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Abstract

The paper provides a complete description of the Martin entrance boundary and its minimal elements for a Galton–Watson
process (Zn)n�0. Since this is easily done and known for critical processes, we deal with the noncritical case which in turn can be
reduced to the subcritical one. The Martin entrance boundary consists of all quasi-invariant Radon measures. The minimal Martin
entrance boundary is isomorphic to [0,1) as a torus. Every element of the minimal Martin entrance boundary is uniquely identified
through its generating function. These minimal quasi-invariant measures are the extremals in the simplex of quasi-invariant Radon
measures. We provide explicitly the Martin topology in the set of potentials. All this is done via the Martin kernel approach and
under no additional assumption on (Zn)n�0. In particular, we do not require the (L logL)-condition EZ1 logZ1 < ∞.
© 2005 Elsevier SAS. All rights reserved.

Résumé

Cet article fournit une description complète de la frontière d’entrée de Martin et de ses éléments minimaux pour un processus
de Galton–Watson (Zn)n�0. Comme ceci est facilement fait et bien connu pour des processus critiques, nous traitons seulement le
cas non-critique qui peut à son tour être réduit au cas sous-critique. La frontière d’entrée de Martin consiste en toutes les mesures
de Radon quasi-invariantes, et la frontière d’entrée minimale est isomorphe à l’intervalle [0,1) considéré comme un cercle. Chaque
élément de la frontière d’entrée minimale est uniquement identifié par sa fonction génératrice. Ces mesures minimales et quasi-
invariantes sont les éléments extrêmes du simplexe des mesures de Radon quasi-invariantes. Nous déterminons explicitement la
topologie de Martin dans l’ensemble des potentiels. Notre démarche est basée sur les noyaux de Martin et n’utilise pas d’hypothèses
supplémentaires sur (Zn)n�0. En particulier, nous n’utilisons pas la condition (L logL) EZ1 logZ1 < ∞.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The simple Galton–Watson process (GWP) (Zn)n�0 is a temporally homogeneous Markov chain with state space
N0 = {0,1,2, . . .} and recursively defined as

Zn =
Zn−1∑
k=1

Xn,k, n � 1, (1.1)

where the Xn,k , k,n � 1, are i.i.d. integer-valued random variables with common distribution p = (pj )j�0. Zn de-
scribes the size of the n-th generation of a population in which individuals all have life span 1 and reproduce
independently according to p, called offspring distribution. (Zn)n�0 has (one step) transition probabilities

P(i, j)
def= P(Zn = j |Zn−1 = i) = P

(
i∑

k=1

Xn,k = j

)
= p∗n

j , i, j � 0,

where p∗n = (p∗n
j )j�0 denotes the n-fold convolution of p. The state 0 is absorbing and means extinction of the

population. It is a classic result (see e.g. [3]) that the extinction probability q
def= P(Zn = 0 eventually|Z0 = 1) given

one ancestor can be identified as the smallest fixed point in [0,1] of the generating function (g.f.) f (s)
def= ∑

j�0 pj s
j

of p, and that, unless p1 = 1, q < 1 holds iff the reproduction mean m
def= ∑

j�1 jpj is greater than 1 (supercritical
case). Hence extinction occurs almost surely in the critical (m = 1) and subcritical (m < 1) case. Note that P(Zn = 0
eventually|Z0 = i) = qi for all i � 0.

An invariant or stationary measure of (Zn)n�0 is a measure μ = (μj )j�0 on N0 satisfying∑
i�0

μiP (i, j) = μj , j � 0. (1.2)

We allow the μj to be ∞ and stipulate 0 · ∞ = ∞ · 0
def= 0 as usual. Note that the set I of all invariant measures

of (Zn)n�0 forms a convex cone (μ1,μ2 ∈ I ⇒ αμ1 + βμ2 ∈ I for all α,β � 0). Of primary interest are naturally
invariant Radon measures μ (which satisfy μj < ∞ for all j � 0). On the other hand, it was shown by Harris [4]
that μ = (1,0,0, . . .) is the only nontrivial invariant Radon measure (modulo multiplicative constants). Given this
negative result at the outset, a proper restatement of the problem is to ask for all quasi-invariant or quasi-stationary
Radon measures of (Zn)n�0 by which we mean any Radon measure η = (ηj )j�1 on the positive integers which
instead of (1.2) satisfies∑

i�1

ηiP (i, j) = ηj , j � 1. (1.3)

The set Q of all such measures forms again a convex cone. Since P(0, j) = 0 for all j � 1 we see that every invariant
Radon measure is also quasi-invariant when restricted to N. The simple observation that each η ∈ Q can be uniquely
identified with the stationary measure μ ∈ I , defined as

μ
def=(∞, η1, η2, . . .),

shows that, conversely, quasi-stationary measures may also be viewed as those solutions to (1.2) which are almost
Radon in that they possibly carry infinite mass only in one point, namely 0. It is further readily verified that other
solutions of this type do not exists unless p1 = 1. This trivial case as well as p0 = 1 is henceforth excluded.

The set Q, which is our main concern here, generally contains nontrivial elements. The classic monographs by
Athreya and Ney [3, Chapter II] and by Asmussen and Hering [2, Chapter III, Section 2] provide comprehensive
studies of Q but appear to be incomplete in various aspects. Indeed, somewhat surprisingly in view of the vast literature
on the simple GWP we were not able to find any reference where the problem of describing Q is solved in full
generality. This fact in combination with the following probabilistic interpretation of the elements of Q in case m � 1,
which played a key role in [1], provided a major motivation for the present work.
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Let P n(i, j) be the n-step transition function (P 0(i, j)
def= δij ),

G(i, j)
def=

∑
n�0

P n(i, j)

the associated Green function and τ
def= inf{n � 0: Zn = 0} the extinction time of (Zn)n�0. Note that f k

n , the k-th power

of the n-fold iteration of f , gives the g.f. of Zn under Pk
def= P(·|Z0 = k). Now, if (in)n�1 is such that in → ∞ and

ηj
def= limn→∞ G(in, j) < ∞ exists for each j � 1, then η = (ηj )j�1 constitutes a quasi-invariant measure normalized

by η̂(p0) = 1, where η̂(s)
def= ∑

j�1 ηj s
j denotes the g.f. of η. Quasi-invariance is ensured by

ηj = lim
n→∞

∑
k�0

P k(in, j) = lim
n→∞

∑
k�1

∑
i�1

P k−1(in, i)P (i, j)

=
∑
i�1

(
lim

n→∞
∑
k�1

P k−1(in, i)

