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Abstract

We consider Hölder regularity for Brownian Motion and Lévy’s Stochastic Area conditional on the Brownian path
uniformly small. Our motivation comes from the analysis of SDE’s via the theory of “rough paths”.
 2005 Elsevier SAS. All rights reserved.

Résumé

Pour les chemins browniens uniformément petits, nous considérons la régularité hölderiennes de l’aire stochastiqu
Notre intérêt provient de l’analyse des équations differentielles stochastiques par la théorie des « rough paths ».
 2005 Elsevier SAS. All rights reserved.

MSC:60G15; 60H05; 60J65

1. Introduction

Throughout,W will denote the space of continuous pathsw : [0,∞) → Rd which start at the origin0 ∈ Rd , and
W will be thought of as a Polish space in which convergence means uniform convergence on compacts.
P will denote Wiener measure on the Borel fieldBW overW , and, for 0� s < t < ∞, we define the Lévy area2

w ∈ W �→ As,t (w) ∈ so(d), the skew symmetric matrices, so that
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2 We omit a commonly used factor12 in the area-definition. This will eliminate the need a lot of1
2 ’s and 1

4 ’s in what follows, and, of course
has no impact otherwise.
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As,t (w)k,� =
t∫

s

(
wk(τ) − wk(s)

)
dw�(τ) −

t∫
s

(
w�(τ) − w�(s)

)
dwk(τ). (A)

More precisely, we mean by this that we have a mapw �→ A(w) ∈ C(∆;so(d)), where∆ ≡ {(s, t) ∈ [0,∞)2:
s � t}, such that

(1) The map(s, t) ∈ ∆ �→ As,t (w) ∈ so(d) is continuous for eachw ∈ W .
(2) For each(s, t) ∈ ∆, w ∈ W �→ As,t (w) ∈ so(d) is �B[s,t]-measurable when�B[s,t] is the σ -algebra which is

obtained by completingσ({w(τ) − w(s): τ ∈ [s, t]}) with respect toP. Moreover, for all 1� k < � � d ,
As,t (w)k,� P-almost surely satisfies (A) when the integrals are taken in the sense of Itô.

(3) If w ∈ W has bounded variation on[s, t], As,t (w)k,� is given by (A) when the integrals there are taken in
sense of Riemann–Stieltjes.

(4) For all 0� s � t � u < ∞ andw ∈ W

As,t (w)k,� = A0,t (w)k,� − A0,s(w)k,� − wk(s)
(
w�(t) − w�(s)

) + w�(s)
(
wk(t) − wk(s)

)
.

Given 0� s < t < ∞, set

‖w‖0,[s,t] ≡ sup
{∣∣w(τ)

∣∣: τ ∈ [s, t]} and
∥∥A(w)

∥∥
0,[s,t] ≡ sup

{√∣∣Aσ,τ (w)
∣∣: s � σ � τ � t

}
,

and, forα > 0,

‖w‖α,[s,t] ≡ sup

{ |w(τ) − w(σ)|
(τ − σ)α

: s � σ < τ � t

}
and ∥∥A(w)

∥∥
α,[s,t] = sup

{√|Aσ,τ (w)|
(τ − σ)α

: s � σ < τ � t

}
.

Our main result is a quantitative version (cf. (a) in Remarks, (6), (7), (9), and (10) below) of the stateme
for eachα ∈ (0, 1

2), ε > 0, T ∈ (0,∞), and piecewise smooth3 h ∈ W ,

lim
δ↘0

P
(‖w − h‖α,[0,T ] ∨ ∥∥A(w) − A(h)

∥∥
α,[0,T ] � ε

∣∣ ‖w − h‖0,[0,T ] � δ
) = 0. (1)

Our interest in (1) stems from its application to the analysis of stochastic integral equations via the
of “rough paths”. In particular, after combining (1) with the continuity result in [9], one arrives at the state
that, whenw � X( · ,w) is the solution to a Stratonovich stochastic integral equation with sufficiently sm
coefficients4

lim
δ↘0

P
(∥∥X( · ,w) − X( · , h)

∥∥
α,[0,T ] � ε

∣∣ ‖w − h‖0,[0,T ] � δ
) = 0. (2)

Whenα = 0 and‖w −h‖0,[0,T ] is computed relative to the�∞(Rd)-norm onRd , this Lebesgue density type resu
is the one proved originally in [15]. The statement in (2) forα ∈ (0, 1

2) was proved for the first time in [2] (cf. [1
as well) by a rather intricate argument.

As corollary of the density statement, one gets the “support theorem” for the distribution ofw � X( · ,w). As
was shown in [11] (cf. [13] and [14] as well), the conclusion about the support which follows from (2) c
obtained by a simpler argument than the one in [2]. Furthermore, because it is a much more qualitativ

3 An extension to Cameron–Martin pathsh is possible.
4 For instance,C3-regular and globally Lipschitz coefficients will do. For precise conditions see [10]. The preprint [7] shows how to i

drift vector fields of minimal regularity.
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density statement, the support theorem has had many extensions, and some of these extensions are un
shared by the density statement. For example, it is unlikely that there is a density version of the extensio
support theorem in [16] to diffusion coefficients which do not admit a smooth square root. The idea of d
the support theorem via rough path considerations was discussed several times by the second and thir
mentioned in [9], and implemented in [5], relative top-variation, in [3] relative to the Hölder norm, and in [4] fo
more general moduli of continuity.

