by E the corresponding expectation. We assume that E[S1] = 0 and E[|S1|2]<∞. Defined on the same
probability space, let Y = (Y (z))z∈Zd be an i.i.d. sequence of random variables, independent of the walk. We refer to
Y as the random scenery. Then the process (Zn)n∈N defined by

Zn =
n−1∑
k=0

Y(Sk), n ∈N,

where N = {1,2, . . .}, is called a random walk in random scenery, sometimes also referred to as the Kesten–Spitzer
random walk in random scenery, see [19]. An interpretation is as follows. If a random walker has to pay Y(z) units at
any time he/she visits the site z, then Zn is the total amount he/she pays by time n− 1.

The random walk in random scenery has been introduced and analyzed for dimension d �= 2 by H. Kesten and
F. Spitzer [19] and by E. Bolthausen [6] for d = 2. The case d = 1 was treated independently by A.N. Borodin [7,8].
Under the assumption that Y(0) has expectation zero and variance σ 2 ∈ (0,∞), their results imply that

1

n
Zn ≈ a(0)

n =
⎧⎨⎩

n−1/4 if d = 1,

( n
logn

)−1/2 if d = 2,

n−1/2 if d � 3.

(1.1)

More precisely, (1/na
(0)
n )Zn converges in distribution towards some non-degenerate random variable. The limit is

Gaussian in d � 2 and a convex combination of Gaussians (but not Gaussian) in d = 1. This can be roughly explained
as follows. In terms of the so-called local times of the walk,

�n(z)=
n−1∑
k=0

1{Sk=z}, n ∈N, z ∈ Z
d, (1.2)

the random walk in random scenery may be identified as

Zn =
∑
z∈Zd

Y (z)�n(z). (1.3)

The number of effective summands in (1.3) is equal to the range of the walk, i.e., the number of sites visited by time
n − 1. Hence, conditional on the random walk, Zn is, for dimension d � 3, a sum of O(n) independent copies of
finite multiples of Y(0), and hence it is plausible that Zn/n1/2 converges to a normal variable. The same assertion
with logarithmic corrections is also plausible in d = 2. However, in d = 1, Zn is roughly a sum of O(n1/2) copies
of independent variables with variances of order O(n), and this suggests the normalization in (1.1) as well as a non-
normal limit.

In this paper, we analyze deviations { 1
n
Zn > bn} for various choices of sequences (bn)n∈N in [1,∞). We determine

the speed and the rate of the logarithmic asymptotics of the probability of this event as n →∞, and we explain the
typical behavior of the random walk and the random scenery on this event.

This problem has been addressed in recent work [11,1] and [10] by F. Castell in partial collaboration with
F. Pradeilles and A. Asselah for Brownian motion instead of random walk. While [11] and [10] treat the case of
a continuous Gaussian scenery for bn = n1/2 and cst. � bn � n1/2, respectively, the case of an arbitrary bounded
scenery (constant on the unit cubes) and bn = cst. is considered in [1]. See also [1] for further references on this topic
and [2] and [16] for recent results on the random walk case.

The main novelty of the present paper is the study of arbitrary sceneries unbounded to +∞ and general scale
functions bn � cst. in the discrete setting. On the technical side, in particular the proof of the upper bound is rather
demanding and requires new techniques. We solve this part of the problem by a careful analysis of high integer
moments, a technique which has been recently established in the study of intersection properties of random motions.

A very rough, heuristic explanation of the interplay between the deviations of the random walk in random scenery
and the tails of the scenery at infinity and the dimension d is as follows. In order to realize the event { 1 Zn > bn}, it is
n
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clear that the scenery has to assume larger values on the range of the walk than usual. In order to keep the probabilistic
cost for this low, the random walker has to keep its range small, i.e., it has to concentrate on less sites by time n than
usual. The optimal joint strategy of the scenery and the walk is determined by a balance between the respective costs.
The optimal strategies in the cases considered in the present paper are homogeneous. More precisely, the scenery
and the walk each approximate optimal (rescaled) profiles in a large, n-dependent box. These optimal profiles are
determined by a (deterministic) variational problem.

The topic of the present paper has deep connections to large deviation properties of self-intersections of the walk.
This is immediate in the important special case of a standard Gaussian scenery Y . Indeed, the conditional distribution
of Zn given the random walk S is a centered Gaussian with variance equal to

Λn =
∑
z∈Zd

�n(z)
2 = ‖�n‖2

2, (1.4)

which is often called the self-intersection local time. Hence, large deviations for the random walk in Gaussian scenery
would be a consequence of an appropriate large deviation statement for self-intersection local times. However, the
latter problem is notoriously difficult and is, up to the best of our knowledge, open in the precision we would need in
the present paper. (However, compare to interesting and deep work on self-intersections and mutual intersections by
X. Chen [12].) Recent results for self-intersection local times for random walks in dimension d � 5 and applications
to random walk in random scenery are given in [3].

The remainder of Section 1 is organized as follows. Our main results are in Section 1.2, a heuristic derivation may
be found in Section 1.3, a partial result for Gaussian sceneries for dimension d = 2 is in Section 1.4. The structure
of the remainder of the paper is as follows. In Section 2 we analyze the variational formulas, in Section 3 we present
the tools for our proofs of the main results, in Sections 4 and 5 we give the proofs of the upper and the lower bounds,
respectively, and finally in Appendix A, we provide the proof of a large deviation principle that is needed in the paper.

1.2. Results

Our precise assumptions on the random walk, S, are the following. The walker starts at S0 = 0, and the steps have
mean zero and some finite exponential moments, more precisely,

E
[
et |S1|]<∞ for some t > 0. (1.5)

By Γ ∈R
d×d we denote the covariance matrix of the walk’s step distribution. Hence, S lies in the domain of attraction

of the Brownian motion with covariance matrix Γ . We assume that Γ is a regular matrix. Furthermore, we assume
that S is strongly aperiodic, i.e., for any z ∈ Z

d , the smallest subgroup of Z
d that contains {z+ x: P(S1 = x) > 0} is

Z
d itself. Finally, to avoid technical difficulties, we also assume that the transition function of the walk is symmetric,

i.e., p(0, z)= p(0,−z) for z ∈ Z
d , where p(z, z̃) denotes the walker’s one-step probability from z ∈ Z

d to z̃ ∈ Z
d .

Our assumptions on the scenery are the following. Let Y = (Y (z))z∈Zd be a family of i.i.d. random variables, not
necessarily having finite expectation, such that

E
[
etY (0)

]
<∞ for every t > 0. (1.6)

In particular, the cumulant generating function of Y(0), is finite:

H(t)= log E
[
etY (0)

]
<∞, t > 0. (1.7)

In some of our results, we additionally suppose the following.

Assumption (Y). There are constants D > 0 and q > 1 such that

log P
(
Y(0) > r

)∼−Drq, r →∞.

According to Kasahara’s exponential Tauberian theorem (see [5, Theorem 4.12.7]), Assumption (Y) is equivalent
to

H(t)∼ D̃tp, as t →∞, where D̃ = (q − 1)
(
Dqq

)1/(1−q) and
1 + 1 = 1. (1.8)

q p
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In our first main result, we consider the case of sequences (bn)n tending to infinity slower than n1/q . By ∇ we
denote the usual gradient acting on sufficiently regular functions R

d → R. By H 1(Rd) we denote the usual Sobolev
space, and we write ‖∇ψ‖2

2 =
∫

Rd |∇ψ(x)|2 dx. We use the notation bn � cn if limn→∞ bn/cn =∞.

Theorem 1.1 (Very large deviations). Suppose that Assumption (Y) holds with some q > d
2 . Pick a sequence (bn)n∈N

satisfying 1 � bn � n1/q . Then

lim
n→∞n−d/(d+2)b

−2q/(d+2)
n log P

(
1

n
Zn > bn

)
=−KD,q, (1.9)

where

KD,q ≡ inf

{
1

2

∥∥Γ 1/2∇ψ
∥∥2

2 +D
∥∥ψ2

∥∥−q

p
: ψ ∈H 1(

R
d
)
,‖ψ‖2 = 1

}
, (1.10)

(we recall that 1
p
+ 1

q
= 1), and KD,q is positive.

Remark 1.2. For q ∈ (1, d
2 ), (1.9) also holds true, but KD,q = 0. Indeed, this follows from Proposition 1.6 be-

low together with our proof of Theorem 1.1. One can also see this directly by giving an explicit lower bound for
log P( 1

n
Zn > bn) which runs on a strictly smaller scale than nd/(d+2)b

2q/(d+2)
n . It remains an open problem in this

paper to determine the precise logarithmic rate of P( 1
n
Zn > bn) in the case q ∈ (1, d

2 ). The case q = d
2 seems even

more delicate and is also left open in the present paper. The case q ∈ (0,1) has been studied in [16].

Note that the variational problem in (1.10) is of independent interest; it also appeared in [4, Theorem 1.1] in the
context of heat kernel asymptotics. In Proposition 1.6 below it turns out that KD,q is positive if and only if q � d

2 .
Our next result essentially extends [1, Theorem 2.2] from the case of bounded sceneries to the case in (1.6).

Theorem 1.3 (Large deviations). Suppose that (1.6) holds. Assume that E[Y(0)] = 0, and set p̄ ≡ lim supt→∞
logH(t)

log t
.

Assume that p̄ <∞ in d � 2 respectively p̄ < d
d−2 in d � 3. Then, for any u > 0 satisfying u ∈ supp(Y (0))◦,

lim
n→∞n−d/(d+2) log P

(
1

n
Zn > u

)
=−KH (u), (1.11)

where

KH (u)≡ inf

{
1

2

∥∥Γ 1/2∇ψ
∥∥2

2 +ΦH

(
ψ2, u

)
: ψ ∈H 1(

R
d
)
,‖ψ‖2 = 1

}
, (1.12)

and

ΦH

(
ψ2, u

)= sup
γ∈(0,∞)

[
γ u−

∫
Rd

H
(
γψ2(y)

)
dy

]
. (1.13)

The constant KH (u) is positive.

Switching to the scenery −Y , one may, under appropriate conditions, use Theorem 1.3 to obtain the ‘other half’ of
a full large deviation principle for ( 1

n
Zn)n. This was carried out in [1] for bounded sceneries. For Brownian motion in

a Gaussian scenery, a result analogous to Theorems 1.1 and 1.3 is [10, Theorem 2].
Note that the constant KH (u) depends on the entire scenery distribution, while KD,q in (1.10) only depends on its

upper tails.

Remark 1.4. A statement analogous to Remark 1.2 also applies here: for dimensions d � 3, when lim inft→∞ logH(t)
log t

>

d
d−2 , (1.11) also holds true, but KH (u) = 0 for any u > 0. It was shown recently in [2] that under Assumption (Y)

with q ∈ (1, d
2 ) and an additional symmetry assumption, log P( 1

n
Zn > bn) is of the order nq/(q+2). The case q ∈ (0,1)

has been studied in [16].
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Remark 1.5 (Large deviations and non-convexity). It is easy to see that, in the special case where H(t) = D̃tp (see
(1.8)), KH (u)= u2q/(d+2)KD,q , for any u > 0. (For asymptotic scaling relations see Lemma 1.7.) In particular, 1

n
Zn

satisfies a large deviation principle on (0,∞) with speed nd/(d+2) and rate function u �→ u2q/(d+2)KD,q . This function
is strictly convex for q > d

2 +1 and strictly concave for q < d
2 +1. In the important special case of a centered Gaussian

scenery, Theorem 1.3 contains non-trivial information only in the case d ∈ {1,2,3}, in which the rate function is
strictly convex, linear and strictly concave, respectively; see also [11] and [10].

The non-convexity around zero for bounded sceneries in d ∈ {3,4} was found in [1] by proving that KH (u) �
Cu4/(d+2) as u→ 0 for some positive constant C.

The upper bounds in Theorems 1.1 and 1.3 are proved in Section 4, and the lower bounds in Section 5. We consider
only sequences bn � 1 there. The case a

(0)
n � bn � 1 seems subtle and is left open in the present paper; however see

Section 1.4 for a partial result.
Our next proposition gives almost sharp criteria for the positivity of the constants KD,q and KH (u) appearing in

Theorems 1.1 and 1.3.

Proposition 1.6 (Positivity of the constants). Fix d ∈N and p,q > 1 satisfying 1
p
+ 1

q
= 1.

(i) For any D > 0,

KD,q = (d + 2)

(
D

2

)2/(d+2)(χd,p

d

)d/(d+2)

, (1.14)

where

χd,p = inf

{
1

2

∥∥Γ 1/2∇ψ
∥∥2

2: ψ ∈H 1(
R

d
)
: ‖ψ‖2 = 1 = ‖ψ‖2p

}
. (1.15)

The constant χd,p is positive if and only if d � 2p
p−1 = 2q . Hence, KD,q is positive if and only if d � 2p

p−1 = 2q .
(ii) The constant KH (u) is positive for any u > E[Y(0)] = 0 if

lim sup
t→∞

logH(t)

log t
<

{∞ if d � 2,
d

d−2 if d � 3.

For d � 3, if lim inft→∞ logH(t)
log t

> d
d−2 , then KH (u)= 0 for any u > 0.

