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Abstract

In this paper we obtain the smoothness of the diffusion coefficient matrix for the lattice gas with energy. Furthermore we also
obtain the smoothness of the central limit theorem variances for certain functions.
0 2004 Elsevier SAS. All rights reserved.

Résumé
Dans cet article, on montre la régularité de la matrice des coefficients de diffusion pour le gaz sur réseau avec énergie. O1

obtient également la régularité des variances assogiéegaines fonctions par le théoréme limite central.
0 2004 Elsevier SAS. All rights reserved.

1. Introduction

In our previous paper [6] we have introduced a lattice gas with energy and derived the fluctuation dissipation
equation for it. In this paper we prove that the diffusion coefficient matrix appearing in the equation is smooth.

In the derivation of hydrodynamic limit, uniquenesstbé Cauchy problem of thweak solution of limiting
diffusion equation is needed. It seems unsolved in the existing literatures. But once smoothness and uniform ellip-
ticity of the diffusion coefficient matrix is established and if there exists a Lipschitz continuous solution, then the
unigueness question is resolved.

The smoothness of the self-diffusion coefficient of the symmetric simple exclusion process is proved by Landim,
Olla, and Varadhan [4], and the smoothness of the diffusion coefficient for a lattice gas reversible under the
Bernoulli measures is proved by Bernardin [1].

It seems difficult to adapt to our model the method which introduced in [4] and developed in [1], since we do
not have any suitable orthonormal basis (with respectariant measure) of functions on the configuration space.
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In this paper, we choose a basis of the space of continuous functions on the configuration space which is no
orthonormal (with respect to invariant measure). We also introduce a Markov process whose state space is a set «
indexes of the basis and which may be regarded as a dual process. By using this process, the diffusion coefficier
matrix is given by a finite linear combination of smooth functions whose coefficient is given by expectation of the
total occupation time for a certain infinite set. We prove that the expectation of the occupation time for the infinite
set converges if > 3, and diverges ifl = 1, 2. But if we examine the linear combination more carefully, then we
find that it is a difference of expectations of the total occupations times of a certain infinite set for the processes
starting at two different points. Such difference makense as in the same way that makes the potential function
of one or two dimensional random walk well defined.

This paper is organized as follows: In Section 2 we state the model and results. In Section 3 we introduce a basi:
of continuous functions on the configuration space and compute the coefficiéift with respect to the basis.

We also introduce a Markov process which may be regarded as a dual process of our lattice gas, and solve th
resolvent equation by using the process. In Section 4 we estimate the expectation of occupation time of certain se
for the process in dimensio@s> 3. In Section 5, we estimate an expectation of occupation time for a finite state
continuous time stochastic jump process. In Section 6, we estimate an expectation of occupation time for certair
set for the process. In Section 7 we prove the main results.

2. Moddl and results

Our lattice gas is a Markov process on the state space {0, 1, ..., k}zd. Let n = (nx), ez« Stands for a
generic element ok, so that for each, n, € {0,1,2, ..., k}. For any local functiory we define operators*->)
andz*~Y by

7O £ () = L 0.,=0) (£ ) = £ ().
7Y f() =g, s21<n,<-1 (F @) — f (),

wheren™-Y) andn*~? are the configurations defined by

ny, ifz=ux,
(n(x’y))z ={ e, Iifz=y,

n,, otherwise

nx — 1, if z=1x,
7 N=yy+1 ifz=y,
Nz, otherwise

For any local functionf we define the generator

Lfm:= > {eexn)m ™ f() + cgen) w7 £ ()},

x,yeZ4: |x—y|=1

where| - | is the Euclidean norm a4 andcex(r), cge(r) are positive functionsof =0, 1, 2, .. ., k. Furthermore
we suppose thatx(0) = cge(0) = cge(1) = 0 andcex(r) > 0 for 1< r < k andege(r) > 0 for 2< r < k.

The process is thought to model a time evolution of the dynamics of a gas of particles having energy. The values
of n, are interpreted in such a way thagif = 0, then the siter is vacant, and if), # 0, then there exists a particle
having (discrete) energy, at sitex. A particle at sitex moves to a nearest neighbor sjtat ratecex(ny) if y is
vacant. One unit of energy of the particle at sitis transferred to the particle at a neighboring sit ratecge(n.)
if the energy of the particle at the siteis less thark.
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Consider the family of product measures on the product sfiade?, .. .,k}zd with the marginal distribution
1-p if =0,
vpallns ne=1) = PZ =1
p%m if2<I<k
forall x € Z4, where 0< p < 1, 0< o < 0o andZ,, is the normalization constant. Put
p:=p(p,a):=E"[nol,

thenp is a rational function of two variablgs, «, and for eaclp, p is a strictly increasing function of. Therefore
there exists an inverse functian= a(p, p) say. We define?, , by

Ppo() :=Vpap,p) ()

for0< p <1andp < p < kp. For any local functiory, E, ,[ f]is a smooth function op andp. We can easily
check thatL is symmetric with respect t&, ,. One can show that there exists a unique closed extensibrirof
the space of continuous functio6$X) with supremum norm (see [5]). We denotedj¥ the semigroup generated
by the closed extension.

We define the shift operatat for x € Z¢, which acts on alid c Z¢, and local functiong’ as well as configu-
rationsn as follows:

WA=x+4+A,
T f () = f(Tm),
(Txm)z = Nz—x.

Let D(p, 0) = (l~),',j (P, P))i,je(1,2) be a 2x 2 symmetric matrix defined via the variational formula

(a-D(p, pla) = Z a;D; j(p, p)a;
ij

2
= irL)f Ep, [Cex(no) {”(o’e) (a1no + a2l{yy20)) + Z 7 @0 Txu}
X

2
+ cge(n0) {noae(alno + axli020)) + Z noaetxu} }, Q)
X

wherea is any 2-dimensional vectae,is a unit vector and infis taken over all local functions. Put
Epplnil—p? (1—p)p
x(p,p):=< ppeio ,
1-pp p(1-p)
D(p.p)=D(p.p)x (p. p). ()

forO<p<1landp <p<kp. (x " 1(p, p) denotes the inverse matrix gf(p, p).) Using these notations we can
state our main result.

Theorem 2.1. Let (p, p) suchthatD < p <1andp < p < kp. Then the diffusion coefficient matrix for this model
defined by(2) is a smooth function gf and p, and has the smooth extension up to the boundary.

