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ABSTRACT. – We are concerned with the long time behavior of branching diffusion proce
We give a partial answer to the following question: given a smooth densityg0, a branching rate
and a spatial motion, does there exist a (nonspatially homogeneous) binary offspring distr
such that the corresponding renormalized branching process tends a.s. tog0(y) dy as time grows
to infinity?
 2003 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – On s’intéresse au comportement en temps long de certains proces
branchement-diffusion. On donne une réponse partielle à la question suivante : étant don
densité de probabilité régulièreg0, un taux de branchement, et un mouvement spatial, exist
une loi de reproduction binaire (inhomogène en espace) telle que le processus de branc
diffusion renormalisé correspondant converge presque sûrement, en temps infini, versg0(y) dy.
 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction, notations and result

Consider a compact Riemannian manifoldM of classC∞, and denote bydy the
Riemannian measure onM , by ∇ and � the Riemannian gradient and Laplaci
operators. Consider the diffusion process{Xx

t }t�0 onM with generator

Lf (x) = 1

2

[
�f (x) − ∇u(x) · ∇f (x)

]
, (1.1)

whereu is aC∞ map fromM into R. It is well-known (see Ikeda and Watanabe [
p. 235) that strong existence and uniqueness holds for such a diffusion. We wi
need its stationary measureν, whose explicit expression is

ν(dy) = exp
(−u(y)

)
dy. (1.2)

E-mail addresses:fournier@iecn.u-nancy.fr (N. Fournier), roynette@iecn.u-nancy.fr (B. Roynette)
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We will denote by〈f,h〉L2(ν) = ∫
M f (y)h(y)ν(dy). Then it is well known thatL is

symmetric with respect toν, in the sense that for allf andh in C2(M),

〈Lf,h〉L2(ν) = 〈Lh,f 〉L2(ν) = −1

2

∫
M

∇f (y) · ∇h(y)ν(dy). (1.3)

Consider now a family of probability measures on{0,2}, {p0(y),p2(y)}y∈M indexed by
the points ofM . This family is called the “offspring distributions”.

We also need a “branching rate”λ > 0, which is simply a strictly positive real numbe
Then, we consider the branching process{Y x

t }t�0, which is a Markov process wit
values in

A =
{

n∑
i=1

δxi ; n ∈ N, x1, . . . , xn ∈ M

}
(1.4)

(where N = {0,1,2, . . .}) starting from δx , associated with the motionL, with the
branching rateλ > 0, and with the branching probabilities{p0(x),p2(x)}x∈M .

We refer to Dynkin, [2] for the rigorous definition of{Y x
t }t�0 (using the notation

of Dynkin, we are in the case whereξt = Xt, K(s, t) = λ(t − s) and φt(x, z) =
p0(x) + z2p2(x)).

Roughly speaking,Y x
t stands for the point measure describing the positions at tit

of some particles which follow the dynamic below:
(i) Each particle has a random exponential clock with parameterλ, independent o

the others.
(ii) Each particle moves independently of the others, according to the dynamic

diffusion process with generatorL.
(iii) When the exponential clock of one particle (located aty) rings, the particle dies

and the number of offspring is a random variable with law(p0(y),p2(y)).
(iv) The only interaction between the particles is that birth time and positio

offspring coincide with the death time and position of their parent.
Forµ =∑n

i=1 δxi in A andh a function onM , we set〈µ,h〉 =∑n
i=1h(xi).

We finally will use the extinction event, which we denote by

Ex = {∃t, ∀s � t,
〈
Y x
s ,1

〉= 0
}= {∃t, 〈Y x

t ,1
〉= 0

}
. (1.5)

Our main result is the following.

