
b

bilistic

-
tion via
ave so-
t. 40 (1)
y product,

f
umber of

speed
critical
s 80 (2)
e killed
eed
Ann. I. H. Poincaré – PR 42 (2006) 125–145
www.elsevier.com/locate/anihp

Further probabilistic analysis of
the Fisher–Kolmogorov–Petrovskii–Piscounov equation:

one sided travelling-waves

J.W. Harrisa, S.C. Harrisa, A.E. Kyprianoub,∗

a Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
b Mathematical Institute, Utrecht University, P.O. Box 80.010, 3508 TA, Utrecht, The Netherlands

Received 26 September 2004; received in revised form 3 February 2005; accepted 22 February 2005

Available online 10 October 2005

Abstract

At the heart of this article will be the study of a branching Brownian motion (BBM) withkilling, where individual particles
move as Brownian motions with drift−ρ, perform dyadic branching at rateβ and are killed on hitting the origin.

Firstly, by considering properties of the right-most particle and the extinction probability, we will provide a proba
proof of the classical result that the ‘one-sided’ FKPP travelling-wave equation of speed−ρ with solutionsf : [0,∞) → [0,1]
satisfyingf (0) = 1 andf (∞) = 0 has a unique solution with a particular asymptotic whenρ <

√
2β, and no solutions oth

erwise. Our analysis is in the spirit of the standard BBM studies of [S.C. Harris, Travelling-waves for the FKPP equa
probabilistic arguments, Proc. Roy. Soc. Edinburgh Sect. A 129 (3) (1999) 503–517] and [A.E. Kyprianou, Travelling w
lutions to the K-P-P equation: alternatives to Simon Harris’ probabilistic analysis, Ann. Inst. H. Poincaré Probab. Statis
(2004) 53–72] and includes an intuitive application of a change of measure inducing a spine decomposition that, as a b
gives the new result that the asymptotic speed of the right-most particle in the killed BBM is

√
2β − ρ on the survival set.

Secondly, we introduce and discuss the convergence of an additive martingale for the killed BBM,Wλ, that appears o
fundamental importance as well as facilitating some new results on the almost-sure exponential growth rate of the n
particles of speedλ ∈ (0,

√
2β − ρ).

Finally, we prove a new result for the asymptotic behaviour of the probability of finding the right-most particle with
λ >

√
2β − ρ. This result combined with Chauvin and Rouault’s [B. Chauvin, A. Rouault, KPP equation and super

branching Brownian motion in the subcritical speed area. Application to spatial trees, Probab. Theory Related Field
(1988) 299–314] arguments for standard BBM readily yields an analogous Yaglom-type conditional limit theorem for th
BBM and revealsWλ as the limiting Radon–Nikodým derivative when conditioning the right-most particle to travel at spλ

into the distant future.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction and summary of results

A well studied non-linear PDE is the Fisher–Kolmogorov–Petrovski–Piscounov (FKPP) equation

∂u

∂t
= 1

2

∂2u

∂x2
+ β(u2 − u) (1)

with u ∈ C1,2(R+ × R) and given initial conditionu(0, x) := f (x). The FKPP equation has been much studied
both analytic techniques, as in the original papers of Fisher [14] and Kolmogorov et al. [25], as well as prob
methods as found in McKean [31,32], Bramson [5,6], Uchiyama [36], Neveu [33], Chauvin and Rouault
Harris [18] and Kyprianou [27], to name just a few. In addition we refer the reader to Ikeda et al. [20–2
Freidlin [15] for extensive discussion of the more general theory of the probabilistic representation of solu
ordinary and partial differential equations.

Much attention has been given to FKPP solutions of the formu(t, x) = f (x + ρt) for f ∈ C2(R), leading to
the so called FKPP travelling-wave (TW) equation

1

2
f ′′ − ρf ′ + β(f 2 − f ) = 0 onR

f (−∞) = 1, (2)

f (∞) = 0

with wave speedρ. It is well known that monotone travelling-waves exist and are unique (up to translation)
speeds|ρ| � √

2β. For 0� |ρ| < √
2β, there exist no monotone travelling-wave solutions of speedρ.

One of the probabilistic methods for studying Eqs. (1) and (3) is via their connection to a branching Bro
motion (BBM). Consider a branching Brownian motion with drift−ρ, whereρ ∈ R, and dyadic branching rateβ;
that is, a branching process where particles diffuse independently according to a Brownian motion with d−ρ

and at any moment of time undergo fission with rateβ producing two particles. We shall refer to this process
(−ρ,β;R)-BBM with probabilities{P x : x ∈ R} whereP x is the law of the process initiated from a single parti
positioned atx. Suppose that the configuration of space at timet is given by the point processX−ρ

t with points
{Yu(t): u ∈ N−ρ

t } whereN−ρ
t is the set of individuals alive at timet .

Associated with the(−ρ,β;R)-BBM are the positive martingales

Zλ(t) :=
∑

u∈N−ρ
t

e(λ+ρ)Yu(t)−( 1
2 (λ2−ρ2)+β)t (3)

defined for eachλ ∈ R. It is well known that such martingales are uniformly integrable with strictly positive lim
precisely when|λ + ρ| <

√
2β, otherwise they have an almost surely zero limit. These martingales can be

to establish both the existence and uniqueness of the TW solutions to system (3) where, in particular,f (x) =
Ex(exp{−Zλ(∞)}) gives a representation for the TW of speedρ whenλ satisfies1

2(λ + ρ)2 − ρ(λ + ρ) + β = 0.
See McKean [31,32] and Neveu [33], whilst Kyprianou [27] and Harris [18] give complete expositions th
also particularly relevant for the techniques used in this paper. The latter references also include prob
derivations of the asymptotic behaviour of the TW solution. [Note that the martingale results for a constant
ρ ∈ R follow trivially from the ρ = 0 case found in these, and subsequent, references.]

In this article we shall consider the class of solutions to the FKPP travelling-wave equation defined onR+ that
satisfyf :R+ → [0,1], f ∈ C2(0,∞) and

1

2
f ′′ − ρf ′ + β(f 2 − f ) = 0 on(0,∞),

f (0+) = 1, (4)

f (∞) = 0.
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Note that without the boundary conditions we always have that the constant functions of 0 and 1 are solutio
Interestingly, solutions to the one-sided FKPP system at (4) occur at wave speeds where there are no (m
solutions to the FKPP travelling-wave equation onR:

Theorem 1. The system(4) has a unique solution if and only if−∞ < ρ <
√

2β, in which case

lim
x↑∞ e−(ρ−

√
ρ2+2β)xf (x) = k

for some constantk ∈ (0,∞). Further, ifρ �
√

2β, there is no solution to(4).

Existence, uniqueness and a weaker asymptotic result were established analytically in Pinsky [35], w
self cites Aronson and Weinberger [1]. Concerning existence, see also Watanabe [37]. Theorem 1 can
be extracted from Kametaka [23] who also uses classical phase-plane analysis techniques (as in Coddin
Levinson [11]), although some care is required as this paper is predominantly concerned with the opposin
ρ �

√
2β.

In the spirit of Harris [18] and Kyprianou [27], we shall devote the first part of this article to a new pro
Theorem 1 using probabilistic means alone which, for the most part, means that we appeal either to m
arguments, ‘spine’ decompositions, or fundamental properties of both branching and single-particle B
motion.