The proof of Proposition 1.6 is in Section 2. There we also clarify the relation between χd,p and the so-called
Gagliardo–Nirenberg constant.

Now we formulate asymptotic relations between the rates obtained in Theorems 1.1 and 1.3.

Lemma 1.7 (Asymptotic scaling relations). Fix D > 0 and q > 1, and recall (1.8).

(i) Assume that H(t)∼ D̃tp as t →∞, then

KH (u)∼ u2q/(d+2)KD,q as u→∞. (1.16)

(ii) Assume that E[Y(0)] = 0 and E[Y(0)2] = 1, then

KH (u) � u4/(d+2)
[
K 1

2 ,2 + o(1)
]

as u ↓ 0. (1.17)

The proof of Lemma 1.7 is in Section 2.4.

Remark 1.8. We conjecture that the lower bound in (1.17) also holds under an appropriate upper bound on H . It is
clear (see Remark 1.5 and note the monotonicity of KH (u) in H ) that u−4/(d+2)KH (u) � KD,2 for every u > 0 if
H(t) � D̃t2 for every t � 0. The positivity of lim infu↓0 u−4/(d+2)KH (u) (for cumulant generating functions H of
bounded variables) is contained in [1] as part of the proof for non-convexity of the rate function KH in d ∈ {3,4}.
Since KD,2 = 0 in d > 4, it is clear that this proof must fail in d > 4.
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Lemma 1.7(i) is consistent with Theorems 1.1 and 1.3.

1.3. Heuristic derivation of Theorems 1.1 and 1.3

The asymptotics in (1.9) and (1.11) are based on large deviation principles for scaled versions of the walker’s
local times �n and the scenery Y . A short summary of the joint optimal strategy of the walker and the scenery is
the following. Let us first explain the exponential decay rate of the probabilities under consideration. Assume that
1 � bn � n1/q . In order to contribute optimally to the event { 1

n
Zn > bn}, the walker spreads out over a region whose

diameter is of order αn (for a particular choice of αn, depending on the sequence (bn)n). The cost for this behavior is
eO(nα−2

n ). The scenery assumes extremely large values within that region, more precisely: values of the order bn. The
cost for doing that is exp{O(b

q
nαd

n)}, under Assumption (Y). The choice of αn is now determined by putting

n

α2
n

= αd
nb

q
n. (1.18)

A calculation shows that for this choice of αn both sides of (1.18) are equal to the logarithmic decay order of the
probability P( 1

n
Zn > bn) in Theorem 1.1.

Next we give a more precise argument for the very large deviations (Theorem 1.1) which also explains the constants
on the right-hand side of (1.9). Introduce the scaled and normalized version of the walker’s local times,

Ln(x)= αd
n

n
�n

(�xαn�
)
, x ∈R

d . (1.19)

Then Ln is a random element of the set

F = {ψ2 ∈ L1(
R

d
)
: ‖ψ‖2 = 1

}
(1.20)

of all Lebesgue probability densities on R
d . Furthermore, introduce the scaled version of the field,

Yn(x)= 1

bn

Y
(�xαn�

)
, x ∈R

d . (1.21)

Then we have, writing 〈·, ·〉 for the inner product on L2(Rd),

1

n
Zn = 1

n

∑
z∈Zd

n

αd
n

Ln

(
z

αn

)
bn
�Yn

(
z

αn

)
= bn

〈
Ln,�Yn

〉
. (1.22)

Hence, the logarithmic asymptotics of the probability P( 1
n
Zn > bn)= P(〈Ln,�Yn〉> 1) will be determined by a com-

bination of large deviation principles for Ln and �Yn.
In the spirit of the celebrated large deviation theorem of Donsker and Varadhan, the distributions of Ln satisfy

a weak large deviation principle in the weak L1-topology on F with speed nα−2
n and rate function I :F → [0,∞]

given by

I(ψ2)=
{

1
2‖Γ 1/2∇ψ‖2

2 if ψ ∈H 1(Rd),

∞ otherwise.
(1.23)

Roughly speaking, this principle says that, for ψ2 ∈F ,

P
(
Ln ≈ψ2)≈ exp

{
− n

α2
n

I
(
ψ2)}, n→∞. (1.24)

Using Assumption (Y), we see that the distributions of �Yn should satisfy, for any R > 0, a weak large deviation
principle on some appropriate set of sufficiently regular functions [−R,R]d → (0,∞) with speed αd

nb
q
n and rate

function

ΦD,q(ϕ)=D

∫
[−R,R]d

ϕq(x)dx,

as the following heuristic calculation suggests:
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P
(�Yn ≈ ϕ on [−R,R]d)≈ P

(
Y(z) > bnϕ

(
z

αn

)
for z ∈ [−Rαn,Rαn]d ∩Z

d

)
≈

∏
z∈[−Rαn,Rαn]d∩Zd

exp

{
−D

[
bnϕ

(
z

αn

)]q}

≈ exp

{
−Dαd

nb
q
n

∫
[−R,R]d

ϕq(x)dx

}
. (1.25)

Note that the speeds of the two large deviation principles in (1.24) and (1.25) are equal because of (1.18). Using the
two large deviation principles and (1.22), we see that

P

(
1

n
Zn > bn

)
≈ exp

{
− n

α2
n

K̃D,q

}
,

where

K̃D,q = inf
{
I
(
ψ2)+D‖ϕ‖q

q : ψ2 ∈F , ϕ ∈ C+
(
R

d
)
,
〈
ψ2, ϕ

〉= 1
}
. (1.26)

It is an elementary task to evaluate the infimum on ϕ and to check that indeed KD,q = K̃D,q . This ends the heuristic
explanation of Theorem 1.1.

The situation in the large deviation case, Theorem 1.3, is similar, when we put bn = 1. See [1] for a heuristic
argument in this case.

We distinguish the two cases of very large deviations (V) and large deviations (L). The choices of bn and αn in the
respective cases are the following.

case (V): Hypothesis of Theorem 1.1, 1 � bn � n1/q, αn = n1/(d+2)b
−q/(d+2)
n ,

case (L): Hypothesis of Theorem 1.3, bn = 1, αn = n1/(d+2). (1.27)

1.4. Small deviations for Gaussian sceneries

Theorems 1.1 and 1.3 do not handle sequences (bn)n satisfying a
(0)
n � bn � 1, where we recall from (1.1) that

a
(0)
n is the scale of the convergence in distribution. In this regime, we present a partial result for Gaussian sceneries

and simple random walk in d = 2. This result is based on a deep result by Brydges and Slade [9] about exponential
moments of the renormalized self-intersection local time of simple random walk.

Lemma 1.9 (Small deviations for Gaussian sceneries). Assume that Y(0) is a standard Gaussian random variable and
that (Sn)n is the simple random walk, and assume that d = 2. Let n−1/2(logn)1/2 = a

(0)
n � bn � a

(1)
n ≡ n−1/2 logn,

then

lim
n→∞

logn

b2
nn

log P

(
1

n
Zn > bn

)
=−π

4
. (1.28)

Proof. As we mentioned in Section 1.1, the distribution of the random walk in random scenery, Zn, is easily identified
in terms of the walk’s self-intersection local time Λn defined in (1.4). More precisely, the conditional distribution of
Zn given the walk S is N × √

Λn, where N is a standard normal variable, independent of the walk. The typical
behavior of the self-intersection local time is as follows [9]

E[Λn] ∼ 2

π

(
na(0)

n

)2 = 2

π
n logn, n→∞. (1.29)

We prove now the upper bound in (1.28). Recall that d = 2 and introduce the centered and normalized self-intersection
local time,

γn = 1 (
Λn −E[Λn]

)
.

n
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Use Chebyshev’s inequality to obtain, for any θ > 0 and any n ∈N,

P

(
1

n
Zn > bn

)
� E

[
eθZn

]
e−θbnn. (1.30)

Using the above characterization of the distribution of Zn, we see that

E
[
eθZn

]= E
[
E
[
eθZn

∣∣S]]= E
[
E
[
exp

{
θN

√
Λn

}∣∣S]]= E
[
e

1
2 θ2Λn

]= E
[
e

1
2 θ2nγn

]
e

1
2 θ2

E[Λn]. (1.31)

According to Theorem 1.2 in [9], limn→∞ E[ecγn] exists and is finite for any c < c0, where c0 > 0 is some positive
constant. Now pick θ = θn = π bn/(2 logn). Note that θ2

n n → 0 because of bn � n−1/2 logn, and therefore the first
factor on the right-hand side of (1.31) is bounded, according to the above mentioned result of Brydges and Slade. Use
(1.29) on the right-hand side of (1.31) and substitute in (1.30) to obtain

log P

(
1

n
Zn > bn

)
�−(1+ o(1)

)π
4

b2
nn

logn
.

This is the upper bound in (1.28).
Now we prove the lower bound in (1.28). Using the above characterization of the distribution of Zn, we obtain, for

any θ > 0,

P

(
1

n
Zn > bn

)
� P(N > θ)P

(
Λn >

n2b2
n

θ2

)
. (1.32)

Fix an arbitrary c ∈ (0, 2
π
). We apply (1.32) to θ = bn(

n
c logn

)1/2 and obtain

log P

(
1

n
Zn > bn

)
�−1

2
b2
n

n

c logn

(
1+ o(1)

)+ log P(Λn > cn logn), n→∞.

By the Paley–Zygmund inequality (Kahane [18] p. 8) stating that P(X > rE[X]) � (1 − r)2
E[X]2/E[X2] for all

r ∈ (0,1) and all square-integrable random variables X, we obtain that

P(Λn > cn logn) �
(

1−
(

cπ

2

)2)
E[Λn]2
E[Λ2

n]
.

Recall from (1.29) that E[Λn] ∼ 2
π
n logn as n→∞. On the other hand, Bolthausen [6] proved that Var[Λn] =O(n2).

Therefore, E[Λ2
n] ∼ E[Λn]2, and, consequently,

lim inf
n→∞ P(Λn > cn logn) > 0.

Therefore,

lim inf
n→∞

logn

b2
nn

log P

(
1

n
Zn > bn

)
�− 1

2c
.

Letting c ↑ 2
π

, this yields the lower bound in (1.28). �
2. Variational formulas

In this section we prove Proposition 1.6 and Lemma 1.7. In Section 2.1 we prove a necessary and sufficient criterion
for positivity of the constant χd,p defined in (1.15). The relation to the Gagliardo–Nirenberg constant is discussed in
Section 2.2, and the relation to the constant KD,q defined in (1.10) is proved in Section 2.3, where we also finish the
proof of Proposition 1.6. Finally, Lemma 1.7 is proved in Section 2.4.

2.1. Positivity of χd,p

Lemma 2.1. The constant χd,p is positive if and only if d � 2p .

p−1
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Proof. Certainly, it suffices to do the proof only in the case where 1
2Γ is the identity matrix.

See [12, Section 2] for an alternate proof of the positivity of χd,p in the subcritical dimensions, d <
2p

p−1 , using the
relation to the Gagliardo–Nirenberg constant, which we explain in Section 2.2.

Let us recall standard Sobolev inequalities (see [21, Theorems 8.3, 8.5]). There are positive constants Sd for d � 3
and S2,r for r > 2 such that

Sd‖ψ‖2
2d/(d−2) � ‖∇ψ‖2

2, for d � 3, ψ ∈D1(
R

d
)∩L2(

R
d
)
,

S2,r‖ψ‖2
r � ‖∇ψ‖2

2 + ‖ψ‖2
2, for d = 2, ψ ∈H 1(

R
d
)
, r > 2. (2.1)

Here D1(Rd) denotes the set of locally integrable functions R
d → R which vanish at infinity and possess a distribu-

tional derivative in L2(Rd).
Let us first do the proof for the case 3 � d � 2p

p−1 . For any ψ ∈H 1(Rd) that satisfies ‖ψ‖2 = 1 = ‖ψ‖2p , we may

use the above Sobolev inequality and obtain that ‖∇ψ‖2
2 � cst.‖ψ‖2

2d/(d−2). We now rewrite∫
Rd

ψ2d/(d−2)(t)dt =
∫
Rd

(
ψ2p−2(t)

)2/((d−2)(p−1))
ψ2(t)dt.

Recall that ψ2 is a probability density. Therefore, an application of Jensen’s inequality to the convex map x �→
x2/[(d−2)(p−1)] yields that ‖ψ‖2d/(d−2) satisfies a lower bound in terms of a power of ‖ψ‖2p , which is equal to one.
Hence, on the set of those ψ ∈H 1(Rd) that satisfy ‖ψ‖2 = 1 = ‖ψ‖2p , the map ψ �→ ‖∇ψ‖2

2 is bounded away from

zero. Now compare to (1.15) to see that this implies the assertion in the case 3 � d � 2p
p−1 .