THEOREM 1.1. – Consider a C∞ strictly positive probability density functio
g0 on M . Denote byg(y) = g0(y)exp(u(y)). Assume thatλ > C, where C =
supx∈M |Lg(x)/g(x)|. Assume that for someC0 ∈ (0,1−C/λ),

p0(y) = 1

2

(
1−C0 + Lg(y)

λg(y)

)
, p2(y) = 1

2

(
1+C0 − Lg(y)

λg(y)

)
. (1.6)

ThenP [Ex] < 1, and the following convergence results hold:
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(i) there exists a nonnegative random variableZ̃x , strictly positive onEc
x , such that

a.s., for allh ∈ C(M),

lim
t→∞ e−λC0t

〈
Y x
t , h

〉= Z̃x

∫
M

h(y)g0(y) dy; (1.7)

(ii) almost surely, for allh ∈ C(M),

lim
t→∞ 1Ec

x

〈Y x
t , h〉

〈Y x
t ,1〉 = 1Ec

x

∫
M

h(y)g0(y) dy. (1.8)

One easily checks that for ally ∈ M, p0(y) + p2(y) = 1 and thatp2(y) ∈ (0,1).
Notice that (ii) is an immediate corollary of (i). Remark also that Theorem 1.1 is
natural. Indeed, our choice forp0 and p2 ensures thatLg + λ(p2 − p0)g = λC0g.
Intuitively, this means thatg is a sort of “stable state” (with an exponentially growi
number of particles): for eachx in M , the particles which come atx (thanks to the spatia
motion) are represented byLg(x), the appearance (or disappearance) of new part
at x by branching can be found inλ(p2(x) − p0(x))g(x), and this leads to the ne
stateλC0g(x).

Let us mention some literature on related topics. In the case of discrete-time mul
Galton–Watson processes, with a finite number of types, Kesten and Stigum [6] p
a result similar to (1.7). However, the result in that paper which would correspond
result{Z̃x �= 0} = Ec

x in our paper was not proved. Still in the context of [6], Kurtz et
[7] obtained a result of type (1.8), on the whole non-extinction set.

In the case of superprocesses onR
d , and in a quite general context, Pinsky [8] obtain

a result of type (1.7), when taking expectations. It has been recently improv
Engländer and Turaev [3], who replaced convergence “in expectation” by a (stro
convergence in law. Let us notice that these authors do not need a symmetry asu
of type (1.3).

Let us now give two motivations for this problem. First of all, consider the follow
problem in economics: suppose that the diffusion process{Xt}t�0 corresponds to
“natural” spatial motion (on the sphere for example) of some commercial produc
time tends to infinity, the distribution of each of these products naturally tends t
probability measureν. Assume that some institution (political, or commercial), want
modify this distribution, in order that it becomesg0 = g dν, for someg fixed. To this end
the institution can act by using taxes (very high at some places, and low or inexis
other places), or something else. Then, the independent spatial motions may be r
by a branching process{Yt}t�0, with values inA. Theorem 1.1 shows how to choose
offspring distributions (i.e., the tax rate as a function of the position), in order to o
asymptotically the desired distribution.

Consider now the following biological problem. Suppose that the diffusion pro
{Xt}t�0 corresponds to the dynamics of a “natural hereditary quality” of a popula
As time tends to infinity, the distribution of this quality tends to the probab
measureν. Assume now that by selecting the offspring, a biologist wants to trans
this asymptotical distribution. Theorem 1.1 shows how to select the offspring
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function of the quality of the parent) in order to obtain asymptotically a given distribu
g0 = g dν of the qualities.

Let us now comment on our result. First remark that it was nota priori obvious that
P [Ex] < 1. Indeed, the choice ofp0 andp2 yield that

∫
M(p2(x) − p0(x))g0(x) dx =

C0 > 0, but it is possible that at some places,p2(y) < p0(y). The fact thatP [Ex] < 1
comes from the fact that whereg0 is large, i.e., where the (expected) asympto
distribution of our process is large,p2 is greater thanp0. A discussion on this poin
is given in Engländer and Turaev [3] in the case of superprocesses (see Appendix
Lemma 8, the eigenvalueλc is given here byλC0).

Let us explain our assumptions. Our main requirement is that the branching
greater, in some sense, than the speed of the spatial motion. Our condition (λ > C)
is probably not necessary, but it seems that if the motion is “much faster” tha
branching rate, then one may not obtain any desired density: even if we force parti
be born at the locations whereg0 is large, then they will quickly move away from the
points.

