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Abstract

We investigate the behavior of the free energy of thep-spin interaction variant of the SK-model for high temperatures.
admit arbitrary distributions of the interactions given that their distribution is symmetric around the origin and some exp
moment is finite. We show that there is a critical temperatureβ̃ depending onp such that forβ < β̃ the free energy of thep-spin
interaction model has normally distributed fluctuations.
 2004 Elsevier SAS. All rights reserved.

Résumé

Nous étudions le comportement à haute température de l’énergie libre du verre de spin à interactions multiples dp.
Pour des corrélations aléatoires admettant un moment exponentiel, nous démontrons un théorème limite central pou
libre à haute température.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Spin glasses have been in the centre of interest of probability theory and statistical mechanics in the pas
The reader interested in the various aspects of spin glasses is referred to the excellent book by Mèzard
for the physicists’ point of view or to the lecture notes by Talagrand [14], his very recent book [15] or Bo
lecture notes [3] for mathematical aspects of the models.

The following model can be considered as a generalization of the famous Sherrington–Kirkpatrick mod
model for short) of spin glasses with interaction (also called coupling) between eachp-tuple (p � 3) of spins.
However, the reason for considering this model has not been the desire for generalization but the hope th

* Corresponding author.
E-mail addresses:holger.knoepfel@rub.de (H. Knöpfel), maloewe@math.uni-muenster.de (M. Löwe).
0246-0203/$ – see front matter 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.05.006



808 H. Knöpfel, M. Löwe / Ann. I. H. Poincaré – PR 41 (2005) 807–815

ed, such

s

ions

and

d

gy.

ture
temperature behavior is much simpler than that of the SK-model, so that it should be regarded first. Inde
an analysis is nowadays largely available, see the article by Talagrand [12] or his book [15, Chapter 6].

To define thep-spin interaction model we shall start with a sequence(σi)i∈N of independent random variable
σi :Ωσ → {−1,1} with Pσ (σi = −1) = Pσ (σi = 1) = 1/2. Introducing the notation�ı ∈ (

N
p

)
for �ı = (i1, . . . , ip)

with 1� i1 < · · · < ip � N andN ∈ N ap-spin is given byσ�ı := σi1 · · · · ·σip . Further let the interactions(J�ı )�ı∈(N
p)

be a set of i.i.d. random variablesJ�ı :ΩJ → R, independent of the(σi)i∈N such that

• The distribution ofJ�ı is symmetric (with respect to the origin).
• J�ı has exponential moments, i.e.EJ exp(tJ�ı ) < ∞ for somet > 0.
• The variance ofJ�ı is 1.

Of course, we haveEJ J�ı = 0 with Eσ andEJ denoting the expectation with respect to the probability distribut
Pσ (of σ ) andPJ (of J ) respectively.

Let finally the HamiltonianHN :Ωσ × ΩJ → R be given by

HN := −
√

p!
Np−1

∑
�ı∈(N

p)

J�ıσ�ı .

Our main object of interest is the behavior of the free energy of the model.
To introduce it let

ZN := Eσ exp(−βHN) :ΩJ → R+
be the partition function at inverse temperatureβ > 0. The free energy of the system is defined as

fN := 1

N
logZN.

We will be interested in the thermodynamic limit of the quantitiesZN andfN (the limit asN → ∞) which in fact
strongly depends onβ. Naively, we could expectZN to obey a Law of Large Numbers asN tends to infinity, i.e.
we would expect thatZN behaves likeEJ ZN or rather that

fN → f a := lim
N→∞

1

N
logEJ ZN (1.1)

(in probability asN → ∞). It is not difficult to check that the limit on the right-hand side of (1.1) exists

equalsβ2

2 (under the assumptions on the interactions stated above). This limitf a in (1.1) is called the anneale
free energy. On the other hand one would expect the random variablefN to behave like its averageEJ fN , i.e. we
would expect that

fN → f q := lim
N→∞ EJ

1

N
logZN (1.2)

(in probability asN → ∞) provided the latter limit exists. The limitf q in (1.2) is called the quenched free ener
But (1.1) and (1.2) are likely to contradict each other because by Jensen’s inequality

EJ

1

N
logZN � 1

N
logEJ ZN .