Now we turn to d = 2 with p > 1 arbitrary. By a scaling ψβ = βd/2ψ(·β), we can find, for any δ > 0, a c(δ) > 0
such that

χ2,p = c(δ) inf
{‖∇ψ‖2

2: ψ ∈H 1(
R

d
)
,‖ψ‖2 = 1,‖ψ‖2p = δ

}
. (2.2)

Now we choose δ such that 2δ−2 = S2,2p , the Sobolev constant in (2.1) for d = 2 and r = 2p. Then we have, for any
ψ in the set on the right-hand side of (2.2),

2 = 2

δ2
‖ψ‖2

2p = S2,2p‖ψ‖2
2p � ‖∇ψ‖2

2 + ‖ψ‖2
2 = ‖∇ψ‖2

2 + 1,

and hence it follows that χ2,p � c(δ) > 0.
Now we show that χ2d,p � 2χd,p for any d ∈N and p ∈ (0,∞). This simply follows from the observation that, for

any ψ ∈H 1(Rd), the function ψ ⊗ψ ∈H 1(R2d) satisfies∥∥∇(ψ ⊗ψ)
∥∥2

2 = 2‖∇ψ‖2
2.

Using this, the estimate χ2d,p � 2χd,p easily follows, since ‖ψ⊗ψ‖2 = ‖ψ‖2
2 and ‖ψ⊗ψ‖2p = ‖ψ‖2

2p . In particular,
this shows that χ1,p > 0 for any p > 1.

It remains to show that χd,p = 0 for d >
2p

p−1 . It is sufficient to construct a sequence of sufficiently regular func-

tions ψn : Rd → [0,∞) such that ‖ψn‖2 and ‖ψn‖2p both converge towards some positive numbers, but ‖∇ψn‖2
vanishes as n→∞. In order to do this, pick some rotationally invariant function ψ2 = f ◦ | · | ∈F whose radial part
f : (0,∞)→ (0,∞) satisfies

f (r)=D ×
⎧⎨⎩ r−γ if r ∈ (0,1),

1 if r ∈ [1,A],
A2dr−2d if r > A,

where A,D,γ > 0 are constants to be determined. Let ωd denote the surface of the unit ball in R
d . The following

statements can be easily verified by some tedious but elementary calculations:

γ < d �⇒ ‖ψ‖2
2 =

ωd

d
D

[
2Ad + γ

d − γ

]
<∞, (2.3)

γ <
d �⇒ ‖ψ‖2p

2p = ωdDp p
[

γ +Ad 2
]

<∞, (2.4)

p d d − pγ 2p − 1
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γ < d − 2 �⇒ ‖∇ψ‖2
2 =

1

4
ωdD

[
γ 2

d − γ − 2
+Ad−2 4d2

2+ d

]
<∞. (2.5)

Since p > 1 and d
p

< d − 2, we only have to assume that γ < d
p

. Now we pick sequences Dn, An and γn such that all
the following conditions are satisfied as n→∞:

Dn → 0, An →∞, γn ↑ d

p
, DnA

d
n → 1,

D
p
n

d − pγn

→ 1.

Let ψn be defined as the ψ above with these parameters. Then we have, as n→∞,

‖ψn‖2
2 → 2

ωd

d
, ‖ψn‖2p

2p → ωd, ‖∇ψn‖2
2 → 0.

This ends the proof. �
2.2. Relation to the Gagliardo–Nirenberg constant

Actually, for dimensions d � 2 in the special case that 1
2Γ is the identity matrix, the constant χd,p in (1.15) can be

identified in terms of the Gagliardo–Nirenberg constant, κd,p , as follows. Assume that d � 2 and 1 < p < d
d−2 . Then

κd,p is defined as the smallest constant C in the Gagliardo–Nirenberg inequality

‖ψ‖2p � C‖∇ψ‖
d(p−1)

2p

2 ‖ψ‖1− d(p−1)
2p

2 , ψ ∈H 1(
R

d
)
. (2.6)

This inequality received a lot of interest from physicists and analysts, and it has deep connections to Nash’s inequality
and logarithmic Sobolev inequalities. Furthermore, it also plays an important role in recent work of Chen [12] on
self-intersections of random walks. See [12, Section 2] for more on the Gagliardo–Nirenberg inequality.

It is clear that

κd,p = sup
ψ∈H 1(Rd ),ψ �=0

‖ψ‖2p

‖∇ψ‖
d(p−1)

2p

2 ‖ψ‖1− d(p−1)
2p

2

=
(

inf
ψ∈H 1(Rd ): ‖ψ‖2=1

‖ψ‖−
4q
d

2p ‖∇ψ‖2
2

)− d
4q

. (2.7)

Clearly, the term over which the infimum is taken remains unchanged if ψ is replaced by ψβ(·) = βd/2ψ(·β) for

any β > 0. Hence, we can freely add the condition ‖ψ‖2p = 1 and obtain that κd,p = χ
−d/(4q)
d,p . In particular, the

variational formulas for κd,p in (2.7) and for χd,p in (1.15) have the same maximizer(s) respectively minimizer(s).
It is known that (2.7) does possess a maximizer, and this is an infinitely smooth, positive and rotationally invariant
function (see [26]). Uniqueness of the minimizer holds in d ∈ {2,3,4} for any p ∈ (1, d

d−2 ), and in d ∈ {5,6,7} for

any p ∈ (1, 8
d
), see [22].

2.3. Relation between KD,q and χd,p (Proposition 1.6)

Now we prove the remaining assertions of Proposition 1.6.

(i) The relation (1.14) is proved by an elementary scaling argument and optimization. Indeed, replace ψ by ψβ(·)=
βd/2ψ(·β) in (1.10) and optimize explicitly on β > 0. Afterwards the additional constraint ‖ψ‖2p = 1 may freely
be added. From (1.14) and Lemma 2.1 the last assertion follows.

(ii) We only show the positivity of KH (u) for d � 3 and p̄ < d
d−2 ; the argument for d � 2 and any p̄ > 1 is the same.

Since we assumed that E[Y(0)] = 0, we may pick some δ > 0 such that H(t) � ut/2 for t ∈ [0, δ]. Pick ε > 0
such that p̄ + ε < d

d−2 , then there is c(δ, ε) > 0 depending on δ, ε and H only, such that H(t) � c(δ, ε)t p̄+ε for any

t ∈ [δ,∞). Then H(t) � u
2 t+c(δ, ε)t p̄+ε for any t � 0, which implies that, for any ψ ∈H 1(Rd) satisfying ‖ψ‖2 = 1,

ΦH

(
ψ2, u

)
� sup

γ>0

[
γ u−

∫
uγ

2
ψ2(x)dx −

∫
c(δ, ε)

(
γψ2(x)

)p̄+ε dx

]
= sup

[
u

2
γ − c(δ, ε)γ p̄+ε

∥∥ψ2
∥∥p̄+ε

p̄+ε

]
.

γ>0
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Now carry out the optimization over γ to see that

ΦH

(
ψ2, u

)
� C

∥∥ψ2
∥∥−qε

p̄+ε
, where

1

p̄ + ε
+ 1

qε

= 1,

and C > 0 depends on u, p̄+ε and c(δ, ε) only. Hence, KH (u) � KC,qε . Since d � 2qε , this is positive by assertion (i).

Now we show that KH (u) = 0 for any u > 0 if p ≡ lim inft→∞ logH(t)
log t

> d
d−2 . First we do this for a random

variable Ỹ (0) under the assumption that E[Ỹ (0)] = 1. Pick ε > 0 such that p − ε > d
d−2 . Since H ′(0) = 1, there is

C > 0 such that H(t) � Ctp−ε for any t � 0. Hence, the above argument applies and shows that KH (u) � KD,qε

for some D > 0, where qε is determined by 1
p−ε

+ 1
qε
= 1. Since p − ε > d

d−2 , the condition d � 2(p−ε)

p−ε−1 is violated.

Again assertion (i) implies that KH (u)= 0.
Let now Y(0) have expectation 0, then Ỹ (0)= Y(0)+ 1 has expectation 1. If H̃ denotes the cumulant generating

function of Ỹ (0), then we have, according to the above, KH̃ (u) = 0 for any u > 0. Since KH̃ (u) is well-defined,
non-negative and non-decreasing for all u ∈ R, we also have KH̃ (u)= 0 for any u ∈ R. Obviously, H̃ (t)=H(t)+ t

and KH̃ (u)=KH (u− 1) for any u ∈R, and this implies the statement.

2.4. Scaling relations (Lemma 1.7)

In this section, we prove Lemma 1.7.
(i) Fix ε > 0, then there is some C > 0 such that

−Ct + (D̃ − ε
)
tp � H(t) � Ct + (D̃ + ε

)
tp, t � 0.

Using this in the definition of ΦH (ψ2, u), we obtain, for any ψ ∈H 1(Rd),

sup
γ>0

{
γ (u−C)− γ p

(
D̃ + ε

)∥∥ψ2
∥∥p

p

}
� ΦH

(
ψ2, u

)
� sup

γ>0

{
γ (u+C)− γ p

(
D̃ − ε

)∥∥ψ2
∥∥p

p

}
.

The suprema may easily be evaluated, and we obtain, for some η1, η2 > 0, which vanish as ε ↓ 0,

(D − η1)
∥∥ψ2

∥∥−q

p
(u−C)q � ΦH

(
ψ2, u

)
� (D + η2)

∥∥ψ2
∥∥−q

p
(u+C)q.

Using this in the definition of KH (u) in (1.12), we obtain

K(D−η1)(u−C)q ,q � KH (u) � K(D+η2)(u+C)q,q .

Now use Proposition 1.6(i), in particular (1.14), and use that η1, η2 → 0 as ε ↓ 0.
(ii) Substituting ψ(·)= ud/(d+2)ψ0(·u2/(d+2)) and γ = u(2−d)/(2+d)γ0 yields that

u−4/(d+2)KH (u)= inf‖ψ0‖2=1

{
1

2

∥∥Γ 1/2∇ψ0
∥∥2

2 + sup
γ0>0

(
γ0 −

∫
u−2H

(
uγ0ψ

2
0 (x)

)
dx

)}
. (2.8)

It remains to show that the limit superior of the right-hand side as u ↓ 0 is not larger than K 1
2 ,2. This is shown as

follows. Let ψ∗ ∈ H 1(Rd) be an L2-normalized bounded minimizer in the variational formula in (1.10) for D = 1
2

and q = 2. Its existence is proven in the same way as in [26], where the case Γ = Id was considered. Hence we have
limu↓0

∫
u−2H(uγ0ψ

2∗ (x))dx = 1
2γ 2

0 ‖ψ2∗‖2
2, uniformly in γ0 on compacts of [0,∞). Hence, the supremum on the

right-hand side of (2.8) converges towards supγ0>0(γ0 − 1
2γ 2

0 ‖ψ2∗‖2
2) = 1

2‖ψ2∗‖−2
2 . Replacing on the right-hand side

of (2.8) the infimum on ψ0 by ψ∗, we arrive at lim supu↓0 u−4/(d+2)KH (u) � K 1
2 ,2, which is (1.17).

3. Proof of Theorems 1.1 and 1.3: Preparations

In this section we prepare for the proofs of our main results, Theorems 1.1 and 1.3. Our proofs follow the strategy
of the proof of [1, Theorem 2.2]. That is, the proofs of the lower bounds essentially follow the outline described in
Section 1.3, and the proofs of the upper bounds use an exponential Chebyshev inequality with a random parameter.
However, due to the unboundedness of the scenery in our case, we face a serious additional difficulty, which we will
overcome using a recently developed technique.
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As we have already indicated in Section 1.3, our main tools are large deviation principles for the walker’s local
times and for the scenery. These principles are presented in Sections 3.1 and 3.2, respectively. However, for the
application of these two principles, there are three main technical obstacles:

(1) the principles hold only on compact subsets of the space,
(2) the scaled scenery must be smoothed,
(3) the scaled scenery must be cut down to bounded size.

The first obstacle will be handled later by making a connection to the periodized version of the random walk, which
is a standard recipe. Hence, it will be necessary to approximate the variational formulas appearing in our main results
by finite-space versions, and this is carried out in Section 3.5. The necessity of the smoothing arises from the fact that
the map (ψ2, ϕ) �→ 〈ψ2, ϕ〉 is not continuous in the product of the topologies on which the large deviation principles
are based. This was already pointed out in [1]. The remedy is a smoothing procedure which was introduced in [1]
and will be adapted in Section 3.4 below. However, this procedure only works for uniformly bounded sceneries, and
this explains the necessity of a cutting argument for the scenery. This obstacle was not present in [1] and is the main
technical challenge in the present paper, see Section 3.3.

3.1. Large deviations for the local times

In this section, we formulate one of our main tools: large deviation principles for the normalized and scaled local
times. These principles are essentially standard and well-known, however, some of the principles we use do not seem
to have been proven in the literature, and therefore we shall provide a proof for them in Appendix A.

