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Abstract

In this paper we obtain the smoothness of the diffusion coefficient matrix for the lattice gas with energy. Furthermore
obtain the smoothness of the central limit theorem variances for certain functions.
 2004 Elsevier SAS. All rights reserved.

Résumé

Dans cet article, on montre la régularité de la matrice des coefficients de diffusion pour le gaz sur réseau avec én
obtient également la régularité des variances associéesà certaines fonctions par le théorème limite central.
 2004 Elsevier SAS. All rights reserved.

1. Introduction

In our previous paper [6] we have introduced a lattice gas with energy and derived the fluctuation diss
equation for it. In this paper we prove that the diffusion coefficient matrix appearing in the equation is smo

In the derivation of hydrodynamic limit, uniqueness ofthe Cauchy problem of the weak solution of limiting
diffusion equation is needed. It seems unsolved in the existing literatures. But once smoothness and unifo
ticity of the diffusion coefficient matrix is established and if there exists a Lipschitz continuous solution, th
uniqueness question is resolved.

The smoothness of the self-diffusion coefficient of the symmetric simple exclusion process is proved by L
Olla, and Varadhan [4], and the smoothness of the diffusion coefficient for a lattice gas reversible un
Bernoulli measures is proved by Bernardin [1].

It seems difficult to adapt to our model the method which introduced in [4] and developed in [1], since
not have any suitable orthonormal basis (with respect to invariant measure) of functions on the configuration sp

E-mail address:nagahata@sigmath.es.osaka-u.ac.jp (Y. Nagahata).
0246-0203/$ – see front matter 2004 Elsevier SAS. All rights reserved.
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In this paper, we choose a basis of the space of continuous functions on the configuration space whi
orthonormal (with respect to invariant measure). We also introduce a Markov process whose state space
indexes of the basis and which may be regarded as a dual process. By using this process, the diffusion c
matrix is given by a finite linear combination of smooth functions whose coefficient is given by expectation
total occupation time for a certain infinite set. We prove that the expectation of the occupation time for the
set converges ifd � 3, and diverges ifd = 1,2. But if we examine the linear combination more carefully, then
find that it is a difference of expectations of the total occupations times of a certain infinite set for the pro
starting at two different points. Such difference makes sense as in the same way that makes the potential fun
of one or two dimensional random walk well defined.

This paper is organized as follows: In Section 2 we state the model and results. In Section 3 we introduc
of continuous functions on the configuration space and compute the coefficient ofLf with respect to the basis
We also introduce a Markov process which may be regarded as a dual process of our lattice gas, and
resolvent equation by using the process. In Section 4 we estimate the expectation of occupation time of c
for the process in dimensionsd � 3. In Section 5, we estimate an expectation of occupation time for a finite
continuous time stochastic jump process. In Section 6, we estimate an expectation of occupation time fo
set for the process. In Section 7 we prove the main results.

2. Model and results

Our lattice gas is a Markov process on the state spaceX := {0,1, . . . , k}Zd
. Let η = (ηx)x∈Zd stands for a

generic element ofX, so that for eachx, ηx ∈ {0,1,2, . . . , k}. For any local functionf we define operatorsπ(x,y)

andπx→y by

π(x,y)f (η) := 1{ηx �=0,ηy=0}
(
f (η(x,y)) − f (η)

)
,

πx→yf (η) := 1{ηx�2,1�ηy�k−1}
(
f (ηx→y) − f (η)

)
,

whereη(x,y) andηx→y are the configurations defined by

(η(x,y))z :=



ηy, if z = x,

ηx, if z = y,

ηz, otherwise,

(ηx→y)z :=



ηx − 1, if z = x,

ηy + 1, if z = y,

ηz, otherwise.

For any local functionf we define the generator

Lf (η) :=
∑

x,y∈Zd : |x−y|=1

{
cex(ηx)π

(x,y)f (η) + cge(ηx)πx→yf (η)
}
,

where| · | is the Euclidean norm ofZd andcex(r), cge(r) are positive functions ofr = 0,1,2, . . . , k. Furthermore
we suppose thatcex(0) = cge(0) = cge(1) = 0 andcex(r) > 0 for 1� r � k andcge(r) > 0 for 2� r � k.

The process is thought to model a time evolution of the dynamics of a gas of particles having energy. Th
of ηx are interpreted in such a way that ifηx = 0, then the sitex is vacant, and ifηx �= 0, then there exists a partic
having (discrete) energyηx at sitex. A particle at sitex moves to a nearest neighbor sitey at ratecex(ηx) if y is
vacant. One unit of energy of the particle at sitex is transferred to the particle at a neighboring sitey at ratecge(ηx)

if the energy of the particle at the sitey is less thank.
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Consider the family of product measures on the product space{0,1,2, . . . , k}Zd
with the marginal distribution

νp,α

({η: ηx = l}) :=




1− p if l = 0,

p 1
Zα

if l = 1,

p 1
Zα

αl−1

cge(2)cge(3)···cge(l)
if 2 � l � k

for all x ∈ Zd , where 0� p � 1, 0� α < ∞ andZα is the normalization constant. Put

ρ := ρ(p,α) := Eνp,α [η0],
thenρ is a rational function of two variablesp,α, and for eachp, ρ is a strictly increasing function ofα. Therefore
there exists an inverse functionα̃ = α̃(p,ρ) say. We definePp,ρ by

Pp,ρ(·) := νp,α̃(p,ρ)(·),
for 0 � p � 1 andp � ρ < kp. For any local functionf , Ep,ρ[f ] is a smooth function ofp andρ. We can easily
check thatL is symmetric with respect toPp,ρ . One can show that there exists a unique closed extension ofL in
the space of continuous functionsC(X) with supremum norm (see [5]). We denote byetL the semigroup generate
by the closed extension.

We define the shift operatorτx for x ∈ Zd , which acts on allA ⊂ Zd , and local functionsf as well as configu
rationsη as follows:

τxA := x + A,

τxf (η) := f (τxη),

(τxη)z := ηz−x.

Let D̃(p,ρ) = (D̃i,j (p,ρ))i,j∈{1,2} be a 2× 2 symmetric matrix defined via the variational formula(
a · D̃(p,ρ)a

) =
∑
i,j

aiD̃i,j (p,ρ)aj

:= inf
u

Ep,ρ

[
cex(η0)

{
π(0,e)(a1η0 + a21{η0 �=0}) +

∑
x

π(0,e)τxu

}2

+ cge(η0)

{
π0→e(a1η0 + a21{η0 �=0}) +

∑
x

π0→eτxu

}2]
, (1)

wherea is any 2-dimensional vector,e is a unit vector and infu is taken over all local functions. Put

χ(p,ρ) :=
(

Ep,ρ[η2
0] − ρ2 (1− p)ρ

(1− p)ρ p(1− p)

)
,

D(p,ρ) = D̃(p,ρ)χ−1(p,ρ), (2)

for 0 < p < 1 andp < ρ < kp. (χ−1(p,ρ) denotes the inverse matrix ofχ(p,ρ).) Using these notations we ca
state our main result.

Theorem 2.1. Let (p,ρ) such that0 < p < 1 andp < ρ < kp. Then the diffusion coefficient matrix for this mod
defined by(2) is a smooth function ofp andρ, and has the smooth extension up to the boundary.

The smoothness of the diffusion coefficient matrix is implied by that of the central limit theorem varian
certain functions.

We define the currentswE
e ,wP

e by
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wE
e (η) := cex(η0)η01{η0 �=0,η1=0}(η) − cex(η1)η11{η1 �=0,η0=0}(η)

+ cge(η0)1{η0�2,1�η1�k−1}(η) − cge(η1)1{η1�2,1�η0�k−1}(η),

wP
e (η) = cex(η0)1{η0 �=0,η1=0}(η) − cex(η1)1{η1 �=0,η0=0}(η).