Finally, the development of rough path theory itself was started in [8] and completed in [9]. Its applicab
differential equations driven by Brownian Motion goes back to unpublished thesis work [12]. See also the
survey [6] and the monograph [10].

Remarks. (a) Results of the sort in (1) and (2) appear already in [2]. Aside from the fact that our approach l
more quantitative statements than theirs, they proved that

lim
δ↘0

P
(∥∥A(w) − A(h)

∥∥
α,[0,T ] � ε

∣∣ ‖w − h‖0,[0,T ] � δ
) = 0

only for α ∈ [0, 1
4), and for the application to the theory of rough paths it is essential to allowα > 1

4. Thus, although
they too arrive at (2), they could not have done so as an application of rough path theory. On the other hand
our own approach is inextricably tied to the special properties (cf. (e) below) of Brownian motion, the ap
taken in [2], which is more functional analytic, may apply to situations where our own approach fails.

(b) Throughout this article, we will be taking the norm onRd and so(d) to be the Euclidean norm. Howeve
an examination of our argument reveals that there is only one place at which we make essential of this c
norm. In particular, our proof shows that

lim
δ↘0

P
(‖w − h‖α,[0,T ] � ε

∣∣ ‖w − h‖0,[0,T ] � δ
) = 0

and, for eachα ∈ (1
4, 1

2) andR > 0,

lim
δ↘0

P
({∥∥A(w) − A(h)

∥∥
α,[0,T ] � ε

} ∩ {∥∥A(w) − A(h)
∥∥

α′,[0,T ] � Rδ1/2} ∣∣ ‖w − h‖0,[0,T ] � δ
) = 0

if
α

2
< α′ < 1

4

no matter what norm one uses forRd and so(d). However, we make critical use of the Euclidean norm onRd in
our argument that

lim
R→∞ P

(∥∥A(w) − A(h)
∥∥

α′,[0,T ] � Rδ1/2
∣∣ ‖w − h‖0,[0,T ] � δ

) = 0

uniformly in δ ∈ (0,1]. We suspect that even here one should not require the Euclidean norm. In fact, the o
result in [15] indicates that one can use the�∞(Rd)-norm, but we do not know at present how to deal with gen
norms.

(c) By an obvious scaling argument, we need only prove (1) whenT = 1. More important, an elementa
application of the Cameron–Martin theorem allows us to restrict our attention to the case whenh = 0. Namely, if

Rh(T ,w) = exp

(
−

T∫
0

(
ḣ(τ ),dw(τ)

)
Rd − 1

2

T∫
0

∣∣ḣ(τ )
∣∣2 dτ

)
,

then their theorem says that

P
(‖w − h‖α,[0,T ] ∨ ∥∥A(w − h)

∥∥
α,[0,T ] � ε

∣∣ ‖w − h‖0,[0,T ] � δ
)

= E[Rh(T ,w), {‖w‖α,[0,T ] ∨ ‖A(w)‖α,[0,T ] � ε} ∩ {‖w‖0,[0,T ] � δ}]
.

E[Rh(T ,w), {‖w‖0,[0,T ] � δ}]
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Hence, since∣∣∣∣∣
T2∫

T1

(
ḣ(τ ),dw(τ)

)
Rd

∣∣∣∣∣ � ‖w‖0,[T1,T2]

(∣∣ḣ(T1)
∣∣ + ∣∣ḣ(T2)

∣∣ +
T2∫

T1

∣∣ḧ(τ )
∣∣dτ

)
,

if h ∈ C2([T1, T2];Rd), it is clear that we will know that

lim
δ↘0

P
(‖w − h‖α,[0,T ] ∨ ∥∥A(w − h)

∥∥
α,[0,T ] � ε

∣∣ ‖w − h‖0,[0,T ] � δ
) = 0 (3)

for all piecewise smoothh ∈ W once we show it forh = 0. At the same time, whenk = �,

t∫
s

(
wk(τ) − wk(s)

)
dw�(τ) −

t∫
s

(
hk(τ ) − hk(s)

)
dh�(τ ) −

t∫
s

(
(wk − hk)(τ ) − (wk − hk)(s)

)
d(w� − h�)(τ )

=
t∫

s

(
(wk − hk)(τ ) − (wk − hk)(s)

)
dh�(τ ) +

t∫
s

(
(w� − h�)(t) − (w� − h�)(τ )

)
dhk(τ ),

from which we see that (3) implies (1) for piecewise smoothh ∈ W .
Taking these considerations into account, we concentrate in this paper on proving that, for eachα ∈ (0, 1

2) and
ε > 0,

lim
δ↘0

P
(‖w‖α,[0,1] ∨ ∥∥A(w)

∥∥
α,[0,1] � ε

∣∣ ‖w‖0,[0,1] � δ
) = 0. (4)

(d) It is instructive to compare the Lévy area with the symmetric part of the second iterated integral. Tha
k = �, consider

t∫
s

(
wk(τ) − wk(s)