For the convenience of the reader, we recall the notion of a large deviation principle. A sequence (Xn)n∈N of
random variables (or their distributions), taking values in a topological space X , satisfy a large deviation principle
with speed (γn)n∈N and rate function I :X →[0,∞], if the following two statements hold:

lim sup
n→∞

1

γn

logP(Xn ∈ F) �− inf
F
I, F ⊂X closed, (3.1)

lim inf
n→∞

1

γn

logP(Xn ∈O) �− inf
O

I, O ⊂X open. (3.2)

This definition equally applies if the measure P has not full mass, but happens to be a subprobability measure only.
We shall need large deviation principles for a rescaled version of the local times of our random walk. More pre-

cisely, we shall need two slightly different principles: one on never leaving a given cube in Z
d and R

d , respectively,
and another one for the periodized version of the walk on that cube. We recall that we have listed our assumptions on
the random walk at the beginning of Section 1.2. For R > 0, we denote by BR = [−R,R]d ∩ Z

d the centered box in
Z

d with radius R. By S(R) = (S
(R)
0 , S

(R)
1 , . . .) we denote the random walk on the torus BR , i.e., the walk on BR (with

the opposite sides identified with each other) having transition kernel

p(R)(z, z̃)=
∑
k∈Zd

p
(
z, z̃+ 2k�R�), z, z̃ ∈ BR, (3.3)

where p(·, ·) denotes the transition kernel of S. Note that p(R) is symmetric since p is. The local times of S(R) are
denoted by

�(R)
n (z)=

∑
k∈Zd

�n

(
z+ 2k�R�), z ∈ BR. (3.4)

We consider rescaled versions of 1
n
�n and 1

n
�
(R)
n . Recall the normalized and rescaled version Ln of the local times

�n defined in (1.19). By FR we denote the subset of those functions in F whose support lies in QR = [−R,R]d . Note
that

supp(Ln)⊂QR ⇐⇒ supp(�n)⊂ BRαn. (3.5)
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Denote the scaled version of the torus-version of the local times, 1
n
�
(Rαn)
n , by L

(R)
n :QR → [0,∞). Then L

(R)
n is

a random element of the set F (R) of probability densities on the torus QR = [−R,R]d , whose opposite sides are
identified with each other. We define a rate function I(R) :F (R) →[0,∞] by

I(R)
(
ψ2)= 1

2

∫
QR

∣∣Γ 1/2∇Rψ(x)
∣∣2 dx, (3.6)

if ψ has an extension to an element of H 1(Rd), and I(R)(ψ2) =∞ otherwise. Here ∇R denotes the gradient on the
torus QR , i.e., with periodic boundary condition.

The topology used on the sets FR and on F (R) are the weak topologies induced by the test integrals against the
continuous bounded functions on QR . If we identify any element of FR resp. of F (R) with a probability measure,
then this topology is just the usual weak topology on the set of probability measures on QR . In this case, we extend
the respective rate functions trivially by ∞ to the set of measures not having a density.

Lemma 3.1 (Large deviation principles for Ln). Fix R > 0. Assume that αn →∞ and

αd
n �

⎧⎨⎩
√

n if d = 1,
n

logn
if d = 2,

n if d � 3,

as n→∞. Then the following two facts hold true.

(i) The distributions of Ln under P(· ∩ {supp(Ln)⊂QR}) satisfy a large deviation principle on FR with speed nα−2
n

and rate function IR , the restriction of I defined in (1.23) to FR .
(ii) The distributions of L

(R)
n under P satisfy a large deviation principle on F (R) with speed nα−2

n and rate function
I(R) given in (3.6).

The upper bound (3.1) of the principle in (i) for the special case of simple random walk and αn = n
1

d+2 has been
proven by Donsker and Varadhan [15], Section 3. We have deferred the proof of Lemma 3.1 to Appendix A. We feel
that the statement and its proof are standard and should be known to the experts, but we could not find a reference in the
literature. Our proof basically follows the route of [17], which has become standard by now. The strategy for the proof
of (i) can be roughly summarized as follows (the proof of (ii) is analogous). We shall identify the cumulant generating
function of Ln (i.e., the logarithmic asymptotics of exponential moments of test integrals against continuous and
bounded functions f ) in terms of the Dirichlet eigenvalue of the operator 1

2∇ · Γ∇ + f . In a second step, we prove
the large deviation principle via what is called now the abstract Gärtner–Ellis theorem and identify the rate function
of the large deviation principle as the Legendre transform of the eigenvalue.

3.2. Large deviations for the scenery

In the proofs of the lower bounds in Theorems 1.1 and 1.3, we shall rely on precise large deviation lower bounds
for the scenery, tested against fixed functions. The precise formulations are given for the respective cases here. Recall
from (1.27) the two cases (V) and (L), which correspond to Theorems 1.1 and 1.3, respectively.

We begin, in case (V) with a large deviation principle for the rescaled scenery �Yn defined in (1.21).

Lemma 3.2. Assume the case (V) in (1.27), and pick sequences (bn)n and (αn)n as in (1.27). Fix R > 0 and a
continuous function ϕ :QR → (0,∞). Then

lim inf
n→∞

1

αd
nb

q
n

log P
(�Yn � ϕ on QR

)
�−D‖ϕ‖q

q . (3.7)

Proof. Fix some small ε > 0. It is easy to see that, for sufficiently large n ∈N,

P
(�Yn � ϕ on QR

)= ∏
z∈B

P

(
Y(z) � bnϕ

(
z

αn

))

Rαn
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� exp

{
−(D − ε)b

q
n

∑
z∈BRαn

ϕ

(
z

αn

)q}
� exp

{−(D − 2ε)αd
nb

q
n‖ϕ‖q

q

}
. �

Let us now proceed with case (L).

Lemma 3.3. Assume the case (L) in (1.27) and fix R > 0, M > 0 and a positive continuous function ψ2 :QR →
(0,∞). Recall that αn = n1/(d+2). Let H̃M be the conditional cumulant generating function of Y(0) given that
Y(0) �−M . Then, for any u > 0,

lim inf
n→∞

1

αd
n

log P

( ∫
QR

�Yn(x)ψ2(x)dx � u

∣∣∣∣ Y(z) �−M ∀z ∈ BRαn

)
� ΦH̃M

(
ψ2, u;R), (3.8)

where

ΦH

(
ψ2, u;R)= sup

γ>0

(
γ u−

∫
QR

H
(
γψ2(x)

)
dx

)
(3.9)

is the QR-version of ΦH defined in (1.13).

Proof. For any γ > 0, we have

E

[
exp

{
γ αd

n

∫
QR

�Yn(x)ψ2(x)dx

} ∣∣∣∣ Y(z) �−M ∀z ∈ BRαn

]

= E

[
exp

{
γ
∑

z∈BRαn

Y (z)αd
n

∫
z/αn+[0,1/αn]d

ψ2(x)dx

} ∣∣∣∣ Y(z) �−M ∀z ∈ BRαn

]

=
∏

z∈BRαn

e(1+o(1))H̃M(γψ2(z/αn))

= exp

{
αd

n

∫
QR

H̃M

(
γψ2(x)

)
dx
(
1+ o(1)

)}
.

According to a variant of the Gärtner–Ellis theorem,
∫
QR

�Yn(x)ψ2(x)dx satisfies, under conditioning on Y(z) �−M

for all z ∈ BRαn , a large deviation principle on (0,∞) with speed αd
n and rate given by the Legendre transform of the

map γ �→ ∫
QR

H̃M(γψ2(x))dx. This transform is equal to the map u �→ΦH̃M
(ψ2, u;R). �

3.3. The cutting argument

In this section we provide the cutting argument for the scenery in the cases (V) and (L). Our method consists of a
careful analysis of the k-th moments of the random walk in random scenery, where k = kn is chosen in an appropriate
dependence of n. Variants of this method have recently been developed in the study of mutual intersections of random
paths in [12] and [20].

Fix sequences (bn)n and (αn)n as in (1.27) and consider the scaled normalized scenery �Yn as defined in (1.21). Fix
M > 0. We use the notation

y(�M) = (y ∧M)∨ (−M) and y(>M) = (y −M)+, for any y ∈R. (3.10)

Later we shall estimate the scaled scenery �Yn by �Yn � �Y (�M)
n +�Y (>M)

n . Here we show how we shall handle the second
term.
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Proposition 3.4 (Scenery cutting). Assume one of the cases (V) or (L) in (1.27). Then, for any ε > 0,

lim
M→∞ lim sup

n→∞
α2

n

n
log P

(〈
Ln,�Y (>M)

n

〉
> ε

)=−∞. (3.11)

Proof. Step 1. It suffices to establish that there exists CM > 0 satisfying limM→∞CM = 0 and

E
[〈
�n,Y

(>Mbn)
〉k]� nkbk

nC
k
M, n ∈N, where k = n

α2
n

. (3.12)

Proof. Use the Markov inequality to estimate, for any ε,M > 0 and n, k ∈N,

P
(〈
Ln,�Y (>M)

n

〉
> ε

)
� ε−k

E
[〈
Ln,�Y (>M)

n

〉k]= ε−k(nbn)
−k

E
[〈
�n,Y

(>Mbn)
〉k]

.

Now put k = nα−2
n and observe that the estimate in (3.12) for some CM → 0 as M →∞ implies Proposition 3.4. �

Our next step is a variant of the well-known periodization technique which projects the random walk in random
scenery into a fixed box. Recall from (3.4) the local times of the periodized random walk.

Step 2. (Periodization) For any R,n, k ∈N and for any i.i.d. scenery Y which is independent of the random walk,

E
[〈�n,Y 〉k

]
�

∑
z1,...,zk∈BR

E

[ k∏
i=1

�(R)
n (zi)

] ∏
x∈BR

E
[∣∣Y(0)

∣∣#{i: zi=x}]
. (3.13)

Proof. We write out

E
[〈�n,Y 〉k

]= ∑
z1,...,zk∈BR

∑
m1,...,mk∈Zd

E

[
k∏

i=1

�n(zi + 2Rmi)

]
E

[
k∏

i=1

Y(zi + 2Rmi)

]
. (3.14)

We use that the scenery is i.i.d. and derive, with the help of Jensen’s inequality, the estimate

E

[
k∏

i=1

Y(zi + 2Rmi)

]
=
∏

x∈BR

∏
y∈Zd

E
[
Y(y)#{i: zi=x,zi+2Rmi=y}]

�
∏

x∈BR

∏
y∈Zd

E
[∣∣Y(0)

∣∣#{i: zi=x}] #{i: zi=x,zi+2Rmi=y}
#{i: zi=x}

=
∏

x∈BR

E
[∣∣Y(0)

∣∣#{i: zi=x}]
.

Use this in (3.14) and carry out the sum over m1, . . . ,mk to finish. �
In the next step we estimate the term in (3.13) that involves the walker’s local times. We denote by S(R) the

periodized version of the random walk in BR and by p
(R)
s (x, y) its transition probability from x to y in s steps. By

G
(R)
λ (x, y)=

∞∑
s=0

e−λsp(R)
s (x, y), (3.15)

we denote the Green’s function associated with the periodized walk, geometrically stopped with parameter λ > 0. Sk

denotes the set of permutations of 1, . . . , k.
Step 3. Fix R > 0, λ > 0 and k ∈N. Then, for any n ∈N, and for any z1, . . . , zk ∈ BR ,

E

[
k∏

i=1

�(R)
n (zi)

]
� eλn

∑
σ∈Sk

k∏
i=1

G
(R)
λ (zσ(i−1), zσ(i)). (3.16)

Proof. Writing out the local times, we obtain
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E

[
k∏

i=1

�(R)
n (zi)

]
�

n∑
t1,...,tk=0

P
(
S

(R)
ti

= zi, i = 1, . . . , k
)

�
∑

0�t1�t2�···�tk�n

∑
σ∈Sk

P
(
S

(R)
tσ(i)

= zi, i = 1, . . . , k
)

=
∑

σ∈Sk

∑
s1,...,sk∈N0

1

{
k∑

i=1

si � n

}
k∏

i=1

p(R)
si

(zσ(i−1), zσ(i)), (3.17)

where in the last line we substituted si = ti − ti−1 and wrote σ−1 instead of σ . We put σ(0)= 0 and z0 = 0. Now we
estimate the indicator by

1

{
k∑

i=1

si � n

}
� eλn

k∏
i=1

e−siλ.

Using this in (3.17) and carrying out the sums over s1, . . . , sk , we arrive at the assertion. �
In order to further estimate the Greenian term on the right of (3.16), we shall later need the following.
Step 4. Fix R > 0 and p′ ∈ (1, d

d−2 ), if d � 3, or p′ > 1 if d ∈ {1,2}. Then there is a constant C > 0 such that, for
any n ∈N and any x ∈ BRαn ,∑

y∈BRαn

G
(Rαn)

α−2
n

(x, y)p
′ � Cα

d+(2−d)p′
n . (3.18)

Proof. For d � 4, we estimate, with the help of Jensen’s inequality, and using that p
(Rαn)
s (x, y) is not bigger than one

and that its sum on y ∈ BRαn equals one,

∑
y∈BRαn

G
(Rαn)

α−2
n

(x, y)p
′ =

∑
y∈BRαn

( ∞∑
s=0

e−sα−2
n p(Rαn)

s (x, y)

)p′

�
(
1− e−α−2

n
)p′−1 ∑

y∈BRαn

∞∑
s=0

e−sα−2
n p(Rαn)

s (x, y)

�
(
1− e−α−2

n
)p′−2 ∼ α

4−2p′
n .

