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Abstract

The purpose of this article is to give a rather thorough understanding of the compact support property for measure-valued
processes corresponding to semi-linear equations of the form

ut = Lu + βu − αup in R
d × (0,∞), p ∈ (1,2];

u(x,0) = f (x) in R
d ;

u(x, t) � 0 in R
d × [0,∞).

In particular, we shall investigate how the interplay between the underlying motion (the diffusion process corresponding to L)
and the branching affects the compact support property. In [J. Engländer, R. Pinsky, On the construction and support properties
of measure-valued diffusions on D ⊂ R

d with spatially dependent branching, Ann. Probab. 27 (1999) 684–730], the compact
support property was shown to be equivalent to a certain analytic criterion concerning uniqueness of the Cauchy problem for the
semi-linear parabolic equation related to the measured valued process. In a subsequent paper [J. Englan̈der, R. Pinsky, Unique-
ness/nonuniqueness for nonnegative solutions of second-order parabolic equations of the form ut = Lu + V u − γ up in R

n,
J. Differential Equations 192 (2003) 396–428], this analytic property was investigated purely from the point of view of partial
differential equations. Some of the results obtained in this latter paper yield interesting results concerning the compact support
property. In this paper, the results from [J. Englan̈der, R. Pinsky, Uniqueness/nonuniqueness for nonnegative solutions of second-
order parabolic equations of the form ut = Lu + V u − γ up in R

n, J. Differential Equations 192 (2003) 396–428] that are relevant
to the compact support property are presented, sometimes with extensions. These results are interwoven with new results and some
informal heuristics. Taken together, they yield a rather comprehensive picture of the compact support property. Inter alia, we show
that the concept of a measure-valued process hitting a point can be investigated via the compact support property, and suggest an
alternate proof of a result concerning the hitting of points by super-Brownian motion.
© 2005 Elsevier SAS. All rights reserved.

Résumé

Le but de cet article est de donner une assez pleine compréhension de la propriété du support compact pour les processus à
valeurs mesures qui correspondent aux équations semi-linéaires de la forme
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ut = Lu + βu − αup in R
d × (0,∞), p ∈ (1,2];

u(x,0) = f (x) in R
d ;

u(x, t) � 0 in R
d × [0,∞).

En particulier, nous recherchons comment la relation entre le processus de diffusion correspondant à L et le branchement peut
affecter la propriété du support compact. En [J. Engländer, R. Pinsky, On the construction and support properties of measure-
valued diffusions on D ⊂ R

d with spatially dependent branching, Ann. Probab. 27 (1999) 684–730], la propriété du support
compact était montrée être équivalente à un certain critère analytique qui concerne l’unicité du probléme de Cauchy pour l’équation
semilineaire parabolique correspondant au processus à valeurs mesures. Dans un article subséquent [J. Engländer, R. Pinsky,
Uniqueness/nonuniqueness for nonnegative solutions of second-order parabolic equations of the form ut = Lu+V u− γ up in R

n,
J. Differential Equations 192 (2003) 396–428], cette propriété analytique était étudiée du point de vue des équations aux dérivées
partielles. Quelques uns des résultats obtenus dans ce dernier papier fournissent des résultats intéressants sur la propriété du
support compact. Dans cet article, les résultats de [J. Engländer, R. Pinsky, Uniqueness/nonuniqueness for nonnegative solutions of
second-order parabolic equations of the form ut = Lu + V u − γ up in R

n, J. Differential Equations 192 (2003) 396–428] qui sont
applicables à la propriété du support sont présentés, parfois avec des extensions. Ces résultats sont mêlés à de nouveaux résultats
et à des heuristiques. Dans l’ensemble, ils donnent un tableau assez clair de la propriété du support compact. Parmi les autres
résultats, nous montrons que le concept du processus à valeurs mesures atteignant un point peut être étudié via la propriété du
support compact, et nous suggérons une preuve différente pour un résultat concernant l’atteinte des points par le super-mouvement
brownien.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction and statement of results

The purpose of this article is to give a rather thorough understanding of the compact support property for measure-
valued diffusion processes. In particular, we shall investigate how the interplay between the underlying motion and the
branching affects the compact support property. In [10], the compact support property was shown to be equivalent to a
certain analytic criterion concerning uniqueness of the Cauchy problem for the semi-linear parabolic equation related
to the measured valued process. In a subsequent paper [11], this analytic property was investigated purely from the
point of view of partial differential equations. Some of the results obtained in this latter paper yield interesting results
concerning the compact support property. In this paper, the results from [11] that are relevant to the compact support
property are presented, sometimes with extensions. These results are interwoven with new results and some informal
heuristics. Taken together, they yield a rather comprehensive picture of the compact support property. Inter alia, we
show that the concept of a measure-valued process hitting a point can be investigated via the compact support property
and suggest an alternate proof of a result concerning the hitting of points by super-Brownian motion.

We state all of our results for the case that the underlying space is R
d ; however, all the results also hold for

generic domains in R
d—see [10], where the superprocesses studied in this paper are constructed on generic Euclidean

domains.
We begin by defining the measure-valued processes under study. Let

L = 1

2

d∑
i,j=1

ai,j

∂2

∂xi∂xj

+
d∑

i=1

bi

∂

∂xi

,

where ai,j , bi ∈ Cα(Rd), with α ∈ (0,1), and {ai,j } is strictly elliptic; that is,
∑d

i,j=1 ai,j (x)νiνj > 0, for all x ∈ R
d

and ν ∈ R
d − {0}. Let Y(t) denote the diffusion process corresponding to the generalized martingale problem for L

on R
d [14], and denote corresponding probabilities by {Px; x ∈ R

d}. Denote the lifetime of Y(t) by τ∞. One has
τ∞ = limn→∞ τn, where τn = inf{t � 0: |Y(t)| � n}. Recall that Y(t) is called non-explosive (or conservative) if
Px(τ∞ < ∞) = 0, for some, or equivalently all, x ∈ R

d ; otherwise Y(t) is called explosive. The process Y(t) serves
as the underlying motion of the measure-valued process.
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The branching mechanism is of the form Φ(x, z) = β(x)z − α(x)zp , where p ∈ (1,2], β is bounded from above,
α > 0, and α,β ∈ Cκ(Rd), for some κ ∈ (0,1]. A finite measure-valued process X(t) = X(t, ·) is the Markov process
defined uniquely via the following log-Laplace equation:

E
(
exp

(−〈
f,X(t)

〉)∣∣X(0) = μ
) = exp

(−〈
uf (·, t),μ〉)

, (1.1)

for f ∈ C+
c (Rd), the space of compactly supported, nonnegative, continuous functions on R

d , and for finite initial
measures μ, where uf is the minimal positive solution to the evolution equation

ut = Lu + βu − αup in R
d × (0,∞);

u(x,0) = f (x) in R
d;

u(x, t) � 0 in R
d × [0,∞).

(1.2)

(For the construction, see [10].) The measure for the process started from μ will be denoted by Pμ, and its expectation
operator will be denoted by Eμ.

We recall the compact support property.

Definition. Let μ ∈ MF (Rd) be compactly supported. The measure-valued process corresponding to Pμ possesses
the compact support property if

Pμ

( ⋃
0�s�t

suppX(s) is bounded

)
= 1, for all t � 0. (1.3)

Remark. The parameter β may be thought of as the mass creation parameter (see the discussion of the particle process
approximation to the measure-valued process at the end of this section). It is possible to extend the construction of the
measure-valued process to certain β which are unbounded from above; namely, to those β for which the generalized
principal eigenvalue of the operator L + β is finite. However, the resulting process has paths which are mutually
absolutely continuous with respect to another measure-valued process whose mass creation parameter β is bounded
from above [10]. Thus, the compact support property will hold for the former process if and only if it holds for the
latter one. Without further mention, it will always be assumed in this paper that β is bounded from above.