Denoted byW the linear space spanned by currentswE
e ,wP

e for all positive unit vectorse.

Theorem 2.2. Supposef ∈W . Then
∫ ∞

0

∑
x∈Zd Ep,ρ[f eLtτxf ]dt is a smooth function ofp andρ.

Remark. If the dimensionsd is greater than or equal to 3, the present method is applicable to generalized exclusi
process which is introduced by Kipnis, Landim and Olla [2], namely Theorems 2.1 and 2.2 are valid fo
dimensionsd � 3.

3. Basis of C(X) and dual process

In this section we will introduce a basis of the space of continuous functions on the configuration spa
compute the coefficient ofLf with respect to the basis for a local functionf .

Let C(X) denote the space of continuous functions onX with supremum norm. It is convenient to define
subspaceC0(X) of C(X) as follows: LetC0(X) be the set of functions such that there exist positive constanc1
andc2 with

sup
η,η′:ηx=η′

x for |x|∞�l

∣∣f (η) − f (η′)
∣∣ � c1e−c2l

for all l � 0, where| · |∞ is the supremum norm onZd .
We defineA by

A := {
A = (A1, . . . ,Ak): Ai � Zd , with Ai ∩ Aj = ∅ if i �= j

}
,

whereA � Zd meansA ⊂ Zd and|A| is finite. ForA,B ∈ A, B ⊂ A meansBi ⊂ Ai for all i, A \ B means tha
the ith component isAi \ Bi , andτxA means thatith component isτxAi (i = 1,2, . . . , k). We define two types o
cardinality by

#A :=
∑

i

|Ai |,

#̃A :=
∑

i

i|Ai|,

and a family of functions{ΨA}A∈A by

ΨA(η) :=
k∏

i=1

∏
x∈Ai

1{ηx=i}(η).

ForA ∈A we define the special configurationηA by

(ηA)z :=
{

i if z ∈ Ai for 1 � i � k,

0 if z /∈ ⋃
i Ai.

The cardinality #A and#̃A equals the number of particles and total energy for the special configurationηA, re-
spectively. The functionΨA is the indicator function of the set of configurationsη for which each site of

⋃
i Ai is

occupied by a particle and each particle onAi has the common energyi.



Y. Nagahata / Ann. I. H. Poincaré – PR 41 (2005) 45–67 49

f

Lemma 3.1. The family of functions{ΨA}A∈A is a basis of the linear spaceC(X). Furthermore, forf ∈ C(X) if
we definef̂ : A → R by

f̂ (A) :=
∑
B⊂A

(−1)#(A\B)f (ηB),

then

f (η) =
∑
A∈A

f̂ (A)ΨA(η). (3)

Proof. It is not difficult to see that{ΨA}A∈A are linearly independent. Therefore we have only to prove (3).
Fix A ∈ A andx ∈ Zd such thatx /∈ ⋃

i Ai . For 1� i � k andB ⊂ A, defineBx,i ∈A by

(Bx,i)j :=
{

Bi ∪ {x} if j = i,

Bj if j �= i.

Then forf ∈ C(X),

f̂ (Ax,i) =
∑
B⊂A

(−1)#(A\B)+1f (ηB) +
∑
B⊂A

(−1)#(A\B)f (ηBx,i

).

Let f be a local function. Then there existsΛ = Λ(f ) � Zd such thatf depends only on{ηx : x ∈ Λ}, and

f (ηA) = f (ηA∩Λ) (4)

is valid for allA ∈ A, whereA ∩ Λ ∈A is defined by(A ∩ Λ)i := Ai ∩ Λ. These two equality shows that

f̂ (A) = 0 (5)

if
⋃

i Ai ∩ Λc �= ∅. Therefore right-hand side of (3) is a finite sum. By (4), we have only to check the truth o

f (ηB) =
∑
A∈A

f̂ (A)ΨA(ηB)

for all B ∈ A such that
⋃

Bi ⊂ Λ. By the binomial expansion∑
A⊂B

(−1)#(B\A) = (1− 1)#B

for B ∈ A, it holds that∑
A∈A

f̂ (A)ΨA(ηB) =
∑
A⊂B

∑
C⊂A

(−1)#(A\C)f (ηC) = f (ηB).

Therefore the equality of (3) is valid for every local function.
For a continuous functionf we can approximate it uniformly by a local functionfn which is defined by

fn(η) := f (ηΛn),

where

(ηΛn)x :=
{

ηx if x ∈ Λn,

0 if x /∈ Λn,

andΛn is a cube centered at origin and of side 2n + 1. Sincefn is a local function, we can write

fn(η) =
∑

f̂n(A)ΨA(η).
A∈A
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It is not difficult to check that if
⋃

i Ai ⊂ Λn thenf̂n(A) = f̂ (A). Therefore (3) holds for every continuous fun
tion. �

From now on, we regard the sequence{f̂ (A)}A as the coefficient of the continuous function off in the expan-
sion (3).

We expand currentswE
e ,wP

e in the expansion (3). Then we have

wE
e =

k∑
i=1

{
cex(i)i

{
Ψ∅0,i −

k∑
j=1

Ψ∅0,i;e,j

}}
−

k∑
i=1

{
cex(i)i

{
Ψ∅e,i −

k∑
j=1

Ψ∅0,j;e,i

}}

+
k∑

i=2

k−1∑
j=1

cge(i)Ψ∅0,i;e,j −
k∑

i=2

k−1∑
j=1

cge(i)Ψ∅0,i;e,j , (6)

wP
e =

k∑
i=1

{
cex(i)

{
Ψ∅0,i −

k∑
j=1

Ψ∅0,i;e,j

}}
−

k∑
i=1

{
cex(i)

{
Ψ∅e,i −

k∑
j=1

Ψ∅0,j;e,i

}}
,

where∅x,i ,∅x,i;y,j ∈ A for x, y ∈ Zd , x �= y and 1� i, j � k are defined respectively by

(∅x,i)l :=
{ {x} if l = i,

∅ otherwise,

(∅x,i;y,j )l :=




{x} if l = i �= j,

{y} if l = j �= i,

{x, y} if l = i = j,

∅ otherwise.

(7)

Denote byθe the reflection operator with respect to 1/2e along thee direction, namely forx ∈ Zd ,

(θex)e′ :=
{

xe′ if e �= e′,
−xe + 1 if e = e′.

(8)

We may extendθe to A naturally. Put

Be := {∅0,i: 1 � i � k} ∪ {∅0,i;e,j : 1 � i, j � k}
and

w̃E
e (A) :=




cex(i)i if A = ∅0,i for 1 � i � k,

−cex(i)i + cge(i) if A = ∅0,i;e,j for 2 � i � k, 1 � j � k − 1,

−cex(1) if A = ∅0,1;e,j for 1 � j � k,

−cex(i)i if A = ∅0,i;e,k for 2� i � k,

0 otherwise,

w̃P
e (A) :=




cex(i) if A = ∅0,i for 1 � i � k,

cex(i) if A = ∅0,i;e,j for 1 � i, j � k,

0 otherwise,

where∅x,i and∅x,i;y,j are defined by (7). In view of (6), it holds that

wE
e =

∑
A∈Be

w̃E
e (A)(ΨA − ΨθeA),

wP = ∑
w̃P (A)(Ψ − Ψ ).