In contrast to the probabilistic study of travelling-waves onR, our analysis will be concerned with a branchi
Brownian motion with drift−ρ where particles arekilled at the origin. For the purpose of the forthcoming analy
we will construct this killed BBM,X−ρ , from that part of the BBMX−ρ which survives killing at the origin
ConsideringX−ρ as a subprocess ofX−ρ we shall again work with the probabilities{P x : x > 0}. We shall denote
the configuration of particles alive at timet by {Yu(t): u ∈ N

−ρ
t } whereN

−ρ
t is the number of surviving particle

In keeping with previous notation, we shall refer to this killed BBM process as a(−ρ,β;R+)-BBM. We define
ζ := inf{t > 0: N

−ρ
t = 0} to be the extinction time of the(−ρ,β;R+)-BBM, then{ζ = ∞} is the event the proces

survives forever.
In Section 2, we shall briefly discuss a probabilistic technique that has recently become quite popula

branching process literature, namely, a change of measure that induces a ‘spine’ decomposition of the pr
particular, if we change the measure of a(−ρ,β;R)-BBM using theZλ additive martingale, the process under
new measure can be re-constructed in law by first laying down the motion of a single particle, the so called
as a Brownian motion withmodifieddrift λ, giving birth at anacceleratedrate 2β to independent(−ρ,β;R)-
BBMs. These changes of measure and their associated spine constructions prove a key tool in our later a

In Section 3 we look at some important properties of the drifting branching Brownian motion with killing
origin. In particular, we look at the behaviour of the right-most particle,Rt , the relationship with the survival s
and survival probabilities.

In Sections 4–6, we prove Theorem 1 via a sequence of smaller results. These are: non-existence of
to system (3) forρ �

√
2β as a consequence ofP x(ζ < ∞) ≡ 1 in the aforementioned killed BBM; existence

a solution for−∞ < ρ <
√

2β in the form of the (non-trivial) extinction probabilityP x(ζ < ∞); uniqueness o
travelling-waves for−∞ < ρ <

√
2β; and finally the asymptotic result.

In Section 7, we show how our intuitive spine approach to killed BBM in Section 3 also allows us to dedu
following new result:

Lemma 2. For all x > 0 we have

lim
t↑∞

Rt

t
= √

2β − ρ on {ζ = ∞}, P x-a.s.

With the asymptotic speed of the right-most particle in the killed BBM established and knowledge of st
BBM, one naturally wonders if anything can be said about the asymptotic rate of growth in the numbers of p
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travelling at slower speeds, or if any large time asymptotic can be established for the probability that the rig
particle has travelled at a faster speed. Indeed, we will answer both these questions in the remaining pa
article, providing a more comprehensive collection of new results for killed BBM. Naturally, the close conn
to standard BBM means that we can (and do) make use of some existing techniques, nevertheless adding
the origin yields some significant new problems.

The central role of theZλ additive martingales in the study of branching Brownian motion is long establi
and, as already indicated, we can also exploit them for killed BBM. However, we also introduce the (po
additive martingalesWλ:

Lemma 3. For eachλ > 0, the process

Wλ(t) :=
∑

u∈N
−ρ
t

(
1− e−2λYu(t)

)
e(λ+ρ)Yu(t)−( 1

2 (λ2−ρ2)+β)t , (5)

defines a martingale for the(−ρ,β;R+)-BBM.

These martingales not only prove to be a useful tool, they appear fundamental to the study of the kille
In Section 8, we discuss their convergence properties and how they can be used to deduce growth rates o
moving at speedsλ <

√
2β − ρ.

Theorem 4. Wλ is a uniformly integrable martingale if bothρ <
√

2β andλ ∈ (0,
√

2β − ρ), otherwiseWλ has a
P x -almost-sure zero limit.

WheneverWλ is uniformly integrable,{Wλ(∞) > 0} and{ζ = ∞} agree up to aP x -null set.

Define the counting function

N
−ρ
t (a, b) :=

∑
u∈N

−ρ
t

1{Yu(t)∈(a,b)} (6)

for the number of particles found in the interval(a, b) at timet .

Theorem 5. For x > 0, under eachP x law, the limit

G(λ) := lim
t→∞ t−1 lnN

−ρ
t (λt,∞)

exists almost surely and is given by

G(λ) =
{

∆(λ), if 0 < λ <
√

2β − ρ and{ζ = ∞},
−∞, otherwise,

where∆(λ) := β − 1
2(λ + ρ)2.

Note: we gain the right-most particle speed of Lemma 2 as a corollary.
These results are both new, although we make use of the techniques from Git et al. [16] in proving The

Also see Kesten [24] where some related questions on survival probabilities and population growth-rates
subsets ofR for a similar branching Brownian motion with an absorbing barrier are considered.

In Section 9, we conclude by investigating the probability that the right-most particle has travelled a
speeds than usual, proving the following new result:

Theorem 6. For λ >
√

2β − ρ and allx > 0, θ � 0, there exists a constantC > 0 such that

lim P x(Rt � λt + θ)

√
2πt

−2λx
e−(λ+ρ)(x−θ)+( 1

2 (λ+ρ)2−β)t = C, (7)

t→∞ 1− e
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P x(Rt > λt + θ) ∼
t→∞(λ + ρ)C × Ex

(
N

−ρ
t (λt + θ,∞)

)
. (8)

Considering particles with spatial positionYu(t) > λt + θ , for λ >
√

2β − ρ, a Yaglom-type result also holds

Theorem 7. For λ >
√

2β − ρ there is a probability distribution(Πi)i�1 defined onN such that

lim
t→∞P x

(
N

−ρ
t (λt,∞) = i | N−ρ

t (λt,+∞) > 0
) = Πi,

and this distribution has(finite) expectation equal to1/(λ + ρ)C.

Finally, we can see the fundamental nature of theWλ martingale that we introduced into the killed BBM stor
it appears as the Radon–Nikodým derivative linkingP x with the limit-law of the conditioned process.

Theorem 8. For λ >
√

2β − ρ, s ∈ (0,∞) fixed, andA ∈Fs ,

P x
(
A | N−ρ

t+s

(
λ(t + s),∞)

> 0
) −→

t→+∞Ex
(
1AWλ(s)

)
.

Chauvin and Rouault [9] proved analogous results to Theorems 6–8 in the context of standard BBM. A
guided by their approach when we prove Theorem 6, there are a number of complications caused by th
at the origin. However, once these additional difficulties are overcome and we have proven Theorem 6, t
proofs of Chauvin and Rouault [9] adapt almost unchanged for Theorems 7 and 8 and we omit any details

2. Spine decompositions for BBM

In this section, we briefly recall some changes of measure and their associated spine decompositions
be key tools in later analysis.

When|λ+ρ| < √
2β one can define an equivalent change of measure on the probability space of the(−ρ,β;R)-

BBM via

dπx
λ

dP x

∣∣∣∣
Ft

= Zλ(t)

Zλ(0)
= e−(λ+ρ)xZλ(t).