Indeed, it turns out that a form of (1.2), namely

lim
N→∞ PJ

(|fN − EJ fN | � ε
) = 0

is true for all temperatures, while the validity off a = f q and hence that of (1.1) is a genuine high tempera
phenomenon.
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The critical temperatureβc of thep-spin SK-model depends onp and is defined as the largestβ such that (1.1)
holds, i.e.

βc := sup
{
β > 0: lim

N→∞fN = f a in probability
}
. (1.3)

An example to be kept in mind is that of the couplings(J�ı )�ı being i.i.d.and standard Gaussians, i.e.N (0,1)-
distributed. This is in fact the only example which has been rigorously investigated so far forp � 3 (see the
contributions by Talagrand [12], [15], by Bovier et al. [4] and Kurkova [10]). Note that the definition of the cr
temperature agrees with the result for the critical temperature in the usual SK-model, where one can shoβc = 1
(see e.g. [1,5,6,13]). In contrast to the casep = 2 one has not yet been able to calculate the critical temperatu
p � 3, not even for i.i.d.standard Gaussian couplings. For the latter case Talagrand [12] gives the bounds

inf
0<t<1

ϕ(t)(1+ t−p) � β2
c � 2 log2 withϕ(t) = 1

2

(
(1+ t) log(1+ t) + (1− t) log(1− t)

)
.

Moreover it can be proven that for Gaussian couplingsβ2
c → 2 log2 asp → ∞. This could also have been expect

since
√

2 log2 is the critical temperature in the Random Energy Model [7,9], where the Hamiltonian is the s
2N independent Gaussian variables.

It is easy to see that indeed the limit (in probability)

lim
N→∞fN = f a

holds in the entire high temperature regime, that is for allβ < βc (basically because the function exp(β·) becomes
“less convex” for smallβ). This can be considered a Law of Large Numbers for the free energy in the
temperature regime.

In this article we will treat the fluctuations in the sense of a Central Limit Theorem from this Law of L
Numbers. We are inspired by the following result by Bovier et al. [4].

Theorem 1.1 (cf. [4, Theorem 1.2]). Fix p � 3 and assume that the random variablesJ�ı are i.i.d. andN (0,1)-
distributed. Then there is a(second) critical temperatureβ̄c(p) such that for allβ < β̄c(p) the following Central
Limit Theorem holds:

N
p−2

2 log
ZN

EJ ZN

D−→N→∞ N (0, β4p!/2).

The related question forp = 2 was answered by Aizenman et al. [1] using combinatorial techniques a
Comets and Neveu [6] via methods from stochastic calculus (which are available for Gaussian couplingsJ�ı only).
Forp = 2 an additional centering is necessary, sinceEJ log ZN

EJ ZN
does not converge to zero in the CLT scaling

We have been challenged by Theorem 1.1 due to the following reasons. First of all the requirement
couplings are i.i.d. Gaussians seems to be unnecessarily restrictive for a Central Limit Theorem to hold. Usu
would expect the validity of a Central Limit Theorem to depend on some moment assumptions of the und
variables, but not on the fact that they are themselves some functions of Gaussian variables. Moreover
of Theorem 1.1 seems extraordinarily long (approximately 25 pages) and we were expecting that explo
symmetry of the couplings could possibly shorten this proof. Indeed we are presenting an elementary pro
following result.

Theorem 1.2. Assume that the random variablesJ�ı are i.i.d. and satisfy the conditions stated above. Then the
a temperatureβ̃ = β̃(p) � βc depending onp such that for allβ < β̃ the following CLT holds:

N
p−2

2 log
ZN

EJ ZN

D−→N→∞ N
(

0,
1

4
β4p!(EJ (J 4

�ı ) − 1
))

.