)
dw�(τ) +

t∫
s

(
w�(τ) − w�(s)

)
dwk(τ) = (

wk(t) − wk(s)
)(

w�(t) − w�(s)
)

whose size, under the conditioning‖w‖0,[0,1] � δ, is obviously of orderδ2. As we will show in the Addendum, thi
is in stark contrast with the size

sup
{∣∣As,t (w)k,�

∣∣: 0� s � t � 1
} = ∥∥A(w)

∥∥2
0,[0,1]

of the area, which, under the same conditioning, is (cf. (18)) of orderδ.
(e) Our proof of (3) relies heavily on Brownian scaling. For example, we make repeated use of the fact

distribution ofw � (‖w‖α,[T1,T2],‖A(w)‖α,[T1,T2]) is the same as the distribution of

w � (T2 − T1)
1/2−α

(‖w‖α,[0,1],
∥∥A(w)

∥∥
α,[0,1]

)
in order to show that the probability of “bad” behavior on an interval decreases rapidly with the length
interval. For this reason, the arguments which we have developed are incapable of proving results which w
anything so refined as, conditional on‖w‖0,[0,T ] being small, the Lévy modulus ofw � [0, T ] is small.

2. Controlling ‖w‖α

If ‖w‖0,[0,1] � δ and‖w‖α,[0,1] � ε, then there exist 0� s < t � 1 such that

t − s <

(
2δ

)1/α

and
|w(t) − w(s)|

α
� ε.
ε (t − s)
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Hence,P(‖w‖α,[0,1] � ε & ‖w‖0,[0,1] � δ) is dominated by the sum of∼ (ε/δ)1/α terms of the form

P
(‖w‖0,[0,T1] ∨ ‖w‖0,[T2,1] � δ & ‖w‖α,[T1,T2] � ε

)
,

where 0� T1 < T2 � 1 andT2 − T1 � (2δ/ε)1/α .
Now setu(t, x) ≡ P(‖x + w‖0,[0,t] < 1). Then, by scaling,

P
(‖x + w‖0,[0,T ] < δ

) = u

(
T δ−2,

x

δ

)
.

Hence, by the Markov property, each of the above terms is dominated by

E
[
u
(
(1− T2)δ

−2,w(T2)δ
−1), ‖w‖0,[0,T1] � δ & ‖w‖α,[T1,T2] � ε

]
. (5)

Lemma 1. Let λ be the smallest eigenvalue of−1
2	 with Dirichlet boundary condition on the unit ballB(0,1)

centered at the origin inRd . Then

e−λt � u(t,0) and u(t, x) � K e−λt ,

whereK = e2λ
√

(4π)−d/2 vol(B(0,1).

Proof. Use pt (x, y) to denote the Dirichlet heat kernel for1
2	 on B(0,1). Thenu(t, x) = ∫

B(0,1)
pt (x, y)dy.

Next, useψ to denote theL2-normalized eigenfunction corresponding toλ, and recall thatψ can be taken to b
smooth and positive. Moreover,ψ achieves its maximum at the origin. There are various ways to check thi
statement. One is via explicit expressions for Bessel functions. A softer approach is to realize that, by uniq
ψ is symmetric in each coordinate separately, and therefore, for each 1� k � d , the partial derivativeψ,k of ψ in
thekth coordinate direction is an odd function of thekth coordinate which satisfies	ψ,k + 2λψ,k = 0 onB(0,1)

and is non-positive on∂B(0,1)∩{x: xk � 0}. Hence, by the minimum principle,ψ,k � 0 onB(0,1)∩{x: xk � 0},
and so, for eachk, ψ(x) � ψ(x′), wherex′

� = x� when � = k andx′
k = 0. After applying this remark to eac

coordinate, we conclude thatψ achieves its maximum at0. Knowing thatψ(0) � ψ , the lower bound becomes th
simple observation that

ψ(0) = eλt

∫
B(0,1)

pt (0, y)ψ(y)dy � eλtψ(0)u(t,0).

To get the upper bound, assume thatt � 1 and useΩd to denote the volume ofB(0,1). By the Chapman–
Kolmogorov equation plus the symmetry ofpt (x, y) in x andy, one can easily justify5

u(t, x) =
∫

B(0,1)

pt (x, y)dy =
∫

B(0,1)

( ∫
B(0,1)

p1(x, ξ)pt−1(ξ, y)dξ

)
dy

=
∫

B(0,1)

( ∫
B(0,1)

p1(x, ξ)pt−1(y, ξ)dξ

)
dy �

√
Ωd

( ∫
B(0,1)

( ∫
B(0,1)

pt−1(y, ξ)p1(x, ξ)dξ

)2

dy

)1/2

�
√

Ωd e−λ(t−1)
∥∥p1(x, · )∥∥

L2(B(0,1))
�

√
Ωd e−λ(t−1)(4π)−d/4,

since ‖p1(x, · )‖2
L2(B(0,1))

= p2(x, x) � (4π)−d/2. In particular, by the lower bound, e−λ � u(1,0) �√
(4π)−d/2Ωd , and so

eλ
√

(4π)−d/2 vol
(
B(0,1)

)
� 1.

