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Abstract

Let a be a non-isolated point of a topological spaceS andX0 = (X0
t ,0 � t < ζ0,P 0

x ) be a symmetric diffusion onS0 =
S \ {a} such thatP 0

x (ζ0 < ∞,X0
ζ0− = a) > 0, x ∈ S0. By making use of Poisson point processes taking values in the spa

excursions arounda whose characteristic measures are uniquely determined byX0, we construct a symmetric diffusioñX on
S with no killing insideS which extendsX0 onS0. We also prove that such a processX̃ is unique in law and its resolvent an
Dirichlet form admit explicit expressions in terms ofX0.
 2005 Elsevier SAS. All rights reserved.

Résumé

Etant donné un pointa non isolé d’un espace topologiqueS, nous considérons une diffusion symétriqueX0 = (X0
t , P 0

x )

dansS0 = S \ {a} telle queP 0
x (ζ0 < ∞,X0

ζ0− = a) > 0 etP 0
x (ζ0 < ∞,X0

ζ0− ∈ S0) = 0 pour toutx ∈ S0 où ζ0 est la durée

de vie. En utilisant les processus de Poisson ponctuels des excursions partant dea dont les mesures caractéristiques s
déterminées parX0, nous construirons une diffusion symétriqueX̃ dansS qui est une extension deX0 et dont les trajectoire
ne disparaisssent pas à l’intérieur deS. Nous montrons aussi qu’une telle extension est unique en loi et que sa résolven
forme de Dirichlet admettent les expressions explicites en terme deX0.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Let S be a locally compact separable metric space anda be a non-isolated point ofS. We putS0 = S \ {a}. The
one point compactification ofS is denoted byS∆. WhenS is compact already,∆ is added as an isolated point. L
m be a positive Radon measure onS0 with Supp[m] = S0. m is extended toS by settingm({a}) = 0.

We assume that we are given anm-symmetric diffusionX0 = (X0
t , P

0
x ) on S0 with life time ζ 0 satisfying the

following four conditions:

A.1 P 0
x

(
ζ 0 < ∞,X0

ζ0− ∈ {a} ∪ {∆}) = P 0
x (ζ 0 < ∞), ∀x ∈ S0.

We define the functionsϕ(x),uα(x),α > 0, of x ∈ S0 by

ϕ(x) = P 0
x (ζ 0 < ∞,X0

ζ0− = a), uα(x) = E0
x(e

−αζ0;X0
ζ0− = a).

A.2 ϕ(x) > 0, ∀x ∈ S0.
A.3 uα ∈ L1(S0;m), ∀α > 0.
A.4 uα ∈ Cb(S0), G0

α(Cb(S0)) ⊂ Cb(S0), α > 0,

whereG0
α is the resolvent ofX0 andCb(S0) is the space of all bounded continuous functions onS0.

By making use of excursion-valued Poisson point processes whose characteristic measures are uniqu
mined byX0, or to be a little more precise, by piecing together those excursions which start froma and return to
a and then possibly by adding the last one that never returns toa, we shall construct in §4 of the present pape
process̃X onS satisfying

(1) X̃ is anm-symmetric diffusion process onS with no killing insideS,
(2) X̃ is an extension ofX0: the process onS0 obtained fromX̃ by killing upon the hitting time ofa is identical

in law with X0.

We call a process̃X onS satisfying (1), (2) asymmetric extension ofX0.
We shall also prove in §5 that, under conditions A.1, A.2 for the givenm-symmetric diffusionX0 on S0, its

symmetric extension is unique in law, satisfies condition A.3 automatically and admits the resolvent expres

Gαf (x) = G0
αf (x) + uα(x) · Gαf (a), x ∈ S0, Gαf (a) = (uα,f )

α(uα,ϕ) + L(m0,ψ)
,

where(·, ·) denotes the inner product inL2(S0;m) andL(m0,ψ) is the energy functional in Meyer’s sense [21]
theX0-excessive measurem0 = ϕ · m andX0-excessive functionψ = 1− ϕ.

Furthermore the associated Dirichlet form(E,F) on L2(S;m) will be seen in §5 to have the following simp
expression; if we denote byFe its extended Dirichlet space, then

Fe = {w = u0 + cϕ: u0 ∈F0,e, c constant}, F = Fe ∩ L2(S;m),

E(w,w) = E(u0, u0) + c2E(ϕ,ϕ), E(ϕ,ϕ) = L(m0,ψ),

where(F0,e,E) is the extended Dirichlet space for the given diffusionX0.
In §6, we shall present four examples. Example 6.1 concerns the uniqueness of the symmetric extensi

one-dimensional absorbing Brownian motion.
Example 6.2 treats the case whereS0 is a bounded open subset ofRd (d � 1), S = S0 ∪ {a} is the one point

compactification ofS0 and X0 is the absorbing Brownian motion onS0. In this case,ϕ(x) = 1, x ∈ S0. The
resulting Dirichlet form onL2(S;m) (m is the Lebesgue measure onS extended toS by m({a}) = 0) is given by
0
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F = {
w = u0 + c: u0 ∈ H 1

0 (S0), c constant
}
,

E(w,w) = 1

2

∫
S0

|∇u0|2(x)dx,

which is easily seen to be regular, strongly local and irreducible recurrent. A more general Dirichlet form
type will be presented in §3.2. This type of Dirichlet form first appeared in the paper [8] by the first author
is recently utilized in a study of the asymptotics of the spectral gap for one parameter family of energy form
Our study is motivated by a wish to conceive a clearer picture of the sample path of the diffusion onS associated
with such a Dirichlet form.

Example 6.3 is essentially one-dimensional, where we shall see that the conditions A.2 and A.3 are sa
and only if the boundary is regular in Feller’s sense. This example is reminiscent of an example by N. Ike
S. Watanabe [14].

Example 6.4 is higher dimensional, where the Dirichlet form associated with the constructed processX̃ may not
be regular.

In order to identify right quantities to describe the excursion-valued Poisson point processes to be con
in §4, we shall study in §2 and §3 a strongly local regular Dirichlet form onL2(S;m) for which the point{a} has a
positive capacity. In particular, we shall find that the Dirichlet form and the associated resolvent admit exa
above mentioned expressions. Furthermore, we shall see that the entrance law{µt } governing the excursion law
ought to be determined by

m0 =
∞∫

0

µt dt,

an equation investigated by E.B. Dynkin, R.K. Getoor, P.J. Fitzsimmons and others [11].
In a seminal work [15], K. Itô considered a standard processX on S for which a pointa is regular for itself.

A Poisson point processY taking value in the space of excursions arounda was then associated, and it was sho
that the stopped processX0 obtained fromX by the hitting time ata and the characteristic measure ofY together
determine the law ofX uniquely. It was implicitly assumed in [15] that the pointa is recurrent in the sense that

ϕ(x) = Px(σa < ∞) = 1, x ∈ S, σa = inf{t > 0: Xt = a}.

But, as was shown in P.A. Meyer [20], anabsorbedPoisson point process can be still associated withX when{a}
is non-recurrent. See Remark 4.2 in this regard.

Since our present assumption onX0 requiresϕ only to be positive, we must handle not only returning excus
from the pointa but also non-returning excursions. By restricting ourselves to the case that bothX0 andX̃ are
symmetric diffusions however, we shall see that the characteristic measures on these different type of e
spaces are uniquely determined byX0 so that, starting withX0, we can give an explicit construction of̃X.

The Dirichlet form(E,F) onL2(S;m) associated with a symmetric extensionX̃ of X0 may not be regular but i
is quasi-regular in the sense of [19]. Accordingly we can make use of the quasi-homeomorphism in [3] to
X̃ with the regular Dirichlet form studied in §2, yielding the uniqueness ofX̃ and the explicit expression of(E,F).

There are quite a few works [1,23–25] dealing with generalizations of Itô’s one [15]. See Remark 2.2 an
Remark 4.1 in these regards. But construction and uniqueness of a symmetric extensionX of a symmetricX0 as
are formulated in the present paper have never been considered.
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2. Strongly local Dirichlet form with a point of positive capacity

2.1. Description of the form and resolvent by absorbed process

Let S be a locally compact separable metric space anda be a non-isolated point ofS. We denote the comple
mentary setS \ {a} by S0. Let m be a positive Radon measure onS with Supp[m] = S and withm({a}) = 0. The
inner product in each of the spacesL2(S;m),L2(S0,m) will be designated by(·, ·).

A Dirichlet form (E,F) on L2(S;m) is calledregular if F ∩ C0(S) is E1-dense inF and uniformly dense in
C0(S), whereC0(S) denotes the space of continuous functions onS with compact support. It is calledstrongly
local if E(u, v) vanishes wheneveru,v ∈ F , Supp[u], Supp[v] are compact andv is constant on a neighbourhoo
of Supp[u], where Supp[u] denotes the topological support of the measureu · m. For the sake of a use in §3.2, w
make here a remark:

Remark 2.1. If a Dirichlet form (E,F) on L2(S;m) is regular and strongly local, then the strong locality sta
above holds without assuming that Supp[v] is compact. Indeed, assuming the boundedness ofv, take a function
w ∈F∩C0(S) with w = 1 on a neighbourhood ofK = Supp[u] and putv1 = v ·w, v0 = v−v1. ThenE(u, v1) = 0.
Sincev0 belongs to the partFG of (E,F) on the open setG = S \ K and(E,FG) is a regular Dirichlet form on
L2(G;m) (cf. [9, Theorem 4.4.3]), we can findvn ∈ F ∩ C0(G) which areE1-convergent tov0. HenceE(u, v0) =
limn→∞ E(u, vn) = 0 andE(u, v) = 0.

We consider a strongly local regular Dirichlet form(E,F) on L2(S;m) and an associatedm-symmetric Hunt
processX = (Xt ,Px) onS. In view of [9, Theorem 4.5.3],X can then be taken to be a diffusion onS∆ in the sense
that all sample paths are continuous functions from[0,∞) to S∆, whereS∆ is the one-point compactification o
S whenS is non-compact and∆ is an extra point isolated fromS whenS is compact. In either case∆ will be the
cemetery of the sample paths. Furthermore,X can be taken to be of no killing insideS in the sense that

Px(Xζ− = ∆,ζ < ∞) = Px(ζ < ∞), x ∈ S,

whereζ(ω) denotes the life time, namely, the hitting time of the cemetery∆ of the sample pathω. In particular,
whenS is compact,Px(ζ = ∞) = 1 for all x ∈ S.

We make the assumption that

B.1 Cap({a}) > 0.

Here Cap(A) for A ⊂ S is its 1-capacity relative to(E,F). In what follows, the quasi-continuity of function
on S will be understood with respect to this capacity. Each functionu ∈ F admits its quasi-continuous versio
denoted bỹu. ‘q.e.’ will means ‘except for a set of zero capacity’.

The hitting probability and theα-order hitting probability of{a} are denoted byϕ anduα respectively:

ϕ(x) = Px(σ < ∞), uα(x) = Ex(e
−ασ ), x ∈ S, (2.1)

whereσ is the hitting time ofa by the processX defined by

σ = inf{t > 0: Xt = a}. (2.2)

The assumption B.1 implies thatuα is a non-trivial element ofF and it is theα-potentialUανα of a positive
measureνα concentrated on{a} (cf. [9, §2.2]):

Eα(uα, v) = ṽ(a)να

({a}), v ∈F . (2.3)

Put

F = {
u ∈ F : ũ(a) = 0

}
. (2.4)
0
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Then (E,F0) is a regular strongly local Dirichlet form onL2(S0;m), which is associated with the partX0 =
(X0

t , P
0
x ) of X on the setS0, namely, the diffusion processX0 obtained fromX by killing upon the hitting timeσ

(cf. [9, §4.4]).X0 is of no killing insideS0 and, if we denote the life time ofX0 by ζ 0, thenϕ, uα admit the
expressions

ϕ(x) = P 0
x (ζ 0 < ∞,X0

ζ0− = a), uα(x) = E0
x(e

−αζ0;Xζ0− = a), x ∈ S0, (2.5)

in terms of the absorbed processX0. We further consider the functions

ψ(1)(x) = P 0
x (ζ 0 < ∞,Xζ0− = ∆), ψ(2)(x) = P 0

x (ζ 0 = ∞), x ∈ S0, (2.6)

and putψ = ψ(1) + ψ(2) so thatψ = 1− ϕ.
Denote bypt andGα the transition function and the resolvent ofX respectively. The same notions for t

absorbed processX0 will be denoted byp0
t and G0

α . The functionsϕ, ψ(1),ψ(2) on S0 are X0-excessive. In
particular,ψ(2) is X0-invariant in the sense thatψ(2) = p0

t ψ
(2), t > 0. Because of them-symmetry ofX0, the

measure

m0 = ϕ · m (2.7)

is anX0-excessive measure withm0p
0
t = p0

t ϕ · m.
Our first aim in this section is to show under the present setting that the formE as well as the resolventGα are

uniquely and explicitly determined by quantities depending only on the absorbed processX0.
We prepare a lemma.

Lemma 2.1. For anX0-excessive functionv onS0,

L(m0, v) = lim
t↓0

1

t
〈m0 − m0p

0
t , v〉 = lim

t↓0

1

t
(ϕ − p0

t ϕ, v)(� ∞). (2.8)

is well defined as an increasing limit and it holds that

L(m0, v) = lim
α→∞α(uα, v). (2.9)

If v is p0
t -invariant, then for eacht > 0 andα > 0,

L(m0, v) = 1

t
(ϕ − p0

t ϕ, v) = α(uα, v).

Proof. If we sete(t) = (ϕ − p0
t ϕ, v), then

e(t + s) = e(t) + (p0
t ϕ − p0

t+sϕ, v) = e(t) + (ϕ − p0
s ϕ,p0

t v) � e(t) + e(s),

and hencee(t)/t is increasing ast decreases and constant ifv is p0
t -invariant. We also see that

α(uα, v) = α(ϕ − αG0
αϕ, v) =

∞∫
0

e−t (t/α)−1(ϕ − p0
t/αϕ, v)t dt

increases toL(v) asα ↑ ∞. �
We note thatL(m0, v) is nothing but theenergy functionalof theX0-excessive measurem0 and theX0-excessive

functionv in the sense of P.A. Meyer [21] whenX0 is transient (cf. [4, §39], [11, p. 16]). In [4, §39], it is calle
the mass ofv relative tom0.

Let Fe (resp.F0,e) be the extended Dirichlet space of(F ,E) (resp.(F0,E)). Each elementu ∈ Fe admits its
quasi continuous version denoted byũ again. In view of [9, §4.6], it holds then that
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F0,e = Fe,0 = {
u ∈ Fe: ũ(a) = 0

}
,

ϕ ∈ Fe, E(ϕ,u) = 0 ∀u ∈ Fe,0, (2.10)

F = Fe ∩ L2(S,m), F0 = F0,e ∩ L2(S0,m). (2.11)

Furthermore anyw ∈Fe can be decomposed as

w = u0 + cϕ, u0 ∈Fe,0, c constant (2.12)

and

E(w,w) = E(u0, u0) + c2E(ϕ,ϕ). (2.13)

Theorem 2.1.