Moreover we havẽβ(p) → √
log 2 for p → ∞.
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Remark 1.3. Recently Ben Arous et al. [2] obtained Laws of Large Numbers and CLTs for a version of the Ra
Energy Model with arbitrary (independent) random variables for the energy. Their results together with T
1.1 suggest that Theorem 1.2 should be valid for allβ less than a critical temperatureβc(p) that depends on the ta
behavior of the couplingsJ�ı and in the case of Gaussian couplings converges to

√
2 log2 asp tends to infinity. At

the present stage we do not have a proof for a statement of that kind. However, Theorem 1.2 shows the un
of a CLT for the free energy for temperatures belowβ̃(p).

From Theorem 1.2 we readily deduce the corresponding Weak Law of Large Numbers (which has on
established for Gaussian interactions) and hence a bound on the critical temperature that is independe
specific distribution of the interactions.

Corollary 1.4. Under the assumptions of Theorem1.2 the free energyfN satisfies a Weak Law of Large Numbe
for all β < β̃.

The proof of Theorem 1.2 starts with the useful decomposition of the partition function as in the pa
Aizenman et al. [1] while later on we use the particular structure of thep-spin models (p � 3) that simplifies
computations.

2. Proof

We start with the simple identity ex = cosh(x) · (1 + tanh(x)). Using the odd symmetry of tanh and the ev
symmetry of cosh we obtainZN = �ZN · ẐN where

�ZN =
∏

�ı∈(N
p)

cosh

(
β

√
p!

Np−1
J�ı

)
and ẐN = Eσ

∏
�ı∈(N

p)

(
1+ σ�ı tanh

(
β

√
p!

Np−1
J�ı

))
.

Therefore

N
p−2

2 log
ZN

EJ ZN

= N
p−2

2 log
�ZN

EJ ZN

+ N
p−2

2 logẐN . (2.1)

Notice, thatEJ ZN = Eσ EJ e−βHN = ∏
�ı EJ cosh(β

√
p!

Np−1 J�ı ) due to the symmetry and independence of theJ�ı ’s.
We first aim at showing

N
p−2

2 log
�ZN

EJ ZN

D−→N→∞ N
(

0,
p!β4

4
(EJ J 4

�ı − 1)

)
. (2.2)

Indeed, since

EJ cosh

(
β

√
p!

Np−1
J�ı

)
= 1+ p!β2

2Np−1
+O(N2(1−p))

we obtain

N
p−2

2 log
�ZN

EJ ZN

= N
p−2

2
∑

�ı∈(N
p)

(
log cosh

(
β

√
p!

Np−1
J�ı

)
− p!β2

2Np−1

)
+O(N1− p

2 )

=
√

p!
Np

∑
N

√
p!β
2

(J 2
�ı − 1) + N

p−2
2

∑
N

R�ı +O(N1− p
2 )
�ı∈(p) �ı∈(p)
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with R�ı = logcosh(β
√

p!
Np−1 J�ı ) − p!β2

2Np−1 J 2
�ı . Now the first term by the CLT for sequences of independent ran

variables converges as proposed in (2.2) and for the remaining term we haveL1-convergence to zero becau

e
x2
2 � cosh(x) � e

x2
2 − x4

12 and therefore 0� R�ı � − p!β4

12N2(p−1) J
4
�ı .

The rest of this paper is devoted to the proof of the following lemma.

Lemma 2.1. For everyβ < β̃ (with β̃ specified in(2.5)below) we have

N
p−2

2 logẐN
D−→N→∞ 0.

Proof. For the proof we fixε > 0 and observe that for largeN by Chebyshev’s inequality

PJ

(
N

p−2
2 | logẐN | � ε

)
� PJ

(|ẐN − 1| � ε

2
N

2−p
2

)
� 4

ε2
Np−2

EJ (ẐN − 1)2.

