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Abstract

This paper is devoted to the construction and study of an equilibrium Glauber-type dynamics of infinite continuous
systems. This dynamics is a special case of a spatial birth and death process. On the spaceΓ of all locally finite subsets
(configurations) inRd , we fix a Gibbs measureµ corresponding to a general pair potentialφ and activityz > 0. We consider
a Dirichlet form E on L2(Γ,µ) which corresponds to the generatorH of the Glauber dynamics. We prove the existen
of a Markov processM on Γ that is properly associated withE . In the case of a positive potentialφ which satisfiesδ :=∫
Rd (1− e−φ(x))z dx < 1, we also prove that the generatorH has a spectral gap� 1− δ. Furthermore, for any pure Gibbs sta

µ, we derive a Poincaré inequality. The results about the spectral gap and the Poincaré inequality are a generaliza
refinement of a recent result from [Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 91–108].
 2004 Elsevier SAS. All rights reserved.

Résumé

L’article est consacré à la construction et à l’étude d’une dynamique de Glauber pour les systèmes à une infinité de
continus. Cette dynamique est un cas particulier dans la classe des processus de vie et de mort spatiaux. On c
forme de Dirichlet associée au générateur et le processus de Markov associé. Pour un potentiel positifφ tel que� 1 − δ, si
δ:= ∫

Rd (1−e−φ(x))z dx < 1, on montre que le générateur possède un trou spectral supérieur à 1− δ. Ces résultats généralise
ceux récemment obtenus dans [Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 91–108].
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

This paper is devoted to the construction and study of an equilibrium Glauber-type dynamics (GD) of
continuous particle systems. This dynamics is a special case of a spatial birth and death process onR

d . For a system
of particles in a bounded volume, such processes were introduced and studied by C. Preston in [17]. In
case, the total number of particles is finite at any moment of time.

In the recent paper by Bertini et al., [6], the generator of the GD in a finite volume was studied. This ge
corresponds to a special case of birth and death coefficients in Preston’s dynamics. A positive, finite ran
potentialφ and an activityz > 0 were fixed which satisfy the condition of the low activity-high temperature reg
Then, with any finite volumeΛ ⊂ R

d and a boundary conditionη outsideΛ, one may associate a finite volum
Gibbs measureµΛ,η. A non-local Dirichlet formEΛ,η on L2(µΛ,η) was considered which corresponds to
generator of the GD onΛ. It was shown that the generatorHΛ,η of EΛ,η has a spectral gap which is uniform
positive with respect to all finite volumesΛ and boundary conditionsη.

In this paper, we discuss the GD in the infinite volume. The problem of construction of a spatial birth an
process in the infinite volume was initiated in paper [8], where it was solved in a very special case of
neighbor birth and death processes on the real line.

So, we consider the spaceΓ of all locally finite subsets (configurations) inRd , and a grand canonical Gibb
measureµ onΓ which corresponds to a pair potentialφ and activityz > 0. The measureµ is supposed to be eithe
of the Ruelle type or corresponding to a positive potentialφ satisfying the integrability condition. In Section 2, w
shortly recall some facts about Gibbs measures which we use later on.

In Section 3, we consider the following bilinear form onL2(Γ,µ) which is defined on a proper set of cylind
functions:

E(F,G) =
∫
Γ

∑
x∈γ

(
F(γ \ x) − F(γ )

)(
G(γ \ x) − G(γ )

)
µ(dγ ) (1.1)

(here and below, for simplicity of notations we will just writex instead of{x} for anyx ∈ R
d ). We prove that this

form is closable and its closure is a Dirichlet form. By using the general theory of Dirichlet forms (cf. [14
prove that there exists a Hunt processM onΓ properly associated withE . In particular,M is a conservative Marko
process onΓ with cadlagpaths. By construction,M is an equilibrium GD onΓ with the stationary measureµ.
Let us mention that the birth and death coefficients were supposed to be bounded in [8], which is not the
the GD, provided the potentialφ has a negative part.

In the case where the interaction between the particles is absent (i.e.,φ = 0 and, therefore,µ is the Poisson mea
sureπz with intensityz), the Markov process corresponding to the Dirichlet form (1.1) was explicitly constru
and studied by D. Surgailis [22,23].

In Sections 4 and 5, we only consider the case of a positive potentialφ and study the problem of the spect
gap for the generatorH of the Dirichlet formE .

Let us recall that the Poisson measureπz possesses the chaos decomposition property, and hence the
L2(Γ,πz) is unitarily isomorphic to the symmetric Fock space overL2(Rd , z dx), see e.g. [22]. Under this isomo
phism, the operatorH goes over into the number operatorN in the Fock space, see [1, Theorem 5.1]. Eviden
N (and thusH ) has spectral gap 1. Therefore, one may expect that, at least in the case of a “small perturba
the Poisson measure, the operatorH still has a spectral gap.

One way to prove the existence of a spectral gap of a generatorHE of a Dirichlet formE is to derive a coercivity
identity forHE on a classC of “nice functions,” and using it, to show that, for eachF ∈ C, ‖HEF‖2 � G(HEF,F )

with G > 0. If one additionally knows that the operatorHE is essentially selfadjoint onC, the latter estimate implie
thatHE has a spectral gap� G. In the case of a probability measure defined on a Hilbert space, this approac
developed in [10], see also [4, Ch. 6, Sect. 4].

So, having in mind this idea, we first prove in Section 4 that the operatorH is essentially selfadjoint. This i
technically the most difficult part of the paper. Then, in Section 5, we prove a coercivity identity for the operH
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on cylinder functions, and using it and the essential selfadjointness ofH , we show that the set(0,1− δ) does not
belong to the spectrum ofH , provided thatδ := ∫

Rd (1− e−φ(x))z dx < 1. This statement leads us to the Poinc
inequality if we are able to show that zero is a non-degenerate eigenvalue ofH . We prove the latter statement f
anyµ that is an extreme point in the set of all Gibbs measures corresponding toφ andz. In the low activity-high
temperature regime, the latter set consists of exactly one point, which is therefore extreme.

Thus, compared with the result of [6], the progress achieved in the study of the spectral gap is as follow

1. We work in the whole spaceRd , instead of taking finite volumesΛ in R
d and boundary conditionsη;

2. We do not suppose that the potentialφ has a finite range;
3. The essential selfadjointness ofH is proven;
4. For δ < 1, an explicit estimate for the value of the spectral gap ofH is found, and a Poincaré inequality

proven for any pure Gibbs state.

Let us also mention the following relations between the finite volume Poincaré inequality, like in [6], an
result on the infinite volume spectral gap.

