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Abstract

This paper is devoted to the construction and study of an equilibrium Glauber-type dynamics of infinite continuous particle
systems. This dynamics is a special case of a spatial birth and death process. On th€ spadelocally finite subsets
(configurations) ifk9, we fix a Gibbs measure corresponding to a general pair potentiaind activityz > 0. We consider
a Dirichlet form & on L2(I", ) which corresponds to the generatéir of the Glauber dynamics. We prove the existence
of a Markov proces# on I' that is properly associated with. In the case of a positive potenti@l which satisfiess :=
Jra(1— e ?W)zdx < 1, we also prove that the generaféas a spectral gap 1 — 8. Furthermore, for any pure Gibbs state
u, we derive a Poincaré inequality. The results about the spectral gap and the Poincaré inequality are a generalization and a
refinement of a recent result from [Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 91-108].
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Résumé

L'article est consacré a la construction et a I'’étude d’'une dynamique de Glauber pour les systémes a une infinité de particules
continus. Cette dynamique est un cas particulier dans la classe des processus de vie et de mort spatiaux. On considére |
forme de Dirichlet associée au générateur et le processus de Markov associé. Pour un potenti¢l tposijtié > 1 — §, si
8:= fpa(1— e~?™))zdx < 1, on montre que le générateur posséde un trou spectral supérieut. ks résultats généralisent
ceux récemment obtenus dans [Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 91-108].

0 2004 Elsevier SAS. All rights reserved.

MSC:60K35; 60J75; 60J80; 82C21; 82C22

Keywords:Birth and death process; Continuous system; Gibbs measure; Glauber dynamics; Spectral gap

* Corresponding author.
E-mail addresseskondrat@mathematik.uni-bielefeld.de (Y. Kondratiev), e.lytvynov@swansea.ac.uk (E. Lytvynov).

0246-0203/$ — see front mattér 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2004.05.002



686 Y. Kondratiev, E. Lytvynov / Ann. |. H. Poincaré — PR 41 (2005) 685-702

1. Introduction

This paper is devoted to the construction and study of an equilibrium Glauber-type dynamics (GD) of infinite
continuous particle systems. This dynamics is a special case of a spatial birth and death praéesspa system
of particles in a bounded volume, such processes were introduced and studied by C. Preston in [17]. In the latter
case, the total number of particles is finite at any moment of time.

In the recent paper by Bertini et al., [6], the generator of the GD in a finite volume was studied. This generator
corresponds to a special case of birth and death coefficients in Preston’s dynamics. A positive, finite range, pair
potentialy and an activity, > 0 were fixed which satisfy the condition of the low activity-high temperature regime.
Then, with any finite volumet ¢ RY and a boundary condition outside A, one may associate a finite volume
Gibbs measurgu 4 ,. A non-local Dirichlet form&, ;, on LZ(MA,,,) was considered which corresponds to the
generator of the GD or. It was shown that the generatéf, , of £, , has a spectral gap which is uniformly
positive with respect to all finite volume$ and boundary conditions.

In this paper, we discuss the GD in the infinite volume. The problem of construction of a spatial birth and death
process in the infinite volume was initiated in paper [8], where it was solved in a very special case of nearest
neighbor birth and death processes on the real line.

So, we consider the spade of all locally finite subsets (configurations) B, and a grand canonical Gibbs
measurg: on I which corresponds to a pair potentfahnd activityz > 0. The measurg is supposed to be either
of the Ruelle type or corresponding to a positive potentiahtisfying the integrability condition. In Section 2, we
shortly recall some facts about Gibbs measures which we use later on.

In Section 3, we consider the following bilinear form 8A(I", 1) which is defined on a proper set of cylinder
functions:

E(F,G)= / Y (F\0) = F@) (G \x) — Gy))udy) (1.1
r

xey

(here and below, for simplicity of notations we will just writeinstead of{x} for anyx € R?). We prove that this

form is closable and its closure is a Dirichlet form. By using the general theory of Dirichlet forms (cf. [14]), we
prove that there exists a Hunt procéson I" properly associated with. In particularM is a conservative Markov
process on” with cadlagpaths. By constructioriyl is an equilibrium GD on/” with the stationary measuye.

Let us mention that the birth and death coefficients were supposed to be bounded in [8], which is not the case for
the GD, provided the potentigl has a negative part.

In the case where the interaction between the particles is absens & ,and, thereforgy is the Poisson mea-
surer,; with intensityz), the Markov process corresponding to the Dirichlet form (1.1) was explicitly constructed
and studied by D. Surgailis [22,23].

In Sections 4 and 5, we only consider the case of a positive potgntiadl study the problem of the spectral
gap for the generatd# of the Dirichlet form&.

Let us recall that the Poisson measurepossesses the chaos decomposition property, and hence the space
L2(I', ;) is unitarily isomorphic to the symmetric Fock space aké(R?, z dx), see e.g. [22]. Under this isomor-
phism, the operatoH goes over into the number operatgrin the Fock space, see [1, Theorem 5.1]. Evidently,

N (and thusH) has spectral gap 1. Therefore, one may expect that, at least in the case of a “small perturbation” of
the Poisson measure, the operatbstill has a spectral gap.

One way to prove the existence of a spectral gap of a gendtiatorf a Dirichlet formE is to derive a coercivity
identity for Hg on a clas€ of “nice functions,” and using it, to show that, for eakhe C, I|HgF||?2 > G(HEF, F)
with G > 0. If one additionally knows that the operatff; is essentially selfadjoint of, the latter estimate implies
that Hr has a spectral gap G. In the case of a probability measure defined on a Hilbert space, this approach was
developed in [10], see also [4, Ch. 6, Sect. 4].

So, having in mind this idea, we first prove in Section 4 that the opetétr essentially selfadjoint. This is
technically the most difficult part of the paper. Then, in Section 5, we prove a coercivity identity for the ogérator
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on cylinder functions, and using it and the essential selfadjointneds wofe show that the sg¢0, 1 — §) does not
belong to the spectrum af, provided thas := [, (1 — e ?W)zdx < 1. This statement leads us to the Poincaré
inequality if we are able to show that zero is a non-degenerate eigenvallie\Wwé prove the latter statement for
any u that is an extreme point in the set of all Gibbs measures correspondgngndz. In the low activity-high
temperature regime, the latter set consists of exactly one point, which is therefore extreme.

