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Abstract

In this paper we study integrability properties of the random variable

I∞(f ) :=
∞∫

0

f (B
(µ)
t )dt,

where{B(µ)
t : t � 0} is a Brownian motion with driftµ > 0 andf is a non-negative, Borel measurable function. In particu

we find conditions under whichI∞(f ) (i) is finite a.s., (ii) has all the moments, (iii) has some exponential moments, and (iv
bounded potential.
 2005 Elsevier SAS. All rights reserved.

Résumé

Dans ce travail, nous étudions les propriétés d’intégrabilité de la variable aléatoire :

I∞(f ) :=
∞∫

0

f (B
(µ)
t )dt,

où {B(µ)
t : t � 0} est un mouvement brownien avec dériveµ > 0, etf une fonction borélienne positive. En particulier, no

trouvons des conditions pour lesquellesI∞(f ) (i) est finie p.s. ; (ii) possède des moments de tous ordres ; (iii) possèd
moments exponentiels ; (iv) a un potentiel borné.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Let B(µ) = {B(µ)
t := Bt + µt : t � 0} be a Brownian motion with driftµ > 0, BM(µ), for short, andf a

non-negative measurable function. In this paper we study integrability properties of the functionals of the t

I∞(f ) :=
∞∫

0

f (B(µ)
s )ds.

We takeµ > 0 only to simplify the presentation. Corresponding properties of functionals for a Brownian m
with negative drift are easily deduced from the case with positive drift.

The above kind of functionals appear in many applications. We have in mind especially financial mathe
framework whereI∞(f ) is interpreted as a continuous perpetuity. We refer to Dufresne [7] where it is see
the functional

∞∫
0

exp
(−2B(µ)

s

)
ds (1)

arises as a perpetuity after a limiting procedure in a discrete model.
It is of great importance to have clear and easy-to-apply criteria in terms off under whichI∞(f )

(i) is finite a.s.,
(ii) has all the moments,
(iii) has some exponential moments,
(iv) has a bounded potential.

In some cases, it is possible to compute explicitly the distribution or the Laplace transform ofI∞(f ) and from
this, of course, to check the validity of (i)–(iv). For instance, we have (see Dufresne [7])

∞∫
0

exp(−2B(µ)
s )ds

(d)= 1

2γµ

,

whereγµ is a gamma-distributed random variable with parameterµ and
(d)= reads “is identical in law with”. Con

sequently, Dufresne’s functional (1) has finitemth moment if and only ifm < µ. We remark also that in Yor [29
(see [30] for an English translation) it is shown that

∞∫
0

exp(−2B(µ)
s )ds

(d)= inf{t : R
(δ)
t = 0},

whereR(δ) is a Bessel process of dimensionδ = 2(1 − µ) started at 1. One motivation for the present paper w
indeed, the desire to find “natural” functionals which could serve as a perpetuity having some exponential m
Our criteria show that a suitable candidate is the functional

∞∫
0

(
1+ a exp(B(µ)

s )
)−2 ds, a > 0. (2)

We noticed, independently of the present study, that the Laplace transform of this functional can be co
explicitly in the caseµ = 1/2. However, we postpone to a forthcoming paper [24] the detailed discussions
different methods of computing the distributions of perpetual functionals using, in particular, some conn
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finding criteria for (i) to (iv).

We now shortly review the literature known to us on the questions (i)–(iv).
Firstly, in Engelbert and Senf [13] a necessary and sufficient condition for (i) to hold is found. The

is proved in [13] by formulating the problem for ordinary Brownian motion and applying Shepp’s dicho
theorem (see Shepp [25]). Our proof, presented in Section 3, is based on Jeulin’s lemma [16] and is, perha
straightforward in the sense that we work directly withB(µ) and its local time.

Secondly, we remark that there has been much interest focused on finding conditions for a.s. finite
integral functionals of Bessel processes (see, e.g., Engelbert and Schmidt [10], Pitman and Yor [22,23], E
and Schmidt [12], Xue [28], Csörgö, Horváth and Shao [5], and Cherny [3]). In particular, Jeulin’s lemma is a
in [22] and [23].