The next assumption is thatg0 is strongly equivalent toν, in the sense thatg0(y) dy =
g(y)ν(dy), for some bounded from above and from below density functiong (sinceM
is compact). Although this condition is probably too strong, it seems that at lea
equivalence ofg0(y) dy and ofν(dy) is necessary (this is also the case in [3]). Inde
if ν(A) = 0 for some subsetA ⊂ M , we can not force particles to go in the regionA
using only branching. On the other hand, ifν(A) > 0 for some subsetA ⊂ M we can
not hope for the complete disappearence of particles inA, even by settingp2(y) = 0 for
all y in A.

Finally, it would probably be possible to treat the more general case wher
offspring distribution chargesN (instead of{0,2}). In such a case and if this distributio
admits a second order moment, the conclusion of Theorem 1.1 might hold, rep
(1.6) by

∑
n�0npn(y) = 1+C0 −Lg(y)/λg(y).

To end this introduction, we would like to give the main intuition of our result (1
On Ec

x , it is quite clear that the number of particles〈Y x
t ,1〉 grows to infinity with t .

Applying the Markov property, we may write, for eachs, t � 0, for all h ∈ C(M),

〈Y x
t+s, h〉

〈Y x
t+s,1〉 = 〈Y x

t ,1〉∑〈Yx
t ,1〉

i=1 〈YXi
t

s ,1〉
·
∑〈Yx

t ,1〉
i=1 〈YXi

t
s , h〉

〈Y x
t ,1〉 , (1.9)

whereXi
t (for i ∈ {1, . . . , 〈Y x

t ,1〉}) are the locations of the particles att , and where

conditioned onFt , {YXi
t

s }s�0 are independent branching processes with initial condit
δXi

t
. Hence, expecting that a law of large numbers holds, we might take the limit

tends to infinity, and obtain that for some measureµ onM ,

lim
t→∞

〈Y x
t+s, h〉

〈Y x
t+s,1〉 =

∫
M E(〈Y x

s , h〉)µ(dx)∫
M E(〈Y x

s ,1〉)µ(dx) = 〈
ξµ
s , h

〉
, (1.10)

where the last equality stands for a definition. One can check thatξµ
s satisfies the partia

differential equation: for allφ ∈ C2(M),

∂t
〈
ξµ,φ

〉= 〈
ξµ,Lφ + λ(p2 − p0)φ

〉− λ
〈
ξµ,p2 − p0

〉〈
ξµ,φ

〉
. (1.11)
t t t t
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But p2 andp0 have been chosen in such a way that the only stationary solution o
P.D.E. isg0(x) dx. Hence, we expect that for anyµ, ξµ

s goes, ass tends to infinity, to
g0(x) dx. Letting s tend to infinity in (1.10) gives us the desired conclusion.

2. Proof

In this section, we give the proof of our result. The assumptions of the previous s
will always be supposed to hold.

We will use the notationA for a constant whose value changes from line to line.
We will first obtain some martingale properties of our branching process, which

in particular allow us to control the speed of growth of the size of the population.
Then, we will use a well-chosen orthonormal basis ofL2(ν). We will first prove (1.7)

for each elementh of this basis, and then extend the result to any continuous functh
onM .

We first of all recall the generator ofY x .

LEMMA 2.1. – The process{Y x
t }t�0 is a Markov process with values inA. We denote

byL its generator. Forf ∈ C2(M) andµ ∈A, we set

Ff (µ) = 〈µ,f 〉 and Gf (µ) = 〈µ,f 〉2. (2.1)

Then

LFf (µ) =
〈
µ,Lf +

(
λC0 − Lg

g

)
f

〉
, (2.2)

LGf (µ) = 〈
µ,λf 2 + |∇f |2〉+ 2〈µ,f 〉

〈
µ,Lf +

(
λC0 − Lg

g

)
f

〉
. (2.3)

Proof. –Consider an elementµ = ∑n
i=1 δxi of A. Consider alsoφ ∈ C2(R) and

f ∈ C2(M) . Then one easily checks that

L
[
φ
(〈· , f 〉)](µ) = ∂tEµ

[
φ
(〈Yt, f 〉)]

t=0

= ∂tE

[
φ

(
n∑

i=1

f (Xxi
t )

)]
t=0

+ λ

n∑
i=1

{
p2(xi)

[
φ
(〈µ,f 〉 + f (xi)

)− φ
(〈µ,f 〉)]

+ p0(xi)
[
φ
(〈µ,f 〉 − f (xi)

)− φ
(〈µ,f 〉)]}, (2.4)

whereXxi are independent diffusion processes onM with generatorL, starting fromxi .
Using the explicit expression ofp0 andp2, we first obtain (2.2) by settingφ(x) = x, and
then (2.3) by settingφ(x) = x2. ✷

Then we deduce some martingale properties of our branching process.