There are four objects, corresponding to four different underlying probabilistic effects, which can influence the
compact support property:

(1) L, the operator corresponding to the underlying motion;
(2) β , the mass creation parameter of the branching mechanism;
(3) α, the nonlinear component of the branching mechanism, which can be thought of as the variance parameter if

p = 2;
(4) p, the power of the nonlinearity, which is the scaling power and is connected to the fractional moments of the

offspring distribution in the particle process approximation to the measure-valued process.
(For (2), (3) and (4) above, see the discussion of the particle process approximation to the measure-valued process
at the end of this section.)

We shall see that both L and α play a large role in determining whether or not the compact support property holds;
β and p play only a minor role.

In [10], the compact support property was shown to be equivalent to a uniqueness property for solutions to (1.2).

Theorem EP1. The compact support property holds for one, or equivalently all, nonzero, compactly supported initial
measures μ if and only if there are no nontrivial solutions to (1.2) with initial data f ≡ 0.

Remark 1. We emphasize that the uniqueness property in Theorem EP1 concerns all classical solutions to (1.2),
with no growth restrictions. If one restricts to mild solutions—solutions which solve an integral equation involving
the linear semigroup corresponding to the operator L—then, for example, uniqueness holds in this class if α, β and
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the coefficients of L are bounded [13]; yet, these conditions certainly do not guarantee uniqueness in the class of all
positive, classical solutions (see Theorem 1 below).

Remark 2. In fact, the proof of Theorem EP1 shows that there exists a maximal solution umax to (1.2) with initial data
f = 0, and

Pμ

( ⋃
0�s�t

suppX(s) is bounded

)
= exp

(
−

∫
Rd

umax(x, t)μ(dx)

)
,

for compactly supported μ. This shows that when the compact support property fails, the onset of the failure is
gradual; that is, as a function of t , Pμ(

⋃
0�s�t suppX(s) is bounded) is continuous and equal to 1 at time t = 0.

This behavior is in contrast to the behavior of the measure-valued process corresponding to the semi-linear operator
ut = 
u − u logu, investigated recently in [12]. This process is obtained as a weak limit as p → 1 of the processes
corresponding to the semi-linear operators

ut = 
u + 1

p − 1
u − 1

p − 1
up.

Unlike the measure-valued processes defined above, this process is immortal; that is, Pμ(X(t) = 0) = 0, for all t � 0.
Furthermore, it is shown that Pμ(

⋃
0�s�t suppX(s) is bounded) = 0, for all t > 0. Thus, the onset of the failure of the

compact support property is instantaneous. Theorem EP1 is not valid for this process. Indeed, the proof of Theorem
EP1 requires the fact that a maximal solution exists for (1.2) with initial condition f = 0. The existence of such a
maximal solution is essentially equivalent to the existence of a universal, a priori upper bound on all solutions to
(1.2); that is, the existence of a finite function M(x, t) on R

d × (0,∞) such that u(x, t) � M(x, t), for all (x, t) ∈
R

d × (0,∞), and all solutions u to (1.2). Such a universal a priori upper bound does not exist for the equation

ut = 
u − u logu.

In [15], a more or less necessary and sufficient condition on the nonlinear term (independent of the operator L) is
given for the existence of such a bound.

Remark 3. Theorem EP1 suggests a parallel between the compact support property for measure-valued processes
and the non-explosion property for diffusion processes. Indeed, the non-explosion property for the diffusion process
Y(t) corresponding to the operator L is equivalent to the nonexistence of nontrivial, bounded, positive solutions to the
linear Cauchy problem with 0 initial data:

ut = Lu in R
d × (0,∞);

u(x,0) = 0 in R
d;

u � 0 in R
d × (0,∞).

(1.4)

(For one direction of this result, note that u(x, t) ≡ Px(τ∞ � t) serves as a nontrivial solution to (1.4) in the explosive
case.) It is natural for bounded, positive solutions to be the relevant class of solutions in the linear case and for positive
solutions to be the relevant class of solutions in the semi-linear case. Indeed, by Ito’s formula, the probabilities for
certain events related to Y(t) are obtained as bounded, positive solutions to the linear equation, and by the log-Laplace
equation, the negative of the logarithm of the probability of certain events related to X(t) can be obtained as positive
solutions to the semi-linear equation.

The class of operators L satisfying the following assumption will play an important role.

Assumption 1. For some C > 0,

(1)
∑n

i,j=1 aij (x)νiνj � C|ν|2(1 + |x|2), x, ν ∈ R
d ;

(2) |b(x)| � C(1 + |x|), x ∈ R
d .

The next theorem culls some results from [11] and applies them to the probabilistic setting at hand.
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Theorem EP2. Let p ∈ (1,2] and let the coefficients of L satisfy Assumption 1.

(1) There is no nontrivial solution to (1.4); thus, the diffusion process Y(t) does not explode.
(2) If

inf
x∈Rd

α(x) > 0,

then there is no nontrivial solution to (1.2) with initial data f = 0; thus, the compact support property holds for
X(t).

Proof. Proof of part (1). For the proof that there are no nontrivial solutions to (1.4) if Assumption 1 holds, see [11,
Proposition 5 and Remark 1 following it]. Non-explosiveness of Y(t) then follows from the parenthetical sentence
following (1.4) above.

Proof of part (2). For the proof that there are no nontrivial solutions to (1.2), see [11, Theorem 2]. The fact that the
compact support property holds then follows from Theorem EP1 above. �

The conditions in Assumption 1 are classical conditions which arise frequently in the theory of diffusion processes.
Theorem EP2 shows that if the coefficients of L obey this condition and if the branching coefficient α is bounded
away from zero, then everything is well behaved—neither can the underlying diffusion process explode nor can the
measure-valued process fail to possess the compact support property.

The following result shows that the compact support property can fail if infx∈Rd α(x) = 0. It also demonstrates that
the effect of α on the compact support property cannot be studied in isolation, but in fact depends on the underlying
diffusion.

Theorem 1. Let p ∈ (1,2] and let

L = 1

2

d∑
i,j=1

ai,j

∂2

∂xi∂xj

,

where

C−1
0

(
1 + |x|)m �

d∑
i,j=1

ai,j (x) � C0
(
1 + |x|)m

, m ∈ [0,2], for some C0 > 0.

(1) If

α(x) � C1 exp
(−C2|x|2−m

)
,

for some C1,C2 > 0, then the compact support property holds for X(t).
(2) If

α(x) � C exp
(−|x|2−m+ε

)
and β(x) � −C

(
1 + |x|)2−m+2δ

,

for some C,ε > 0 and some δ < ε, then the compact support property does not hold for X(t).

Remark. By Theorem EP1, to prove Theorem 1, it is necessary and sufficient to show that if α is as in part (1) of the
theorem, then there is no nontrivial solution to (1.2) with initial data f = 0, while if α is as in part (2) of the theorem,
then there is such a nontrivial solution. In the case that L = 1

2
, and for part (2), β � 0, this result was obtained in
[11, Theorem 7]. An alternative, more purely probabilistic proof which does not rely on Theorem EP1 can be found
in [16] for the case L = 1

2
 and β = 0.

A heuristic, qualitative understanding of Theorem 1 is given at the end of this section.
As a complement to Theorem 1, we note the following result [9,11].