5 To get line 3 from line 2 below, we think ofpt−1(x, y) as the kernel for an operator whose norm is e−λ(t−1).
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minated

at

quality

-

At the same time,u(t, x) � 1, which completes the proof our upper bound for allt � 0. �
We now use the upper bound in Lemma 1 to estimate the expression in (5) and thereby get that it is do

by

K e−λ(1−T2)δ
−2

P
(‖w‖0,[0,T1] � δ & ‖w‖α,[T1,T2] � ε

)
= K e−λ(1−T2)δ

−2
u
(
T1δ

−2,0
)
P
(‖w‖α,[0,T2−T1] � ε

)
� K2 e−λ(1−(T2−T1))δ

−2)P
(‖w‖α,[0,(T2−T1)] � ε

)
,

since{‖w‖0,[0,T1] � δ} is independent of{‖w‖α,[T1,T2] � ε}. We next use the lower bound in Lemma 1 to arrive

P
(‖w‖α,[T1,T2] � ε

∣∣ ‖w‖0,[0,1] � δ
)
� K2 eλ(T2−T1)δ

−2
P
(‖w‖α,[0,2(2ε−1δ)1/α] � ε

)
.

Finally, we apply Brownian scaling and Gaussian tail estimates for‖w‖α,[0,1] to get

P
(‖w‖α,[0,1] � ε

∣∣ ‖w‖0,[0,1] � δ
)
� Cα

(
εδ−1)1/α exp

[
2λ

(
2ε−1δ1−2α

)1/α − βα

(
ε−1δ1−2α

)−1/α]
(6)

for appropriateCα < ∞ andβα > 0. In particular, after takingε = δη, we can say that there exists aCα,η < ∞
such that

P
(‖w‖α,[0,1] � δη

∣∣ ‖w‖0,[0,1] � δ
)
� Cα,η exp

[−βαδ−(1−2α−η)/α
]

for eachα ∈
(

0,
1

2

)
& η ∈ (0,1− 2α). (7)

Notice that (7) is, at least qualitatively, what one should expect on the basis of the trivial interpolation ine

‖w‖α,[0,1] � ‖w‖1−α/β

0,[0,1] ‖w‖α/β

β,[0,1] for 0 < α < β.

Indeed, we know that‖w‖β,[0,1] < ∞ for eachβ < 1
2, and so it is not surprising that, given‖w‖0,[0,1] � δ, we find

that the size of‖w‖α,[0,1] is no greater thanδη for eachη < 1− 2α.

3. Controlling ‖A‖α,[0,1] for small α

In this section we deal with the case whenα is small in the sense that it lies in the interval(0, 1
4). For this

purpose, write

As,t (w)1,2 = A0,t (w)1,2 − A0,s(w)1,2 − w1(s)
(
w2(t) − w2(s)

) + w2(s)
(
w1(t) − w1(s)

)
.

Recall that the conditional distribution ofw � A0, · (w)1,2 � [0,1] givenσ({‖w‖0,[0,1] � δ}) is that of an indepen
dent Brownian motionB run with the clock

T1,2(t,w) ≡
t∫

0

(
w1(τ )2 + w2(τ )2)dτ.

Therefore

P

(
sup

0�s<t�1

|As,t (w)1,2|
(t − s)2α

� 3ε2
∣∣∣ ‖w‖0,[0,1] � δ

)

� P

(
sup

0�s<t�1

|B(T1,2(t,w)) − B(T1,2(s,w))|
(t − s)2α

� ε2
∣∣∣ ‖w‖0,[0,1] � δ

)

+ 2P
(‖w‖2α,[0,1] � ε2δ−1

∣∣ ‖w‖0,[0,1] � δ
)
. (8)
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t the
Because, given‖w‖0,[0,1] � δ,

sup
0�s<t�1

|B(T1,2(t,w)) − B(T1,2(s,w))|
(t − s)2α

� δ4α sup
0�s<t�δ2

|B(t) − B(s)|
(t − s)2α

,

which, by Brownian scaling, has the same distribution as

δ sup
0�s<t�1

|B(t) − B(s)|
(t − s)2α

.

When we combine this with (8), we get

P

(
sup

0�s<t�1

|As,t (w)|
(t − s)2α

� 3ε2
∣∣∣ ‖w‖0,[0,1] � δ

)

� P
(‖w‖2α,[0,1] � ε2δ−1) + 2P

(‖w‖2α,[0,1] � ε2δ−1
∣∣ ‖w‖0,[0,1] � δ

)
,

which, by standard Gaussian estimates plus (6) means that, for eachα ∈ (0, 1
4), there existγα > 0 andCα < ∞

such that

P
(‖A‖α,[0,1] � Rδ1/2

∣∣ ‖w‖0,[0,1] � δ
)
� Cα e−γαR4

for α ∈
(

0,
1

4

)
, δ < 1, andR � 1. (9)

It is interesting to observe that the estimate in (9) is better than the one which is predicted by interp
Namely, as we will see in the Addendum, given‖w‖0,[0,1] � δ, ‖A(w)‖0,[0,1] is of orderδ1/2. At the same time, (11
says that‖A(w)‖β,[0,1] is finite for eachβ < 1

2. Hence, interpolation would lead one to believe that‖A(w)‖α,[0,1]
ought to be of orderδη/2 for eachη < 1 − 2α. That we are getting a better conclusion here indicates tha
estimate in (9) is more subtle than interpolation.