COROLLARY 2.2. – Letf ∈ C2(M). Then the process

Mx,f
t = e−λC0t

〈
Y x
t , f

〉− f (x) −
t∫
e−λC0s

〈
Y x
s ,Lf − f

Lg

g

〉
ds (2.5)
0
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〈
Mx,f

〉
t
=

t∫
0

e−2λC0s
〈
Y x
s , λf

2 + |∇f |2〉ds. (2.6)

The proof of this corollary is immediate: it suffices to apply Itô’s formula, (2.2)
(2.3).

We thus obtain some results about the growth of the population ast increases.

COROLLARY 2.3. –
(i) There exists a constantA such that for allt � 0, all x in M ,

E
[
e−λC0t

〈
Y x
t , g

〉]= g(x), (2.7)

E
[
e−2λC0t

〈
Y x
t , g

〉2]� A. (2.8)

(ii) Hence, for any bounded nonnegative measurable functionh onM , there exists a
constantAh such that for allt � 0, all x in M

E
[
e−λC0t

〈
Y x
t , h

〉]+E
[
e−2λC0t

〈
Y x
t , h

〉2]� Ah. (2.9)

Proof. –We first prove (i). Using Corollary 2.2 withf = g, it is obvious that

Mx,g
t = e−λC0t

〈
Y x
t , g

〉− g(x) (2.10)

is a martingale starting from 0. Hence (2.7) holds. Next, using the expression
bracket ofMx,g, we deduce that

E
[
e−2λC0t

〈
Y x
t , g

〉2]= g2(x) +
t∫

0

e−λC0sE
[
e−λC0s

〈
Y x
s , λg

2 + |∇g|2〉]ds
� g2(x) +

∥∥∥∥λg2 + |∇g|2
g

∥∥∥∥∞

t∫
0

e−λC0sE
[
e−λC0s

〈
Y x
s , g

〉]
ds

�A+A

t∫
0

e−λC0s ds � A, (2.11)

the value of the constantA changing from line to line. Point (ii) is an immedia
consequence, since for anyh bounded, there exists a constantÃh such that for all
y ∈ M, h(y) � Ãhg(y). ✷

In order to build a suitable basis ofL2(ν), we introduce some operators.

LEMMA 2.4. – For f ∈ C2(M), andt � 0, we define

Rtf (x) = E
[
e−λC0t

〈
Y x, f

〉]
. (2.12)
t
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ThenRt is a semi-group with generatorK defined by

Kf (x) = Lf (x) − f (x)
Lg(x)

g(x)
. (2.13)

Consider also theh-transform ofRt defined by

Qtf (x) = 1

g(x)
Rt [fg](x). (2.14)

ThenQt is a Markovian semi-group, and the associated generator is given by

K̃f (x)= 1

g(x)

(
L[fg](x) − f (x)Lg(x)

)
= 1

2

[
�f (x)+ ∇f (x) ·

(
2
∇g(x)

g(x)
− ∇u(x)

)]
. (2.15)

The stationary measure ofQt is g2ν, and for allh andf in C2(M),

〈
K̃h, f

〉
L2(g2ν)

= 〈
h, K̃f

〉
L2(g2ν)

= −1

2

∫
M

∇f (y) · ∇h(y)g2(y)ν(dy). (2.16)

Proof. –We first prove thatRt is a semi-group. Let thusf ∈ C2(M), and lets, t � 0.