The smoothness of the diffusion coefficient matrix is implied by that of the central limit theorem variance for
certain functions.
We define the currents?, w? by
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w (1) 1= cex(170)710116£0,11=0} (1) — Cex(11)71L{311£0,70=0} (1)
+ cge(n0) Lo >2, 1< <k—13 (M) — cge(n1) Ly, >2,1<n0<k—13 (1),
w! (1) = cex(10) L0110} (1) — Cex(71) 1510, 10=0) ().
Denoted by the linear space spanned by currenfs w? for all positive unit vectors.

Theorem 2.2. Supposef € W. Then[;° > 74 Ep o[ f€-' 7, f1dt is a smooth function of and p.

Remark. If the dimensiong is greater than or equal to 3, the presenthodtis applicable to generalized exclusion
process which is introduced by Kipnis, Landim and Olla [2], namely Theorems 2.1 and 2.2 are valid for it in
dimensions! > 3.

3. Basisof C(X) and dual process

In this section we will introduce a basis of the space of continuous functions on the configuration space and
compute the coefficient df f with respect to the basis for a local functign

Let C(X) denote the space of continuous functionsXmwith supremum norm. It is convenient to define a
subspace&o(X) of C(X) as follows: LetCo(X) be the set of functions such that there exist positive constants
andc with

—col
Sup |f) = f()] <c1e7
n.0" me=n for |x|o <!

forall I > 0, where| - | is the supremum norm aff’.
We defineA by

A:={A= (A1, ..., Ap): A; €Z% with A;NA; =@if i # j},
whereA € Z¢ meansA c Z¢ and|A| is finite. ForA, B € A, B C A meansB; C A; forall i, A\ B means that

theith componentisA; \ B;, andt, A means thatth componentis, A; (i =1, 2, ..., k). We define two types of
cardinality by

#A:=) 1Al
i
#A :=Zi|A,~|,

i

and a family of functiong¥4}ac 4 by

k
wat) =[] ] Line=i -

i=1 xeA;
For A € A we define the special configuratign by
s i ifzeA;forl<i<k,
%)= .
o if d ¢ Ui Ai.

The cardinality #A and#A4 equals the number of particles and total energy for the special configurgtione-
spectively. The functio4 is the indicator function of the set of configuratiopgor which each site of J; A; is
occupied by a particle and each particleAgnhas the common energy
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Lemma 3.}. The family of function$®4} < 4 is a basis of the linear spadé(X). Furthermore, forf € C(X) if
we definef: A — R by

f(a):= Y (=) NB rn?),
BCA
then

fo =" f(Awam). (3)
AeA

Proof. Itis not difficult to see thaf¥} 1< 4 are linearly independent. Therefore we have only to prove (3).
Fix A € A andx € Z¢ such that ¢ | J; A;. For 1<i <k andB C A, defineB* € A by
BiU{x} if j=i,
B; if j#i.
Then for f € C(X),
fashy =3 (OB p B 1 3 (—)HANE) p (B,

BCA BCA

(B = {

Let f be a local function. Then there exists= A(f) € Z¢ such thatf depends only off,: x € A}, and

fa = o™ (4)
is valid for all A € A, whereA N A € Ais defined by(A N A); := A; N A. These two equality shows that
f(A)=0 (5)

if U; Ai N A° # @. Therefore right-hand side of (3) is a finite sum. By (4), we have only to check the truth of
faP)=Y" fawam®
AcA
for all B € A suchthat J B; C A. By the binomial expansion
Z (_1)#(B\A) —(1- 1)#3
ACB
for B € A, it holds that
Yo FAEaa® =) Y DO g = fa®).
AcA ACB CCA
Therefore the equality of (3) is valid for every local function.
For a continuous functiorf we can approximate it uniformly by a local functigh which is defined by
Ja(n) = f(na,),
where
ne ifxeA,,
Ma)x = { 0 ifxga,
and A, is a cube centered at origin and of side2 1. Sincef, is a local function, we can write

Fo =" fu(A)Wa().
Ae A
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It is not difficult to check that il J; A; C A, then fn(A) = f(A). Therefore (3) holds for every continuous func-
tion. O

From now on, we regard the sequel{anA)}A as the coefficient of the continuous function©fn the expan-
sion (3).
We expand currents”, w? in the expansion (3). Then we have

k k k k
weE = Z{Cex(l)l :lI/@o,i —_ Z lpﬂo,i;e,]‘ } } — Z:Cex(l)l {lp@e,i — Z l1/(/)0,]';6,1' } }
i=1 j=1 i=1 j=1
k k-1 ko k-1
+ DY cged)Wpoies — ) Y cgeli)Wgpiie (6)
i=2 j=1 i=2 j=1
k k k k
wf = Z Cex(i) { lI/@O,i — Z lI/@O,i;e,j } } — Z:Cex(l.):lpwe,i — Z lI/‘/)O,j;e,i } } .
i=1 j=1 i=1 j=1
where@®i, %5/ ¢ Aforx,yeZ? x #yand 1< i, j < k are defined respectively by
. {x} ifl=i,
@ = :
] otherwise
{x} ifl =i j,
(v} if | = Z "
(@x’i;y'j)l — y . =J )
{x,y} fl=i=j,
0 otherwise
Denote by, the reflection operator with respect t¢2k along thee direction, namely for € 29,
Xo! if e £¢,
o= feze ®)
—x.+1 ife=¢.

We may extend, to .4 naturally. Put
Be:= {0 1<i <kyu el 1<i, j <k}

and
cex(i)i if A=0% forl<i<k,
—cex()i +cgeli) if A=@05eT for2<i <k, 1<j<k—1,
Wy (A) =] —cex(D) if A=yOLeiforl< j <k,
—cex(i)i if A=g00ekfor2<i <k,
0 otherwise
cex(i) if A=00"for1<i <k,
WP (A) = coxi) if A=000d for1<i, j <k,
0 otherwise

whereg*- and@*:-7 are defined by (7). In view of (6), it holds that

wE =" BE(A)Wa — ¥y,a),
AeBB, (9)
wl =" 4e5, WE (A)(Ws — g,a).
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We defineA* Y andA®Y) by
(Ar o A ULl A\ (b A\ D) Aja U D) AR,
AT ::[ if x € A;,ye Ajsuchthat i <k,1<j<k-—1,
A, otherwise,
A ;:{(Al""’A" \{xpUyh .. Ap), ifxeAiy¢U;Ajsuchthat IKi <k,
A, otherwise.

