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Abstract

We investigate the behavior of the free energy of ghgpin interaction variant of the SK-model for high temperatures. We
admit arbitrary distributions of the interactions given that their distribution is symmetric around the origin and some exponential
moment is finite. We show that there is a critical temperafudepending o such that fog < 8 the free energy of the-spin
interaction model has normally distributed fluctuations.

0 2004 Elsevier SAS. All rights reserved.

Résumé
Nous étudions le comportement a haute température de I'énergie libre du verre de spin a interactions multiples.d’ordre
Pour des corrélations aléatoires admettant un moment exponentiel, nous démontrons un théoréme limite central pour I'énergie

libre & haute température.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Spin glasses have been in the centre of interest of probability theory and statistical mechanics in the past decade
The reader interested in the various aspects of spin glasses is referred to the excellent book by Mézard et al. [11]
for the physicists’ point of view or to the lecture notes by Talagrand [14], his very recent book [15] or Bovier's
lecture notes [3] for mathematical aspects of the models.

The following model can be considered as a generalization of the famous Sherrington—Kirkpatrick model (SK-
model for short) of spin glasses with interaction (also called coupling) betweengeagdie (p > 3) of spins.
However, the reason for considering this model has not been the desire for generalization but the hope that its low
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temperature behavior is much simpler than that of the SK-model, so that it should be regarded first. Indeed, such
an analysis is nowadays largely available, see the article by Talagrand [12] or his book [15, Chapter 6].

To define thep-spin interaction model we shall start with a sequetgg <y of independent random variables
0,2, — {—1, 1} with P, (0; = —1) = P, (0; = 1) = 1/2. Introducing the notation e (N) for 7= (i1,....,ip)
with1<i1 <--- <i, <N andN e Nap-spinis given by :=0j, --- - i, Further let the interactior(s];)?e(g)

be a set of i.i.d. random variablds: 2, — R, independent of thés;);n such that
e The distribution of/; is symmetric (with respect to the origin).

e J; has exponential moments, ilé; exp(z J;) < oo for somer > 0.
e The variance off; is 1.

Of course, we havi ; J; = 0 with E, andE; denoting the expectation with respect to the probability distributions
P, (of o) andP; (of J) respectively.
Let finally the HamiltonianHy : £2, x £2; — R be given by

P o
HN = m Z JlO'l.
76(1;)/

Our main object of interest is the behavior of the free energy of the model.
To introduce it let

Zy =E, exp(—ﬂHN):.QJ — R+

be the partition function at inverse temperatgre 0. The free energy of the system is defined as

f '—1IoZ
N=y gZn.

We will be interested in the thermodynamic limit of the quantitieés and fy (the limit asN — oo) which in fact
strongly depends ofi. Naively, we could expecZ y to obey a Law of Large Numbers a&tends to infinity, i.e.
we would expect thaZ y behaves likéE ; Z or rather that

1
4= —logE;Z 1.1
fn—=>f Jim - logE; Zy (1.1)

(in probability asN — o0). It is not difficult to check that the limit on the right-hand side of (1.1) exists and

equalsﬂ—z2 (under the assumptions on the interactions stated above). This/limit (1.1) is called the annealed
free energy. On the other hand one would expect the random vaifightie behave like its average; fv, i.e. we
would expect that

1
9:= |lim E;—logZ 1.2
n—=f Jim E;—logZy (1.2)

(in probability asN — oo) provided the latter limit exists. The limjf? in (1.2) is called the quenched free energy.
But (1.1) and (1.2) are likely to contradict each other because by Jensen’s inequality

1 1
E;—logZy < —IlogE;Zy.
IN 94N N gLy 24N
Indeed, it turns out that a form of (1.2), namely
IVIi—r>nOOPJ(|fN —Esfnl>¢)=0

is true for all temperatures, while the validity gf = f¢ and hence that of (1.1) is a genuine high temperature
phenomenon.
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The critical temperaturg, of the p-spin SK-model depends gnand is defined as the largeggsuch that (1.1)
holds, i.e.