(i) It holds that

E(ϕ,ϕ) = L(m0,ψ) (= L(m0,ψ
(1)) + L(m0,ψ

(2))). (2.14)

(ii) uα is a non-trivial element ofF ∩ L1(S0;m).
(iii) For anyf ∈ L2(S,m) andx ∈ S,

Gαf (x) = G0
αf (x) + (uα,f )

α(uα,ϕ) + L(m0,ψ)
uα(x), Gαf (a) = (uα,f )

α(uα,ϕ) + L(m0,ψ)
. (2.15)

(iv) Letδa be a unit mass concentrated at{a}. Then it is of finite energy integral and itsα-potentialUαδa is related
to uα by

Ũαδa = 1

α(uα,ϕ) + L(m0,ψ)
uα. (2.16)

(v) The pointa is regular for itself and also an instantaneous state with respect toX:

Pa(σ = 0, τa = 0) = 1, τa = inf{t > 0: Xt ∈ S0}. (2.17)

Proof. We first give a proof of (ii). According to a general theorem [9, Chapter 4], the formula obtained b
strong Markov property

Gαf (x) = G0
αf (x) + uα(x)Gαf (a), x ∈ S, f ∈ L2(S,m), (2.18)

represents the orthogonal decomposition ofGαf ∈ F into the spaceF0 and its orthogonal complementHα =
{c · uα: c constant} in the Hilbert space(F · Eα). We see thatGαf (a) > 0 for somef ∈ C+

0 (S), because otherwis
F = F0 from (2.18) contradicting touα ∈ F . By (2.18),

(uα,1)Gαf (a) � (Gαf,1) = (f,Gα1) � 1

α
(f,1) < ∞.

Next we prove (i) and (iii). Forf ∈ C0(S), the functionw = Gαf has two expressions:

w = G0
αf + cuα = u0 + cϕ, c = Gαf (a), u0 ∈Fe,0.

By [9, Corollary 1.6.3, Theorem 2.1.7], we can find a sequence{gn} of uniformly bounded functions inF such
that

lim
n→∞gn = ϕ m-a.e., lim

n→∞E(gn − ϕ,gn − ϕ) = 0.

Lettingn → ∞ in the equation

E(w,g ) + α(w,g ) = (f, g ),
n n n
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or
we get

cE(ϕ,ϕ) + cα(uα,ϕ) = (f,ϕ) − (αG0
αf,ϕ).

Since the right-hand side equals

(f,ϕ − αG0
αϕ) = (f,uα),

we arrive at

Gαf (a) = (uα,f )

α(uα,ϕ) + E(ϕ,ϕ)
, f ∈ C0(S). (2.19)

(2.19) holds for any bounded Borelf . In particular, we have for anyα > 0,

Gα1(a) = (uα,1)

α(uα,ϕ) + E(ϕ,ϕ)
� 1

α
,

and hence

E(ϕ,ϕ) � α(uα,ψ).

By lettingα → ∞, we get from Lemma 2.1

E(ϕ,ϕ) � L(m0,ψ).

In order to prove (2.14), notice that the assumption of the strong locality ofE implies that the killing measurek
in the Beurling–Deny representation ofE vanishes (cf. [9, Theorem 4.5.3]). On account of [9, Lemma 4.5.2],∫

S

f 2 dk = lim
α→∞α

∫
S

f (x)2(1− αGα1(x)
)
m(dx), f ∈ F ∩ C0(S).

From (2.18) and (2.19), we have

1− αGα1(x) = 1− αG0
α1(x) − α(uα,1)

α(uα,ϕ) + E(ϕ,ϕ)
uα(x) � uα(x) − α(uα,1)

α(uα,ϕ) + E(ϕ,ϕ)
uα(x)

= E(ϕ,ϕ) − α(uα,ψ)

α(uα,ϕ) + E(ϕ,ϕ)
uα(x).

Takef ∈F ∩ C0(S) such thatf (a) �= 0. We have from (2.19) and the above inequality

α

∫
S

f 2(1− αGα1)dm �
(
E(ϕ,ϕ) − α(uα,ψ)

)
(αGαf 2)(a).

By lettingα → ∞, we get

0�
(
E(ϕ,ϕ) − L(m0,ψ)

)
f (a)2,

proving the desired identity (2.14).
Proof of (iv). By (2.3),

(uα,f ) = Eα(uα,Gαf ) = Gαf (a)να

({a}),
which combined with (2.15) gives

να = (
α(uα,ϕ) + L(m0,ψ)

)
δa.

Proof of (v). The regularityPa(σ = 0) = 1 of the pointa for itself follows from A.1 and a general fact that, f
any Borel setB, the set of irregular pointsx ∈ B for B is of zero capacity [9, Chapter 4]. IfPa(0 < τa < ∞) > 0,
thenPa(Xτa ∈ S0 ∪∆) = 1 contradicting the sample continuity and absence of the killing insideS for X. If a were
a trap with respect toX, thenGαf (a) = f (a)/α for anyf ∈ L2(S;m) contradicting (2.15). Accordingly,a is an
instantaneous state.�



426 M. Fukushima, H. Tanaka / Ann. I. H. Poincaré – PR 41 (2005) 419–459

der the

ral re-
res

e

ervative
y.

f ex-
es of the

mooth

me
Indeed,
Remark 2.2. (i) The present assumptions can be relaxed as follows:
(a) The measurem onS is replaced by�m = m + γ δa for a non-negative constantγ .
(b) (E,F) is assumed to be a (not necessarily strongly) local regular Dirichlet form onL2(S; �m), while its part

(E,F0) onS0 is assumed to be a strongly local Dirichlet form onL2(S0;m).
Then, in view of the above proof of Theorem 2.1, we readily see that (2.14) and (2.15) remain true un

following modifications:

E(ϕ,ϕ) = L(m0,ψ) + δ,

Gαf (x) = G0
αf (x) + (uα,f ) + γf (a)

α(uα,ϕ) + L(m0,ψ) + δ + αγ
uα(x),

for a non-negative constantδ.
Example 6.1 will indicate stochastic interpretations of the parametersγ andδ.
(ii) The parametersγ, δ have appeared in Rogers’ description [23] of the most general extension of a gene

solventG0
α under a setting corresponding toψ(1) = 0. Another parameter appearing in [23] is a family of measu

nα,α > 0, onS0, which is reduced touα · m under the present symmetry assumption.
(iii) In the setting (i) in the above,Gα is conservative if and only ifψ(1) = 0 andδ = 0, and in this case th

above expression is reduced to

Gαf (x) = G0
αf (x) + (1− αG0

α1, f ) + γf (a)

α(1− αG0
α1,1) + αγ

(
1− αG0

α1(x)
)
.

Such a formula was found by Y. Le Jan [18] (see also [4, §78]) in a general setting to produce cons
resolvents out of a (not necessarily symmetric) sub-Markovian resolvent and its dual preserving the dualit

2.2. Description of the inverse local time

In §4, we shall construct a diffusion onS with resolvent (2.15) by means of Poisson point processes o
cursions, namely, by piecing together the excursions. In this subsection, let us study more about the rol
measurem0 and the energy functionalL(m0,ψ) played in the present diffusionX onS.

Let L(t) be the positive continuous additive functional (admitting exceptional set) associated with the s
measureδa (cf. [9, §5.1]):

Ũαδa(x) = Ex

( ∞∫
0

e−αt dL(t)

)
for q.e.x ∈ S. (2.20)

In particular, (2.20) holds forx = a. L(t) is a local time at{a} in the sense that it increases only whenXt = a:

L(t) =
t∫

0

Ia(Xs)dL(s).

We consider the right continuous inverseS(t) = inf{s: L(s) > t} of L(t).
It is well known that the increasing process(S(t),Pa) is a subordinator killed upon an exponential holding ti

(cf. [2]). Theorem 2.1 enables us to identify the Lévy measure of the subordinator and the killing rate.
according to [2, v (3.17)], (2.20) implies the identity

Ea(e
−αS(t)) = exp

(−t/Ũαδa(a)
)
,

which combined with (2.16) leads us to

E (e−αS(t)) = e−tL(m0,ψ) exp
[−tα(u ,ϕ)

]
. (2.21)
a α
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We need a lemma which will play a basic role in §4 again. A family{νt }t>0 of σ -finite measures onS0 is called
anX0-entrance lawif νtp

0
s = νs+t , s, t > 0. Thenνt (f ), f ∈ B+(S0), is measurable int and we may let

ν̂α(f ) =
∞∫

0

e−αtνt (f )dt, α > 0, f ∈ B+(S0).

Lemma 2.2.

(i) There exists a uniqueX0-entrance law{µt } such that

m0 =
∞∫

0

µt dt. (2.22)

(ii) µ̂α(f ) = (uα,f ), α > 0, f ∈ B+(S0). Consequently,

t∫
0

µs(f )ds =
∫
S0

P 0
x (ζ 0 � t,Xζ0− = a)f (x)m(dx), t > 0, f ∈ B(S0). (2.23)

(iii) µt(S0) < ∞, t > 0.
(iv) For any boundedX0-excessive functionv onS0, µt(v) is right continuous int > 0.
(v) For anyX0-excessive functionv on S0, the energy functionalL(m0, v) introduced in Lemma2.1 admits an

expression

L(m0, v) = lim
t↓0

µt(v).

Whenv is p0
t -invariant, it holds for anyt > 0 that

L(m0, v) = µt(v).

(vi) L(m0, ϕ) = ∞.

Proof. (i) Since

p0
t ϕ(x) = P 0

x (t < ζ 0 < ∞,X0
ζ− = a) ↓ 0, t → ∞,

limt↓0 m0p
0
t (f ) = (p0

t ϕ, f ) = 0 for f ∈ L1(S0,m), namely,m0 is purely excessive. Hence the desired asser
follows from a well known representation theorem provided thatX0 is transient [11, Theorem 5.25]. But the pres
situation can be reduced to this case by observing that

S1 = {
x ∈ S0: ϕ(x) > 0

}
is a non-trivialX0-invariant set q.e. and the restriction ofX0 to S1 is transient (cf. [9, §4.6]).

(ii) For f ∈ C+
0 (S0), we have

∞∫
t

µt (f )dt =
∞∫

0

µt+s(f )dt =
∞∫

0

µs(p
0
t f )ds = (ϕ,p0

t f ),

and

µ (f ) = − d
(ϕ,p0f ), a.e. t.
t

dt t
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Hence

µ̂α(f ) = −
∞∫

0

e−αt d

dt
(ϕ,p0

t f )dt = [−e−αt (ϕ,p0
t f )

]∞
0 − α

∞∫
0

e−αt (ϕ,p0
t f )dt

= (ϕ,f ) − α(ϕ,G0
αf ) = (ϕ − αG0

αϕ,f ) = (uα,f ).

(iii) By (ii) and Theorem 2.1 (ii),µ̂α(1) = (uα,1) < ∞, from which the desired finiteness follows.
(iv) On account of (iii), we haveµt+s(v) = µt(p

0
s v) → µt(v), s ↓ 0.

(v) Since〈µt , v〉 is increasing ast ↓ 0 (independent oft whenv is p0
t -invariant), the assertions follow from

〈m0 − m0p
0
t , v〉 =

t∫
0

〈µs, v〉ds.

(vi) SinceS(t) is the right continuous inverse of an increasing continuous processL(t), Pa(S(t) > 0) = 1 and
consequently we have

L(m0, ϕ) = lim
α→∞α(uα,ϕ) = ∞

by lettingα → ∞ in (2.21). �
We see by the above lemma thatµt(ϕ) is decreasing and right continuous int > 0 and so we can define

measureΘ on (0,∞) by

Θ
(
(s, t]) = µs(ϕ) − µt(ϕ), 0< s < t. (2.24)

It then holds that

Θ
(
(s, t]) = µs(ϕ − p0

t−sϕ) = 〈
µs,P·(σ � t − s)

〉
,

and we get by lettingt → ∞,

Θ
(
(s,∞)

) = µs(ϕ). (2.25)

We note that

Θ
([δ,∞)

)
< ∞

for eachδ > 0 by virtue of Lemma 2.2 (iii).

Lemma 2.3. It holds that

α(uα,ϕ) =
∞∫

0

(1− e−αu)Θ(du).

Proof. We have from Lemma 2.2 (ii) and (2.25)

α(uα,ϕ) = αµ̂α(ϕ) = α

∞∫
0

e−αtΘ
(
(t,∞)

)
dt =

∞∫
0

s∫
0

α e−αt dtΘ(ds) =
∞∫

0

(1− e−αs)Θ(ds). �

On account of the formula (2.21), Lemma 2.3 and by noting that limα↓0 α(uα,ϕ) = 0, we can get the nex
theorem from [2, Theorem 3.21].
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Theorem 2.2. Define a measureΘ on (0,∞) by (2.24). On a certain probability space(Ω,B,P ), construct a
subordinator{Yt }t�0 with Lévy measureΘ and zero drift and a random variableZ, independent of{Yt }, with

P(Z � t) = e−L(m0,ψ)t , t � 0.

If we let

S∗(t) =
{

Y(t), t < Z,
∞, t � Z,

then the process({S∗(t)}t�0,P ) is equivalent in law to({S(t)}t�0,Pa).

3. Strongly local Dirichlet form with a recurrent point

Let S andm be as in §2. In this section, we consider a special case of the Dirichlet form of §2 for whic
pointa is recurrent.

3.1. Description of associated Poisson point process and entrance law

Let (E,F) be a strongly local regular Dirichlet form onL2(S;m) andX = (Xt ,Px) be an associated diffusio
onS. In place of the assumption B.1 of §2, let us assume that

B.2 ϕ(x) > 0, m-a.e.x ∈ S0;
B.3 1∈Fe andE(1,1) = 0.

In the next subsection, we shall construct a typical example of a Dirichlet form(E,F) satisfying these condition
by a method of the one point compactification.

The assumption B.2 implies thatu1 > 0,m-a.e. and Cap({a}) = E1(u1, u1) � (u1, u1) > 0, namely, the assump
tion B.1 of §1 (cf. [9, Lemma 4.2.1]). Further, the Dirichlet form(E,F) becomes irreducible because, from (2.1
we have for any Borel setsB1,B2 ⊂ S of positivem-measures

(IE,GαIF ) � (uα, IE)(uα, IF )/α(uα,ϕ) > 0.