Now taking a closer look at̂ZN by simply expanding the product we obtain

∏
�ı∈(N

p)

(1+ x�ı ) = 1+
(N

p)∑
k=1

∑
(�ı1,...,�ık)∈((

N
p)
k

)

k∏
j=1

x�ıj

where herex�ı = σ�ı t�ı andt�ı = tanh(β
√

p!/Np−1J�ı ). ObviouslyEσ

∏k
j=1 σ�ıj = 0 whenever we can find an inde

i ∈ {1, . . . ,N} occurring an odd number of times in thek ·p-tuple(�ı1, . . . ,�ık). In contrast letEk denote the set of a
(�ı1, . . . ,�ık) having an even number of occurrences for each index that appears then we clearly have

∏k
j=1 σ�ıj = 1

for thesek · p-tuples and therefore

ẐN = 1+
(N

p)∑
k=1

∑
(�ı1,...,�ık)∈Ek

k∏
j=1

t�ıj = 1+
∑
ξ∈E

τξ

with E := ⋃(N
p)

k=1Ek and the obvious meaning forτξ . Now by the properties of the variables(J�ı )�ı we have
Ej (τξ τζ ) = 0 for ξ �= ζ so thatEJ (ẐN − 1)2 = ∑

ξ∈E EJ τ2
ξ . Using tanh2 x � x2 andEJ J 2

�ı = 1 we get

0� EJ (ẐN − 1)2 =
(N

p)∑
k=1

∑
(�ı1,...,�ık)∈Ek

k∏
j=1

EJ t2
�ıj �

(N
p)∑

k=1

(
β2p!
Np−1

)k

|Ek| = Eσ

∏
�ı∈(N

p)

(
1+ σ�ı

β2p!
Np−1

)
− 1. (2.3)

Therefore the proof is complete once we have established the following lemma.�
Lemma 2.2. For everyβ < β̃ (with β̃ specified in(2.5))we have

lim
N→∞Np−2

(
Eσ

∏
�ı∈(N

p)

(
1+ σ�ı

β2p!
Np−1

)
− 1

)
= 0.

Remark 2.3. Notice that the event{σi = 1,1� i � N} enforces

Eσ

∏
N

(
1+ σ�ı

β2p!
Np−1

)
� 2−N

(
1+ β2p!

Np−1

)(N
p)
�ı∈(p)
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and thereforeβ̃ �
√

log2 is unavoidable at this stage of the proof. Of course, rather than being coinciden

points to the heart of the (mathematical) meaning ofβ. In fact, using 1+ x = ex− x2
2 +O(x3) we obtain∏

�ı∈(N
p)

(
1+ σ�ı

β2p!
Np−1

)
= exp

(
β2p!
Np−1

SN − 1

2

(
N

p

)
β4p!2

N2(p−1)
+ O(N3−2p)

)
(2.4)

whereSN = ∑
�ı∈(N

p)
σ�ı .

The next lemma treats theL1-boundedness of (2.4), i.e. the boundedness of{
Eσ exp

(
β2p!
Np−1

SN

)}
N∈N

,

which is certainly necessary for Lemma 2.2 to hold and substantially depends onβ.

Lemma 2.4. For everyβ < β̃ (with β specified in(2.5)) the sequence{
Eσ exp

(
β2p!
Np−1

SN

)}
N∈N

is bounded.

Proof. It suffices to prove the boundedness of{
Eσ exp

(
β2

Np−1
T

p
N

)}
N∈N

with TN = ∑N
i=1 σi . Now fix 0< β < β̃ and observe that

Eσ exp

(
β2N

(
TN

N

)p)
� 1+

eβ2N∫
1

Pσ

((
TN

N

)p

� logy

β2N

)
dy.

ClearlyPσ ((
TN

N
)p � logy

β2N
) � 2 exp(−N · I( p

√
logy

β2N
)) whereI(z) = ∫ z

0 artanht dt is the ordinary entropy of a singl

spin. Therefore inferring

I( p
√

z ) =
∞∑

n=1

z2n/p

2n(2n − 1)
� z

	p/2
∑
n=1

1

2n(2n − 1)
=: z · β̃2 (2.5)

for 0� z � 1 we obtain

eβ2N∫
1

e
−N ·I( p

√
logy

β2N
)

dy �
eβ2N∫
1

y
− β̃2

β2 dy �
((

β̃

β

)2

− 1

)−1

which proves the lemma.�
Remark 2.5. Observe that limp→∞ β̃(p)2 = I(1) = log2.