Thus, compared with the result of [6], the progress achieved in the study of the spectral gap is as follows:

. We work in the whole spadg?, instead of taking finite volumed in R? and boundary conditions;

. We do not suppose that the poteniidias a finite range;

. The essential selfadjointnessmfis proven;

. Foré < 1, an explicit estimate for the value of the spectral gagiois found, and a Poincaré inequality is
proven for any pure Gibbs state.

A WNPE

Let us also mention the following relations between the finite volume Poincaré inequality, like in [6], and our
result on the infinite volume spectral gap.

Suppose that one knows that, for any finite volurh@nd any boundary condition outside A, the Dirichlet
form £, , of the GD onA satisfies the Poincaré inequality with a constant 0 which is independent oft
andn. Further suppose that an infinite volume Gibbs meagui® a limit of a sequence of finite volume Gibbs
measures$i 4, ., n € N} in the weak local sense, i.e(,Fdua,.,, — [ F du for any bounded local functiof
on I". Then, one can easily derive from here that also the Dirichlet #mifithe GD onR¢ corresponding to the
measureu satisfies the Poincaré inequality with the const@ntn the low activity-high temperature regime, i.e.,
whens < exp(—1), the unique infinite volume Gibbs measureorresponding to a positive potential is the limit of
finite volume Gibbs measures with empty boundary condition. Therefore, in this case, the result of [6] implies the
infinite volume Poincaré inequality with a constaht- 0. However, our result on the spectral gap of the generator
and on the Poincaré inequality for any pure Gibbs staééso holds fol € [exp(—1), 1), in which case one does
not yet know whether the Gibbs measure is unique and, if this is not the case, whether any pure Gibbs state is a
limit of finite volume Gibbs measures.

On the other hand, although our results do not directly imply the Poincaré inequality for finite volume Gibbs
measures, our proof of the spectral gap can be trivially modified to a proof of the spectral gap for finite volume
Gibbs measures, again with the same estimate of the spectrél gap — §. Furthermore, one can easily show
that, in the finite volume case, zero is always a non-degenerate eigenvalue, so that the Poincaré inequality does als
hold.

In a forthcoming paper, we are going to discuss the existence problem for general birth and death processes on
configuration spaces and study a scaling limit of these processes.

2. Gibbs measures on configuration spaces

The configuration spacg := I'z« overR?, d e N, is defined as the set of all subsetsRsf which are locally
finite:

I:=ly cR?||yal < oo for each compactt c R¢},

where| - | denotes the cardinality of a set apg := y N A. One can identify any € I" with the positive Radon
measurezxey e € M(R?), whereg, is the Dirac measure with massat) ., &, = Zero measure, antt (RY)

stands for the set of all positive Radon measures on the BeatgebraB(R¢). The spacd™ can be endowed with
the relative topology as a subset of the spAd€R?) with the vague topology, i.e., the weakest topology/on
with respect to which all mapg > y — (f,y) := [pa f(X)y(dx) =", f(x), f € D, are continuous. Here,

xey
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D := Co(R?) is the space of all continuous real-valued function®drwith compact support. We will denote by
B(I") the Borelo -algebra onl".

Now, we proceed to consider Gibbs measures o pair potential is a Borel measurable functipnR¢ —
R U {400} such thatp(—x) = ¢(x) € R for all x € R? \ {0}. A grand canonical Gibbs measuge (or just
Gibbs measure for short) corresponding to the pair poteatiahd activityz > 0 is usually defined through the
Dobrushin—-Lanford—Ruelle equation, see e.g. [20]. However, it is convenient for us to give an equivalent definition
through the Georgii—-Nguyen—Zessin identity ([16, Theorem 2], see also [12, Theorem 2.2.4]).

Fory e I' andx e R? \ y, we define a relative energy of interaction between a particle locatedatl the
configurationy as follows:

E(r,y) = { Sy #le =9 1 Socy =)l <00

otherwise
A probability measure. on (I", B(I")) is called a Gibbs measure if it satisfies
/,u(dy)/y(dx)F(y,x) =/u(dy)/zdx eX[{—E(x, )/)]F(y Ux,x) (2.1)
I R4 I R4

for any measurable functiofi: I' x R¢ — [0, +-00]. (Notice that any fixed set € I" has zero Lebesgue measure,
so that the expressiafi(x, y) on the right hand side of (2.1) is a.s. well-defined.) G€&t, ¢) denote the set of all
Gibbs measures correspondingztande¢. In particular, if¢p = 0, then (2.1) is the Mecke identity, which holds if
and only if u is the Poisson measufg with intensity measuredx.
Let us now describe some classes of Gibbs measures which appear in classical statistical mechanics of continu-
ous systems. For every= (1, ..., r%) € Z¢, we define a cube

1 . 1
Qrzz{xeRd:r’—ng’<r’+§}.

These cubes form a partition &. For anyy € I", we sety, := Yo T € 7. ForN €N let Ay be the cube with
side length &V — 1 centered at the origin iR¢, Ay is then a union of2N — 1)¢ unit cubes of the fornQ, .
For A c RY, we denote”, :={y € I' | y C A}. Now, we recall some standard conditionsgan

(SS) Superstability There existA > 0, B > 0 such that, ify € I',,, for someN, then

Y oG-y = (Anl? - Bln).

{x,y}cy rezd

Notice that the superstability condition automatically implies that the potemtmbemi-bounded from below.

(LR) (Lower regularity There exists a decreasing positive functiolN — R such that
> a(lrll) < oo
rezd
and for anyA’, A” which are finite unions of cubeg, and disjoint, withy’ € I'y/, y" € Ty,
dYoosa—yn== Y a(lr ="y
xey',yey” v r''ezd
Here,|| - || denotes the maximum norm @f .
(I) (Integrability)
/ |1— expl—¢ (x)]| dx < +o0.

R4
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For results related to spectral properties of the generator of the GD, we will need the following condition.
(P) (Positivity) ¢ (x) >0 for all x € R9.

A probability measure. on (I, B(I")) is called tempered if: is supported by

o0
Soo::USn,

n=1
where

Sy = {y el VNeN Z |y,|2<n2|ANmZd|}.
VEANﬂZd

By G'(z,¢) C G(z, ¢) we denote the set of all tempered grand canonical Gibbs measures (Ruelle measures for
short). Due to [21] the s&f’ (z, ¢) is non-empty for alt > 0 and any potentiap satisfying conditions (SS), (LR),
and (). Furthermore, the s6tz, ¢) is non-empty for alt > 0 and any potentiap satisfying (P) and (l), see [12,
Proposition 2.7.15].

