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Abstract

In this paper we study integrability properties of the random variable

Imqy=ffwﬁhm
0

where{Bt("): t > 0} is a Brownian motion with drifie > 0 and f is a non-negative, Borel measurable function. In particular,
we find conditions under whichy (f) (i) is finite a.s., (ii) has all the moments, (iii) has some exponential moments, and (iv) has
bounded potential.

0 2005 Elsevier SAS. All rights reserved.
Résumé

Dans ce travail, nous étudions les propriétés d'intégrabilité de la variable aléatoire :

Imur=ffwﬁhm
0

ou {Bl("): t > 0} est un mouvement brownien avec dérjve- 0, et f une fonction borélienne positive. En particulier, nous
trouvons des conditions pour lesquelles(f) (i) est finie p.s.; (ii) posséde des moments de tous ordres; (iii) posséde des
moments exponentiels; (iv) a un potentiel borné.
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1. Introduction

Let BW = (B := B, + ut: t >0} be a Brownian motion with drifie > 0, BM(y), for short, andf a
non-negative measurable function. In this paper we study integrability properties of the functionals of the type

()= [ FBI) .
0

We taken > 0 only to simplify the presentation. Corresponding properties of functionals for a Brownian motion
with negative drift are easily deduced from the case with positive drift.

The above kind of functionals appear in many applications. We have in mind especially financial mathematical
framework wherel (f) is interpreted as a continuous perpetuity. We refer to Dufresne [7] where it is seen how
the functional

oo

/ exp(—2B) ds (1)
0

arises as a perpetuity after a limiting procedure in a discrete model.
Itis of great importance to have clear and easy-to-apply criteria in terrfisuofler whichls (f)

() is finite a.s.,

(ii) has all the moments,
(iii) has some exponential moments,
(iv) has a bounded potential.

In some cases, it is possible to compute explicitly the distribution or the Laplace transfdggt 6f and from
this, of course, to check the validity of (i)—(iv). For instance, we have (see Dufresne [7])
r 1
/exp(—ZBs(“))ds @ -
2y,
0
wherey,, is a gamma-distributed random variable with paramﬂtand(z) reads “is identical in law with”. Con-
sequently, Dufresne’s functional (1) has finit¢h moment if and only ifn < u. We remark also that in Yor [29]
(see [30] for an English translation) it is shown that
o0
/exp(—ZBS(“))ds Dint(e: R® =0y},
0
whereR® is a Bessel process of dimenside= 2(1 — ) started at 1. One motivation for the present paper was,
indeed, the desire to find “natural” functionals which could serve as a perpetuity having some exponential moments.
Our criteria show that a suitable candidate is the functional
o
/(1 +a exp(Bﬁ’”))f2 ds, a>0. 2)
0
We noticed, independently of the present study, that the Laplace transform of this functional can be computed

explicitly in the caseu = 1/2. However, we postpone to a forthcoming paper [24] the detailed discussions of the
different methods of computing the distributions of perpetual functionals using, in particular, some connections
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between perpetual functionals and first hitting times, while, in the present paper, we address only the question of
finding criteria for (i) to (iv).

We now shortly review the literature known to us on the questions (i)—(iv).

Firstly, in Engelbert and Senf [13] a necessary and sufficient condition for (i) to hold is found. The result
is proved in [13] by formulating the problem for ordinary Brownian motion and applying Shepp’s dichotomy
theorem (see Shepp [25]). Our proof, presented in Section 3, is based on Jeulin’s lemma [16] and is, perhaps, more
straightforward in the sense that we work directly witf" and its local time.

Secondly, we remark that there has been much interest focused on finding conditions for a.s. finiteness of
integral functionals of Bessel processes (see, e.g., Engelbert and Schmidt [10], Pitman and Yor [22,23], Engelbert
and Schmidt [12], Xue [28], Csorgd, Horvath and Shao [5], and Cherny [3]). In particular, Jeulin’s lemma is applied
in [22] and [23].

Thirdly, recall that if

SUPE, (1 (f)) < 00,

that is, Io(f) has a bounded potential, thég () has some exponential moments. This result is usually called
Khas'minskii's lemma (see Simon [26], Durrett [8], and Chung and Zhao [4]). For a recent discussion and gen-
eralizations of Khas’minskii's lemma, see Stummer and Sturm [27]. Our approach is, however, based on a more
general result (see Lemma 5.2) presented in Dellacherie and Meyer [6], Chapitre VI, Théoréme 105, p. 108.