We first writeY x
t+s as

∑〈Yx
t ,1〉

i=1 Y
Xi

t
s , whereXi

t (for i ∈ {1, . . . , 〈Y x
t ,1〉}) are the locations

of the particles att , and where conditioned onFt , {YXi
t

s }s�0 are independent branchin
processes with initial conditionsδXi

t
. We obtain

Rt+sf (x)=E

[
e−λC0t

〈Yx
t ,1〉∑
i=1

E
{
e−λC0s

〈
YXi

t
s , f

〉|Ft

}]= E

[
e−λC0t

〈Yx
t ,1〉∑
i=1

Rsf
(
Xi

t

)]
=E

[
e−λC0t

〈
Y x
t ,Rsf

〉]= Rt [Rsf ](x). (2.17)

Next, it is clear from Corollary 2.2 that the generator ofRt is given by K . It is
immediately deduced thatQt is a semi-group and that (2.15) and (2.16) hold. The
thatQt is Markov (i.e.,Qt1 = 1) is deduced from Corollary 2.3(i).✷

Next we present useful properties ofRt .

LEMMA 2.5. –
(i) There exist someC∞ functionsq(t, x, y) andr(t, x, y) on (0,∞)×M ×M such

that for all measurable functionf onM ,

Qtf (x) =
∫
M

q(t, x, y)f (y) dy, Rtf (x) =
∫
M

r(t, x, y)f (y) dy. (2.18)

(ii) The semi-group(Rt)t�0 is strongly continuous, this is, for anyh ∈ C(M),

lim
t→0

‖Rth− h‖∞ = 0. (2.19)
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Proof. –The generatorK̃ of Qt is the generator of aM-valued uniformly elliptic
diffusion process, so that it is well-known, see, e.g., Fefferman and Sanchez-Ca
p. 268, that there exists aC∞ function q(t, x, y) on (0,∞) × M × M such that for all
measurable functionf onM , Qtf (x) = ∫

M q(t, x, y)f (y) dy. Hence,

Rtf (x) = g(x)Qt

[
f

g

]
(x) =

∫
M

g(x)
q(t, x, y)

g(y)
f (y) dy (2.20)

and thus (i) holds withr(t, x, y) = q(t, x, y)g(x)/g(y), which has the same regulari
asr sinceg is C∞, bounded from below and from above.

It is also standard that(Qt)t�0 is strongly continuous, from which point (ii) it i
immediately deduced. ✷

We now build a basis ofL2(ν), of which the elements are eigenfunctions ofK .

LEMMA 2.6. –There exists an nondecreasing sequence{ρn}n�0 of nonnegative rea
numbers and a sequence{ψn}n�0 of real-valued functions onM such that:

(i) ρ0 = 0, andρn > 0 for all n � 1,

(ii) {ψn}n�0 is an orthonormal basis ofL2(M,ν), andψ0 = g/
√∫

M g2 dν,

(iii) for all n � 0, Kψn = −ρnψn and for all t � 0, Rtψn = e−ρntψn,
(iv) for all n, ψn ∈ C∞(M),
(v) for all t > 0,

∑
n�0 e−ρnt < ∞.

Proof. –Consider the eigenvalues and eigenfunctions ofK̃ : K̃φn = −ρnφn, for
all n � 0, whereρn are nonnegative real numbers. (It is clear from (2.16) that
eigenvalues ofK̃ are nonpositive.) One easily deduces that for eachn � 0, any t > 0,
Qtφn = e−ρntφn.

Next, notice that for eacht > 0 fixed,Qt is a Hilbert–Schmidt operator. Indeed, this
a straightforward consequence of Lemma 2.5, and of Ex 49-b p. 1086 of [1]. This im
that its spectrum is discrete, and that(v) holds (sinceQt/2 is Hilbert–Schmidt). We
number theρn in nondecreasing order and note that it follows classically thatρ0 < ρ1.
We choose{φn} an orthonormal basis ofL2(M,g2ν). Finally notice thatρ0 = 0, and that

the associated (renormalized) eigenfunction isφ0 = 1/
√∫

M g2dν.
Then the sequenceψn = gφn satisfies the conclusion of the lemma. Indeed, po

(i) and (ii) are straightforward. Next, it is clear that for eachn � 0, Kψn = gK̃φn =
−gρnφn = −ρnψn. In the same spirit,Rtψn = gQtφn. HenceR0ψn = ψn, and∂tRtψn =
g∂tQtφn = −ρngQtφn = −ρnRtψn, and (iii) follows.