Let us now recall the so-called Ruelle bound (cf. [21]).

Proposition 2.1.Suppose that either conditio3, (SS) (LR) are satisfied angk € G (z, ¢), z > 0, or conditions
(P), (1) are satisfied angk € G(z, ¢), z > 0. Then, for any: € N, there exists a non-negative measurable symmetric
functionk,([') on (R4)" such that, for any measurable symmetric functfdi : (R?)" — [0, oc],

1
/ > f(”)(xl,...,xn)u(dy)zﬁ/f(")(m,...,xn)kff)(m,---,xn)dn---dxm (22)
r {x1,.... xn}Cy .(Rd)n
and
VOt . xp) € RYD™ kP (x1, L x) <E (2.3)

where¢ > 0is independent of.

The functionsk,(f), n € N, are called correlation functions of the measurewhile (2.3) is called the Ruelle
bound.
Notice that any measuge € G(z, ¢) as in Proposition 2.1 satisfies

/((ﬂ,y>”u(dy)<oo, peD, 920, neN, (2.4)
r
that is,u has all local moments finite.

3. The Dirichlet form &€ and associated Markov process

We introduce a seECy(D, I') of all functions onI” of the form

F(y)=gr({e1.v),---. (on. 7)), (3.1)

whereN e N, ¢1, ...,y € D, andgr € Co(RY). Here,Cp(RY) denotes the set of all continuous bounded func-
tions onR". For anyy € I', we considerT), := L%(R?, y) as a “tangent” space tb at the pointy, and for any
F e FCy(D, I') we define the “gradient” of aty as the element df,, given by
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D F(y,x): =D, F(y):=F(y\x)— F(y), xeR‘

(Evidently, D™ F (y) indeed belongs t@,, .)
Let u be a Gibbs measure as in Proposition 2.1. We will preserve the notatiyD, ") for the set of all
u-classes of functions fro Cp(D, I'). The setFCyp(D, I') is dense inL2(I", ). We now define

EF.G)i= [ (D7F). DGO uiay)

I
_ / u(dy) / Y (@0 DT F()DG(y), F,G e FCo(D, ). (3.2)
r R4

Notice that, for anyF € FCp(D, I'), there existsf € D such that D F(y)| < f(x) forall y e I" andx € y.
Hence, by (2.4), the right hand side of (3.2) is well defined. By (2.1), we also gdf, 6re FCp(D, I'),

E(F, G)=/M(dy)/zdx exf[—E(x, y)] DY F(y)D{ G(y), (3.3)
r R4

whereDF(y) = F(y Ux) — F(y).
Lemma 3.1.We have&(F, G) =0forall F,G € FCp(D, I') such thatF' =0 p-a.e.
Proof. Let F € FCo(D, I'), F =0 p-a.e. DenoteB(r) := {x e R%: |x| < r}. Then, by (2.1),

0=/M(d7/) / J/(dX)IF(V)|=/M(d7/) / cdxexpg[—E(x.)]|F(y Ux)].

r B(r) r B(r)

Hence,F (y Ux) = 0 for u(dy)zdxexp—E(x,y)]-a.e.(y,x) € I' x R¢. Therefore, by (3.3), the lemma fol-
lows. O

Thus, (€, FCo(D, I')) is a well-defined bilinear form oh2(I", 1).

Proposition 3.1.We have:

E(F, G):/HF(y)G(y)M(dy), F,G e FCy(D, T), (3.4)
r
where
HF(y):—/zdxexp[—E(x,y)]DjF(y)—/y(dx)D;F(y) (3.5)
R4 R4

andHF € L%(I", v). The bilinear form(E, FCp(D, I)) is closable orL.2(I", 1) and its closure will be denoted by
(€, D(E)). The operatol(H, FCp(D, I')) in L2(I'", u) has Friedrichs’ extension, which we denote(d, D(H)).

Proof. Egs. (3.4), (3.5) easily follow from (2.1) and (3.2). Let us show #id#t € L?(I", 11). By (2.4), the inclusion
Jra v (dx)D5 F(y) € LA(I, ) is trivial. Next, we can find a compaet ¢ RY andC; > 0 such thatD; F(y)| <
C1xa(x) forally e I' andx € R?. Here, x4 denotes the indicator of. Hence, by (2.1) and (2.2),
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2
/ ( / vdx exp[—E(x,w]D:F(y)) widy)
r

R4
<Cf/u(dy)/zdx/zdyexp[—E(x,7/)—E(y,y)—¢(x —y]exgo(x —y)]
A

r A

= 2Cf Z exp[¢(x — y)]u(dy) = Cf/exp[¢(x — y)]k,(f)(x, y)dxdy < o0, (3.6)
r oylerva A2

sincek? (x, y) < Coexp—¢ (x — y)] forall x, y € R?, Co > 0, cf. [2, Eq. (4.29)]. Therefored is the L2(I", p)-
generator of the bilinear forré. The rest of the proposition now follows from e.g. [18, Theorem X.23j.

For the notion of a “Dirichlet form”, appearing in the following lemma, we refer to e.g. [14, Chapter |, Section 4].
Lemma 3.2.(£, D(E)) is a Dirichlet form onL2(I", ).

Proof. On D(€) consider the normi F||pg) := (||F||iz(m + E(F))l/z, F € D(£). Here, we denoted (F) :=
E(F, F). ForanyF, G € FCp(D, I'), we define
S(F,G)(x,y):=D;F(y)D;G(y), xeR‘ yerl.