Suppose that one knows that, for any finite volumeΛ and any boundary conditionη outsideΛ, the Dirichlet
form EΛ,η of the GD onΛ satisfies the Poincaré inequality with a constantG > 0 which is independent ofΛ
andη. Further suppose that an infinite volume Gibbs measureµ is a limit of a sequence of finite volume Gibb
measures{µΛn,ηn, n ∈ N} in the weak local sense, i.e.,

∫
F dµΛn,ηn → ∫

F dµ for any bounded local functionF
on Γ . Then, one can easily derive from here that also the Dirichlet formE of the GD onR

d corresponding to the
measureµ satisfies the Poincaré inequality with the constantG. In the low activity-high temperature regime, i.e
whenδ < exp(−1), the unique infinite volume Gibbs measureµ corresponding to a positive potential is the limit
finite volume Gibbs measures with empty boundary condition. Therefore, in this case, the result of [6] imp
infinite volume Poincaré inequality with a constantG > 0. However, our result on the spectral gap of the gener
and on the Poincaré inequality for any pure Gibbs stateµ also holds forδ ∈ [exp(−1),1), in which case one doe
not yet know whether the Gibbs measure is unique and, if this is not the case, whether any pure Gibbs
limit of finite volume Gibbs measures.

On the other hand, although our results do not directly imply the Poincaré inequality for finite volume
measures, our proof of the spectral gap can be trivially modified to a proof of the spectral gap for finite
Gibbs measures, again with the same estimate of the spectral gapG � 1 − δ. Furthermore, one can easily sho
that, in the finite volume case, zero is always a non-degenerate eigenvalue, so that the Poincaré inequality
hold.

In a forthcoming paper, we are going to discuss the existence problem for general birth and death proc
configuration spaces and study a scaling limit of these processes.

2. Gibbs measures on configuration spaces

The configuration spaceΓ := ΓRd overR
d , d ∈ N, is defined as the set of all subsets ofR

d which are locally
finite:

Γ := {
γ ⊂ R

d | |γΛ| < ∞ for each compactΛ ⊂ R
d
}
,

where| · | denotes the cardinality of a set andγΛ := γ ∩ Λ. One can identify anyγ ∈ Γ with the positive Radon
measure

∑
x∈γ εx ∈ M(Rd), whereεx is the Dirac measure with mass atx,

∑
x∈∅ εx := zero measure, andM(Rd)

stands for the set of all positive Radon measures on the Borelσ -algebraB(Rd). The spaceΓ can be endowed with
the relative topology as a subset of the spaceM(Rd) with the vague topology, i.e., the weakest topology onΓ

with respect to which all mapsΓ 	 γ 
→ 〈f,γ 〉 := ∫
f (x)γ (dx) = ∑

f (x), f ∈ D, are continuous. Here

Rd x∈γ
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D := C0(R
d) is the space of all continuous real-valued functions onR

d with compact support. We will denote b
B(Γ ) the Borelσ -algebra onΓ .

Now, we proceed to consider Gibbs measures onΓ . A pair potential is a Borel measurable functionφ :Rd →
R ∪ {+∞} such thatφ(−x) = φ(x) ∈ R for all x ∈ R

d \ {0}. A grand canonical Gibbs measureµ (or just
Gibbs measure for short) corresponding to the pair potentialφ and activityz > 0 is usually defined through th
Dobrushin–Lanford–Ruelle equation, see e.g. [20]. However, it is convenient for us to give an equivalent de
through the Georgii–Nguyen–Zessin identity ([16, Theorem 2], see also [12, Theorem 2.2.4]).

For γ ∈ Γ andx ∈ R
d \ γ , we define a relative energy of interaction between a particle located atx and the

configurationγ as follows:

E(x,γ ) :=
{∑

y∈γ φ(x − y), if
∑

y∈γ |φ(x − y)| < ∞,

+∞, otherwise.

A probability measureµ on (Γ,B(Γ )) is called a Gibbs measure if it satisfies∫
Γ

µ(dγ )

∫
Rd

γ (dx)F (γ, x) =
∫
Γ

µ(dγ )

∫
Rd

z dx exp
[−E(x,γ )

]
F(γ ∪ x, x) (2.1)

for any measurable functionF :Γ × R
d → [0,+∞]. (Notice that any fixed setγ ∈ Γ has zero Lebesgue measu

so that the expressionE(x,γ ) on the right hand side of (2.1) is a.s. well-defined.) LetG(z,φ) denote the set of a
Gibbs measures corresponding toz andφ. In particular, ifφ ≡ 0, then (2.1) is the Mecke identity, which holds
and only ifµ is the Poisson measureπz with intensity measurez dx.

Let us now describe some classes of Gibbs measures which appear in classical statistical mechanics o
ous systems. For everyr = (r1, . . . , rd) ∈ Z

d , we define a cube

Qr :=
{
x ∈ R

d : ri − 1

2
� xi < ri + 1

2

}
.

These cubes form a partition ofR
d . For anyγ ∈ Γ , we setγr := γQr , r ∈ Z

d . ForN ∈ N let ΛN be the cube with
side length 2N − 1 centered at the origin inRd , ΛN is then a union of(2N − 1)d unit cubes of the formQr .

ForΛ ⊂ R
d , we denoteΓΛ := {γ ∈ Γ | γ ⊂ Λ}. Now, we recall some standard conditions onφ.

(SS) (Superstability) There existA > 0, B � 0 such that, ifγ ∈ ΓΛN
for someN , then∑

{x,y}⊂γ

φ(x − y) �
∑
r∈Zd

(
A|γr |2 − B|γr |

)
.

Notice that the superstability condition automatically implies that the potentialφ is semi-bounded from below

(LR) (Lower regularity) There exists a decreasing positive functiona :N → R+ such that∑
r∈Zd

a
(‖r‖)< ∞

and for anyΛ′,Λ′′ which are finite unions of cubesQr and disjoint, withγ ′ ∈ ΓΛ′ , γ ′′ ∈ ΓΛ′′ ,∑
x∈γ ′,y∈γ ′′

φ(x − y) � −
∑

r ′,r ′′∈Zd

a
(‖r ′ − r ′′‖)|γ ′

r ′ ||γ ′′
r ′′ |.

Here,‖ · ‖ denotes the maximum norm onRd .
(I) (Integrability)∫

Rd

∣∣1− exp[−φ(x)]∣∣dx < +∞.
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For results related to spectral properties of the generator of the GD, we will need the following condition

(P) (Positivity) φ(x) � 0 for all x ∈ R
d .

A probability measureµ on (Γ,B(Γ )) is called tempered ifµ is supported by

S∞:=
∞⋃

n=1

Sn,

where

Sn :=
{
γ ∈ Γ : ∀N ∈ N

∑
r∈ΛN∩Zd

|γr |2 � n2|ΛN ∩ Z
d |
}
.

By Gt (z,φ) ⊂ G(z,φ) we denote the set of all tempered grand canonical Gibbs measures (Ruelle meas
short). Due to [21] the setGt (z,φ) is non-empty for allz > 0 and any potentialφ satisfying conditions (SS), (LR)
and (I). Furthermore, the setG(z,φ) is non-empty for allz > 0 and any potentialφ satisfying (P) and (I), see [12
Proposition 2.7.15].

Let us now recall the so-called Ruelle bound (cf. [21]).

Proposition 2.1.Suppose that either conditions(I), (SS), (LR) are satisfied andµ ∈ Gt (z,φ), z > 0, or conditions
(P), (I) are satisfied andµ ∈ G(z,φ), z > 0. Then, for anyn ∈ N, there exists a non-negative measurable symme
functionk

(n)
µ on (Rd)n such that, for any measurable symmetric functionf (n) : (Rd)n → [0,∞],∫

Γ

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)µ(dγ ) = 1

n!
∫

(Rd )n

f (n)(x1, . . . , xn)k
(n)
µ (x1, . . . , xn)dx1 . . . dxn, (2.2)

and

∀(x1, . . . , xn) ∈ (Rd)n: k(n)
µ (x1, . . . , xn) � ξn, (2.3)

whereξ > 0 is independent ofn.