540 J. Engländer, R.G. Pinsky / Ann. I. H. Poincaré – PR 42 (2006) 535–552
Theorem EP3. Let p ∈ (1,2].

(1) Let d � 2 and let L = A(x)
, where A(x) � C(1 + |x|)m, for some C > 0 and m > 2.
Assume that

sup
x∈Rd

α(x) < ∞ and β � 0.

Then the compact support property does not hold for X(t).

(2) Let d = 1 and let L = A(x) d2

dx2 , where A(x) � C(1 + |x|)m, for some C > 0 and m > 1 + p.
Assume that

sup
x∈Rd

α(x) < ∞ and β � 0.

Then the compact support property does not hold for X(t).

(3) Let d = 1 and let L = A(x) d2

dx2 , where A(x) � C(1 + |x|)m, for some C > 0, and m � 1 + p.
Assume that

inf
x∈Rd

α(x) > 0 and β � 0.

Then the compact support property holds for X(t).

Remark 1. It follows from Theorem EP3 that if d = 1 and L = (1 + |x|)m d2

dx2 , with m ∈ (2,3], and say α = 1 and
β = 0, then the compact support property will depend on the particular choice of p ∈ (1,2].

Remark 2. If d = 2 and L = (1 + |x|)m
, with m > 2, and say α = 1 and β = 0, then by Theorem EP3, the compact
support property does not hold, yet the underlying diffusion does not explode since it is a time-change of a recurrent
process; namely, of two-dimensional Brownian motion.

Proof. By Theorem EP1, it is necessary and sufficient to show that under the conditions of parts (1) and (2), there
exists a nontrivial solution to (1.2), while under the conditions of part (3) there does not. In the case that α = 1 (or
equivalently, any positive constant) and β = 0, this follows from [11, Theorem 5]. To extend this to α and β as in the
statement of the theorem, one appeals to a comparison result which we state below [11, Proposition 4]. �
Comparison result. Assume that

β1 � β2

and

0 < α2 � α1.

If uniqueness holds for (1.2) with initial data f = 0 when β = β2 and α = α2, then uniqueness also holds when
β = β1 and α = α1. Thus, from Theorem EP1, if the compact support property holds for β = β2 and α = α2, then it
also holds for β = β1 and α = α1.

Theorem 1 and Theorem EP3 demonstrate the effect of the underlying diffusion Y(t) on the compact support
property in the case that L is comparable to (1 + |x|)m
. We now consider more generally the effect of the under-
lying diffusion process on the compact support property. We begin with the following result which combines [11,
Theorem 3] with Theorem EP1.

Theorem EP4. Let p ∈ (1,2] and assume that the underlying diffusion process Y(t) explodes. Assume in addition
that

inf
x∈Rd

β(x)

α(x)
> 0.

Then there exists a nontrivial solution to (1.2) with initial data f = 0; thus, by Theorem EP1, the compact support
property does not hold.
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In particular, it follows from Theorem EP4 that if Y(t) is explosive and supx∈Rd α(x) < ∞, then a sufficient
condition for the compact support property to fail is that infx∈Rd β(x) > 0. It turns out that this result can be extended
significantly. We will prove the following key result.

Theorem 2. Let p ∈ (1,2] and let L and α be arbitrary. Assume that

sup
x∈Rd

|β1 − β2| < ∞.

Then uniqueness holds for (1.2) with initial data f = 0 for L, α and β1 if and only if it holds for L, α and β2. Thus,
from Theorem EP1, the compact support property holds with β1 if and only if it holds with β2.

Remark. Theorem 2 states that a bounded change in the parameter β cannot influence the compact support property.

As an immediate consequence of Theorem EP4 and Theorem 2, we obtain the following result.

Theorem 3. Let p ∈ (1,2] and assume that the underlying diffusion process Y(t) explodes. Assume that

sup
x∈Rd

α(x) < ∞ and inf
x∈Rd

β(x) > −∞. (1.5)

Then there exists a nontrivial solution to (1.2) with initial data f = 0; thus by Theorem EP1, the compact support
property does not hold.

Remark 1. Theorem 3 shows that if the branching mechanism satisfies (1.5), then the compact support property never
holds if the underlying diffusion is explosive. The converse is not true—an example was given in Remark 2 following
Theorem EP3, and another one appears in Remark 2 following Corollary 1.

Remark 2. Starting from Theorem EP4, a direct probabilistic proof of Theorem 3 can be given in the case p = 2 via
Dawson’s Girsanov theorem for super-diffusion processes [3].

Remark 3. Theorem 3 is significant also from the point of view of pde’s. It states that under the condition (1.5),
nonuniqueness in the class of bounded solutions to the linear equation (1.4) guarantees nonuniqueness for the semi-
linear equation (1.2) with initial data f = 0.

The next result shows that the restriction supx∈Rd α(x) < ∞ in Theorem 3 is essential.

Proposition 1. Let p ∈ (1,2]. Let m ∈ (−∞,∞),

L = (
1 + |x|)m


 in R
d,

β = 0 and

α(x) � c
(
1 + |x|)m−2

,

for some c > 0. Then the compact support property holds for the measure-valued process X(t). However, if m > 2
and d � 3, the diffusion process Y(t) explodes.

Proof. By the comparison result above, it suffices to consider the case that α = c(1+|x|)m−2. Note that upon dividing
by (1 + |x|)m, the stationary elliptic equation can be written in the form 
W − c

(1+|x|)2 Wp = 0 in R
d . There is

no nontrivial, nonnegative solution to this equation (see, for example [11, Theorem 6]). From this it follows that
uniqueness holds for (1.2) with initial data f = 0; indeed, if uniqueness did not hold, and u(x, t) were a nontrivial
solution, then it would follow from the maximum principle that u(x, t) is increasing in t . Then W(x) ≡ limt→∞ u(x, t)

would constitute a nontrivial solution to the above stationary elliptic equation. (For details, see [11, Theorem 4(ii)].)
Since uniqueness holds for (1.2), it follows from Theorem EP1 that the compact support property holds. For a proof
that Y(t) explodes if m > 2 and d � 3, see, for example, [11, Proposition 5 and Remark 1 following it]. �
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As mentioned in the introduction, p and b play only a minor role in determining whether or not the compact support
property holds. Theorem 2 demonstrates the limited role played by β . In Remark 1 following Theorem EP3, we have
seen a rather restricted example where p can effect the compact support property. In the sequel we will give another
example where p can effect the compact support property and also an example where β can effect the compact support
property. In order to accomplish this, we first need to discuss how the concept of a measure-valued process hitting a
point can be formulated and understood in terms of the compact support property. This last point is of independent
interest.