Be :=sup{p > O: Nlim fn = f%in probability}. (1.3)

An example to be kept in mind is that of the couplings); being i.i.d.and standard Gaussians, M0, 1)-
distributed. This is in fact the only example which has been rigorously investigated so farf@ (see the
contributions by Talagrand [12], [15], by Bovier et al. [4] and Kurkova [10]). Note that the definition of the critical
temperature agrees with the result for the critical temperature in the usual SK-model, where one can-sHow
(see e.g.[1,5,6,13]). In contrast to the case 2 one has not yet been able to calculate the critical temperature for
p = 3, not even for i.i.d.standard Gaussian couplings. For the latter case Talagrand [12] gives the bounds

0inf 1(p(t)(l+ 17P) < B2 <2log2 withg(r) = %((1+ nlog(l+ 1)+ (1—1)log(l—1)).
<t <

Moreover it can be proven that for Gaussian couplifigs> 2log 2 asp — oo. This could also have been expected
since./2log?2 is the critical temperature in the Random Energy Model [7,9], where the Hamiltonian is the sum of
2V independent Gaussian variables.

It is easy to see that indeed the limit (in probability)

lim fy=f*
N—o0
holds in the entire high temperature regime, that is fopall 8. (basically because the function €gp) becomes
“less convex” for smallg). This can be considered a Law of Large Numbers for the free energy in the high
temperature regime.

In this article we will treat the fluctuations in the sense of a Central Limit Theorem from this Law of Large
Numbers. We are inspired by the following result by Bovier et al. [4].

Theorem 1.1 (cf. [4, Theorem 1.2])Fix p > 3 and assume that the random variablgsare i.i.d. andN (0, 1)-
distributed. Then there is @second critical temperatureg.(p) such that for allg < B.(p) the following Central
Limit Theorem holds

D N (O, B4p1/2).

p=2 ZN
N7 log E,Zn

The related question fgp = 2 was answered by Aizenman et al. [1] using combinatorial techniques and by
Comets and Neveu [6] via methods from stochastic calculus (which are available for Gaussian coymings
For p = 2 an additional centering is necessary, siigdog = £ 7 does not converge to zero in the CLT scaling.

We have been challenged by Theorem 1.1 due to the f’ollowmg reasons. First of all the requirement that the
couplings are i.i.d. Gaussians seems to be unnecessarily restrictive for a Central Limit Theorem to hold. Usually one
would expect the validity of a Central Limit Theorem to depend on some moment assumptions of the underlying
variables, but not on the fact that they are themselves some functions of Gaussian variables. Moreover the proof
of Theorem 1.1 seems extraordinarily long (approximately 25 pages) and we were expecting that exploiting the
symmetry of the couplings could possibly shorten this proof. Indeed we are presenting an elementary proof of the
following result.

Theorem 1.2. Assume that the random variablésare i.i.d. and satisfy the conditions stated above. Then there is
a temperature8 = B(p) < B. depending orp such that for all8 < g the following CLT holds

p=2 ZN D 14 4
Nz IOg]E 7 _)N—>OON<OvZ,3 p!(EJ(JT)_l) ’

J£LN

Moreover we havé(p) — /1og 2 for p — .
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Remark 1.3. Recently Ben Arous et al. [2] obtained Laws of Large Numbers and CLTs for a version of the Random
Energy Model with arbitrary (independent) random variables for the energy. Their results together with Theorem
1.1 suggest that Theorem 1.2 should be valid fopdéiss than a critical temperatuse(p) that depends on the tail
behavior of the couplingg; and in the case of Gaussian couplings convergegtpg2 asp tends to infinity. At

the present stage we do not have a proof for a statement of that kind. However, Theorem 1.2 shows the universality
of a CLT for the free energy for temperatures be|ep).

From Theorem 1.2 we readily deduce the corresponding Weak Law of Large Numbers (which has only been
established for Gaussian interactions) and hence a bound on the critical temperature that is independent of the
specific distribution of the interactions.

Corollary 1.4. Under the assumptions of Theoran2 the free energyy satisfies a Weak Law of Large Numbers
forall 8 < B.

The proof of Theorem 1.2 starts with the useful decomposition of the partition function as in the paper by
Aizenman et al. [1] while later on we use the particular structure ofgttspin models p > 3) that simplifies
computations.