(9)
e A∈Be e A θeA
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We defineAx→y andA(x,y) by

Ax→y :=



(A1, . . . ,Ai−1 ∪ {x},Ai \ {x}, . . . ,Aj \ {y},Aj−1 ∪ {y}, . . . ,Ak),

if x ∈ Ai, y ∈ Aj such that 2� i � k,1 � j � k − 1,

A, otherwise,

A(x,y) :=
{

(A1, . . . ,Ai \ {x} ∪ {y}, . . . ,Ak), if x ∈ Ai, y /∈ ⋃
j Aj such that 1� i � k,

A, otherwise.

Givenx, y ∈ Zd , defineΥx,y ⊂ X by

Υx,y := {η: ηx � 2,1 � ηy � k − 1}.
ThenΨA(ηx→y) = ΨAy→x (η) for η ∈ Υx,y . Therefore using summation by parts formula, we get

πx→yf (η) = 1{ηx�2,1�ηy�k−1}(η)
∑
A

f̂ (A)
(
ΨAy→x (η) − ΨA(η)

)
= 1{ηx�2,1�ηy�k−1}(η)

∑
A

(
f̂ (Ax→y) − f̂ (A)

)
ΨA(η).

ForA ∈A, if ΨA(η) �= 0 for someη ∈ Υ c
x,y , thenAx→y = A. Therefore

πx→yf (η) =
∑
A

(
f̂ (Ax→y) − f̂ (A)

)
ΨA(η).

Similarly

π(x,y)f (η) =
∑
A

(
f̂ (A(x,y)) − f̂ (A)

)
ΨA(η).

If we defineĉge(x,A) andĉex(x,A) by

ĉge(x,A) :=
{

cge(i) if x ∈ Ai for 1 � i � k,

0 otherwise,

ĉex(x,A) :=
{

cex(i) if x ∈ Ai for 1� i � k,

0 otherwise,

then we can rewriteLf in the form

Lf (η) =
∑
A∈A

L̂f̂ (A)ΨA(η),

where

L̂f̂ (A) =
∑

x,y∈Zd ,|x−y|=1

{
ĉge(x,A)

(
f̂ (Ax→y) − f̂ (A)

) + ĉex(x,A)
(
f̂ (A(x,y)) − f̂ (A)

)}
. (10)

Let Xs be a Markov process onA whose generator iŝL defined by (10) andPA a distribution of the Markov proces
starting fromA. Then the process is equivalent to the original process which starts from the configuratiηA.
Therefore the Markov process generated byL̂ inherits the conserved quantities from the original process. Nam
if we defineAi,j ⊂A by

Ai,j := {A ∈A: #A = i, #̃A = j }, (11)

thenAi,j becomes the ergodic classes of the Markov process generated byL̂.
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Let Xs be a Markov process onA whose generator iŝL defined by (10) andPA the distribution of the Markov
process starting fromA. Then the process is equivalent to the original process which starts from the con
tion ηA.

Let the sequence{ĝλ(A)}A be defined by

ĝλ(A) := EA

∞∫
0

f̂ (Xs)e−λs ds, (12)

for a local functionf . Put

gλ(η) :=
∑
A

ĝλ(A)ΨA(η).

Lemma 3.2. The functiongλ is well-define and an element ofC0(X). Furthermore this function is the solution
the resolvent equation

λgλ − Lgλ = f. (13)

Proof. It is enough to prove thatgλ is well-define and an element ofC0(X). By the definition ofL̂, #Xs and#̃Xs

are conserved. By using (5),̂f (A) is zero if #A or #̃A is large enough, and similarly for̂gλ(A). We define the
stopping timeσn by

σn :=
{

inf{s:
⋃

i (Xs)i ⊂ Λn} if {s:
⋃

i (Xs)i ⊂ Λn} �= ∅,

∞ if {s:
⋃

i (Xs)i ⊂ Λn} = ∅,

whereΛn is a cube centered at origin and of side 2n + 1. Pick up a largen such that if
⋃

i Ai ∩ Λc
n �= ∅ then

f̂ (A) = 0. Therefore

ĝλ(A) = EA

[ ∞∫
σn

f̂ (Xs)e−λs ds

]
� 1

λ
f̂MEA[e−λσn],

wheref̂M = maxA f̂ (A). We definedn(A) the sum of the supremum distances fromΛn to elements of
⋃

i Ai :
formally if

⋃
i Ai \ Λn = {x1, . . . , xm} then

dn(A) :=
m∑

i=1

(|xi |∞ − n
)
.

Since the jump rate is bounded, it is not difficult to show that there exist constantsC1,C2 > 0, which may depend
onλ, such that

EA[e−λσn] � C1e−C2dn(A).

This shows thatgλ(η) is well-define and an element ofC0(X). �
We give the reversible measure forL̂, which we will use in Section 7. We definem(A,p,ρ) by

m(A,p,ρ) := Ep,ρ[ΨA],
for A ∈A, 0< p < 1 andp < ρ < kp. The discrete measure whose mass ofA is m(A,p,ρ) is also denoted bym.

Lemma 3.3. For eachA ∈ A, m is a smooth function ofp,ρ, and for each pair ofp and ρ, m is a reversible
measure forL̂.
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Remark. We decomposeA into {Ai,j } the ergodic classes of the Markov process. On each ergodic class,m(·,p,ρ)

for 0 < p < 1,p < ρ < kp are essentially the same. That is, for each ergodic class,m(·,p,ρ) andm(· ,p′ρ′) are
absolutely continuous each other and the Radon–Nikodym derivative is a constant depending only onp,ρ,p′, ρ′
and the ergodic class.

Proof of Lemma 3.3. We have only to prove thatm is a reversible measure forL̂, or equivalently that

ĉge(x,A)m(A,p,ρ) = ĉge(y,Ax→y)m(Ax→y,p,ρ), for A �= Ax→y,

ĉex(x,A)m(A,p,ρ) = ĉex(y,A(x,y))m(A(x,y),p,ρ), for A �= A(x,y),

for eachp,ρ. But this relation immediately follows from the reversibility of the original process.�

4. Estimate of the expectation of occupation time in dimensions d � 3

In this section we will estimate an expectation of occupation time for a certain set in dimensionsd � 3.
Firstly we prove a general result on the expectation of occupation time for the Markov process.

Lemma 4.1. LetB ⊂ A, and suppose that there exist two subsetsB1,B2 of A and functionsf1 andf2 onA such
that

B ⊂ B1 ⊂ B2, (14)

f1 � 0, (15)

f1(A) � 1 if A ∈ B1, (16)

L̂f1(A) � 0 if A ∈ Bc
1, (17)

sup
A∈Bc

2

f1(A) < 1, (18)

f2 � 0, (19)

supf2 < ∞, (20)

L̂f2(A) � −1 if A ∈ B2. (21)

Then we have

sup
A

∞∫
0

EA

[
1B(Xs)

]
ds < ∞.

Proof. We consider the martingale defined by

Mi,s := fi(Xs) − fi(X0) −
s∫

0

L̂fi(Xu)du,

for i = 1,2. SinceMi,0 = 0, applying the Doob’s optional sampling time theorem

f1(A) = EA

[
f1(XσB1∧N) −

σB1∧N∫
f1(Xu)du

]

0
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for all N > 0, whereσB1 is a first hitting time toB1. Substituting the conditions (15)–(17) the right-hand sid
greater than

EA[I{σB1<N}].
Therefore by condition (18)

sup
A∈Bc

2

PA[σB1 < ∞] � sup
A∈Bc

2

f1(A) < 1.