Since(E,F) is recurrent by B.3, we have actually the property

ϕ(x) = 1, q.e.x ∈ S, (3.1)

stronger than the assumption B.2 in view of [9, Theorem 4.6.6].
Thus the pointa is not only regular for itself, instantaneous, but also recurrent. (2.15) is now reduced to

Gαf (x) = G0
αf (x) + (uα,f )

α(uα,1)
uα(x), x ∈ S, Gαf (a) = (uα,f )

α(uα,1)
. (3.2)

The positive continuous additive functionalL(t) of X associated with the unit massδa has the property tha
L(∞) = ∞ and its right continuous inverseS(t) is a subordinator satisfying

Ea

( ∞∫
0

e−αS(s) ds

)
= 1

α(uα,1)
(3.3)

on account of (2.16) and (2.20).
Therefore we can follow directly the argument of [15, §6, case 2(b)] to conclude that
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or
Dp = {
s: S(s) − S(s−) > 0

}
, (3.4)

ps(t) = XS(s−)+t , s ∈ Dp, 0� t < S(s) − S(s−), (3.5)

defines, under the lawPa , a Wa-valued Poisson point processp, whereWa is the space of continuous excursio
in S0 from a to a:

Wa = {
w :

[
0, ζ(ω)

) → S0, continuous, 0< ζ(ω) < ∞, w(0) = a,w(ζ−) = a
}
. (3.6)

Let n be the characteristic measure of the Poisson point processp. Thenn is aσ -finite measure on the spac
Wa and{w(t),n} is Markovian with respect to the transition functionp0

t of X0. Theentrance law{νt } associated
with the characteristic measuren is defined by

νt (B) = n
{
w: ζ(w) > t, w(t) ∈ B

}
, B ∈ B(S), t > 0. (3.7)

Recall that we have already considered anX0-entrance law{µt } specified by (2.22) which is now reduced to

m =
∞∫

0

µt dt. (3.8)

The description (2.23) of{µt } now reads

t∫
0

µs(f )ds =
∫
S0

P 0
x (ζ 0 � t)f (x)m(dx), t > 0, f ∈ B(S0). (3.9)

Theorem 3.1. νt = µt , t > 0.

Proof. By virtue of Lemma 2.2, it suffices to show that

ν̂α(f ) = (uα,f ), f ∈ Bb(S0). (3.10)

We make use of the next general formula

Ea

(∑
s�t

a(s,ps ,ω)

)
= Ea

( ∫
Wa×(0,t]

a(s,w,ω)n(dw)ds

)
(3.11)

holding for any non-negative predictable functiona(s,w,ω) on [0,∞)×Wa ×Ω , Ω being a filtered sample spac
on which the diffusion processX is defined (cf. [14, p. 62]).

Sincem({a}) is assumed to be zero,
∫ ∞

0 Ia(Xt )dt = 0,Pa-almost surely. By (3.4) and (3.5), we have f
f ∈ Bb(S),

Gαf (a) = Ea

( ∞∫
0

e−αtf (Xt )dt

)
= Ea

(∑
s>0

S(s)∫
S(s−)

e−αtf (Xt )dt

)

= Ea

(∑
s>0

e−αS(s−)

ζ(ps )∫
0

e−αtf
(
ps(t)

)
dt

)
.

We let

Γ (w) =
ζ(w)∫

e−αtf
(
w(t)

)
dt.
0



M. Fukushima, H. Tanaka / Ann. I. H. Poincaré – PR 41 (2005) 419–459 431

s

assumed

lated in
as

-
).

e

a(s,w,ω) = Γ (w) · e−αS(s−,ω) is then predictable and we get by (3.11)

Gαf (a) = Ea

(∑
s>0

e−αS(s−)Γ (ps)

)
=

∫
Wa

Γ (w)n(dw) ·
∞∫

0

Ea(e
−αS(s))ds.

Since∫
Wa

Γ (w)n(dw) = ν̂α(f ), �
(3.2) and (3.3) lead us to the desired identity (3.10).

By Theorem 3.1 and [15, Theorem 6.3], the finite dimensional distribution of{Wa,n} can be described a
follows:∫

Wa

f1
(
w(t1)

)
f2

(
w(t2)

) · · ·fn

(
w(tn)

)
n(dw) = µt1f1p

0
t2−t1

f2 · · ·p0
tn−1−tn−2

fn−1p
0
tn−tn−1

fn, (3.12)

for any 0< t1 < t2 < · · · < tn−1, tn, f1, f2, . . . , fn ∈ Bb(S0). Here we use the convention thatw ∈ W satisfies
w(t) = ∆,∀t � ζ(w), and any functionf onS0 is extended toS0 ∪ ∆ by settingf (∆) = 0.

In §4, we shall start with anm-symmetric diffusionX0 on S0 and an expression like the above withµt being
specified by (2.22). See §4 for the abbreviated notation appearing on the right-hand side of (3.12).

Actually Theorem 3.1 can be extended to a general case where condition B.3 of the recurrence is not
as we shall see in Remark 4.2 at the end of §4.

We note that the excursion law around a regular point of a general Markov process can be also formu
terms of Maisonneuve’s exit system [5]. Some property of the integral int of the associated entrance law w
investigated by R.K. Getoor [10].

3.2. Construction of form by one-point compactification

In this subsection, we start with a Dirichlet form with underlying spaceS0 and extend it by the one-point com
pactification to a Dirichlet form with underlying spaceS = S0 ∪ a satisfying B.2 and B.3 (and consequently B.1

Let S0 be a locally compact separable metric space andm be a bounded positive measure onS0 with
Supp[m] = S0. We consider a regular strongly local Dirichlet form(E,F0) on L2(S0;m) satisfying thePoincaré
inequality:

(u,u) � A · E(u,u), u ∈ F0, ∃A > 0. (3.13)

Denote byS = S0 ∪ a the one-point compactification ofS0 and byL2(S;m) (= L2(S0;m)) the space of squar
integrable functions onS with respect toIS0 · m. Let us introduce a space(E,F) by

F = F0 + constant functions onS, (3.14)

E(w1,w2) = E(f1, f2), w1 = f1 + c1, w2 = f2 + c2, fi ∈F0, ci constant. (3.15)

Theorem 3.2.

(i) (E,F) is a regular strongly local Dirichlet form onL2(S;m) possessing as its core the space

C = C0 + constant functions onS0,

whereC0 = F0 ∩ C0(S0).
(ii) (E,F) and the associated diffusion onS satisfyB.2, B.3.
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Proof. (i) Supposef ∈ F0 is a constant. By the regularity of(E,F0), there existfn ∈ F0 ∩ C0(S0) which are
E1-convergent tof . We have thenE(f,f ) = limn→∞ E(f,fn) = 0 on account of the strong locality of(E,F0) and
Remark 2.1 stated in the beginning of §2.1. (3.13) then impliesf = 0 and the definition (3.14) and (3.15) mak
sense.

If wn = fn + cn ∈ F is anE1-Cauchy sequence, thenfn is E1-convergent to somef ∈ F0 by (3.13) and hence
wn is E1-convergent tof + c for some constantc.

ClearlyC is dense both inF andC(S), namely,(E,F) is regular.
Suppose, forwi = fi + ci ∈ C, thatw1 is constant on a neighbourhood of Supp(w2). Whenc2 = 0,E(w1,w2) =

0 by the strong locality of(E,F0). When c2 �= 0, the setU = S \ Supp(w2) is either empty or a non-empt
relatively compact open subset ofS0. In the former case,f1 = 0 andE(w1,w2) = 0. In the latter case,f2 = −c2
on U , while Supp(f1) ⊂ U andE(w1,w2) = E(f1, f2) = 0 again. Hence(E,F) is strongly local on account o
[9, Theorem 3.1.2].

The Markov property

w ∈ F ⇒ v = (0∨ w) ∧ 1∈F , E(v, v) � E(w,w)

is evident, because, forw = f + c, w ∈ F0, c constant, we havev = [(−c) ∨ f ] ∧ (1− c) + c.
(ii) B.2 follows from the Poincaré inequality (3.13). Denote byX andX0 = (X0

t , P
0
x , ζ 0) the diffusions associ

ated with(E,F) and(E,F0) respectively. ThenX0 is the part ofX onS0 and hence

ϕ(x) = P 0
x (ζ 0 < ∞), x ∈ S0.

Denote byG0 the 0-order resolvent operator ofX0. Sincem(S0) < ∞, (3.13) implies thatG01∈F0 and

E0
x(ζ 0) = G01(x) < ∞ q.e.

proving (3.1). It is obvious from (3.14), (3.15) that 1∈ F andE(1,1) = 0. �
(E,F0) is not necessarily irreducible onS0, but (E,F) defined by (3.14), (3.15) is irreducible recurrent onS in

view of the observation made in the preceding subsection. See Example 6.2.

4. Construction of a symmetric extension via excursion valued Poisson point processes

In this section, we start with anm-symmetric diffusionX0 onS0 and construct first an excursion law with whi
Poisson point processes of two different kinds of excursions around the pointa are associated. We then constru
an m-symmetric diffusionX̃ on S = S0 ∪ a by piecing together those excursions. The resolvent of the resu
diffusion X̃ turns out to be identical with (2.15).

4.1. An excursion law and its basic properties

Let S be a locally compact separable metric space anda be a non-isolated point ofS. We putS0 = S \ {a}. The
one point compactification ofS is denoted byS∆. WhenS is compact already,∆ is added as an isolated point. L
m be a positive Radon measure onS0 with Supp[m] = S0. m is extended toS by settingm({a}) = 0.

We assume that we are given anm-symmetric diffusionX0 = (X0
t , P

0
x ) on S0 with life time ζ 0 satisfying the

following:

A.1 P 0
x (ζ 0 < ∞,X0

ζ0− ∈ {a} ∪ {∆}) = P 0
x (ζ 0 < ∞), ∀x ∈ S0.

We define the functionsϕ,u ,ψ(1),ψ(2),ψ by (2.5) and (2.6), namely, forx ∈ S ,
α 0
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the
ϕ(x) = P 0
x (ζ 0 < ∞,X0

ζ0− = a), uα(x) = E0
x(e

−αζ0;Xζ0− = a),

ψ = 1− ϕ = ψ(1) + ψ(2), ψ(1)(x) = P 0
x (ζ 0 < ∞,Xζ0− = ∆), ψ(2)(x) = P 0

x (ζ 0 = ∞).

Let us assume that

A.2 ϕ(x) > 0, ∀x ∈ S0,

and

A.3 uα ∈ L1(S0;m), ∀α > 0.

Denote byp0
t ,G

0
α the transition function and the resolvent ofX0 respectively. Our last assumption concerns

regularity:

A.4 uα ∈ Cb(S0), G0
α(Cb(S0)) ⊂ Cb(S0), α > 0,

whereCb(S0) is the space of all bounded continuous functions onS0.
The measurem could be infinite on a compact neighbourhood ofa in S, but it is finite on each level set ofuα

due to the condition A.3. We also note here the next relation which will be utilized in the sequel:

uα(x) = ϕ(x) − αG0
αϕ(x) � 1− αG0

α1(x), x ∈ S0.

Definem0 by

m0 = ϕ · m,

which is anX0-excessive measure withm0p
0
t = p0

t ϕ ·m. In view of Lemma 2.2, there exists a uniqueX0-entrance
law {µt } related to the measurem0 by (2.22), namely,

m0 =
∞∫

0

µt dt.

and it satisfies that

µ̂α(f ) = (uα,f ), f ∈ B+(S0). (4.1)

On account of the assumption (A.3), we then have that

µt(S0) < ∞, t > 0,

1∫
0

µt(S0)dt < ∞. (4.2)

We now introduce the spacesW ′,W of excursions by

W ′ = {
w: ∃ζ(w) ∈ (0,∞],w is a continuous function from

(
0, ζ(w)

)
to S0

}
,

W = {
w ∈ W ′: if ζ(w) < ∞, then∃w

(
ζ(w)−) ∈ {a} ∪ {∆}}. (4.3)

ζ(w) will be called theterminal timeof the excursionw.
We are concerned with a measuren on the spaceW specified in terms of the entrance law{µt } and the transition

functionp0
t by∫

f1
(
w(t1)

)
f2

(
w(t2)

) · · ·fn

(
w(tn)

)
n(dw) = µt1f1p

0
t2−t1

f2 · · ·p0
tn−1−tn−2

fn−1p
0
tn−tn−1

fn, (4.4)
W
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for any 0< t1 < t2 < · · · < tn, f1, f2, · · · , fn ∈ Bb(S0). Here, we use the convention thatw ∈ W satisfiesw(t) = ∆,
∀t � ζ(w), and any functionf onS0 is extended toS0 ∪ ∆ by settingf (∆) = 0. Further, on the right-hand side
(4.4), we employ an abbreviated notation for the repeated operations

µt1

[
f1p

0
t2−t1

{
f2 · · ·p0

tn−1−tn−2
(fn−1p

0
tn−tn−1

fn)
}]

.

Proposition 4.1. There exists a unique measuren on the spaceW satisfying(4.4).

Proof. Let n be the Kuznetsov measure onW ′ uniquely associated with the transition semigroup{p0
t } and the

entrance rule{ηu} defined by

ηu = 0 for u � 0, ηu = µu for u > 0

as is constructed in [5, Chapter XIX, 9] for a right semigroup. Because of the present choice of the entran
it holds thatα = 0 whereα is the birth time which is random in general (cf. [11, p. 54]).

On account of the assumption A.1 for the diffusionX0 on S0, the same method of the construction of t
Kuznetsov measure as in [5, Chapter XIX, 9] works in proving thatn is supported by the spaceW and satis-
fies (4.4). �

We calln theexcursion lawassociated with the entrance law{µt }. We split the spaceW of excursions into two
parts:

W+ = {
w ∈ W : ζ(w) < ∞, w(ζ−) = a

}
, W− = W \ W+. (4.5)

Note thatW− = W−
1 ∪ W−

2 with

W−
1 = {

w ∈ W : ζ(w) < ∞,w(ζ−) = ∆
}
, W−

2 = {
w ∈ W : ζ(w) = ∞}

.

Forw ∈ W+, we definêw ∈ W by

ŵ(t) = w(ζ − t), 0< t < ζ. (4.6)

The next lemma says that the restriction of the excursion law toW+ is invariant under time reversion. This is
present variant of the time reversal arguments that have been formulated in general contexts [22,12,6,7].

Lemma 4.1. For any tk > 0 andfk ∈ Bb(S0) (1� k � n),

n

{
n∏

k=1

fk

(
w(t1 + · · · + tk)

);W+
}

= µt1f1p
0
t2
f2 · · ·p0

tn−1
fn−1p

0
tn
fnϕ, (4.7)

n

{
n∏

k=1

fk

(
w(t1 + · · · + tk)

);W+
}

= n

{
n∏

k=1

fk

(
ŵ(t1 + · · · + tk)

);W+
}

. (4.8)

Proof. (4.7) readily follows from (4.4) and the Markov property ofn. As for (4.8) we observe that, fo
α1, . . . , αn > 0,

∞∫
0

· · ·
∞∫

0

e−α1t1−···−αntnn

{
n∏

k=1

fk

(
w(t1 + · · · + tk)

);W+
}

dt1 · · · dtn (4.9)

equals

n
{
F(w); ζ < ∞,w(ζ−) = a

}



M. Fukushima, H. Tanaka / Ann. I. H. Poincaré – PR 41 (2005) 419–459 435
with

F(w) =
∫

· · ·
∫

0<t1<···<tn<ζ

n∏
k=1

{
e−αk(tk−tk−1)fk

(
w(tk)

)}
dt1 · · ·dtn (t0 = 0).