)
P(i, j) =

∑
i�1

ηiP (i, j), j � 1

(the interchange of limit and summation being nontrivial but justified by the general theory), while normalization

follows from (f0(s)
def= s)∑

k�0

∑
j�1

P k(i, j)p
j

0 =
∑
k�0

(
f i

k+1(0) − f i
k (0)

) = 1, i � 1. (1.4)

An elementary computation shows that

lim
n→∞Pin (Zτ−1 = j) = lim

n→∞G(in, j)p
j

0 = ηjp
j

0 , j � 1,

whence (ηjp
j

0)j�1 is the limit law of Zτ−1 under Pin for n → ∞. This indicates that quasi-invariant measures,
suitably normalized, are directly connected to the limiting behavior of the GWP at the eve of extinction when the
number of ancestors increases to infinity in a suitable fashion. More generally, we showed in [1, Lemma 4.2] that the

finite dimensional distributions of (Zτ−k)k�0 under Pin (put Z−k
def= Z0 for k � 1) converge weakly to the respective

finite dimensional distributions of a Markov chain (Wn)n�0 with W0 = 0 and n-step transition probabilities

Qn(i, j)
def=

⎧⎪⎪⎨
⎪⎪⎩

0, if i = j = 0,

ηjPj (τ = n), if i = 0, j � 1,

ηjP
n(j, i)

ηi

, if i, j � 1,

n � 1. (1.5)

Based on Chapter II of Athreya and Ney’s monograph [3], which is still a standard source for potential theoretic
aspects of GWP, we continue with a collection of known facts about Q. Theorem II.1.2 in [3] tells us that a Radon
measure η = (ηj )j�1 on the integers is quasi-invariant iff its g.f. η̂(s) is analytic for |s| < q and satisfies

η̂
(
f (s)

) = η̂(p0) + η̂(s). (1.6)

In order to identify elements of Q that differ only by a multiplicative constant we must choose an appropriate normal-
ization and will later on use η̂(p0) = 1.

In the critical case m = 1 the problem of determining Q is completely settled by the following result due to
Papangelou [10]:

Theorem 1.1. If m = 1 there is a unique (up to multiplicative constants) quasi-invariant measure π = (πj )j�1. It has
infinite mass and can be obtained as

πj = lim
n→∞

P n(1, j)

P n(1, r)
, (1.7)

where r
def= inf{i � 1: pi > 0} and P n(1, j)/P n(1, r) is increasing in n.
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The same result appears in [3, Lemma I.7.2] for the case r = 1, i.e. p1 > 0. Existence and essential uniqueness of
π for general critical GWP were also proved by Seneta [11], but instead of (1.7) he obtained π as

πj = lim
n→∞

P1(Zn = j |τ = n + k)

f
j
k (0) − f

j

k−1(0)
(1.8)

which is independent of k ∈ N. Earlier versions under stronger assumptions on (pj )j�0 were given in [6] (f (s) < ∞
for some s > 1) and [8] (

∑
j�1 j2pj < ∞, see also [3, Theorem II.7.2]).

In view of the previous result we are left with the noncritical case m �= 1 and will next quickly argue that it suffices
herefore to restrict to the subcritical case m < 1.

Assuming first m > 1 and p0 = 0, we claim that the only quasi-invariant Radon measure is η ≡ 0. Indeed, since
P(i, j) = 0 for all i > j � 1 and P(i, i) < 1 for all i � 1, any quasi-invariant η = (ηj )j�1 satisfies η1 = η1P(1,1)

and thus η1 = 0. Now ηj = 0 for all j � 1 follows by induction.

If m > 1 and p0 > 0 then 0 < q < 1 and f ∗(s) def= q−1f (sq) defines the g.f. of the subcritical distribution p∗ =
(qj−1pj )j�0 with mean m∗ = f ′(q). It is known that a GWP (Z∗

n)n�0 with offspring distribution p∗ can be obtained
from a GWP (Zn)n�0 with offspring distribution p by counting only individuals with a finite line of descent in the
pertinent population, see [3, I.12]. The following known lemma is stated for completeness and provides a simple
one-to-one correspondence between the quasi-invariant Radon measures of (Zn)n�0 and those of (Z∗

n)n�0.

Lemma 1.2. Given the previous notation, a Radon measure η = (ηj )j�1 is quasi-invariant for (Zn)n�0 iff

η∗ def=(qjηj )j�1 is quasi-invariant for (Z∗
n)n�0.

Proof. Let η be quasi-invariant for (Zn)n�0 and w.l.o.g. η̂(p0) = 1. Using characterization (1.6) of quasi-invariance,
we obtain

η̂∗(f ∗(s)
) =

∑
j�1

ηjq
j

(
f (sq)

q

)j

= η̂
(
f (sq)

) = 1 + η̂(sq) = 1 + η̂∗(s)

and thus the quasi-invariance of η∗ for (Z∗
n)n�0 by another appeal to (1.6). �

Notice that (Z∗
n)n�0 is not only subcritical but also having moments of exponential order because its offspring

distribution p∗ has geometrically decreasing tails. Theorem 2.2 in the following section will give a description of
all quasi-invariant Radon measures for subcritical GWP satisfying the (L logL) moment condition. It hence applies
to (Z∗

n)n�0 which in combination with Lemma 1.2 immediately leads to a description of all quasi-invariant Radon
measures of a supercritical GWP (see Corollary 2.3).

2. Quasi-invariant Radon measures for subcritical GWP

After the previous review it is clear that we will now entirely focus on the subcritical case. So we are given a GWP
(Zn)n�0 with offspring distribution p = (pj )j�0 having mean 0 < m < 1 and g.f. f . We first assume the (L logL)

moment condition

E1Z1 logZ1 =
∑
j�2

pjj log j < ∞. (L logL)

Defining the nonincreasing sequence

ζn
def= P1(Zn > 0)

mn
= 1 − fn(0)

mn
(2.1)

for n � 0, we then have that

ζ
def= lim

n→∞ ζn (2.2)

is positive, see [5, Theorem (2.6.1)], while ζ = 0 if (L logL) fails to hold. Next put

Qn(s)
def= fn(s) − 1

n
, n � 1, s ∈ [0,1].
ζm
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As shown in [3, I.11], its derivative Q′
n(s) converges pointwise to a function Q′(s) for 0 � s < 1 which is positive on

(0,1) under (L logL). Setting

Q(s)
def=

s∫
1

Q′(r)dr

we hence obtain Qn(s) → Q(s) for 0 � s � 1. Q further satisfies Q(0) = −1, Q(1) = 0, lims→1 Q′(s) = ζ and is the
unique solution with these properties to the functional equation

Q
(
f (s)

) = mQ(s), 0 � s < 1, (2.3)

see [3, Theorem I.11.2]. The normalization of Q(s) by ζ is only given here in order to unify its definition with the
one below for the general situation.