Similarly, by using the conditions (19)–(21), we get

sup
A∈B2

EA[σBc
2
] � sup

A∈B2

f2(A) < ∞,

whereσBc
2

is the first hitting time toBc
2. On using the Markov property, the supremum of the expectatio

occupation time forB is finite. �
From now to the end of the section, we suppose that the dimensionsd is greater than or equal to 3. In order

apply Lemma 4.1, we prepare some functions. We define functionsh1,l , h2,l from Zd into R+, which are a smal
perturbation of the potential function onZd , by

h1,l(x) :=
{1 if |x| � l,( 1√

1+(|x|−l)2

)d−2 if |x| � l,

h2,l(x) :=
( √

1+ l√
1+ |x|2

)d−2

,

for l � 0, where| · | is the Euclidean norm ofZd . Fora = (a1, a2, a3, a4) such thata1, a2, a3 > 0 anda4 � 0, we
define a functionga from R+ into R+ satisfying the following conditions

• ga is a continuously differentiable function onR+.
• On the interval[0, a1], ga is a quadratic function with−a2 for the coefficient of the second order term.
• There existsb � a1 such that:

– On the interval[a1, b], ga is a quadratic function witha3 for the coefficient of the second order term.
– On the interval[b,∞), ga is zero.

• The differential coefficient from the right atx = 0 is−a4.

Formally

ga(x) :=




−a2
(
x + a4

2a2

)2 + (2a1a2+a4)
2

4

( 1
a3

+ 1
a2

)
, if 0 � x � a1,

a3
{
x − ( 2a1a2+a4

2a3
+ a1

)}2
, if a1 � x � a1 + 2a1a2+a4

2a3
,

0, if x � a1 + 2a1a2+a4
2a3

.

Let us defineAM by

AM := {A ∈ A: #A = M}.
Assume thatΛ is a Euclidean ball with radiusl, and defineB := BM,l by

B :=
{
A ∈ AM :

⋃
Ai ∩ Λ �= ∅ or there existx, y ∈

⋃
Ai such that 1� |x − y|∞ � l

}
. (22)
i
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Here| · |∞ is the supremum norm ofZd . ForA ∈ AM , we define{xi: 1� i � M} := {xi(A): 1 � i � M} ⊂ Zd by

{xi: 1� i � M} =
⋃
i

Ai,

andxi,j (A) by thej th component ofxi(A).
Let us define constantsa1, a2 andc± by

a1 :=
(

M2 + l,
2

c− ,
1

c+M2 ,0

)
, (23)

a2 :=
(

M2 + l,
1

c− ,
1

2c+M2
,

4M2c+

c−

)
, (24)

and

c− := min
r

cex(r), (25)

c+ := max
r

cex(r). (26)

Lemma 4.2. Define setsB1,B2 and functionsf1, f2 by

B1 := B,

B2 := {
A ∈ AM : there existsx ∈ A such that|x|∞ � M2 + l

or there existsx, y ∈ A such that1� |x − y|∞ � M2 + l
}
,

f1(A) :=
M∑
i=1

h1,l(xi) +
∑

1�i<j�M

h2,l(xi − xj ),

f2(A) :=
M∑
i=1

d∑
j=1

ga1

(|xi,j |
) +

∑
1�i<m�M

d∑
j=1

ga2

(|xi,j − xm,j |
)
,

wherea1, a2 andc± are defined by(23)–(26). Then the conditions of Lemma4.1hold, namely(14)–(21)hold.

Corollary 4.3. Suppose thatd � 3. Then forB defined by(22),

sup
A

∞∫
0

EA

[
1B(Xs)

]
ds < ∞.

Proof of Lemma 4.2. We have only to check the truth of the conditions (17) and (21). We defineB0 by

B0 = B0,M := {
A ∈AM :

∣∣xi(A) − xj (A)
∣∣ > 1 for i �= j

}
.

Then on the setB0, L̂ behave as a discrete Laplacian onZd for eachxi(A). Formally, if we denote by�d the
discrete Laplacian onZd , then

L̂f1(A) =
M∑
i=1

ĉex(xi(A),A)(�dh1,l)(xi) +
∑

1�i<m�M

(
ĉex

(
xi(A),A

) + ĉex
(
xm(A),A

))
(�dh2,l)(xi − xm),

for A ∈ B0. Sinceh1,l, h2,l are small perturbations of thed-dimensional potential function, each term of the right
hand side is non-positive. SinceBc ⊂ B0, the condition (17) is valid.
1
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We also have

L̂f2(A) =
M∑
i=1

d∑
j=1

ĉex
(
xi(A),A

)
(�1ga1)

(∣∣xi,j (A)
∣∣)

+
∑

1�i<m�M

d∑
j=1

(
ĉex

(
xi(A),A

) + ĉex
(
xm(A),A

))(
�1ga1

)(∣∣xi,j (A) − xm,j (A)
∣∣),

for A ∈ B0. From the choice of the second component ofa1, a2, if |xi,j (A)| � M2 + l, then

ĉex
(
xi(A),A

)
(�1ga1)

(∣∣xi,j (A)
∣∣) � −2

and if 2� |xi,j (A) − xm,j (A)| � M2 + l, then(
ĉex

(
xi(A),A

) + ĉex
(
xm(A),A

))
(�1ga1)

(∣∣xi,j (A) − xm,j (A)
∣∣) � −2.

From the choice of the third component ofa1, a2, each terms of the last equality is less than or equal to 1/M2. On
the setB2 ∩ B0, there existsi such that|xi,j (A)| � M2 + l for all j , or there existsi,m such that 2� |xi,j (A) −
xm,j (A)| � M2 + l for all j . Therefore on the setB2 ∩B0, the condition (21) is valid.

On the setB2 \ B0, without loss of generality we assume that there existn � 2 and 1� j � d such thatxl =
x1+(l−1)ej for 1 � l � n, whereej is a unit vector for thej th coordinate, and ifn+1� i � M, then|xi −xm| � 2
for all 1 � m � M, i �= m. Furthermore, we can assume that the choice of thexi(A

(x,y)) is similar toxi(A), namely
we assume that

xi(A
(y,z)) =

{
xi(A) if y �= xi(A),

z if y = xi(A),

for all 1 � i � M, y ∈ ⋃
i Ai andz /∈ ⋃

i Ai . ThenL̂ga1(|xi,j (A)|) andL̂ga2(|xi,j (A) − xm,j (A)|) make sense fo
1 � i < m � M. By elementary computation if 1� i < m � n, then

L̂ga2

(∣∣xi,j (A) − xm,j (A)
∣∣) � 0,

and

L̂ga2

(∣∣x1,j (A) − x2,j (A)
∣∣) � −4c+M2

c− ,

L̂ga2

(∣∣xn−1,j (A) − xn,j (A)
∣∣) � −4c+M2

c− .

The last value4c+M2

c− is given by the choice of the fourth component ofa2. We also compute that

L̂
∑

1�i�n

ga1

(∣∣xi,j (A)
∣∣) = ĉex

(
x1(A),A

){
ga1

(∣∣x1,j (A) − 1
∣∣) − ga1

(∣∣x1,j (A)
∣∣)}

+ ĉex
(
xn(A),A

){
ga1

(∣∣xn,j (A) + 1
∣∣) − ga1

(∣∣xn,j (A)
∣∣)}.

Since we assume thatxi,j (A) = xi−1,j (A) + 1 for 2� i � n, the right-hand side of the last equality is equal to

ĉex
(
x1(A),A

) ∑
1�i�n

(�1ga1)
(∣∣xi,j (A)

∣∣)
+ {

ĉex
(
xn(A),A

) − ĉex
(
x1(A),A

)}{
ga1

(∣∣xn,j (A) + 1
∣∣) − ga1

(∣∣xn,j (A)
∣∣)}.