Using the Cauchy—Schwarz inequality, we conclude tha&ixtends to a bilinear continuous map fra(€),

I Ipey) x (DE), Il - I pey) into LYR? x I, i), whereji(dx, dy) :=y(dx)u(dy). Let F € D(E) and consider
any sequencé, € FCn(D, I'), n e N, such thatF,, — F in (D(€), | - lIpe)) asn — oo. Then,F,(y) — F(y)
asn — oo for u-a.e.y € I' (if necessary, take a subsequenceéy),cn with this property). Furthermore, for any
r > 0, we have, analogously to (3.6):

| Fuly \ x) — F(y \ x)|ia(dx, dy)
BT

zfu(dy) / zdxexpg—E(x,y)]|Fay) — F(y)|

r B(r)

1/2
< (/!Fn(y)—F(y)\zu(dy)> (/(/ za’xexp[—E(x,y)]>
r

I B(r)

2 1/2
M(dy)) -0 (3.7)

asn — oo. Therefore F, (y \ x) — F(y \x) for fi-a.e.(x,y) e R x I'. Thus,D; F,(y) — Dy F(y) asn — oo
for fi-a.e.(x, y) € R? x I", which yields:

S(F,G)(x,y)=D, F(y)D;G(y), p-a.e.(x,y)e RIxT, F,Ge D(&). (3.8)
Hence,
E(F,G)= / D F(y)D,;G(y)a(dx,dy), F,GeD(). (3.9
RixI

DefineR > x — g(x) := (0vx)Al. We again fixany € D(E) and let(F},), N be a sequence of functions from
FChu(D, I') suchthatF,, — Fin (D(&), |- I p))- Consider the sequencg(F,)),en- We evidently haveg (F,) €
FCp(D, T) for eachn € N andg(F,) — g(F) asn — oo in L3(I", v). Next, by the above argument, we have:
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D g(Fu(y)) - Dy g(F(y)) asn — oo for fi-a.e.(x, y). Furthermore, the sequen¢®; g(F,(¥)))nen IS fi-
uniformly square-integrable, since so is the sequ&BeF, (v)).en. Therefore, the sequené®; g(Fy, (¥)))neN
converges td; g(F(y)) in L2R? x I, ft). This yields:g(F) € D(&).

For anyx, y € R, we evidently havég(x) — g(v)| < |x — y|. By (3.9), we then finally havef (g (F)) < E(F),
which means thatg, D(£)) is a Dirichlet form. O

We will now need the bigger spadé consisting of allZ -valued Radon measures &4 (which is Polish, see
e.g.[9]). Sincel” ¢ I’ andB(I") N I" = B(I"), we can considen as a measure ofi’, B(I")) and correspondingly
(&, D(&)) as a Dirichlet form orL.2(I”, w).

For the notion of a “quasi-regular Dirichlet form”, appearing in the following lemma, we refer to [14, Chapter 1V,
Section 3].

Proposition 3.2.(€, D(€)) is a quasi-regular Dirichlet form o.2(I", u).

Proof. By [15, Proposition 4.1], it suffices to show that there exists a bounded, complete metri€ generating
the vague topology such that, for s € I", p(-, yo) € D(E) and fRd S, yo)(x,y)y(dx) < n(y) u-a.e. for
somen € LY(I", ) (independent ofp). Here,S(F) := S(F, F). The proof below is a modification of the proof of
[15, Proposition 4.8].

For eachk € N, we define

21 d(x, Bk /\1 R?
gk(-x) _§<§_ (-x7 ( )) E)» X € 3

whered(x, B(k)) denotes the distance from the painto the open balB (k). Next, we set

i (x) :=3g(x), xeR? keN.
Let ¢ be a function fror’rCé(R) suchthat 6< ¢ <1on[0,00), ¢(t) =t on[—1/2,1/2], ¢’ €[0,1] on[0, co). For
any fixedyg € I' and for anyk, n € N, (the restriction ta” of) the function

¢ (sup|(eeg;. ) — (dxgj. vo)|)

j<n

belongs taF Cp(D, I') (note that(¢r g, yo) is a constant). Furthermore, taking to notice #at [0, 1] on [0, 00),
we get from the mean value theorem

S(¢(supligg;, -) — (drgjs vo)|)) (x, ¥)

j<n
< (sgp|<¢>kgj, ¥) = (Drgjs v0) — Pr(x)g; (1) — sgp|<¢kgj, y) = (deg;. o))
Jxn xn
< sgqu,?(x)g,?(x) < XBk+1/2) (%) (3.10)
Jxn
Set
-1/2
o = <1+ / k,gb(x)dx) 27k,
B(k+1/2)

Using estimate (3.10) and the numbegswe now easily obtain the statement of the proposition absolutely analo-
gously to the proof of [15, Lemma 4.11 and Proposition 4.8}

For the notion of an £-exceptional set”, appearing in the next proposition, we refer to e.g. [14, Chapter |,
Section 2].
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Proposition 3.3.The setl" \ I' is £-exceptional.

Proof. We modify the proof of [19, Proposition 1 and Corollary 1] according to our situation.
It suffices to prove the result locally, that is, to show that, for every fixedN, the set
N = {y el Sup(y({x}): X € [—a,a]d) > 2}

is £-exceptional. By [19, Lemma 1], we need to prove that there exists a sequerc® (&), n € N, such that
eachu, is a continuous function oft, u, — xx pointwise as: — oo, and supy € (u,) < co.
Let f € Co(R) be such thaj(o 1) < f < x(-1/2,3/2)- Foranyn e N andi = (iy, ..., ig) € 74, define a function

" eDby

d
FP@ =[] foxe—in). xeRY

k=1
Let also

d
Ii(") (x):= H X-1/2.3/2) (nxk — i), x €RY,
k=1

and note thay‘i(”) < Ii(”).
Lety € CL(R) be such thak,. o) < ¥ < X[1.00) @Nd 0K ¥’ < 2x(1,00)- SetA, :=Z4 N[—na, nal? and define
continuous functions

Fayru(y)=v(sup(f ™, 7)), neNl,

icA,

whose restriction td” belongs taF Cp(D, I'). Evidently,u,, — xy pointwise as: — oo. We now have:

Sa)(x,y) = (¥ (supt "y —e0) = w(sup(£. 1)) -ace.

icA, icA,

and by the mean value theorem, we get,dea.e.(x, y) e RY x I,

S (x, y) =¥ (Tu(y, ) (supl £, ¥ — ) — sup(£™, )7, (3.11)

icA, ieA,

whereT,(y, x) € R is a point between SUQAn(ﬁ(")» y —&x) and supeAn(fi(”), ). Next, for anyy € I and
x eR?:

| sup(£",y — &) = sup(£™, )| < sup[(£™, y —ex) = (£, )]

ieA, icA, icA,
= sup £ (x) < sup 1" (¥) < X—a—t.atapd (X)- (3.12)
ieA, ieA,

We evidently have, for each € I andx € supfy):
(n) (n)