Without assuming (L logL) a solution of (2.3) still exists but must be derived differently because ζ = 0 and
limn→∞ d

ds
((fn(s) − 1)/mn) ≡ 0 on [0,1) if

∑
j�2 pjj log j = ∞. The details will be presented in Section 3 where

we will show that

Q(s)
def= lim

n→∞
fn(s) − 1

1 − fn(0)
, s ∈ [0,1), (2.4)

forms the unique analytic solution to (2.3) satisfying Q(0) = −1 and Q(1) = 0. Hence under (L logL) the limits of
(fn(s) − 1)/(1 − fn(0)) and (fn(s) − 1)/(ζmn) are the same for all s ∈ [0,1).

As in [3, Chapter II], we put

U(s, t)
def=

∑
n∈Z

(
exp

(
Q(s)mn−t

) − exp
(
Q(0)mn−t

))
, s ∈ [0,1), t ∈ R. (2.5)

It is easily verified that this series converges and that U(·, t) is the g.f. of a quasi-invariant Radon measure η(t). The
quasi-invariance may be checked directly by using (1.6) and (2.3). Note also that

U(p0, t) = U
(
f (0), t

) = 1 (2.6)

and

U(·, t) = U(·, t + 1) (2.7)

for each t ∈ R. We will show that the η(t) are the minimal elements of the convex set Q∗ def={η ∈ Q: η̂(p0) = 1}, but
in order to explain this in more detail we first have to collect some facts on the general construction of the minimal
Martin entrance boundary in the present context. For a more general introduction of this topic for discrete Markov
chains see [7, Chapter 10].

Given any nonzero function h : N → [0,∞), put G(i,h)
def= ∑

j�1 G(i, j)h(j) and η(h)
def= ∑

j�1 ηjh(j). Let M

be the set {M(i, ·): i ∈ N} with

M(i, j)
def=

{
G(i, j)

G(i, h)
, if 0 < G(i,h) < ∞,

0, otherwise,
i, j ∈ N,

and 
M be its closure under pointwise convergence. Any sequence (ik)k�1 of positive integers such that ik → ∞ and
M(ik, ·) converges pointwise to some limit η is called a Martin sequence, and η a Martin limit relative to h. Every
such η is a quasi-invariant measure satisfying η(h) = 1. The Martin entrance boundary (w.r.t. h) is (isomorphic to)
the set 
M\M endowed with the topology of pointwise convergence and thus equals the set of all Martin limits. By

the Poisson–Martin representation theorem, each element of Qh
def={η ∈ Q: η(h) = 1} is obtained as an integral over

the entrance boundary w.r.t. a probability measure which, however, does not need to be unique. An element η ∈ Qh

is called minimal or extremal, if it cannot be written as a nontrivial convex combination of two distinct elements
from Qh. The minimal Martin entrance boundary is defined as the subset of minimal elements of Qh. It is necessarily
a subset of 
M\M. The integral representation of a quasi-invariant (normalized) Radon measure over this minimal
boundary w.r.t. a finite (probability) measure is unique. Hence there is a one-to-one correspondence between the set
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Qh and the set of probability measures on the minimal entrance boundary. Our task is therefore to identify the minimal
elements in the class of Martin limits.

The previous construction depends on the choice of h. With view to our goal of finding all quasi-invariant Radon
measures a good choice is any h such that the associated Martin entrance boundary consists exactly of all these

measures (modulo positive scalars). Since every η ∈Q satisfies η̂(f (0)) < ∞ (see before (1.6)) we fix h(j)
def= f j (0),

j � 1. Then η(h) = η̂(f (0)) and G(·, h) ≡ 1 by (1.4) which further entails that the Martin kernel K and the Green
kernel G are the same under this choice.

We proceed with the statement of our main result, Theorem 2.1 below, which provides an isomorphic description
of the Martin entrance boundary, the Martin topology and its minimal elements for general subcritical GWP. For x > 0
let α(x) and β(x) denote the integral and fractional part of − logm x, respectively, where logm is the logarithm to the
base m. Put

τ(x)
def= sup

{
n � 0: 1 − fn(0) � 1/x

}
for x � 1 and note that limn→∞((1 − fn+1(0))/(1 − fn(0))) = m implies lim supx→∞ γ (x) ∈ [0,1) for γ (x)

def=
− logm(x(1 − fτ(x)(0))). Indeed, setting δ(x)

def= logm((1 − fτ(x)+1(0))/(1 − fτ(x)(0))), we have limx→∞ δ(x) = 1
which in combination with

1 > x
(
1 − fτ(x)+1(0)

) = x
(
1 − fτ(x)(0)

)
mδ(x) = mδ(x)−γ (x)

gives 1 − lim supx→∞ γ (x) = lim infx→∞(δ(x) − γ (x)) > 0. Let M
def= N ∪ [0,1) and the function ϕ : M → C be

defined as

ϕ(x)
def=

⎧⎨
⎩

x

1 + x
e−2π i logm(xζτ(x)), if x ∈ N,

e2π ix, if x ∈ [0,1),

where i
def= √−1. We note that xζτ(x) may be replaced with x(1 − fτ(x)(0)) in the definition of ϕ because both values

differ only by an integral power of m. It follows that

ρ(x, y)
def=∣∣ϕ(x) − ϕ(y)

∣∣, x, y ∈ M,

is a metric on M and that M forms the closure of N w.r.t. ρ. (M, ρ) is a compact space and [0,1) is endowed with the
spherical topology. An integer sequence (in)n�1 with in → ∞ converges to t ∈ (0,1), respectively t = 0 w.r.t. ρ iff
the fractional part of − logm(inζτ(in)) converges to t , as n → ∞, respectively has the accumulation points 0 and/or 1.
The very last fact is not true for the metric given in [12], [2, p. 71] and [3, p. 69].

Recall that η(t) is the quasi-invariant Radon measure with g.f. U(·, t) given in (2.5).

Theorem 2.1. Given a subcritical GWP (Zn)n�0, its Martin entrance boundary equals the set {η(t): t ∈ [0,1)} and
is isomorphic to ([0,1), ρ), the latter established by the equivalence

lim
k→∞G(ik, ·) → η(t) pointwise ⇔ lim

k→∞ρ(ik, t) = 0.