Now noting that 4− 2p′ � d + (2− d)p′ for d � 4 finishes the proof of (3.18).
For d � 4, we use another argument, which is based on the estimate [25, Theorem 2] G(0, y) � C|y|2−d for any

y ∈ Z
d \ {0}, where G is the Green’s function for the free (i.e., non-stopped and non-periodized) random walk, and

C > 0 is constant. Certainly, it suffices to take x = 0. We use C > 0 and c > 0 to denote generic positive constants,
not depending on n or y, which may change their values from line to line. We estimate

G
(Rαn)

α−2
n

(0, y) � G(0, y)+
∑

m∈Zd\{0}

∑
s∈N0

e−sα−2
n ps(0, y + 2mRαn). (3.19)

For the first term, use the above mentioned result to see that
∑

y∈BRαn
G(0, y)p

′ � Cα
d+(2−d)p′
n . With γ > 0 a small

auxiliary parameter, we split the sum on s in the parts where s � γ |m|αn and the remainder. Recall that the walker’s
steps have some exponential moments, see (1.5). Hence, we can estimate, if γ is small enough (γ < R

4 / log E[e|S1|]
suffices), for |m|� 1 and s � γ |m|αn, and all y ∈ BRαn ,

ps(0, y + 2mRαn) � P
(|Ss |� |y + 2mRαn|

)
� E

[
e|S1|]s e−|y+2mRαn| � E

[
e|S1|]s e−Rαn|m|

� e−c|m|αn . (3.20)



N. Gantert et al. / Ann. I. H. Poincaré – PR 43 (2007) 47–76 63
This gives, for any y ∈ BRαn ,∑
m∈Zd\{0}

∑
s∈N0: s�γαn|m|

e−sα−2
n ps(0, y + 2mRαn) � C

∑
m∈Zd\{0}

e−c|m|αn = o
(
α2−d

n

)
. (3.21)

The remainder is estimated as follows. We use the local central limit theorem (see [23, Chapter VII, Theorem 13]) to
deduce that there are C > 0 and c > 0 such that

ps(0, x) � C

sd/2
e−c|x|2/s +Cs−d , s ∈N, x ∈ Z

d . (3.22)

This gives, for any y ∈ BRαn ,∑
m∈Zd\{0}

∑
s∈N0: s�γαn|m|

e−sα−2
n ps(0, y + 2mRαn)

� C
∑

s�γαn

e−sα−2
n

[
s−d/2

∑
0<|m|�s/(γ αn)

e−c|m|2α2
n/s +

(
s

αn

)d

s−d

]
,

where we interchanged the sums on s and m, and we also used that |y + 2mRαn|� |m|αn for m ∈ Z
d \ {0}. Using the

substitution w = |m|αn/
√

s, the sum on m is estimated by

∑
0<|m|�s/(γ αn)

e−c|m|2α2
n/s � C

(
s

α2
n

)d/2
√

s/γ∫
αn/

√
s

dw wd−1 e−cw2 � C

(
s

α2
n

)d/2

.

Since
∑

s∈N0
e−sα−2

n � Cα2
n, this implies that∑

m∈Zd\{0}

∑
s∈N0: s�γαn|m|

e−sα−2
n ps(0, y + 2mRαn) � Cα2−d

n . (3.23)

Use (3.21) and (3.23) in (3.19) to conclude. �
The next step is a preparation for the estimate of the last term in (3.13).
Step 5. Let Y be a random variable that satisfies

lim sup
r→∞

r−q log P(Y > r) < 0 (3.24)

for some q > 1.

(i) Fix L > 0. Then there is CM,L > 0 such that limM→∞CM,L = 0 such that, for every n ∈ N and M > 0 and
bn � 1,

E
[
(Y −Mbn)

Lb
q
n+
]1/(Lb

q
n) � bnCM,L. (3.25)

(ii) There is a constant C > 0 such that, for any μ ∈N,

E
[
Y

μ
+
]
� μ

1
q
μ
Cμ. (3.26)

Proof. From our assumption on Y , we know that there are C,D > 0 and q > 1 such that P(Y > s) � C e−Dsq
for all

s > 0.
Proof of (i). We write L instead of Lb

q
n and have

b−L
n E

[
(Y −Mbn)

L+
]= b−L

n

∞∫
P
(
(Y −Mbn)

L > t
)

dt = L

∞∫
sL−1

P
(
Y > (s +M)bn

)
ds. (3.27)
0 0
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Now use the above estimate P(Y > (s + M)bn) � C exp{−D(s + M)qb
q
n} for all s > 0. Furthermore, use that

(s +M)q � sq +Mq . This gives

E
[
(Y −Mbn)

L+
]
� bL

n LC e−DMqb
q
n

∞∫
0

sL−1 e−D(sbn)q ds = LC e−DMqb
q
n

∞∫
0

sL−1 e−Dsq

ds. (3.28)

The change of variables t =Dsq turns this into

E
[
(Y −Mbn)

L+
]
� LC e−DMqb

q
nD−L/qqΓ (L/q), (3.29)

where Γ denotes the Gamma-function. Note that Γ (x) � (C1x)x for some C1 > 0 and all x � 1. Now we replace L

by Lb
q
n and take the (Lb

q
n)-th root to obtain

E
[
(Y −Mbn)

Lb
q
n+
]1/(Lb

q
n) � C̃

(
Lb

q
n

)1/(Lb
q
n)

L1/q e−MqD/Lbn,

where C̃ does not depend on L nor on M or n. Since bn � 1, the assertion is proved.
Proof of (ii). From (3.29) with M = 0 and L = μ, we have E[Yμ

+] � μCD−μ/qΓ (μ/q). Recalling that Γ (x) �
(C1x)x for some C1 > 0 and all x � 1, we arrive at the assertion. �

Step 6. Conclusion of the proof.

Proof. Fix R > 0 and let B = BRαn be the centered box in Z
d with radius Rαn. Note that in both cases (V) and (L),

(3.24) is satisfied with q > d
2 . Let p be defined by 1 = 1

p
+ 1

q
. Then, in both cases, p ∈ (1, d

d−2 ) if d � 3 and p > 1 if

d = 2. Put k = nα−2
n . Recall that αd+2

n = nb
−q
n . Recall that it suffices to prove (3.12). In the following, we shall use C

to denote a generic positive constant which depends on R, q and D only and may change its value from line to line.
Use Steps 2–3 for the scenery Y replaced by Y (>Mbn) and R replaced by Rαn and with λ= α−2

n to obtain

E
[〈
�n,Y

(>Mbn)
〉k]� ek

∑
σ∈Sk

∑
z1,...,zk∈B

k∏
i=1

G
(Rαn)

α−2
n

(zσ(i−1), zσ(i))
∏
x∈B

E
[(

Y(0)−Mbn

)μx

+
]
, (3.30)

where we abbreviated μx = #{i: zi = x}. Let us estimate the last term. We fix a parameter L > 0 and split the product
on x ∈ B into the subproducts on B(L) = {x ∈ B: μx � Lb

q
n} and Bc

(L)
= B \ B(L). We estimate, with the help of

Step 5,∏
x∈B

E
[(

Y(0)−Mbn

)μx

+
]
�

∏
x∈B(L)

E
[(

Y(0)−Mbn

)Lb
q
n

+
]μx/(Lb

q
n)

∏
x∈Bc

(L)

E
[
Y(0)

μx+
]

�
∏

x∈B(L)

(CM,Lbn)
μx

∏
x∈Bc

(L)

(
Cμ

1/q
x

)μx . (3.31)

Let us abbreviate the term on the right-hand side by K(μ) where μ= (μx)x∈B . Now we pick numbers p′ > p, q ′ > 1
such that 1

p′ + 1
q ′ = 1 and, if d � 3, p′ < d

d−2 , and use Hölder’s inequality in (3.30) to obtain

E
[〈
�n,Y

(>Mbn)
〉k]� ek

∑
σ∈Sk

( ∑
z1,...,zk∈B

k∏
i=1

G
(Rαn)

α−2
n

(zσ(i−1), zσ(i))
p′
)1/p′( ∑

z1,...,zk∈B

K(μ)q
′
)1/q ′

. (3.32)

Using (3.18) in Step 4, the term in the first brackets may be estimated by( ∑
z1,...,zk∈B

k∏
i=1

G
(Rαn)

α−2
n

(zσ(i−1), zσ(i))
p′
)1/p′

� Ckα2k
n α

− 1
q′ dk

n . (3.33)

Now we estimate the last term in (3.32). By Ak we denote the set of maps μ :B → N0 such that
∑

x∈B μx = k.
Observe that, for any μ ∈Ak , we have

#
{
(z1, . . . , zk) ∈ Bk: μx = #{i: zi = x} ∀x ∈ B

}= k!∏ .

x∈B μx !
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Hence, ∑
z1,...,zk∈B

K(μ)q
′ � Ckk!

∑
μ∈Ak

∏
x∈B(L)

C
q ′μx

M,L

∏
x∈B(L)

(
b

q ′
n

μx

)μx ∏
x∈Bc

(L)

μ
−(1−q ′/q)μx
x . (3.34)

Since q ′ < q , we have that r ≡ 1 − q ′
q

is positive. According to the definition of B(L), the last term in (3.34) can be
estimated by∏

x∈Bc
(L)

μ
−(1−q ′/q)μx
x �

∏
x∈Bc

(L)

(
L−rb

(q ′−q)
n

)μx . (3.35)

The penultimate term in (3.34) can be estimated as∏
x∈B(L)

(
b

q ′
n

μx

)μx

� Ck
∏

x∈B(L)

b
(q ′−q)μx
n , (3.36)

since we have, using also Jensen’s inequality for the logarithm,

∏
x∈B(L)

(
b

q ′
n

μx

)μx

= exp

{( ∑
y∈B(L)

μy

) ∑
x∈B(L)

μx∑
y∈B(L)

μy

log
b

q ′
n

μx

}

� exp

{( ∑
y∈B(L)

μy

)
log

∑
x∈B(L)

b
q ′
n∑

y∈B(L)
μy

}

=
∏

x∈B(L)

(
b

q ′
n #B(L)∑
y∈B(L)

μy

)μx

.

Now use that #B(L) � #B � Cαd
n = Ckb

−q
n and observe that there is a constant C > 0 such that ( k

l
)l � Ck , for any

l ∈ {1, . . . , k}, since the map y �→ y logy is bounded on (0,1]. Using (3.35) and (3.36) in (3.34), we obtain, for some
constant CM > 0, satisfying limM→∞CM = 0,∑

z1,...,zk∈B

K(μ)q
′ � Ckk!b(q ′−q)k

n

∑
μ∈Ak

∏
x∈B(L)

C
q ′μx

M,L

∏
x∈Bc

(L)

L−rμx

� Ckk!b(q ′−q)k
n #Ak

(
max

{
C

q ′
M,L,L−r

})k � C
q ′k
M k!b(q ′−q)k

n , (3.37)

where we choose L in dependence on M such that limM→∞ max{Cq ′
M,L,L−r} = 0, and we estimated #Ak =

(
k+|B|
|B|

)
�

eo(k) (recall that k = nα2
n).

Using (3.37) and (3.33) in (3.32), we arrive at

E
[〈
�n,Y

(>Mbn)
〉k]� Ck

Mk!α2
nkα

− 1
q′ dk

n

(
k!b(q ′−q)k

n

)1/q ′
. (3.38)

Now recall that b
q
nαd

n = k = nα−2
n and use Stirling’s formula to see that the right-hand side of this estimate is bounded

from above by Ck
M(nbn)

k for some CM → 0 as M →∞. This ends the proof of Proposition 3.4. �
3.4. Smoothing the scenery

In this section we provide the smoothing argument for the field. This will be an adaptation of results of [1, Sec-
tion 3]. Fix some smooth, rotationally invariant, and L1-normalized function κ : Rd → [0,∞) with supp(κ) ⊂ Q1,
and put κδ(·)= δ−dκ(·/δ) for some small δ > 0. The convolution of two functions f,g : Rd →R is denoted by f ∗ g.
Assume any of the cases (V) and (L) and choose (bn)n and (αn)n according to (1.27). We consider the rescaled and
cut-down field �Y (�M)

n : Rd →[−M,M]; see (3.10). Recall the scaled and normalized local times Ln from (1.19). By
BM(Rd) we denote the set of all measurable functions R

d →[−M,M].
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Lemma 3.5 (Scenery smoothing). Fix M > 0. Then, for any ε > 0,

lim
δ↓0

lim sup
n→∞

α2
n

n
log sup

f∈BM(Rd )

P
(∣∣〈Ln, [f − f ∗ κδ]

〉∣∣> ε
)=−∞. (3.39)

In particular,

lim
δ↓0

lim sup
n→∞

α2
n

n
log P

(∣∣〈Ln,
[�Y (�M)

n − �Y (�M)
n ∗ κδ

]〉∣∣> ε
)=−∞. (3.40)

Proof. Certainly, it suffices to prove (3.39) for M = 1. We adapt the proof of [1, Lemma 3.1], which is the same
statement for M = 1 and Brownian motion instead of random walk in Brownian scaling. We shall write B instead of
B1(R

d).
Since all exponential moments of the steps are assumed finite, we have

lim
R→∞ lim sup

n→∞
α2

n

n
log P

(
supp(�n) �⊂ BRn

)=−∞,

where Rn =Rnα−1
n . Hence, it suffices to show, for every R > 0,

lim
δ↓0

lim sup
n→∞

α2
n

n
log sup

f∈B
P
(∣∣〈Ln,f − f ∗ κδ〉

∣∣> ε, supp(�n)⊂ BRn

)=−∞. (3.41)