From the choice of the third component ofa1, the first line is less than or equal tom/M2. Since the maximal valu
of ga1(x) − ga1(x + 1) is given by the maximal value of differential coefficient ofga1, from the choice ofa1 the
second line is less than or equal to 4c+(M2 + l)/c−. From the assumption of thexi for i � n + 1, the other terms
for L̂f2 is less than or equal to 1/M2. Thus we have checked the truth of the condition (21).�
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5. Occupation time for some stochastic processes

In this section, we consider finite state continuous time stochastic jump processes, which may not be Ma
Let S be a finite set, which is a state space of our stochastic process. For eachi ∈ S, there is given a probabilit

measureµi onS ×R+. Let (Y i,n, σ i,n), i ∈ S, n = 0,1,2, . . . be a system of independent random variables ta
values inS × R+ such that for eachi the joint distribution of(Y i,n, σ i,n) is given byµi for everyn.

Then our process is described as follows. Suppose that the process starts ati0 ∈ S. Then one takes the rando
variable(Y i0,0, σ i0,0) and let the process stay ati0 up to the timeσ i0,0 and jump toY i0,0 at time σ i0,0. The
procedure is repeated over by letting it start ati1 = Y i0,0 and taking up(Y i1,1, σ i1,1) place of(Y i0,0, σ i0,0). We
denote the distribution of the process which starts fromi ∈ S by Pi . We suppose several conditions for the jo
distributionµi . Let us define

Fi,j (λ) := Eµi
[
1{Y i=j}e−λσ i ]

.

(A.1) It holds that

Fi,i (λ) = 0

for all i ∈ S.
(A.2) There exist constantspi,j , fi,j , and a functiong(λ) such that

Fi,j (λ) = pi,j − fi,j g(λ) + o
(
g(λ)

)
,

wherepi,j � 0 and for alli ∈ S∑
j∈S

pi,j = 1;

fi,j is non-negative; andg(λ) is a positive and increasing function fromR+ to R+ which vanishes atλ = 0. Here
o(·) is Landau’s symbol asλ tends to 0. In this paperg(λ) will be

√
λ or −1/ logλ accordingly asd = 1 or 2.

(A.3) The stochastic matrixpi,j in (A.2) is irreducible.
(A.4) There exists a pair(i, j) such thatfi,j is strictly positive.
(A.5) There existsi0 such thatfi0,j = 0 for all j . Furthermore, there exists a positive constantfi0 such that∑

j

Fi0,j (λ) = 1− fi0λ + o(λ).

Lemma 5.1. Suppose that(A.1)–(A.5)hold. Then for alli ∈ S, the Laplace transform of occupation time fori0 is
asymptotically equivalent to1/g(λ) (asλ tends to0), namely there exists a constantC1 which depends oni such
that

Ei

∞∫
0

1{i0}(Xs)e−λs ds = C1

g(λ)
+ o

(
1

g(λ)

)
.

Furthermore for alli, j ∈ S, there exists a limit of the difference of Laplace transform of occupation time foi0,
namely there exists a constantC2 which depends oni andj such that

lim
λ→0

{
Ei

∞∫
0

1{i0}(Xs)e−λs ds − Ej

∞∫
0

1{i0}(Xs)e−λs ds

}
= C2.

Proof. Let Qi,i0(λ) be the Laplace transform of the occupation time fori0 with starting pointi ∈ S. Let σ1 be the
first jump time. Then on using the conditional independence of the process after the timeσ1 and the jump timeσ1
givenXσ1,
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sults.

e

Qi,i0(λ) = δi,i0Ei0

σ1∫
0

e−λs ds +
∑
j

Eie−λσ11{Xσ1=j}Ej

∞∫
0

1{i0}(Xs)e−λs ds

= δi,i0

1

λ

(
1−

∑
j

Fi0,j (λ)

)
+

∑
j

Fi,j (λ)Qj,i0(λ).

ThereforeQi,i0(λ) is given by

Qi,i0(λ) = ((
I − F(λ)

)−1
x(λ)

)
i
,

where

(x(λ))i = δi,i0

1

λ

(
1−

∑
j

Fi0,j (λ)

)
.

Recall that by (A.5),1
λ
(1− ∑

j Fi0,j (λ)) = fi0 + o(1).

Let (Ĩ − p)i,j be(i, j)-element ofI − p cofactor matrix. Then it is easy to see

det
(
I − F(λ)

) = det(I − p) +
∑
i,j

fi,j
˜(I − p)i,j g(λ) + o

(
g(λ)

)
.

Sincep is a stochastic matrix det(I − p) = 0. Sincep is irreducible, ˜(I − p)i,j > 0 for all i, j ∈ S. Using the

conditions (A.2) and (A.4), we get
∑

i,j fi,j
˜(I − p)i,j > 0. PutC0 := ∑

i,j fi,j
˜(I − p)i,j , then

(
det

(
I − F(λ)

))−1 = 1

C0g(λ)
+ o

(
1

g(λ)

)
.

Furthermore there exists a matrixCi,j such that cofactor matrix ofI − F(λ) is given by(
˜I − F(λ)

)
i,j

= (Ĩ − p)i,j + Ci,j g(λ) + o
(
g(λ)

)
.

Therefore

Qi,i0(λ) = (Ĩ − p)i,i0fi0

C0

1

g(λ)
+ o

(
1

g(λ)

)
.

Sincepi,j is a stochastic matrix that is irreducible we see that(Ĩ − p)i,j = (Ĩ − p)k,j for all i, j, k ∈ S. Since the

dependence ofQi,i0(λ) on i comes from( ˜I − F(λ))i,l whose principal term cancels by the subtraction ofQj,i0(λ),

lim
λ→0

(
Qi,i0(λ) − Qj,i0(λ)

) = fi0C0(Ci,i0 − Cj,i0). �
On using the result of the discrete time random walk (see for example [7]) we can easily get following re

Proposition 5.2. Let us consider continuous time symmetric simple random walk onZ with the jump rater. Then
there exists a constantC = C(r) such that

E1[e−λµ{0} ] = 1− C
√

λ + o(
√

λ),

whereµ{0} is a first hitting time to{0}.

Proposition 5.3. Let us consider continuous time symmetric simple random walk onZ2, andB := {0,±e1,±e2}
wheree1, e2 are positive unit vector onZ2. Then there exists a positive constantspx,y,Cx,y which depends on th
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uch
starting pointx ∈ Z2, the first visit point toB, y ∈ B say, and the coefficient of the exponential holding time s
that

Ex[e−λµB 1{XµB
=y}] = px,y + Cx,y

1

logλ
+ o

(
1

logλ

)
,

with ∑
y∈B\{0}

px,y = 1,

for x /∈ B, whereµB is a first hitting time toB.

6. Estimate of the expectation of occupation time

In this sectionXs is a Markov process onA whose generator iŝL defined by (10),PA a distribution of the
Markov process starting fromA,Ai,j the ergodic classes of the Markov process defined by (11), andθe a reflection
operator defined via (8).

Let e1, e2, . . . , ed be positive unit vector onZd andΛ = {0,1} for d = 1 andΛ = {0, e1, . . . , ed} for d � 2. Let
us defineD1,De

2,D2 by

D1 := {∅0,i: 1� i � k},
De

2 := {∅0,i;e,j : 1 � i, j � k},

D2 :=
{
D1

2 for d = 1,⋃d
l=1D

el

2 for d � 2.

(27)

ForB ∈D1 ∪D2 we also defineB(B) by

B(B) := {
A ∈ A: there existsx ∈ Zd such that(τxA)i ∩ Λ = Bi for all i

}
.

Lemma 6.1. SupposeC ∈ D1. Then

EC

∞∫
0

1B(B)(Xs)e
−λs ds − EθeC

∞∫
0

1B(B)(Xs)e
−λs ds = 0

for all B ∈D1 ∪D2.