Hence, for (4.8), it suffices to prove

n
{
F(w); ζ < ∞,w(ζ−) = a

} = n
{
F(ŵ); ζ < ∞,w(ζ−) = a

}
. (4.10)

Performing the change of variables

ζ − tk = sk, 1� k � n,

in the expression ofF(ŵ) and by noting that

tk = ζ − sk, tk − tk−1 = sk−1 − sk, 1� k � n, s0 = ζ,

0< t1 < · · · < tn < ζ ⇐⇒ 0< sn < · · · < s1 < ζ,

we obtain

F(ŵ) =
∫

· · ·
∫

0<sn<···<s1<ζ

n∏
k=1

{
e−αk(sk−1−sk)fk

(
w(sk)

)}
ds1 · · ·dsn

=
∫

· · ·
∫

0<s1<···<sn<∞
Γs1···sn(w)ds1 · · ·dsn

with

Γs1···sn(w) =
n−1∏
k=1

{
e−αk(sk−1−sk)fk

(
w(sk)

)} · e−α1(ζ−s1)I(0,ζ )(s1).

On the other hand, we get from (4.4) and the Markov property ofn that

n
{
Γs1s2···sn(w); ζ < ∞,w(ζ−) = a

}
= n

{
fn

(
w(sn)

)
fn−1

(
w(sn−1)

)
e−αn(sn−1−sn) · · ·

f2
(
(w(s2)

)
e−α3(s2−s3)f1

(
w(s1)

)
e−α2(s1−s2)uα1

(
w(s1)

); s1 < ζ
}

= e−αn(sn−1−sn)−αn−1(sn−2−sn−1)−···−α2(s1−s2)µsnfnp
0
sn−1−sn

fn−1p
0
sn−2−sn−1

fn−1 · · ·p0
s2−s3

f2p
0
s1−s2

f1uα1.

Therefore,

n
{
F(ŵ); ζ < ∞,w(ζ−) = a

} =
∞∫

0

dsn µsnfnG
0
αn

fn−1G
0
αn−1

· · ·f3G
0
α3

f2G
0
α2

f1uα1.

In view of (2.7), the symmetry ofG0
α , (4.7) and (4.9), we arrive at

n
{
F(ŵ); ζ < ∞,w(ζ−) = a

} = 〈m0, fnG
0
αn

fn−1G
0
αn−1

· · ·f3G
0
α3

f2Gα2f1uα1〉
= (fnϕ,G0

αn
fn−1G

0
αn−1

· · ·f3G
0
α3

f2Gα2f1uα1) = (f1G
0
α2

f2G
0
α3

f3 · · ·Gαnfnϕ,uα1)

=
∞∫

0

e−α1t1µt1f1G
0
α2

f2G
0
α3

f3 · · ·G0
αn

fnϕ dt1 = n
{
F(w); ζ < ∞,w(ζ−) = a

}
the desired identity (4.10).�
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Next we put

Wa =
{
w ∈ W : lim

t↓0
w(t) = a

}
. (4.11)

Lemma 4.2. n{W \ Wa} = 0.

Proof. The preceding lemma implies that

n{W+ \ Wa} = n
{
W+ ∩ (

w(0+) = a
)c} = n

{
W+ ∩ (

ŵ(0+) = a
)c} = n

{
W+ ∩ (

w(ζ−) = a
)c} = 0.

We then have for eacht > 0

n
{
ϕ
(
w(t)

); (ζ > t) ∩ (
w(0+) = a

)c} = n
{
(W+ \ Wa) ∩ (ζ > t)

} = 0,

which combined with the assumption A.2 leads us to

n
{
(W \ Wa) ∩ (ζ > t)

} = 0.

It then suffices to lett ↓ 0. �
Lemma 4.3. For any neighbourhoodU of a in S, we let

τUc = inf
{
t > 0: w(t) ∈ Uc

}
, w ∈ W.

It holds then that

n{τUc < ζ } < ∞.

Proof. We may assume that the closure�U in S is compact. Letf (x) = ϕ(x) − u1(x), x ∈ S0. Then

f (x) = E0
x{1− e−ζ0; ζ 0 < ∞,Xζ0− = a} > 0, ∀x ∈ S0.

Sinceuα(x) − u1(x) ↑ f (x), α ↓ 0, the assumption A.3 implies thatf is lower semicontinuous onS0 and hence

c = inf
x∈∂U

f (x)

is positive. We then have, for eachδ > 0 andx ∈ ∂U ,

P 0
x (δ < ζ 0 < ∞,Xζ0− = a) � E0

x{1− e−ζ0; δ < ζ 0 < ∞,Xζ0− = a}
� c − E0

x{1− e−ζ0; ζ 0 � δ,Xζ0− = a} � c − (1− e−δ).

Chooseδ > 0 so small that

r = c − (1− e−δ)

is positive. For suchδ,

P 0
x (δ < ζ 0 < ∞,Xζ0− = a) � r, ∀x ∈ ∂U. (4.12)

We shall use the notationτUc not only forw ∈ W but also for the sample path of the Markov processX0. Using
the preceding lemma, (4.12) and (4.2), we are led to

n{τUc < ζ } = lim
ε↓0

n{ε < τUc < ζ } = lim
ε↓0

∫
U

µε(dx)P 0
x {τUc < ζ 0}

� limε↓0

∫
µε(dx)E0

x

{
r−1P 0

XτUc
(δ < ζ 0 < ∞,Xζ0− = a); τUc < ζ 0}
U
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.

er

ns of

e

� r−1 lim
ε↓0

∫
S0

µε(dx)P 0
x (δ < ζ 0 < ∞,Xζ0− = a) � r−1 lim

ε↓0

∫
S0

µε(dx)P 0
x (δ < ζ 0)

= r−1 lim
ε↓0

µε+δ(S0) � r−1µδ(S0) < ∞. �
The next lemma states a relation of the excursion lawn to energy functionalsL(m0, v) introduced in Lemma 2.1

Lemma 4.4.

(i) n(W+) = L(m0, ϕ), n(W−) = L(m0,ψ), n(W−
i ) = L(m0,ψ

(i)), i = 1,2.
(ii) n(W−

1 ) < ∞, n(W−
2 ) = µt(ψ

(2)) = αµ̂α(ψ(2)) = α(uα,ψ(2)) < ∞, t > 0, α > 0.

Proof. (i) Sincen(ζ > t;W+) = 〈µt ,ϕ〉, the first identity follows from Lemma 2.2 (v) by lettingt ↓ 0. The proof
of the other identities is the same.

(ii) Take a neighbourhoodU of a in S with compactU . We have then by the preceding lemma

n(W−
1 ) = n

(
ζ < ∞,w(ζ−) = ∆

)
� n{τUc < ζ } < ∞.

Sinceψ(2) is p0
t -invariant, the second assertion follows from (i), Lemmas 2.1, 2.2 and assumption A.3.�

In particular,n(W−) = n(W−
1 ) + n(W−

2 ) is finite. We shall see thatn(W+) = ∞.

4.2. Poisson point processes onWa and a new processX

By Lemma 4.2, the excursion lawn is concentrated on the spaceWa defined by (4.11). Accordingly, we consid
the spaces

W+
a =

{
w ∈ W+: lim

t↓0
w(t) = a

}
, W−

a =
{
w ∈ W−: lim

t↓0
w(t) = a

}
,

so thatWa = W+
a + W−

a . In the sequel however, we shall employ slightly modified but equivalent definitio
those spaces by extending eachw from anS0-valued excursion toS-valued continuous one as follows:

Wa = {
w: ∃ζ(w) ∈ (0,∞], w is a continuous function from

[
0, ζ(w)

)
to S, w(0) = a.

w(t) ∈ S0, t ∈ (
0, ζ(w)

)
, w

(
ζ(w)−) ∈ {a} ∪ {∆} if ζ(w) < ∞}

. (4.13)

Any w ∈ Wa for which ζ(w) < ∞,w(ζ(w)−) = a will be regarded to be a continuous function from[0, ζ(w)] to
S by settingw(ζ(w)) = a. We further let

W+
a = {

w: ∃ζ(w) ∈ (0,∞), w is a continuous function from
[
0, ζ(w)

]
to S,

w(t) ∈ S0, t ∈ (
0, ζ(w)

)
, w(0) = w

(
ζ(w)

) = a
}
, (4.14)

W−
a = Wa \ W+

a . (4.15)

The excursion lawn will be considered to be a measure onWa defined by (4.13) and we denote byn+,n−, the
restrictions ofn to W+

a ,W−
a defined by (4.14) and (4.15) respectively.

Let {ps , s > 0} be a Poisson point process onWa with characteristic measuren defined on an appropriat
probability space(Ω,P ). We then let

p+
s =

{
ps if ps ∈ W+

a ,
∂ otherwise,

(4.16)

p−
s =

{
ps if ps ∈ W−

a , (4.17)

∂ otherwise,
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int
where∂ is an extra point disjoint ofWa . Then{p+
s , s > 0}, {p−

s , s > 0} are mutually independent Poisson po
processes onW+

a ,W−
a with characteristic measuresn+,n− respectively. Furthermore

ps = p+
s + p−

s . (4.18)

By means of the terminal timeζ(p+
r ) of the excursionp+

r , we let

J (s) =
∑
r�s

ζ(p+
r ), s > 0. (4.19)

We putJ (0) = 0.

Lemma 4.5.

(i) J (s) < ∞ a.s. fors > 0.
(ii) {J (s)}s�0 is a subordinator with

E
{
e−αJ (s)

} = exp
{−α(uα,ϕ)s

}
. (4.20)

Proof. (i) We writeJ (s) asJ (s) = I + II with

I =
∑

r�s,ζ(p+
r )�1

ζ(p+
r ), II =

∑
r�s,ζ(p+

r )>1

ζ(p+
r ).

Sincen+(ζ > 1) � µ1(S0) < ∞ by (4.2),r in the sumII is finite a.s. and henceII < ∞ a.s. On the other hand,

E(I) = sn+(ζ ; ζ � 1) � sn+(ζ ∧ 1) = sn+
{ 1∫

0

I(0,ζ )(t)dt

}
= s

1∫
0

n+(ζ > t)dt � s

1∫
0

µt(S0)dt,

which is finite by (4.2). HenceI < ∞ a.s.
(ii) Clearly {J (s)}s�0 is increasing and of stationary independent increment. Since

e−αJ (s) =
∑
r�s

{
e−αJ (r) − e−αJ (r−)

} =
∑
r�s

e−αJ (r−)
{
e−αζ(p+

r ) − 1
}
,

we have

E
{
e−αJ (s)

} = −c

s∫
0

E
{
e−αJ (r)

}
dr,

with

c = n+(
1− e−αζ

) = n
(
1− e−αζ ; ζ < ∞,w(ζ ) = a

) = n

{
α

ζ∫
0

e−αt dt; ζ < ∞,w(ζ ) = a

}

= α

∞∫
0

e−αtn
(
t < ζ < ∞,w(ζ ) = a

)
dt = α

∞∫
0

e−αtµt (ϕ)dt = αµ̂α(ϕ) = α(uα,ϕ) < ∞. �

In virtue of Lemmas 4.3 and 4.5, we may assume that the next three properties hold for anyω ∈ Ω by subtracting
aP -negligible set fromΩ if necessary:
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J (s) < ∞ ∀s > 0, (4.21)

lim
s→∞J (s) = ∞, (4.22)

and, for any finite intervalI ⊂ (0,∞) and any neighbourhoodU of a in S,{
s ∈ I : τUc(p+

s ) < ζ(p+
s )

}
is a finite set. (4.23)

Let T be the time of occurrence of the first excursion of the point process{p−
s , s > 0}, namely,

T = min{s > 0: p−
s �= ∂}. (4.24)

Sincen(W−
a ) = L(m0,ψ) < ∞ by Lemma 4.4, we can see thatT andp−

T are independent and

P(T > t) = e−L(m0,ψ)t , the distribution ofp−
T = L(m0,ψ)−1n−. (4.25)

We are now in a position to produce a new processX = {Xt }t�0 out of the point processes of excursionsp±.

(i) For 0� t < J (T −), we determines by

J (s−) � t � J (s), (4.26)

and let

Xt =
{

p+
s

(
t − J (s−)

)
if J (s) − J (s−) > 0,

a if J (s) − J (s−) = 0.
(4.27)

(ii) For J (T −) � t < ζω ≡ J (T −) + ζ(p−
T ), we let

Xt = p−
T

(
t − J (T −)

)
. (4.28)

In this way, theS-valued continuous path

Xt, 0� t < ζω,

is defined and

Xζω− = ∆ if ζω < ∞.

Continuity of the path is a consequence of (4.23).
For this process{Xt, 0� t < ζω,P }, let us put

Gαf (a) = E

( ζω∫
0

e−αtf (Xt )dt

)
, α > 0, f ∈ B(S). (4.29)

Proposition 4.2. It holds that

Gαf (a) = (uα,f )

α(uα,ϕ) + L(m0,ψ)
. (4.30)

Proof. We use the notation

f̂α(w) =
ζ(w)∫
0

e−αtf
(
w(t)

)
dt, w ∈ Wa.

We have then
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ζω∫
0

e−αtf (Xt )dt =
∑
s<T

J (s)∫
J (s−)

e−αtf (Xt )dt +
J (T −)+ζ(p−

T )∫
J (T −)

e−αtf (Xt )dt

=
∑
s<T

e−αJ (s−)f̂α(p+
s ) + e−αJ (T −)f̂α(p−

T ),

and consequently

Gαf (a) = E

( ∑
s<T

e−αJ (s−)f̂α(p+
s ) + e−αJ (T −)f̂α(p−

T )

)

= E

( T∫
0

e−αµ̂α(ϕ)s ds

)
n+(f̂α) + E

(
e−αµ̂α(ϕ)T

)
L(m0,ψ)−1n−(f̂α)

= n+(f̂α)

αµ̂α(ϕ) + L(m0,ψ)
+ n−(f̂α)

αµ̂α(ϕ) + L(m0,ψ)

= n(f̂α)

αµ̂α(ϕ) + L(m0,ψ)
= µ̂α(f )

αµ̂α(ϕ) + L(m0,ψ)
.

It then suffices to substitute (4.1) in the last expression.�
4.3. Continuity of resolvent alongX

Lemma 4.6. For α > 0 andf ∈ B(S), defineGαf (a) by the right-hand side of(4.30)and extend it to a function
onS by setting

Gαf (x) = G0
αf (x) + Gαf (a)uα(x), x ∈ S0. (4.31)

Then{Gα}α>0 is anm-symmetric(sub)Markovian resolvent onS.

Proof. By making use of the resolvent equation forG0
α , them-symmetry ofG0

α and the equation

uα(x) − uβ(x) + (α − β)G0
αuβ(x) = 0, α,β > 0, x ∈ S0,

we can easily check the resolvent equation

Gαf (x) − Gβf (x) + (α − β)GαGβf (x) = 0, x ∈ S.