All η(t), t ∈ [0,1), are pairwise distinct and minimal, i.e. their collection also constitutes the minimal Martin entrance
boundary. There is a bijection ν ↔ η between the set Q of quasi-invariant Radon measures η = (ηj )j�1 and the set
of finite Borel measures ν on [0,1), given by the integral representation

ηj =
∫

[0,1)

ηj (t)ν(dt), j ∈ N. (2.8)

A partial version of this result appears in Athreya and Ney [3, Theorem II.2.3] which asserts that under (L logL) the
η(t) are Martin limits and that any other quasi-invariant η has an integral representation (2.8) for some not necessarily
unique finite Borel measure ν. The same result was stated earlier (without proof) by Spitzer [12] for the case 0 <

p0 < p0 +p1 = 1, and later by Asmussen and Hering [2, Corollary III.2.10] without any moment condition. However,
their proof, see [2, p. 70f], misses out the relevant details at exactly the point where the (L logL) condition should
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have entered. Namely, their conclusion that
∑

j G(in, j)sj converges to U(s, t) if in → ∞ and the fractional part of
− logm in converges to t fails to hold in general. This follows from our analysis presented in Section 5. It is also to
be emphasized that pairwise distinctness and minimality of the ν(t) constitute a nontrivial improvement beyond not
assuming (L logL). This was needed for an essential argument in [1].

If (Zn)n�0 satisfies the (L logL) condition one may replace ρ in Theorem 2.1 with a simpler metric. Define
ϕ∗ : M → C as

ϕ∗(x)
def=

⎧⎨
⎩

x

1 + x
e2π i logm(xζ ), if x ∈ N,

e2π ix, if x ∈ [0,1).

It then follows that

ρ∗(x, y)
def=∣∣ϕ∗(x) − ϕ∗(y)

∣∣, x, y ∈ M,

is another metric on M. An integer sequence (in)n�1 with in → ∞ converges to t ∈ (0,1), respectively t = 0 w.r.t.
ρ∗ iff the fractional part of − logm(ζ in) = −log(ζ in)/ logm converges to t , as n → ∞, respectively accumulates at 0
and/or 1. Our second theorem asserts that (M, ρ) and (M, ρ∗) are in fact isomorphic.

Theorem 2.2. Given a subcritical GWP (Zn)n�0 satisfying (L logL), the assertions of Theorem 2.1 remain true if the
metric ρ is replaced with ρ∗.

A combination of Theorem 2.2 with Lemma 1.2 immediately leads to the following result for supercritical GWP
we state here for completeness.

Corollary 2.3. Given a supercritical GWP (Zn)n�0 with associated subcritical process (Z∗
n)n�0 as defined in Sec-

tion 1, the Martin entrance boundary M of (Zn)n�0 is isomorphic to (M, ρ∗) where ζ in the definition of ρ∗ is defined
by (2.2) for (Z∗

n)n�0. If {η∗(t): t ∈ [0,1)} denotes the minimal Martin entrance boundary of (Z∗
n)n�0, then there is

a bijection ν ↔ η between the set Q of quasi-invariant Radon measures η = (ηj )j�1 of (Zn)n�0 and the set of finite
Borel measures ν on [0,1), given by the integral representation

ηj = q−j

∫
[0,1)

η∗
j (t)ν(dt), j ∈ N. (2.9)

We mention for historical account that Harris [4, p. 25] was the first to give an example of a quasi-invariant Radon
measure in the subcritical case and that Kingman [9] first demonstrated the non-uniqueness of such measures in the
supercritical case.

The proof of Theorems 2.1 and 2.2 are presented in Section 5. The existence and essential uniqueness of an
analytic solution Q(s) to (2.3) is shown in Section 3, while Section 4 studies a useful function in connection with the
g.f. U(·, t) of the minimal quasi-invariant measures η(t). In essence the results given there provide minimality and
pairwise distinctness of the η(t).

3. The function Q(s)

Given an arbitrary subcritical GWP (Zn)n�0 with offspring mean 0 < m < 1, we will now show the existence and
uniqueness of an analytic function Q(s) on (−1,1) solving Eq. (2.3) and satisfying Q(1) = 0 and Q(0) = c for any
fixed c < 0. Define

Qn(s)
def= fn(s) − 1

1 − fn(0)
, n � 1, s ∈ [−1,1]. (3.1)

and note that Qn(0) = −1, Qn(1) = 0. Then

Qn(s) = E1(s
Zn1{Zn>0}) − P1(Zn > 0) = E1

(
sZn |Zn > 0

) − 1 (3.2)

P1(Zn > 0)
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for all n � 1 and s ∈ [−1,1]. By Yaglom’s theorem [3, Corollary I.8.1], P1(Zn ∈ ·|Zn > 0) converges weakly to a
probability distribution with g.f. B(s) satisfying

B
(
f (s)

) − 1 = m
(
B(s) − 1

)
, −1 < s < 1, (3.3)

that is, Q(s)
def= B(s) − 1 is a solution to (2.3). Moreover, Q′(1−) = B′(1−) < ∞ iff (L logL) holds true (see

[3, Corollary I.11.2]). In view of (3.2) the following lemma is now immediate.

Lemma 3.1. Qn(s) converges pointwise to Q(s) on (−1,1], the convergence being increasing on [0,1) and uniform
on every compact subset of (−1,1).

Proof. We only note for the asserted increasing convergence that

Qn+1(s)

Qn(s)
= (1 − f (fn(s)))/(1 − fn(s))

(1 − f (fn(0)))/(r1 − fn(0))
� 1

for all n � 0 and s ∈ [0,1), where the last inequality holds by the convexity of f on [0,1). �
If (L logL) holds true then, by Theorem I.11.2 in [3], Q(s) must equal a positive constant times

lim
n→∞

(
(fn(s) − 1)/mn

)
because the latter limit forms another solution to (2.3) with Q(1) = 0 and finite left derivative Q′(1−) at 1. Without
assuming (L logL) the essential uniqueness of Q(s) as a solution to (2.3) is more difficult. In fact, the following
lemma will provide this only within the smaller class of analytic functions on (−1,1) which is fortunately enough for
our purposes. A slightly different version of the result is proved in [2, Theorem III.1.2] by different arguments.

Lemma 3.2. The function Q(s) = B(s)−1 forms the unique solution to (2.3) which is analytic on (−1,1) and satisfies
Q(0) = −1 and Q(1) = 0.

Proof. Let R be another solution with the desired properties and put D
def= Q − R. Then D(0) = D(1) = 0 and, by

iterating (2.3),

D
(
fn(s)

) = mnD(s) (3.4)

for all s ∈ (−1,1). Hence D(fn(0)) = 0 for all n � 1. It follows the existence of ξ ∈ (0, f (0)) such that D′(ξ) = 0.
We first prove by induction over k that

D(k)
(
fn(ξ)

) = 0 (3.5)

for all n � 0 and k � 1.
Since, by (3.4), mnD′(s) = D′(fn(s))f

′
n(s) for all n � 1 and s ∈ (−1,1), and since all f ′

n are positive at ξ ,
D′(ξ) = 0 implies (3.5) with k = 1.