Givenx, y € Z¢, defineYy , C X by
Yeyi={nne=22,1<n,<k-1}.
Thenw, (n* ™) = Wav—x(n) for n € T ;. Therefore using summation by parts formula, we get

T 7Y ) = Ly 210, <k-1y (1) Z F(AY(War—x () — Wa(n)
A

=1y, >21<n,<k-1 M) Y _(FA7TY) = F(A))Wa().
A

ForA e A, if Wa(n) # 0 for somen € 7y ,, thenA*™> = A. Therefore

V) = (FATTY) = f(A)Pa).

A
Similarly
7D fp) = Y (AT — FA)watm.
A

If we definecge(x, A) andéex(x, A) by

. A) {Cge(i) if xeA; forl<i<k,
Coel X, = )
% 0 otherwise
A cex(i) fxeA;forl<i<k,
Cex(x, A) = )
0 otherwise

then we can rewritd.f in the form

Lf(m) =) L(A)way,
AeA

Liy= > {egelx, A(F(A) = F(A)) + Cextx, A)(F(A) = f(A)}. (10)

x,yeZ4 |x—y|=1

Let X; be a Markov process oA whose generator i5 defined by (10) and®, a distribution of the Markov process
starting fromA. Then the process is equivalent to the original process which starts from the configuration
Therefore the Markov process generatedbipherits the conserved quantities from the original process. Namely,
if we define4; ; C A by

Aij={Ac A #A =i #A = j}, (11)

thenA; ; becomes the ergodic classes of the Markov process generafed by
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Let X, be a Markov process adl whose generator i& defined by (10) and’4 the distribution of the Markov
process starting fromt. Then the process is equivalent to the original process which starts from the configura-
tion nA.

Let the sequencg, (A)}4 be defined by

o
G1(A):=Eq / f(X)e™ ds, (12)
0
for a local functionf. Put

g () =Y _ & (AWa).
A

Lemma 3.2. The functiorg; is well-define and an element 6§(X). Furthermore this function is the solution of
the resolvent equation

rgr—Lgi=f. (13)

Proof. Itis enough to prove Eh@t)\ is well-define agd an element 6H(X). By the definition ofL, #X, and#X,
are conserved. By using (5),(A) is zero if #A or #A is large enough, and similarly f@h (A4). We define the
stopping timeo,, by
{inf{S: U,’ (Xy)i C Ay} if {s: U,’(Xs)i C A} #9,
Op = .
& if {s: Ui(Xs)i C An} =90,
where A, is a cube centered at origin and of side2 1. Pick up a large: such that ifl_J; A; N AS # @ then

A

f(A) =0. Therefore

A

mEalem],

&1(A) = EA[ /f(Xs)e*“ ds] < %

On

wherefM = maxy f(A). We defined, (A) the sum of the supremum distances frotp to elements of J; A;:
formally if J; A; \ An = {x1, ..., x™} then

m

dy(A) =) (1 loo — n).

i=1
Since the jump rate is bounded, it is not difficult to show that there exist conglants > 0, which may depend
on A, such that

E4 [e*)nﬂn] < Clefczdn(A)'

This shows thag, () is well-define and an element 65(X). O

We give the reversible measure foy which we will use in Section 7. We define(A, p, p) by
m(Aa P p) = Ep,p[lI’AL
forAe A, 0< p<landp < p <kp. The discrete measure whose masd @ m (A, p, p) is also denoted by:.

Lemma 3.3. For eachA € A, m is a smooth function op, p, and for each pair ofp and p, m is a reversible
measure folL.
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Remark. We decomposel into {A; ;} the ergodic classes of the Markov process. On each ergodicelasg, p)
for0< p <1, p < p < kp are essentially the same. That is, for each ergodic cassp, p) andm(-, p'p’) are
absolutely continuous each other and the Radonedlikn derivative is a constant depending onlyam, p’, o’
and the ergodic class.

Proof of Lemma 3.3. We have only to prove that is a reversible measure fér, or equivalently that

ége(-xv A)m(Av P, IO) = ége()’v AX—>_}')m (AX—>)‘, D, IO)v for A 7é AX—)}',
Cex(x, A)m(A, p, p) = éex(y, A Ym(ASY) p, p), for A AW,

for eachp, p. But this relation immediately follows from the reversibility of the original process.

4. Estimate of the expectation of occupation timein dimensionsd > 3

In this section we will estimate an expectation of occupation time for a certain set in dime#sioBs
Firstly we prove a general result on the expectation of occupation time for the Markov process.

Lemma4.l. Let B C A, and suppose that there exist two subgtsi3, of A and functionsfi and f> on A such
that

BC B1CBa, (14)
/120, (15)
f1(A) =21 if AeBy, (16)
Lf1(A) <0 if AeBs, (17)
sup f1(A) <1, (18)
AeBBg

f220, (19)
supfz < oo, (20)
Lf(A)<—1 if AeB,. (21)

Then we have

o0
sup/ Ea[15(X)]ds < oc.
A

0

Proof. We consider the martingale defined by
N
Mii= fi(X) = fitxo) - [ LX) du
0
fori =1, 2. SinceM, o =0, applying the Doob’s optional sampling time theorem

031/\N

fl(A):EA|:fl(X051/\N)_ / fl(Xu)duj|
0
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for all N > 0, whereop, is a first hitting time to3;1. Substituting the conditions (15)—(17) the right-hand side is
greater than

EA[I{051<N}]~
Therefore by condition (18)

Sup Palop, < ool < sup f1(A) < 1.
AeBBg AeB3g

Similarly, by using the conditions (19)—(21), we get

sup Exlopg] < sup f2(A) < oo,
AeBBy AeBBy

whereoBE is the first hitting time toB5. On using the Markov property, the supremum of the expectation of
occupation time foB3 is finite. O

From now to the end of the section, we suppose that the dimengisngreater than or equal to 3. In order to
apply Lemma 4.1, we prepare some functions. We define functipng:,; from Z¢ into R, which are a small
perturbation of the potential function @f , by

1 if x| <1,

h1(x):= 1 d-2 .
{ («/1+<\x\—l>2) itx) =1

Vitix2)

for I >0, where| - | is the Euclidean norm a“. Fora = (a1, az, as, as) such thati1, az, az > 0 andas > 0, we
define a functiorg, from R into R satisfying the following conditions

h2(x):= <

e g, is a continuously differentiable function ét,..
e Ontheinterval0, a1], g, is a quadratic function with-az for the coefficient of the second order term.
e There exist$ > a1 such that:
— Onthe intervalay, b], g, is a quadratic function withz for the coefficient of the second order term.
— Ontheintervalb, 00), g, is zero.
o The differential coefficient from the right at= 0 is —ag.