Finally, we are not aware of any works where conditions in termg @br (ii), (iii) and (iv) are discussed.
However, for exponential moments of integral functionals of Brownian motion over a finite time interval, see
Engelbert and Schmidt [11] whose result is shortly explained in Remark 5.3(4) below.

The paper is organised so that in the next section we introduce some notation, summarize our results in a table
form, and make some further comments. The proofs of the criteria for (i), (ii), (iii) and (iv) are then given in the
Sections 3, 4, 6, and 5, respectively.

2. Notation and summary of the results

It is assumed throughout the paper that 0 and the functiory’ appearing in the functional

e ¢]

Ino(f) = / F(BU) ds,
0
satisfies the condition

(A) f is anon-negative and locally integrable function.
The main results are summarized in Table 1. The classes indicated in the table consist of the fynsditisfging

(A) and for which the condition in the first column holds. For instantés in X4 if it is non-negative and locally
integrable and has bounded potential, i.e.,

SUPE; (I (f)) < 0.

Because of the criterion fo£;, a necessary condition for a functighto belong tofC;, i =2, 3,4, is that it is
integrable at-oo:

/f(x)dx<oo.
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Table 1

Class Criterion

K1 Iso(f) < o0 a.s. & j-oo fx)dx < o0
Ko:VneN, Vx Ey(Ioo(f)") <00 & [ fdr<oo and

Im >0 f(x)=0(xI")xo—co

K3: 3y >0, Vx  Ex(expylso(f))) < oo &= foof(x)dx<oo and
fx) = O(Dx——co
K4: sup, Ex(Ioso (f)) < 00 & [ fE)dr <oo

Thus, as seen from the table, ffrto belong tolC;, i = 2, 3, 4, only its behaviour at-oco is of interest.
Itis clear from the definitions that

KscCc Ky C Ky

Notice from the table thd€, contains functions for which the sufficient criterion #6g (or for X2) does not hold.
However, we still have

Ka C Ks.

This fact is a special case of a more general result, often called Khas'minskii’s lemma (see Lemma 5.2 below and
discussion therein).
Moreover, the table shows thigy andk4 do not depend on the particular value of the positive drift parameter

In fact, Iettingﬁl(.“), i =12, 3,4, be the family of the distributions of the functionals
o
/f(B§“>)ds, feki, i=1234,
0

respectively, we have the following
Proposition 2.1. The familiescf“), i=1,2,3,4, do not depend op > 0.

Proof. By the scaling property of Brownian motion we have for any 0
(0.¢] oo
/ f(Bs + us)ds (i)cz/ f(cBs + wc?s) ds.
0 0

Choosing here = 1/u gives

/f(BerMS)ds(g)iz/f(l(BerS)) ds.
0 H 0 #

but this means thatf“) = Elfl), i=1,2 3,4, proving the claim. O

3. Finiteness—class IC;

We now prove the characterization/of given in the first row of the table above. As stated in the Introduction,
the result can be found in Engelbert and Senf [13]. Their proof is based on Shepp’s dichotomy theorem (see
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Shepp [25]). Our proof is different and, perhaps, simpler, and we think that it is worthwhile — also to make the
paper more readable and self-contained — to present it. An important tool in our proof is the following lemma due
to Jeulin (see [16], p. 254, Proposition 4, or [15]) formulated here in a slightly less general form. We also refer to
Pitman and Yor [22] and [23] for applications of Jeulin’s lemma for integral functionals of Bessel processes.

Lemma3.l. Let{Z,: y > 0} be a stochastic process such that the laZ pfdoes not depend onand is absolutely
continuous with respect to the Lebesgue measure. Assume ald€6| hat< co. Then for any -finite measure
on R, (:= the set of non-negative real numbers

P(/IZyIV(dy)<OO> =1 & v(Ry) <oo.
0

The proof of Proposition 3.3 below is based on the properties of local time of Brownian motion with drift. The
Ray—Knight theorems form a rich source of information for the local time processes. Although we here only need a
small fragment of this information, it is perhaps good to recall the complete statement (taken from [2], V. 11, p. 90)
of the Ray—Knight theorem (formulated here as a lemma) for the total local time process of Brownian motion with
drift. We let L9 (¢, y) denote the local time oB at levely and at timer (taken with respect to the Lebesgue
measure). The total local time is defined via

L% (00, y) = lim L® (. y).