Underπx
λ the path of the(−ρ,β;R)-BBM can be reconstructed pathwise in the following way:

• starting from positionx, the initial ancestor diffuses according to a Brownian motion with driftλ;
• at rate 2β the particle undergoes fission producing two particles;
• one of these particles is selected at random with probability one half;
• this chosen particle repeats stochastically the behaviour of their parent;
• the other particle initiates from its birth position an independent copy of a(−ρ,β;R)-BBM with law P ·, and

so on.

The selected line of descent is referred to as thespine. Thus, the spine moves as a Brownian motion with drifλ,
giving birth at an accelerated rate 2β along its path to independent(−ρ,β;R)-BBMs.

The martingaleWλ can be used to change measure in a similar fashion to yield a spine that is conditio
avoid the origin. Before giving the details we shall prove Lemma 3.
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Proof of Lemma 3. Let Y(t) be a Brownian motion started atx > 0 with drift λ under the measurePx
λ. Defining

τ0 := inf{t � 0: Y(t) = 0}, we have from the ‘many-to-one’ lemma that for measurablef

Ex

( ∑
u∈Nt

f
(
Yu(t)

)) = eβtEx−ρ

(
f (Yt ); τ0 > t

)
. (9)

(See, for example, Hardy and Harris [17] or equivalently consider the single particle representation of th
semigroup associated with the(−ρ,β,R+)-BBM.) Using the latter equality together with Girsanov change
measure it follows that

Ex
(
Wλ(t)

) = e− 1
2 (λ2−ρ2)tEx−ρ

((
1− e−2λYt

)
e(λ+ρ)Yt ; τ0 > t

)
= Px

λ

((
1− e−2λYt

); τ0 > t
)
e(λ+ρ)x

= (
1− e−2λx

)
e(λ+ρ)x.

Note the last equality is a simple consequence of useful the fact thatPx
λ(τ0 = ∞) = 1 − e−2λx is a scale function

for Y killed at the origin underPx
λ.

To complete the proof, apply the branching property to note that

Ex
(
Wλ(t + s) |Ft

) =
∑

u∈N
−ρ
t

Ex
(
W

(u)
λ (s) |Ft

)
e−( 1

2 (λ2−ρ2)+β)t

where givenFt , each of the termsW(u)
λ (s) are independent copies ofWλ(s) underP Yu(t). The conclusion of the

previous paragraph now completes the proof.�
We define a measureQλ by

dQx
λ

dP x

∣∣∣∣
Ft

= Wλ(t)

Wλ(0)
(10)

and it can be shown that underQλ the BBM can be constructed path-wise as underπx
λ , except that the spine no

moves like a Brownian motion with driftλ that is additionallyconditioned to avoid the origin.
For a detailed setup and notation for these changes of measure andspine decompositionsin branching Brownian

motion the reader should refer to the recent new approach presented in Hardy and Harris [17], in addition t
anou [27] and Chauvin and Rouault [9]. More generally, similar changes of measure for other types of br
processes have become increasingly common in the study of classical and modern branching processes
ular, the reader is referred to Lyons et al. [29] and Lyons [30]. Champneys et al. [7], Harris and William
Olofsson [34], Athreya [2], Kyprianou and Rahimzadeh Sani [28], Biggins and Kyprianou [3], Englände
Kyprianou [13] and Kuhlbusch [26] also provide further examples of their use.

3. Killed branching Brownian motion

It will turn out that the existence and uniqueness result in Theorem 1 can be proved probabilistically by an
the(−ρ,β;R+)-BBM and in particular the behaviour of the position of its right most particle, defined by

Rt = sup
{
Yu(t): u ∈ N

−ρ
t

}
on {ζ = ∞} and zero otherwise.

Theorem 9. We have for allx > 0 andρ ∈ R,

lim sup
t↑∞

Rt = ∞ on {ζ = ∞}, P x-a.s.
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Proof. Let us suppose thatY = {Y(t): t � 0} is a Brownian motion with drift−ρ and probabilities{Px−ρ : x ∈ R}
and letτ0 = inf{t � 0: Y(t) = 0}. Note that

P x(ζ < ∞ | Ft ) �
∏

u∈N
−ρ
t

P
Yu(t)
−ρ (τ0 < eβ) =

∏
u∈N

−ρ
t

E
Yu(t)
−ρ (e−βτ0)

whereeβ is an exponential variable independent ofY having rateβ. The last inequality follows on account of th
fact that extinction would follow if each of the individuals alive at timet would hit the origin before splitting
Settingα = ρ − √

ρ2 + 2β < 0, standard expressions for the one sided exit problem for Brownian motion (se
example, Borodin and Salminen [4]), imply that for allx > 0

P x(ζ < ∞ | Ft ) �
∏

u∈N
−ρ
t

eαYu(t) = exp

(
α

∑
u∈N

−ρ
t

Yu(t)

)
.

On {ζ = ∞} it is clear that the left hand side converges to zero and hence for allx > 0

lim
t↑∞

∑
u∈N

−ρ
t

Yu(t) = ∞ on {ζ = ∞} P x-a.s.

Now let Γz be the event that the(−ρ,β;R+)-BBM is contained entirely in the strip(0, z). For the process
Y define the stopping timeτz = inf{t � 0: Y(t) = z}. We have for 0< x < z

P x(Γz | Ft ) �
∏

u∈N
−ρ
t

P
Yu(t)
−ρ (τ0 < τz) (11)

onYu(t) ∈ (0, z) for u ∈ N
−ρ
t . This inequality follows from the fact thatΓz implies that the spatial path of each

the lines of descent emanating from the configuration at timet must hit the origin before hittingz. First consider
the case that−∞ < ρ < 0. In this case we can write from (11) on the event thatYu(t) ∈ (0, z) for eachu ∈ N

−ρ
t

P x(Γz | Ft ) �
∏

u∈N
−ρ
t

e−|ρ|Yu(t) sinh|ρ|(z − Yu(t))

sinh|ρ|z � exp

(
−|ρ|

∑
u∈N

−ρ
t

Yu(t)

)
→ 0

on the event{ζ = ∞} ast tends to infinity. Now consider the case thatρ > 0. It follows by again using classica
results for the two sided exit problem that on the event thatYu(t) ∈ (0, z) for eachu ∈ N

−ρ
t

P x(Γz | Ft ) �
∏

u∈N
−ρ
t

[
1−

(
e−ρz

sinhρz

)
eρYu(t) sinhρYu(t)

]

� exp

(
−

(
e−ρz

sinhρz

) ∑
u∈N

−ρ
t

Yu(t)

)
→ 0

where we have used the inequalities e−x sinhx � x and 1− x � e−x . The latter exponential tends to zero on
event{ζ = ∞} ast tends to infinity. Finally for the case thatρ = 0, onYu(t) ∈ (0, z) for u ∈ N

−ρ
t

P x(Γz | Ft ) �
∏

u∈N
−ρ
t

(
1− Yu(t)

z

)
� exp

(
−1

z

∑
u∈N

−ρ
t

Yu(t)

)
→ 0

on the event{ζ = ∞} as t tends to infinity. In conclusion, for anyz > 0, P x(Rt > z i.o. | ζ = ∞) = 1 and the
statement of the theorem holds.�
Theorem 10. If ρ �

√
2β thenP x(ζ < ∞) = 1 for all x > 0.
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Proof. Suppose thatRt is the position of the right most particle in a(−ρ,β;R)-BBM. It is well known (see
Neveu [33], Harris [18] or Kyprianou [27]) that the ‘critical’ martingaleZ√

2β−ρ(t) → 0 a.s., from which it is eas
to deduce that

lim
t↑∞

{
Rt − (√

2β − ρ
)
t
} = −∞ a.s.