For the inductive conclusion suppose that D(j)(fn(ξ)) = 0 for all n � 1 and 1 � j � k. It is easily verified that

mnD(j)(s) = D(j)
(
fn(s)

)
(f ′

n)
j (s) +

j−1∑
l=1

D(l)
(
fn(s)

)
hj,l(s)

for all j � 1 and suitable functions hj,l(s) which are � 0 for s ∈ [0,1). Hence the inductive assumption gives

mnD(k+1)
(
fi(ξ)

) = D(k+1)
(
fn+i (ξ)

)
(f ′

n)
k+1(fi(ξ)

)
(3.6)

for all i � 0 and n � 1. Now, if D(k+1)(fi0(ξ)) > 0 then, by (3.6), D(k+1)(fn+i0(ξ)) > 0 for all n � 0 in which case
we may take ratios on both sides of (3.6) to get

D(k+1)(fi(ξ))

(k+1)
= D(k+1)(fn+i (ξ))

(k+1)
· (f ′

n)
k+1(fi(ξ))

′ k+1
(3.7)
D (fi+1(ξ)) D (fn+i+1(ξ)) (fn) (fi+1(ξ))
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for all i � 0 and n � 1. Use f ′
n(fi(ξ)) = ∏n−1

j=0 f ′(fj+i (ξ)) to infer

lim
n→∞

(f ′
n)

k+1(fi(ξ))

(f ′
n)

k+1(fi+1(ξ))
= lim

n→∞
1

(f ′)k+1(fn+i (ξ))
= m−k−1

and thus via (3.7) that

κ
def= lim

n→∞
D(k+1)(fn(ξ))

D(k+1)(fn+1(ξ))

exists and is positive. However, this is impossible because, by taking the limit n → ∞ and then i → ∞ in (3.7), it
leads to κ = κm−k−1 and thus κ = 0. We therefore arrive at the desired conclusion D(k+1)(fi(ξ)) = 0 for all i � 0.

To finish the proof of the lemma, we next observe that a Taylor expansion of D(s) about s = ξ in combination with
D(k)(ξ) = 0 for all k � 1 gives that D(s) = D(ξ), i.e. Q(s) = R(s) + D(ξ), for all s in a neighborhood of ξ . But then
the same must hold true for all s ∈ (−1,1) because Q,R are analytic. Finally, invoking (2.3) for Q and R, we obtain

Q(s) = Q(f (s))

m
= R(f (s)) + D(ξ)

m
= R(s) + D(ξ)

m
= Q(s) +

(
1

m
− 1

)
D(ξ)

and thereby D(ξ) = 0, i.e. Q = R on (−1,1). �
4. A useful function

Define the function Ψ : (0,∞)2 × ((0,∞)\{1}) → R by

Ψ (x, y, z)
def=

∑
n∈Z

(
e−xyzn − e−yzn)

. (4.1)

The connection of Ψ with the U(·, t) in (2.5) is established through the identity

U(s, t) = Ψ
(−Q(s),m−t ,m

)
(4.2)

for all s ∈ [0,1) and t ∈ R, where Q(0) = −1 should be recalled. We collect some elementary properties of Ψ in the
following lemma.

Lemma 4.1. The function Ψ is well defined and satisfies

Ψ (x, y, z) = Ψ (x, zy, z), (4.3)

Ψ (zx, y, z) = Ψ (x, y, z) + Ψ (z, y, z), (4.4)

Ψ (x, y, z) = Ψ

(
x, y,

1

z

)
, (4.5)

Ψ (x, y, z) = Ψ

(
ax,

y

a
, z

)
+ Ψ

(
1

a
, y, z

)
, (4.6)

Ψ (x, y, z) = Ψ
(
x, y, z2) + Ψ

(
x, zy, z2), (4.7)

Ψ (z, y, z) = 1(0,1)(z) − 1(1,∞)(z), (4.8)

Ψ (1, ·, z) ≡ 0 (4.9)

for all a, x, y, z > 0, z �= 1.

Notice that a combination of (4.5) and (4.3) shows that (4.2) generalizes to

U(s, t) = Ψ
(−Q(s),mn−t ,m

) = Ψ
(−Q(s),mn−t ,1/m

)
(4.10)

for all s ∈ [0,1), t ∈ R and n ∈ Z.

Proof. (4.3) and (4.5) follow because the definition of Ψ remains unaffected when replacing n with n + 1, respec-
tively −n. Use

e−zxyzn − e−yzn = (
e−xyzn+1 − e−yzn+1) + (

e−zyzn − e−yzn)
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to get (4.4), and

e−xyzn − e−yzn = (
e−ax

y
a
zn − e− y

a
zn) + (

e− y
a
zn − e−yzn)

, a > 0,

to get (4.6). (4.7) follows from

Ψ (x, y, z) =
∑
n∈Z

(
e−xyz2n − e−yz2n) +

∑
n∈Z

(
e−xyz2n+1 − e−yz2n+1)

.

Since

Ψ (z, y, z) = lim
N→∞

N∑
n=−N

(
e−yzn+1 − e−yzn) = lim

N→∞
(
e−yzN+1 − e−yz−N )

,

we infer (4.8). Finally, (4.9) is obvious from the definition of Ψ . �
The next three, more difficult lemmata provide us with key tools to identify {η(t): t ∈ [0,1)} as the minimal Martin

entrance boundary.

Lemma 4.2. For all sufficiently large z, the map [1, z) � y �→ Ψ (·, y, z) is one-to-one.

Proof. For fixed z > 1, consider G(y)
def={a > 0: Ψ (·, y, z) = Ψ (·, ay, z)} and notice first that z ∈ G(y) by (4.3).

Claim 1. G(y) = G(1) for all y > 0.

Fix y > 0, pick any a ∈ G(y), i.e. Ψ (·, ay, z) = Ψ (·, y, z), and use (4.6) to infer

Ψ

(
bx,

y

b
, z

)
+ Ψ

(
1

b
, y, z

)
= Ψ

(
bx,

ay

b
, z

)
+ Ψ

(
1

b
, ay, z

)

for all b, x > 0. Consequently, Ψ (·, y/b, z) = Ψ (·, ay/b, z) and thus G(y) ⊂ G(y/b) for all b > 0. By symmetry
G(y) = G(y/b) for all b > 0 and the claim is proved.

Claim 2. G
def= G(1) is a multiplicative group.

Given a, b ∈ G, we infer b−1 ∈ G(a) and therefore Ψ (·,1, z) = Ψ (·, a, z) = Ψ (·, a/b, z) implying ab−1 ∈ G.

Claim 3. G is closed.