Formally
2 | ( 21, 1 ;
—ap(x + )"+ Buztads (L 4 1) if0 <x <ay,
2 :
8a(x):= ag{x—(zalgﬂ%:a“—i—al)}, |fa1<x<al+%ﬁ‘,

0, if x >a1+ M#ﬁ.
Let us defined,, by
Ay :={A e A: #A = M}.
Assume thatA is a Euclidean ball with radius and defing3 := By, ; by

B:= {A € Ay UA,» N A # @ or there exisk, y € UA,- suchthat K |x — y|eo < l}. (22)

1
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Here| - |« is the supremum norm &<. For A € Ay, we definelx;: 1<i < M} :={x;(A): 1<i<M}cZ%by

{xi: 1<i<M}=UAi,
i

andx; ;(A) by the jth component ok; (A).
Let us define constants, a» andc® by

2 1
=(M?*+1, =, ——.0), 23
o= (0241, 2, 5 500) 23
1 1 4M2ct
= M2 l,—, —s,—, 24
a2 ( T e T ) (24)
and
¢~ :=mincex(r), (25)
r
¢t = maxcex(r). (26)
r

Lemma 4.2. Define setd31, B2 and functionsfi, f> by

B1:=B8,
By :={A € Ay: there exists: € A such thafx|o < M?+1
or there exists:, y € A such thatl < |x — yleo < M2 41},

M
AA) =Y huGd+ Y haa( —xj),

i=1 1<i<j<M
M d d

A=Y ga (i) + D D ga(lxij — xm ),
i=1 j=1 1<i<m<M j=1

whereay, ap andc* are defined by23)—(26) Then the conditions of Lemmdal hold, namely(14)—(21)hold.

Corollary 4.3. Suppose thaf > 3. Then for3 defined by22),

oo
sup/ Ea[15(X)]ds < oc.
A

0

Proof of Lemma 4.2. We have only to check the truth of the conditions (17) and (21). We d&firizy
Bo=Bou :={A € Ay: |xi(A) —x;(A)| > Lfori # j}.

Then on the seBy, L behave as a discrete Laplacian & for eachx; (A). Formally, if we denote by\, the

discrete Laplacian o&?, then

M

L(A) =) lex(xi(A), A)(AahinG) + Y (Cex(xi(A), A) + Cex(xm(A), A))(Agh2,1)(xi — Xm).
i=1 1<i<m<M

for A € Bo. Sincehy, hp,; are small perturbations of thedimensional potential fution, each term of the right-
hand side is non-positive. Siné¥ C Bo, the condition (17) is valid.
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We also have

M d
LA =) Cex(xi(A), A)(A1gay)(|xi; (A)])
i=1 j=1
d
+ Z Cex(xi (A), A) + Cex(xm(A), A))(A18a) (|xi, 1 (A) — ),
1<i< j=1

for A € Bg. From the choice of the second componenigfay, if |x; ;(A)] < M2+ 1, then
Cex(xi (A), A)(Argay) (|xi,; (A)]) < -

and if 2< |x; j(A) — xp,; (A)] < M? + 1, then
(Cex(xi(A), A) + Cex(xm(A), A))(A1ga;) (|xi,j (A) — xm,j(A)]) < —

From the choice of the third componentaf ap, each terms of the last equality is less than or equaymzl On
the setB3; N By, there exists such thatx; ;(A)| < M? + 1 for all j, or there exists, m such that < |xi, j (A) —
Xm,j(A)] < M? +1 for all j. Therefore on the sé, N By, the condition (21) is valid.

On the setB32 \ Bp, without loss of generality we assume that there exist2 and 1< j < d such thaty; =
x1+(—1De; for1 <! < n,wheree; is aunit vector for thgth coordinate, and i +1 < i < M, then|x; —x,,| > 2
forall 1 <m < M, i # m. Furthermore, we can assume that the choice aftt&™*) is similar tox; (A), namely
we assume that

X (A(y’z)) _ {xl(A) If y 75 Xi (A)s
if y=xi(A),

forall 1<i < M,yelJ; A; andz ¢ |, A;. ThenLg,, (|x; ;(A)]) andLga,(|xi.j(A) — x»_;(A)]) make sense for
1<i <m < M. By elementary computation if& i <m < n, then

Lgay(|xi.j (A) — xm j(A)]) <O,
and

~ 4C+M2
Lgay(|x1,5(A) = x2,j(A)]) < =———.

4ctM?

L8y (|xn—1,;(A) = xn; (A)]) < —

The last valuef%,’”2 is given by the choice of the fourth componentigf We also compute that
LY sar(lij (A)]) = Cex(xa(A). A){gan ([x1,;(A) = 1]) = gan (fx1;, (D))}
1<i<n
+ Cex(xn(A), A){ga ([xn,; (A) + 1) = as ([ (D)}

Since we assume that ; (A) = x;_1,j(A) + 1 for 2<i <n, the right-hand side of the last equality is equal to

Cex(x1(A), A) Y (A1gay)(|xij(A)])

1<ign
+ {Cex(xn(A), A) — Cex(x1(A), A) Hgar (|xn,j (A) + 1]) — gay (|2, (A)]) }.

From the choice of the third componentaf the first line is less than or equalig/ M?. Since the maximal value
of g4, (x) — g4, (x + 1) is given by the maximal value of differential coefficientgf;, from the choice of:; the
second line is less than or equal ©04M?2 + 1) /c~. From the assumption of the for i > n + 1, the other terms
for I:fz is less than or equal to/M?2. Thus we have checked the truth of the condition (21).
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5. Occupation time for some stochastic processes

In this section, we consider finite state continuous time stochastic jump processes, which may not be Markovian.