Thirdly, recall that if

sup
x

Ex

(
I∞(f )

)
< ∞,

that is,I∞(f ) has a bounded potential, thenI∞(f ) has some exponential moments. This result is usually ca
Khas’minskii’s lemma (see Simon [26], Durrett [8], and Chung and Zhao [4]). For a recent discussion an
eralizations of Khas’minskii’s lemma, see Stummer and Sturm [27]. Our approach is, however, based on
general result (see Lemma 5.2) presented in Dellacherie and Meyer [6], Chapitre VI, Théorème 105, p. 10

Finally, we are not aware of any works where conditions in terms off for (ii), (iii) and (iv) are discussed
However, for exponential moments of integral functionals of Brownian motion over a finite time interva
Engelbert and Schmidt [11] whose result is shortly explained in Remark 5.3(4) below.

The paper is organised so that in the next section we introduce some notation, summarize our results
form, and make some further comments. The proofs of the criteria for (i), (ii), (iii) and (iv) are then given
Sections 3, 4, 6, and 5, respectively.

2. Notation and summary of the results

It is assumed throughout the paper thatµ > 0 and the functionf appearing in the functional

I∞(f ) :=
∞∫

0

f (B(µ)
s )ds,

satisfies the condition

(A) f is a non-negative and locally integrable function.

The main results are summarized in Table 1. The classes indicated in the table consist of the functionsf satisfying
(A) and for which the condition in the first column holds. For instance,f is in K4 if it is non-negative and locally
integrable and has bounded potential, i.e.,

sup
x

Ex

(
I∞(f )

)
< ∞.

Because of the criterion forK1, a necessary condition for a functionf to belong toKi , i = 2,3,4, is that it is
integrable at+∞:

∞∫
f (x)dx < ∞.
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Class Criterion

K1: I∞(f ) < ∞ a.s. ⇔ ∫ ∞
f (x)dx < ∞

K2: ∀n ∈ N, ∀x Ex(I∞(f )n) < ∞ ⇐ ∫ ∞
f (x)dx < ∞ and

∃m > 0 f (x) = O(|x|m)x→−∞
K3: ∃γ > 0, ∀x Ex(exp(γ I∞(f ))) < ∞ ⇐ ∫ ∞

f (x)dx < ∞ and
f (x) = O(1)x→−∞

K4: supx Ex(I∞(f )) < ∞ ⇔ ∫ ∞
−∞ f (x)dx < ∞

Thus, as seen from the table, forf to belong toKi , i = 2,3,4, only its behaviour at−∞ is of interest.
It is clear from the definitions that

K3 ⊂ K2 ⊂ K1.

Notice from the table thatK4 contains functions for which the sufficient criterion forK3 (or forK2) does not hold.
However, we still have

K4 ⊂ K3.

This fact is a special case of a more general result, often called Khas’minskii’s lemma (see Lemma 5.2 be
discussion therein).

Moreover, the table shows thatK1 andK4 do not depend on the particular value of the positive drift parameteµ.
In fact, lettingL(µ)

i , i = 1,2,3,4, be the family of the distributions of the functionals

∞∫
0

f (B(µ)
s )ds, f ∈Ki , i = 1,2,3,4,

respectively, we have the following

Proposition 2.1. The familiesL(µ)
i , i = 1,2,3,4, do not depend onµ > 0.

Proof. By the scaling property of Brownian motion we have for anyc > 0
∞∫

0

f (Bs + µs)ds
(d)= c2

∞∫
0

f (cBs + µc2s)ds.

Choosing herec = 1/µ gives
∞∫

0

f (Bs + µs)ds
(d)= 1

µ2

∞∫
0

f

(
1

µ
(Bs + s)

)
ds.

but this means thatL(µ)
i = L(1)

i , i = 1,2,3,4, proving the claim. �

3. Finiteness – class K1

We now prove the characterization ofK1 given in the first row of the table above. As stated in the Introduct
the result can be found in Engelbert and Senf [13]. Their proof is based on Shepp’s dichotomy theor
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Shepp [25]). Our proof is different and, perhaps, simpler, and we think that it is worthwhile – also to ma
paper more readable and self-contained – to present it. An important tool in our proof is the following lem
to Jeulin (see [16], p. 254, Proposition 4, or [15]) formulated here in a slightly less general form. We also
Pitman and Yor [22] and [23] for applications of Jeulin’s lemma for integral functionals of Bessel processes

Lemma 3.1. Let{Zy : y � 0} be a stochastic process such that the law ofZy does not depend ony and is absolutely
continuous with respect to the Lebesgue measure. Assume also thatE|Z1| < ∞. Then for anyσ -finite measureν
on R+(:= the set of non-negative real numbers)

P

( ∞∫
0

|Zy |ν(dy) < ∞
)

= 1 ⇔ ν(R+) < ∞.