Them-symmetry ofGα∫
S

Gαf (x)g(x)m(dx) =
∫
S

f (x)Gαg(x)m(dx)

holding for any non-negative Borel functionsf,g is clear. Moreover we get by Lemma 2.1 that

αGα1(x) = αG0
α1(x) + uα(x)

α(uα,ϕ + ψ)

α(uα,ϕ) + L(m0,ψ)

� 1− uα(x) + uα(x) = 1, x ∈ S0,

and similarly,αG 1(a) � 1. �
α
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Let {Un} be a decreasing sequence of open neighbourhoods of the pointa in S such thatUn ⊃ �Un+1 and⋂∞
n=1 Un = {a}. Let

A = Aα,ρ = {x ∈ S0: uα(x) < ρ} for α > 0,0< ρ < 1.

We then set

σn = inf{t > 0: X0
t ∈ Un ∩ S0}, σa = lim

n→∞σn, τn = inf{t > 0: X0
t ∈ Un ∩ A},

with the convention that inf∅ = ∞.

Lemma 4.7. For anyα > 0, ρ ∈ (0,1) andx ∈ S0,

lim
n→∞P 0

x {τn < σa < ∞} = 0. (4.32)

Proof. Since

{σa < ∞} = {ζ 0 < ∞,X0
ζ0− = a}

andσa = ζ 0 on the set{σa < ∞}, we have forx ∈ S0 andm < n

uα(x) = E0
x{e−ασa ; τn < σa} + E0

x{e−ασa ; τn � σa} = E0
x{e−ατnuα(X0

τn
); τn < σa} + E0

x{e−ασa ; τn � σa}
� ρE0

x{e−ατn; τn < σa} + E0
x{e−ασa ; τn � σa} � ρE0

x{e−α(τn∧σa); τm < σa} + E0
x{e−ασa ; τn � σa}.

By letting firstn → ∞ and thenm → ∞, we obtain

uα(x) � ρ lim
m→∞E0

x{e−ασa ; τm < σa} + lim
n→∞E0

x{e−ασa ; τn � σa}
= E0

x{e−ασa } − (1− ρ) lim
n→∞E0

x{e−ασa ; τn < σa}
= uα(x) − (1− ρ) lim

n→∞E0
x{e−ασa ; τn < σa},

which implies

lim
n→∞E0

x{e−ασa ; τn < σa} = 0

and so (4.32) must hold.�
Lemma 4.8. Letα > 0.

(i) For anyx ∈ S0,

lim
t↑σa

uα(X0
t ) = 1 P 0

x -a.s. on {σa < ∞}. (4.33)

(ii) n(Λ) = 0 where

Λ =
{
w ∈ W+

a : ∃α > 0, lim
t↑ζ

uα

(
w(t)

) �= 1
}
.

Proof. If σa < ∞ and if limt↑σa
uα(X0

t ) < ρ, then for any smallε > 0 there existst ∈ (σa − ε, σa) such that
uα(X0

t ) < ρ, and soτn < σa for all n. Therefore by the preceding lemma

P 0
x

{
lim
t↑σa

uα(X0
t ) < ρ,σa < ∞

}
= 0.

Sinceu is decreasing inα andρ can be taken arbitrarily close to 1, we obtain (4.33).
α
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a

(ii) follows from (i) as

n(Λ) = lim
ε↓0

n
(
Λ ∩ {ε < ζ }) = lim

ε↓0

∫
S0

µε(dx)P 0
x

(
lim
t↑σa

uα(X0
t ) �= 1

)
= 0. �

We extenduα to a function onS by settinguα(a) = 1. By Lemma 4.8(ii) combined with Lemma 4.1 and
similar reasoning as in the proof of Lemma 4.2, we may assume, subtracting a suitablen-negligible set fromW+

a

(resp.W−
a ), thatu1(w(t)) is continuous int ∈ [0, ζ ] (resp.t ∈ [0, ζ )).

Lemma 4.9. Let 0< ρ < 1 and set

W̃ρ =
{
w ∈ W+

a : max
0�t�ζ

{
1− u1

(
w(t)

)}
> ρ

}
.

Thenn+(W̃ρ) < ∞.

Proof. The proof is similar to that of Lemma 4.3. For anyx such that 1−u1(x) � ρ and forδ = − log(1− ρ
2 ) > 0,

we have

P 0
x (σa > δ) � E0

x{1− e−σa ;σa > δ} = E0
x{1− e−σa } − E0

x{1− e−σa ;σa � δ}
� 1− u1(x) − (1− e−δ) � ρ − (1− e−δ) = ρ

2
.

Therefore if we set

A = {
x ∈ S0: 1− u1(x) � ρ

}
, τ = inf

{
t > 0: w(t) ∈ S0 \ A

}
,

then

n+(W̃ρ) = n+(τ < ζ) = lim
ε↓0

n+(ε < τ < ζ 0) = lim
ε↓0

∫
A

µε(dx)P 0
x (τ < ζ 0)

� lim
ε↓0

∫
A

µε(dx)E0
x

{(
2

ρ

)
P 0

X0
τ
(σa > δ); τ < ζ 0

}
� 2

ρ
lim
ε↓0

∫
S0

µε(dx)P 0
x (σa > δ)

� 2

ρ
lim
ε↓0

∫
S0

µε(dx)P 0
x (ζ 0 > δ) + 2

ρ
lim
ε↓0

∫
S0

µε(dx)P 0
x (ζ 0 < σa = ∞)

= 2

ρ
lim
ε↓0

µε+δ(1) + 2

ρ
lim
ε↓0

µε(ψ
(1)),

which is finite in view of (4.2) and Lemma 4.4.�
Forα > 0, f ∈ B(S), we defined the resolventGαf by

Gαf (x) = G0
αf (x) + Gαf (a)uα(x), x ∈ S0,

with Gαf (a) of Proposition 4.2. We now extendG0
αf (x) to S by setting

G0
αf (a) = 0.

In the last subsection, we have constructed a process{Xt }t∈[0,ζω) out of the Poisson point processesp+,p− on
W+

a ,W−
a defined on a probability space(Ω,P ).

Proposition 4.3. Letu = G f with f ∈ C (S). Thenu(X ) is continuous int ∈ [0, ζ ), P -a.s.
α b t ω
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int

of

re
Proof. As was remarked immediately after the proof of Lemma 4.8,u1 is continuous along any sample po
functions ofp+ = {p+

s , s > 0} andp− = {p−
s , s > 0}. Moreover, by Lemma 4.9, we can subtract a suitableP -

negligible set fromΩ so that, in addition to the properties (4.21), (4.22) and (4.23),p+ satisfies the following
property for every sample pointω ∈ Ω : for any finite intervalI ⊂ (0,∞) and for anyρ ∈ (0,1),{

s ∈ I : max
0�t�ζ(p+

s )

(
1− u1

(
p+

s (t)
))

> ρ
}

is a finite set. (4.34)

Then it is not hard to see that not onlyXt but alsou1(Xt ) are continuous int ∈ [0, ζω). From the inequality
G0

11(x) � 1− u1(x), x ∈ S, we see that

lim
t→t0

G0
11(Xt ) = 0 if Xt0 = a.

HenceG0
1f (Xt ) has the same property as the above forf ∈ Cb(S). SinceG0

1f (Xt ) is clearly continuous on
{t ∈ [0, ζω): Xt �= a} by the assumption A.4, it is continuous on[0, ζω). We have thus proved the continuity
G1f (Xt ). The continuity ofGαf (Xt ) follows from the resolvent equation proved in Lemma 4.6.�
4.4. Markov property ofX

Let us defineptf (x) for t > 0, x ∈ S,f ∈ B(S), as follows:

ptf (a) = E
(
f (Xt ); ζω > t

)
, (4.35)

ptf (x) = p0
t f (x) + E0

x

{
pt−σaf (a);σa � t

}
, x ∈ S0. (4.36)

Evidently
∞∫

0

e−αtptf dt = Gαf, α > 0. (4.37)

Lemma 4.10. pt+s = ptps, t, s > 0.

Proof. Take anyf ∈ Cb(S). By (4.36) and the resolvent equation in Lemma 4.6, we have for anyx ∈ S

∞∫
0

e−αt

{ ∞∫
0

e−βspt+sf (x)ds

}
dt =

∞∫
0

e−αt
{
pt(Gβf )(x)

}
dt, (4.38)

because the left-hand side equals1
α−β

(Gβf (x) − Gαf (x)) = GαGβf (x).
We first consider the case wherex = a. Then the functions inside{·} of the both hand sides of (4.38) a

continuous int > 0 in virtue of the continuity ofX and Proposition 4.3. Hence we have for anyt > 0
∞∫

0

e−αspt+sf (a)ds = ps(Gβf )(a) =
∞∫

0

e−βspt (psf )(a)ds.

Since bothpt+sf (a),pt (psf )(a) are right continuous ins > 0, we get

pt+sf (a) = pt (psf )(a), t > 0, s > 0. (4.39)

We next consider the case wherex ∈ S0. Using (4.37), we obtain

pt+sf (x) = p0
t+sf (x) + E0

x

{
pt+s−σaf (a);σa � t + s

}
= p0 f (x) + E0{p (p f )(a);σ � t

} + E0{p f (a): t < σ � t + s
}
.
t+s x t−σa s a x t+s−σa a
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On the other hand,

pt (psf )(x) = p0
t (psf )(x) + E0

x

{
pt−σa (psf )(a);σa � t

}
.

Hence it suffices to prove that

p0
t+sf (x) + E0

x

{
pt+s−σaf (a); t < σa � t + s

} = p0
t (psf )(x). (4.40)

Put

g(x) = E0
x

{
ps−σaf (a);σa � s

}
,

then, we are led frompsf (x) = p0
s f (x) + g(x) to

p0
t (psf )(x) = p0

t+sf (x) + p0
t g(x),

and consequently, (4.40) is reduced to

E0
x

{
pt+s−σaf (a); t < σa � t + s

} = E0
x

(
g(X0

t ); ζ 0 > t
)
. (4.41)

With the notationθt to denote the usual shift, the left-hand side of (4.41) equals

E0
x

{
pt+s−σaf (a); ζ 0 > t,σa > t, σa ◦ θt � s

} = E0
x

{
ps−σa◦θt f (a); ζ 0 > t,σa ◦ θt � s

}
= E0

x

[
E0

X0
t

{
ps−σaf (a);σa � s

}; ζ 0 > t
]
,

which coincides with the right-hand side of (4.41) as was to be proved.�
Lemma 4.11. Supposeg ∈ B(S) and limε↓0 pεg(x) = g(x), x ∈ S. Then, for anyf ∈ Cb(S), t > 0,

lim
ε↓0

pε(fptg)(x) = f (x)ptg(x), x ∈ S. (4.42)

Proof. Fix x ∈ S. Clearly, for any neighbourhoodU of x,

lim
ε↓0

pεIU (x) = 1,

and hence

pε |fptg|(x) = pε |f IUptg|(x) + o(ε).

For anyδ > 0, take a neighbourhoodU of x such that∣∣f (y) − f (x)
∣∣ < δ, y ∈ U.

Then ∣∣pε(fptg)(x) − f (x)pε(ptg)(x)
∣∣ � pε

(∣∣f − f (x)
∣∣|ptg|)(x)

� pε

(∣∣f − f (x)
∣∣IU |ptg|)(x) + o(ε) � δ‖g‖∞ + o(ε).

On the other hand, we have from the preceding lemma that

lim
ε↓0

f (x)pε(ptg)(x) = lim
ε↓0

f (x)pt (pεg)(x) = f (x)ptg(x).

Consequently

lim
ε↓0

∣∣pε(fptg)(x) − f (x)ptg(x)
∣∣ � δ‖g‖∞,

which means (4.45) becauseδ > 0 can be taken arbitrarily small.�
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Proposition 4.4.

(i) For α1, . . . , αn > 0,

E

{ ∫
· · ·

∫
0<t1<···<tn<ζω

n∏
k=1

(
e−αk(tk−tk−1)fk(Xtk )

)
dt1 · · ·dtn

} = Gα1f1Gα2f2 · · ·Gαnfn(a), (4.43)

where we sett0 = 0 by convention.
(ii) X = {Xt, 0� t < ζω,P } is a Markov process onS with transition functionpt and initial distribution concen-

trated at{a}.

Proof. We shall employ the following notations:

F(X; t;α1, f1, . . . , αn, fn) =
∫

· · ·
∫

t<t1<···<tn<ζω

n∏
k=1

{
e−αk(tk−tk−1)fk(Xtk )

}
dt1 · · · dtn,

and, forw ∈ Wa ,

F(w; t;α1, f1, . . . , αn, fn) =
∫

· · ·
∫

t<t1<···<tn<ζ(w)

n∏
k=1

{
e−αk(tk−tk−1)fk

(
w(tk)

)}
dt1 · · · dtn.

(i) The left-hand side of (4.43) will be denoted byG(α1, f1, . . . , αn, fn), namely,

E
{
F(X;0;α1, f1, . . . , αn, fn)

} = G(α1, f1, . . . , αn, fn). (4.44)

For 0< s < T , we denote byI (s) the expression∫
J (s−)<t1<J(s)

e−α1t1f1(Xt1)

{ ∫
· · ·

∫
t1<t2<···<tn<ζω

n∏
k=2

(
e−αk(tk−tk−1)fk(Xtk )

)
dt2 · · · dtn

}
dt1.

Then

F(X;0;α1, f1, . . . , αn, fn) =
∑

0<s<T

I (s) + F
(
X;J (T −);α1, f1, . . . , αn, fn

)
.

Further, if we put for 1� m � n

Im(s) =
∫

· · ·
∫

J (s−)<t1<···<tm<J(s)

m∏
k=1

{
e−αk(tk−tk−1)fk(Xtk )

}
dt1 · · · dtm

×
∫

· · ·
∫

J (s)<tm+1<···<tn<ζω

n∏
�=m+1

{
e−α�(t�−t�−1)f�(Xt�)

}
dtm+1 · · · dtn,

then

I (s) =
n∑

m=1

Im(s).

Moreover, eachIm(s) can be written as

Im(s) = Fm(s)Gm(s)

with
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Fm(s) =
∫

· · ·
∫

J (s−)<t1<···<tm<J(s)

m∏
k=1

{
e−αk(tk−tk−1)fk(Xtk )

}
e−αm+1(J (s)−tm) dt1 · · · dtm,

Gm(s) =
∫

· · ·
∫

J (s)<tm+1<···<tn<ζω

e−αm+1(tm+1−J (s))
n∏

�=m+2

{
e−α�(t�−t�−1)f�(Xt�)

}
dtm+1 · · · dtn.