Let S be a finite set, which is a state space of our stochastic process. Faredaclthere is given a probability
measure:.’ onS x Ry. Let (Y o', i e S, n=0,1,2,...beasystem of independent random variables taking
values inS x R, such that for eachthe joint distribution of(Y?*", ") is given byu! for everyn.

Then our process is described as follows. Suppose that the process spesSaf hen one takes the random
variable (Y00, 570-0) and let the process stay &t up to the times©? and jump toY? at time ¢©°. The
procedure is repeated over by letting it starizat Y00 and taking up(Y>-1, 021y place of (Y0, ¢/0:0), We
denote the distribution of the process which starts fiomS by P;. We suppose several conditions for the joint
distributiony’. Let us define

Fij() = EM Ly e .
(A.1) It holds that
Fii(A)=0
foralli € S.
(A.2) There exist constants ;, f;, ;, and a functiorg (1) such that
Fij() =pij — fi.jg() +0(g()),
wherep; ; > 0 and foralli € S
Z pij=1
jes
fi,j is non-negative; angd(i) is a positive and increasing function frdRy. to R which vanishes at = 0. Here
o(-) is Landau’s symbol a& tends to 0. In this paper(1) will be +/A or —1/logx accordingly as/ = 1 or 2.
(A.3) The stochastic matriy; ; in (A.2) is irreducible.
(A.4) There exists a paifi, j) such thatf; ; is strictly positive.
(A.5) There existsg such thatf;;, ; =0 for all j. Furthermore, there exists a positive constansuch that

> Fig.j() =1~ figh+0().

J

Lemma 5.1. Suppose thafA.1)—-(A.5) hold. Then for all € S, the Laplace transform of occupation time foris
asymptotically equivalent tb/g (1) (asA tends to0), namely there exists a constafit which depends ohsuch
that

r e C1 1
E | 10X, e ds = —= — ).
0/ lio} (X)€" s g(h) +O<g(k))

Furthermore for alli, j € S, there exists a limit of the difference of Laplace transform of occupation tim#,for
namely there exists a constafit which depends ohand j such that

o0 oo

)!imo{E,' / 1{,~0}(Xs)e‘“ ds — E; / 1{,~0}(Xs)e‘“ ds} =Cs.
0 0
Proof. Let Q; ;, (1) be the Laplace transform of the occupation timeifowith starting point € S. Letoy be the

first jump time. Then on using the conditional independence of the process after tha timd the jump timer,
givenX,,,
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o1 o0

Qiig(A) =6iig Eig /e‘“ ds + Z E,'e_)”all{xalzj}Ej / 1{,»0}(X5)e‘“ ds
0 J 0

1
=Biio (1 — Y F, ,m) +) F ()00,
J J
ThereforeQ, ;, (1) is given by
0iie® = ((I = F()) "x(M),,
where

Cr(A)i = Biig ( Z Fi, ,(A))

Recall that by (A.5),x(1— Zj Fiy,j(M) = fig +0(D).
Let (I/:;),-,j be (i, j)-element off — p cofactor matrix. Then it is easy to see

def(/ — F(1) =detl — p)+ Y fi.; (I — p); jg(1) +0(g(h).

i,j
Since p is a stochastic matrix d@t — p) = 0. Slncep is irreducible (I i ij > > 0 for all i, j € S. Using the
conditions (A.2) and (A.4), we get; i = p)l ;>0.PutCo:=3; i fi (I p); j» then

1 1 1
detf(7 — F(n) = + o< )
(det ) Cog(M) g()
Furthermore there exists a matd ; such that cofactor matrix af — F (1) is given by

(1= FW), ;= T~ p)ij +Cijg®) +0(s ().

Therefore
T~ Pliiofis 1 ( 1 )
iig(A) = .
Qiio(*) ¢ sm  LGw

Sincep; ; is a stochastic matrix that is |rredUC|bIe we see ‘(hla% pPij= (I pk,j foralli, j, k € S. Since the
dependence af; ;, (1) oni comes from(/ — F(A)),,l whose principal term cancels by the subtractio®gf;, (1),

)ILiLnO(Qi,io()\) — 0Qj.is(M) = fioCo(Ciig — Cj.ip)- O
On using the result of the discrete time random walk (see for example [7]) we can easily get following results.

Proposition 5.2. Let us consider continuous time symmetric simple random wal with the jump rate-. Then
there exists a constant = C(r) such that

Ei[e 0] =1— Cv/A+0(/2),
whereuyq; is a first hitting time to{0}.

Proposition 5.3. Let us consider continuous time symmetric simple random walkZoand B := {0, teq, e}
wherees, ep are positive unit vector o@2. Then there exists a positive constapts,, Cy , which depends on the
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starting pointx € Z2, the first visit point toB, y € B say, and the coefficient of the exponential holding time such
that

E.le ALB 1{X/»g:y}] =Ppx,yt Cx.,y@ + 0<@),

with
Z Px,y = 1,
yeB\{0}

for x ¢ B, whereuw p is a first hitting time toB.

6. Estimate of the expectation of occupation time

In this sectionX, is a Markov process onl whose generator i& defined by (10),P4 a distribution of the
Markov process starting from, 4; ; the ergodic classes of the Markov process defined by (11paadeflection
operator defined via (8).

Letes, e, ..., eq be positive unit vector od? andA ={0,1} ford =1 andA = {0, e1, ...,eq) ford > 2. Let
us defineDy, D5, D2 by

Dy = {107 1<i <k},
D§ = {p0hed 1<, j <k},
D} ford =1,
2= .
UL, DY ford >2.
For B € D1 U D2 we also defind3(B) by

B(B):={A € A: there exists € Z¢ such thai(z,A); N A = B; forall i }.

(27)

Lemma 6.1. Suppos& € D1. Then

00 00
Ec / 18(3)()(5)6_)"3 ds — E(-?eC / 13(3)(Xs)e_“ ds=0
0 0

forall B € D1 UD».