4. Controlling ‖A‖α,[0,1] for large α

We now want to handle largeα, those from[1
4, 1

2). Then, for eachα′ ∈ [0, 1
4) andR > 0,

P
(‖A‖α,[0,1] � ε

∣∣ ‖w‖0,[0,1] � δ
)
� P

(‖A‖α,[0,1] � ε & ‖A‖α′,[0,1] � Rδ1/2
∣∣ ‖w‖0 � δ

)
+ P

(‖A‖α′,[0,1] � Rδ1/2
∣∣ ‖w‖0,[0,1] � δ

)
.

By the estimate in (9), we know that the second term is dominated by a constant times e−γα′R4
.

The first term is handled very much the same way as‖w‖α,[0,1] was. Namely, because∥∥A(w)
∥∥

α,[0,1] � ε and

∥∥A(w)
∥∥

α′,[0,1] � Rδ1/2 �⇒ ∃0< t − s �
(

Rδ1/2

ε

)1/(α−α′)√∣∣As,t (w)
∣∣ � ε(t − s)α,

this term is dominated by∼ (ε−1Rδ1/2)1/(α′−α) terms of the form

P(‖w‖0,[0,T1] ∨ ‖w‖0,[T2,1] � δ & ‖A‖α,[T1,T2] � ε)

P(‖w‖0 � δ)
,

whereT2 − T1 � 2(ε−1Rδ1/2)1/(α−α′), and, just as before, each of these is dominated byK2 exp[λ(T2 − T1)δ
−2]

times
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P
(‖A‖α,[0,T2−T1] � ε

) = P
(‖A‖α,[0,1] � ε(T2 − T1)

α−1/2)
� P

(
‖A‖α,[0,1] � 2α−1/2ε

(
Rδ1/2

ε

)(2α−1)/(2(α−α′)))
,

which, by the estimate in (11) below, is dominated by

Kα exp

[
− 22α−1ε2

4d(d − 1)

(
Rδ1/2

ε

)(2α−1)/(α−α′)]
.

Hence, we now know thatP(‖A‖α,[0,1] � ε | ‖w‖0,[0,1] � δ) is dominated by a constant times

exp
[−γα′R4] +

(
ε

Rδ1/2

)1/(α−α′)
exp

[
2λ

(
Rδ1/2

ε

)1/(α−α′)
δ−2 − 22α−1ε2

4d(d − 1)

(
Rδ1/2

ε

)(2α−1)/(α−α′)]
.

When we takeR = (ε1−2α′
δ(2α−1)/2)1/(1+2α−4α′), the preceding leads to

P
(‖A‖α,[0,1] � ε

∣∣ ‖w‖0,[0,1] � δ
)

� Cα,α′
[
1+ (

εδ−1)2/(1+2α−4α′)]
× exp

[
2λ

(
ε−1δ2(2α′−α)

)2/(1+2α−4α′) −
(

γα′ ∧ 1

8d2

)(
ε2−4α′

δ2α−1)2/(1+2α−4α′)
]

for eachα ∈ [1
4, 1

2) andα′ ∈ [0, 1
4).

Finally, the preceding guarantees the existence ofKα,η,µ < ∞ andγα,η,µ > 0 such that

P
(‖A‖α,[0,1] � δη

∣∣ ‖w‖0,[0,1] � δ
)
� Kα,η,µ exp

[−γα,η,µδ−µ
]

for all α ∈
[

1

4
,

1

2

)
, η ∈ (0,1− 2α), and 0< µ <

1− 2α − η

α
. (10)

Observe that, once again, this is more or less what one would expect on the basis of naïve interpolation.

5. Unconditioned estimate on ‖A‖α,[0,1]

In this section we will show that, for eachα ∈ (0, 1
2), there exists aCα < ∞ such that

P
(‖A‖α,[0,1] � R

)
� Kα e−R2/(4d(d−1)). (11)

For this purpose, set

X(s, t) =
s+t∫
s

(
w1(τ ) − w1(s)

)
dw2(τ ).

Whenq � 2,

E
[∣∣X(s, t)

∣∣q]1/q = GqE

[( t∫
0

w1(τ )2 dτ

)q/2]1/q

� Gq

(
tq/2−1

t∫
0

E
[∣∣w1(τ )

∣∣q]
dτ

)1/q

� G2
q t,

whereGq is theLq norm of a standard normal r.v. Thus,

E
[∣∣X(s2, t) − X(s1, t)

∣∣q]1/q � 2G2
q t.
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Moreover, ift � s2 − s1, then

X(s2, t) − X(s1, t) =
s2+t∫

s1+t

(
w1(τ ) − w1(s2)

)
dw2(τ ) − (

w1(s2) − w1(s1)
)(

w2(s1 + t) − w2(s2)
)

+
s2∫

s1

(
w1(τ ) − w1(s1)

)
dw2(τ ),

and so

E
[∣∣X(s2, t) − X(s1, t)

∣∣q]1/q � 3G2
q t1/2(s2 − s1)

1/2.