Therefore

F(X;0;α1, f1, . . . , αn, fn) =
∑

0<s<T

n∑
m=1

Fm(s)Gm(s) + F
(
X;J (T −);α1, f1, . . . , αn, fn

)
. (4.45)

Next, let us put (with the convention thatαn+1 = 0)

F(w;α1, f1, . . . , αm,fm;αm+1)

=
∫

· · ·
∫

0<t1<···<tm<ζ(w)

m∏
k=1

{
e−αk(tk−tk−1)fk

(
w(tk)

)}
e−αm+1(ζ(w)−tm) dt1 · · · dtm, (4.46)

so that

Fm(s) = e−α1J (s−)F (p+
s ;α1, f1, . . . , αm,fm;αm+1). (4.47)

We furthermore putYt = XJ(s)+t so that

Gm(s) =
∫

· · ·
∫

0<tm+1<···<tn<ζω−J (s)

n∏
�=m+1

{
e−α�(t�−t�−1)f�(Xt�)

}
dtm+1 · · · dtn, (4.48)

where we settm = 0.
For p = {pt , t > 0}, we may use the following notations:

G(p;αm+1, fm+1, . . . , αn, fn)

=
∫

· · ·
∫

0<tm+1<···<tn<ζω

n∏
�=m+1

{
e−α�(t�−t�−1)f�(Xt�)

}
dtm+1 · · · dtn (4.49)

(with the convention thattm = 0), and

θsp = {ps+t , t > 0}. (4.50)

θsp then has the same distribution asp and independent of{pt , 0< t < s}. SinceYt is constructed fromθsp in the
same way asXt is from p, (4.48) can be rewritten as

Gm(s) = G(θsp;αm+1, fm+1, . . . , αn, fn), (4.51)

which is identical in law to

G(p;αm+1, fm+1, . . . , αn, fn)

for each fixeds > 0. Further

F
(
X;J (T −);α1, f1, . . . , αn, fn

) = e−α1J (T −)F (p−
T ;0;α1, f1, . . . , αn, fn). (4.52)

Combining (4.45), (4.47), (4.51) and (4.52), we arrive at
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F(X;0;α1, f1, . . . , αn, fn)

=
∑

0<s<T

n∑
m=1

e−α1J (s−)F (p+
s ;α1, f1, . . . , αm,fm;αm+1)

× G(θsp;αm+1, fm+1, . . . , αn, fn) + e−α1J (T −)F (p−
T ;0;α1, f1, . . . , αn, fn). (4.53)

Here we compute the expectations of the random variables appearing in the last formula.

n+{
F(w;α1, f1, . . . , αm,fm;αm+1)

} = µ̂α1(f1G
0
α2

f2 · · ·G0
αm−1

fm−1G
0
αm

fmuαm+1). (4.54)

Whenm = n, the last factoruαn+1 in the above expression is understood to beu0 = ϕ. In fact, the left-hand side
equals

n

{ ∫
· · ·

∫
0<t1<···<tm<ζ(w)

m∏
k=1

(
e−αk(tk−tk−1)fk

(
w(tk)

))
e−αm+1(ζ(w)−tm) dt1 · · · dtm;W+

a

}

=
∫

· · ·
∫

0<t1<···<tm<∞
n

{
m∏

k=1

(
e−αk(tk−tk−1)fk

(
w(tk)

))
uαm+1

(
w(tm)

); ζ > tm

}
,

which can be seen to coincide with the right-hand side of (4.54) by (4.4).
We further have for any constant times > 0,

E
{
G(θsp;αm+1, fm+1, . . . , αn, fn)

} = G(αm+1, fm+1, . . . , αn, fn). (4.55)

On the other hand, we have in view of §4.2

E
{
F(p−

T ;0;α1, f1, . . . , αn, fn)
} = L(m0,ψ)−1n−{

F(w;0;α1, f1, . . . , αn, fn)
}

= L(m0,ψ)−1µ̂α1(f1G
0
α2

f2 · · ·G0
αn−1

fn−1G
0
αn

fnψ),

E

{ T∫
0

e−α1J (s) ds

}
= 1

α(uα1, ϕ) + L(m0,ψ)
, (4.56)

E
{
e−α1J (T −)

} = L(m0,ψ)

α(uα1, ϕ) + L(m0,ψ)
. (4.57)

We can now get from (4.53) that

G(α1, f1, . . . , αn, fn) = E
{
F(X;0;α1, f1, . . . , αn, fn)

}
=

n∑
m=1

E

{ T∫
0

e−α1J (s) ds

}
n+{

F(w;α1, f1, . . . , αm;αm+1)
}

× G(αm+1, fm+1, . . . , αn, fn) + E
{
e−α1J (T −)

}
E

{
F(p−;0;α1, f1, . . . , αn, fn)

}
=

n−1∑
m=1

1

α(uα,ϕ) + L(m0,ψ)
µ̂α1(f1G

0
α2

f2 · · ·G0
αm−1

fm−1G
0
αm

fmuαm+1)

× G(αm+1, fm+1, . . . , αn, fn) + 1

α(uα,ϕ) + L(m0,ψ)
µ̂α1(f1G

0
α2

f2 · · ·G0
αn−1

fn−1G
0
αn

fnϕ)

+ L(m0,ψ)
L(m0,ψ)−1µ̂α1(f1G

0
α f2 · · ·G0

α fn−1G
0
α fnψ)
α(uα,ϕ) + L(m0,ψ) 2 n−1 n
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and side
= 1

α(uα,ϕ) + L(m0,ψ)

n∑
m=1

µ̂α1(f1G
0
α2

f2 · · ·G0
αm−1

fm−1G
0
αm

fmuαm+1)G(αm+1, fm+1, . . . , αn, fn).

In the above and in what follows, we use the convention that

uαm+1 = G(αm+1, fm+1, . . . , αn, fn) = 1

for m = n. This combined with (4.1) and (4.30) eventually leads us to

G(α1, f1, . . . , αn, fn)

=
n∑

m=1

Gα1(f1G
0
α2

f2 · · ·G0
αm−1

fm−1G
0
αm

fmuαm+1)(a)G(αm+1, fm+1, . . . , αn, fn). (4.58)

Based on this formula, we shall prove the desired identity (4.43), namely,

G(α1, f1, . . . , αn, fn) = Gα1f1Gα2f2 · · ·Gαnfn(a) (4.59)

by induction inn.

(1) Whenn = 1, (4.59) is just (4.30).
(2) Suppose (4.59) holds up ton − 1. Then

G(αm+1, fm+1, . . . , αn, fn) = (Gαm+1fm+1 · · ·Gαnfn)(a),

and (4.58) can be written as

G(α1, f1, . . . , αn, fn) =
n∑

m=1

Gα1(f1G
0
α2

f2 · · ·G0
αm−1

fm−1G
0
αm

fmuαm+1)(a)

× (Gαm+1fm+1 · · ·Gαnfn)(a). (4.60)

Let us rewrite the right-hand side of (4.59) by applying the formula (4.31) to the operationGα2 in getting

(Gα1f1Gα2f2 · · ·Gαnfn)(a) = (Gα1f1G
0
α2

f2Gα3f3 · · ·Gαnfn)(a) + (Gα1f1uα2)(a)(Gα2f2 · · ·Gαnfn)(a).

Apply the same procedure to the operationGα3 to see that the right-hand side of (4.59) equals

(Gα1f1G
0
α2

f2G
0
α3

f3Gα4f4 · · ·Gαnfn)(a) + (Gα1f1G
0
α2

f2uα3)(a)(Gα3f3 · · ·Gαnfn)(a)

+ (Gα1f1uα2)(a)(Gα2f2 · · ·Gαnfn)(a).

Repeating the same procedures, we finally find that the right-hand side of (4.59) coincides with the right-h
of (4.60) as was to be proved.

(ii) For t1 > 0, . . . , tn > 0, let

F(t1, . . . , tn) = E

{
n∏

k=1

fk(Xt1+···+tk ); ζω > t1 + · · · + tn

}
,

G(t1, . . . , tn) = (pt1f1pt2f2 · · ·ptnfn)(a).

(4.43) is then equivalent to

∞∫
· · ·

∞∫
e−α1t1−···−αntnF (t1, . . . , tn)dt1 · · · dtn =

∞∫
· · ·

∞∫
e−α1t1−···−αntnG(t1, . . . , tn)dt1 · · · dtn. (4.61)
0 0 0 0
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ClearlyF(t1, . . . , tn) is right continuous. Further, by virtue of Lemma 4.11, we can easily see thatG(t1, . . . , tn) is
separately right continuous. Consequently, (4.61) implies

F(t1, . . . , tn) = G(t1, . . . , tn)

the desired Markov property ofX. �
We add a lemma saying that the pointa is regular for itself with respect to(Xt ,P ).

Lemma 4.12.

(i) P(ηa = 0) = 1, whereηa = inf{t > 0: Xt = a}.
(ii) n+(Wa) = ∞.

Proof. (i) In view of the proof of Proposition 4.3, limt↓0 u1(Xt ) = 1. Hence, if we putηa,ε = inf{t > ε: Xt = a},
then owing to the Markov property

E(e−ηa ) = lim
ε↓0

E(e−ηa,ε ) = lim
ε↓0

E
(
e−εu1(Xε); ζω > ε

) = 1.

(ii) By the construction ofXt , the pointa is evidently instantaneous in the sense that

P(τa = 0) = 1, whereτa = inf{t > 0: Xt ∈ S0}.
Hence (i) holds if and only if the domainDp+ of the Poisson point processp+ accumulates at 0P -a.s., which is
also equivalent to (ii) (cf. [15, §4]). �
4.5. A symmetric extensioñX of X0

In §4.1, we have started with anm-symmetric diffusion

X0 = {X0
t , 0 � t < ζ 0, P 0

x , x ∈ S0}
onS0, whereP 0

x , x ∈ S0, are probability measures on a certain sample space, sayΩ0.
In §4.2, we have constructed a continuous process

X = {Xt, 0� t < ζω,P }
on S by piecing together the excursions, whereP is a probability measure on another sample spaceΩ to define
the excursion valued Poisson point processes.

For convenience, we assume thatΩ0 contains an extra pointωa with P 0
x ({ωa}) = 0, x ∈ S0, and we set

P 0
a = δωa , ωa representing a path taking valuea at any time.

We now let

Ω̃ = Ω0 × Ω, P̃x = P 0
x × P, x ∈ S. (4.62)

For ω̃ = (ω0,ω) ∈ Ω̃ , let us definẽXt = X̃t (ω̃) as follows:
(1) Whenω0 ∈ Ω0 \ {ωa},

X̃t (ω̃) =
{

X0
t (ω

0), 0� t < ζ 0(ω0) � σa(ω
0) � ∞,

Xt−σa(ω0)(ω), σa(ω
0) � t < σa(ω

0) + ζω, if σa(ω
0) < ∞.

(4.63)

(2) Whenω0 = ωa ,

X̃ (ω̃) = X (ω), 0� t < ζ . (4.64)
t t ω
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The life timeζ̃ of X̃t is defined by

ζ̃ =
{

ζ 0 if σa(ω
0) = ∞,

σa(ω
0) + ζω if σa(ω

0) < ∞.
(4.65)

Lemma 4.13. X̃ = {X̃t , 0 � t < ζ̃ , P̃x, x ∈ S} is a Markov process onS with transition function{pt } defined by
(4.35)and(4.36).

Proof. This is an easy consequence of the Markov property of(X0
t , P

0
x ) and the Markov property of(Xt ,P )

proved in Proposition 4.4. To see this, we put, for any 0< s1 < s2 < · · · < sn,f1, f2, . . . , fn ∈ B(S),

Ik = Ẽx

(
f1(X̃s1) · · ·fk−1(X̃sk−1)fk(X̃sk ) · · ·fn(X̃sn); sk−1 < σa � sk

)
,

for 1� k � n with s0 = 0, and

J = Ẽx

(
f1(X̃s1) · · ·fn(X̃sn); sn < σa

)
.

Using the definition of̃X, Proposition 4.4, the Markov property ofX0 and (4.36) successively, we are led to

Ik = E0
x

(
f1(X

0
s1

) · · ·fk−1(X
0
sk−1

)E
(
fk(Xsk−σa ) · · ·fn(Xsn−σa )

); sk−1 < σa � sk
)

= E0
x

(
f1(X

0
s1

) · · ·fk−1(X
0
sk−1

)psk−σa (fkpsk+1−skfk+1 · · ·psn−sn−1fn)(a); sk−1 < σa � sk
)

= E0
x

{
f1(X

0
s1

) · · ·fk−1(X
0
sk−1

)

× E0
X0

sk−1

(
psk−sk−1−σa (fkpsk+1−sk fk+1 · · ·psn−sn−1fn);σa � sk − sk−1

); sk−1 < σa � sk
}

= E0
x

(
f1(X

0
s1

) · · ·fk−1(X
0
sk−1

)

× (psk−sk−1 − p0
sk−sk−1

)(fkpsk+1−skfk+1 · · ·psn−sn−1fn)(X
0
sk−1

); sk−1 < σa � sk
)
.

By the Markov property ofX0, we thus get

Ik = p0
s1

f1 · · ·p0
sk−1−sk−2

fk−1psk−sk−1fkpsk+1−skfk+1 · · ·psn−sn−1fn(x)

− p0
s1

f1 · · ·p0
sk−1−sk−2

fk−1p
0
sk−sk−1

fkpsk+1−skfk+1 · · ·psn−sn−1fn(x).

Clearly we also have

J = E0
x

(
f1(X

0
s1

) · · ·fn(X
0
sn

); sn < σa

) = p0
s1

f1 · · ·p0
sn−sn−1

fn.

Hence we arrive at

Ẽx

(
f1(X̃s1)f2(X̃s2) · · ·fn(X̃sn)

) =
n∑

k=1

Ik + J = ps1f1ps2−s1f2 · · ·psn−sn−1fn(x),

the desired Markov property of̃X. �
We now state main theorems of the present paper. In this section, we have started with anm-symmetric diffusion

X0 on S0 satisfying conditions A.1–A.4 and constructed a Markov processX̃ on S. The resolvent{Gα}α>0 of the
Markov process̃X is defined by

Gαf (x) = Ẽx

( ∞∫
0

e−αtf (X̃t )dt

)
, f ∈ B(S). (4.66)

The resolvent ofX0 was denoted byG0.
α
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n

67),

s on
e

e

t
easure

as in

ting a
B.3 on
Theorem 4.1. The process̃X enjoys the following properties:

(1) X̃ is anm-symmetric diffusion process onS. It admits no killing insideS and is a Hunt process onS in the
sense that

X̃ζ̃ (ω̃)−(ω̃) = ∆ if ζ̃ (ω̃) < ∞.

(2) X0 is identical in law with the process obtained from̃X by killing upon the hitting timeσa of the pointa.

Further the resolvent of̃X admits the next expression forf ∈ B(S):

Gαf (x) = G0
αf (x) + uα(x)

(uα,f )

α(uα,ϕ) + L(m0,ψ)
, x ∈ S0, (4.67)

Gαf (a) = (uα,f )

α(uα,ϕ) + L(m0,ψ)
, (4.68)

whereL(m0,ψ) is the energy functional of theX0-excessive measurem0 = ϕ · m and theX0-excessive functio
ψ = 1− ϕ.