The functionsk(n)
µ , n ∈ N, are called correlation functions of the measureµ, while (2.3) is called the Ruell

bound.
Notice that any measureµ ∈ G(z,φ) as in Proposition 2.1 satisfies∫

Γ

〈ϕ,γ 〉nµ(dγ ) < ∞, ϕ ∈D, ϕ � 0, n ∈ N, (2.4)

that is,µ has all local moments finite.

3. The Dirichlet form E and associated Markov process

We introduce a setFCb(D,Γ ) of all functions onΓ of the form

F(γ ) = gF

(〈ϕ1, γ 〉, . . . , 〈ϕN,γ 〉), (3.1)

whereN ∈ N, ϕ1, . . . , ϕN ∈ D, andgF ∈ Cb(R
N). Here,Cb(R

N) denotes the set of all continuous bounded fu
tions onR

N . For anyγ ∈ Γ , we considerTγ := L2(Rd, γ ) as a “tangent” space toΓ at the pointγ , and for any
F ∈FC (D,Γ ) we define the “gradient” ofF atγ as the element ofT given by
b γ
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D−F(γ, x) := D−
x F (γ ) := F(γ \ x) − F(γ ), x ∈ R

d .

(Evidently,D−F(γ ) indeed belongs toTγ .)
Let µ be a Gibbs measure as in Proposition 2.1. We will preserve the notationFCb(D,Γ ) for the set of all

µ-classes of functions fromFCb(D,Γ ). The setFCb(D,Γ ) is dense inL2(Γ,µ). We now define

E(F,G) :=
∫
Γ

(
D−F(γ ),D−G(γ )

)
Tγ

µ(dγ )

=
∫
Γ

µ(dγ )

∫
Rd

γ (dx)D−
x F (γ )D−

x G(γ ), F,G ∈ FCb(D,Γ ). (3.2)

Notice that, for anyF ∈ FCb(D,Γ ), there existsf ∈ D such that|D−
x F (γ )| � f (x) for all γ ∈ Γ andx ∈ γ .

Hence, by (2.4), the right hand side of (3.2) is well defined. By (2.1), we also get, forF,G ∈FCb(D,Γ ),

E(F,G) =
∫
Γ

µ(dγ )

∫
Rd

z dx exp
[−E(x,γ )

]
D+

x F (γ )D+
x G(γ ), (3.3)

whereD+
x F (γ ) := F(γ ∪ x) − F(γ ).

Lemma 3.1.We have:E(F,G) = 0 for all F,G ∈FCb(D,Γ ) such thatF = 0 µ-a.e.

Proof. Let F ∈FCb(D,Γ ), F = 0 µ-a.e. DenoteB(r) := {x ∈ R
d : |x| < r}. Then, by (2.1),

0=
∫
Γ

µ(dγ )

∫
B(r)

γ (dx)
∣∣F(γ )

∣∣= ∫
Γ

µ(dγ )

∫
B(r)

z dx exp
[−E(x,γ )

]∣∣F(γ ∪ x)
∣∣.

Hence,F(γ ∪ x) = 0 for µ(dγ )z dx exp[−E(x,γ )]-a.e.(γ, x) ∈ Γ × R
d . Therefore, by (3.3), the lemma fo

lows. �
Thus,(E,FCb(D,Γ )) is a well-defined bilinear form onL2(Γ,µ).

Proposition 3.1.We have:

E(F,G) =
∫
Γ

HF(γ )G(γ )µ(dγ ), F,G ∈FCb(D,Γ ), (3.4)

where

HF(γ ) = −
∫
Rd

z dx exp
[−E(x,γ )

]
D+

x F (γ ) −
∫
Rd

γ (dx)D−
x F (γ ) (3.5)

andHF ∈ L2(Γ,µ). The bilinear form(E,FCb(D,Γ )) is closable onL2(Γ,µ) and its closure will be denoted b
(E,D(E)). The operator(H,FCb(D,Γ )) in L2(Γ,µ) has Friedrichs’ extension, which we denote by(H,D(H)).

Proof. Eqs. (3.4), (3.5) easily follow from (2.1) and (3.2). Let us show thatHF ∈ L2(Γ,µ). By (2.4), the inclusion∫
Rd γ (dx)D−

x F (γ ) ∈ L2(Γ,µ) is trivial. Next, we can find a compactΛ ⊂ R
d andC1 > 0 such that|D+

x F (γ )| �
C χ (x) for all γ ∈ Γ andx ∈ R

d . Here,χ denotes the indicator ofΛ. Hence, by (2.1) and (2.2),
1 Λ Λ
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∫
Γ

(∫
Rd

z dx exp
[−E(x,γ )

]
D+

x F (γ )

)2

µ(dγ )

� C2
1

∫
Γ

µ(dγ )

∫
Λ

zdx

∫
Λ

zdy exp
[−E(x,γ ) − E(y,γ ) − φ(x − y)

]
exp

[
φ(x − y)

]
= 2C2

1

∫
Γ

∑
{x,y}∈γΛ

exp
[
φ(x − y)

]
µ(dγ ) = C2

1

∫
Λ2

exp
[
φ(x − y)

]
k(2)
µ (x, y) dx dy < ∞, (3.6)

sincek
(2)
µ (x, y) � C2 exp[−φ(x − y)] for all x, y ∈ R

d , C2 > 0, cf. [2, Eq. (4.29)]. Therefore,H is theL2(Γ,µ)-
generator of the bilinear formE . The rest of the proposition now follows from e.g. [18, Theorem X.23].�

For the notion of a “Dirichlet form”, appearing in the following lemma, we refer to e.g. [14, Chapter I, Secti

Lemma 3.2.(E,D(E)) is a Dirichlet form onL2(Γ,µ).

Proof. On D(E) consider the norm‖F‖D(E) := (‖F‖2
L2(µ)

+ E(F )
)1/2, F ∈ D(E). Here, we denotedE(F ) :=

E(F,F ). For anyF,G ∈ FCb(D,Γ ), we define

S(F,G)(x, γ ) := D−
x F (γ )D−

x G(γ ), x ∈ R
d, γ ∈ Γ.