The function Ψ (x, ·, z) is continuous for fixed x, z. Let (an)n�1 be a sequence in G which converges to a > 0.
Then Ψ (x,1, z) = limn→∞ Ψ (x, an, z) = Ψ (x, a, z) for all x > 0 implies a ∈ G.

As a closed subgroup of (0,∞), either G = (0,∞) or G = 〈a〉 def={an: n ∈ Z} for some a � 1. In the second case,
z ∈ G implies 1 < a � z and an0 = z for some n0 ∈ N. Recall that G depends on the fixed value z > 1. Now the
assertion of the lemma follows if we finally prove

Claim 4. G = 〈z〉 for all sufficiently large z > 1.

Suppose G �= 〈z〉. Then zk/n0 ∈ G for some n0 � 2 and all k ∈ Z which implies G ∩ [z1/3, z2/3] �= ∅ because this

intersection contains y(z)
def= z�n0/2�/n0 . Since

0 = DxΨ
(
x, y(z), z

) − DxΨ (x,1, z) =
∑
n∈Z

(
zn e−xzn − y(z)zn e−xy(z)zn)

for all x > 0, where Dx denotes the partial derivative w.r.t. x, we conclude for all sufficiently large z that
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y(z) e−y(z) − e−1 = DxΨ
(
1, y(z), z

) − DxΨ (1,1, z) + y(z) e−y(z) − e−1

=
∑
n�1

(
z−n e−z−n − y(z)z−n e−y(z)z−n) +

∑
n�1

(
zn e−zn − y(z)zn e−y(z)zn)

� −y(z)

( ∑
n�1

z−n +
∑
n�1

zn e−nz

)
= − y(z)

z − 1
− y(z)z e−z

1 − z e−z
.

But the first expression of this inequality converges to −e−1, whereas the last one converges to 0, as z → ∞. Conse-
quently, the inequality fails to hold for all sufficiently large z and the claim follows. �
Lemma 4.3. For all sufficiently large z, the set Cz

def={Ψ (·, y, z): y ∈ [1, z)} endowed with the metric of pointwise
convergence is canonically isomorphic (y ↔ Ψ (·, y, z)) to the compact space ([1, z), ρz), where

ρz(y1, y2)
def= ρ

(
y1 − 1

z − 1
,
y2 − 1

z − 1

)
.

Furthermore, each Ψ (·, y, z) is minimal in the convex hull of Cz, that is

Ψ (·, y0, z) =
∫

[1,z)

Ψ (·, y, z)ν(dy) (4.11)

for a probability measure ν on [0,1) implies ν = δy0 .

Plainly, the spaces ([1, z), ρz) and ([0,1), ρ) are isomorphic, too, the first one being an affine linear transformation
of the second.

Proof. By the previous lemma, Cz consists of pairwise distinct elements for sufficiently large z. By combining this
with the continuity of Ψ (x, y, z) in y and the periodicity property (4.3), the first assertion follows. Now suppose (4.11)
for fixed sufficiently large z, some y0 ∈ [1, z) and a probability measure ν �= δy0 . We will produce the contradiction
that under this assumption Cz contains no minimal element at all. Using (4.6) for the integrand in (4.11) leads to

Ψ (x, y0, z) =
∫

[1,z)

Ψ

(
ax,

y

a
, z

)
ν(dy) +

∫
[1,z)

Ψ

(
1

a
, y, z

)
ν(dz)

for all a, x > 0. Setting x = 1
a

, we see with (4.9) that Ψ ( 1
a
, y0, z) = ∫

[1,z)
Ψ ( 1

a
, y, z)ν(dy). By another appeal to (4.6)

we hence obtain

Ψ

(
ax,

y0

a
, z

)
+ Ψ

(
1

a
, y0, z

)
= Ψ (x, y0, z) =

∫
[1,z)

Ψ

(
ax,

y

a
, z

)
ν(dy) + Ψ

(
1

a
, y0, z

)

for all a, x > 0 and thus

Ψ

(
x,

y0

a
, z

)
=

∫
[1,z)

Ψ

(
x,

y

a
, z

)
ν(dy)

for all a, x > 0 which implies the desired contradiction that no Ψ (·, y, z) is minimal. �
Lemma 4.4. The assertions of Lemmas 4.2 and 4.3 hold true for all z > 1.

Proof. It only remains to prove that the map [1, z) � y �→ Ψ (·, y, z) is one-to-one for all z > 1. So fix any z > 1 and
suppose Ψ (·, y0, z) = Ψ (·, y1, z) for some 1 � y0, y1 < z. We must show y0 = y1. Choose n so large that Lemma 4.3
applies to Cz2n . A repeated application of (4.7) yields for i = 0,1

Ψ (·, yi, z) =
2n−1∑

Ψ
(·, zj yi, z

2n) =
∫

Ψ
(·, y, z2n)

νi,n(dy)
j=0
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with νi,n
def= ∑2n−1

j=0 δzj yi
. Hence∫

Ψ
(·, y, z2n)

ν0,n(dy) =
∫

Ψ
(·, y, z2n)

ν1,n(dy).

Since all elements of Cz2n are minimal, this equality can only hold if ν0,n = ν1,n (uniqueness of integral representa-
tions) and thus y0 = y1. �
5. Proof of Theorems 2.1 and 2.2

Throughout this section the assumptions of Theorem 2.1 as well as the notation of Section 2 are in force. In
particular, the definitions of U(s, t) and η(t) should be recalled. The proof of Theorem 2.1 is provided by a series of
lemmata (5.1)–(5.6) given after the following additional notation and prerequisites.

Recall that α(x) and β(x) denote the integral and fractional part of − logm x for x > 0. Put i′k
def= ikζτ(ik), αk

def= α(ik),

βk
def= β(ik), α′

k

def= α(i′k) and β ′
k

def= β(i′k). Hence ik = m−αk−βk and i′k = m−α′
k−β ′

k . The assumption ρ(ik, t) → 0 implies
β ′

k → t . Since i′k = ik(1 − fτ(ik))m
−τ(ik) and since β(ik(1 − fτ(ik))) ∈ [0,1) for large k as argued in Section 2 after

the definition of τ(x), we see that α′
k = τ(ik) and β ′

k = β(ik(1 − fτ(ik))) for large k.
Defining

cN(k)
def= inf

α′
k−N�n�α′

k+N

ζn

ζα′
k

and CN(k)
def= sup

α′
k−N�n�α′

k+N

ζn

ζα′
k

,

and using ζ1 � ζ2 � · · · , we infer for any fixed N ∈ N

lim
k→∞ cN(k) = lim

k→∞
ζα′

k+N

ζα′
k

= lim
k→∞

1 − fN(fα′
k
(0))

(1 − fα′
k
(0))mN

= 1, (5.1)

and similarly

lim
k→∞CN(k) = lim

k→∞
ζα′

k−N

ζα′
k

= lim
k→∞

(1 − fα′
k−N(0))mN

1 − fN(fα′
k−N(0))

= 1. (5.2)

This will be used in the proof of Lemma 5.3 below.
In order to formulate the first lemma we put

U0(s, t, k,N)
def=

N∑
n=−N

(
exp

(
Q(s)mn−β ′

k
) − exp

(−mn−β ′
k
))

for s, t ∈ [0,1) and k,N ∈ N. Notice that

U0(s, t, k,N) =
α′

k+N∑
n=α′

k−N

(
exp

(
Q(s)i′kmn

) − exp
(−i′kmn

))
.