We prove this only without absolute value signs, since the complementary inequality is proved in the same way. Fix
f ∈ B. Chebyshev’s inequality yields, for any a > 0,

P
(〈Ln,f − f ∗ κδ〉> ε, supp(�n)⊂ BRn

)
� E

[
exp

{
a

n

α2
n

〈Ln,f − f ∗ κδ〉
}
1
{
supp(�n)⊂ BRn

}]
e−aεnα−2

n . (3.42)

Introduce a discrete version ϕn : Zd →R of f − f ∗ κδ by

ϕn(z)= αd
n

∫
zα−1

n +[0,α−1
n )d

[f − f ∗ κδ](x)dx, z ∈ Z
d . (3.43)

Note that

n

α2
n

〈Ln,f − f ∗ κδ〉 = αd−2
n

∫
[f − f ∗ κδ](x)�n

(�xαn�
)

dx = α−2
n

∑
z∈Zd

�n(z)ϕn(z)

= α−2
n

n∑
k=0

ϕn(Sk). (3.44)

We first express the expectation on the right side of (3.42) in terms of an expansion with respect to an appropriate
orthonormal system of eigenvalues and eigenfunctions in R

BRn . We write Ez for expectation with respect to the
random walk when started at z ∈ Z

d , in particular E= E0. By (3.44), for any z, z̃ ∈ BRn ,

Ez

[
exp

{
a

n

α2
n

〈Ln,f − f ∗ κδ〉
}
1
{
supp(�n)⊂ BRn

}
1{Sn = z̃}

]
= e

a
2 α−2

n (ϕn(z)+ϕn(z̃))An(z, z̃), (3.45)

where An is the n-th power of the symmetric matrix A having components

A(z, z̃)= e
a
2 α−2

n ϕn(z)p(z, z̃) e
a
2 α−2

n ϕn(z̃), z, z̃ ∈ BRn. (3.46)

Using an expansion in terms of the eigenvalues λk(n), k ∈ {1, . . . , |BRn |}, of A and an orthonormal basis of R
BRn

consisting of corresponding eigenfunctions vk,n we obtain, for any z, z̃ ∈ BRn ,

An(z, z̃)=
|BRn |∑

λk(n)nvk,n(z)vk,n(z̃). (3.47)

k=1
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We assume that the eigenvalues λk(n) are in decreasing order, and the principal eigenvector v1,n is positive in BRn .
Now we use this for the expectation on the right side of (3.42), which is equal to the sum over z̃ ∈ BRn of the

left side of (3.45) at z = 0. We obtain an upper bound by summing the right-hand side of (3.47) over z, z̃ ∈ BRn .
Continuing the upper bound with the help of Parseval’s identity gives

E

[
exp

{
a

n

α2
n

〈Ln,f − f ∗ κδ〉
}
1
{
supp(�n)⊂ BRn

}]

�
(
1+ o(1)

) |BRn |∑
k=1

λk(n)n
∑

z,z̃∈BRn

vk,n(z)vk,n(z̃) �
(
1+ o(1)

)
λ1(n)n

|BRn |∑
k=1

〈vk,n,1〉2

�
(
1+ o(1)

)
λ1(n)n|BRn |, (3.48)

where we denote by 〈·, ·〉 and ‖ · ‖2 the inner product and Euclidean norm on R
BRn . Recall that Rn = Rnα−1

n . Our

assumptions on (αn)n imply that |BRn | = eo(nα−2
n ) as n→∞. Hence, as n→∞,

α2
n

n
log E

[
exp

{
a

n

α2
n

〈Ln,f − f ∗ κδ〉
}
1
{
supp(�n)⊂ BRn

}]
� o(1)+ α2

n

[
λ1(n)− 1

]
. (3.49)

Recall the Rayleigh–Ritz principle, λ1(n) = max‖g‖�1〈Ag,g〉, where the maximum runs over all �2-normalized
vectors g : Zd → (0,∞) with support in BRn . Recall that |ϕn|� 2. Then, as n→∞, we have, for any �2-normalized
vector g,

α2
n

[〈Ag,g〉 − 1
]= α2

n

(∑
z,z̃

(
e

a
2 α−2

n [ϕn(z)+ϕn(z̃)] − 1
)
p(z, z̃)g(z)g(z̃)+

∑
z,z̃

(
p(z, z̃)− δz,z̃

)
g(z)g(z̃)

)
= a

〈
ϕn,g

2〉+ a
〈
ϕn,g(pg − g)

〉+O
(
α−2

n

)− α2
nI(d)

(
g2), (3.50)

where we recall that the walk is assumed symmetric, and we introduced its Dirichlet form,

I(d)
(
g2)= 1

2

∑
z,z̃∈Zd

p(z, z̃)
(
g(z)− g(z̃)

)2
, g ∈ �2

(
Z

d
)
, (3.51)

and we wrote pg(z)=∑z̃ p(z, z̃)g(z̃).
The second term on the right-hand side of (3.50) is estimated as follows, using that |ϕn|� 2.〈

ϕn,g(pg − g)
〉= 1

2

∑
z,z̃

ϕn(z)p(z, z̃)
[−(g(z)− g(z̃)

)2 + (g(z̃)− g(z)
)(

g(z)+ g(z̃)
)]

� 2I(d)
(
g2)+√2I(d)

(
g2
)√√√√1

2

∑
z,z̃

∣∣ϕn(z)
∣∣p(z, z̃)

(
g(z)+ g(z̃)

)2
� 2I(d)

(
g2)+ 8

ε
I(d)

(
g2)+ ε

4
, (3.52)

where we used the inequality
√

2ab � 8a/ε + εb/16 for a, b, ε > 0 in the last step.
The first term on the right-hand side of (3.50) is estimated as follows. We introduce gn(x)= g(�xαn�).〈

ϕn,g
2〉= αd

n

∫
dxf (x)

(
g2

n(x)−
∫

dy κδ(y)g2
n(x + y)

)
� αd

n

∫
dx

∫
dy κδ(y)

∣∣g2
n(x)− g2

n(x + y)
∣∣

� αd
n

∫
dx

√∫
dy κδ(y)

(
gn(x)− gn(x + y)

)2√∫ dy κδ(y)
(
gn(x)+ gn(x + y)

)2
� 4

ε
αd

n

∫
dx

∫
dy κδ(y)

(
gn(x)− gn(x + y)

)2 + ε

8
αd

n

∫
dx

(
g2

n(x)+
∫

dy κδ(y)g2
n(x + y)

)
� 4

αd
n

∫
dx

∫
dy κδ(y)

(
gn(x)− gn(x + y)

)2 + ε
, (3.53)
ε 4
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where we used that |f |� 1 in the second step, Hölder’s inequality in the third, and the inequality
√

2ab � 4a/ε+εb/8
in the fourth step. Now pick some almost everywhere differentiable function ψn : Rd → R such that ψn(z/αn) =
α

d/2
n g(z) for any z ∈ Z

d , then a Taylor expansion gives that

αd
n

∫
dx

∫
dy κδ(y)

(
gn(x)− gn(x + y)

)2 = α−d
n

∑
z,z̃

(
ψn

(
z

αn

)
−ψn

(
z+ z̃

αn

))2 ∫
z̃/αn+[0,1/αn]d

dy κδ(y)

= α−d
n

∑
z,z̃

( 1∫
0

dt
z̃

αn

· ∇ψn

(
z+ t z̃

αn

))2 ∫
z̃/αn+[0,1/αn]d

dy κδ(y)

� α−d
n

∑
z̃

∫
z̃/αn+[0,1/αn]d

dy κδ(y)

∣∣∣∣ z̃

αn

∣∣∣∣2
1∫

0

dt
∑

z

∣∣∣∣∇ψn

(
z+ t z̃

αn

)∣∣∣∣2
� Cδ2‖∇ψn‖2

2 � Cδ2
∥∥Γ 1/2∇ψn

∥∥2
2, (3.54)

where we remark that
∫

dy κδ(y)|y|2 � Cδ2 for some C > 0. Now we specialize the choice of ψn to

ψn(x)= α
d/2
n

[
gn(x)+

d∑
i=1

(
αnxi − �αnxi�

)(
g
(�αnx� + ei

)− g
(�αnx�

))]
,

where ei denotes the i-th unit vector. Then ψn is the linear interpolation of the rescaling of g, and ∂iψn(x) =
α

d/2+1
n (g(�αnx� + ei )− g(�αnx�)). Similarly to (3.54), one derives

α2
nI(d)

(
g2)= 1∫

0

dt

1∫
0

ds
∑
z∈Zd

p(0, z)

d∑
i,j=1

zizj

∫
dx ∂iψn

(�αnx� + tz

αn

)
∂jψn

(�αnx� + sz

αn

)

=
1∫

0

dt

1∫
0

ds
∑

z

p(0, z)

d∑
i,j=1

zizj

∫
dx∂iψn(x)∂jψn(x)

= ∥∥Γ 1/2∇ψn

∥∥2
2. (3.55)

Now use (3.55) in (3.54) and this in (3.53), and substitute (3.53) and (3.52) in (3.50) to obtain, for any a > 0, for n

sufficiently large and all �2-normalized g ∈ �2(Zd) with support in BRn ,

α2
n

[〈Ag,g〉 − 1
]
� 1

2
aε − α2

nI(d)
(
g2)(1−C

δ2a

ε

)
,

for some C > 0 which does not depend on n, g, ε or on a. Now we choose a = ε/(2Cδ2) and obtain α2
n[〈Ag,g〉−1]�

1
2aε. Taking the supremum over all g’s considered, we obtain that α2

n[λ1(n)−1]� 1
2aε. Using this in (3.49) and (3.49)

in (3.42), we obtain that

l.h.s. of (3.40) � lim sup
δ↓0

−1

2
aε =− lim

δ↓0

ε2

4Cδ2
=−∞,

and the proof is finished. �
3.5. Various approximations

In the proofs of Theorems 1.1 and 1.3 we shall need a couple of approximations to the variational formulas in
(1.12) and (1.10). In particular, we need to show that they may be approximated by finite-space approximations and
by smoothed versions of the functions involved in the variational formula.

As in Section 3.4, by κ = κ1 : Rd → [0,∞) we denote a smooth, rotationally invariant L1-normalized function,
and we put κδ(x)= δ−dκ1(xδ−1) for δ > 0. Hence, κδ is a smooth approximation of the Dirac measure at zero.
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Lemma 3.6 (Approximations of KH ). For any u > 0,

lim sup
δ↓0

lim sup
R→∞

K
(0)
H (u; δ,R) � KH (u) � lim inf

δ↓0
lim inf
R→∞ K

(per)
H (u; δ,R), (3.56)

where

K
(0)
H (u; δ,R)= inf

{
1

2

∥∥Γ 1/2∇ψ
∥∥2

2 +ΦH

(
ψ2 ∗ κδ, u;R

)
: ψ ∈H 1(

R
d
)
, supp(ψ)⊂QR,‖ψ‖2 = 1

}
, (3.57)

K
(per)
H (u; δ,R)= inf

{
1

2

∥∥Γ 1/2∇Rψ
∥∥2

2 +ΦH

(
ψ2 ∗ κδ, u;R

)
: ψ ∈H 1(QR),‖ψ‖2 = 1

}
, (3.58)

and ΦH (ψ2, u;R) is defined in (3.9). In (3.58), ∇R denotes the gradient on the torus QR , i.e., with periodic boundary
condition.

Proof. Fix δ > 0. In the first step, we carry out the limit as R →∞ on both sides to obtain

lim sup
R→∞

K
(0)
H (u; δ,R) � KH (u; δ) � lim inf

R→∞ K
(per)
H (u; δ,R), (3.59)

where KH (u; δ) is defined as KH (u) in (1.12) with ΦH (ψ2, u) replaced by ΦH (ψ2 ∗ κδ, u). The proof of (3.59)
follows standard patterns (see the proof of [1, Lemma 3.7], e.g.) and we do not carry this out here. Hence, the only
thing left to do is to show that limδ↓0 KH (u; δ)=KH (u).

Using the convexity of H , it is easy to derive with the help of Jensen’s inequality that, for any γ > 0 and any ψ ,∫
H
(
γψ2 ∗ κδ(y)

)
dy �

∫
H
(
γψ2(y)

)
dy.

As a consequence, we have ΦH (ψ2 ∗ κδ, u) � ΦH (ψ2, u) and therefore KH (u; δ) � KH (u) for any δ > 0.
We argue now that lim supδ↓0 KH (u; δ) � KH (u). Indeed, fix some small ε > 0 and pick some bounded approxi-

mative ε-minimizer for KH (u), i.e., a bounded function ψ̄ ∈H 1(Rd) satisfying ‖ψ̄‖2 = 1 and

1

2

∥∥Γ 1/2∇ψ̄
∥∥2

2 +ΦH

(
ψ̄2, u

)
� KH (u)+ ε.