Using the Cauchy–Schwarz inequality, we conclude thatS extends to a bilinear continuous map from(D(E),

‖ · ‖D(E)) × (D(E),‖ · ‖D(E)) into L1(Rd × Γ, µ̃), whereµ̃(dx, dγ ) := γ (dx)µ(dγ ). Let F ∈ D(E) and consider
any sequenceFn ∈ FCb(D,Γ ), n ∈ N, such thatFn → F in (D(E),‖ · ‖D(E)) asn → ∞. Then,Fn(γ ) → F(γ )

asn → ∞ for µ-a.e.γ ∈ Γ (if necessary, take a subsequence of(Fn)n∈N with this property). Furthermore, for an
r > 0, we have, analogously to (3.6):∫

B(r)×Γ

∣∣Fn(γ \ x) − F(γ \ x)
∣∣µ̃(dx, dγ )

=
∫
Γ

µ(dγ )

∫
B(r)

z dx exp
[−E(x,γ )

]∣∣Fn(γ ) − F(γ )
∣∣

�
(∫

Γ

∣∣Fn(γ ) − F(γ )
∣∣2µ(dγ )

)1/2(∫
Γ

( ∫
B(r)

z dx exp
[−E(x,γ )

])2

µ(dγ )

)1/2

→ 0 (3.7)

asn → ∞. Therefore,Fn(γ \ x) → F(γ \ x) for µ̃-a.e.(x, γ ) ∈ R
d × Γ . Thus,D−

x Fn(γ ) → D−
x F (γ ) asn → ∞

for µ̃-a.e.(x, γ ) ∈ R
d × Γ , which yields:

S(F,G)(x, γ ) = D−
x F (γ )D−

x G(γ ), µ̃-a.e.(x, γ ) ∈ R
d × Γ, F,G ∈ D(E). (3.8)

Hence,

E(F,G) =
∫

Rd×Γ

D−
x F (γ )D−

x G(γ )µ̃(dx, dγ ), F,G ∈ D(E). (3.9)

DefineR 	 x 
→ g(x) := (0∨x)∧1. We again fix anyF ∈ D(E) and let(Fn)n∈N be a sequence of functions fro
FCb(D,Γ ) such thatFn → F in (D(E),‖·‖D(E)). Consider the sequence(g(Fn))n∈N. We evidently have:g(Fn) ∈
FC (D,Γ ) for eachn ∈ N andg(F ) → g(F ) asn → ∞ in L2(Γ,µ). Next, by the above argument, we hav
b n
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D−
x g(Fn(γ )) → D−

x g(F (γ )) asn → ∞ for µ̃-a.e.(x, γ ). Furthermore, the sequence(D−
x g(Fn(γ )))n∈N is µ̃-

uniformly square-integrable, since so is the sequence(D−
x Fn(γ ))n∈N. Therefore, the sequence(D−

x g(Fn(γ )))n∈N

converges toD−
x g(F (γ )) in L2(Rd × Γ, µ̃). This yields:g(F ) ∈ D(E).

For anyx, y ∈ R, we evidently have|g(x) − g(y)| � |x − y|. By (3.9), we then finally have:E(g(F )) � E(F ),
which means that(E,D(E)) is a Dirichlet form. �

We will now need the bigger spacëΓ consisting of allZ+-valued Radon measures onR
d (which is Polish, see

e.g. [9]). SinceΓ ⊂ Γ̈ andB(Γ̈ )∩Γ = B(Γ ), we can considerµ as a measure on(Γ̈ ,B(Γ̈ )) and correspondingly
(E,D(E)) as a Dirichlet form onL2(Γ̈ ,µ).

For the notion of a “quasi-regular Dirichlet form”, appearing in the following lemma, we refer to [14, Chapt
Section 3].

Proposition 3.2.(E,D(E)) is a quasi-regular Dirichlet form onL2(Γ̈ ,µ).

Proof. By [15, Proposition 4.1], it suffices to show that there exists a bounded, complete metricρ on Γ̈ generating
the vague topology such that, for allγ0 ∈ Γ̈ , ρ(·, γ0) ∈ D(E) and

∫
Rd S(ρ(·, γ0))(x, γ )γ (dx) � η(γ ) µ-a.e. for

someη ∈ L1(Γ̈ ,µ) (independent ofγ0). Here,S(F ) := S(F,F ). The proof below is a modification of the proof
[15, Proposition 4.8].

For eachk ∈ N, we define

gk(x) := 2

3

(
1

2
− d(x,B(k)) ∧ 1

2

)
, x ∈ R

d,

whered(x,B(k)) denotes the distance from the pointx to the open ballB(k). Next, we set

φk(x) := 3gk(x), x ∈ R
d, k ∈ N.

Let ζ be a function fromC1
b(R) such that 0� ζ � 1 on[0,∞), ζ(t) = t on [−1/2,1/2], ζ ′ ∈ [0,1] on [0,∞). For

any fixedγ0 ∈ Γ̈ and for anyk,n ∈ N, (the restriction toΓ of) the function

ζ
(
sup
j�n

∣∣〈φkgj , ·〉 − 〈φkgj , γ0〉
∣∣)

belongs toFCb(D,Γ ) (note that〈φkgj , γ0〉 is a constant). Furthermore, taking to notice thatζ ′ ∈ [0,1] on [0,∞),
we get from the mean value theorem

S
(
ζ
(
sup
j�n

∣∣〈φkgj , ·〉 − 〈φkgj , γ0〉
∣∣))(x, γ )

�
(
sup
j�n

∣∣〈φkgj , γ 〉 − 〈φkgj , γ0〉 − φk(x)gj (x)
∣∣− sup

j�n

∣∣〈φkgj , γ 〉 − 〈φkgj , γ0〉
∣∣)2

� sup
j�n

φ2
k (x)g2

j (x) � χB(k+1/2)(x). (3.10)

Set

ck :=
(

1+
∫

B(k+1/2)

k(1)
µ (x) dx

)−1/2

2−k/2.

Using estimate (3.10) and the numbersck , we now easily obtain the statement of the proposition absolutely a
gously to the proof of [15, Lemma 4.11 and Proposition 4.8].�

For the notion of an “E-exceptional set”, appearing in the next proposition, we refer to e.g. [14, Chapt
Section 2].
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Proposition 3.3.The setΓ̈ \ Γ is E-exceptional.

Proof. We modify the proof of [19, Proposition 1 and Corollary 1] according to our situation.
It suffices to prove the result locally, that is, to show that, for every fixeda ∈ N, the set

N := {
γ ∈ Γ̈ : sup

(
γ
({x}): x ∈ [−a, a]d)� 2

}
is E-exceptional. By [19, Lemma 1], we need to prove that there exists a sequenceun ∈ D(E), n ∈ N, such that
eachun is a continuous function on̈Γ , un → χN pointwise asn → ∞, and supn∈N E(un) < ∞.

Let f ∈ C0(R) be such thatχ[0,1] � f � χ[−1/2,3/2). For anyn ∈ N andi = (i1, . . . , id ) ∈ Z
d , define a function

f
(n)
i ∈D by

f
(n)
i (x) :=

d∏
k=1

f (nxk − ik), x ∈ R
d .

Let also

I
(n)
i (x) :=

d∏
k=1

χ[−1/2,3/2)(nxk − ik), x ∈ R
d ,

and note thatf (n)
i � I

(n)
i .