From our construction of the(−ρ,β;R+)-BBM, extinction of this process is guaranteed when the right m
particle in the(−ρ,β;R)-BBM drifts to −∞. Thus, whenρ �

√
2β, this happens with probability one.�

Theorem 11. If −∞ < ρ <
√

2β then for eachx > 0 andλ ∈ (0,
√

2β − ρ)

(i) Ex(Zλ(∞); lim inf t�0 Rt/t � λ) = πx
λ (lim inf t�0 Rt/t � λ) � 1− e−2λx,

(ii) P x(ζ < ∞) ∈ (0,1),
(iii) lim x↓0 P x(ζ < ∞) = 1, and
(iv) limx↑∞ P x(ζ = ∞) = limx↑∞ P x(lim inf t↑∞ Rt/t � λ; ζ = ∞) = 1.

Proof. (i) Recall that when|λ + ρ| <
√

2β (and in particular whenλ ∈ (0,
√

2β − ρ)), under the measureπx
λ

(defined in Section 2) a branching Brownian motion with drift−ρ and branching rateβ has one line of descen
the spine, which has an exceptional driftλ. The probability that this spine never meets the origin is the probab
that a Brownian motion started fromx > 0 and with driftλ has an all time infimum which is strictly positive; an
this is well known to be 1− exp{−2λx}. Suppose we writeξ = {ξt : t � 0} for the spatial path of any surviving lin
of descent inX−ρ then we have established that

Ex

(
Zλ(∞); ζ = ∞ and∃ξ in X−ρ such that lim

t↑∞
ξt

t
= λ

)
� 1− exp{−2λx}.

Now note that{
ζ = ∞ and∃ξ in X−ρ such that lim

t↑∞
ξt

t
= λ

}
⊆ {lim inf

t↑∞ Rt/t � λ}

and hence the statement of part (i) now follows.
(ii) To prove thatP x(ζ < ∞) > 0, note that there is a strictly positive probability that the initial ancesto

the processX−ρ hits the origin before reproducing thus resulting in extinction. To prove thatP x(ζ < ∞) < 1
or equivalentlyP x(ζ = ∞) > 0, recall from part (i) that underπx

λ the probability that the (λ-drifting) spine in a
branching Brownian motion with does not meet the origin is strictly positive. This is implies thatEx(Zλ(∞); ζ =
∞) > 0 and sinceP x(Zλ(∞) > 0) = 1 it follows thatP x(ζ = ∞) > 0.

(iii) Since extinction in a finite time is guaranteed if the original ancestor is killed before reproducing,

P x(ζ < ∞) � Px−ρ(τ0 < eβ) = e−(
√

ρ2+2β−ρ)x → 1

asx → 0. (Recall thatτ0 = inf{t � 0: Y(t) = 0} andeβ is exponentially distributed with parameterβ and indepen-
dent of the Brownian motion(Y,Px−ρ)).

(iv) Note thatP x(lim inf t↑∞ Rt/t � λ; ζ = ∞) is an increasing sequence inx and therefore has a limit. Suppo
this limit is not equal to one then since it was shown in part (i) of the proof that

lim
x↑∞Ex

(
Zλ(∞); lim inf

t�0
Rt/t � λ

) = 1

there is a contradiction since for allx > 0

P x
(
Zλ(∞) > 0

) = 1 and Ex
(
Zλ(∞)

) = 1.

Finally noting thatP x(ζ = ∞) � P x(lim inf t↑∞ Rt/t � λ, ζ = ∞) the proof is complete. �
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4. Non-existence for ρ ���
√

2β

Theorem 12. No travelling-wave solutions to(4) exist forρ �
√

2β.

Proof. Now suppose thatf is a solution to (4). It follows that for allx > 0
∏

u∈N
−ρ
t

f (Yu(t)) is a martingale which

converges almost surely and inL1(P x). We have seen in Theorem 10 that ifρ �
√

2β, P x(ζ < ∞) = 1 for all
x > 0 and hence

lim
t↑∞

∏
u∈N

−ρ
t

f
(
Yu(t)

) = 1

almost surely, implying thatf = 1; that is to say, there is no non-trivial solution.�

5. Existence and uniqueness for −∞ < ρ <
√

2β

Theorem 13. Travelling-waves to(4) exist and are unique for−∞ < ρ <
√

2β. Further, the unique solution ca
be represented by the extinction probability for the(−ρ,β;R+)-BBM, that is

f (x) = P x(ζ < ∞). (12)

Remark 14. The representation (12) trivially shows that the unique solution to (4) is strictly monotone decre
although this wasn’t an initial restriction. Indeed, one could assume monotonicity instead off (∞) = 0 and again
reach the same conclusions. Also note, that one might naively try to extended this solution to produce a tr
wave of speedρ <

√
2β on the whole ofR, but such a solution would clearly fail to satisfy Eq. (3) at a single p

(due to a discontinuity in the first derivative at the origin).

Proof. Define p(x) := P x(ζ < ∞) for x � 0. From Theorem 11, we havep(x) ∈ (0,1) for each x > 0,
limx↑∞ p(x) = 0, limx↓0 p(x) = 1 and, in addition,p(0) = 1 because of instantaneous killing.

An application of the Branching Markov Property (cf. Chauvin [8]) together with the tower property of c
tional expectation gives

p(x) = Ex
(
P x(ζ < ∞ | Ft )

) = Ex

( ∏
u∈N

−ρ
t

p
(
Yu(t)

))
. (13)

As this equality holds for allx, t > 0, one can easily see that
∏

u∈N
−ρ
t

p(Yu(t)) is a martingale which converge

almost surely and inL1(P x). Note that on{ζ < ∞} it is clear that the martingale limit is equal to 1 – the em
product. Note however that this martingale cannot be identically equal to 1 because its mean,p(x), is strictly less
than one.

An application of Kolmogorov’s backwards equations (cf. Champneys et al. [7] or Dynkin [12, Theorem I
thus yields thatp belongs toC2(0,∞) and is a solution to the ODE in (4).

For uniqueness, suppose thatf is a solution to (4) when−∞ < ρ <
√

2β. Again we can construct a positiv
martingaleMt := ∏

u∈N
−ρ
t

f (Yu(t)) which is bounded, hence uniformly integrable. ClearlyM∞ = 1 on{ζ < ∞}.
Further, Theorem 9 gives lim supt↑∞ Rt = ∞ on {ζ = ∞} a.s. and, sincef (+∞) = 0,

M∞ = lim
t↑∞

∏
u∈N

−ρ
t

f
(
Yu(t)

) = lim inf
t↑∞

∏
u∈N

−ρ
t

f
(
Yu(t)

)
� lim inf

t↑∞ f (Rt )

� f
(
lim supRt

)
,

t↑∞
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rst step,

3)

result
we can identify the limit asM∞ = 1{ζ<∞} a.s. Finally,

f (x) = Ex(M0) = Ex(M∞) = P x(ζ < ∞) = p(x)

and uniqueness follows.�

6. Asymptotic when −∞ < ρ <
√

2β

In this section we determine the asymptotic for the solution to the one-sided FKPP system (4). As a fi
the following lemma shows that the unique solution decays exponentially for sufficiently largey and will prove
very useful:

Lemma 15. Let f be the unique solution of the system(4) when−∞ < ρ <
√

2β. Let x0 > 0 and defineµ :=√
ρ2 + 2β(1− f (x0)) − ρ > 0. Then

f (y) �
(
f (x0)e

µx0
)
e−µy

for all y > x0.