Sup(.f, ,V_gx) <Tﬂ(y’-x)< Sup(f, 7}/>
icA, icA,
Hence,
¥ (Ta(y.0)? < 4x w yoy (V) < 4x 0 o (D<A Xy 150 () (3.13)
n\r, = T sugea, (£7)>1 = T supeq, 1) 22) = (=23 :

icA,
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where we used the fact thgt" is integer-valued. By (3.11)—(3.13), we have, for.e.(x, y) € R? x I*:

Sun) (6, ¥) <A Y X0y P X—a—tarapd @)

ieA,
Therefore, by the Cauchy—Schwarz inequality and (3.9),
1/2
Eun) <4y (u({™. )2 2}))1/2( / (v, x[_a_l,a+1]d>u<dy>) . (3.14)
icA, e
r

By using [21, Theorem 5.5], we easily conclude that there exists a corgfan0, independent of andrn, such
that, for alli € A, andn € N,

2 2d
n({u, ) >2}) < 63< / 1;">(x>dx) =cs(§) . (3.15)

R4

Since| A, | = (2na + 1)¢, we get from (2.2), (3.14), and (3.15):

) o\ d 12
Euy) <4CH (2na+1)d<—> ( / ka(x)dx) , neN.
n
[—a—1,a+1)¢

Therefore, there exists a const&ht> 0, independent of, such that (u,) < Csforalln e N. O
We now have the main result of this section.

Theorem 3.1.(1) Suppose that the conditions of Propositidid are satisfied. Then, there exists a Hunt process
M= (ﬂv Fv (Fl)l>07 (61)1205 (X(t))t>0’ (P)/)}/EF)

onI' (see e.g[14, p. 92])which is properly associated witlf, D(£)), i.e., for all (u-versions o F € L2(I", i)
and allr > 0 the function

sy pF(y) ::/F(X(t))dPy (3.16)
2

is an&-quasi-continuous version ekp(—t H) F, whereH is the generator ofE, D(£)). M is up tou-equivalence
unique(cf. [14, Chapter IV, Section 6])in particular, M is u-symmetric(i.e., [ Gp;Fdu = [ Fp,G dp for all
F,G:I' - R,, B(I')-measurablgand hasu as an invariant measure.

(2) M from (1) is up to u-equivalence(cf. [14, Definition 6.3])unique between all Hunt processkk =
(2", F, (F)i>0, (O))i>0, X' (1)>0, (P;,)),ep) on I having 1 as an invariant measure and solving the mar-
tingale problem fo—H, D(H)), i.e.,forallG € D(H)

t
G(X'(1)) — G(X'(0)) +/(HG)(X’(s))ds, t>0,
0

is an (F))-martingale underP/y for £-q.e.y € I'. (Here, G denotes a quasi-continuous version®f cf. [14,
Chapter IV, Proposition 3.3].)

Remark 3.1.In fact, the statement of Theorem 3.1 remains true for any Gibbs measufg(z, ¢) whose corre-
lation functions satisfy the Ruelle bound.
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Proof of Theorem 3.1. The first part of the theorem follows from Propositions 3.2, 3.3 and [14, Chapter 1V,
Theorem 3.5 and Chapter V, Proposition 2.15]. The second part follows directly from (the proof of) [3, Theo-
rem3.5]. O

In the above theorenM is canonical, i.e.f2 is the set of alcadlagfunctionsw: [0, c0) — I" (i.e., w is right
continuous ori0, co) and has left limits or{0, 00)), X(1)(w) :=w (1), > 0,w € £, (F;); >0 together withF is the
corresponding minimum completed admissible family (cf. [7, Section 4.1])@nd > 0, are the corresponding
natural time shifts.

4. Selfadjointness of the generator
In what follows, we will always suppose that the potengiat positive.

Theorem 4.1. Suppose that conditionP), (I) are satisfied andu € G(z,¢), z > 0. Then, the operator
(H, FCp(D, I")) is essentially selfadjoint ilL.2(I", ). In particular, Friedrichs’ extension ofH, FCy(D, I'"))
coincides with its closure.

Proof. Let(H, D(H)) denqte the~closure oH, FCp(D, r)), which exists since the latter operator is a Hermitian
one. We have to show thet/, D(H)) is selfadjoint. Sincél > 0, by the Nussbaum theorem, it is enough to show
that there exists a s&tC (,—, D(H") which is total inL2(I", ) and eachF € S satisfies:

0 ~
”lin}T”LZ(M) n

Z (2n)!

n=0

for somer > 0, see e.g. [18, Theorem X.40].

Let us recall some well-known facts about cylinder functions on the configuration space (see e.g. [11] for
details). LetO.(R¢) denote the set of all open, relatively compact set®4n For A € Oc(R?), we have:l', =
LI, I, wherer " denotes the set of ali-point subsets oft, n € N, and F/(XO) = {/}. Forn e N, we can
naturally identifyF/ﬂ”) with A”/S,, where A" := {(x1, ..., x,) € A" x; # x; if i # j} andS, denotes the group
of permutations of1, .. ., n} that acts omi” by permuting the numbers of the coordinates. Furthermore, the trace
o-algebra of B(I") on F/(‘”) coincides with ther—algebraBsym(A”) of all symmetric Borel subsets of” (again
under a natural isomorphism). Finally, any measurable fundtigron I'4 may be identified with a measurable
cylinder functionF on I" by settingl” > y > F(y) := Fa(ya). O

Lemma 4.1.Suppose that the conditions of Theorérhare satisfied. Lett € Oc(R¢) and letF be a measurable
bounded functior¥ on I', such thatF’ | FX’) =0foralln >N, N e N. Then,F € D(H) and the action off on
F is given by the right hand side ¢8.5).

Proof. We take arbitrary, open, disjoint subseéls, ..., O, of A. Consider functiongs, g2 € Cp(R) such that
g1(1)=1,g2(0)0=1andgi(x) =01if |x — 1| > 1/2,g2(x) = 0if |x] > 1/2. Approximating the indicator functions
xo:,,i=1...,n, and xa\(o,u.-u0,) by functions fromD, we easily conclude that the statement of the lemma
holds for the function

Hence,F (y) may be identified with the indicator functiofy, (o, x..x 0,) (X1, . . ., x,) ON /I"/Sn. Using a monotone
class argument, we get the statement for any indicator function, and then for any measurable bounded function

(n)
onl';’. O
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We denote byP the set of all continuous polynomials dn, i.e., the set of all finite sums of functions of the
form F(y) =[1/_1(y.¢i),¢i € D,i =1,...,n,n €N, and constants. We preserve the notafiofor the set of all
u-classes of functions fror. Using (2.3) and e.g. [5], we see thatis a dense subset (I, i1). Furthermore,
any function fromP is cylinder, and we can easily conclude from Lemma 4.1 that its statement remains true for
any functionF € P.