The proof of Proposition 3.3 below is based on the properties of local time of Brownian motion with drif
Ray–Knight theorems form a rich source of information for the local time processes. Although we here only
small fragment of this information, it is perhaps good to recall the complete statement (taken from [2], V. 11
of the Ray–Knight theorem (formulated here as a lemma) for the total local time process of Brownian moti
drift. We let L(µ)(t, y) denote the local time ofB(µ) at levely and at timet (taken with respect to the Lebesg
measure). The total local time is defined via

L(µ)(∞, y) := lim
t→∞L(µ)(t, y).

Lemma 3.2. Conditionally oninf{B(µ)
s : s � 0} = m andB

(µ)
0 = 0 it holds

{
L(µ)(∞,m + y): 0� y � −m

} (d)={X(4)
y : 0� y � −m},

and {
L(µ)(∞, y): y � 0

} (d)={X(2)
y : y � 0},

whereX(4) is a diffusion with the generator

2z
d2

dz2
+ (4− 2µz)

d

dz

andX(2) is a diffusion with the generator

2z
d2

dz2
+ (2− 2µz)

d

dz
.

The processX(2) is started from the location ofX(4) at time−m, but otherwiseX(4) andX(2) are independent.

We now apply Lemmas 3.1 and 3.2 to characterize the classK1.

Proposition 3.3. (K1) Assume that the functionf satisfies the assumption(A). Then

∞∫
0

f (B
(µ)
t )dt < ∞ a.s. ⇔

∞∫
f (y)dy < ∞.
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Proof. The starting point is the occupation time formula for BM(µ)

t∫
0

f (B(µ)
s )ds =

∫
R

f (y)L(µ)(t, y)dy.

Letting heret → ∞ we obtain by monotone convergence

∞∫
0

f (B(µ)
s )ds =

∫
R

f (y)L(µ)(∞, y)dy. (3)

In view of (3) we wish to use Lemma 3.1 withZy = L(µ)(∞, y) and ν(dy) = f (y)dy. Firstly, becausef is
assumed to be locally integrable and non-negative, it is clear thatν is aσ -finite measure. Secondly, it follows from
Lemma 3.2 (see also [2], p. 90 and 2.1.3.4(2), p. 253)

Px

(
L(µ)(∞, y) � v

) =
{

e−µv, y � x,

e−2µ(x−y) e−µv, y � x.
(4)

In particular, theP0-distribution ofL(µ)(∞, y) for y � 0 is independent ofy. Setting

f̂ (x) :=
{

f (x), x � 0,

0, x < 0,

we obtain

P0

( ∞∫
0

f̂ (B(µ)
s )ds < ∞

)
= 1 ⇔

∞∫
0

f̂ (x)dx < ∞ ⇔
∞∫

0

f (x)dx < ∞.

Notice next that

∞∫
0

f (B(µ)
s )ds =

λ0∫
0

f (B(µ)
s )ds +

∞∫
λ0

f (B(µ)
s )ds, (5)

whereλ0 := sup{t : B
(µ)
t = 0}. Becauseλ0 < ∞ a.s., the first integral on the right-hand side of (5) is a.s. finite.

the second integral we have (becausef � 0)

∞∫
λ0

f (B(µ)
s )ds �

∞∫
0

f̂ (B(µ)
s )ds.

On the other hand,
∞∫

0

f̂ (B(µ)
s )ds �

∞∫
0

f (B(µ)
s )ds,

and this completes the proof.�
Remark 3.4. Let ν be a measure onR, which is finite on compacts, and define

I∞(ν) :=
∫

ν(dy)L(µ)(∞, y).
R
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Then it can be proved similarly as above that

I∞(ν) < ∞ a.s. ⇔
∞∫

ν(dy) < ∞.

4. Moments – class K2

Proposition 4.1. (K2) Assume that the functionf satisfies(A), is integrable at+∞, and for some positive inte
germ

f (x) = O
(|x|m)

x→−∞. (6)

Then for allx andn = 1,2, . . .

v(n)(x) := Ex

(
I∞(f )n

)
< ∞.