Proof. Recall thatY is a Brownian motion with drift−ρ starting fromx > 0 underPx−ρ and recall that for any
z � 0, τz := inf{t : Yt = z}. Itô’s formula implies that,

Mt := f (Yt∧τ0)exp

(
β

t∧τ0∫
0

(
f (Ys) − 1

)
ds

)
(14)

is a Px−ρ -local martingale and, since 0� f � 1, it is actually a bounded martingale. Suppose thaty > x0. Since
τx0 < ∞ a.s. underPy

−ρ , the optional stopping theorem and the monotonicity off (see remark after Theorem 1
yields

f (y) = E
y
−ρ

{
f (x)exp

(
β

τx0∫
0

(
f (Ys) − 1

)
ds

)}
� f (x)E

y
−ρ

(
eβ(f (x0)−1)τx0

)
.

A well-known result (see, for example, Borodin and Salminen [4]) gives

E
y
−ρ

(
eβ(f (x0)−1)τx0

) = e−µ(y−x0),

whereµ := √
ρ2 + 2β(1− f (x0)) − ρ > 0. Thus, inequality (14) becomes

f (y) � f (x0)e
−µ(y−x0)

as required. �
As a corollary, we gain an alternative and straightforward probabilistic proof of the weaker asymptotic

found in Pinsky [35] that first motivated this article:

Corollary 16. When it exists, the solution to the system(4) satisfies

lim
x↑∞

1

x
logf (x) = ρ −

√
ρ2 + 2β < 0.
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ll be the
Proof. Taking logarithms in Lemma 15, then taking a lim supy before noting thatf (x0) → 0 asx0 → ∞ yields
the required upper bound.

To prove the lower bound, recall that (14) is a martingale and hence fory > 0, remembering thatf (x) ∈ [0,1]
with f (0) = 1, we have

f (y) = E
y
−ρ

{
exp

(
β

τ0∫
0

(
f (Ys) − 1

)
ds

)}
� E

y
−ρ

(
e−βτ0

) = e−(
√

ρ2+2β−ρ)y, (15)

yielding the required lower bound.�
As another corollary to Lemma 15, we can find an exponentially decaying bound forf valid on the whole of

(0,∞). This is of importance in the proof of the strong asymptotic of Theorem 1.

Corollary 17. Letf be the unique solution of the system(4) when−∞ < ρ <
√

2β. Given anyK > 1, there exists
a κ > 0 such that

f (y) � Ke−κy

for all y � 0.

Proof. ForK > 1, choosex0 > 0 such thatK = eµx0. Note thatf (x0) ∈ (0,1) and then set

κ =
√

ρ2 + 2β
(
1− f (x0)

) − ρ > 0.

Lemma 15 says thatf (y) � Ke−κy for all y � x0. Also, since 0� f � 1 and fory < x0 we haveKe−κy > 1, we
trivially havef (y) � Ke−κy for all y � x0. �

We now extend the analysis to prove the stronger asymptotic of Theorem 1. Crucial to the argument wi
following proposition which we shall prove at the end of this section.

Proposition 18. With ρ̃ := √
ρ2 + 2β, x > 0 andf (x) the unique travelling-wave at speed−∞ < ρ <

√
2β,

lim
x→∞ Ex

−ρ̃ exp

(
β

τ0∫
0

f (Ys)ds

)
< +∞. (16)

Proof of Theorem 1 (asymptotics). Working with the change of measure

dPx
λ−ρ

dPx−ρ

∣∣∣∣
Ft

= eλ(Yt+ρt−x)− 1
2λ2t

for λ ∈ R andx > 0, we have from the martingale property at (14) that

e−λxf (x) = Ex−ρ

{
e−λYt∧τ0f (Yt∧τ0)e

β
∫ t∧τ0

0 f (Ys)dseλ(Yt∧τ0−x)−β(t∧τ0)
}
.

Choosingλ = α := ρ − √
ρ2 + 2β < 0, so thatβ + ρλ = 1

2λ2, and definingv(x) := e−αxf (x) and ρ̃ :=√
ρ2 + 2β > 0, this yields

v(x) = Ex
−ρ̃

{
v(Yt∧τ0)exp

(
β

t∧τ0∫
f (Ys)ds

)}
,

0
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whence

v(Yt∧τ0)exp

(
β

t∧τ0∫
0

f (Ys)ds

)
(17)

is a P−ρ̃ martingale which is positive and therefore convergent. Asτ0 < ∞ a.s.P−ρ̃ we also havev(Yt∧τ0) → 1
a.s. underPx

−ρ̃
, but v is not (yet) known to be a bounded function so we cannot immediately conclude tha

martingale is uniformly integrable. However, using the change of measure

dPx
−ρ̃

dPx−ρ

∣∣∣∣
Fτ0

= e(
√

ρ2+2β−ρ)x−βτ0

(which is possible because exp{−(
√

ρ2 + 2β − ρ)(Yt∧τ0 − x) − β(t ∧ τ0)} is a uniformly integrable martingale
we may transform (15) to

v(x) = Ex
−ρ̃

{
exp

(
β

τ0∫
0

f (Ys)ds

)}
(18)

and hence thePx
−ρ̃

martingale in (17) is uniformly integrable. Note that from (18) it is clear thatv is monotone
increasing inx and hence its limit exists asx tends to infinity.

All that remains is to prove thatv converges to a finite limit asx tends to infinity, which is precisely Propos
tion 18. Thus

v(x) := f (x)e−αx ↑ k ∈ (0,∞) asx → ∞.

Hencef (x) asymptotically looks like the decaying solution of

1

2
f ′′ − ρf ′ − βf = 0,

that is, the linearization of Eq. (3) about the origin.�
Proof of Proposition 18. Recall thatρ̃ = √

ρ2 + 2β and fory > 0

E
y

−ρ̃
(eγ τ0) = e(ρ̃−

√
ρ̃2−2γ )y

provided that 2γ < ρ̃2 (in particular, this holds for allγ � β).
Note that for anyy > 0, sincef ∈ [0,1], we have

E
y

−ρ̃
exp

(
β

τ0∫
0

f (Ys)ds

)
� E

y

−ρ̃
(eβτ0) = e(

√
ρ2−2β−ρ)y < ∞, (19)

and for anyy0 > y1 > 0, the strong Markov property gives

E
y0
−ρ̃

(
eβ

∫ τ0
0 f (Ys)ds

) = E
y0
−ρ̃

(
eβ

∫ τy1
0 f (Ys)ds

)
E

y1
−ρ̃

(
eβ

∫ τ0
0 f (Ys)ds

)
. (20)

Fix anyK > 1 and recall from Corollary 17 that there then existsµ > 0 such that

f (x) � Ke−µx ∀x � 0.