Using the mean-value theorem and the fact that ‖ψ̄2 ∗ κδ − ψ̄2‖1 → 0 as δ ↓ 0 (see [21, Theorem 2.16]), it is elemen-
tary to show that we have

∫
H(γ ψ̄2 ∗ κδ(y))dy → ∫

H(γ ψ̄2(y))dy as δ ↓ 0, uniformly in γ on any compact subset
of [0,∞). As a consequence, we have limδ↓0 ΦH (ψ̄2 ∗ κδ, u)=ΦH (ψ̄2, u) and therefore

lim sup
δ↓0

KH (u; δ) � 1

2

∥∥Γ 1/2∇ψ̄
∥∥2

2 + lim sup
δ↓0

ΦH

(
ψ̄2 ∗ κδ, u

)= 1

2

∥∥Γ 1/2∇ψ̄
∥∥2

2 +ΦH

(
ψ̄2, u

)
� KH (u)+ ε. (3.60)

Now let ε ↓ 0. �
Lemma 3.6 implies the corresponding statement for the case (V):

Corollary 3.7 (Approximations of KD,q ). Fix D > 0 and q > 1 and recall that 1
p
+ 1

q
= 1. Then

lim sup
R→∞

K
(0)
D,q(R) � KD,q � lim inf

δ↓0
lim inf
R→∞ K

(per)
D,q (δ,R), (3.61)

where

K
(0)
D,q(R)= inf

{
1

2

∥∥Γ 1/2∇ψ
∥∥2

2 +D
∥∥ψ2

∥∥−q

p
: ψ ∈H 1(

R
d
)
, supp(ψ)⊂QR,‖ψ‖2 = 1

}
, (3.62)

K
(per)
D,q (δ,R)= inf

{
1

2

∥∥Γ 1/2∇Rψ
∥∥2

2 +D
∥∥ψ2 ∗ κδ

∥∥−q

p
: ψ ∈H 1(QR),‖ψ‖2 = 1

}
, (3.63)

and ∇R is the gradient on the torus QR , i.e., with periodic boundary condition.
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Proof. We apply Lemma 3.6 to the special choice u= 1 and H(t)= D̃tp , where p and D̃ are as in (1.8). It is easy to
see that for this choice of H , we have ΦH (ψ2,1)=D‖ψ2‖−q

p . �
4. Proof of the upper bounds in Theorems 1.1 and 1.3

This section is devoted to the proof of the upper bounds in Theorems 1.1 and 1.3. They are in Sections 4.1 and 4.2,
respectively. Our proofs essentially follow the proof of [1, Theorem 2.2].

4.1. Very-large deviation case (Theorem 1.1)

In this section we are under Assumption (Y) with q > d
2 , and consider a sequence (bn) with 1 � bn � n1/q . We

have to smoothen the scenery, as we have explained at the beginning of Section 3. In order to do this, we have to
cut down the scenery to bounded size. As soon as the smoothing argument has been carried out, we may relax the
boundedness assumption.

Recall the scaled and normalized local times Ln from (1.19) and the scaled normalized scenery �Yn from (1.21).
Recall the notation y(�M) = [y ∧M]∨ (−M) from (3.10), and recall the delta-approximation κδ : Rd →[0,∞) to the
Dirac measure from the beginning of Section 3.4.

Note that, for any M,ε, δ > 0,

P

(
1

n
Zn > bn

)
� P

(〈�Y (�M)
n ∗ κδ,Ln

〉
> 1− 2ε

)+ P
(〈∣∣�Y (�M)

n ∗ κδ − �Y (�M)
n

∣∣,Ln

〉
> ε

)
+ P

(〈�Y (>M)
n ,Ln

〉
> ε

)
. (4.1)

Recall that, by our choice of αn, we have

nd/(d+2)b
2q/(d+2)
n = n

α2
n

. (4.2)

Hence, by Proposition 3.4, Lemma 3.5 and Corollary 3.7, it suffices to prove, for any M,δ > 0 and R ∈N,

lim sup
ε↓0

lim sup
n→∞

α2
n

n
log P

(〈�Y (�M)
n ∗ κδ,Ln

〉
> 1− 2ε

)
�−K

(per)
D,q (δ,R), (4.3)

where K
(per)
D,q (δ,R) is defined in Corollary 3.7. Note that

〈�Y (�M)
n ∗ κδ,Ln

〉= 1

bnαd
n

∑
z∈Zd

[(
Y(z)∧ (Mbn)

)∨ (−Mbn)
]
Ln ∗ κδ

(
z

αn

)

� 1

bnαd
n

∑
z∈Zd

[
Y(z)∨ (−Mbn)

]
Ln ∗ κδ

(
z

αn

)
.

Introduce the cumulant generating function of Y(0)∨ (−M),

HM(t)= log E
[
et[Y(0)∨(−M)]].

Using the exponential Chebyshev inequality and carrying out the expectation over the scenery, we obtain, for any
γ > 0, the upper bound

P
(〈�Y (�M)

n ∗ κδ,Ln

〉
> 1− 2ε

)
� E

[
e−γ (1−2ε)nbn eγ nα−d

n

∑
z[Y(z)∨(−Mbn)]Ln∗κδ(z/αn)

]
� E

[
e−γ (1−2ε)nbn exp

{∑
z∈Zd

HMbn

(
γ nα−d

n Ln ∗ κδ

(
z

αn

))}]
. (4.4)

Since HMbn is convex and satisfies HMbn(0) = 0, it is also superadditive. Hence, for any γ > 0 and any x ∈ Z
d , we

have ∑
d

HMbn

(
γ �n

(
x + 2k�R�))� HMbn

(
γ �(R)

n (x)
)
. (4.5)
k∈Z
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Therefore, the right-hand side in (4.4) does not become smaller if Ln ∗ κδ is replaced by its periodized version,
(Ln ∗ κδ)

(R)(x)=∑k∈Zd Ln ∗ κδ(x + kR), for x ∈ [−R,R]d . Furthermore, note that

(Ln ∗ κδ)
(R)(x)=

∑
k∈Zd

∫
Rd

Ln(y)κδ(x + kR − y)dy =
∫
Rd

L(R)
n (y)κδ(x − y)dy = L(R)

n ∗ κδ(x),

for any x ∈ [−R,R]d . Hence, we may replace Ln on the right of (4.4) by its periodized version L
(R)
n .

According to (1.8), for any ε > 0, we may choose a c(ε) > 0 such that

H(t) � c(ε)t + (1+ ε)D̃ tp, t ∈ [0,∞). (4.6)

Since eHM(t) � eH(t) + 1, we also have the estimate in (4.6) for HMbn instead of H . Hence, since κδ and Ln are
L1-normalized,

P
(〈�Y (�M)

n ∗ κδ,Ln

〉
> 1− 2ε

)
� E

[
e−γ (1−2ε)nbn ec(ε)γ n exp

{
γ p
(
D̃ + ε

)
αd

n

(
nα−d

n

)p∥∥L(R)
n ∗ κδ

∥∥p

p

}]
. (4.7)

We choose the value of γ optimal for ε = 0, which is

γ = αd
n

n
b

1/(p−1)
n

(
pD̃

∥∥Ln ∗ κ
p
δ

∥∥p

p

)−1/(p−1) = αd
n

n
b

1/(p−1)
n Dq

∥∥L(R)
n ∗ κδ

∥∥−q

p
, (4.8)

where we recalled that 1 = 1
p
+ 1

q
and D̃ = (q − 1)(Dqq)1/(1−q). Note that the map μ �→ ‖μ ∗ κδ‖−q

p is bounded

and continuous (in the weak L1-topology) on the set of probability measures on [−R,R]d . Indeed, the continuity is
seen with the help of Lebesgue’s theorem, and the boundedness follows from the following application of Jensen’s
inequality:

‖μ ∗ κδ‖p
p = (2R)d

∫
[−R,R]d

dx

(2R)d

∣∣∣∣ ∫
Rd

μ(dy)κδ(x − y)

∣∣∣∣p

� (2R)d
( ∫
[−R,R]d

dx

(2R)d

∫
Rd

μ(dy)κδ(x − y)

)p

= (2R)d(1−p), (4.9)

since κδ is L1-normalized.
Recall that b

q
n = nα

−(d+2)
n . For the choice of γ in (4.8), for large n, we can estimate the first two terms in the

expectation on the right of (4.7) by e−γ (1−2ε)nbn ec(ε)γ n � e−γ (1−3ε)nbn , since we have in particular γ � bn.
Substituting γ in (4.7), we obtain

P
(〈�Y (�M)

n ∗ κδ,Ln

〉
> 1− 2ε

)
� E

[
exp

{
−(D + εC)

n

α2
n

∥∥L(R)
n ∗ κδ

∥∥−q

p

}]
, (4.10)

where C > 0 depends on D,R and q only. Now we can finally apply the large deviation principle in Lemma 3.1(ii)
to the right-hand side of (4.10). This yields the estimate in (4.3) without lim supε↓0 and with D replaced by D + εC.
Letting ε ↓ 0, we easily see that (4.3) is satisfied, which ends the proof of the upper bound in Theorem 1.1.

4.2. Large-deviation case (Theorem 1.3)

In this section, we prove the upper bound in Theorem 1.3, i.e., in the case (L). The proof follows the pattern of the
corresponding proof in [1] and is analogous to the proof of Theorem 1.1 in Section 4.1, and hence we keep it short.
Pick bn = 1 and αn = n1/(d+2), in accordance with (1.27). Furthermore, fix u > 0.

By Proposition 3.4 and Lemmas 3.5 and 3.6, it is sufficient to prove that, for any δ > 0 and R ∈N,

lim sup lim sup
n→∞

n−d/(d+2) log P
(〈�Y (�M)

n ∗ κδ,Ln

〉
> u− ε

)
�−K

(per)
H (u; δ,R), (4.11)
ε↓0
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where K
(per)
H (u; δ,R) is defined in Lemma 3.6. Fix a small ε > 0. Analogously to (4.4), we have the estimate

P
(〈�Y (�M)

n ∗ κδ,Ln

〉
> u− ε

)
� E

[
e−γ (u−2ε)n exp

{∑
z∈Zd

HM

(
γ nα−d

n L(R)
n ∗ κδ

(
z

αn

))}]
, (4.12)

for any γ > 0. Replacing γ nα−d
n by γ , turning the sum into an integral, passing to the optimum over γ and using the

notation in (3.9), we obtain

P
(〈�Y (�M)

n ∗ κδ,Ln

〉
> u

)
� E

[
exp

{
− n

α2
n

ΦHM

(
L(R)

n ∗ κδ, u− 2ε;R)}], (4.13)

where we also recall that αd
n = nα−2

n . Again, for fixed δ > 0 and R > 0, we can let M →∞ and ε ↓ 0 to replace

ΦHM
(L

(R)
n ∗ κδ, u− 2ε;R) by ΦH (L

(R)
n ∗ κδ, u;R) on the right side of (4.13). Analogously to (4.9), one shows that

ΦH (ψ2, u) � |QR| supγ>0(γ u − H(γ )) < ∞ for any continuous ψ :QR → [0,∞) satisfying
∫
QR

ψ2 = 1. Hence,
the map μ �→ ΦH (μ ∗ κδ, u;R) is bounded and continuous on the set of probability measures on QR , and we may
apply the large deviation principle in Lemma 3.1(ii). This, followed by ε ↓ 0, implies that (4.11) holds for any δ > 0
and R ∈N. This finishes the proof of the upper bound in Theorem 1.3.

5. Proofs of the lower bounds in Theorems 1.1 and 1.3

In this section we prove the lower bounds in Theorems 1.1 and 1.3. Our proofs are variants of the analogous proofs
in [1]; they roughly follow the heuristics in Section 1.3.

5.1. Very-large deviation case (Theorem 1.1)

Suppose we are in the case (V) and pick sequences (bn)n and (αn)n as in (1.27). Fix R > 0 and any continuous
positive function ϕ :QR → (0,∞). Recall the scaled local times and scenery, Ln and �Yn, in (1.19) and (1.21).

If �Yn � ϕ on QR and supp(Ln)⊂QR , then

Zn = bnn
〈
Ln,�Yn

〉
� bnn〈Ln,ϕ〉. (5.1)

Hence, we obtain the lower bound, for any n ∈N,

P

(
1

n
Zn > bn

)
� P

(〈Ln,ϕ〉� 1, supp(Ln)⊂QR

)
P
(�Yn � ϕ on QR

)
. (5.2)

With the help of the large deviation principle in Lemma 3.1(i) it is easy to deduce that

lim
n→∞

α2
n

n
log P

(〈Ln,ϕ〉� 1, supp(Ln)⊂QR

)
=− inf

{
IR

(
ψ2): ψ ∈H 1(

R
d
)
, supp(ψ)⊂QR,‖ψ‖2 = 1,

〈
ψ2, ϕ

〉
� 1

}
. (5.3)

From Lemma 3.2 we have, recalling that nα−2
n = αd

nb
q
n ,

lim inf
n→∞

α2
n

n
log P

(�Yn � ϕ on QR

)
�−D‖ϕ‖q

q . (5.4)

Using (5.3) and (5.4) in (5.2) and optimizing on ϕ, we obtain the lower bound

lim inf
n→∞

α2
n

n
log P

(
1

n
Zn > bn

)
�−K̃

(0)
D,q(R), (5.5)

where

K̃D,q(R)= inf
ψ∈H 1(Rd ): ‖ψ‖2=1,supp(ψ)⊂BR

(
IR

(
ψ2)+D inf

ϕ∈C+(QR): 〈ψ2,ϕ〉�1
‖ϕ‖q

q

)
. (5.6)

It is easy to see that the inner infimum is equal to ‖ψ2‖−q
p . Hence, K̃D,p(R)=K

(0)
D,p(R) as defined in Corollary 3.7.