Let ψ ∈ C1
b(R) be such thatχ[2,∞) � ψ � χ[1,∞) and 0� ψ ′ � 2χ(1,∞). SetAn := Z

d ∩ [−na,na]d and define
continuous functions

Γ̈ 	 γ 
→ un(γ ) := ψ
(

sup
i∈An

〈f (n)
i , γ 〉), n ∈ N,

whose restriction toΓ belongs toFCb(D,Γ ). Evidently,un → χN pointwise asn → ∞. We now have:

S(un)(x, γ ) = (
ψ
(

sup
i∈An

〈f (n)
i , γ − εx〉

)− ψ
(

sup
i∈An

〈f (n)
i , γ 〉))2 µ̃-a.e.

and by the mean value theorem, we get, forµ̃-a.e.(x, γ ) ∈ R
d × Γ̈ ,

S(un)(x, γ ) = ψ ′(Tn(γ, x)
)2( sup

i∈An

〈f (n)
i , γ − εx〉 − sup

i∈An

〈f (n)
i , γ 〉)2, (3.11)

whereTn(γ, x) ∈ R is a point between supi∈An
〈f (n)

i , γ − εx〉 and supi∈An
〈f (n)

i , γ 〉. Next, for anyγ ∈ Γ̈ and
x ∈ R

d :∣∣ sup
i∈An

〈f (n)
i , γ − εx〉 − sup

i∈An

〈f (n)
i , γ 〉∣∣� sup

i∈An

∣∣〈f (n)
i , γ − εx〉 − 〈f (n)

i , γ 〉∣∣
= sup

i∈An

f
(n)
i (x) � sup

i∈An

I
(n)
i (x) � χ[−a−1,a+1]d (x). (3.12)

We evidently have, for eachγ ∈ Γ̈ andx ∈ supp(γ ):

sup
i∈An

〈f (n)
i , γ − εx〉 � Tn(γ, x) � sup

i∈An

〈f (n)
i , γ 〉.

Hence,

ψ ′(Tn(γ, x)
)2 � 4χ{supi∈An

〈f (n)
i ,·〉>1}(γ ) � 4χ{supi∈An

〈I (n)
i ,·〉�2}(γ ) � 4

∑
χ{〈I (n)

i ,·〉�2}(γ ), (3.13)

i∈An
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s

ar-
where we used the fact thatI
(n)
i is integer-valued. By (3.11)–(3.13), we have, forµ̃-a.e.(x, γ ) ∈ R

d × Γ̈ :

S(un)(x, γ ) � 4
∑
i∈An

χ{〈I (n)
i ,·〉�2}(γ )χ[−a−1,a+1]d (x).

Therefore, by the Cauchy–Schwarz inequality and (3.9),

E(un) � 4
∑
i∈An

(
µ
({〈I (n)

i , ·〉 � 2
}))1/2

(∫
Γ̈

〈γ,χ[−a−1,a+1]d 〉µ(dγ )

)1/2

. (3.14)

By using [21, Theorem 5.5], we easily conclude that there exists a constantC3 > 0, independent ofi andn, such
that, for alli ∈ An andn ∈ N,

µ
({〈I (n)

i , ·〉 � 2
})

� C3

(∫
Rd

I
(n)
i (x) dx

)2

= C3

(
2

n

)2d

. (3.15)

Since|An| = (2na + 1)d , we get from (2.2), (3.14), and (3.15):

E(un) � 4C
1/2
3 (2na + 1)d

(
2

n

)d( ∫
[−a−1,a+1]d

k(1)
µ (x) dx

)1/2

, n ∈ N.

Therefore, there exists a constantC4 > 0, independent ofn, such thatE(un) � C4 for all n ∈ N. �
We now have the main result of this section.

Theorem 3.1.(1) Suppose that the conditions of Proposition2.1are satisfied. Then, there exists a Hunt proces

M = (
Ω,F, (Ft )t�0, (Θ t )t�0,

(
X(t)

)
t�0, (Pγ )γ∈Γ

)
on Γ (see e.g.[14, p. 92])which is properly associated with(E,D(E)), i.e., for all (µ-versions of) F ∈ L2(Γ,µ)

and all t > 0 the function

Γ 	 γ 
→ ptF (γ ) :=
∫
Ω

F
(
X(t)

)
dPγ (3.16)

is anE-quasi-continuous version ofexp(−tH)F , whereH is the generator of(E,D(E)). M is up toµ-equivalence
unique(cf. [14, Chapter IV, Section 6]). In particular, M is µ-symmetric(i.e.,

∫
GptF dµ = ∫

FptGdµ for all
F,G :Γ → R+, B(Γ )-measurable) and hasµ as an invariant measure.

(2) M from (1) is up to µ-equivalence(cf. [14, Definition 6.3])unique between all Hunt processesM ′ =
(Ω ′,F′, (F′

t )t�0, (Θ
′
t )t�0, (X′(t))t�0, (P′

γ )γ∈Γ ) on Γ having µ as an invariant measure and solving the m
tingale problem for(−H,D(H)), i.e., for allG ∈ D(H)

G̃
(
X′(t)

)− G̃
(
X′(0)

)+
t∫

0

(HG)
(
X′(s)

)
ds, t � 0,

is an (F′
t )-martingale underP′

γ for E-q.e. γ ∈ Γ . (Here, G̃ denotes a quasi-continuous version ofG, cf. [14,
Chapter IV, Proposition 3.3].)

Remark 3.1. In fact, the statement of Theorem 3.1 remains true for any Gibbs measureµ ∈ G(z,φ) whose corre-
lation functions satisfy the Ruelle bound.
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Proof of Theorem 3.1. The first part of the theorem follows from Propositions 3.2, 3.3 and [14, Chapte
Theorem 3.5 and Chapter V, Proposition 2.15]. The second part follows directly from (the proof of) [3,
rem 3.5]. �

In the above theorem,M is canonical, i.e.,Ω is the set of allcadlagfunctionsω : [0,∞) → Γ (i.e., ω is right
continuous on[0,∞) and has left limits on(0,∞)), X(t)(ω) := ω(t), t � 0, ω ∈ Ω , (Ft )t�0 together withF is the
corresponding minimum completed admissible family (cf. [7, Section 4.1]) andΘ t , t � 0, are the correspondin
natural time shifts.

4. Selfadjointness of the generator

In what follows, we will always suppose that the potentialφ is positive.

Theorem 4.1. Suppose that conditions(P), (I) are satisfied andµ ∈ G(z,φ), z > 0. Then, the operato
(H,FCb(D,Γ )) is essentially selfadjoint inL2(Γ,µ). In particular, Friedrichs’ extension of(H,FCb(D,Γ ))

coincides with its closure.

Proof. Let (H̃ ,D(H̃ )) denote the closure of(H,FCb(D,Γ )), which exists since the latter operator is a Hermit
one. We have to show that(H̃ ,D(H̃ )) is selfadjoint. SinceH̃ � 0, by the Nussbaum theorem, it is enough to sh
that there exists a setS ⊂⋂∞

n=1 D(H̃n) which is total inL2(Γ,µ) and eachF ∈ S satisfies:

∞∑
n=0

‖H̃ nF‖L2(µ)

(2n)! tn < ∞

for somet > 0, see e.g. [18, Theorem X.40].
Let us recall some well-known facts about cylinder functions on the configuration space (see e.g. [

details). LetOc(R
d) denote the set of all open, relatively compact sets inR

d . For Λ ∈ Oc(R
d), we have:ΓΛ =⊔∞

n=0 Γ
(n)
Λ , whereΓ

(n)
Λ denotes the set of alln-point subsets ofΛ, n ∈ N, andΓ

(0)
Λ = {∅}. For n ∈ N, we can

naturally identifyΓ
(n)
Λ with Λ̃n/Sn, whereΛ̃n := {(x1, . . . , xn) ∈ Λn: xi �= xj if i �= j} andSn denotes the grou

of permutations of{1, . . . , n} that acts onΛ̃n by permuting the numbers of the coordinates. Furthermore, the
σ -algebra ofB(Γ ) on Γ

(n)
Λ coincides with theσ -algebraBsym(Λ̃n) of all symmetric Borel subsets of̃Λn (again

under a natural isomorphism). Finally, any measurable functionFΛ on ΓΛ may be identified with a measurab
cylinder functionF onΓ by settingΓ 	 γ 
→ F(γ ) := FΛ(γΛ). �
Lemma 4.1.Suppose that the conditions of Theorem4.1are satisfied. LetΛ ∈ Oc(R

d) and letF be a measurable
bounded functionF onΓΛ such thatF � Γ

(n)
Λ ≡ 0 for all n � N , N ∈ N. Then,F ∈ D(H̃ ) and the action ofH̃ on

F is given by the right hand side of(3.5).