Proof. SinceC ∈ D1, there exists 1� i � k such thatC = ∅0,i . ThenθeC = ∅e,i . ThereforeC andθeC are in the
same ergodic classA1,i . It is easy to see that ifB ∈ A1,i thenB(B) =A1,i and ifB /∈A1,i thenB(B) ∩A1,i = ∅.
Therefore

EC

∞∫
0

1B(B)(Xs)e
−λs ds = EθeC

∞∫
0

1B(B)(Xs)e
−λs ds = 1

λ

for B ∈ A1,i and

EC

∞∫
0

1B(B)(Xs)e
−λs ds = EθeC

∞∫
0

1B(B)(Xs)e
−λs ds = 0

for B /∈ A1,i . �
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ForC ∈ D2, we defineD(C) by

D(C) := {B ∈D1: #̃C − k � #̃B � #̃C − 1} ∪ {B ∈ D2: #̃B = #̃C}.

Lemma 6.2. SupposeC ∈ D2 andB ∈ (D1 ∪D2) \D(C). Then it holds that

EC

∞∫
0

1B(B)(Xs)e−λs ds = EθeC

∞∫
0

1B(B)(Xs)e−λs ds = 0.

Proof. By the definition ofD(C) it is clear that ifB ∈ (D1 ∩D2) \D(C), thenB(B) ∩A(C) = ∅, whereA(C) is
the set of ergodic classes which include the elementC. It is also clear thatD(C) = D(θeC) andA(C) = A(θeC).
Therefore it holds that

EC

∞∫
0

1B(B)(Xs)e
−λs ds = EθeC

∞∫
0

1B(B)(Xs)e
−λs ds = 0. �

Lemma 6.3. SupposeC ∈ D2 andB ∈ D(C) ∩D1. Then there exists a subset{Dl(B)}dl=1 ⊂ D(C) ∩D2, which is
defined by(28)below, such that

EC

∞∫
0

1B(B)(Xs)e−λs ds − EθeC

∞∫
0

1B(B)(Xs)e−λs ds

=
d∑

l=1

{
−EC

∞∫
0

1B(Dl(B))(Xs)e
−λs ds + EθC

∞∫
0

1B(Dl(B))(Xs)e
−λs ds

}
.

Proof. SinceC ∈ D2, without loss of generality we supposeC ∈ A2,j for some 2� j � 2k in this proof. Since
B ∈D1, there exists 1� i � k such thatB = ∅0,i . Then

B(B) ∩A2,j =
{ {∅x,i;y,j−i: x, y ∈ Zd, y − x �= 0, e1, e2, . . . , ed} if 1 � j − i � k,

∅ otherwise.

Let us defineAi
2,j ⊂A2,j by

Ai
2,j := {

A = (A1,A2, . . . ,Ak) ∈A2,j : Ai �= ∅}
.

Then it is easy to check that

B(B) ∩A2,j ⊂Ai
2,j .

It is convenient to introduce the difference set

B′
2,j (B) :=Ai

2,j \ (
B(B) ∩A2,j

)
.

It is not difficult to check that

B′
2,j (B) = {∅x,i;y,j−i: x, y ∈ Zd , y − x = e1, e2, . . . , ed} =

d⋃
l=1

B(∅0,i;el,j−i ).

Set

Dl(B) = Dl(∅0,i) := ∅0,i;el,j−i ∈D2. (28)
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Then we have

EC

∞∫
0

1B(B)(Xs)e−λs ds = EC

∞∫
0

(
1Ai

2,j
(Xs) −

d∑
l=1

1B(Dl(B))(Xs)

)
e−λs ds.

Since our Markov process andAi
2,j are mirror symmetric,

EC

∞∫
0

1Ai
2,j

(Xs)e−λs ds = EθC

∞∫
0

1Ai
2,j

(Xs)e−λs ds.

Therefore we have

EC

∞∫
0

1B(B)(Xs)e−λs ds − EθeC

∞∫
0

1B(B)(Xs)e−λs ds

=
d∑

l=1

{
−EC

∞∫
0

1B(Dl(B))(Xs)e
−λs ds + EθC

∞∫
0

1B(Dl(B))(Xs)e
−λs ds

}
. �

Lemma 6.4. SupposeC ∈ D2 andB ∈ D(C) ∩ D2. Then there exists a constantC1 which depends onB,C and
dimensiond such that

lim
λ→0

{
EC

∞∫
0

1B(B)(Xs)e−λs ds − EθeC

∞∫
0

1B(B)(Xs)e−λs ds

}
= C1.

Further there exists a positive constantC2 which depends onB,C and the dimensiond such that

EC

∞∫
0

1B(B)(Xs)e−λs ds =




C2√
λ

+ o
( 1√

λ

)
, if d = 1,

−C2 logλ + o(logλ), if d = 2,

C2 + o(1), if d � 3.

Hereo(·) is a Landau’s symbol asλ tends to0.

Proof. Firstly we prove the lemma ford � 3. If we substitute 2 forl in (22), thenB(B) is a subset ofB defined
by (22). By using Corollary 4.3, we have already proved that

EC

∞∫
0

IB(B)(Xs)ds < ∞.

Therefore we conclude the proof of this lemma ford � 3.
Secondly we prove the lemma ford = 1. The proof is divided into 2 steps.
Step1. SinceC ∈ D2, without loss of generality we supposeC ∈ A2,j for some 2� j � 2k in this proof. Since

B is an element ofD(C) ∩ D2, there existsi such that 1� i, j − i � k andB = ∅0,i;1,j−i . ThenB(B) may be
written as

B(B) = {∅x,i;x+1,j−i: x ∈ Z}.
We can also rewriteA2,j as

A2,j = {∅x,m;y,j−m: x, y ∈ Z, x �= y,1 � m,j − m � k}.
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Let us consider the equivalence relation∼ in A2,j which is defined by

∅x,m;y,j−m ∼ ∅x ′,m′;y ′,j−m′
if and only if x − y = x ′ − y ′, andm = m′,

the quotient set ofA2,j relative to relation∼, and representative. Since∅0,m;l,j−m ∼ ∅0,j−m;−l,m, we can take the
representative in the form∅0,m;l,j−m for 1 � m,j − m � k and l ∈ N. It is convenient to denote∅0,m;l,j−m by
(l,m). Since∅0,m;l,j−m means that there exist two particle at 0 andl with energym andj − m respectively, the
value l andm means that the distance of two particles and the number of energy which the left particle c
respectively. It is easy to see that ifB ∈A2,j andA ∈ B(B)∩A2,j thenA ∼ B. Since our process is shift invarian
we project our process with respect to the relation∼, namely we consider the following.

Let Xj be the set of representative of the quotient set ofA2,j relative to∼: formally

Xj := {
(l,m): l ∈ N,m ∈ Z with 1 � m,j − m � k

}
.

The process is a continuous time random walk onXj with the jump rate given by

r((l,m), (l′,m′)) =




cex(m) + cex(j − m) if |l − l′| = 1 andm = m′,
cge(m) if l = l′ = 1 andm − m′ = 1,

cge(j − m) if l = l′ = 1 andm − m′ = −1,

0 otherwise.