Proof. We first computev(1), the mean ofI∞(f ). Let p(µ) be the transition density of BM(µ) such that

Px(B
(µ)
t ∈ dy) = p(µ)(t;x, y)m(dy),

wherem(dy) = 2 exp(2µy)dy is the speed measure of BM(µ). As is well known, the Green kernel is given by

G0(x, y) :=
∞∫

0

p(µ)(t;x, y)dt = 1

2µ
e−2µx for x � y, (7)

and this determines the value of the integral also forx � y due to the fact thatp(µ)(t;x, y) = p(µ)(t;y, x). Consider
now

v(1)(x) = Ex

( ∞∫
0

f (B
(µ)
t )dt

)
=

∞∫
0

Ex

(
f (B

(µ)
t )

)
dt =

∞∫
0

dt

∫
R

m(dy)p(µ)(t;x, y)f (y)

=
∫
R

m(dy)f (y)

∞∫
0

dtp(µ)(t;x, y),

and so, from (7),

v(1)(x) = Ex

(
I∞(f )

) = 1

µ

+∞∫
x

f (y)dy + 1

µ
e−2µx

x∫
−∞

f (y)e2µy dy. (8)

Due to (6) and the integrability off at+∞ it is clear thatv(1)(x) is finite for allx. Further, for any real numberN

lim sup
x→+∞

v(1)(x) = lim sup
x→+∞

1

µ
e−2µx

x∫
−∞

f (y)e2µy dy = lim sup
x→+∞

1

µ
e−2µx

x∫
N

f (y)e2µy dy

� 1

µ

∞∫
N

f (y)dy
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which gives

lim
x→+∞v(1)(x) = 0. (9)

Becausef is locally integrable and satisfies (6) it follows from (8) that

v(1)(x) = O
(|x|m+1)

x→−∞. (10)

Next recall the Kac moment formula (see Fitzsimmons and Pitman [14], or [2], II.27, p. 31)

v(n)(x) = n

∫
R

G0(x, y) v(n−1)(y)f (y)m(dy), (11)

or, equivalently,

v(n)(x) = n

µ

+∞∫
x

f (y) v(n−1)(y)dy + n

µ
e−2µx

x∫
−∞

f (y) v(n−1)(y)e2µy dy. (12)

Take heren = 2 and use (9) and (10) to show thatv(2)(x) is finite. Proceeding inductively, it is seen that

lim
x→+∞v(n)(x) = 0 and v(n)(x) = O

(|x|m+n
)
x→−∞, (13)

which implies, from (11), the existence ofv(n+1) and, further, (13) holds by a recurrence argument, thus compl
the proof. �

Next examples show that if the polynomial growth condition (6) is not valid then the functional does n
general, have all the moments.

Example 4.2. (1) Forf (x) = exp(−µx) we have (cf. (8))

Ex

( ∞∫
0

exp(−µB
(µ)
t )dt

)
= 2

µ2
exp(−µx)

and from (11) (or (12)) withn = 2

Ex

(( ∞∫
0

exp(−µB
(µ)
t )dt

)2 )
= +∞.

(2) Dufresne’s functional (1), i.e.,f (x) = exp(−2x), is also easy to analyze via (12). In particular, it is see
without knowing the explicit law – that this functional has a finitemth moment if and only ifm < µ.

5. Bounded potential – class K4

We discuss the classK4 before the classK3 to be able to use these results when analysingK3.

Proposition 5.1. (K4) (i) The integral functionalI∞(f ) has bounded potential, that is,

po := supEx

(
I∞(f )

)
< ∞, (14)
x
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∞∫
−∞

f (y)dy < ∞.

In this case,

po = 1

µ

∞∫
−∞

f (y)dy.

(ii) I∞(f ) has exponential moments forγ < 1/po, i.e., for all x

Ex

(
exp

(
γ I∞(f )

))
< ∞. (15)

More precisely, for allx andε ∈ (0,1)

Ex

(
exp

(
1− ε

po

I∞(f )

))
� ε−1. (16)

The statement that (14) implies (15) can be proved directly using the Kac moment formula. We rema
that it is a special case of Khas’minskii’s well-known lemma (see Khas’minskii [19], Simon [26], Durrett [8]
Chung and Zhao [4]). For a more recent discussion and generalizations of Khas’minskii’s lemma, see S
and Sturm [27]. However, we want to point out here that this statement (as well as Khas’minskii’s lemma)
deduced from the following more general result presented in Dellacherie and Meyer [6], Chapitre VI, Thé
105, p. 108.