Point (iv) is an immediate consequence of the previous lemma: for anyt > 0 fixed,
ψn = eρntRtψn = eρnt

∫
M ψn(y)r(t, · , y) dy. Sincer(t, · , ·) is C∞ onM × M , the usual

Lebesgue theorem allows to conclude the proof. Finally, point (v) has already
proved. ✷

We now study the asymptotic behaviour of e−λC0t〈Y x
t ,ψn〉 for eachn. This will be

sufficient, since{ψn} is a basis ofL2(M,ν).
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LEMMA 2.7. –
(i) There exists a nonnegative random variableZx such that a.s. and inL2(1),

lim
t→∞ e−λC0t

〈
Y x
t , g

〉=Zx. (2.21)

Furthermore, there exists a constantA such that for allx ∈ M ,

E
[
Zx
]= g(x), E

[(
Zx
)2]� A. (2.22)

(ii) For all n � 1, a.s.,

lim
t→∞ e−λC0t

〈
Y x
t ,ψn

〉= 0. (2.23)

Proof. –We begin with (i). We know from Corollaries 2.2 and 2.3 thatM
x,g
t =

e−λC0t 〈Y x
t , g〉 − g(x) is a martingale starting from 0 and bounded inL2, from which

(i) is a straightforward consequence.
We now prove (ii). We setWn,x

t = e−λC0t〈Y x
t ,ψn〉. Using Corollary 2.2 and the fac

thatLψn −ψnLg/g = Kψn = −ρnψn, we deduce that

Wn,x
t = ψn(x) − ρn

t∫
0

Wn,x
s ds +Mx,ψn

t , (2.24)

whereMx,ψn is defined in (2.5). This equation can be solved explicitely:

Wn,x
t = e−ρnt

[
ψn(x)+

t∫
0

eρns dMx,ψn
s

]
. (2.25)

Denote byOn,x
t = ∫ t

0 eρns dMx,ψn
s . We clearly just have to check thatDn,x

t = e−ρntOn,x
t

goes a.s. to 0 ast increases to infinity. This will be done by using the Borel–Can
lemma: it suffices to check that for anyε > 0,

∑
k�1

P
[

sup
[k,k+1]

∣∣Dn,x
t

∣∣� ε
]
< ∞. (2.26)

But for all k,

P
[

sup
[k,k+1]

∣∣Dn,x
t

∣∣� ε
]
� P

[
sup

[k,k+1]

∣∣On,x
t

∣∣� εekρn
]
� A

e−2kρn

ε2
E
[(
O

n,x
k+1

)2]
(2.27)

by using Doob’s inequality, sinceOn,x is a martingale. Finally, an easy computat
using the quadratic variation ofOn,x (which is obtained from that ofMx,ψn , which is
given in Corollary 2.2), using Corollary 2.3 and Lemma 2.6(iv) shows that for s
constantAn,

E
[(
On,x

t

)2]=E

[ t∫
e2ρns e−2λC0s

〈
Y x
s , λψ

2
n + |∇ψn|2〉ds

]

0
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rom

r

�An

t∫
0

e2ρns e−λC0sds � An(1+ t)
(
e2ρnt−λC0t + 1

)
. (2.28)

We furthermore deduce that, for some constantAn,ε,

P
[

sup
[k,k+1]

∣∣Dn,x
t

∣∣� ε
]
� An,ε(k + 2)

[
e−λC0k + e−2ρnk

]
(2.29)

which allows to conclude that (2.26) holds. This ends the proof.✷
We deduce the non-triviality of the extinction event.

COROLLARY 2.8. – Recall thatEx is the extinction event.
(i) Setε = infy∈M g(y)/2> 0. Then

α = inf
x∈MP

[
Zx > ε

]
> 0. (2.30)

(ii) supx∈M P [Ex] � 1− α.