We will now show thatP c (52, D(H"). We first make some informal calculations. So, we define:

HiF(y):= / zdxexp[—E(x,y)| DI F(y).

HyF(y) :=/7/(dX)D;F(J/),
so thatH = —H; — H». Then,

H'=(-Hi—H)"'=(=1" Y ", (4.)

where

H;n) = H1,1H1,2 . Hl,n:

_)H1, iel, . _
Hii:= { Hy i¢l, i=1 ..., n. 4.2)
Furthermore, by induction, we conclude:
My = > My, 4.3)

Jc{l,...maxXi: iel}—1}

where

HY,I;F(V)Z(—DIN'(/ mI,n(dxn)UI,J,n,xnfml,n—l(dxn—l)UI,J.n—l,xn_l~~'/m1,1(dxl)U1,J,1,x1

X ]_[exp[— Z o (x; — u)} l_[ Gry,j(x1,.. -,xn)F(J/)>
j=1

iel uen\{xs: sel¢,s>i}

s

n=y

IC:=1{1,...,nm}\ I,

‘ N zdx;, iel,
RS { y(x), i€l

DY, ieliele,

Urgix = Dy, ielielS,
id, iel,
- eXF{_ Zrel,r<j ¢ (x; _xr)]’ jel.jeJs,
Gry O =y l—exg—Y, o, 00;—x)], jel, i,j=1...,n (4.4)
1, jelc,jeJe,

For example, lek =9, ={3,4,5, 8}, J = {6, 7}. Then,
H) F(y) = ( [ vasains, [ zavay [ y@ [y [ sy,

X /zdxw; zdxgz);fy(dxz)D;z/y(dxl)D;l exp[— Z ¢(x3—u)j|

uen\{xe}
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XeXIO[— > (¢(X5—u)+¢(x4—u)+¢>(x3—u))}

uen\{xe,x7,x9}
x exp[—¢ (xg — x5) — ¢ (xg — x4) — P (xg — x3)]
X (1—exp[—¢(x7 — x5) — ¢ (x7 — x4) — p(x7 — x3)])
x (1—exp[—¢ (xe — x5) — P (x6 — xa) — ¢ (x6 — x3)])

x exp[—¢ (x5 — x4) — ¢ (x5 — x3) — P (x4 — xs)]F(V)>

n=y

Lemma 4.2.Suppose that the conditions of Theorérh are satisfied. We then hav@c (\°°, D(H"), and for
any F € P, H"F is given by formulag4.1)-(4.4) (n which H is replaced byA).

Proof. This statement follows from (2.3), Lemma 4.1 and formulas (4.1)—(4.4). Indeed, replace in formulas (4.1)—
(4.4) ¢ (x) by the functiong, (x) := ¢ (x) xpm) (x), n € N, and takeF € P. Then, the obtained functions become
cylindrical. Approximate these by functions as in Lemma 4.1 and et co. The rest then easily follows.O

Lemma 4.3.Suppose that the conditions of Theorérhare satisfied. Then, for ang(y) = ]_[ﬁzl(y, vi), pi €D,
i=1,....1,1 €N, there exists > 0 such thaty ;o || H" F|| ;2,,t" /(2n)! < c0.

Proof. We first derive some estimates.
Let f1, ..., fi be bounded integrable functions BA. ConsiderG(y) := ]_[f-‘zl(y, fi). From (2.2), we conclude
that

k
[ coman =3 3
. i=1 (A1, Ap): B£A;C{L,.. k) j=1,....i
Aj's disjoint A1U---UA; =(1,...,k}
x / g(k)(xL---,Xl,xz,-..,xz,m,xi,-~-,xi)k,(f)(x1,--~,Xi)dxl-~~dxi»
———— — — —_———
(R4)i |A1] times  |Ap| times |A;| times
whereg® (x1, ..., xx) = (1/k!) Y ses, 1xo ) - .- fi(xox)). By induction, we prove

k

Z Z 1< 251k, keN.

i=1 (A1,....A)): O#A;C{L,...k},j=1,....i
Aj's disjoint A1U---UA;=(1,...,k}

Therefore, by (2.3),

k
/ |G |(dy) <2 maxd, &Ykt T Tmax{ |l fill po. Il fill o} (4.5)
r i=1
Note that, foru-a.e.y € I',
k-1 ,.

+ - ! 3o ®) ,
Dy G()/)—Z(k>/V(dyl)-.-y(dy,)g 155 D5 X505 X)),
i=0 (k—i) times
k-1 ; ‘
D;G(V)=Z<k>(—1)k‘l/V(dyl)--.y(dyi)g(")(yl,--.,yi, X, %) (4.6)
—_——

i=0 (k—i) times
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We next easily get the following identity:

EOEMEE - E k) e
oo\ oo K T k) o N o ' .
Recall also the standard estimate
(a1+~--+a,,)2gn(af+-~-+a3), ai,...,a, € R,neN. (4.8)
Finally, using condition (P), we get, for any y1, ..., yr € R? andk € N,
k k
1- exp[— D hx— J’i):| <) (1—exg—¢&x —y)])- (4.9)
i=1 i=1
Let now F (y) be as in the formulation of the lemma. Eike O¢(R?) andCs > 0 such that
| fAtxD) ... i) < Coxp(xa, ... x),  x1,...,x €RY (4.10)
For any setd, J C {1,...,n} asin (4.3), we define
ny:=\[INJ|, no:=1|I°NJ|, n3z:=|INJ, ng:=|I°NJE|.