Proof. We take arbitrary, open, disjoint subsetsO1, . . . ,On of Λ. Consider functionsg1, g2 ∈ Cb(R) such that
g1(1) = 1,g2(0) = 1 andg1(x) = 0 if |x −1| > 1/2,g2(x) = 0 if |x| > 1/2. Approximating the indicator function
χOi

, i = 1, . . . , n, andχΛ\(O1∪···∪On) by functions fromD, we easily conclude that the statement of the lem
holds for the function

F(γ ) = g1
(〈χO1, γ 〉) · · ·g1

(〈χOn, γ 〉)g2
(〈χΛ\(O1∪···∪On), γ 〉)= χ{|γO1 |=1,...,|γOn |=1,|γΛ\(O1∪···∪On)|=0}(γ ).

Hence,F(γ ) may be identified with the indicator functionχSn(O1×···×On)(x1, . . . , xn) onΛ̃n/Sn. Using a monotone
class argument, we get the statement for any indicator function, and then for any measurable bounded
onΓ

(n). �
Λ
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We denote byP the set of all continuous polynomials onΓ , i.e., the set of all finite sums of functions of th
form F(γ ) =∏n

i=1〈γ,ϕi〉, ϕi ∈D, i = 1, . . . , n, n ∈ N, and constants. We preserve the notationP for the set of all
µ-classes of functions fromP . Using (2.3) and e.g. [5], we see thatP is a dense subset inL2(Γ,µ). Furthermore,
any function fromP is cylinder, and we can easily conclude from Lemma 4.1 that its statement remains t
any functionF ∈P .

We will now show thatP ⊂⋂∞
n=1 D(H̃n). We first make some informal calculations. So, we define:

H1F(γ ) :=
∫

z dx exp
[−E(x,γ )

]
D+

x F (γ ),

H2F(γ ) :=
∫

γ (dx)D−
x F (γ ),

so thatH = −H1 − H2. Then,

Hn = (−H1 − H2)
n = (−1)n

∑
I⊂{1,...,n}

H(n)
I , (4.1)

where

H(n)
I := HI,1HI,2 . . .HI,n,

HI,i :=
{

H1, i ∈ I,

H2, i /∈ I,
i = 1, . . . , n. (4.2)

Furthermore, by induction, we conclude:

H(n)
I =

∑
J⊂{1,...,max{i: i∈I }−1}

H(n)
I,J , (4.3)

where

H(n)
I,J F (γ ) = (−1)|I∩J |

(∫
mI,n(dxn)UI,J,n,xn

∫
mI,n−1(dxn−1)UI,J,n−1,xn−1 . . .

∫
mI,1(dx1)UI,J,1,x1

×
∏
i∈I

exp

[
−

∑
u∈η\{xs : s∈I c,s>i}

φ(xi − u)

] n∏
j=1

GI,J,j (x1, . . . , xn)F (γ )

)∣∣∣∣
η=γ

,

I c := {1, . . . , n} \ I,

mI,i(dxi) :=
{

z dxi, i ∈ I,

γ (dxi), i ∈ I c,

UI,J,i,xi
:=

D+
xi

, i ∈ I, i ∈ J c,

D−
xi

, i ∈ I c, i ∈ J c,

id, i ∈ J,

G
(n)
I,J,j (x1, . . . , xn) :=


exp

[−∑
r∈I,r<j φ(xj − xr)

]
, j ∈ I, j ∈ J c,

1− exp
[−∑

r∈I,r<j φ(xj − xr)
]
, j ∈ J,

1, j ∈ I c, j ∈ J c,

i, j = 1, . . . , n. (4.4)

For example, letn = 9, I = {3,4,5,8}, J = {6,7}. Then,

H(n)
I,J F (γ ) =

(∫
γ (dx9)D

−
x9

∫
z dx8D

+
x8

∫
γ (dx7)

∫
γ (dx6)

∫
z dx5D

+
x5

×
∫

z dx4D
+
x4

∫
z dx3D

+
x3

∫
γ (dx2)D

−
x2

∫
γ (dx1)D

−
x1

exp

[
−

∑
φ(x8 − u)

]

u∈η\{x9}
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(4.1)–
e

× exp

[
−

∑
u∈η\{x6,x7,x9}

(
φ(x5 − u) + φ(x4 − u) + φ(x3 − u)

)]
× exp

[−φ(x8 − x5) − φ(x8 − x4) − φ(x8 − x3)
]

× (
1− exp

[−φ(x7 − x5) − φ(x7 − x4) − φ(x7 − x3)
])

× (
1− exp

[−φ(x6 − x5) − φ(x6 − x4) − φ(x6 − x3)
])

× exp
[−φ(x5 − x4) − φ(x5 − x3) − φ(x4 − x3)

]
F(γ )

)∣∣∣∣
η=γ

.

Lemma 4.2.Suppose that the conditions of Theorem4.1 are satisfied. We then haveP ⊂ ⋂∞
n=1 D(H̃n), and for

anyF ∈P , H̃ nF is given by formulas(4.1)–(4.4) (in whichH is replaced byH̃ ).

Proof. This statement follows from (2.3), Lemma 4.1 and formulas (4.1)–(4.4). Indeed, replace in formulas
(4.4) φ(x) by the functionφn(x) := φ(x)χB(n)(x), n ∈ N, and takeF ∈ P . Then, the obtained functions becom
cylindrical. Approximate these by functions as in Lemma 4.1 and letn → ∞. The rest then easily follows.�
Lemma 4.3.Suppose that the conditions of Theorem4.1are satisfied. Then, for anyF(γ ) =∏l

i=1〈γ,ϕi〉, ϕi ∈ D,
i = 1, . . . , l, l ∈ N, there existst > 0 such that

∑∞
n=0 ‖H̃ nF‖L2(µ)t

n/(2n)! < ∞.