Lemma 5.1. If ρ(ik, t) → 0, i.e. β ′
k → t , then, for each s ∈ [0,1) and ε > 0, there exists N0 ∈ N such that

lim sup
k→∞

∣∣U(s, t) − U0(s, t, k,N)
∣∣ < ε

for all N � N0.

Proof. Fix s ∈ [0,1), ε > 0 and then N0 ∈ N such that∣∣∣∣∣U(s, t) −
N∑

n=−N

(
exp

(
Q(s)mn−t

) − exp
(−mn−t

))∣∣∣∣∣ =
∑

n: |n|>N

(
exp

(
Q(s)mn−t

) − exp
(−mn−t

))
< ε

for all N � N0. Combining this with
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lim sup
k→∞

∣∣∣∣∣U0(s, t, k,N) −
N∑

n=−N

(
exp

(
Q(s)mn−t

) − exp
(−mn−t

))∣∣∣∣∣
�

∑
r∈{0,s}

lim sup
k→∞

N∑
n=−N

∣∣exp
(
Q(r)mn−β ′

k
) − exp

(
Q(r)mn−t

)∣∣ = 0

for all N ∈ N the assertion easily follows. �
Next put V (s, i)

def= ∑
j�1 G(i, j)sj and note that V (s, i) = ∑

n�0(f
i
n(s) − f i

n(0)). Put further

V0(s, k,N)
def=

α′
k+N∑

n=α′
k−N

(
f ik

n (s) − f ik
n (0)

)

for s ∈ [0,1) and k,N ∈ N. In order to provide a similar result for V (s, ik) − V0(s, k,N) as in Lemma 5.1, we first
prove:

Lemma 5.2. There exists n0 ∈ N such that

exp
(−2ikζnm

n
)
� f ik

n (s) � exp
(−(1 − s)ikζnm

n
)

(5.3)

for all s ∈ [0,1), k ∈ N and n � n0.

Proof. Use 1 − s = |Q0(s)| � |Qn(s)| � |Q(s)| � 1, log(1 + x) � x for x > −1, and log(1 − x) � −2x for x ∈
[0,1/2] to obtain

f ik
n (s) = (

1 + mnζnQn(s)
)ik = exp

(
ik log

(
1 + mnζnQn(s)

))
� exp

(−(1 − s)ikζnm
n
)

for s ∈ [0,1) and n � 0, and similarly the left inequality in (5.3) for s ∈ [0,1) and n � n0 for a suitably chosen n0 ∈ N

not depending on s or k. �
Lemma 5.3. For each s ∈ [0,1) and ε > 0, there exists N0 ∈ N such that

lim sup
k→∞

∣∣V (s, ik) − V0(s, k,N)
∣∣ < ε

for all N � N0.

Proof. Let k be so large that α′
k = τ(ik), hence i′k = ikζα′

k
, and consider

V1(s, k,N)
def=

α′
k−N−1∑
n=0

(
f ik

n (s) − f ik
n (0)

)
,

V2(s, k,N)
def=

∑
n>α′

k+N

(
f ik

n (s) − f ik
n (0)

)
.

The assertion obviously follows if we prove that the terms V1 and V2 become small for k,N sufficiently large. Let
l ∈ N be such that fl−1(0) < s � fl(0). Then

V1(s, k,N) �
α′

k−N−1∑
n=0

(
f

ik
n+l (0) − f ik

n (0)
) =

α′
k−N+l−1∑
n=α′

k−N

f ik
n (0) −

l−1∑
n=0

f ik
n (0).

The second sum in the previous line clearly converges to 0 as k → ∞. As to the first sum, we infer with Lemma 5.2
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α′
k−N+l−1∑
n=α′

k−N

f ik
n (0) �

α′
k−N+l−1∑
n=α′

k−N

exp
(−ikm

nζn

)
� l exp

(−ikζα′
k
cN(k)mα′

k−N+l−1)

= l exp
(−cN(k)m−N+l−β ′

k−1) � l exp
(−cN(k)m−N+l−1)

and therefore with (5.1)

lim sup
k→∞

α′
k−N+l−1∑
n=α′

k−N

f ik
n (0) � l exp

(−m−N+l−1)

which can be made arbitrarily small if N is chosen large enough.
As to V2, we obtain by another appeal to Lemma 5.2

V2(s, k,N) �
∑

n>α′
k+N

(
f

ik
n+l (0) − f ik

n (0)
) =

α′
k+N+l∑

n=α′
k+N+1

(
1 − f ik

n (0)
)
�

α′
k+N+l∑

n=α′
k+N+1

exp
(−2ikζnm

n
)

� l
(
1 − exp

(−2ikζα′
k
cN+l(k)mα′

k+N+1)) � l
(
1 − exp

(−2cN+l(k)mN+1))
so that upon using (5.2)

lim sup
k→∞

V2(s, k,N) � l
(
1 − exp

(−2mN+1))
which again becomes arbitrarily small if N is large enough. �

A major step towards the proof of Theorem 2.1 is provided by the next lemma

Lemma 5.4. For any integer sequence (ik)k�1, ρ(ik, t) → 0 for some t ∈ [0,1) implies that G(ik, ·) converges point-
wise to the quasi-invariant Radon measure η(t).

Proof. It suffices to show that limk→∞ V (s, ik) = U(s, t) for s ∈ [0,1). This was also done in [3, pp. 70 and 100f]
under (L logL), but an argument at the end of their proof does not work under the (L logL)-condition (see the remark
after this lemma for further details). A refinement of their argument is therefore needed even if (L logL) holds true.

Fix s ∈ [0,1), an arbitrary ε > 0 and then N so large that, by Lemmata 5.1 and 5.3,

lim sup
k→∞

∣∣U(s, t) − U0(s, t, k,N)
∣∣ <

ε

2
and lim sup

k→∞
∣∣V (s, ik) − V0(s, k,N)

∣∣ <
ε

2
.