Let Rt = cl(
⋃

s∈[0,t] supp(X(s))) and let R = cl(
⋃

s�0 supp(X(s))). The random set R is called the range of

X = X(·). A path of the measure-valued process is said to hit a point x0 ∈ R
d if x0 ∈ R. If X(t) becomes extinct

with probability one, that is, Pμ(X(t) = 0 for all large t) = 1, or more generally, if X(t) becomes locally extinct with
probability one, that is, Pμ(X(t,B) = 0 for all large t) = 1, for each bounded B ⊂ R

d , then x0 ∈ R if and only if
x0 ∈ Rt for sufficiently large t . Thus, we have:

If X(t) suffers local extinction with probability one, and if

the compact support property holds for X(t) on R
d , then

Pμ(X hits x0) > 0 if and only if there exists a t > 0 such that

Pμ(
⋃

0�s�t

supp(X(s)) is not compactly embedded in R
d − {x0}) > 0. (1.6)

Now although we have assumed in this paper that the underlying state space is R
d , everything goes through just

as well on an arbitrary domain D ⊂ R
d [10]. Of course now, the compact support property is defined with respect to

the domain D, and the underlying diffusion will explode if it hits ∂D or runs out to ∞ in finite time. In particular,
Theorem EP1 still holds with R

d replaced by D [10].
In light of the above observations, consider a measure-valued process X(t) corresponding to the log-Laplace equa-

tion (1.2) on R
d with d � 2. The underlying diffusion process Y(t) on R

d corresponds to the operator L on R
d . Let

Ŷ (t) denote the diffusion process on the domain D = R
d − {x0} with absorption at x0 and corresponding to the same

operator L. (Note that if x0 is polar for Y(t), then Y(t) and Ŷ (t) coincide when started from x �= x0. In fact, x0 is
always polar under the assumptions we have placed on the coefficients of L [5].) Let X̂(t) denote the measure-valued
process corresponding to the log-Laplace equation (1.2), but with R

d replaced by D = R
d −{x0}. It follows from (1.6)

that if X(t) suffers local extinction with probability one, and if the compact support property holds for X(t) on R
d ,

then the measure-valued process X(t) hits the point x0 with positive probability if and only if X̂(t) on R
d − {x0} does

not possess the compact support property. Furthermore, the above discussion shows that even if X(t) does not suffer
local extinction with probability one, a sufficient condition for X(t) to hit the point x0 with positive probability is that
X̂(t) on R

d − {x0} does not possess the compact support property. Similarly, even if the compact support property
does not hold for X(t) on R

d , a necessary condition for X(t) to hit the point x0 with positive probability is that X̂(t)

on R
d − {x0} does not possess the compact support property.

A similar analysis can be made when d = 1. The process X̂(t) above must be replaced by two processes, X̂+(t)

and X̂−(t), defined respectively on (x0,∞) and (−∞, x0). The claim in italics above then holds with the requirement
on X̂(t) transferred to both X̂+(t) and X̂−(t). In the sequel, we will assume that d � 2.

Consider now the following semi-linear equation in the punctured space R
d − {0}.

ut = 1

2

u − up in

(
R

d − {0}) × (0,∞);
u(x,0) = 0 in R

d − {0};
u � 0 in

(
R

d − {0}) × [0,∞).

(1.7)

By Theorem EP1, the measure-valued process corresponding to the semi-linear equation

ut = 1

2

u − up in R

d − {0}
will possess the compact support property if and only if (1.7) has a nontrivial solution. The following theorem was
recently proved directly in [15]; in fact it is a particular case of a more general result in [1].
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Theorem BP. Let p > 1 and d � 2.

1. If d <
2p

p−1 , then there exists a nontrivial solution to (1.7).

2. If d � 2p
p−1 , then there is no nontrivial solution to (1.7).

Remark. In Theorem BP, p > 1 is unrestricted, even though of course there is no probabilistic import when p > 2.

The following result will be proved by the method used in [15] to prove Theorem BP.

Theorem 4. Let p > 1 and d � 2. Let X(t) denote the measure-valued process on the punctured space R
d − {0}

corresponding to the semi-linear equation ut = 1
2
u+βu−up in (Rd −{0})×(0,∞). Consider the Cauchy problem

ut = 1

2

u + βu − up in

(
R

d − {0}) × (0,∞);
u(x,0) = 0 in R

d − {0};
u � 0 in

(
R

d − {0}) × [0,∞).

(1.8)

Assume that

d <
2p

p − 1
.

Let

β0 = d(p − 1) − 2p

(p − 1)2
< 0.

(1) If

β(x) � β0 + κ

|x|2 , for some κ ∈ (0,−β0],
then there exists a nontrivial solution to (1.8); hence, the compact support property does not hold for X(t).

(2) If

lim sup
x→0

|x|2β(x) < β0,

then there is no nontrivial solution to (1.8); hence, the compact support property holds for X(t).

Remark. The restriction κ � −β0 is made to ensure that β is bounded from above.

We have the following corollary of Theorem BP and Theorem 4.

Corollary 1. Let X(t) denote the measure-valued process on all of R
d , d � 2, corresponding to the semi-linear

equation

ut = 1

2

u + βu − up in R

d × (0,∞).

(1) If β is bounded from below and d <
2p

p−1 , then X(t) hits a fixed point x0 with positive probability;

(2) If β � 0 and d � 2p
p−1 , then X(t) hits a fixed point x0 with probability 0;

(3) If β � 0, d <
2p

p−1 and β has a singularity at the origin such that

lim sup
x→0

|x|2β(x) <
d(p − 1) − 2p

(p − 1)2
,

then X(t) hits 0 with probability 0.
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Proof. When β = 0, part (1) follows immediately from Theorem BP, Theorem EP1, the discussion preceding The-
orem BP and the fact that the compact support property holds for X(t) on R

d . For the general case one appeals to
Theorem 2, which holds just as well for a punctured space. (Recall that we are always assuming in this paper that β is
bounded.)

When β = 0, it is well known that the super-Brownian motion in the statement of the corollary suffers extinction
with probability one. By comparison, this also holds when β � 0 [10]. Thus, part (2) follows from Theorem BP,
Theorem EP1 and the discussion preceding Theorem BP, while part (3) follows from Theorem 4, Theorem EP1 and
the discussion preceding Theorem BP. �
Remark 1. When β = 0, the results in parts (1) and (2) of Corollary 1 state that critical, super-Brownian motion hits
a point with positive probability if d <

2p
p−1 , and with zero probability if d � 2p

p−1 . This result can be found in [4] for
the case p = 2. For p ∈ (1,2], it can be found in [6] or in [8], which exploit the method of removable singularities
for elliptic equations, developed in [2] and [17]. The approach here is via the parabolic equation, which is more in the
line of the approach used in [7] for the study of space–time polar sets.

Remark 2. Theorem BP gives an example where the measure-valued process does not possess the compact support
property even though the underlying diffusion process does not explode. Indeed, the underlying diffusion is Brownian
motion in R

d −{0}. Since singletons are polar for multi-dimensional Brownian motion, this process does not explode.
However for d <

2p
p−1 , the compact support property fails for the measure-valued process.

Remark 3. In order to obtain an example of the phenomenon occurring in Remark 2 when the state space is the whole
space, and in order to see how the parameter p and the mass creation parameter β can affect the compact support
property when the state space is the whole space, we convert the set-up in Theorem 4 and Theorem BP to the state
space R = (−∞,∞) by considering just the radial variable, r = |x|, and then making a change of variables, say,

z = 1
r

− r . One obtains an operator L = 1
2a(z) d2

dz2 + b(z) d
dz

on R, where

a(z) ∼ z4 as z → ∞, lim
z→−∞a(z) = 1;

b(z) ∼ 3 − d

2
z3, as z → ∞, lim

z→−∞b(z) = 0.

Also, one has α = 1. One has β = 0 in Theorem BP and one has

β(z) � 4(β0 + κ)

((z2 + 4)1/2 − z)2
in part (1) of Theorem 4, (1.9a)

lim sup
z→∞

1

4

((
z2 + 4

)1/2 − z
)2

β(z) < β0 in part (2) of Theorem 4. (1.9b)

It follows then that lim infz→∞ β(z)/z2 � β0 + κ in part (1) of Theorem 4 and lim supz→∞ β(z)/z2 < β0 in part (2)
of Theorem 4.