Proof. We first derive some estimates.
Let f1, . . . , fk be bounded integrable functions onR

d . ConsiderG(γ ) :=∏k
i=1〈γ,fi〉. From (2.2), we conclude

that ∫
Γ

G(γ )µ(dγ ) =
k∑

i=1

∑
(A1,...,Ai ): ∅�=Aj ⊂{1,...,k},j=1,...,i

Aj ’s disjoint,A1∪···∪Ai={1,...,k}

×
∫

(Rd )i

g(k)(x1, . . . , x1︸ ︷︷ ︸
|A1| times

, x2, . . . , x2︸ ︷︷ ︸
|A2| times

, . . . , xi, . . . , xi︸ ︷︷ ︸
|Ai | times

)k(i)
µ (x1, . . . , xi)dx1 . . . dxi,

whereg(k)(x1, . . . , xk) = (1/k!)∑σ∈Sk
f1(xσ(1)) . . . fk(xσ(k)). By induction, we prove

k∑
i=1

∑
(A1,...,Ai ): ∅�=Aj ⊂{1,...,k},j=1,...,i

Aj ’s disjoint,A1∪···∪Ai={1,...,k}

1� 2k−1k!, k ∈ N.

Therefore, by (2.3),∫
Γ

∣∣G(γ )
∣∣µ(dγ ) � 2k−1 max{1, ξ}kk!

k∏
i=1

max
{‖fi‖L1,‖fi‖L∞

}
. (4.5)

Note that, forµ-a.e.γ ∈ Γ ,

D+
x G(γ ) =

k−1∑
i=0

(
i

k

)∫
γ (dy1) . . . γ (dyi)g

(k)(y1, . . . , yi, x, . . . , x︸ ︷︷ ︸
(k−i) times

),

D−
x G(γ ) =

k−1∑(
i

k

)
(−1)k−i

∫
γ (dy1) . . . γ (dyi)g

(k)(y1, . . . , yi, x, . . . , x︸ ︷︷ ︸ ). (4.6)

i=0 (k−i) times
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We next easily get the following identity:

n∑
k1=0

(
k1

n

) k1∑
k2=0

(
k2

k1

) k2∑
k3=0

(
k3

k2

)
. . .

km−1∑
km=0

(
km

km−1

)
= mn, m,n ∈ N. (4.7)

Recall also the standard estimate

(a1 + · · · + an)
2 � n(a2

1 + · · · + a2
n), a1, . . . , an ∈ R, n ∈ N. (4.8)

Finally, using condition (P), we get, for anyx, y1, . . . , yk ∈ R
d andk ∈ N,

1− exp

[
−

k∑
i=1

φ(x − yi)

]
�

k∑
i=1

(
1− exp

[−φ(x − yi)
])

. (4.9)

Let nowF(γ ) be as in the formulation of the lemma. FixΛ ∈ Oc(R
d) andC5 > 0 such that∣∣f1(x1) . . . fl(xl)

∣∣� C5χΛl (x1, . . . , xl), x1, . . . , xl ∈ R
d . (4.10)

For any setsI, J ⊂ {1, . . . , n} as in (4.3), we define

n1 := |I ∩ J |, n2 := |I c ∩ J |, n3 := |I ∩ J c|, n4 := |I c ∩ J c|.
Notice thatn1 + n2 + n3 + n4 = n. Estimating all the multipliers of the form e−φ(·) by 1, and using (4.5)–(4.10
we get from (4.4)

‖H(n)
I,J F‖2

L2(µ)
� max{1, z}2nC2

5 max

{
1,

∫
Λ

dx

}2(n+l)

max{1, ξ}2(n+l) max

{
1,

∫
Rd

(
1− exp

[−φ(x)
])}2n

× 22(l+n2)−1(2(l + n2)
)!(n1 + n3)!(n1 + n3)

n2(n3 + n4)
l+n2, (4.11)

where the factor 22(l+n2)−1(2(l + n2))! is connected with estimate (4.5) and the fact that we get monomia
order� l + n2, the factor(n1 + n3)! is connected with the application of (4.9) to the terms connected with
setI , the factor(n1 + n3)

n2 is connected with the application of (4.9) to the terms connected withI c ∩ J , and
the factor(n3 + n4)

l+n2 is connected with the application of (4.6), (4.7) to a monomial of order� (l + n2). Using
the estimate(2k)! � 4k(k!)2, k ∈ N, we conclude from (4.11) that there exists a constantC6 > 0, independent o
n, I, J and thus depending only onF , such that

‖H(n)
I,J F‖2

L2(µ)
� Cn

6(n!)2n2n.

Hence, by (4.1)

‖H̃ nf ‖L2(µ) � (2C6)
n/2n!nn. (4.12)

Estimate (4.12), together with Stirling’s formula, easily implies the statement of the lemma, and hence the st
of the theorem. �

5. Spectral gap of the generator

We first prove a coercivity identity for the gradientD−. We note that, for anyγ ∈ Γ andF ∈ FCb(D,Γ ),
(D−)2F(γ ) is the element of the Hilbert spaceT ⊗2

γ = L2((Rd)2, γ ⊗2) given by(D−)2F(γ, x, y) = D−
x D−

y F (γ ),

x, y ∈ R
d . Furthermore, for anyx, y ∈ γ :

D−
x D−

y F (γ ) =
{

F(γ \ {x, y}) − F(γ \ x) − F(γ \ y) + F(γ ), x �= y,
− (5.1)
F(γ ) − F(γ \ x) = −Dx F(γ ), x = y.



Y. Kondratiev, E. Lytvynov / Ann. I. H. Poincaré – PR 41 (2005) 685–702 699
Through the natural identification of the elements ofT ⊗2
γ with linear continuous operators inTγ , we get:

Tr(D−)2F(γ )
(
(D−)2F(γ )

)∗ =
∑

x,y∈γ

(
D−

x D−
y F (γ )

)2
. (5.2)

Here, Tr denotes the trace of an operator and((D−)2F(γ ))∗ is the adjoint operator of(D−)2F(γ ).

Lemma 5.1 (Coercivity identity). Suppose that the conditions of Theorem4.1 are satisfied. Then, for anyF ∈
FCb(D,Γ ), we have∫

Γ

(
HF(γ )

)2
µ(dγ ) =

∫
Γ

[
Tr(D−)2F(γ )

(
(D−)2F(γ )

)∗ +
∑

x,y∈γ, x �=y

(
exp

[
φ(x − y)

]− 1
)

× (
F
(
γ \ {x, y})− F(γ \ x)

)(
F
(
γ \ {x, y})− F(γ \ y)

)]
µ(dγ ).