Notice thatny + np 4+ n3 + ng = n. Estimating all the multipliers of the fornr&) by 1, and using (4.5)—(4.10),
we get from (4.4)

2(n+1) 2n
} max{1, £}2¢+D max{ 1, /(1— exp[—¢(x)])}
R4
x 2251271 (2(1 4 1)) (1 + n3)!n1 + n3)"2(n3 + na) 2, (4.11)

where the factor 2/t72-1(2(1 4 ny))! is connected with estimate (4.5) and the fact that we get monomials of
order< [ 4 ny, the factor(ny 4+ n3)! is connected with the application of (4.9) to the terms connected with the
set!, the factor(ny + n3)"2 is connected with the application of (4.9) to the terms connected ifith J, and

the factor(nz + n4)' 72 is connected with the application of (4.6), (4.7) to a monomial of okdér+ n5). Using

the estimate2k)! < 4%(k!)2, k € N, we conclude from (4.11) that there exists a cons@nt 0, independent of

n, I, J and thus depending only an, such that

IHY) Fli22, < max{l,z}?"cgmax{l, f dx
A

1M1 Fli72(,) < Ca@nh?n?.
Hence, by (4.1)
IH" fll 12,0 < (2Ce)"?nin". (4.12)

Estimate (4.12), together with Stirling’s formula, easily implies the statement of the lemma, and hence the statement
of the theorem. O

5. Spectral gap of the generator

We first prove a coercivity identity for the gradie®. We note that, for any € I and F € FCyn(D, I'),
(D7)?F (y) is the element of the Hilbert spag&? = L2((RY)?, y®?) given by(D™)?F (v, x, y) = Dy D} F(y),
x,y € R%, Furthermore, for any, y € y:

Fiy\{x,yD—Fy\x)—Fy\y+F), x#y,

F(y) — F(y \x) = —Dy F(y). x=y. 1)

D; D F(y) = {
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Through the natural identification of the elementgﬁf2 with linear continuous operators i, we get:

THD PF(((DTPF()) = Y. (D Dy F(y»)>.

x,y€y

Here, Tr denotes the trace of an operator @2 )2F (y))* is the adjoint operator afD~)2F (y).

699

(5.2)

Lemma 5.1 (Coercivity identity) Suppose that the conditions of Theorérh are satisfied. Then, for any <

FCp(D, I'), we have

[r@)uan = [ [Tr(D‘)ZF(w((D—)ZF(y))*+ S (e —»]-1)
r r

X,YEY, XFY

x (F(y \{x, ) = Fiy \0))(F(y \ {x,y}) — F(y \y))}wly).

Proof. Analogously to (3.6), we get from (2.1):

2
/,u(dy)(/zdx exp[—E(x, V)]DJF(V))

r R4

=/M(dy) Yo et —D](F(y \1x, ) = F \0))(F(y \ {x,}) = F(y \ ).

T X,YEY, XF£Y
Next,
Z/M(dy)/zdxexp[—E(x,V)]DJF(V)/V(dy)D;F(V)
I Rd R4
- 2/ nidy) / Y (@d0)(F(r) — F(y \ ) f(y \ @ (F(r \ 1 3)) = FOr \ )
I R4 R4
= / pdy) Y [(F) = F\0)(F(y\{x,y) — F(y \ x))
r X,YEY XFY
+(F) = Fy\»)(F(r \ {x.y}) = Fy \ »)].
Finally,
2
/M(dy)</y(dX)D;F(y)) Z/M(dV)Z(F(V\X)—F(V))Z
T Rd T xXey

+/M(d3/) Y (Fo\n)—FWM)(Fy\y) - F@)).

r X,YEY XFY
By (3.5) and (5.1)—(5.5), the lemma follows

Theorem 5.1.Suppose thafP) holds,z > 0, and
8= /(1 —exp[—¢(x)])zdx < 1.

R4
Letu € G(z, ¢). Then, the sef0, 1 — §) does not belong to the spectrumf

(5.3)

(5.4)

(5.5)

(5.6)
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Proof. We fix anyF € FCp(D, I'). By (5.1) and (5.2), we have:

THD2F () ((DT2F (W) = Y (Dy Dy F(»)* =Y (D F(»)?. yerl. (5.7)

xey xey

Using (P), (2.1), (5.6), and the Cauchy—Schwarz inequality, we next have
‘ / Z (exgox =] =) (F(y \ {x. ) = Fir \0))(F(y \ {x,y}) = F(y \ »))u(dy)
I XYEY, XFy

< / > (@How -] =) (F(r \ v v) = Fiy \»)°ndy)

I XY€Yy, X#y

_ f w(dy) f y(dy) f v\ @O (Exdx — ] = 1)(F(y \ (x.v)) — F(y \ )2

r R4 R4
- f i(dy) / cdyexf—E(. )] / () (exp (x — )] — 1) (F(y \ x) — F())?
r R4 R4
=/M(dy)f2dY/V(dx)eXF{—E(y»V\x)](l—eXF{—fi)(x—)’)])(F(V \x) — F(y))°
r R4 R4
< / udy) / 2dy / y(dx)(1— exp—¢ (x — »])(F(y \x) — F())°
I R4 R4
:/(1—exp[—¢(y)])zdy X /M(dy)/y(dx)(Dx_F(y))zz(S(HF, F)r2(,)- (5.8)
R4 r R4

Using Lemma 5.1, (5.7), and (5.8), we get, for edth FCp(D, I'):
(HF’HF)LZ(M) 2(1—8)(HF, F)LZ(;L)‘ (59)

From Theorem 4.1, we then conclude that (5.9) holds true for €&aehD(H). Therefore, denoting byEj ), >0
the resolution of the identity of the operatlr, we have:

/ A(A— (1 —8))d(E\F, F);2(,) >0, FeD(H).
[0,00)

From here the statement of the theorem trivially followss

Corollary 5.1 (Poincaré inequality)Suppos€P) and (5.6) hold and supposg is an extreme point of the convex
setG(z, ¢). Then,

E(F,F)>(1-95) / (F() — (F)u)n(dy), FeD(E), (5.10)
r

where(F), := [ F(y)u(dy).

Remark 5.1. The Poincaré inequality (5.10) means that, in addition to the fact that th@,sket- §) does not
belong to the spectrum df, we also have that the kernel &f consists only of the constants.
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Proof of Corollary 5.1. Sincepu is extreme inG(z, ¢), analogously to proof of the part (& (ii) of [2, Theo-
rem 6.2], we conclude:

{u €G(z,¢) | v=p - u for some boundedB(I")-measurable functiop:I” — R+} ={u}. (5.11)

Let G € D(€) be such thaE (G) = 0. It suffices to prove thatr = const. By the proof of [2, Lemma 6.1], without
loss of generality, we can suppose that the func@ois bounded.