Now fix anyd > 0. Choose a fixedM ∈ N sufficiently large such thatKe−µy1 < 1 wherey1 := Md . Then, for any
N ∈ N andy0 := (M + N)d , and withSi := τ(M+i−1)d − τ(M+i)d so that theSi are IID each distributed like th
first hitting time of 0 by a Brownian motion started atd , we have
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E
y0
−ρ̃

exp

(
β

τy1∫
0

f (Ys)ds

)
� E

y0
−ρ̃

exp

(
βK

τy1∫
0

e−µYs ds

)

� E
y0
−ρ̃

exp

(
βKe−µy1

N∑
k=1

e−µkdSk

)

� E
y0
−ρ̃

N∏
k=1

exp
(
βe−µkdSk

)
=

N∏
k=1

E
y0
−ρ̃

exp
(
βe−µkdSk

)
= exp

(
d

N∑
k=1

{
ρ̃ −

√
ρ̃2 − 2βe−µkd

})
. (21)

Since

ρ̃ −
√

ρ̃2 − 2βe−µkd =
(

β√
ρ2 + 2β

)
e−µkd + o

(
e−µkd

)
,

the sum appearing in (21) is convergent whenN → ∞. Using this fact together with monotone convergence
Eqs. (19) and (20) now gives the required result.�

7. Right most particle asymptotic −∞ < ρ <
√

2β

The intention of Theorem 11 was to establish properties of the probability of extinction in order to justif
a solution to the travelling-wave equation. However, considering parts (i) and (iii) of this same theorem
reason to believe that like the(−ρ,β;R)-BBM, the (−ρ,β;R+)-BBM has a right most particle with asymptot
drift

√
2β − ρ (but now it is necessary to specify that this happens on the survival set). This is indeed th

After considerable extra work Lemma 2 will actually follow from the stronger result given in Theorem 5, b
can already give a direct alternative proof using intuition from the spine ideas which we include for now for in

Proof of Lemma 2. We shall prove this result by establishing separately that

lim inf
t↑∞

Rt

t
�

√
2β − ρ and lim sup

t↑∞
Rt

t
�

√
2β − ρ on {ζ = ∞} P x-a.s.

Theorem 9 shows that for eachx > 0, on {ζ = ∞}, lim supt↑∞ Rt = ∞ P x -almost surely and henceσy :=
inf{t � 0: X−ρ(y,∞) > 0} is P x -almost surely finite for eachy > 0 on{ζ = ∞}. This implies that for anyλ > 0,

P x
(
lim inf

t↑∞ Rt/t � λ, ζ = ∞) = P x
(
lim inf

t↑∞ Rt/t � λ,σy < ∞, ζ = ∞)
.

It thus follows that for anyy > x

P x
(
lim inf

t↑∞ Rt/t � λ, ζ = ∞) = P x(σy < ∞)P x
(
lim inf

t↑∞ Rt/t � λ, ζ = ∞ | σy < ∞)
� P x(σy < ∞)P y

(
lim inf Rt/t � λ, ζ = ∞)

(22)

t↑∞
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le

arti-

ence,
where the inequality follows from the fact that at timeσy there is one particle positioned aty which, givenFσy ,

gives rise to an branching tree independent of other particles alive at timeσy and further whose right most partic
is bounded above by the right most particle ofX−ρ. Recalling Theorem 9, now note that asy → ∞,

P x(σy < ∞) ↑ P x
(
lim sup

t↑∞
Rt = ∞) = P x(ζ = ∞).

It follows from (22) with the help of Theorem 11(iii) that when we further insist thatλ ∈ (0,
√

2β − ρ),

P x(ζ = ∞) � P x
(
lim inf

t↑∞ Rt/t � λ, ζ = ∞)
� lim

y↑∞P x(σy < ∞)P y
(
lim inf

t↑∞ Rt/t � λ, ζ = ∞)
= P x(ζ = ∞).

We thus deduce that for anyε > 0, P x -almost everywhere on the event{ζ = ∞} we have

lim inf
t↑∞ Rt/t �

√
2β − ρ − ε.

Additionally note that on{ζ = ∞}, Rt is P x -almost surely stochastically bounded above by the right-most p
cleRt of theunkilled (−ρ,β;R)-BBM and recall, for example,Zλ(t) � exp{(λ + ρ)Rt − 1

2(λ2 − ρ2)t − βt)}),
yielding

lim sup
t↑∞

Rt/t �
√

2β − ρ

P x -almost everywhere on the event{ζ = ∞}. �

8. Proofs of the martingale results

We first prove the following result, which identifies the speed of particles which contribute to the limit ofWλ.

Theorem 19. For any smallε > 0 we have,P x -almost-surely,

Wλ(∞) = lim
t→∞

∑
u∈N

−ρ
t

(
1− e−2λYu(t)

)
e(λ+ρ)Yu(t)−( 1

2 (λ2−ρ2)+β)t1(|Yu(t)/t−λ|<ε).

Proof. DefineEλ = E(λ) := 1
2(λ2 − ρ2) + β, let ε > 0 be small, and setµ := λ − ε. Then∑

u∈N
−ρ
t

(
1− e−2λYu(t)

)
e(λ+ρ)Yu(t)−Eλt1(0<Yu(t)�(λ−ε)t)

�
∑

u∈N
−ρ
t

e(µ+ρ)Yu(t)−Eµt1(0<Yu(t)�(λ−ε)t) × e(λ−µ)Yu(t)−(Eλ−Eµ)t

� e− 1
2ε2t

∑
u∈N−ρ

t

e(µ+ρ)Yu(t)−Eµt = e− 1
2ε2tZµ(t),

whereZµ(t) is the martingale given in Eq. (3), which is positive and hence almost-surely convergent. H
P x -almost-surely,

lim sup
t→∞

∑
u∈N

−ρ

(
1− e−2λYu(t)

)
e(λ+ρ)Yu(t)−Eλt1(0<Yu(t)�(λ−ε)t) = 0.
t
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The other bound can be proved similarly by settingµ := λ + ε and showing∑
u∈N

−ρ
t

(
1− e−2λYu(t)

)
e(λ+ρ)Yu(t)−Eλt1(Yu(t)�(λ+ε)t) � e− 1

2ε2tZµ(t)

as required. �
Remark 20. It is implicit in the proof of Theorem 19 that we also have another representation forWλ(∞):

Wλ(∞) = lim
t→∞

∑
u∈N

−ρ
t

e(λ+ρ)Yu(t)−( 1
2 (λ2−ρ2)+β)t .

That is, the limit ofWλ is the same as that part of the limit ofZλ contributed from particles that avoided the orig

Recall thatP x(ζ = ∞) > 0 if and only if ρ <
√

2β, and note that if this condition does not hold there
be no values ofλ for which Wλ is uniformly integrable. Whenρ �

√
2β, the criticalλ value of

√
2β − ρ in

Theorem 4 corresponds to the right-most particle asymptotic of Lemma 2, tallying with the intuitive notion t
Wλ martingale limit measures particles travelling at speedλ.