Lemma 5.2. Let A be a continuous,(Ft )-adapted, non-decreasing process starting at0 such that there exists
constantC > 0 satisfying

∀t � 0 E(A∞ − At |Ft ) � C. (17)

Then

(i) ∀n ∈ N, t � 0, E((A∞ − At)
n | Ft ) � n! Cn,

(ii) ∀n ∈ N, E(An∞) � n! Cn,

(iii) E(exp(λA∞)) � 1/(1− λC) for λ < 1/C, and, consequently,

E
(

exp

(
1− ε

C
A∞

))
� ε−1

for ε ∈ (0,1).

Proof. Clearly, (ii) follows from (i) by takingt = 0, and (iii) from (ii) using the series expansion of the exponen
function. To prove (i) consider the casen = 2

E
(
(A∞ − At)

2 |Ft

) = E

(( ∞∫
t

dAs

)2 ∣∣∣∣Ft

)
= 2! E

( ∞∫
t

dAs1

∞∫
s1

dAs2

∣∣∣Ft

)

= 2 E

( ∞∫
dAs1(A∞ − As1)

∣∣∣Ft

)
= 2 E

( ∞∫
dAs1E(A∞ − As1 |Fs1)

∣∣∣Ft

)
� 2C2,
t t
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n

where the next to the last step is obtained by replacing the process{A∞ − Au: u � 0} by its optional pro-
jection {E(A∞ − Au |Fu): u � 0}. The general case is only notationally more complicated, and we ski
details. �
Proof of Proposition 5.1. To compute the supremum in (14), consider (cf. (8))

Ex

(
I∞(f )

) = 1

µ

+∞∫
x

f (y)dy + 1

µ
e−2µx

x∫
−∞

f (y)e2µy dy � 1

µ

+∞∫
x

f (y)dy. (18)

Hence,

sup
x

{
Ex(I∞(f ))

}
� 1

µ

∞∫
−∞

f (y)dy.

From (18) it also follows that

Ex

(
I∞(f )

)
� 1

µ

∞∫
−∞

f (y)dy,

and so, as claimed,

po := sup
x

{
Ex

(
I∞(f )

)} = 1

µ

+∞∫
−∞

f (y)dy.

Take now in Lemma 5.2

At :=
t∫

0

f
(
B(µ)

s

)
ds.

Then (17) holds withC = po, and from (iii) in Lemma 5.2 we obtain (16).�
Remark 5.3. (1) As in Remark 3.4, consider the functional

I∞(ν) :=
∫
R

ν(dy)L(µ)(∞, y).

Then it can be proved similarly as above that

po(ν) := sup
x

Ex

(
I∞(ν)

) = 1

µ
ν(R).

Notice that if we takeν(dx) = εy(dx), Dirac’s measure aty > 0, thenpo = 1/µ. Therefore, from (15), forγ < µ

E0
(
exp

(
γL(µ)(∞, y)

))
< ∞

which is the best possible bound since

P0
(
L(µ)(∞, y)

) ∈ dl = µe−µl dl.

(2) Let σ = {σt : t � 0}, σ0 = 0, be a subordinator andh : [0,∞) 
→ [0,∞) a decreasing function. In Bertoi
[1], p. 28, it is proved that the following three statements are equivalent
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(i) E(
∫ ∞

0 h(σt )dt) < ∞,
(ii) P(

∫ ∞
0 h(σt )dt < ∞) = 1,

(iii) P(
∫ ∞

0 h(σt )dt < ∞) > 0.

From Lemma 5.2 it follows that (i) (and hence also (ii) and (iii)) are equivalent with

(iv) E(exp(γ
∫ ∞

0 h(σt )dt)) < ∞ for someγ > 0.

Indeed, consider

E

( ∞∫
t

h(σu)du

∣∣∣∣Ft

)
= E

( ∞∫
t

h(σu)du

∣∣∣∣ σt

)
= Eσt

( ∞∫
0

h(σu)du

)
� E

( ∞∫
0

h(σu)du

)
,

becauseσ is increasing andh is decreasing. Therefore, the condition (17) with

At :=
∞∫

0

h(σu)du

holds implying the existence of some exponential moments.
(3) A version of Lemma 5.2 can be found already in Meyer [20], Chapter VII, Section 6: Quelques résult

l’énergie; see, in particular, the inequality (59.2), p. 182

E(An∞) � n!Cn,

where{At } denotes an increasing integrable predictable process (called “natural” by Meyer in 1966), whose
tial is bounded byC. The special case withn = 2 appears as a Corollary (formula (24.1)) to Théorème 23 w
gives an integral expression forE(A2∞).