Consider first the phenomenon mentioned in Remark 2 with regard to Theorem BP. After the change of variables,
the state space is R and the operator L on R depends on the parameter d . The one-dimensional diffusion corresponding
to L is nonexplosive for all d � 2, as it inherits this property from the original process before the change of variables.
Also α = 1 and β = 0. However, if d <

2p
p−1 , then the compact support property fails. (Another example of this

phenomenon was presented in Remark 2 following Theorem EP3.)
With the same setup as in the previous paragraph, we also see how the parameter p affects the compact support

property—the property will hold if and only if p � d
d−2 .

Now consider the above change of variables applied to Theorem 4. We see that if d <
2p

p−1 , then β affects the com-
pact support property—it holds if β satisfies (1.9b) and does not hold if β satisfies (1.9a). As Theorem 2 guarantees,
an unbounded change in β was needed to effect a change in the compact support property.

Theorems 1, 2 and 4 will be proved successively in the sections that follow.
We now turn to an intuitive probabilistic understanding of the role of the branching in Theorem 1. We recall the

particle process approximation to the measure-valued process in the case that α and β are bounded. Consider first the
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case p = 2, the case in which the offspring distribution has finite variance. Let R̂
d = R

d ∪ {Δ} denote the one-point
compactification of R

d . One may consider the diffusion process Y(t) to live on R̂
d ; if Y(t) does not explode, then it

never reaches Δ, while if Y(t) does explode, then it enters the state Δ upon leaving R
d , and remains there forever.

For each positive integer n, consider Nn particles, each of mass 1
n

, starting at points y
(n)
i (0) ∈ R

d , i = 1,2, . . . ,Nn,
and performing independent branching diffusion according to the process Y(t), with branching rate cn, c > 0, and
spatially dependent branching distribution {p(n)

k (y)}∞k=0, where

∞∑
k=0

kp
(n)
k (y) = 1 + γ (y)

n
+ o

(
1

n

)
, as n → ∞;

∞∑
k=0

(k − 1)2p
(n)
k (y) = m(y) + o(1), as n → ∞, uniformly in y,

with m,γ ∈ Cα(Rd) and m(y) > 0. Let Nn(t) denote the number of particles alive at time t and denote their positions
by {Y (n)

i (t)}Nn(t)
i=1 . Denote by MF (Rd) (MF (R̂d)) the space of finite measures on R

d (R̂d ). Define an MF (R̂d)-

valued process Xn(t) by Xn(t) = 1
n

∑Nn(t)
1 δ

Y
(n)
i (t)

(·). Note that Xn is càdlàg. Denote by P (n) the probability measure

corresponding to {Xn(t), 0 � t < ∞} on D([0,∞),MF (R̂d)), the space of càdlàg paths with the Skorohod topology.
Assume that m(y) and γ (y) are bounded from above. One can show that if w − limn→∞ Xn(0) = μ ∈

MF (Rd), then P ∗
μ = w − limn→∞ P (n) exists in D([0,∞),MF (R̂d)). Furthermore, the measure P ∗

μ restricted to

D([0,∞),MF (Rd)) satisfies (1.1) and (1.2) with β(y) = cγ (y), α(y) = 1
2cm(y) and p = 2 (see [10]). Denoting this

restriction by P ∗
μ|Rd , it then follows that Pμ = P ∗

μ|Rd . In fact, one can show that Pμ is supported on the space of
continuous paths, C([0,∞),MF (Rd)).

One should think of β and α as the mass creation and the variance parameters respectively of the branching.
For the case that p ∈ (1,2), one cooks up a sequence of distributions {p(n)

k (y)}∞n=1 for which the generating func-

tions Φ(n)(s;y) = ∑∞
k=0 p

(n)
k (y)sy satisfy limn→∞ np(Φ(n)(1− λ

n
;y)− (1− λ

n
)) = α(y)λp −β(y)λ. These offspring

distributions {p(n)
k (y)}∞n=1 will possess all moments smaller than p. Again, β can be thought of as the mass creation

parameter. As above, each particle is given mass 1
n

, but in the present case, the branching rate is np−1. The same
construction and conclusion as above holds, although in this case the paths are not continuous, but only càdlàg [7].

With the above set-up, we can now give some intuition concerning Theorem 1. Consider two particular cases of the
above construction. In both cases we will assume that at time 0 there are n particles, all positioned at y = 0; that is,
Nn = n and y

(n)
i = 0, for i = 1,2, . . . n. Then the initial measure, both for the approximating process and the limiting

one, will be μ = δ0. We will also assume that the diffusion Y(t) does not explode.
The first case is the completely trivial case in which there is no branching at all. This degenerate case corresponds

to β = α = 0 (and thus does not actually fit into the above set-up). In this case, Xn(t) is a random probability measure
with n atoms of mass 1

n
positioned at n IID points, distributed according to the distribution of Y(t). Thus, by the law of

large numbers, X(t) = w − limn→∞ Xn(t) is the deterministic measure dist(Y (t)). Since dist(Y (t)) is not compactly
supported for t > 0, it follows that the compact support property does not hold for X(t) in this trivial case.

Now consider the case of critical, binary branching; that is, p
(n)
0 = p

(n)
2 = 1

2 . Letting c = 1, it then follows that
β = 0 and α = 1

2 . In this case, it is well known that for any s < 1, if one lets pn(s,M) denote the probability that
all the mass at time 1 in the approximate measure-valued process Xn(·) descends from no more than M ancestors
alive at time s, then limM→∞ limn→∞ pn(s,M) = 1. Thus, since all the particles alive at time 1 are coming from a
finite number of ancestors at any time s, these particles are correlated, and the law of large numbers does not apply,
allowing for compact support property to hold.

The above discussion suggests that one way for the compact support property to break down is for the branching
mechanism to be spatially dependent and to decay sufficiently fast as |x| → ∞ so that the law of large numbers
will come into play. Furthermore, the faster the diffusion is, the more quickly individual particles that begin together
become statistically uncorrelated, so one might expect that the stronger the diffusion, the weaker the threshold on the
decay rate in order for the compact support property to break down. If the diffusion process Y(t) corresponds to the
operator L = 1

2 (1 + |x|)m
, for m ∈ [0,2], then for m = 0 one obtains Brownian motion, while for m ∈ (0,2], one
obtains a time-changed Brownian motion with the diffusion sped up, the speed increasing in m. Theorem 1 shows
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that for such an underlying diffusion, for any ε > 0, the rate exp(−|x|2−m+ε) is sufficiently fast to cause the compact
support property to fail, but the rate exp(−|x|2−m) is not fast enough.