Proof of Theorem 4. We note that, forλ,x > 0 and for eachp ∈ (1,2]:

1. The martingaleWλ is Lp(P x)-convergent ifp(λ + ρ)2/2 < β;
2. Almost surely underP x , Wλ(∞) = 0 when(λ + ρ)2/2� β.

ThisLp-convergence result forWλ follows from the trivial boundWλ � Zλ and known results forZλ.
It remains to check that process survival is equivalent to a strictly positive limit forWλ. From the definition

for Wλ, it is clear that{ζ < ∞} ⊆ {Wλ(∞) = 0}, so thatP x(Wλ(∞) = 0; ζ < ∞) = P x(ζ < ∞). We can also
write P x(Wλ(∞) = 0) as

P x
(
Wλ(∞) = 0

) = P x
(
Wλ(∞) = 0; ζ < ∞) + P x

(
Wλ(∞) = 0; ζ = ∞)

, (23)

and the result follows if we can show thatP x(Wλ(∞) = 0) = P x(ζ < ∞). Defineg(x) := P x(Wλ(∞) = 0), and
then, by a similar argument to that used in the proof of Theorem 13

g(x) = Ex

( ∏
u∈N

−ρ
t

g
(
Yu(t)

))
, (24)

and henceg(x) satisfies the ODE in the system (4), and also the boundary condition limx↓0 g(x) = 1. With the
representation of Remark 20 in mind, considering the(−ρ,β;R)-BBM path-wise we see thatg(x) is monotone
decreasing inx, and sog(x) ↓ g(∞) asx → ∞. Now for any fixed timet > 0, we haveN−ρ

t ↑ N−ρ
t asx → ∞,

and, looking at the process path-wise again, we also haveYu(t) ↑ ∞ asx → ∞, for all u ∈ N
−ρ
t . Thus we may take

limits on both sides of (24) to obtaing(∞) = E0(
∏

u∈N−ρ
t

g(∞)), whenceg(∞) = 0 or 1. SinceWλ is uniformly
integrable for the values ofλ under consideration we must haveg(∞) = 0. Henceg(x) satisfies the ODE an
boundary conditions in (4), and uniqueness of the one-sided travelling wave completes the argument.�
Proof of Theorem 5. The key idea in the proof is to overestimate the indicator functions in (6) by expone
and then re-arrange the expression to obtain martingale terms. We emphasise that the use ofWλ, as opposed toZλ,
in the following arguments is absolutely essential but, otherwise, we closely follow Git et al. [16]. Bou
N

−ρ
t (λt,∞) above, we have

N
−ρ
t (λt,∞) =

∑
u∈N

−ρ

1(Yu(t)−λt�0) �
∑

u∈N−ρ

e(λ+ρ)(Yu(t)−λt) = e∆(λ)tZλ(t).
t t
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Now if λ �
√

2β − ρ then Zλ has an almost-sure zero limit and∆(λ) � 0, whence
∑

u∈N
−ρ
t

1(Yu(t)�λt) = 0,

eventually, with probability 1. On the other hand, if 0< λ <
√

2β −ρ thenZλ(∞) > 0 almost surely and∆(λ) > 0
so

lim sup
t→∞

t−1 lnN
−ρ
t (λt,∞) � ∆(λ), a.s.

For the reverse inequality, letε > 0 be small and 0< λ <
√

2β − ρ. Then∑
u∈N

−ρ
t

(
1− e−2λYu(t)

)
e(λ+ρ)Yu(t)−Eλt1((λ−ε)t<Yu(t)�(λ+ε)t) � e((λ+ρ)λ−Eλ)teε(λ+ρ)t

∑
u∈N

−ρ
t

1((λ−ε)t<Yu(t)).

Noting that(λ + ρ)λ − Eλ = −∆(λ), we obtain

t−1 ln
∑

u∈N
−ρ
t

(
1− e−2λYu(t)

)
e(λ+ρ)Yu(t)−Eλt1((λ−ε)t<Yu(t)�(λ+ε)t)

� −∆(λ) + ε(λ + ρ) + t−1 ln
∑

u∈N
−ρ
t

1((λ−ε)t<Yu(t)). (25)

Now ast → ∞, it follows from the crucial facts thatWλ(∞) > 0 (from Theorem 4) and that the limit only ‘see
particles of speedλ (from Proposition 19) that, on{ζ = ∞}, the left-hand side of (25) tends to zero, and si
ε > 0 is arbitrary, we find that

lim inf
t→∞ t−1 ln

∑
u∈N

−ρ
t

1(Yu(t)�λt) � ∆(λ), a.s.

which completes the proof.�

9. Proof of Theorem 6

The proof of Theorem 6 rests on the close links between branching diffusions and partial differential eq
essentially, the assertion of Theorem 6 is that for large timest the solution of the non-linear equation

∂u

∂t
= 1

2

∂2u

∂x2
− ρ

∂u

∂x
+ βu(1− u), (26)

with u ∈ C1,2(R+ × R+) andu(·,0+) = 0, is asymptotically equal to a constant multiple of the solution of
linearised equation

∂w

∂t
= 1

2

∂2w

∂x2
− ρ

∂w

∂x
+ βw, (27)

for w ∈ C1,2(R+ × R+) and w(·,0+) = 0. Consideringx, y, t > 0, it is classical theory thatu(t, x, y) :=
P x(Rt > y) solves (26) with initial conditionu(0, x, y) = 1(x>y). This link can be seen from the product m
tingales in McKean’s work [31,32]. A simple Feynman–Kac argument yields the following:

Proposition 21. Let w(t, x, y) be the solution of the linearised equation(27) with the same initial condition, tha
is w(0, x, y) = 1(x>y). Thenu(t, x, y) � w(t, x, y) for all t, x, y > 0.

Remark 22. The probabilistic interpretation of Proposition 21 is that, for allt, x > 0,

P x(Rt > λt + θ) � Ex
(
N

−ρ
t (λt + θ,∞)

)
.
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Proof of Theorem 6. Let {Bt
x1,x2

(φ): s ∈ [0, t]} be a Brownian bridge that travels from pointx1 to x2 over time
period[0, t], and letτ t

0 to be the first hitting of the origin by the bridge. Then we have

u(t, x, y) = Ex−ρ

{
1(Yt>y)e

β
∫ t

0 (1−u(t−φ,Yφ,y))dφ; τ0 > t
}

= eβt

∞∫
0

Px−ρ(Yt − y ∈ dz)E
{
e−β

∫ t
0 u(t−φ,Bt

x,z+y(φ),y)dφ; τ t
0 > t

}
.

Hence

u(t, x, λt + θ) = e−( 1
2 (λ+ρ)2−β)t

√
2πt

e(λ+ρ)(x−θ)

∞∫
0

e−(λ+ρ)z exp

(−(x − θ − z)2

2t

)

× E
{
e−β

∫ t
0 u(t−φ,Bt

x,z+λt+θ (φ),λt+θ)dφ; τ t
0 > t

}
dz,

and then, by dominated convergence, to complete the proof of (7) it suffices to show that there exists some
g : (0,∞) → (0,1] such that

E
{
e−β

∫ t
0 u(t−φ,Bt

x,z+λt+θ (φ),λt+θ)dφ; τ t
0 > t

} −→
t→∞g(z)

(
1− e−2λx

)
,

since this would ensure that
∞∫

0

e−(λ+ρ)z exp

(−(x − θ − z)2

2t

)
E

{
e−β

∫ t
0 u(t−φ,Bt

x,z+λt+θ (φ),λt+θ)dφ; τ t
0 > t

}
dz −→

t→∞C
(
1− e−2λx

)
.