2. Proof

We start with the simple identi_ty"eicosk(x) - (1+ tanh(x)). Using the odd symmetry of tanh and the even
symmetry of cosh we obtaidiy = Zy - Zy where

Zy = ]‘[ cosk(ﬂF ) and Zy=E, [] <1+o~tanl'(ﬂ\/7 ))

re(})

Therefore

Zy p=2 Z
=N 7 log
E]Z EJZN

Iog +N" Lt IogZN (2.2)

Notice, thatE; Zy = E,E, e #Hv =[]. E, coshp
We first aim at showing

N‘Z’,l J;) due to the symmetry and independence of g

NPT72|09 N 2)N—>oo./\/<0 &(EIJ* 1)) (22)
E]ZN
Indeed, since
E, cosl-(ﬁ,/ >—1+ +(’)(N2(1 2

we obtain

p=2 Zy N / p!p? 1—2
[ I —
Nz log E]ZN < og cosl’(ﬂ ,> NP1 +O(N~2)

7e(})

,/ P! Z —(Ja D4+ N 3 R+ O E)

,e(N) ie())
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with R; =logcoshiB,/ = 1J) — ZNP 1J~ Now the first term by the CLT for sequences of independent random
variables converges as proposed in (2.2) and for the remaining term welLhas@nvergence to zero because
x2 2 x4 4
ez > costix) > ez~ and therefore @ R; > — L 2.
The rest of this paper is devoted to the proof of the following lemma.

Lemma 2.1. For everyg < B (with 8 specified in2.5)below) we have
N2 1097y 2 N soo O.

Proof. For the proof we fixc > 0 and observe that for largé by Chebyshev’s inequality
B, (N7 |logZy| > €) <P (1Zy — 1 > gNZ‘T”) < ;%NP—ZEJ@N -2

Now taking a closer look Ay by simply expanding the product we obtain
(N
]_[(1+x~)—1+2 > l—[x

le( ) (z ..... 1k)€(( ))

where here;; = o7t; and#; =tanh(8/p!/NP—1J;). ObviouslyE, ]_[';zlo;j = 0 whenever we can find an index
i e{l,..., N}occurring an odd number of times in thep-tuple(iy, ..., 7x). In contrast le€; denote the set of all
(71,...,1x) having an even number of occurrences for each index that appears then we cleaﬂ]/;ggmej =1
for thesek - p-tuples and therefore

(@)

7 =14 Y 6 -1+Yw

k=1 (i1,....,1;x)e& j=1 Eef

N
with &£ := Uki)lgk and the obvious meaning fa:. Now by the properties of the variabl€d;); we have

E;(tet;) =0foré # ¢ sothatl; (Zy — 1)% = Yiee ]Ejrgz. Using tanRx < x? andE, J? = 1 we get

(9] k 2
0<E,;Zy-12=) Y ]‘[E, \Z<Np 1) |5k|=1[4:g]_[<1+a~£p”’1> 1 (23

k=1 (i1,..)€& j=1 e(y)

Therefore the proof is complete once we have established the following lemma.
Lemma 2.2. For everyp < B (with 8 specified in(2.5)) we have

lim NP2(E 110,271 1) 2o
dm e 2 (e, T (ver ) -2) -

?e(];/)

Remark 2.3. Notice that the everfo; = 1,1 <i < N} enforces

BN oon(q . B2\
E, ]—[(1+0~N )>2 <1+N 1)

ie(})
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and therefore8 < \/Iog? is unavoidable at this stage of the proof. Of course, rather than being coincidental this
X2 .
points to the heart of the (mathematical) meaning ofh fact, using 4 x = e~ 7+ e obtain
2. 2.1 1/N 4 !2
[T (140020 ) =exo( £ s — (V) Loy + ov2n) (2.4)
2 p N2(I7_1)
?6(1;’)

whereSy = 276(11\7;) o7.