2. Proof of Theorem 1

To make the calculations simpler, we will prove the theorem in the case that L = A(x)
, where C−1
0 (1 + |x|)m �

A(x) � C0(1 + |x|)m, for some m ∈ [0,2]. The general case follows in the same fashion.
Proof of part (1). Let u(x, t) be any solution of (1.2) with initial data g = 0. By Theorem EP1, we need to show

that u ≡ 0. Define Û (x, t) through the equality u(x, t) = Û (x, t) exp(λ(1 + |x|2)(2−m)/2(t + δ)), for some λ, δ > 0.
Then

exp
(−λ

(
1 + |x|2)(2−m)/2

(t + δ)
)
A(x)
u

= A(x)
(

Û + 2λ(2 − m)

(
1 + |x|2)−m/2

(t + δ)x · ∇Û
) + A(x)

(
(t + δ)2λ2(2 − m)2(1 + |x|2)−m|x|2

+ (t + δ)λd(2 − m)
(
1 + |x|2)−m/2 − (t + δ)λ(2 − m)m

(
1 + |x|2)−m/2−1|x|2)Û . (2.1)

Also, using the bound on α in the statement of the theorem, we have

exp
(−λ

(
1 + |x|2)(2−m)/2

(t + δ)
)(

βu − αup − ut

)
= (

β − λ
(
1 + |x|2)(2−m)/2)

Û − α exp
(
(p − 1)λ

(
1 + |x|2)(2−m)/2

(t + δ)
)
Ûp. (2.2)

Since u is a solution to (1.2), the sum of the left-hand sides of (2.1) and (2.2) is equal to 0. Consider now the sum
of the terms on the right-hand sides of (2.1) and (2.2) with the variable t restricted by 0 � t � δ. By assumption,
α(x) � C1 exp(−C2|x|2−m). Thus, the coefficient of Ûp will be bounded away from 0 if

λδ = C2

p − 1
. (2.3)

In the case that m = 2, the coefficient of Û is bounded from above. Otherwise, the two unbounded terms in the
coefficient of Û are A(x)(t + δ)2λ2(2 − m)2(1 + |x|2)−m|x|2 and −λ(1 + |x|2)(2−m)/2. By assumption, there exists a
C4 > 0 such that A(x) � C4(1+|x|2)m/2. Thus, in order to guarantee that the coefficient of Û is bounded from above,
it suffices to have λ = C4(2δ)2λ2(2 − m)2. Using (2.3) to substitute for (λδ)2 on the right-hand side above, we have

λ = 4C4(2 − m)2C2
2(p − 1)−2. (2.4)

With λ and δ chosen as in (2.3) and (2.4), it then follows

A(x)
(

Û + 2λ(2 − m)

(
1 + |x|2)−m/2

(t + δ)x · ∇Û
) + c1Û − c2Û

p � 0,

for (x, t) ∈ R
n × [0, δ], for some c1, c2 > 0. (2.5)

Let MR,K(x, t) = (1 + |x|)2/(p−1)(R − |x|)−2/(p−1) exp(K(t + 1)), for (x, t) ∈ BR × (0,∞). In [11, Proof of
Theorem 2], it was shown that for any operator L satisfying the conditions of Theorem EP2, there exists a K > 0 such
that for all R > 0

LMR,K(x, t) � 0, (x, t) ∈ BR × (0,∞), (2.6)

where BR denotes the ball of radius R centered at the origin. In particular the operator

A = A(x)
(

 + 2λ(2 − m)

(
1 + |x|2)−m/2

(t + δ)x · ∇)
satisfies the conditions of Theorem EP2, except for the fact that it is time inhomogeneous. The time inhomogeneity
causes no problem since we are only considering t ∈ [0, δ] and since for fixed x, everything in sight is uniformly
bounded for t ∈ [0, δ]. Thus the proof of (2.6) shows that

AMR,K(x, t) � 0, (x, t) ∈ BR × (0, δ]. (2.7)

Since 0 = Û (x,0) � MR,K(x,0) and Û (y, t) � MR,K(y, t) = ∞, for y ∈ ∂BR , it follows from (2.5), (2.7) and the
maximum principle for semi-linear equations [11, Proposition 1] that

Û (x, t) � MR,K(x, t), for (x, t) ∈ BR × [0, δ]. (2.8)
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Letting R → ∞, we conclude that Û (x, t) = 0, for (x, t) ∈ R
d × (0, δ]. Thus, we also have u(x, t) = 0, for (x, t) ∈

R
d × [0, δ]. Since u satisfies a time homogeneous equation, we conclude that in fact u(x, t) = 0, for (x, t) ∈ R

d ×
[0,∞). This completes the proof of part (1).

Proof of part (2). By Theorem EP1, we need to show that there is a nontrivial solution to (1.2) with initial data
g = 0. Let u(x, t) be any solution of (1.2) with initial data g = 0. Define Û(x, t) through the equality u(x, t) =
Û (x, t) exp(λ(1 + |x|2)(2−m+κ)/2), where κ ∈ (δ, ε), and ε and δ are as in the statement of the theorem. Now (2.1)
and (2.2) hold with the following changes: (i) m is replaced by m − κ ; (ii) (t + δ) is replaced by 1; (iii) the term
λ(1 + |x|2)(2−m)/2 in (2.2) is deleted. As before, the sum of the left-hand sides of (2.1) and (2.2) is equal to 0. By
assumption, α(x) � C exp(−|x|2−m+ε). Thus, the coefficient of Ûp in the amended version of (2.2) is bounded from
above, since κ < ε. The coefficient of Û in the amended version of (2.2) is β , and by assumption, there exists a C5 > 0
such that β � −C5(1 + |x|2)(2−m+2δ)/2. The coefficient of Û in the amended version of (2.1) is

A(x)
(
λ2(2 − m + κ)2(1 + |x|2)−m+κ |x|2 + λd(2 − m + κ)

(
1 + |x|2)−(m−κ)/2

− λ(2 − m + κ)(m − κ)
(
1 + |x|2)−(m−κ)/2−1|x|2).

By assumption, there exists a C3 > 0 such that A(x) � C3(1 + |x|2)m/2. It is easy to check that by choosing λ

sufficiently large, the factor multiplying A(x) above will be bounded from below by (2C5/C3)(1 + |x|2)(2−2m+2κ)/2.
(For |x| � 1

2 , use the second term in the parentheses, and for |x| > 1
2 use the first and third terms.) Thus, the coefficient

of Û in the amended version of (2.1) is greater or equal to 2C5(1 + |x|2)(2−m+2κ)/2. Since κ > δ, it follows that the
coefficient of Û from the sum of the right-hand sides of (2.1) and (2.2) is bounded below by a positive constant.

The above analysis shows that Û satisfies the equation

Ût = A(x)
(

Û + 2λ(2 − m + κ)

(
1 + |x|2)−(m−κ)/2

x · ∇Û
) + β̂Û − α̂Ûp;

Û(x,0) = 0,
(2.9)

where β̂ � C6 > 0 and α̂ � C7, and that uniqueness for the original equation is equivalent to uniqueness for (2.9). We
will show below that the diffusion process corresponding to the operator

A(x)
(

 + 2λ(2 − m + κ)

(
1 + |x|2)−(m−κ)/2

x · ∇)
explodes. Thus, it follows from Theorem EP4 that uniqueness does not hold for (2.9). Consequently, uniqueness does
not hold for the original equation with initial data g = 0; thus, by Theorem EP1, the compact support property does
not hold.

It remains to show that the diffusion corresponding to the operator A(x)(
+2λ(2−m+κ)(1+|x|2)−(m−κ)/2x ·∇)

explodes. The diffusion in question is a time change of the diffusion corresponding to


 + 2λ(2 − m + κ)
(
1 + |x|2)−(m−κ)/2

x · ∇.

It is not hard to show that since A(x) � C3(1 + |x|2)m/2, explosion will occur for the diffusion in question if it occurs
for the diffusion corresponding to the operator

C3
(
1 + |x|2)m/2(


 + 2λ(2 − m + κ)
(
1 + |x|2)−(m−κ)/2

x · ∇)
.

This latter operator is radially symmetric, and its radial component is of the form p(r) d2

dr2 + q(r) d
dr

, with p(r) sat-

isfying c1(1 + r)m � p(r) � c2(1 + r)m, for all r � 0, and q(r) satisfying c3(1 + r)1+κ � q(r) � c4(1 + r)1+κ , for
r > 1, where c1, c2, c3, c4 > 0. This diffusion explodes by the Feller criterion [14, Theorem 5.1.5]. �
3. Proof of Theorem 2

Proof. By assumption, there exists a B > 0 such that β2 � β1 + B . For i = 1,2, consider the following parabolic
equations:

ut = Lu + βiu − αup on R
d × (0,∞);

u(x,0) = 0, x ∈ R
d;

u � 0.