Now, we modify the proof of the part (i} (iii) of [2, Theorem 6.2]. Since £ FCn(D, ') and D~ 1= 0,
replacingG by G — essinfG, we may suppose tha > 0, and, in addition, thaf G du = 1. Definev :=G - .
Since€(G) =0, by (3.9), we have thak (y \ x) — G(y) =0 i-a.e. Since € G(z, ¢), we have, for any measurable
function F : I' x R4 — [0, 4+o0],

/ v(dy) / Y (dx)F(y.x) = / u(dy) / Y (@0)G () F (v, x) = / u(dy) / Y (@d0)G(y \ ) (y.x)
R4 R4 R4

r r r

:/u(dy)/zdxexp{—E(x,y)]G(y)F(y Ux,x)

r R
=/v(dy)fzdxeXF{—E(x,y)]F(y Ux,x).
I R4

Hencey € G(z,¢) and, by (5.11)G =1 p-a.e. O
Let us suppose that the potentjakatisfies the following condition:

(LAHT) (Low activity-high temperature regirpe

8= /(1 —exg—¢(x)])zdx < exp(—1).

R4

Under (P) and (LAHT), there exists a unique Gibbs meaguei(z, ¢), see [20] and [13, Theorem 6.2] (notice
that (2.1) and (P) imply that the correlation functions of ang G(z, ¢) satisfy the Ruelle bound (2.3) with=1,
and hence we can take the constént in [13, Theorem 6.2] to be equal #. The following statement now
immediately follows from Corollary 5.1.

Corollary 5.2 (Poincaré inequality in the LAHT regimeAssume thafP) and (LAHT) are satisfied and consider
the unique Gibbs measuree G(z, ¢). Then,(5.10)holds.

Remark added during the revision of the pagerof. L. Wu has informed us that, independently of our result,
he has proved an estimate for the spectral gap of the GD in a finite volume for positive potentials and in the hard
core case [24]. In particular, his lower bound for the spectral gap for positive potentials coincide with our estimate
of the spectral gap of the GD in infinite volume.

Acknowledgements

We are grateful to S. Albeverio, T. Pasurek, and M. Rdckner for useful discussions. We would also like to
thank the referee for a careful reading of the manuscript and making very useful comments and suggestions. Yu.K.
gratefully acknowledges the financial support of the DFG through Projects 436 UKR 113/61 and 436 UKR 113/67.
E.L. gratefully acknowledges the financial support of SFB 611, Bonn University.



702 Y. Kondratiev, E. Lytvynov / Ann. |. H. Poincaré — PR 41 (2005) 685-702

References

[1] S. Alberverio, Yu.G. Kondratiev, M. Rockner, Analysis and geometry on configuration spaces, J. Funct. Anal. 154 (1998) 444-500.
[2] S. Alberverio, Yu.G. Kondratiev, M. Réckner, Analysis and geometry on configuration spaces. The Gibbsian case, J. Funct. Anal. 157
(1998) 242-291.
[3] S. Albeverio, M. Rtckner, Dirichlet form methods for uniqueness of martigale problems and applications, in: M.C. Cranston, M.A. Pinsky
(Eds.), Stochastic Analysis, in: Proceedings of Symposia in Pure Mathematics, vol. 57, Amer. Math. Soc., 1995, pp. 513-528.
[4] Yu.M. Berezansky, Yu.G. Kondratiev, Spectral Methods in Infinite Dimensional Analysis, Kluwer Academic, Dordrecht, 1994.
[5] Yu.M. Berezansky, Yu.G. Kondratiev, T. Kuna, E. Lytvynov, On a spectral representation for correlation measures in configuration space
analysis, Methods Funct. Anal. Topol. 5 (4) (1999) 87-100.
[6] L. Bertini, N. Cancrini, F. Cesi, The spectral gap for a Glauber-type dynamics in a continuous gas, Ann. Inst. H. Poincaré Probab. Statist. 38
(2002) 91-108.
[7] M. Fukushima, Dirichlet Forms and Symmetric Markov Processes, North-Holland, Amsterdam, 1980.
[8] R.A. Holley, D.W. Stroock, Nearest neighbor birth and death processes on the real line, Acta Math. 140 (1987) 103-154.
[9] O. Kallenberg, Random Measures, Academic Press, 1975.
[10] Yu.G. Kondratiev, Dirichlet operators and the smoothness of solutions of infinite-dimensional elliptic equations, Dokl. Akad. Nauk
SSSR 282 (1985) 269-273, (in Russian).
[11] Yu.G. Kondratiev, T. Kuna, Harmonic analysis on configuration spaces |. General theory, Infin. Dimens. Anal. Quantum Probab. Relat.
Top. 5 (2002) 201-233.
T. Kuna, Studies in configuration space analysis and applications, PhD Thesis, Bonn University, 1999.
T. Kuna, Properties of marked Gibbs measures in high temperature regime, Methods Funct. Anal. Topol. 7 (3) (2001) 33-53.
Z.-M. Ma, M. Rockner, An Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, 1992.
Z.-M. Ma, M. Rockner, Construction of diffusions on configuration spaces, Osaka J. Math. 37 (2000) 273-314.
X.X. Nguyen, H. Zessin, Integral and differentiable characterizations of the Gibbs process, Math. Nachr. 88 (1979) 105-115.
C. Preston, Spatial birth-and-death processes, in: Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975)
vol. 2, in: Bull. Inst. Internat. Statist., vol. 46, 1975, pp. 371-391.
[18] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. 2. Fourier Analysis, Self-Adjointness, Academic Press, 1972.
[19] M. Rockner, B. Schmuland, A support property for infinite-dimensional interacting diffusion processes, C. R. Acad. Sci. Paris, Sér. | 326
(1998) 359-364.
[20] D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamins, 1969.
[21] D. Ruelle, Superstable interaction in classical statistical mechanics, Comm. Math. Phys. 18 (1970) 127-159.
[22] D. Surgailis, On multiple Poisson stochastic integrals and associated Markov semigroups, Probab. Math. Statist. 3 (1984) 217-239.
[23] D. Surgailis, On Poisson multiple stochastic integrals and associated equilibrium Markov processes, in: Theory and Application of Random
Fields (Bangalore, 1982), in: Lecture Notes in Control and Inform. Sci., vol. 49, Springer, 1983, pp. 233-248.
[24] L. Wu, Estimate of spectral gap for continuous gas, preprint, 2003.

[12
[13
[14
[15
[16
[17