Proof. Analogously to (3.6), we get from (2.1):∫
Γ

µ(dγ )

(∫
Rd

z dx exp
[−E(x,γ )

]
D+

x F (γ )

)2

=
∫
Γ

µ(dγ )
∑

x,y∈γ, x �=y

exp
[
φ(x − y)

](
F
(
γ \ {x, y})− F(γ \ x)

)(
F
(
γ \ {x, y})− F(γ \ y)

)
. (5.3)

Next,

2
∫
Γ

µ(dγ )

∫
Rd

z dx exp
[−E(x,γ )

]
D+

x F (γ )

∫
Rd

γ (dy)D−
y F (γ )

= 2
∫
Γ

µ(dγ )

∫
Rd

γ (dx)
(
F(γ ) − F(γ \ x)

)∫
Rd

(γ \ x)(dy)
(
F
(
γ \ {x, y})− F(γ \ x)

)
=
∫
Γ

µ(dγ )
∑

x,y∈γ,x �=y

[(
F(γ ) − F(γ \ x)

)(
F
(
γ \ {x, y})− F(γ \ x)

)
+ (

F(γ ) − F(γ \ y)
)(

F
(
γ \ {x, y})− F(γ \ y)

)]
. (5.4)

Finally,∫
Γ

µ(dγ )

(∫
Rd

γ (dx)D−
x F (γ )

)2

=
∫
Γ

µ(dγ )
∑
x∈γ

(
F(γ \ x) − F(γ )

)2
+
∫
Γ

µ(dγ )
∑

x,y∈γ,x �=y

(
F(γ \ x) − F(γ )

)(
F(γ \ y) − F(γ )

)
. (5.5)

By (3.5) and (5.1)–(5.5), the lemma follows.�
Theorem 5.1.Suppose that(P)holds,z > 0, and

δ :=
∫
Rd

(
1− exp

[−φ(x)
])

z dx < 1. (5.6)

Letµ ∈ G(z,φ). Then, the set(0,1− δ) does not belong to the spectrum ofH .
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x

Proof. We fix anyF ∈ FCb(D,Γ ). By (5.1) and (5.2), we have:

Tr(D−)2F(γ )
(
(D−)2F(γ )

)∗ �
∑
x∈γ

(
D−

x D−
x F (γ )

)2 =
∑
x∈γ

(
D−

x F (γ )
)2

, γ ∈ Γ. (5.7)

Using (P), (2.1), (5.6), and the Cauchy–Schwarz inequality, we next have∣∣∣∣ ∫
Γ

∑
x,y∈γ, x �=y

(
exp

[
φ(x − y)

]− 1
)(

F
(
γ \ {x, y})− F(γ \ x)

)(
F
(
γ \ {x, y})− F(γ \ y)

)
µ(dγ )

∣∣∣∣
�
∫
Γ

∑
x,y∈γ, x �=y

(
exp

[
φ(x − y)

]− 1
)(

F
(
γ \ {x, y})− F(γ \ y)

)2
µ(dγ )

=
∫
Γ

µ(dγ )

∫
Rd

γ (dy)

∫
Rd

(γ \ y)(dx)
(
exp

[
φ(x − y)

]− 1
)(

F
(
γ \ {x, y})− F(γ \ y)

)2
=
∫
Γ

µ(dγ )

∫
Rd

z dy exp
[−E(y,γ )

] ∫
Rd

γ (dx)
(
exp

[
φ(x − y)

]− 1
)(

F(γ \ x) − F(γ )
)2

=
∫
Γ

µ(dγ )

∫
Rd

z dy

∫
Rd

γ (dx)exp
[−E(y,γ \ x)

](
1− exp

[−φ(x − y)
])(

F(γ \ x) − F(γ )
)2

�
∫
Γ

µ(dγ )

∫
Rd

z dy

∫
Rd

γ (dx)
(
1− exp

[−φ(x − y)
])(

F(γ \ x) − F(γ )
)2

=
∫
Rd

(
1− exp

[−φ(y)
])

z dy ×
∫
Γ

µ(dγ )

∫
Rd

γ (dx)
(
D−

x F (γ )
)2 = δ(HF,F )L2(µ). (5.8)

Using Lemma 5.1, (5.7), and (5.8), we get, for eachF ∈FCb(D,Γ ):

(HF,HF)L2(µ) � (1− δ)(HF,F )L2(µ). (5.9)

From Theorem 4.1, we then conclude that (5.9) holds true for eachF ∈ D(H). Therefore, denoting by(Eλ)λ�0
the resolution of the identity of the operatorH , we have:∫

[0,∞)

λ
(
λ − (1− δ)

)
d(EλF,F )L2(µ) � 0, F ∈ D(H).

From here the statement of the theorem trivially follows.�
Corollary 5.1 (Poincaré inequality). Suppose(P) and (5.6) hold and supposeµ is an extreme point of the conve
setG(z,φ). Then,

E(F,F ) � (1− δ)

∫
Γ

(
F(γ ) − 〈F 〉µ

)2
µ(dγ ), F ∈ D(E), (5.10)

where〈F 〉µ := ∫
Γ

F (γ )µ(dγ ).

Remark 5.1. The Poincaré inequality (5.10) means that, in addition to the fact that the set(0,1 − δ) does not
belong to the spectrum ofH , we also have that the kernel ofH consists only of the constants.
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Proof of Corollary 5.1. Sinceµ is extreme inG(z,φ), analogously to proof of the part (i)⇒ (ii) of [2, Theo-
rem 6.2], we conclude:{

ν ∈ G(z,φ) | ν = ρ · µ for some bounded, B(Γ )-measurable functionρ :Γ → R+
}= {µ}. (5.11)

Let G ∈ D(E) be such thatE(G) = 0. It suffices to prove thatG = const. By the proof of [2, Lemma 6.1], withou
loss of generality, we can suppose that the functionG is bounded.

Now, we modify the proof of the part (ii)⇒ (iii) of [2, Theorem 6.2]. Since 1∈ FCb(D,Γ ) andD−1 = 0,
replacingG by G − ess infG, we may suppose thatG � 0, and, in addition, that

∫
Gdµ = 1. Defineν := G · µ.

SinceE(G) = 0, by (3.9), we have thatG(γ \x)−G(γ ) = 0 µ̃-a.e. Sinceµ ∈ G(z,φ), we have, for any measurab
functionF : Γ × R

d → [0,+∞],∫
Γ

ν(dγ )

∫
Rd

γ (dx)F (γ, x) =
∫
Γ

µ(dγ )

∫
Rd

γ (dx)G(γ )F (γ, x) =
∫
Γ

µ(dγ )

∫
Rd

γ (dx)G(γ \ x)F (γ, x)

=
∫
Γ

µ(dγ )

∫
Rd

z dx exp
[−E(x,γ )

]
G(γ )F (γ ∪ x, x)

=
∫
Γ

ν(dγ )

∫
Rd

z dx exp
[−E(x,γ )

]
F(γ ∪ x, x).

Hence,ν ∈ G(z,φ) and, by (5.11),G = 1 µ-a.e. �
Let us suppose that the potentialφ satisfies the following condition:

(LAHT) (Low activity-high temperature regime)

δ =
∫
Rd

(
1− exp

[−φ(x)
])

z dx < exp(−1).

Under (P) and (LAHT), there exists a unique Gibbs measureµ ∈ G(z,φ), see [20] and [13, Theorem 6.2] (noti
that (2.1) and (P) imply that the correlation functions of anyµ ∈ G(z,φ) satisfy the Ruelle bound (2.3) withξ = 1,
and hence we can take the constantCR in [13, Theorem 6.2] to be equal toe). The following statement now
immediately follows from Corollary 5.1.

Corollary 5.2 (Poincaré inequality in the LAHT regime). Assume that(P) and (LAHT) are satisfied and conside
the unique Gibbs measureµ ∈ G(z,φ). Then,(5.10)holds.

Remark added during the revision of the paper. Prof. L. Wu has informed us that, independently of our res
he has proved an estimate for the spectral gap of the GD in a finite volume for positive potentials and in t
core case [24]. In particular, his lower bound for the spectral gap for positive potentials coincide with our e
of the spectral gap of the GD in infinite volume.
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