(3.1)
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To prove the theorem it suffices to show that if (3.1) has a non-zero solution when βi = β2, then it also has a non-zero
solution when βi = β1.

Suppose to the contrary that a non-zero solution to (3.1) exists when βi = β2 but not when βi = β1. Let Bm denote
the ball of radius m centered at the origin in R

d . For i = 1,2, consider the functions u
(i)
m , m = 1,2, . . . (constructed in

[10] for p = 2; see also [11] for p ∈ (1,2]), where u
(i)
m solves the equation

∂um

∂t
= Lum + βiu − αu

p
m on Bm × (0,∞);

lim
x→∂Bm

um(x, t) = ∞, t > 0;
um(x,0) = 0, x ∈ R

d;
um � 0.

(3.2)

Since we have assumed that when βi = β1, the only solution to (3.1) is the zero function, it follows from the construc-
tion in [10,11], that

lim
m→∞u(1)

m = 0. (3.3)

The same construction shows that since we have assumed that there exists a non-zero solution to (3.1) when βi = β2,
we have

lim
m→∞u(2)

m �= 0. (3.4)

Define vm(x, t) = eBtu
(1)
m (x, t) on Bm × (0,∞). Using the fact that B > 0 and p > 1 along with (3.2) gives

Lvm + β2vm − v
p
m − ∂vm

∂t
� Lvm + (β1 + B)vm − v

p
m − ∂vm

∂t
� 0. (3.5)

We have the boundary and initial conditions

lim
x→∂Bm

vm(x, t) = ∞, t > 0;
vm(x,0) = 0, x ∈ Bm.

(3.6)

Then an application of the semi-linear parabolic maximum principle [11, Proposition 1] gives

vm � u(2)
m . (3.7)

(In fact, one has compare vm to u
(2)
n,m, where u

(2)
n,m is the minimal nonnegative solution to the inhomogeneous semi-

linear equation

∂u
(2)
n,m

∂t
= Lu(2)

n,m + β2u
(2)
n,m − α

(
u(2)

n,m

)p − ψn,m on B2m × (0,∞);
u(2)

n,m(x,0) = 0, x ∈ B2m;
u(2)

n,m � 0,

and 0 � ψn,m � n is a function on R
d vanishing on Bm and equal to n on {x ∈ R

d | dist(x,Bm) � 1/n}. One has
u

(2)
m = limn→∞ u

(2)
n,m. See the proof of [10, Theorem 3.4] for more elaboration; see also [11].)

By (3.3) and the definition of vm, we have

lim
m→∞vm = 0;

thus, by (3.7) we have

lim
m→∞u(2)

m = 0,

which contradicts (3.4). �
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4. Proof of Theorem 4

Proof of part (1). We will show that uniqueness does not hold for (1.8). Then by Theorem EP1, the compact
support property does not hold. By the comparison result stated after the proof of Theorem EP3, we may assume
that β = (β0 + κ)/|x|2. Since the problem is now radially symmetric, it suffices to show that there exists a nontrivial
solution to the radially symmetric equation

ut = 1

2
urr + d − 1

2r
ur + β0 + k

r2
u − up, r ∈ (0,∞), t > 0;

u(r,0) = 0, r ∈ (0,∞);
u � 0, r ∈ (0,∞), t � 0.

(4.1)

The function W(x) = κ1/(p−1)r−2/(p−1) is a positive, stationary solution of the parabolic equation ut = 1
2urr +

d−1
2r

ur + β0+κ

r2 u − up in (0,∞). By [15, Theorem 2-ii], the fact that there exists a nontrivial positive, stationary
solution guarantees that uniqueness does not hold for the corresponding parabolic equation with initial data 0; that is,
uniqueness does not hold for (4.1). Actually, the result in [15] is for equations with domain R

d , d � 1, whereas the
domain here is (0,∞). One can check that the proof also holds in a half space, but more simply, one can make the
change of variables z = 1

x
− x, which converts the problem to all of R.

Proof of part (2). We will show that uniqueness holds for (1.8). Then by Theorem EP1, the compact support
property holds. For ε and R satisfying 0 < ε < 1 and R > 1, and for some l ∈ (0,1], define

φR,ε(x) = ((|x| − ε
)(

R − |x|))−2/(p−1)(1 + |x|)2/(p−1)
(

1 + εl

|x|l R
2/(p−1)

)
. (4.2)

Also, for R and ε as above, and some γ > 0, define

ψR,ε(x, t) = φR,ε(x) exp
(
γ (t + 1)

)
. (4.3)

Note that ψR,ε(x,0) > 0, for |x| ∈ (ε,R), and ψR,ε(x, t) = ∞, for |x| = ε and |x| = R. We will show that for all
sufficiently large R and all sufficiently small ε, and for γ sufficiently large and l sufficiently small, independent of
those R and ε, one has

1

2

ψR,ε + βψR,ε − ψ

p
R,ε − (ψR,ε)t � 0, for ε < |x| < R and t > 0. (4.4)

It then follows from the maximum principle for semi-linear equations [11, Proposition 1] that every solution u(x, t)

to (1.8) satisfies

u(x, t) � ψR,ε(x, t), for ε < |x| < R and t ∈ [0,∞). (4.5)

Substituting (4.2) and (4.3) in (4.5), letting ε → 0, and then letting R → ∞, we conclude that u(x, t) ≡ 0. Thus, it
remains to show (4.4).

From now on we will use radial coordinates, writing φ(r) for φ(x) with |x| = r and similarly for ψ . We have

exp
(−γ (t + 1)

)
(ψR,ε)r

= −
(

2

p − 1

)(
(r − ε)(R − r)

)−2/(p−1)−1
(R + ε − 2r)(1 + r)2/(p−1)

(
1 + εl

rl
R2/(p−1)

)

+
(

2

p − 1

)(
(r − ε)(R − r)

)−2/(p−1)
(1 + r)2/(p−1)−1

(
1 + εl

rl
R2/(p−1)

)

− l
(
(r − ε)(R − r)

)−2/(p−1)
(1 + r)2/(p−1) εl

R2/(p−1), (4.6)

rl+1
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and

exp
(−γ (t + 1)

)(
(r − ε)(R − r)

)−2/(p−1)−2
(

1

2
ψR,ε

)
rr

=
(

1

p − 1

)(
2/(p − 1) + 1

)
(R + ε − 2r)2(1 + r)2/(p−1)

(
1 + εl

rl
R2/(p−1)

)

+
(

2

p − 1

)
(r − ε)(R − r)(1 + r)2/(p−1)

(
1 + εl

rl
R2/(p−1)

)

−
(

2

p − 1

)2

(r − ε)(R − r)(R + ε − 2r)(1 + r)2/(p−1)−1
(

1 + εl

rl
R2/(p−1)

)

+ l

(
2

p − 1

)
(r − ε)(R − r)(R + ε − 2r)(1 + r)2/(p−1) εl

rl+1
R2/(p−1)

+
(

1

p − 1

)(
2

p − 1
− 1

)(
(r − ε)(R − r)

)2
(1 + r)2/(p−1)−2

(
1 + εl

rl
R2/(p−1)

)

− l

(
2

p − 1

)(
(r − ε)(R − r)