Proof. SinceC e D1, there exists X i < k such thatC = %, Then6,C = @#*. ThereforeC andé,C are in the
same ergodic clasd ;. It is easy to see that B € A1 ; thenB(B) = Ay ; andif B ¢ Ay ; thenB(B) N A1; =0.
Therefore

o0 o0
Ec / 158)(X5)€ ™ ds = Eg,c / 15p)(Xs)e ™ ds = %
0 0
for B € A;; and
o0 o0
Ec / lB(B)(XS)e_)"S ds = Eg,c / 13(3)()(.;)6_“ ds=0
0 0

forB¢ Ay;. O
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For C € D,, we defineD(C) by
D(C):={B € D1: #C — k <#B <#C — 1} U{B € Do: #B = #C}.

Lemma 6.2. Suppos& € Dy and B € (D1 U D3) \ D(C). Then it holds that
o0 o0
Ec / 18(3)()(5)67)\5 ds = Eq,c / 13(3)(Xs)e’“ ds =0.
0 0

Proof. By the definition ofD(C) it is clear that if B € (D1 N D>) \ D(C), thenB(B) N A(C) =@, where A(C) is

the set of ergodic classes which include the elenderit is also clear thaD(C) = D(6,.C) and A(C) = A(6,.C).
Therefore it holds that

S S
Ec / 15(3)(X5)e*“ ds = Eg,c / 13(3)(Xs)e*“ ds =0. O
0 0

Lemma 6.3. Suppose&” € D, and B € D(C) N D1. Then there exists a subs{é)),(B)};’:l C D(C) N Dy, which is
defined by(28) below, such that

o o0
Ec / 18(3)()(5)67)\5 ds — Eq,c / 13(3)(Xs)e’“ ds
0 0
d o o0
= Z:—Ec / 18(py(8y) (X5)€ ™ ds + Egc / 18(Dy(By) (X5)E™ dS}-
=1 0 0

Proof. SinceC € Dy, without loss of generality we supposee A; ; for some 2< j < 2k in this proof. Since
B € D1, there exists K i < k such thatB = #%. Then

{{Qx,i;y,j—i; x,yeZd y—x+#0,e1, e, ...,eq} f1<j—i<k,

B(B)NAz ;= )
otherwise

Let us defined), ; C Az ; by
;,]. ={A=(A1, A2, ..., A) € Az : A; #0}.

Then it is easy to check that

B(B)N Az C A ;.
It is convenient to introduce the difference set

By j(B):=Ab ; \ (B(B) N Az).
It is not difficult to check that

d
B, ;(B) = (BTl x yezd y—x=e1 e, ..., eq} = UB(@O’i;el’-j_i).

=1
Set

Di(B) = Dy(#%) := 25l e Dy, (28)



Y. Nagahata / Ann. I. H. Poincaré — PR 41 (2005) 45-67 61

Then we have

oo (08}

d
chlB(B)(XS)eASds:EC/(lAEj(XS)_ZlB(Dl(B))(Xs)>e)\Sds.

0 0 =1

Since our Markov process anti, ; are mirror symmetric,

o0 o0
Ec/1A;2/(Xs)e_“ds=E9C/1A£j(Xs)e_“ ds.
0 0

Therefore we have

o0

00
chlg(B)(Xs)67AS ds — Eq,c / 13(3)(Xs)e’“ ds
0 0

d 00 00
= Z{—EC / 18(1)1(3))()(5)9_“ ds + Egc / 1B(DI(B))(XS)G_)LS ds} O
=1 0 0

Lemma 6.4. Suppose&” € D, and B € D(C) N D,. Then there exists a constafit which depends oB®, C and
dimensiord such that

%® 00
)[imO{EC / 13(3)(Xs)e—ls ds — Eg,c / 15(3)(X5)e‘“ ds} =y
—

0 0
Further there exists a positive constaryt which depends o, C and the dimensiod such that
&) 1 if d—
00 N ﬁ+o(ﬁ), ifd=1,
Ec / 1pp)(Xs)e ds =1 —Cyloga + o(logr), ifd=2,
0 C2+0(1), ifd > 3.

Hereo(-) is a Landau’s symbol ak tends ta0.

Proof. Firstly we prove the lemma faf > 3. If we substitute 2 fof in (22), thenB(B) is a subset of3 defined
by (22). By using Corollary 4.3, we have already proved that

o
EC/IB(B)(XS)dS < Q.
0
Therefore we conclude the proof of this lemmadoe 3.
Secondly we prove the lemma fdr= 1. The proof is divided into 2 steps.
Stepl. SinceC € Dy, without loss of generality we suppo€ee Ay ; for some 2< j < 2k in this proof. Since
B is an element oD(C) N D,, there exists such that 1< i, j — i < k and B = #%#1J—=1, ThenB(B) may be
written as
B(B) = (¢ i~ x e 7).
We can also rewrited, ; as

Ap j={@myi=m: x yeZ,x#y,1<m, j—m<k}.
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Let us consider the equivalence relatierin .4 ; which is defined by
greom:yd—m ~ gelmyL=m' it and only if x —y=x'—y/, andm =m/,

the quotient set ofd, ; relative to relation~, and representative. Sing@mbi—m ~ g0.Jj—m=Lm e can take the
representative in the form®”:5/=" for 1 < m, j —m < k andl € N. It is convenient to denot@®”:../=" py
(1, m). Sincep®:l.i=m means that there exist two particle at O dnwiith energym andj — m respectively, the
value! andm means that the distance of two particles and the number of energy which the left particle carries,
respectively. Itis easy to see thafife A, ; andA € B(B) N Az ; thenA ~ B. Since our process is shift invariant,
we project our process with respect to the relatigmamely we consider the following.

Let X; be the set of representative of the quotient sedpf relative to~: formally

Xj:={U,m): 1 eN,meZwith1<m,j—m<k}.
The process is a continuous time random walk¥grwith the jump rate given by

cex(m) + cex(j —m) if | =U'| =1 andm =m’,

r(d,m), q',m')) = CQE(”?) ?f [ = l/ =1 andm — m/ =1,
cge(j —m) if l=0'=1andm —m’ = —1,
0 otherwise

Namely the state space has fjin- 1, k} — maxj — k, 1} + 1 half lines which are linearly ordered. On each half

line except the point 1, the process evolves as a symmetric simple random walk with some constant jump rate (the
constant may depend on the half line). Each half line is connected to the next and previous half lines at point 1. At
this point the random walk is not symmetric. We denote the distribution of the random walk which staetstat

by Px. Then

oo

o
EC/18(B)(Xs)e*AS ds = EC/]-{b}(XS)eka ds.
0 0

whereB = g0mLi—n ¢ = gobxtm.j=l b — (1, n) andc= (m,1).
Step2. In this step we prove that there existswhich depends ob, c € X; such that

o
g C1 1
E. [ 1 xse“ds=—+o(—>
C([ 0 (%) VA VA

but there exists a limit of the difference

o o
lim {Eq / Lipy(X5)e™ ds — Eg, / Lipy (X5)e™s ds},
r—0

0 0

which depends ob, c1, ¢z € &;.