(4) Lemma 5.2 plays also an important rôle in the studies of BMO-martingales, see e.g. Kazamaki and S
[18], Emery [9] and Kazamaki [17], Theorem 2.2, p. 29. We also refer to Engelbert and Schmidt [11] whe
is used to derive more explicit sufficient conditions for an exponential local martingale associated with a
sion martingale to be a martingale. In particular, for a Brownian motionB and a fixedt > 0, it follows from
Corollary (3.16) in [11] that

t∫
0

f (Bs)ds

has some exponential moments iff is locally integrable and bounded at infinity.

6. Exponential moments – class K3

Proposition 6.1. (K3) Assume that the functionf satisfies(A), is integrable at+∞, and

f (x) = O(1)x→−∞. (19)

Then there existsγ > 0 such that for allx

Ex

(
exp

(
γ I∞(f )

))
< ∞. (20)

In particular, if f (x) � CN for all x � N then(20)holds for

γ < min

{
µ

2
∫ ∞
N

f (x)dx
,

µ2

4CN

}
. (21)
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and

ee

e

me

.1,
Proof. By (19), there existsN such thatf is bounded in(−∞,N). We prove first that (20) holds for a functionf
satisfying the stated assumptions and for which there existsx∗ such that{f > 0} ⊂ (−∞, x∗) andf is bounded in
(−∞, x∗) by a constantC. Let

λx∗ := sup{t : B
(µ)
t = x∗}.

Then
∞∫

0

f (B
(µ)
t )dt =

λx∗∫
0

f (B
(µ)
t )dt � C λx∗ . (22)

The Px -distribution of λx∗ with x � x∗ has the Laplace transform (see Pitman and Yor [21] and Borodin
Salminen [2], p. 27)

Ex

(
exp(−αλx∗)

) = Gα(x, x∗)
G0(x∗, x∗)

, (23)

where the Green kernelGα, α � 0, is given forx � x∗ by (cf. Borodin and Salminen [2], A1.14, p. 127, s
also (7))

Gα(x, x∗) := 1

2
√

2α + µ2
e−(

√
2α+µ2+µ)x∗

e(
√

2α+µ2−µ)x.

Consequently, studying (23), it is seen that forγ < µ2/2

Ex

(
exp(γ λx∗)

)
< ∞,

and this implies, using (22), forγ < µ2/(2C)

Ex

(
exp

(
γ I∞(f )

))
< ∞.

Consider next a functionf for which the made assumptions hold and for which there existsx∗ such that{f > 0} ⊂
(x∗,∞). Thenf ∈ K4 and we have (20) by Proposition 5.1(ii). Let nowf be an arbitrary function satisfying th
assumptions and introduce

f1(x) := f (x)1(−∞,0)(x), and f2(x) := f (x)1(0,+∞)(x).

Then, as explained above,f2 ∈ K4 ⊂ K3, and alsof1 ∈ K3 because, without loss of generality, we may assu
thatf1 is bounded on(−∞,0). The Cauchy–Schwarz inequality implies thatf ∈ K3. The bound given in (21) is
obtained with a similar reasoning as above (usingN instead of 0) combined with the bound in Proposition 5
details are left to the reader.�
Remark 6.2. Notice that iff is bounded then, writing

f (x) = f (x)1(−∞,N)(x) + f (x)1(N,+∞)(x)

with N large as in the proof above but using theLp-inequality instead, it follows

Ex

(
exp

(
γ

∞∫
0

f (B
(µ)
t )dt

))
< ∞,

for γ < µ2/(2C) whereC := sup{f (x): x ∈ R}.

Example 6.3. Consider the functional in (2), that is,f (x) = (1+a exp(x))−2. Thenf ∈K3. Becausef is bounded
by 1, the functionalI∞(f ) has exponential moments forγ < µ2/2.
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Note added in proof

The Laplace transform of the functional in (2) has now been computed in: A.N. Borodin, P. Salminen, O
exponential integral functionals of BM(µ) and BES(3), Zap. Nauchn. Sem. POMI 311 (2004) 57–78.
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