Hence

lim sup
k→∞

∣∣V (s, ik) − U(s, t)
∣∣ � lim sup

k→∞
∣∣V0(s, k,N) − U0(s, t, k,N)

∣∣ + ε

which leaves us with the proof of

lim
k→∞

∣∣V0(s, k,N) − U0(s, t, k,N)
∣∣ = 0. (5.4)

Put

D(s, k,N)
def=

α′
k+N∑

n=α′
k−N

(
f ik

n (s) − exp
(
i′kQ(s)mn

))

and note that V0(s, k,N) − U0(s, t, k,N) = D(s, k,N) − D(0, k,N). Let k be so large that α′
k = τ(ik) and thus

i′k = ikζα′
k
. Using |xk − yk| � k|x − y| for x, y ∈ [0,1] we obtain

∣∣D(s, k,N)
∣∣ � ik

α′
k+N∑

n=α′ −N

∣∣fn(s) − exp
(
ζα′

k
Q(s)mn

)∣∣ (5.5)
k
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for s ∈ [0,1). Since |ex − 1 − x| � x2 for |x| � 1, we further see with i′k = m−α′
k−β ′

k that

ik

α′
k+N∑

n=α′
k−N

∣∣exp
(
ζα′

k
Q(s)mn

) − 1 − ζα′
k
Q(s)mn

∣∣ � i′k
α′

k+N∑
n=α′

k−N

Q(s)2m2n � i′km2(α′
k−N)/

(
1 − m2)

= mα′
k−2N−β ′

k /
(
1 − m2) � mα′

k−2N−1/
(
1 − m2),

which converges to 0 as k → ∞. Combining this with fn(s) − 1 = ζnQn(s)m
n for n � 0 and setting

ΛN(k)
def=∣∣cN(k) − 1

∣∣ ∨ ∣∣CN(k) − 1
∣∣,

we infer in (5.5)

∣∣D(s, k,N)
∣∣ � o(1) + ik

α′
k+N∑

n=α′
k−N

∣∣fn(s) − 1 − ζα′
k
Q(s)mn

∣∣

� o(1) + ik

α′
k+N∑

n=α′
k−N

mn
(∣∣ζnQn(s) − ζα′

k
Qα′

k
(s)

∣∣ + ζα′
k

∣∣Qα′
k
(s) − Q(s)

∣∣)

� o(1) + i′k
α′

k+N∑
n=α′

k−N

mn
(∣∣Qα′

k
(s)

∣∣ΛN(k) + ∣∣Qα′
k
(s) − Q(s)

∣∣)

� o(1) + i′kmα′
k−N(1 − m)−1(ΛN(k) + ∣∣Qα′

k
(s) − Q(s)

∣∣)
� o(1) + m−N−1(1 − m)−1(ΛN(k) + ∣∣Qα′

k
(s) − Q(s)

∣∣)
as k → ∞. Since ΛN(k) → 0 by (5.1), (5.2) and Qα′

k
(s) → Q(s) by Lemma 3.1, we have proved

lim
k→∞D(s, k,N) = 0

for all s ∈ [0,1) and therefore also (5.4). �
Remark. By a simpler estimation than ours, Athreya and Ney [3, p. 100f] showed that limk→∞ V (s, ik) = U(s, t)

follows from∑
n�1

∣∣Qn(s) − Q(s)
∣∣ < ∞ (5.6)

and claim this in turn be true under (L logL). However, assertion (5.6) actually requires the stronger moment assump-
tion (L log2 L), i.e.

∑
j�1 pjj log2 j < ∞, and is therefore too weak to give Lemma 5.4 under (L logL).

The next lemma is the converse of the previous one.

Lemma 5.5. If G(ik, ·) converges pointwise to a quasi-invariant Radon measure η then ρ(ik, t) → 0 for some t ∈ [0,1)

and η = η(t).

Proof. Since (M, ρ) is a compact space, (ik)k�1 contains a ρ-convergent subsequence (jk)k�1. If jk were eventually
constant, i.e. jk0 = jk0+1 = · · · = j for some k0, j � 1, then η = limk→∞ G(jk, ·) = G(j, ·) which is impossible
because G(j, ·) is not quasi-invariant. Consequently, jk → ∞ and ρ(jk, t) → 0 for some t ∈ [0,1). Now we conclude
from the first part of the lemma that η = limk→∞ G(jk, ·) = η(t). �
Lemma 5.6. The η(t), t ∈ [0,1), are pairwise distinct and minimal.
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Proof. We consider the g.f. U(·, t) of η(t) and recall from (4.10) that U(s, t) = Ψ (−Q(s), mn−t ,m) for all (s, t) ∈
[0,1)2 and n ∈ Z. Suppose that U(·, t1) = U(·, t2) for t1, t2 ∈ [0,1). Since Q(s) is strictly increasing from −1 to 0
for s ∈ [0,1), we infer Ψ (·,m−t1 ,m) = Ψ (·,m−t2 ,m) on (0,1]. But both functions are also easily seen to be complex
differentiable in the open complex strip (0,∞) × iR. Since holomorphic functions are uniquely determined by their
values on an interval, we conclude Ψ (·,m−t1 ,m) = Ψ (·,m−t2 ,m) on the whole strip (0,∞)× iR. Hence Lemmata 4.3
and 4.4 ensure that m−t1 = m−t2 and thus t1 = t2. This proves the pairwise distinctness of the η(t).

Minimality follows by a similar argument. If

U(·, t0) =
∫

[0,1)

U(·, t)ν(dt)

for t0 ∈ [0,1) and a finite measure ν on [0,1), then we infer

Ψ
(·,m−t0 ,m

) =
∫

[0,1)

Ψ
(·,m−t ,m

)
ν(dt)

on the whole strip (0,∞) × iR and thus ν = δt0 by another appeal to Lemmata 4.3, 4.4. �
Proof of Theorem 2.2. It obviously suffices to show that ρ(ik, t) → 0 and ρ∗(ik, t) → 0 are equivalent for t ∈ [0,1)

and any integer sequence (ik)k�1. Write a ≡ b[mZ] to mean that a/b = mn for some n ∈ Z. We have

ikζτ(ik) ≡ mβ ′
k
[
mZ

]
and ikζ ≡ mβ ′′

k
[
mZ

]
for suitable β ′

k, β
′′
k ∈ [0,1) and thus, by taking the ratio,

ζτ(ik)

ζ
≡ mβ ′

k−β ′′
k

[
mZ

]
.

Since, given (L logL), the left-hand side converges to 1 as k → ∞ and since β ′
k − β ′′

k ∈ (−1,1) for all k � 1, we
conclude that β ′

k → t , i.e. ρ(ik, t) → 0, holds iff β ′′
k → t , i.e. ρ∗(ik, t) → 0. �
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