Since we know the distribution of the first hitting #nof O for the continuous time symmetric simple random
walk onZ with rater starting at 1, we tredi(/, m): m > 2} € X; as one point for each Formally we consider for
each; the following the continuous time stochastic process which is not Markovian. The state spackefined

by
Yi={Um):le{l,2}meZ,1<m, j—m<k}.
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The valuel means that if the distance of two particles is 1 thienl and otherwisé = 2, and the value ofz
indicates the number of energyrdad by the left particle. Defin€F, my), (i2,ma) (M)} a1.my). (12.ma)ey; BY

H (A cex(mi) + cex(j —m1))  ifl1=2,1=1,m1=my,
G (ki Zyy) ) if 1 =11y =2,m1=mp,
lﬂl
Fiymo. (pmg () 1= 3 GO Ziny) ”9;(;"11) iflh=lpo=1m—my=1,
G (ks Zpy) 1) iflh=l=1m —mp=—1,
my
0 otherwise

whereZ,, = Zy, j := cex(m) + cex(j —m) + cge(m) +cge(j —m) andH (-; r) andG(-; r) are the Laplace transform
of the first hitting time of O for the comiuous time symmetric simple random walk @rwith rater starting at

1 and the Laplace transform of the exponential distribution with ratespectively. Our stochastic process is the
same as that defined in Section 5 Withu, 1), (15,m2) (M)} (t.my). (t2.mp)ey; IN place of F j(2). Let us denote the

process and the distribution of the stochastic process which starts 3% by Y, and Py, respectively. Then it
holds that

oo o8}
ch 1{b} (Xs)ei)hs ds = EX / 1{y} (Ys)e7AS ds,
0 0

whereb = (L,1),c=(1,n) e X; andx=(1,0),y=Ln)eYjforal 1<, j—1,n, j—n <k. We can apply
Lemma 5.1 with the help of Propositi®.2 and get that there exi€§ andC; which depend oy, X2 andy such
that

o
_ C1 C1
Ex, | 1yi(Ys)e “ds=—+o<—),
Xl{)/ {y}(Ts \/X \/X
o0 o
A|im0{|§X1 / Ly (Ys)e ™ ds — Ey, / Ly (Y™ ds} =Cy,
—
0 0

wherex; = (I1,1), X2 =(l2, 1),y=(n, D) e Y; forall 1 < Iy, j — 11,15, j —I2,n, j —n < k. Therefore we conclude
the proof for this lemma fod = 1.

The proof of this lemma fo#f = 2 is similar to that for/ = 1. We indicate what we need to modify.

Stepl. Let/’\,’,.2 be the state space of our new Markov process defined by

XZ2:={(.m): 1eZ®\{Oh,meZwith1<m,j—m <k}

The valued andm means the difference of two particles and the number of energy on which the datums particle
carries, respectively. The process is a continuous time random Watlfwith jump rater ((1, m), (I', m")) as

cex(m) +cex(j —m) if|l=0'|=1andm =m’,

X ey _ ) —
F(m), (. mhy) = | o™ Tr=0 = "Tandm = =1,

cge(j —m) ifi=0,l|=1andm —m' = —1,

0 otherwise

Namely the state space has ordered{min 1, k} — maxj — k, 1} + 1 2-dimensional lattice planes without origin.

On planes the process is symmetric simple random walk with some jump rate. Each planes is connected to th
next and previous planes at pointg; and te,. At this point the random walk is not symmetric. We write the
distribution of the random walk which starts frone ij by Px. Sincef* -k i=l = gy-i=lxl ¢ A ij is not the
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representative of the quotient setd$ ; relative to~. But we suppose that the poirt ¥ i~ ¢ Ay j is branches
(x,) and(—x,j — 1) € X,.Z. Then following is truth. Suppos8 = @0mei=" € = grbxtmi-l e Ay ; by =

(e,n),by = (—e, j —n) andc = (m, 1) € ij. Then it holds that

0 00
Ec / 158 (Xs)e‘“ ds = Ec/(l{bl}(xs) + 1{b2}(XS))e_“ ds. (29)
0 0

Therefore we conclude step 1.
Step2. What we have to prove is that there exi€iswhich depends oh, c € ij such that

o0
EC/ 1{b}(XS)e‘“ ds = —C1logA + o(logi)
0

and there exists a limit of the difference
o0 o0

m {Ecl / l{b}(XS)ef)“S ds — Eg, / 1{b}(Xs)e*“ ds}.

li
r—0
0 0
We consider following continuous time stochastic process which is not Markov process, similar to thatTor
Let y,? be a state space of the process defined by
Vai={U.m): 1€Z? |l|=1or2meZ,1<m, j—m<k},
where||l|| = |I1] + |l2| for I = (11, I2) € Z2. Put{F} by

H2(x; cex(m1) + cex(j —ma),l1,12)  if llall =2, [Il2]l = 1, m1 = m2,
G (h; Zyyy) Scetmipcediom) if 111)l =1, il — Lol = 1, my = mo,
)?11
Fluymy),(tomp ) := 1 G(A; Zml)% ifla=1z, ll1l =1, m1 —mz =1,
Gk Zy) if 1y =12, ]l = 1my —mp=—1,
)?11
0 otherwise

whereZ,, = Z,,j := 3(cex(in) + cex(j — m)) + cge(m) + cge(j —m) andG(4; r) is the Laplace transform of the
exponential distribution with rate, and H2(x; r, x, y) is defined as follows. LeB = {0, -1, +e,} C Z2. Denote
by X" and P, the continuous time symmetric simple random walkZsrwith jump rater and the distribution of
the walk which starts from e Z2. Let 11 be the first hitting time t&. Then we defing??(x; r, x, y) by

HZ(A; rx,y):= Ex[e_wl{xlrlzy}].