Proof of Theorem 4.1. By Lemma 4.6, (4.37) and Lemma 4.13, we see thatX̃ is a Markov process onS with the
m-symmetric resolvent (4.67), (4.68).

On account of A.1, we may assume that

X0
t (ω

0) is continuous int ∈ [
0, ζ 0(ω0)

)
andXζ0(ω0)−(ω0) = a ∪ ∆

for everyω0 ∈ Ω0. We have already chosenΩ in a way that

Xt(ω) is continuous int ∈ [0, ζω) andX0(ω) = a.

Hence the path̃X·(ω̃) defined by (4.63)–(4.65) is continuous on[0, ζ̃ ).
Consider a functionu = Gαf on S for f ∈ Cb(S). By the assumptions A.2, A.3 and the expression (4.

(4.68),u(X0
t (ω

0)) is then continuous int ∈ [0, σa) for any ω0 ∈ Ω0. By the proof of Proposition 4.3,u(Xt (ω))

is continuous int ∈ [0, ζω) for any ω ∈ Ω . Henceu(X̃t (ω̃)) is right continuous int ∈ [0, ζ̃ (ω̃)) for any ω̃ ∈ Ω̃ .
(In view of (4.33), we even know thatu(X̃t ) is continuous int ∈ [0, ζ̃ ) P̃x -a.s. for anyx ∈ S.) Therefore we
can conclude that̃X is a strong Markov process with continuous sample paths, namely, a diffusion procesS

(cf. [2]). Clearly X̃ is of no killing insideS and a Hunt process onS. The property (2) is also evident from th
construction of̃X. �
Remark 4.1. A prime reason for us to impose a regularity condition A.4 on the given processX0 on S0 is in that
it implies an important property in Lemma 4.3 of the excursion lawn of (4.4), which is essential in deriving th
continuity near the pointa of the processX constructed in §4.2.

Given a standard process̃X onS for which the pointa is recurrent, K. Itô [15] associated with̃X a Poisson poin
processp of excursions in the manner of §3.1 and gave a list of necessary conditions for the characteristic m
n of p should obey. Conversely T.S. Salisbury [24,25] constructed a right process onS for whicha is recurrent by
means ofX0 and an excursion lawn satisfying Itô’s conditions being strengthened by adding the property
Lemma 4.3 and some others.

Remark 4.2. By invoking the work of P.A. Meyer [20] on the absorbed Poisson point process and by adop
similar argument to §4.2, we can show that Theorem 3.1 of §3.1 remains true without assuming condition
the recurrence of the point{a}.
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In this general case, the right continuous inverseS(s) of the local timeL(t) at {a} of the given processX on S

is defined fors � L(∞) asS(s) = ∞, and we see from Lemma 2.3 and by lettingα ↓ 0 in (2.21) thatL(∞) has
an exponential distribution with meanL(m0,ψ)−1.

Let

Dp = {
s: S(s) − S(s−) > 0

}
,

ps(t) = XS(s−)+t , s ∈ Dp, 0� t < S(s) − S(s−).

ThenDp ⊂ (0,L(∞)], L(∞) ∈ Dp and {ps , s > 0} is a point process with values in the spaceWa defined by
(4.13) instead of (3.6). Moreover, if we define the spacesW+

a , W−
a by (4.14), (4.15) respectively, then

ps ∈ W+
a for s ∈ Dp ∩ (

0,L(∞)
)
, pL(∞) ∈ W−

a .

By Theorem 5 of Meyer [20],{ps , s > 0} is anabsorbed Poisson point process.More precisely, on a certai
probability space(Ω̃, P̃ ), there is a Poisson point process{p̃s , s > 0} on Wa with domainDp̃ and with the
following properties.

(a) Let ζ̃ = inf{s > 0: p̃s ∈ W−
a } and consider the stopped point process{p̄, s > 0}:

p̄s = p̃s for s ∈ Dp̄ = Dp̃ ∩ (0, ζ̃ ].
Then the point process{ps , s > 0} and{p̄s , s > 0} are equivalent in law.

(b) Let n be the characteristic measure of{p̃s , s > 0}. Then{w(t),n} is Markovian with respect to the transitio
functionp0

t of X0. Let {νt } be the entrance law associated withn. Thenνt is a finite measure for eacht > 0
and

∫ ∞
0 e−t νt dt has a total mass not greater than 1.

We now prove that Theorem 3.1remains valid for this{νt } and for the entrance law{µt } specified by the
Eq. (2.22).

Take a bounded Borel functionf onS and definef̂α(w),w ∈ Wa,α > 0, as in the proof of Proposition 4.2. W
have, almost surely with respect toPa ,

ζ∫
0

e−αtf (Xt )dt =
∑

s<L(∞)

S(s)∫
S(s−)

e−αtf (Xt )dt +
∞∫

S(L(∞)−)

e−αtf (Xt )dt

=
∑

s<L(∞)

e−αS(s−)f̂α(ps) + e−αS(L(∞)−)f̂α(pL(∞)),

which is equivalent in law to∑
s<ζ̃

e−αS̃(s−)f̂α(p̃+
s ) + e−S̃(ζ̃−)f̂α(p̃ζ̃ ), (4.69)

where{p̃+
s , s > 0} is a Poisson point process defined byp̃+

s = p̃s for s ∈ Dp̃+ = Dp̃ ∩ {s: p̃s ∈ W+
a } andS̃(s) =∑

r�s ζ(p̃+
r ). The characteristic measure of{p̃+

s , s > 0} is the restrictionn+ of n on W+
a . In the same way as i

the proof of Lemma 4.5, we can prove that

Ẽ
(
e−αS̃(s)

) = exp
(−αν̂α(ϕ)

)
, ν̂α =

∞∫
0

e−αtνt dt.

Now the valueGαf (a) equals the expectation of the random variable (4.69) with respect toP̃ , which can be
evaluated by taking into account of the following facts.
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(i) The three objects{p̃+
s , s > 0}, ζ̃ andp̃ζ̃ are independent.

(ii) ζ̃ has an exponential distribution with meanL(m0,ψ)−1.
(iii) The law of p̃ζ̃ is L(m0,ψ)−1n− wheren− is the restriction ofn onW−

a .

Indeed, exactly the same computation as in the proof of Proposition 4.2 leads us to

Gαf (a) = ν̂α(f )

αν̂α(ϕ) + L(m0,ψ)
, (4.70)

which combined with (2.15) and Lemma 2.2(ii) yields

ν̂α(f )

αν̂α(ϕ) + L(m0,ψ)
= µ̂α(f )

αµ̂α(ϕ) + L(m0,ψ)
.

Therefore for eachα > 0 there is a constantcα such thatν̂α = cαµ̂α . Inserting this into the above equation, w
easily obtaincα = 1 and soνt = µt , t > 0.

5. Uniqueness of the symmetric extension and expression of its Dirichlet form

In the preceding section, we have started with anm-symmetric diffusionX0 on S0 satisfying conditions
A.1–A.4, and constructed a process̃X on S satisfying properties (1), (2) stated in Theorem 4.1. Let us ca
process onS satisfying conditions (1), (2)a symmetric extension ofX0. In this section, we are concerned with t
uniqueness of a symmetric extension ofX0 and explicit expression of its Dirichlet form onL2(S;m). We aim at
proving the following:

Theorem 5.1. Assume that anm-symmetric diffusionX0 onS0 satisfies conditionsA.1, A.2.Let X̂ be a symmetric
extension ofX0 and(E,F) be the Dirichlet form onL2(S;m) of X̂.

(i) X̂ admits the resolvent identical with(4.67), (4.68).
(ii) (E,F) admits the expression

Fe = {w = u0 + cϕ: u0 ∈Fo,e, c constant}, F = Fe ∩ L2(S;m), (5.1)

E(w,w) = E(u0, u0) + c2E(ϕ,ϕ), E(ϕ,ϕ) = L(m0,ψ), (5.2)

where(F0,e,E) is the extended Dirichlet space ofX0 andL(m0,ψ) is the energy functional ofm0 = ϕ · m

andψ with respect toX0.
(iii) X0 satisfiesA.3 automatically: uα ∈ L1(S;m), α > 0.
(iv) P̂a(σa = 0, τa = 0) = 1 whereσa = inf{t > 0: Xt = a}, τa = inf{t > 0: Xt ∈ S0}.
(v) (E,F) is irreducible.

Corollary 5.1. Under the conditionsA.1, A.2 for an m-symmetric diffusionX0 on S0, the symmetric extension
X0 is unique in law.

Corollary 5.1 follows from Theorem 5.1(i). We prepare a lemma before the proof of Theorem 5.1.
Assume thatX = (Xt ,Px) is anm-symmetric Hunt process onS and(E,F) is the associated Dirichlet form o

L2(S;m). No regularity for the Dirichlet form(E,F) is assumed in advance.
In accordance with [19], we set for a closed setF ⊂ S,

F = {u ∈ F : u = 0 m-a.e. onS \ F },
F
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o-
and call an increasing family{Fn} of closed subsets ofS an E-nest if the space
⋃∞

n=1FFn is E1-dense inF .
A setN is calledE-exceptionalif N ⊂ ⋂∞

n=1 Fc
n for someE-nest{Fn}. On the other hand, we call a setN ⊂ S an

X-exceptional setif there exists a Borel setB1 ⊃ B with

Pm(σB1 < ∞) = 0.

A nearly Borel setN ⊂ S is calledX-properly exceptionalif m(N) = 0 andS \ N is X-invariant in the sense tha

Px(Xt ∈ S∆ \ N or Xt− ∈ S∆ \ N ∃t � 0) = 1, ∀x ∈ S \ N.

Lemma 5.1.

(i) The following properties of a setN ⊂ S are equivalent each other:
α. N is E-exceptional.
β. N is X-exceptional.
γ . N is contained in anX-properly exceptional Borel set.

(ii) If {Fn} is anE-nest, then

Px

(
lim

n→∞σS\Fn � ζ
)

= 1 q.e., (5.3)

where q.e. means ‘except on a setN ⊂ S satisfying one of the properties in(i)’.
(iii) (E,F) is a quasi-regular Dirichlet form onL2(S;m) in the sense of[19, §IV 3].

Proof. (i) The equivalencesα ⇔ β andβ ⇔ γ were proved in [19, Theorem 5.29] and in [9, Theorem 4.1
respectively.

(ii) Put σ = limn→∞ σS\Fn . On account of [19, Theorem 2.11, Theorem 5.4], we have for a strictly pos
boundedm-integrable functionf onS,

Ex

( ζ∫
σ∧ζ

e−sf (Xs)ds

)
= 0 m − a.e. x ∈ S.

Since the function ofx on the left-hand side of the above equation isX-excessive, it is finely continuous onS and
hence the above equation holds q.e. by [9, Lemma 4.1.5].

(iii) Since (E,F) is associated with a Hunt processX, it must be quasi-regular by virtue of [19, The
rem 5.1]. �
Proof of Theorem 5.1. SinceX̂ is not only a diffusion process but also a Hunt process onS, the Dirichlet form
(E,F) of X̂ is quasi-regular by the above lemma.

Consequently we can invoke [3, Theorem 3.7] to find a regular Dirichlet space(S′,m′,F ′,E ′) related to the
quasi-regular Dirichlet space(S,m,F ,E) by a quasi-homeomorphismq: there exist anE-nest{Fn} on S and an
E ′-nest{F ′

n} on S′ such thatq is a one to one mapping fromS1 = ⋃∞
n=1 Fn ontoS′

1 = ⋃∞
n=1 F ′

n and its restriction
on eachFn is homeomorphic toF ′

n. Further,m′ is the image measure ofm by q and the space(F ′,E ′) is also the
image of(F ,E) by q. Thus, if we put(Φu)(x′) = u(q−1(x′)), x′ ∈ S′

1, then∫
S′

(Φu)dm′ =
∫
S

udm, ∀u � 0; F ′ = Φ(F), E ′(Φu,Φv) = E(u, v), u, v ∈ F . (5.4)

We note thatS \S1 (resp.S′ \S′
1) is E-(resp.E ′-)exceptional and, whenN ′ = q(N), N is E-exceptional if and only

if N ′ is E ′-exceptional (cf. [3, Corollary 3.6]).
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For a Borel setB ⊂ S, we denote byB∆ the subsetB ∪ ∆ of S∆ with induced topology. The aboveq can then
be extended to a homeomorphism between(Fn)∆ and(F ′

n)∆′ for eachn, where∆′ denotes the point at infinity o
S′ (which is added as an isolated point whenS′ is compact).

We now apply Lemma 5.1 to the aboveE-nest{Fn} in finding anX̂-properly exceptional Borel set̂N ⊂ S

containingS \ S1 such that (5.3) holds for anyx ∈ S \ N̂ . q is then a one-to-one mapping betweenS \ N̂ and
S′ \ N̂ ′, where

N̂ ′ = (S′ \ S′
1) ∪ q(S ∩ N̂).

In view of condition A.2 forX0, condition (2) forX̂ and the above observation, the one point set{a} is not
X̂-exceptional and consequently it is notE-exceptional by virtue of Lemma 5.1. Thereforea must be located in
S \ N̂ and furthermore

{a′} is notE ′-exceptional, (5.5)

wherea′ = q(a) ⊂ S′ \ N̂ ′.
The restriction of̂X to S \ N̂ is a diffusion with no killing insideS \ N̂ and we denote it again by

X̂ = (Ω,Ft , X̂t , ζ̂ , P̂x).

Let us transfer̂X to a process

X̂′ = (Ω,Ft , X̂
′
t , ζ̂

′, P̂ ′
x)

onS′ \ N̂ ′ by the mappingq:

X̂′
t (ω) = q(X̂t )(ω), ζ̂ ′(ω) = ζ̂ (ω), ω ∈ Ω, t � 0,

P̂ ′
x(Λ) = P̂q−1x(Λ), x ∈ S′ \ N̂ ′, Λ ∈F∞.

We may extend the state space ofX̂′ to S′ by making each point of̂N ′ trap. It is then easy to see that̂X′ is a
diffusion process onS′ with no killing insideS′ in the sense that

P̂ ′
x(ζ̂

′ < ∞, X̂′
ζ̂ ′− = ∆) = P̂ ′

x(ζ̂
′ < ∞). (5.6)

FurtherX̂′ is associated with the Dirichlet form(E ′,F ′) which is regular. SincêX′ is a diffusion without killing
insideS′, (E ′,F ′) must be strongly local (cf. [9, Theorem 4.5.3]). By (5.5) and Lemma 5.1, we see that th
point set{a′} is notX̂′-exceptional and consequently it has a positive capacity with respect to(E ′,F ′) in virtue of
[9, Theorem 4.2.1].