Namely the state space has min{j − 1, k} − max{j − k,1} + 1 half lines which are linearly ordered. On each h
line except the point 1, the process evolves as a symmetric simple random walk with some constant jump
constant may depend on the half line). Each half line is connected to the next and previous half lines at po
this point the random walk is not symmetric. We denote the distribution of the random walk which starts atx ∈ Xj

by Px. Then

EC

∞∫
0

1B(B)(Xs)e−λs ds = Ec

∞∫
0

1{b}(Xs)e−λs ds,

whereB = ∅0,n;1,j−n,C = ∅x,l;x+m,j−l,b = (1, n) andc = (m, l).
Step2. In this step we prove that there existsC1 which depends onb, c ∈ Xj such that

Ec

∞∫
0

1{b}(Xs)e
−λs ds = C1√

λ
+ o

(
1√
λ

)

but there exists a limit of the difference

lim
λ→0

{
Ec1

∞∫
0

1{b}(Xs )e−λs ds − Ec2

∞∫
0

1{b}(Xs)e−λs ds

}
,

which depends onb, c1, c2 ∈ Xj .
Since we know the distribution of the first hitting time of 0 for the continuous time symmetric simple rand

walk onZ with rater starting at 1, we treat{(l,m): m � 2} ∈Xj as one point for eachl. Formally we consider fo
eachj the following the continuous time stochastic process which is not Markovian. The state space isYj defined
by

Yj := {
(l,m): l ∈ {1,2},m ∈ Z,1 � m,j − m � k

}
.
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The valuel means that if the distance of two particles is 1 thenl = 1 and otherwisel = 2, and the value ofm
indicates the number of energy carried by the left particle. Define{F(l1,m1),(l2,m2)(λ)}(l1,m1),(l2,m2)∈Yj

by

F(l1,m1),(l2,m2)(λ) :=




H(λ; cex(m1) + cex(j − m1)) if l1 = 2, l2 = 1,m1 = m2,

G(λ;Zm1)
cex(m1)+cex(j−m1)

Zm1
if l1 = 1, l2 = 2,m1 = m2,

G(λ;Zm1)
cge(m1)

Zm1
if l1 = l2 = 1,m1 − m2 = 1,

G(λ;Zm1)
cge(j−m1)

Zm1
if l1 = l2 = 1,m1 − m2 = −1,

0 otherwise,

whereZm = Zm,j := cex(m)+cex(j −m)+cge(m)+cge(j −m) andH(·; r) andG(·; r) are the Laplace transform
of the first hitting time of 0 for the continuous time symmetric simple random walk onZ with rater starting at
1 and the Laplace transform of the exponential distribution with rater, respectively. Our stochastic process is
same as that defined in Section 5 with{F(l1,m1),(l2,m2)(λ)}(l1,m1),(l2,m2)∈Yj

in place ofFi,j (λ). Let us denote the

process and the distribution of the stochastic process which starts atx ∈ Yj by Ys and P̃x, respectively. Then i
holds that

Ec

∞∫
0

1{b}(Xs)e−λs ds = Ẽx

∞∫
0

1{y}(Ys)e−λs ds,

whereb = (1, l), c = (1, n) ∈ Xj andx = (1, l),y = (1, n) ∈ Yj for all 1 � l, j − l, n, j − n � k. We can apply
Lemma 5.1 with the help of Proposition 5.2 and get that there existC1 andC2 which depend onx1,x2 andy such
that

Ẽx1

∞∫
0

1{y}(Ys)e−λs ds = C1√
λ

+ o

(
C1√

λ

)
,

lim
λ→0

{
Ẽx1

∞∫
0

1{y}(Ys )e−λs ds − Ẽx2

∞∫
0

1{y}(Ys)e−λs ds

}
= C2,

wherex1 = (l1,1),x2 = (l2,1),y = (n,1) ∈ Yj for all 1 � l1, j − l1, l2, j − l2, n, j −n � k. Therefore we conclud
the proof for this lemma ford = 1.

The proof of this lemma ford = 2 is similar to that ford = 1. We indicate what we need to modify.
Step1. LetX 2

j be the state space of our new Markov process defined by

X 2
j := {

(l,m): l ∈ Z2 \ {0},m ∈ Z with 1 � m,j − m � k
}
.

The valuesl andm means the difference of two particles and the number of energy on which the datums p
carries, respectively. The process is a continuous time random walk onX 2

j with jump rater((l,m), (l′,m′)) as

r
(
(l,m), (l′,m′)

) =




cex(m) + cex(j − m) if |l − l′| = 1 andm = m′,
cge(m) if l = l′, |l| = 1 andm − m′ = 1,

cge(j − m) if l = l′, |l| = 1 andm − m′ = −1,

0 otherwise.
Namely the state space has ordered min{j − 1, k} − max{j − k,1} + 1 2-dimensional lattice planes without origi
On planes the process is symmetric simple random walk with some jump rate. Each planes is connect
next and previous planes at points±e1 and±e2. At this point the random walk is not symmetric. We write t
distribution of the random walk which starts fromx ∈X 2 by Px. Since∅x,l;y,j−l = ∅y,j−l;x,l ∈A2,j X 2 is not the
j j
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representative of the quotient set ofA2,j relative to∼. But we suppose that the point∅0,l;x,j−l ∈ A2,j is branches
(x, l) and (−x, j − l) ∈ X 2

j . Then following is truth. SupposeB = ∅0,n;e,j−n,C = ∅x,l;x+m,j−l ∈ A2,j ,b1 =
(e, n),b2 = (−e, j − n) andc = (m, l) ∈ X 2

j . Then it holds that

EC

∞∫
0

1B(B)(Xs)e−λs ds = Ec

∞∫
0

(
1{b1}(Xs) + 1{b2}(Xs)

)
e−λs ds. (29)

Therefore we conclude step 1.
Step2. What we have to prove is that there existsC1 which depends onb, c ∈X 2

j such that

Ec

∞∫
0

1{b}(Xs)e
−λs ds = −C1 logλ + o(logλ)

and there exists a limit of the difference

lim
λ→0

{
Ec1

∞∫
0

1{b}(Xs )e−λs ds − Ec2

∞∫
0

1{b}(Xs)e−λs ds

}
.

We consider following continuous time stochastic process which is not Markov process, similar to that ford = 1.
Let Y2

j be a state space of the process defined by

Y2
j := {

(l,m): l ∈ Z2,‖l‖ = 1 or 2,m ∈ Z,1 � m,j − m � k
}
,

where‖l‖ = |l1| + |l2| for l = (l1, l2) ∈ Z2. Put{F } by

F(l1,m1),(l2,m2)(λ) :=




H 2(λ; cex(m1) + cex(j − m1), l1, l2) if ‖l1‖ = 2,‖l2‖ = 1,m1 = m2,

G(λ;Zm1)
3(cex(m1)+cex(j−m1))

Zm1
if ‖l1‖ = 1,‖l1 − l2‖ = 1,m1 = m2,

G(λ;Zm1)
cge(m1)

Zm1
if l1 = l2,‖l1‖ = 1,m1 − m2 = 1,

G(λ;Zm1)
cge(j−m1)

Zm1
if l1 = l2,‖l1‖ = 1,m1 − m2 = −1,

0 otherwise,

whereZm = Zm,j := 3(cex(m) + cex(j − m)) + cge(m) + cge(j − m) andG(λ; r) is the Laplace transform of th
exponential distribution with rater, andH 2(λ; r, x, y) is defined as follows. LetB = {0,±e1,±e2} ⊂ Z2. Denote
by Xr andPx the continuous time symmetric simple random walk onZ2 with jump rater and the distribution o
the walk which starts fromx ∈ Z2. Let µ be the first hitting time toB. Then we defineH 2(λ; r, x, y) by

H 2(λ; r, x, y) := Ex[e−λµ1{Xr
µ=y}].