Lemma 3.2. Conditionally oninf{B{: s >0} = m and B(“) 0it holds

m} Lx@: 0<y < —m),

{LW (00,m+y): 0<y < -
and
(L®(00,y): y >0} 2x@: y > 0),
wherex @ is a diffusion with the generator
2
d 3.2

and X @ is a diffusion with the generator

+@4- ZMZ) -

2

d —+@2- ZMZ)—

The procesx @ is started from the location of  at time—m, but otherwiseX® and X @ are independent.
We now apply Lemmas 3.1 and 3.2 to characterize the #lass

Proposition 3.3. (K1) Assume that the functiofi satisfies the assumpti¢A). Then

/f(B,(“))dt<ooa.s. & /f(y)dy<oo.
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Proof. The starting point is the occupation time formula for BW(
t
/fw&5m=/f@nmeMy
0 R
Letting herer — oo we obtain by monotone convergence
o
[ raas= [ roLnee . 3
0 R

In view of (3) we wish to use Lemma 3.1 with, = L™ (00, y) and v(dy) = f(y)dy. Firstly, becausef is
assumed to be locally integrable and non-negative, it is cleavtisad o -finite measure. Secondly, it follows from
Lemma 3.2 (see also [2], p. 90 and 2.1.3.4(2), p. 253)

e ny y =X,
Px (L(M)(OO, Y) 2 'U) = { e—ZpL(X—y) @ HKv y ;X. (4)

In particular, thePp-distribution of L) (00, y) for y > 0 is independent of. Setting

o[£ 128

we obtain
o0 o o0
Po</f(B§“))ds<oo)=l & /f(x)d.x<oo & /f(x)dx<oo.
0 0 0
Notice next that

00 *o 00
[ rwmas= [ rae [ raeas (5)
0 0 *o

whereig := sugt: B,(") = 0}. Because.g < oo a.s., the first integral on the right-hand side of (5) is a.s. finite. For
the second integral we have (becayseg 0)

00 o0
/f(B§M>)ds</f(B§“>)ds.
Ao 0

On the other hand,

oo oo
/ﬂw%m</ﬂ&%m,
0 0
and this completes the proof.0

Remark 3.4. Let v be a measure oR, which is finite on compacts, and define

Iwww=/vwwLWMwm>
R
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Then it can be proved similarly as above that

o0

Io(V) <0 as. & /v(dy) < 00.

4, Moments—class K,

Proposition 4.1. (K2) Assume that the functiofi satisfieg(A), is integrable at+oo, and for some positive inte-
germ

S =0(1x") - (6)
Thenforallx andn=1,2,...

v (x) 1= Ex (Ino(f)") < 00.

Proof. We first compute?, the mean ofi,,(f). Let p( be the transition density of Blyk) such that
P.(B" edy) = p®(t; x, y) m(dy),

wherem (dy) = 2 exp2uy) dy is the speed measure of BM). As is well known, the Green kernel is given by

9]

1
Go(x,y) :=/p(‘”(t;x,y) dr = 2—672‘” forx >y, (7)
"
0

and this determines the value of the integral alsafar y due to the fact thgp ¥ (z; x, y) = p*“(t; y, x). Consider
now

v (x) = Ex< / f(B,(‘”)dt> _ / E.(f(B™))dr = / di f m(dy)p(t: x. ¥) £ ()
0 0 0 R

=/m(dy)f(y)/dtp(")(t;x,y),
R 0
and so, from (7),

+00 X
1 1 y
w0 =Bl = [ rdy e [y ®)
X —00
Due to (6) and the integrability of at+oc it is clear that™ (x) is finite for all x. Further, for any real numbey

limsupv™® (x) = lim supl g onx / F(y) €Y dy = lim SU|01 g onx [ £ ()€Y dy
—00 N

x—>400 x—+o0 M x—+oo MW

1 o0
<—/f(y)dy
m
N
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which gives

lim v®Px)=0. (9)

X—> 400

Becausef is locally integrable and satisfies (6) it follows from (8) that

1 _ m+1
v P ) =0(lx ™) . (10)
Next recall the Kac moment formula (see Fitzsimmons and Pitman [14], or [2], I1.27, p. 31)
v™(x) =n / Go(x, ) v" () f(y)ym(dy), (11)
R
or, equivalently,
+o0 X
n n )
=2 [ FuPerdy e [ oD@ dy, (12)
X —0oQ
Take here: = 2 and use (9) and (10) to show thé® (x) is finite. Proceeding inductively, it is seen that
lim v™x)=0 and v™(x)=0O(x|"*") (13)

—aa?
x—+00 X—>—00

which implies, from (11), the existence ¢ff*+ and, further, (13) holds by a recurrence argument, thus completing
the proof. O

Next examples show that if the polynomial growth condition (6) is not valid then the functional does not, in
general, have all the moments.