Hence, in any case,

E
[∣∣X(s2, t) − X(s1, t)

∣∣q]1/q � 3G2
q

(
t1/2 + (s2 − s1)

1/2)(s2 − s1)
1/2. (12)

Next, for eachM ∈ N, let X1,M( · , t) andX2,M(s, · ) denote the polygonalization ofX( · , t) andX(s, · ), re-
spectively, between points of the formm2−M . Then, since

∥∥X1,M+1( · , t) − X1,M( · , t)∥∥q

0,[0,1] �
2M+1∑
m=1

∣∣X(
m2−(M+1), t

) − X
(
(m − 1)2−M, t

)∣∣q,

(12) says that

E
[∥∥X1,M+1( · , t) − X1,M( · , t)∥∥q

0,[0,1]
]1/q �

(
2M+1∑
m=1

E
[∣∣X(

m2−(M+1), t
) − X

(
(m − 1)2−(M+1), t

)∣∣q])1/q

� 6G2
q

(
t1/2 + 2−M/2)2−M(1/2−1/q),

and so, forq > 2,

E
[∥∥X( · , t) − X1,M( · , t)∥∥q

0,[0,1]
]1/q �

6G2
q

1− 2−1/2+1/q

(
t1/2 + 2−M/2)2−M(1/2−1/q). (13)

Next note that

E
[∣∣X(s, t2) − X(s, t1)

∣∣q]1/q � G2
q t

1/2
2 (t2 − t1)

1/2 (14)

and, from (13),

E
[∥∥X( · , t2) − X( · , t1)

∥∥q

0,[0,1]
]1/q

�
12G2

q

1− 2−1/2+1/q

(
t
1/2
2 + 2−M/2)2−M(1/2−1/q) + E

[∥∥X1,M( · , t2) − X1,M( · , t1)
∥∥q

0,[0,1]
]1/q

.

Since

∥∥X1,M( · , t2) − X1,M( · , t1)
∥∥q

0,[0,1] �
2M∑

m=0

∣∣X(
m2−M, t2

) − X
(
m2−M, t1

)∣∣q,

we can use (14) to arrive at

E
[∥∥X( · , t2) − X( · , t1)

∥∥q

0,[0,1]
]1/q �

56G2
q

1− 2−1/2+1/q
t
1/2
2 (t2 − t1)

1/2−1/q whenq > 2, (15)

first for 2−M−1 � t2 − t1 � 2−M and then for all 0� t1 < t2 � 1.
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to
Starting from (15) and proceeding in the same way as we passed from (12) to (13), we find that

E
[‖X − X2,N‖q

0,[0,1]×[0,2−N ]
]1/q �

112G2
q

(1− 2−1/2+2/q)2
2−N(1−1/q) for q > 4. (16)

Finally, letα ∈ (0, 1
2) be given. Since for 2−N−1 � t � 2−N ,

‖X( · , t)‖0,[0,1]
t2α

� 2(N+1)2α‖X − X2,N‖0,[0,1]×[0,2−N ] + 2(N+1)2α
∥∥X

( · ,2−N
)∥∥

0,[0,1],

we can combine (15) and (16) to get

E

[
sup

2−N−1�t�2−N

(‖X( · , t)‖0,[0,1]
t2α

)q]1/q

�
AqG2

q

(1− 2−1/2+2/q)2
2−N(1−2α−2/q),

whereAα,q < ∞ for q > (1− 2α)−1. Finally, if q > 4 satisfiesq > (1− 2α)−1, we can pass from the preceding

E

[
sup

t∈(0,1]

(‖X( · , t)‖0,[0,1]
t2α

)q]1/q

�
Aα,qG2

q

(1− 22/q−1/2)2(1− 22/q+α−1)
. (17)

To complete the proof of (11) from here, note that

∞∑
n=0

G2n
n

4nn! �
∞∑

n=0

G2n
2n

4nn! = √
2,

and use (17) to conclude that, for eachα ∈ (0, 1
2)

Kα ≡ E
[
e1/4‖A‖2

α,[0,1]
]
< ∞,

from which (11) is a trivial step.
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Addendum

It may be helpful to realize that one cannot substantially improve the dependence of our estimates onδ in (9).
To be precise, we will show here that, for eachR � 0,

lim
δ↘0

P
(
δ−1/2

∥∥A(w)1,2
∥∥

0,[0,1] � R
∣∣ ‖w‖0,[0,1] � δ

) = F(R), (18)

whereF(R) is the probability that

sup
0�s<t�σ

∣∣B(t) − B(s)
∣∣ � R2

whenB( · ) is a one-dimensional Brownian motion and (cf. the notation in Lemma 1)

σ ≡ 2
∫

y2
1ψ(y)2 dy.
B(0,1)
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ion

of
In particular, this means that, for eachη > 1
2,

lim
δ↘0

P
(∥∥A(w)

∥∥
0,[0,1] � δη

∣∣ ‖w‖0,[0,1] � δ
) = 0.