Now Corollary 3.7 finishes the proof of the lower bound in Theorem 1.1.
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5.2. Large-deviation case (Theorem 1.3)

Recall from Section 1.3 that 1
n
Zn = 〈Ln,�Yn〉. We want to apply the large deviation principles of Lemma 3.1(i) for

Ln and Lemma 3.3 for �Yn. However, as has been pointed out in [1], the map (μ,f ) �→ 〈μ,f 〉 is not continuous in
the product of the weak topologies. Hence, we partially follow the strategy of [1] and use Lemma 3.5 to smoothen the
field �Yn. In order to apply Lemma 3.5, we first have to cut down the field to bounded size, which we do with the help
of Proposition 3.4. However, this works only for cutting the large values of the field, but not the small ones. In order
to be able to use also a lower bound for the field, we intersect with the event that Y(z) � −M for all z’s appearing,
and use a large deviation principle for the conditional field.

Let us turn to the details. Let u > 0 satisfying u ∈ supp(Y (0))◦. We fix small parameter ε, δ > 0 such that u+ ε ∈
supp(Y (0))◦ and large parameters M and R. On the intersection of the events {supp(Ln) ⊂ QR} and {Y(z) � −M

∀z ∈ BRαn}, we can estimate

1

n
Zn =

〈
Ln,�Yn

〉
�
〈
Ln,�Y (�M)

n

〉= 〈Ln ∗ κδ,�Y (�M)
n

〉+ 〈Ln,�Y (�M)
n − �Y (�M)

n ∗ κδ

〉
.

We write P
(>−M) for the conditional measure P(· | Y(z) �−M ∀z ∈ Z

d). Hence, we obtain the lower bound

P

(
1

n
Zn > u

)
� P

(>−M)
(
supp(Ln)⊂QR,

〈
Ln ∗ κδ,�Y (�M)

n

〉
> u+ ε

)
P
(
Y(0) �−M

)|BRαn |

− P
(〈
Ln,�Y (�M)

n − �Y (�M)
n ∗ κδ

〉
> ε

)
. (5.7)

Using Lemma 3.5 for the last term on the right-hand side, and noting that P(Y (0) �−M)→ 0 as M →∞, it becomes
clear that it suffices to estimate the first term on the right side. In order to do this, fix a positive continuous function
g :QR → (0,∞) satisfying

∫
QR

g(x)dx = 1 such that g can be extended to an element of H 1(Rd). Let Bε(g) denote
a weak ε-neighborhood of g. Then we have

P
(>−M)

(
supp(Ln)⊂QR,

〈
Ln ∗ κδ,�Y (�M)

n

〉
> u+ ε

)
� P

(
Ln ∈ Bε(g), supp(Ln)⊂QR

)
P

(>−M)
(〈
g ∗ κδ,�Y (�M)

n

〉
> u+ 2ε

)
.

According to Lemma 3.1, the first term on the right is equal to exp{−nα−2
n infψ2∈Bε(g) IR(ψ2)(1+o(1))}, and accord-

ing to Lemma 3.3, the latter term is equal to exp{−nα−2
n ΦH̃M

(g ∗ κδ, u− 2ε,R)(1+ o(1))}. Summarizing, we obtain,
for any R > 0 and any continuous positive function g :QR → (0,∞), if M is sufficiently large and δ > 0 sufficiently
small,

lim inf
n→∞

α2
n

n
log P

(
1

n
Zn > u

)
�−[IR(g)+ΦH̃M

(g ∗ κδ, u+ 2ε,R)
]+ ηM, (5.8)

for some ηM ↓ 0 as M →∞. Passing to the infimum over all g and writing ψ2 instead of g, we obtain

lim inf
n→∞

α2
n

n
log P

(
1

n
Zn > u

)
�− inf

ψ∈H 1(Rd ): supp(ψ)⊂QR

[
IR

(
ψ2)+ΦH̃M

(
ψ2 ∗ κδ, u+ 2ε,R

)]+ ηM. (5.9)

Since ψ2 ∗ κδ is bounded uniformly in ψ , and since H̃M(t)→H(t) as M →∞, uniformly in t on compacts, we can
let M →∞. Furthermore, we also let ε ↓ 0 and obtain

lim inf
n→∞

α2
n

n
log P

(
1

n
Zn > u

)
�−KH (u; δ,R), (5.10)

for any δ > 0 and R > 0, where K
(0)
H (u; δ,R) is defined in Lemma 3.6. Now use Lemma 3.6 to finish the proof of the

lower bound in Theorem 1.3.
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Appendix A. Proof of the large deviation principle for the local times

In this section, we prove the scaled large deviation principles in Lemma 3.1. Although the statement should be
familiar to experts and the proof is fairly standard, we could not find it in the literature. Therefore, we provide a
proof. Let us mention that the lower bound of the following Lemma A.1 (without the indicator on {supp(Ln)⊂QR},
however) is contained in [13].

Fix R > 0. For bounded and continuous functions f :QR →R, we denote by

λR(f )= max

{〈
f,ψ2〉− 1

2

∥∥Γ 1/2∇ψ
∥∥2

2: ψ ∈H 1(
R

d
)
, supp(ψ)⊂QR,‖ψ‖2 = 1

}
(A.1)

the principal eigenvalue of the operator 1
2∇ ·Γ∇ + f in QR with Dirichlet boundary condition. (We denote the inner

product and norm on L2(QR) by 〈·, ·〉 and ‖ · ‖2.) The main step in the proof of Lemma 3.1(i) is the following.

Lemma A.1. For any bounded and continuous function f :QR →R, the limit

lim
n→∞

α2
n

n
log E

[
exp

{
n

α2
n

〈f,Ln〉
}
1
{
supp(Ln)⊂QR

}]
(A.2)

exists and is equal to λR(f ).

Proof. In the following, we abbreviate B = BRαn . Introduce a scaled version fn : Zd →R of f by

fn(z)= αd
n

∫
zα−1

n +[0,α−1
n )d

f (x)dx, z ∈ Z
d . (A.3)

Note that fn(�·αn�)→ f uniformly on QR . Furthermore, note that

n

α2
n

〈f,Ln〉 = αd−2
n

∫
QR

f (x)�n

(�xαn�
)

dx = α−2
n

∑
z∈B

�n(z)fn(z)=
n−1∑
k=0

α−2
n fn(Sk). (A.4)

For notational convenience, we assume that α2
n and nα−2

n are integers. Using the Markov property, we split the
expectation over the path (S0, . . . , Sn) into nα−2

n expectations over paths of length α2
n. By Ez we denote the expectation

with respect to the random walk starting at z ∈ Z
d , then we have

E

[
exp

{
n

α2
n

〈f,Ln〉
}
1
{
supp(Ln)⊂QR

}]

= E

[
exp

{
1

α2
n

n−1∑
k=0

fn(Sk)

}
1
{
supp(�n)⊂ B

}]

=
∑

z1,...,z
nα

−2
n

∈B

nα−2
n∏

i=1

Ezi−1

[
exp

{
1

α2
n

α2
n−1∑
k=0

fn(Sk)

}
1
{
supp(�α2

n
)⊂ B

}
1{Sα2

n
= zi}

]

=
∫

Q
nα

−2
n

R

dx1 · · ·dx
nα−2

n

nα−2
n∏

i=1

[
αd

nE�xi−1αn�

[
exp

{
1

α2
n

α2
n−1∑
k=0

fn(Sk)

}
1
{
supp(�α2

n
)⊂ B

}
1
{
Sα2

n
= �xiαn�

}]]
.

(A.5)

Let (Bt )t�0 be the Brownian motion on R
d with covariance matrix Γ , and let Ex denote the corresponding expec-

tation, when B0 = x ∈ R
d . Then (α−1

n S�tα2
n�)t�0 converges weakly towards (Bt )t�0 in distribution, and from a local

central limit theorem (see [24, P7.9, P7.10]) it follows that, uniformly in x, y ∈QR ,



N. Gantert et al. / Ann. I. H. Poincaré – PR 43 (2007) 47–76 75
lim
n→∞αd

nE�xαn�

[
exp

{
1

α2
n

α2
n−1∑
k=0

fn(Sk)

}
1
{
supp(�α2

n
)⊂ B

}
1
{
Sα2

n
= �yαn�

}]

= Ex

(
exp

{ 1∫
0

f (Bs)ds

}
1{B[0,1] ⊂QR};B1 ∈ dy

)/
dy. (A.6)

Substituting this on the right-hand side of (A.5) and again using the Markov property, we obtain that, as n→∞,

E

[
exp

{
n

α2
n

〈f,Ln〉
}
1
{
supp(Ln)⊂QR

}]= eo(nα−2
n )E0

(
exp

{ nα−2
n∫

0

f (Bs)ds

}
1{B[0,nα−2

n ] ⊂QR}
)

. (A.7)

It is well known that the expectation on the right-hand side of (A.7) is equal to exp{ n

α2
n
[λR(f ) + o(1)]} as n →∞,

and this ends the proof of Lemma A.1. �
Proof of Lemma 3.1(i). We shall apply a version of the abstract Gärtner–Ellis theorem (see [14, Section 4.5]). (There
is no problem in applying that result for subprobability measures instead of probability measure.) More precisely, we
shall apply [14, Corollary 4.5.27], which implies the statement of Lemma 3.1(i) under the following two assumptions:
(1) the distributions of Ln under P(· , supp(Ln) ⊂ QR) form an exponentially tight family, and (2) the limit in (A.2)
exists and is a finite, Gâteau-differentiable and lower semicontinuous function of f . These two points are satisfied
in our case. Indeed, (1) is trivially satisfied since we consider subprobability measures on a compact set QR , and
(2) follows from Lemma A.1, together with [17], where the Gâteau-differentiability and lower semicontinuity of the
map f �→ λR(f ) is shown. An application of [14, Corollary 4.5.27] therefore yields the validity of a large deviation
principle as stated in Lemma 3.1(i).

It remains to identify the rate function obtained in [14, Corollary 4.5.27] with the rate function of Lemma 3.1(i),
IR . The rate function appearing in [14, Corollary 4.5.27], ĨR , is the Legendre transform of λR(·):

ĨR

(
ψ2)= sup

f∈C(QR)

[〈
ψ2, f

〉− λR

(
ψ2)], ψ2 ∈FR. (A.8)

It is obvious from (A.1) that λR(·) is itself the Legendre transform of IR , since IR is equal to ∞ outside FR . Because
of the convexity inequality for gradients (see [21, Theorem 7.8]), IR is a convex function on FR . According to the
Duality Lemma [14, Lemma 4.5.8], the Legendre transform of λR(·) is equal to IR , i.e., we have that ĨR = IR . This
finishes the proof of Lemma 3.1(i). �
Proof of Lemma 3.1(ii). This is a modification of the proof of part (i) above; we point out the differences only.
Recall that we identify the box BR = {�−R� + 1, . . . , �R� − 1}d with the torus {�−R� + 1, . . . , �R�}d where �R� is
identified with �−R� + 1. Analogously, we conceive QR = [−R,R]d as the d-dimensional torus with the opposite
sides identified.

For a continuous bounded function f :QR → R, introduce the principal eigenvalue of the operator 1
2∇ · Γ∇ + f

on L2(QR) with periodic boundary condition:

λ(R)(f )= max

{ ∫
QR

f (x)ψ2(x)dx − 1

2

∫
QR

∣∣Γ 1/2∇Rψ(x)
∣∣2 dx: ψ ∈ C1(QR),

∫
QR

ψ2(x)dx = 1

}
, (A.9)

where we recall that ∇R is the gradient of the torus QR .
The main step in the proof of Lemma 3.1(ii) is to show that, for any continuous bounded function f :QR →R,

λ(R)(f )= lim
n→∞

α2
n log E

[
exp

{
n

2

〈
f,L(Rαn)

n

〉}]
. (A.10)
n αn
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This is done in the same way as in the proof of Lemma A.1, noting that the process (α−1
n S

(Rαn)

tα2
n

)t�0 converges weakly

in distribution towards (B
(R)
t )t�0, the Brownian motion with covariance matrix Γ , wrapped around the torus QR .

Also using a local central limit theorem, we obtain, as n→∞,

E

[
exp

{
n

α2
n

〈
f,L(Rαn)

n

〉}]= eo(nα−2
n )E0

[
exp

{ nα−2
n∫

0

f
(
B(R)

s

)
ds

}]
. (A.11)

It is well known that the expectation on the right side is equal to exp{ n

α2
n
[λ(R)(f )+ o(1)]} as n→∞, and this shows

that also (A.10) holds. The remainder of the proof of Lemma 3.1(ii) is the same as the proof of Lemma 3.1(i). �
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