)2
(1 + r)2/(p−1)−1 εl

rl+1
R2/(p−1)

+ l(l + 1)

2

(
(r − ε)(R − r)

)2
(1 + r)2/(p−1) ε

rl+2
R2/(p−1). (4.7)

Using (4.3), (4.6) and the fact that 2
p−1 + 2 = 2p

p−1 , we have

exp
(−γ (t + 1)

)(
(r − ε)(R − r)

)−2/(p−1)−2
(

d − 1

2r
(ψR,ε)r + βψR,ε − ψ

p
R,ε − (ψR,ε)t

)

= −
(

2

p − 1

)
d − 1

2r
(r − ε)(R − r)(R + ε − 2r)(1 + r)2/(p−1)

(
1 + εl

rl
R2/(p−1)

)

+
(

2

p − 1

)
d − 1

2r

(
(r − ε)(R − r)

)2
(1 + r)2/(p−1)−1

(
1 + εl

rl
R2/(p−1)

)

− l
d − 1

2r

(
(r − ε)(R − r)

)2
(1 + r)2/(p−1) εl

rl+1
R2/(p−1)

+ (β − γ )
(
(r − ε)(R − r)

)2
(1 + r)2/(p−1)

(
1 + εl

rl
R2/(p−1)

)

− (1 + r)2p/(p−1)

(
1 + εl

rl
R2/(p−1)

)p

exp
(
(p − 1)γ (t + 1)

)
. (4.8)

We will show that for all sufficiently large R and sufficiently small ε, and for sufficiently large γ and sufficiently
small l, independent of those R and ε, the sum of the right-hand sides of (4.7) and (4.8) is non-positive. This will then
prove (4.4).

We will denote the seven terms on the right-hand side of (4.7) by J1 − J7, and the five terms on the right-hand
side of (4.8) by I1 − I5. Note that the terms that are positive are J1, J2, J4, J5, J7 and I2. (Since β is bounded from
above, I4 is negative for γ sufficiently large.) In what follows, M will denote a positive number that can be made
as large as one desires by choosing γ sufficiently large. Consider first those r satisfying r � cR, where c is a fixed
positive number. For r in this range, we have |I5| � MR2/(p−1)+2(1 + εlR2/(p−1)−l ). It is easy to see that for M

sufficiently large, |I5| dominates each of the positive terms, uniformly over large R and small ε, and thus (since M

can be made arbitrarily large) also the sum of all of the positive terms. Now consider those r for which δ0 � r � C,
for some constants 0 < δ0 < C. For r in this range, we have |I4| � MR2(1 + εlR2/(p−1)), and it is easy to see that
for M sufficiently large, |I4| dominates each of the positive terms, uniformly over large R and small ε, and thus, also
the sum of all of the positive terms. One can also show that the transition from r of order unity to r of order R causes
no problem. Thus, we conclude that for any fixed δ0 > 0, for all l ∈ (0,1] and γ sufficiently large, the sum of the
right-hand sides of (4.7) and (4.8) is negative for all large R and small ε.
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We now turn to the case that ε � r � δ0. (Note that at r = ε, all the terms vanish except J1 and I5. Using the fact
that 2

p−1 + 2 = 2p
p−1 , it is easy to see that for sufficiently large γ , |I5(ε)| dominates J1(ε), uniformly over all large R

and small ε. However, when r is small, but on an order larger than ε, the analysis becomes a lot more involved.) In
the sequel, whenever we say that a condition holds for γ or M sufficiently large, or for l sufficiently small, we mean
that it holds independent of R and ε.

Clearly, J5 � |I4| if γ is sufficiently large. We now show that for γ sufficiently large, J2 � |I4|+|I5|, for ε � r � δ0.
(We are reusing |I4| here. Later we will reuse |I5|. This is permissible because γ can be chosen as large as we like.)
To show this inequality, it suffices to show that for M sufficiently large,

(r − ε)R � M(r − ε)2R2 + M

(
1 + εl

rl+1
R2/(p−1)

)p−1

, for r ∈ [ε, δ0]. (4.9)

A trivial calculation shows that the left-hand side of (4.9) is less than the first term on the right-hand side if r � ε+ 1
RM

.
If r ∈ [ε, ε + 1

RM
], then the left-hand side of (4.9) is less than or equal to 1

M
while the second term on the right-hand

side is greater than M . We conclude that (4.9) holds with M � 1.
Since I2 has the factor (r − ε)2, while I1 has the factor (r − ε), and since R−r

R+ε−2r
can be made arbitrarily close to

one by choosing R sufficiently large, it follows that for any η > 0, we can guarantee that I2 � η|I1|, for r ∈ [ε, δ0],
if we choose δ0 sufficiently small. Note that J4 � 2l

d−1 |I1|. Thus, given any ζ > 0, if we choose δ0 and l sufficiently
small, we will have I2 + J4 � ζ |I1|.

To complete the proof, we will show that

J1 + J7 + (1 − ζ )I1 + I4 + I5 � 0, for r ∈ [ε, δ0], (4.10)

for sufficiently large γ and sufficiently small l and δ0, uniformly over large R and small ε. By the assumption on β ,
there exists an η0 > 0 such that if δ0 is chosen sufficiently small, then

I4 � (β0 − η0)

(
1 − ε

r

)2

(R − r)2(1 + r)2/(p−1)

(
1 + εl

rl
R2/(p−1)

)
, for r ∈ [ε, δ0], (4.11)

where β0 is as in the statement of the theorem. Since R+ε−2r
R−r

can be made arbitrarily close to one by choosing R

sufficiently large, we also have

I1 � −
(

d − 1

p − 1
− η0

2

)(
1 − ε

r

)
(R − r)2(1 + r)2/(p−1)

(
1 + εl

rl
R2/(p−1)

)
, for r ∈ [ε, δ0]. (4.12)

Since

J7 = l(l + 1)

2

(
(r − ε)(R − r)

)2
(1 + r)2/(p−1) εl

rl+2
R2/(p−1)

� l(l + 1)

2
(R − r)2(1 + r)2/(p−1) ε

l

rl
R2/(p−1),

and since R−r
R+ε−2r

can be made arbitrarily close to one by choosing R sufficiently large, it follows that for any τ > 0,
we can choose l sufficiently small so that

J7 � τJ1, r ∈ [ε, δ0], (4.13)

uniformly over large R and small ε. Using (4.11)–(4.13) along with the fact that

J1 � p + 1

(p − 1)2
(R − r)2(1 + r)2/(p−1)

(
1 + εl

rl
R2/(p−1)

)

and that β0 = d(p−1)−2p

(p−1)2 , it follows that

J1 + J7 + (1 − ζ )I1 + I4 �
(

τ(p + 1) + ζ(d − 1)(p − 1)

(p − 1)2
− η0

(
1

2
+ ζ

2

)
+ C

ε

r

)

× (R − r)2(1 + r)2/(p−1)

(
1 + εl

l
R2/(p−1)

)
, for r ∈ [ε, δ0], (4.14)
r
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for some C > 0, uniformly over large R and small ε. By picking τ and ζ sufficiently small, we have

τ(p + 1) + ζ(d − 1)(p − 1)

(p − 1)2
− η0

(
1

2
+ ζ

2

)
< 0.

Thus, in order to show (4.10), it suffices to show that

ε

r
R2 � M

(
1 + εl

rl
R2/(p−1)

)p−1

, r ∈ [ε, δ0], (4.15)

for sufficiently large M . But since l(p − 1) � 1, the right-hand side of (4.15) is greater or equal to M ε
r
R2. �
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