Therefore(E ′,F ′) andX̂′ fit the setting of §2 and they satisfy all the properties stated in Theorem 2.1 o
In particular, we have the next expressions of the resolvent and(E ′,F ′) of X̂′ in terms of the part̂X′,0 of X̂′ on
S′

0 = S′ \ {a′}: if we denote the transition function and the resolvent ofX̂′ (resp.X̂′,0) by p′
t ,G

′
α (resp.p′,0

t ,G′,0
α ),

then

G′
αg(a′) = (u′

α, g)m′

α(u′
α,ϕ′)m′ + L′(m′

0,ψ
′)

, (5.7)

E ′(ϕ′, ϕ′) = L′(m′
0,ψ

′), (5.8)

whereϕ′ (resp.u′
α) is the hitting (resp.α-order hitting) probability of{a′} of the procesŝX′, ψ ′ = 1− ϕ′ and

L′(m′
0,ψ

′) = lim
t↓0

1

t
(ϕ′ − p

′,0
t ϕ′,ψ ′)m′ . (5.9)

Notice that the part(E ′,F ′
0) of (E ′,F ′) on S′

0 is associated witĥX′,0 which can be sent fromX0 on S0 by the
mappingq in the same way as above on account of the property (2) ofX̂. Hence we have forx ∈ S′ \ N̂ ′
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Φ(Gαf )(x) = G′
α(Φf )(x), Φ(G0

αf )(x) = G′,0
α (Φf )(x), Φ(p0

t f )(x) = p
′,0
t (Φf )(x),

(5.10)
Φ(ϕ)(x) = ϕ′(x), Φ(uα)(x) = u′

α(x).

(5.4)–(5.9) and (5.10) now implyL′(m′
0,ψ

′) = L(m0,ψ) and furthermore

E(ϕ,ϕ) = L(m0,ψ), Gαf (a) = (uα,f )

α(uα,ϕ) + L(m0,ψ)
. (5.11)

We have obtained the expression (4.68) of the resolventGα of X̂. It then satisfies (4.67) for allx ∈ S0 because
of the property (2) of̂X. We can also readily get the assertions (ii) and (iii) of Theorem 5.1 using (5.4) and (
As for (iv), we have obviously

P̂a(σa = 0, τa = 0) = P̂ ′
a′(σa′ = 0, τa′ = 0),

and the right-hand side equals 1 by virtue of Theorem 2.1. From the expression (4.67) of the resolvent oX̂, we
have

(IA,GαIB) > 0 for anyA,B ∈ B(S) with m(A) > 0,m(B) > 0.

This property is equivalent to the irreducibility of the Dirichlet form(E,F) proving (v). �
Remark 5.1. For the symmetric extensioñX of X0 constructed in §4, not only the expression (4.67), (4.68) o
resolvent but also the property (iv) in Theorem 5.1 have been directly proved in Lemma 4.12.

6. Examples

Example 6.1. Let X be the Brownian motion onR, X0 be the absorbed Brownian motion onR \ {0} andm be
the Lebesgue measure dx on R. ThenX is the uniquem-symmetric extension ofX0 (in the sense thatX satisfies
conditions (1), (2) of Theorem 4.1) in accordance with Corollary 5.1.

Let L(t) be the local time ofX at 0 andZ be an independent exponential random variable with meanδ−1. The
processXδ obtained fromX killed upon the first time thatL(t) � Z is a diffusion process extendingX0 but not a
symmetric extension ofX0 in the present sense because it violates the above condition (1).

For γ > 0, let Xγ be the process onR obtained fromX by a time change with respect to the inverse of
additive functionalt + γL(t). Xγ is then a diffusion onR with a canonical scale 2 dx and the speed measu
m(dx) = dx + γ δ0(dx). Xγ extendsX0 but violates our assumption thatm({0}) = 0.

The resolvents and Dirichlet forms ofXδ,X
γ have been exhibited in Remark 2.2.

Example 6.2. Let D be a bounded open set inRd (d � 1), andL2(D) be theL2-space based on the Lebesg
measure onD. Denote byH 1

0 (D) the closure ofC1
0(D) in the Sobolev space

H 1(D) =
{
u ∈ L2(D):

∂u

∂xi

∈ L2(D), 1� i � n

}
and put

D(u, v) =
∫
D

∇u · ∇v(x)dx, u, v ∈ H 1
0 (D).

Then (1
2D,H 1

0 (D)) is a strongly local Dirichlet form onL2(D) satisfying the Poincaré inequality (3.13). T
associated symmetric diffusionX0 = (X0, 0� t < ζ 0,P 0) onD is the absorbing Brownian motion.
t x
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Let D∗ = D ∪ {a} be the one point compactification ofD. RegardingD as a subspace ofD∗, we have then

ϕ(x) = P 0
x (ζ 0 < ∞,X0

ζ0− = a) = 1, ψ(x) = 1− ϕ(x) = 0, ∀x ∈ D, (6.1)

uα(x) = E0
x(e−αζ0;X0

ζ0− = a) is continuous inx ∈ D (α > 0). (6.2)

Obviouslyuα ∈ L1(D). Hence conditions A.1–A.4 are satisfied byX0 and we can construct a diffusioñX on D∗
as in §4. By virtue of Theorem 4.1, the resolvent ofX̃ is expressed as

Gαf (x) = G0
αf (x) + uα(x)

(uα,f )

α(uα,1)
, x ∈ D, Gαf (a) = (uα,f )

α(uα,1)
,

and in particular,̃X is conservative.
L2(D∗) denotes theL2-space based on the 0-extension of the Lebesgue measure onD to D∗. By virtue of

Theorems 4.1 and 5.1,̃X is symmetric with respect to this measure and its Dirichlet form(E,F) on L2(D∗) is
describable as

F = H 1
0 (D) + constant functions onD∗, (6.3)

E(w1,w2) = 1

2
D(f1, f2), wi = fi + ci, fi ∈ H 1

0 (D), ci constant, i = 1,2. (6.4)

On account of Theorem 3.2 and a related observation in §3.1, this is a regular, strongly local and irre
recurrent Dirichlet form. This Dirichlet form first appeared in [8].

The entrance law{µt }t>0 governing the characteristic measure of the excursion valued Poisson point p
attached tõX is given by

µt(B)dt =
∫
B

P 0
x (ζ 0 ∈ dt)dx, B ∈ B(D), (6.5)

in view of (3.9). LetD = ⋃
i Di be the decomposition of the open setD into connected components. The abo

identity tells us that the sample path of̃X entering from the pointa is distributed among{Di} proportionally to
their volumes and enters inDi according to the restriction ofµt to Di . As was observed in §3.1,̃X is irreducible
recurrent.

According to (2.24), the Lévy measure of the inverse local time ofX̃ at the pointa is given by−dµt(D).

Example 6.3. We consider a finite number of disjoint rays�i, i = 1, . . . ,N , onR2 merging at a pointa ∈ R2. Each
ray �i is homeomorphic to the open half line(0,∞) and the pointa is the boundary of each ray at 0-side. We p

S0 =
N∑

i=1

�i, S = S0 + a.

S is endowed with the induced topology as a subset ofR2.
Let m be a positive Radon measure onS0 with Supp[m] = S0. m is extended toS by settingm({a}) = 0. The

restriction ofm to �i is denoted bymi . For any functiong on S0, its restriction to�i will be denoted bygi .
We consider a diffusion processX0 = {X0

t , ζ
0,P 0

x } on S0 such that its restrictionX0,i to each open half line
�i ∼ (0,∞) is the absorbing diffusion governed by the speed measuremi and a canonical scale, saysi .

We notice thatX0 satisfies A.2, A.3 if and only if 0 is a regular boundary in Feller’s sense for each diffusionX0,i

on �i,1 � i � N . Indeed, A.2 holds if and only if 0 is exit (in the terminology used by [16]). If 0 is addition
non-entrance, thenmi((0,1)) = ∞ and A.3 is not satisfied. If 0 is regular, thenmi((0,1)) < ∞ anduα,i is mi

integrable on(0,1), while uα,i is alwaysmi -integrable on[1,∞) (cf. [16, p 130]).
Thus we assume that 0 is regular for everyX0,i so that A.1–A.3 are satisfied byX0. A.4 is also clearly satisfied

m is finite on any compact neighbourhood ofa.
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Therefore, a diffusioñX onS can be constructed as in §4 and it is a uniquem-symmetric extension ofX0 with
no killing insideS according to Theorem 5.1. The resolvent ofX̃ has the expression

Gαf (a) =
∑

i (uα,i , fi)mi

α
∑

i (uα,i , ϕi)mi
+ ∑

i L(ϕi · mi,ψi)
.

The Dirichlet form(E,F) of X̃ onL2(S;m) is regular, strongly local, irreducible and can be described as foll

Fe = {w = u0 + cϕ: u0 ∈F0,e, c constant},
E(w,w) = E(u0, u0) + c2E(ϕ,ϕ),

E(ϕ,ϕ) =
∑

i

L(ϕi · mi,ψi),

where

F0,e =
{
u: ui is absolutely continuous with respect tosi ,

∞∫
0

(
dui

dsi

)2

dsi < ∞, ui(0) = 0, ui(∞) = 0, whenever∞ is regular, 1� i � n

}
,

E(u,u) =
∑

i

∞∫
0

(
dui

dsi

)2

dsi , u ∈F0,e.

Related Dirichlet forms and diffusions first appeared in [13].
The entrance law froma is describable as

µt(f )dt =
∑

i

P
0,i
fi ·mi

(ζ 0,i ∈ dt,X
0,i

ζ0,i− = 0). (6.6)

We have a freedom of choice of the entrance law (6.6) in the following sense. Choose any positive n
{p1, . . . , pN } and observe that the absorbed diffusionX0 onS0 is unchanged if we replacemi, si, 1� i � N , by

m̂i = pi · mi, ŝi = p−1
i · si , 1 � i � N,

respectively. Let̂m be the measure onS whose restriction to�i equalŝmi for eachi = 1,2, . . . ,N , with m̂({a}) = 0.
Then we can consider thêm-symmetric extension̂X of X0 whose entrance laŵµ from a is given by (6.6) but with
the replacement ofmi by m̂i for 1� i � N .

Example 6.4. Let G1,G2 be open sets ofRd (d � 1), such that

�G1 ⊂ G2, �G1 is compact.

We letS0 = G2 \ �G1. We consider the spaceS = S0 ∪ {a} equipped with the topology where a setU containinga
is defined to be an open set if

U \ {a} = {open subset ofG2 containing�G1} \ �G1.

Let X0 be the absorbing Brownian motion onS0. Then conditions A.1–A.4 are satisfied byX0. A.3 can be verified
by a comparison with the Brownian motion onRd .

Let m be the Lebesgue measure onS0 extended toS by m({a}) = 0. Let X̃ be them-symmetric diffusion onS
as is constructed in §4. Then, by Theorem 5.1, its Dirichlet form(E,F) onL2(S;m) is expressed as
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if

iterature
ple 6.3.

13–619.
8.
h. Soc.

0, 1973,

. 225–239.

oto, 1981,

Springer,

1, 1973,
F = Fe ∩ L2(S;m), Fe = {
w = u0 + cϕ: u0 ∈ H 1

0,e(S0), c constant
}
, (6.7)

E(w,w) = 1

2
D(u0, u0) + c2L(ϕ · m,ψ), (6.8)

whereH 1
0,e(S0) denotes the extended Dirichlet space ofH 1

0 (S0).

(E,F) is a quasi-regular Dirichlet form onL2(S;m) but may not be regular. It is a regular Dirichlet space
each point of∂G1 is a regular boundary point ofS0 with respect to the Dirichlet problem for(α − 1

2∆) onS0.

Acknowledgements

We are grateful to P.J. Fitzsimmons, Y. Le Jan and an anonymous referee for calling our attention to the l
closely related to the present subject. Thanks are also due to K. Burdzy for his helpful comment on Exam

References

[1] R.M. Blumenthal, Excursions of Markov Processes, Birkhäuser, Boston, 1992.
[2] R.M. Blumenthal, R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968.
[3] Z.-Q. Chen, Z.-M. Ma, M. Röckner, Quasi-homeomorphisms of Dirichlet forms, Nagoya Math. J. 136 (1994) 1–15.
[4] C. Dellacherie, P.A. Meyer, Probabilités et potentiel, Chap. XII, Hermann, Paris, 1987.
[5] C. Dellacherie, B. Maisonneuve, P.A. Meyer, Probabilités et potentiel, Chap. XVII–XXIV, Hermann, Paris, 1992.
[6] E.B. Dynkin, An application of flows to time shift and time reversal in stochastic processes, Trans. Amer. Math. Soc. 287 (1985) 6
[7] P.J. Fitzsimmons, On the excursions of Markov processes in classical duality, Probab. Theory Related Fields 75 (1987) 159–17
[8] M. Fukushima, On boundary conditions for multi-dimensional Brownian motions with symmetric resolvent densities, J. Mat

Japan 21 (1969) 58–93.
[9] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter, 1994.

[10] R.K. Getoor, Excursions of a Markov process, Ann. Probab. 7 (1979) 244–266.
[11] R.K. Getoor, Excessive Measures, Birkhäuser, 1990.
[12] R.K. Getoor, M.J. Sharpe, Excursions of dual processes, Adv. Math. 45 (1982) 259–309.
[13] N. Ikeda, S. Watanabe, The local structure of a class of diffusions and related problems, in: Lecture Notes in Math., vol. 33

pp. 124–159.
[14] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, 1981.
[15] K. Itô, Poisson point processes attached to Markov processes, in: Proc. Sixth Berkeley Symp. Math. Statist. Probab. III, 1970, pp
[16] K. Itô, H.P. McKean, Diffusion Processes and Their Sample Paths, Springer, 1970.
[17] D. Kim, On spectral gaps and exit time distributions for a non-smooth domain, Forum Math., in press.
[18] Y. Le Jan, Dual Markovian semigroups and processes, in: Functional Analysis in Markov Processes, Proceedings, Katata and Ky

in: Lecture Notes in Math., vol. 923, 1982, pp. 47–75.
[19] Z.M. Ma, M. Röckner, Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, 1992.
[20] P.A. Meyer, Processus de Poisson ponctuels, d’aprés K. Itô, in: Séminaire de Probab. V, in: Lecture Notes in Math., vol. 191,

Berlin, 1971, pp. 177–190.
[21] P.A. Meyer, Note sur l’interprétation des measures d’équilibre, in: Séminaire de Probab. VII, in: Lecture Notes in Math., vol. 32

pp. 210–216.
[22] M. Nagasawa, Time reversion of Markov processes, Nagoya Math. J. 24 (1964) 177–204.
[23] L.C.G. Rogers, Itô excursion theory via resolvents, Z. Wahrsch. Verw. Gebiete 63 (1983) 237–255.
[24] T.S. Salisbury, On the Itô excursion process, Probab. Theory Related Fields 73 (1986) 319–350.
[25] T.S. Salisbury, Construction of right processes from excursions, Probab. Theory Related Fields 73 (1986) 351–367.

Further reading

[26] J. Mitro, Time reversal depending on local time, Stochastic Process. Appl. 18 (1984) 171–177.