Example4.2. (1) For f(x) = exp(—ux) we have (cf. (8))

e ¢]

E, </exp(—u Bt(”))dt> = % exp(—ux)
0
and from (11) (or (12)) withe =2

00 2
Ex<(/exp(—MB}“>)dt> )=+oo.
0

(2) Dufresne’s functional (1), i.ef (x) = exp(—2x), is also easy to analyze via (12). In particular, it is seen —
without knowing the explicit law — that this functional has a finitth moment if and only ifn < wu.
5. Bounded potential —class IC4

We discuss the clag§, before the clas&’s to be able to use these results when analysing

Proposition 5.1. (/Cg) (i) The integral functional (f) has bounded potential, that is,
Do = SUPE, (Ioo(f)) < 00, (14)
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if and only if

/ f(y)dy < oo.

In this case,
o
1
Po=— / f(y)dy.
nw
—0o0

(ii) Iso(f) has exponential moments fpr< 1/p,, i.e., for all x

E, (exp(yloo(f))) < 0. (15)
More precisely, for allk ande € (0, 1)
E. (exp( 1p_ ‘9100<f))> <e (16)

The statement that (14) implies (15) can be proved directly using the Kac moment formula. We remark also
that it is a special case of Khas’minskii’'s well-known lemma (see Khas'minskii [19], Simon [26], Durrett [8], and
Chung and Zhao [4]). For a more recent discussion and generalizations of Khas'minskii's lemma, see Stummer
and Sturm [27]. However, we want to point out here that this statement (as well as Khas'minskii's lemma) can be
deduced from the following more general result presented in Dellacherie and Meyer [6], Chapitre VI, Théoréme
105, p. 108.

Lemma 5.2. Let A be a continuous(F;)-adapted, non-decreasing process startin@aiuch that there exists a
constantC > 0 satisfying
Vi>0 E(Aw— A | F)<C. 17)
Then
(i) VneN, 1 >0, E((Aso — A" | Fr) <n! C™,

(i) VneN, E(A%) <n!C",
(i) E(exp(r Ax)) <1/(1—1C)forr <1/C, and, consequently,

E(exp(% Aoo>) <e L

fore € (0, 1).

Proof. Clearly, (ii) follows from (i) by takings = 0, and (iii) from (ii) using the series expansion of the exponential
function. To prove (i) consider the cage= 2

E((Aso — AD? | F) = ((/dA ) 'f,) =2 E(/dAM/dAA2
_2E</dAél(A — 4y | ]—}) =2E(/dASlE(AOO — A1 Fy) | f,) <2c?,
t
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where the next to the last step is obtained by replacing the prdeegss— A,: u > 0} by its optional pro-
jection {E(Asc — A, | Fu): u > 0}. The general case is only notationally more complicated, and we skip the
details. O

Proof of Proposition 5.1. To compute the supremum in (14), consider (cf. (8))

+o00
Ex(Iso(f)) = /f(y)der S f f() e dy > /f(y)dy. (18)
Hence, x
SUE. ()] > / F»)dy.
From (18) it also follows that

Ex(Ioo(f)) < / f)dy,

and so, as claimed,

po = SUPE, (Ino(1))} / £y dy.

Take now in Lemma 5.2

t
t :/f(B§M))dS
0

Then (17) holds withC = p,,, and from (iii) in Lemma 5.2 we obtain (16).0

Remark 5.3. (1) As in Remark 3.4, consider the functional

Ioo(v) := f v(dy) L™ (00, y).
R
Then it can be proved similarly as above that

1
Po(v) 1= SUPE, (Ioo(v)) = " v(R).

Notice that if we takev(dx) = ¢,(dx), Dirac’s measure at > O, thenp, = 1/u. Therefore, from (15), foy < u

Eo(exp(y L™ (00, y))) < 00
which is the best possible bound since
Po(L™ (00, y)) edl = pe ! di.

(2) Leto = {o;: t > 0}, 00 = 0, be a subordinator ankl: [0, co) — [0, co) a decreasing function. In Bertoin
[1], p. 28, it is proved that the following three statements are equivalent
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(i) E(fy" h(oy)dr) < oo,
(i) P(fy" h(oy)dr <o0)=1,
(iii) P(fy° h(oy)dt < o0) > 0.