The next lemma treats the!-boundedness of (2.4), i.e. the boundedness of
2p
{E exp( Fp! SN> } ,
NeN
which is certainly necessary for Lemma 2.2 to hold and substantially depergis on
Lemma 2.4. For everyg < B (with 8 specified in(2.5)) the sequence
25
{E exp( Fp! SN> }
NeN
is bounded.
Proof. It suffices to prove the boundedness of

2
{IE exp( p T,{,’)}
NeN

with Ty = 3" ; o;. Now fix 0 < 8 < f and observe that

2 (T \” Tv\" _ logy
E"exp<ﬂ N(N) )g“/P"((N) ﬁzzv)dy
1

ClearlyP, (( NP > ';’?13, <2exp—N-Z(JY I/;%\y,)) whereZ(z) = fé artantr dr is the ordinary entropy of a single

spin. Therefore inferring

7 z2n/p Lp/2] 1 . -
(7)) = ZMZ” 1)/z22n(2n 5 =P (2.5)
for 0 < z < 1 we obtain
2N 2N
Eﬁ _NI(,;|091:]) % 2 -1
[T e [y ras((5) 1)
1 1

which proves the lemma. O
Remark 2.5. Observe that lig_, o f(p)2 =Z(1) = log2.

With this uniform integrability statement at hand we now prove Lemma 2.2.
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Proof of Lemma 2.2. In view of (2.4) we are left to prove that fg < 8

Jim NP2(E M — ezVeMny — . (2.6)
—00

Here we have seMy = %SN and have used the pairwise independence of(¢hg to obtain the variance
VoSy = (N) of Sy. Recall that we already know the limit in (2.6) to be non-negative due to (2.3). Now making
use of the inequality

2 3

X X
e"<1+x+?+§e“~1{0<x<,,}+e"-1{x>V}, xeR, v>0,

with x = My andv = N% Eq. (2.6) will clearly follow if we can establish

. My\3
lim E, — '1{0<MN<\1} =0 (2.7)
N—o0 Vv

and
lim NP72E, (e¥V . 1iyy>0) =0 (2.8)
N—o0

for B < B. But since
VU (ﬂ) — ﬂ4(p!)2v72N2(1*17> <N> — O(NZ_T[))
% p

we have 2, 0 which implies (2.7). In order to prove (2.8) we fix<  ands > 0 with 82(1+ 8) < 2. Now
applying Holder’s inequality with conjugate exponentandr’ := 1+ § to (2.8) we see thdE, e M~ is bounded
due to Lemma 2.4. So finally (2.8) is established by the following lemnaa.

Lemma 2.6. For eacha > 0 the probability
P (p!Sy > N2+)
decays exponentially fast whahtends to infinity. In particular, for fixed > 1

Jim NP72PY"(My > v) =0.

Remark 2.7. Of course, a result like Lemma 2.6 can in principle be derived from Moderate Deviation Theorems
as proved in [8] (see also references therein). However, we felt that at this stage it would be nice to keep this paper
self-contained, in particular as the proof of Lemma 2.6 is not very long.

Proof. Writing 7, = vazla,- andG, y = p!Sy we see that

N
In-Gpn= (Za,) . < Z iy - ....Jl.p)
i=1

i1FFip
= Z oj - o‘l-l c oo O‘ip + p Z O.i]_ ..... O'ipfl
iFi1FE - Fip i1y
=GptLNnt+t PN —p+DGpan
or equivalently
GpN=Tn -Gpan—(p=DWN =p+2)Gp2an (2.9)



814 H. Knépfel, M. Léwe / Ann. |. H. Poincaré — PR 41 (2005) 807-815

with G1 y = Ty and Go x = 1. While solving this recursion relation may be demanding we just need simple
mathematical induction to verify the ansatz
Lp/2] o
Gpn=ThH+ > QuWN)T{~ (2.10)
k=1
where Q(N) is a polynomial inN of degreek with coefficients depending op only. Now settingQo(N) =1
and using (2.10) we get

P, (p!Sy > N 379

Lp/2]

—2 1 L+a
<D Po Q) T > o N2 )
;, ( YT 1+

p—2k

<p- max P (’T—N >c 'N“>
S o<ty C\WNT TP

T,
:p'Pa( z

whereC, > 0 may change from line to line. The symmetryXf provides

>C .Na/p>
VN7

l1,a a_1
Po(ITy|>Cp- NZT0) <2e MEHENT D)

whereZ(z) = fé artanhr dr whenever X z < 1 andZ(z) = +oo for z > 1. ObservindZ (z) > é we finally obtain
a decay of at least€»V*/” which finishes the proof. o
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