Although we are essentially following the strategy of Chauvin and Rouault [9] here, extra effort is requ
deal with the complications arising from the introduction of the absorbing barrier. In particular, Lemma 23
uses a similar argument to show that a certain expectation converges, but additional work is needed to ide
limit; after this, a careful chosen construction of the family of Brownian bridges from two independent Bro
motions allows us to give intuitive proofs of the remaining new results that yield Theorem 6.

Let B := {B(s): s � 0} be a standard Brownian motion started at the origin, then recall the fact that a Bro
bridge{Bt

x1,x2
(φ): φ ∈ [0, t]} from positionsx1 to x2 can be constructed by taking

Bt
x1,x2

(φ) = B(φ) − φ

t
B(t) + x1 + φ

t
(x2 − x1) (0� φ � t).

Also define

ũ(t, x, y) := P x(Rt > y),

whereRt is the right-most particle in theunkilled (−ρ,β;R)-BBM. Note thatũ(t, x, y) is a solution of (26) as a
function of(t, x) ∈ R+ × R with the same initial condition asu, that isũ(0, x, y) = 1(x>y). We find:

Lemma 23. As t → ∞,

E
(
e−β

∫ t
0 u(t−φ,Bt

x,z+λt+θ (φ),λt+θ)dφ
) → E

(
e−β

∫ ∞
0 ũ(φ,B(φ)+z−λφ,0)dφ

)
(28)

where the limit is independent ofθ andx.

Proof of Lemma 23. The proof requires only a slight modification of the argument in Chauvin and Ro
[9, Lemma 3.1]. Since the effect of the killing vanishes as the particle’s start position tends to infinity, we ca
that

1[0,t](φ)u
(
φ,Bt

z+λt+θ,x(φ), λt + θ
) −→

t→∞ ũ
(
φ,B(φ) + z − λφ,0

)
.

Then a dominated-convergence argument shows that the right-hand side of (28) is strictly positive.�
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ges
Construction of the bridges.We make the following simultaneous construction of all the Brownian brid
Bt

x,z(·) with indicest > 0, x, z > 0 using twoindependentBrownian motions started at the origin,W = {W(s):
s > 0} andX = {X(s): s > 0}:

Bt
x,z(φ) :=

W(φ) − φ
t
W(t) + x + φ

t
(z − x), for φ ∈ [0, τ t

0),

B̃
t−τ t

0
z,0 (t − φ), for φ ∈ [τ t

0, t],
(29)

where

τ t
0 = τ t

0(x, z) = inf

{
φ � 0: W(φ) − φ

t
W(t) + x + φ

t
(z − x) = 0

}
and for anys > 0

B̃s
z,0(u) := X(u) − u

s
X(s) + z − u

s
z for u ∈ [0, s]. (30)

Note thatτ t
0 is determined entirely from the path ofW , and, almost surely ast → ∞, we have

τ t
0(x, z + λt + θ) → τ0 := inf

{
φ: W(φ) + λφ + x = 0

}
.

Also

Bt
x,z+λt+θ (φ) → W(φ) + λφ + x (31)

uniformly on any interval[0, s] wheres < τ0.

Lemma 24. On the event{τ0 < ∞},
τ t
0∫

0

u
(
t − φ,Bt

x,z+λt+θ (φ), λt + θ
)
dφ → 0

almost surely ast → ∞.

Proof of Lemma 24. Let s < τ0 < ∞. Then sinceτ t
0 → τ0 almost surely, there exists somet0 such thats < τ t

0 for
all t � t0. Recalling the functionw from Proposition 21, we note that

w(t, x, y) = eβtEx−ρ(1(Yt>y); τ0 > t)

� eβtE0
0(1(Yt>y−x+ρt)) =: w̃(t, y − x), (32)

and Chernov’s inequality gives

w̃(s, z) � exp

(
βs − z2

2s

)
, ∀s, z > 0. (33)

Using Proposition 21 and the inequalities (32) and (33) we have, for anyB ∈ R,

u(t − φ,B,λt + θ) � e(β− 1
2 (λ+ρ)2)t × e−βφ− 1

2 (λ+ρ)2φ+(B−θ)(λ+ρ).

Then, combining these facts with (31), we see that
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ent

y-to-one
e( 1
2 (λ+ρ)−2β)t

s∫
0

u
(
t − φ,Bt

x,z+λt+θ (φ), λt + θ
)
dφ �

s∫
0

e−βφ− 1
2 (λ+ρ)2φ+(Bt

x,z+λt+θ (φ)−θ)(λ+ρ) dφ

→
s∫

0

e−βφ− 1
2 (λ+ρ)2φ+(W(φ)+λφ+x−θ)(λ+ρ) dφ < ∞

ast → ∞. Sinceλ >
√

2β − ρ and the above holds for alls < τ0 < ∞, the lemma follows. �
Define

I (z) :=
∞∫

0

ũ
(
φ,X(φ) + z − λφ,0

)
dφ

and note that this definition isindependentof W (hence also of eachτ t
0 andτ0).

Lemma 25. On the event{τ0 < ∞},
t∫

0

u
(
t − φ,Bt

x,z+λt+θ (φ), λt + θ
)
dφ → I (z),

almost surely ast → ∞. In particular, note limitI (z) ∈ (0,∞) is independent ofθ andx.

Proof. Using the construction at (29), we see that

t∫
τ t
0

u
(
t − φ,Bt

x,z+λt+θ (φ), λt + θ
)
dφ =

t∫
τ t
0

u
(
t − φ, B̃

t−τ t
0

z+λt+θ,0(t − φ),λt + θ
)
dφ

=
t−τ t

0∫
0

u
(
φ, B̃

t−τ t
0

z+λt+θ,0(φ), λt + θ
)
dφ. (34)

We now note that, because of our construction ofB̃
t−τ t

0
z+λt+θ,0 at (30), we may almost exactly mirror the argum

required for Lemma 23 to show that (34) converges toI (z) ast → ∞. �
Immediately from Lemma 25, we see that

E
{
e−β

∫ t
0 u(t−φ,Bt

x,z+λt+θ (φ),λt+θ)dφ; τ t
0 < t

} −→
t→∞ E

(
e−βI (z); τ0 < ∞)

.

To complete the proof of (7), we note thatI (z) andτ0 areindependentby construction,Px(τ0 < ∞) = e−2λx and
the right-hand side of Eq. (28) is the same asE(e−I (z)), hence

E
{
e−β

∫ t
0 u(t−φ,Bt

x,z+λt+θ (φ),λt+θ)dφ; τ t
0 > t

} −→
t→∞

(
1− e−2λx

)
E

(
e−βI (z)

)
as required. Finally, we note that the equivalent statement of Eq. (8) can be deduced from Eq. (7), the man
lemma (9), and the one-particle calculation

Px−ρ

(
Y(t) � λt + θ; τ0 > t

) ∼
t→∞

1

(λ + ρ)
√

2πt

(
1− e−2λx

)
e(λ+ρ)(x−θ)− 1

2 (λ+ρ)2t .

This completes the proof of Theorem 6.�
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