From Lemma 5.2 it follows that (i) (and hence also (ii) and (iii)) are equivalent with

Indeed, consider

o0

E(/h(ou)du

t

o0

(iv) E(exp(y fy° h(o;)dr)) < oo for somey > 0.
a[) —E, (/ h(%)du) < E(/h(ou)du>,

.7-',) = E(/h(ou)du
t 0 0

because is increasing and is decreasing. Therefore, the condition (17) with

oo

A, ::/h(au)du
0

holds implying the existence of some exponential moments.

(3) A version of Lemma 5.2 can be found already in Meyer [20], Chapter VII, Section 6: Quelques résultats sur

I'énergie; see, in particular, the inequality (59.2), p. 182

E(A") <n!C",
where{A,} denotes an increasing integrable predictable process (called “natural” by Meyer in 1966), whose poten-
tial is bounded byC. The special case with = 2 appears as a Corollary (formula (24.1)) to Théoreme 23 which
gives an integral expression fEl(Ago).

(4) Lemma 5.2 plays also an important réle in the studies of BMO-martingales, see e.g. Kazamaki and Sekiguchi
[18], Emery [9] and Kazamaki [17], Theorem 2.2, p. 29. We also refer to Engelbert and Schmidt [11] where (17)
is used to derive more explicit sufficient conditions for an exponential local martingale associated with a diffu-
sion martingale to be a martingale. In particular, for a Brownian moBoand a fixed: > 0, it follows from
Corollary (3.16) in [11] that

t
/ F(By)ds
0

has some exponential momentsfiis locally integrable and bounded at infinity.

6. Exponential moments— class K3

Proposition 6.1. (K3) Assume that the functiofi satisfieqA), is integrable at+oco, and

Fx) =015 —co- (19)
Then there existg > 0 such that for allx
E, (exp(y]oo(f))) < 00. (20)
In particular, if f(x) < Cy for all x < N then(20) holds for
2
: jz Iz
min s . 21
r= {2f,$°f(x)dx 4cN} &)
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Proof. By (19), there exist®v such thatf is bounded in—oo, N). We prove first that (20) holds for a functigh
satisfying the stated assumptions and for which there exisssich thaf f > 0} C (—oo, x*) and f is bounded in
(—o0, x*) by a constan€. Let

Ayx 1= SUH?: Bl(“) =x*}.
Then

o0 A.x*
/ f(BMydi = f FBM)dt < C i (22)
0 0

The P, -distribution of A+ with x < x* has the Laplace transform (see Pitman and Yor [21] and Borodin and
Salminen [2], p. 27)

Go(x,x™)
Go(x*, x*)’
where the Green kernéf,, o > 0, is given forx < x* by (cf. Borodin and Salminen [2], A1.14, p. 127, see
also (7))

Galr )=~ 2a1+ MZ o W2t i (/22—
Consequently, studying (23), it is seen thatfok 112/2

E. (exp(y i) < oo,
and this implies, using (22), far < 12/(2C)

E. (exp(y]oo(f))) < 00.

Consider next a functiorf for which the made assumptions hold and for which there existaich that f > 0} C
(x*,00). Then f € K4 and we have (20) by Proposition 5.1(ii). Let ngise an arbitrary function satisfying the
assumptions and introduce

f10) = f() L 0o,0(x), and fa(x):= f(x)10 4o00)(X).

Then, as explained abové; € K4 C K3, and alsof; € K3 because, without loss of generality, we may assume
that f1 is bounded or{—oo, 0). The Cauchy—Schwarz inequality implies thya€ 3. The bound given in (21) is
obtained with a similar reasoning as above (us\gnstead of 0) combined with the bound in Proposition 5.1,
details are left to the readero

Ex(exp(—ahy+)) = (23)

Remark 6.2. Notice that if f is bounded then, writing

F )= f)L—oo,n)(X) + f) LN, 400) (x)
with N large as in the proof above but using th&-inequality instead, it follows

Ex (exp(y / f(Bf’”)dt)) < 00,
0

for y < u?/(2C) whereC :=sup f (x): x € R}.

Example 6.3. Consider the functional in (2), that ig(x) = (1+a exp(x))~2. Thenf € K3. Becausef is bounded
by 1, the functionall.( f) has exponential moments for< ;2/2.
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Note added in proof

The Laplace transform of the functional in (2) has now been computed in: A.N. Borodin, P. Salminen, On some
exponential integral functionals of Biyt) and BE$3), Zap. Nauchn. Sem. POMI 311 (2004) 57-78.
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