A proof of (18) can be based on the following line of reasoning. First, one observes that it suffices6 to show that

lim
δ↘0

P

(
δ−1 sup

0�s<t�1

∣∣A0,t (w)1,2 − A0,s(w)1,2
∣∣ � R2

∣∣ ‖w‖0,[0,1] � δ
)

= F(R). (19)

Second, because, givenσ({|w(t)|: t � 0}), t � A0,t (w)1,2 an independent, one-dimensional Brownian mot
run with the clockt �

∫ t

0(w1(τ )2 + w2(τ )2)dτ , (19) is tantamount to the statement that, for eachε > 0,

lim
δ↘0

P

(∣∣∣∣∣δ−2

1∫
0

(
w1(τ )2 + w2(τ )2)dτ − σ

∣∣∣∣∣ � ε

∣∣∣ ‖w‖0,[0,1] � δ

)
= 0.

Moreover, by using Brownian scaling, this is equivalent to proving

lim
δ↘0

P

(∣∣∣∣∣δ2

δ−2∫
0

(
w1(τ )2 + w2(τ )2)dτ − σ

∣∣∣∣∣ � ε

∣∣∣ ‖w‖0,[0,δ−2] � 1

)
= 0.

Hence, we need only prove the following ergodic theorem.

Proposition. Setµ(dx) = ψ(x)2 dx, whereψ is the first Dirichlet eigenfunction for−1
2	 on B(0,1). Then, for

any measurable and bounded functionV ,

lim
T →∞ P

(∣∣∣∣∣ 1

T

T∫
0

V
(
w(τ)

)
dτ − 〈V 〉

∣∣∣∣∣ � ε

∣∣∣ ‖w‖0,[0,T ] � 1

)
= 0,

where〈V 〉 ≡ ∫
B(0,1)

V (x)µ(dx).

Proof. First note that it suffices to show that

lim
T →∞ P

(∣∣∣∣∣ 1

T

T∫
1

V
(
w(τ)

)
dτ − 〈V 〉

∣∣∣∣∣ � ε

∣∣∣ ‖w‖0,[0,T +2] � 1

)
= 0,

and apply the Markov property to see that (cf. the notation in the proof of Lemma 1)

P

(∣∣∣∣∣ 1

T

T +1∫
1

V
(
w(τ)

)
dτ − 〈V 〉

∣∣∣∣∣ � ε

∣∣∣ ‖w‖0,[0,T +2] � 1

)

= 1

u(T + 2,0)

∫
B(0,1)

p1(0, x)E
[
u
(
1, x + w(T )

)
,Γ (T , x, ε) ∩ {‖x + w‖0,[0,T ] � 1

}]
dx,

where

Γ (T , x, ε) ≡
{

w:

∣∣∣∣∣ 1

T

T∫
0

V
(
x + w(τ)

)
dτ − 〈V 〉

∣∣∣∣∣ � ε

}
.

6 To be completely kosher, one has to check here thatF is continuous. However, this follows from the fact that the joint distribution
mint∈[0,1] B(t) and maxt∈[0,1] B(t) is absolutely continuous with respect to Lebesgue measure onR2.
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on
Next, remember thatψ is strictly positive onB(0,1). Hence, for eachr ∈ (0,1), there is aKr such that
p1(0, x)u(1, y) � Krψ(x)ψ(y) for (x, y) ∈ B(0, r)2. At the same time, we know (cf. Lemma 1) that, forr ∈ (0,1),∫

B(0,1)\B(0,r)

p1(0, x)E
[
u
(
1, x + w(T )

)
,Γ (T , x, ε) ∩ {‖x + w‖0,[0,T ] � 1

}]
dx

+
∫

B(0,1)

p1(0, x)E
[
u
(
1, x + w(T )

)
,Γ (T , x, ε) ∩ {‖x + w‖0,[0,T ] � 1

} ∩ {∣∣x + w(T )
∣∣ � r

}]
dx

� K e−λ

∫
B(0,1)\B(0,r)

p1(0, x)u(T , x)dx + K e−λP
({‖w‖0,[0,T +1] � 1

} ∩ {∣∣W(T + 1)
∣∣ � r

})

� K2Ωd

(2π)d/2
e−λ(T +1)

(
1− rd

) + K e−λ

∫
B(0,1)

pT (0, x)

( ∫
B(0,1)\B(0,r)

p1(x, y)dy

)
dx

� 2
K2Ωd

(2π)d/2
e−λ(T +1)

(
1− rd

)
.

Hence, sinceu(T + 2,0) � e−λ(T +2), we can find for eachη > 0 we aCη < ∞ such that

1

u(T + 2,0)

∫
B(0,1)

p1(0, x)E
[
u
(
1, x + w(T )

)
,Γ (T , x, ε) ∩ {‖x + w‖0,[0,T ] � 1

}]

� η + Cη eλT

∫
B(0,1)

ψ(x)E
[
ψ

(
x + w(T )

)
, Γ (T , x, ε) ∩ {‖x + w‖0,[0,1] � 1

}]

for all T � 1. Therefore, all that remains is to show that

lim
T →∞ eλT

∫
B(0,1)

ψ(x)E
[
ψ

(
x + w(T )

)
, Γ (T , x, ε) ∩ {‖x + w‖0,[0,1] � 1

}] = 0 for eachε > 0. (20)

The proof of (20) requires us to know7 that there is a Borel probability measureQ on C([0,∞);B(0,1)) with
the property that, for eachT > 0 andΓ ⊆ C([0,∞);B(0,1)) which is measurable with respect to the path
[0, T ],

Q(Γ ) = eλT

∫
B(0,1)

ψ(x)E
[
ψ

(
x + w(T )

)
, Γ ∩ {‖x + w‖0,[0,T ] � 1

}]
dx.