Comparing this process and that ir= 1, the site(1,m) € J; corresponds t@/, m) y]?, with ||/| = 1 and

(2,m) € Y; corresponds t@/, m) € yf, with ||/] = 2. Denote byY, andPy the process and the distribution of the
stochastic process which starts frama )); respectively. Then it holds that

o (.¢]
Ec / 11y (Xs)e™* ds = Ex / 1y (Y)e ™ ds,
0 0

whereb = (e,l),c=(¢/,n) € X; andx = (e,l),y=(e/,n) e Yjforall 1</, j—1I,n, j—n <k ande, e e Z2
with |le|| = ||¢'|| = 1. We can apply Lemma 5.1 with the help abposition 5.3 and get that there exi&t andC;
which depend oy, x2 andy such that
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oo
Ex, / 1y (Ys)e ™ ds = —Cylogx + o(logh),
0

o0 o
AIiLnO{EX1 / Ly (Ys)e ™ ds — Ey, / Ly (Ye™s ds} =Cy,
0 0

wherex; = (I1,1), X2 = (2, 1), y=@m, ) e Y; forall 1 <l1, j — 1,12, j —l2,n, j —n < k. Thus the proof for
d =2is complete. O

7. Proof of theorems
Firstly we prove Theorem 2.2.

Proof of Theorem 2.2. We defineA = A4 c Z9 by
A1:={0,1},
Ag:={0,e1,ep,...,eq}, ifd>2,

wherees, ea, ..., e4 are positive unit vector od?. We recall thadV is the linear space spanned by the currents

wE, wr for all positive unit vectorg. Then for anyf € W, f depends only of,: x € A}, and

Epolf 1 Fal=0 (30)

forall p, p, whereF, is o-algebra generated B, . 4 1i5, 20}, D rca x @nd{ny: x ¢ A}.
In [3], Kipnis and Varadhan proved some equivalent relation about central limit theorem variance. We use one
of them. It holds that

/ZEp,p[foeLtf] dr Z)lii)noz Epolfregnl,
o ¥ x

whereg, is a solution of the resolvent equation,

rgn—Lgy=f.
Itis convenient to writeFy (p, p) = > Ep o[ f1xg:]. By Lemma 3.2 we have
Fi(p, p) = > B(AEp o[ [Wral + > G (AVEp o[ f¥r,al, (31)
x, A1 U; (zx A)iNAF#D x, A ; (e A)iNA=0

whereg, is defined by (12). By (30), the second sum on the right-hand side of (31) vanishes. We define the function
h by

Ep,p[flpB]

m(B, p, p)

for B € A such that J; B; C A. We recall that

h(B, p, p) =

B(B):={A € A: there exists € Z¢ such thai(z;A); N A = B; forall i}

for B € A, such that J; B; C A, which is defined in Section 6. Then the first sum on the right-hand side of (31) is
equal to

Yo D k(B p.p&(AmA, p,p).

BeA:U;B;CA AcB(B)
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We substitute (12) and use the reversibilityiofo see thaf, is equal to

o0
> hB.p.p Y. fOmC, p, p)chlB(B)(Xs)em .
BeA: |J; BicA CeA )

In view of (9), there exist$ . (C)} which is a linear combination disZ (C), w? (C)} such that

Fup.p)= Y. h(B,p,p) Y fe(C)m(C, p,p)

BeA:U;BiCA CeA

o0 o0
X {chlg(g)(xs)e‘“ dS—Egcflg(B)(XS)e_M ds}.
0 0

By (9), we know thatf, (C) =0 if C ¢ D1 U D, and
{BEAZ UB,' CA} =D1UDo,

whereD; andD; are defined by (27). Therefore we have

Fip,p)= )Y hB,p,p) Y. [(CmC, p,p)

BeD1UD, CeD1UD;
00 00

X {EC / 15 (Xs)e*“ ds — Egc / 15 (X5)67AS ds} (32)
0 0

We have decomposdd. (p, p) into a finite sum of smooth functions such that each term of it is the product of two
factors, one is a smooth function pf p which does not depend dn and the other is a function efwhich does

not depend orp, p. Furthermore the second one is given by a défere of expectation of Laplace transform of
occupation time for certain infinite set. Applying Lemmas 6.1-6.4, each of the second one convergesds

to 0. Therefore the limiting function af; (p, p) is also smooth. O

Proof of Theorem 2.1. Firstly we claim that

(a-D(p, p)a) = Ep. p[cex(no) {7 @ (arno + azl(ygz0) }2]

00
o 1
+ Ep,p[cge(nO){n'OHC(alr]O + a21{n0;é0})}2] - E / Z Ep,p[wafxeuwa] dr (33)
o X

foreachO< p <1, p < p < kp, where

P

. E
Wy = aiw, +axw, .

The proof of the equivalence of the variational formula (given by (1)) for the diffusion coefficient matrix and that
by Green—Kubo formula (right-hand side of (33)) can be carried out in a way similar to that indicated for the proof
of Proposition 2.2 of [8], p. 180. Therefore we omit the detail.

Secondly we show that there exists a smooth extensi@h &irstly we treat the diffusion coefficient matrix
as a function ofp, o, namely we take expectations with respectfg,. Then all expectations for local functions
are polynomials op and rational functions af. Put
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1 k o
=—11+ I ,
ple) Za{ 2 Cge(z)cge(3)"'cge(l)}

=2

-2

k
1 o
=114y P :
7 za{ 2 cge(z)cge(3)---cge(1)}

1=

Then the inverse matrix of = x (p, p) defined by (2) is equal to

Sy

Py =P\ —p 1o )
By the definition,Z, is a polynomial ofe. Furthermore, the constant term 8§, is not zero. We also have the
following: there exists a polynomidly(«) whose constant term is not zero such that 2 = aFo/Zg. By (32)
and the definition ofi, (a - Da) is a polynomial ofp and rational function of for each two dimensional vectar
Furthermore there exist a positive integeaind a polynomial™{ (p, «) whose constant term is not zero such that
(a-Da) = pal’( /Z},. Therefore we have a smooth extensiooés a function op, « at p = 0 ora = 0. Sincep
is a smooth and strictly increasing functionpfinde, we have a smooth extension Bfas a function ofp andp
at p =0 or p = p (corresponding tp = 0 or @ = O respectively). Using the same method we also have a smooth
extensionap=1orp=kp. O
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