With this uniform integrability statement at hand we now prove Lemma 2.2.
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Proof of Lemma 2.2. In view of (2.4) we are left to prove that forβ < β̃

lim
N→∞Np−2(Eσ eMN − e

1
2Vσ MN ) = 0. (2.6)

Here we have setMN := β2p!
Np−1 SN and have used the pairwise independence of the(σ�ı )�ı to obtain the variance

Vσ SN = (
N
p

)
of SN . Recall that we already know the limit in (2.6) to be non-negative due to (2.3). Now ma

use of the inequality

ex � 1+ x + x2

2
+ x3

3! eν · 1{0�x<ν} + ex · 1{x�ν}, x ∈ R, ν > 0,

with x = MN andν = N
2−p

3 Eq. (2.6) will clearly follow if we can establish

lim
N→∞ Eσ

((
MN

ν

)3

· 1{0�MN<ν}
)

= 0 (2.7)

and

lim
N→∞Np−2

Eσ (eMN · 1{MN�ν}) = 0 (2.8)

for β < β̃. But since

Vσ

(
MN

ν

)
= β4(p!)2ν−2N2(1−p)

(
N

p

)
= O(N

2−p
3 )

we haveMN

ν

D−→ 0 which implies (2.7). In order to prove (2.8) we fixβ < β̃ andδ > 0 with β2(1+ δ) < β̃2. Now

applying Hölder’s inequality with conjugate exponentsr andr ′ := 1+ δ to (2.8) we see thatEσ er ′MN is bounded
due to Lemma 2.4. So finally (2.8) is established by the following lemma.�
Lemma 2.6. For eacha > 0 the probability

Pσ (p!SN � N
p
2 +a)

decays exponentially fast whenN tends to infinity. In particular, for fixedr > 1

lim
N→∞Np−2

P
1/r
σ (MN � ν) = 0.

Remark 2.7. Of course, a result like Lemma 2.6 can in principle be derived from Moderate Deviation The
as proved in [8] (see also references therein). However, we felt that at this stage it would be nice to keep th
self-contained, in particular as the proof of Lemma 2.6 is not very long.

Proof. Writing Tn = ∑N
i=1 σi andGp,N = p!SN we see that

TN · Gp,N =
(

N∑
i=1

σi

)
·
( ∑

i1 �=···�=ip

σi1 · · · · · σip

)
=

∑
i �=i1 �=···�=ip

σi · σi1 · · · · · σip + p
∑

i1 �=···�=ip

σi1 · · · · · σip−1

= Gp+1,N + p(N − p + 1)Gp−1,N

or equivalently

G = T · G − (p − 1)(N − p + 2)G (2.9)
p,N N p−1,N p−2,N
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with G1,N = TN and G0,N = 1. While solving this recursion relation may be demanding we just need si
mathematical induction to verify the ansatz

Gp,N = T
p
N +

	p/2
∑
k=1

Qk(N)T
p−2k
N (2.10)

whereQk(N) is a polynomial inN of degreek with coefficients depending onp only. Now settingQ0(N) ≡ 1
and using (2.10) we get

Pσ (p!SN � N
p
2 +a)

�
	p/2
∑
k=0

Pσ

(
Qk(N) · T p−2k

N � 1

1+ 	p
2
 · N p

2 +a

)

� p · max
0�k�	 p

2 

Pσ

(∣∣∣∣ TN√
N

∣∣∣∣p−2k

� cp · Na

)
= p · Pσ

(∣∣∣∣ Tn√
N

∣∣∣∣ � Cp · Na/p

)
whereCp > 0 may change from line to line. The symmetry ofTN provides

Pσ

(|TN | � Cp · N 1
2+ a

p
)
� 2e−N ·I(CpN

a
p − 1

2 )

whereI(z) = ∫ z

0 artanht dt whenever 0� z � 1 andI(z) = +∞ for z > 1. ObservingI(z) � z2

2 we finally obtain

a decay of at least e−CpN2a/p
which finishes the proof. �
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