Comparing this process and that ford = 1, the site(1,m) ∈ Yj corresponds to(l,m) ∈ Y2
j , with ‖l‖ = 1 and

(2,m) ∈ Yj corresponds to(l,m) ∈ Y2
j , with ‖l‖ = 2. Denote byYs andP̃x the process and the distribution of t

stochastic process which starts fromx ∈ Yj respectively. Then it holds that

Ec

∞∫
0

1{b}(Xs)e−λs ds = Ẽx

∞∫
0

1{y}(Ys)e−λs ds,

whereb = (e, l), c = (e′, n) ∈ Xj andx = (e, l),y = (e′, n) ∈ Yj for all 1 � l, j − l, n, j − n � k ande, e′ ∈ Z2

with ‖e‖ = ‖e′‖ = 1. We can apply Lemma 5.1 with the help of Proposition 5.3 and get that there existC1 andC2
which depend onx1,x2 andy such that
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1) is
Ẽx1

∞∫
0

1{y}(Ys)e−λs ds = −C1 logλ + o(logλ),

lim
λ→0

{
Ẽx1

∞∫
0

1{y}(Ys )e
−λs ds − Ẽx2

∞∫
0

1{y}(Ys)e
−λs ds

}
= C2,

wherex1 = (l1,1),x2 = (l2,1),y = (n,1) ∈ Yj for all 1 � l1, j − l1, l2, j − l2, n, j − n � k. Thus the proof for
d = 2 is complete. �

7. Proof of theorems

Firstly we prove Theorem 2.2.

Proof of Theorem 2.2. We defineΛ = Λd ⊂ Zd by

Λ1 := {0,1},
Λd := {0, e1, e2, . . . , ed}, if d � 2,

wheree1, e2, . . . , ed are positive unit vector onZd . We recall thatW is the linear space spanned by the curre
wE

e ,wP
e for all positive unit vectorse. Then for anyf ∈W , f depends only on{ηx : x ∈ Λ}, and

Ep,ρ[f |FΛ] = 0 (30)

for all p,ρ, whereFΛ is σ -algebra generated by
∑

x∈Λ 1{ηx �=0},
∑

x∈Λ ηx and{ηx : x /∈ Λ}.
In [3], Kipnis and Varadhan proved some equivalent relation about central limit theorem variance. We u

of them. It holds that
∞∫

0

∑
x

Ep,ρ[f τxeLtf ]dt = lim
λ→0

∑
x

Ep,ρ[f τxgλ],

wheregλ is a solution of the resolvent equation,

λgλ − Lgλ = f.

It is convenient to writeFλ(p,ρ) = ∑
x Ep,ρ[f τxgλ]. By Lemma 3.2 we have

Fλ(p,ρ) =
∑

x,A:
⋃

i (τxA)i∩Λ�=∅
ĝλ(A)Ep,ρ[fΨτxA] +

∑
x,A:

⋃
i (τxA)i∩Λ=∅

ĝλ(A)Ep,ρ[fΨτxA], (31)

whereĝλ is defined by (12). By (30), the second sum on the right-hand side of (31) vanishes. We define the f
h by

h(B,p,ρ) := Ep,ρ[fΨB]
m(B,p,ρ)

for B ∈ A such that
⋃

i Bi ⊂ Λ. We recall that

B(B) := {
A ∈ A: there existsx ∈ Zd such that(τxA)i ∩ Λ = Bi for all i

}
for B ∈A, such that

⋃
i Bi ⊂ Λ, which is defined in Section 6. Then the first sum on the right-hand side of (3

equal to ∑ ∑
h(B,p,ρ)ĝλ(A)m(A,p,ρ).
B∈A:∪iBi⊂Λ A∈B(B)
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We substitute (12) and use the reversibility ofm to see thatFλ is equal to

∑
B∈A:

⋃
i Bi⊂Λ

h(B,p,ρ)
∑
C∈A

f̂ (C)m(C,p,ρ)EC

∞∫
0

1B(B)(Xs)e−λs ds.

In view of (9), there exists{f̃e(C)} which is a linear combination of{w̃E
e (C), w̃P

e (C)} such that

Fλ(p,ρ) =
∑

B∈A:∪iBi⊂Λ

h(B,p,ρ)
∑
C∈A

f̃e(C)m(C,p,ρ)

×
{

EC

∞∫
0

1B(B)(Xs)e−λs ds − EθC

∞∫
0

1B(B)(Xs)e−λs ds

}
.

By (9), we know thatf̃e(C) = 0 if C /∈D1 ∪D2, and{
B ∈A:

⋃
i

Bi ⊂ Λ

}
=D1 ∪D2,

whereD1 andD2 are defined by (27). Therefore we have

Fλ(p,ρ) =
∑

B∈D1∪D2

h(B,p,ρ)
∑

C∈D1∪D2

f̃ (C)m(C,p,ρ)

×
{

EC

∞∫
0

1B(B)(Xs)e−λs ds − EθC

∞∫
0

1B(B)(Xs)e−λs ds

}
. (32)

We have decomposedFλ(p,ρ) into a finite sum of smooth functions such that each term of it is the product o
factors, one is a smooth function ofp,ρ which does not depend onλ, and the other is a function ofλ which does
not depend onp,ρ. Furthermore the second one is given by a difference of expectation of Laplace transform
occupation time for certain infinite set. Applying Lemmas 6.1–6.4, each of the second one converges asλ tends
to 0. Therefore the limiting function ofFλ(p,ρ) is also smooth. �
Proof of Theorem 2.1. Firstly we claim that(

a · D̃(p,ρ)a
) = Ep,ρ

[
cex(η0)

{
π(0,e)(a1η0 + a21{η0 �=0}

}2]
+ Ep,ρ

[
cge(η0)

{
π0→e(a1η0 + a21{η0 �=0})

}2] − 1

2

∞∫
0

∑
x

Ep,ρ[waτxeLtwa]dt (33)

for each 0< p < 1, p < ρ < kp, where

wa := a1w
E
e + a2w

P
e .

The proof of the equivalence of the variational formula (given by (1)) for the diffusion coefficient matrix an
by Green–Kubo formula (right-hand side of (33)) can be carried out in a way similar to that indicated for the
of Proposition 2.2 of [8], p. 180. Therefore we omit the detail.

Secondly we show that there exists a smooth extension ofD. Firstly we treat the diffusion coefficient matrixD
as a function ofp,α, namely we take expectations with respect toνp,α . Then all expectations for local function
are polynomials ofp and rational functions ofα. Put
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β(α) := 1

Zα

{
1+

k∑
l=2

l
αl−2

cge(2)cge(3) · · ·cge(l)

}
,

γ (α) := 1

Zα

{
1+

k∑
l=2

l2
αl−2

cge(2)cge(3) · · ·cge(l)

}
.

Then the inverse matrix ofχ = χ(p,ρ) defined by (2) is equal to

1

p(γ − β2)

( 1 −β

−β
γ−pβ2

1−p

)
.

By the definition,Zα is a polynomial ofα. Furthermore, the constant term ofZα is not zero. We also have th
following: there exists a polynomial�0(α) whose constant term is not zero such thatγ − β2 = α�0/Z

2
α . By (32)

and the definition ofm, (a · D̃a) is a polynomial ofp and rational function ofα for each two dimensional vectora.
Furthermore there exist a positive integerr and a polynomial�a

1(p,α) whose constant term is not zero such t
(a · D̃a) = pα�a

1/Zr
α . Therefore we have a smooth extension ofD as a function ofp,α atp = 0 orα = 0. Sinceρ

is a smooth and strictly increasing function ofp andα, we have a smooth extension ofD as a function ofp andρ

at p = 0 or ρ = p (corresponding top = 0 orα = 0 respectively). Using the same method we also have a sm
extension atp = 1 orρ = kp. �
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