To see this, all that one has to do is check the consistency statement

eλT1

∫
B(0,1)

ψ(x)E
[
ψ

(
x + w(T1)

)
, Γ ∩ {‖x + w‖0,[0,T1] � 1

}]

= eλT2

∫
B(0,1)

ψ(x)E
[
ψ

(
x + w(T2)

)
, Γ ∩ {‖x + w‖0,[0,T2] � 1

}]

for 0� T1 < T2 andΓ ’s which areσ({w(t): t ∈ [0, T1]})-measurable, and this comes down to

7 Those familiar with the term will recognize what we are doing here is as a parabolic Doobh-transform.
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ss

3–286.
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36–48.
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gs of the

Pure Appl.
E
[
ψ

(
x + w(T2)

)
, Γ ∩ {‖x + w‖0,[0,T2] � 1

}]
= E

[ ∫
B(0,1)

ψ(y)pT2−T1

(
x + w(T1), y

)
dy, Γ ∩ {‖x + w‖0,[0,T1] � 1

}]

= e−λ(T2−T1)E
[
ψ

(
x + w(T1)

)
, Γ ∩ {‖x + w‖0,[0,T1] � 1

}]
.

In fact, what this calculation shows is thatQ is a time-homogeneous Markov process with a transition probab
function given byqt (x, y)dy, whereqt (x, y) = eλtψ(x)−1pt(x, y)ψ(y). Moreover, we have started this proce
with initial distribution µ(dx) = ψ(x)2 dx, and, becauseψ(x)2qt (x, y) = eλtψ(x)pt (x, y)ψ(y) is symmetric in
(x, y), this process is reversible and therefore stationary. Finally, becauseq1(x, y) is positive onB(0,1)2, it follows
thatµ is the only stationary measure and therefore that the process must be ergodic. Hence, since

eλT

∫
B(0,1)

ψ(x)E
[
ψ

(
x + w(T )

)
, Γ (T , x, ε) ∩ {‖w‖0,[0,1] � 1

}]
dx = Q

(∣∣∣∣∣ 1

T

T∫
0

V
(
p(τ)

)
dτ − 〈V 〉

∣∣∣∣∣ � ε

)
,

(20) is now a simple application of the ergodic theorem.�

References

[1] G. Ben Arous, M. Gradinaru, Normes hölderiennes et support des diffusions, C. R. Acad. Sci. Paris Sér. I Math. 16 (3) (1993) 28
[2] G. Ben Arous, M. Gradinaru, M. Ledoux, Hölder norms and the support theorem for diffusions, Ann. Inst. H. Poincaré Prob

tist. 30 (3) (1994) 415–436.
[3] P. Friz, Continuity of the Itô-map for Hölder rough path with applications to the support theorem in Hölder norm, Preprint, 2003, i
[4] P. Friz, N. Victoir, Approximations of the Brownian rough path with applications to stochastic analysis, Preprint, 2003, in press.
[5] M. Ledoux, Z. Qian, T. Zhang, Large deviations and support theorem for diffusion processes via rough paths, Stochastic

Appl. 102 (2) (2002) 265–283.
[6] A. Lejay, Introduction to rough paths, in: Séminaire de probabilités, vol. XXXVII, in: Lecture Notes in Math., vol. 1583, 2003, pp.
[7] A. Lejay, N. Victoir, On(p, q)-rough paths, Preprint, 2004.
[8] T. Lyons, Differential equations driven by rough signals, Math. Res. Lett. 1 (1994) 451–464.
[9] T. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215–310.

[10] T. Lyons, Z. Qian, System Control and Rough Paths, Oxford University Press, 2002.
[11] A. Millet, M. Sanz-Sole, A simple proof of the support theorem for diffusion processes, in: Séminaire de probabilités, vol. XXV

Lecture Notes in Math., vol. 1583, Springer, Berlin, 1994, pp. 36–48.
[12] E. Sipilainen, A pathwise view of solutions of stochastic differential equations, Ph.D. Thesis, University of Edinburgh, 1993.
[13] D. Stroock, Markov Processes from K. Itô’s Perspective, Princeton University Press, 2003.
[14] D. Stroock, S. Taniguchi, Diffusions as integral curves, or Stratonovich without Itô, in: The Dynkin Festschrift, in: Progr. Probab.,

1994, pp. 333–369.
[15] D. Stroock, S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, in: Proceedin

Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. III: Probability Theory, 1970, pp. 333–359.
[16] D. Stroock, S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm.

Math. XXII (1972) 651–714.