Proof. –We first check (i). Thanks to Lemma 2.7(i), we know that for allx in M ,
E[Zx] = g(x) andA = supx∈M E[(Zx)2] < ∞. Thus

g(x) = E
[
Zx1Zx�ε

]+E
[
Zx1Zx>ε

]
� ε + √

A

√
P
[
Zx > ε

]
(2.31)

which allows to conclude the proof. Point (ii) is now obvious, since it is clear f
Lemma 2.7(i) thatEx ⊂ {Zx = 0} ⊂ {Zx � ε}. ✷

We now extend Lemma 2.7 to continuous functions onM .

LEMMA 2.9. – Seta := 1/(
∫
M g2dν). Then for allh ∈ C(M), a.s.,

lim
t→∞ e−λC0t

〈
Y x
t , h

〉= aZx〈h,g〉L2(ν). (2.32)

Proof. –We prove this result by using the previous lemma. We thus consideh ∈
C(M). We first recall that due to Lemma 2.5(ii),

lim
t→0

‖Rth− h‖∞ = 0. (2.33)

Then we splith andRth according to the orthonormal basisψn:

h =∑
n�0

〈h,ψn〉L2(ν)ψn, Rth =∑
n�0

〈h,ψn〉L2(ν)e
−ρntψn. (2.34)

Then we consider the approximationhp =∑p
n=0〈h,ψn〉L2(ν) ψn.

Then it is clear from Lemma 2.7, sinceψ0 = g/
√∫

M g2dν andρ0 = 0, that for any
t > 0 and anyp � 1, a.s.,
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,

re
lim
s→∞ e−λC0s

〈
Y x
s ,Rthp

〉=
p∑

n=0

e−ρnt〈h,ψn〉L2(ν) lim
s→∞ e−λC0s

〈
Y x
s ,ψn

〉
= 〈h,ψ0〉L2(ν)

Zx√∫
M g2dν

= aZx〈h,g〉L2(ν). (2.35)

Furthermore, using Lemma 2.5(i), one easily checks that for anyt > 0, there exists a
constantA(t) such that for alln � 0,

‖ψn‖∞ = eρnt‖Rtψn‖∞ � A(t)eρnt‖ψn‖L2(ν) = A(t)eρnt (2.36)

from which we deduce that for allt > 0,

‖Rth−Rthp‖∞ =
∥∥∥∥∑
n>p

〈h,ψn〉L2(ν) e−ρntψn

∥∥∥∥∞
� ‖h‖L2(ν)A

(
t

2

)∑
n>p

e−ρnt/2 (2.37)

(by applying (2.36) witht/2 instead oft) which goes to 0 asp tends to infinity, according
to Lemma 2.6(v).

Also notice that sinceg is bounded away from 0 and since e−λC0s〈Y x
s , g〉 is a

converging martingale, one easily obtains that the random variable

U = sup
s∈[0,∞)

e−λC0s
〈
Y x
s ,1

〉
(2.38)

is a.s. finite. We may finally conclude the proof. We approximateh by Rthp, for p large
andt small. Letε > 0 be fixed. We have to show that there a.s. existssε such that for all
s � sε, ∣∣〈Y x

s , h
〉

e−λC0s − aZx〈g,h〉L2(ν)

∣∣< ε. (2.39)

We use the previous estimates: for anys � 0, t > 0, andp � 1,∣∣〈Y x
s , h

〉
e−λC0s − aZx〈g,h〉

L2(ν)
�
∣∣〈Y x

s , h
〉

e−λC0s − 〈Y x
s ,Rth

〉
e−λC0s

∣∣
+ ∣∣〈Y x

s ,Rth
〉

e−λC0s − 〈Y x
s ,Rthp

〉
e−λC0s

∣∣
+ ∣∣〈Y x

s ,Rthp

〉
e−λC0s − aZx〈g,h〉L2(ν)

∣∣. (2.40)

Using (2.37) and (2.38), we deduce that for alls, t , p,∣∣〈Y x
s , h

〉
e−λC0s − aZx〈g,h〉

L2(ν)

∣∣
� U ×

[
‖h −Rth‖∞ + ‖h‖L2(ν)A

(
t

2

)∑
n>p

e−ρnt/2
]

+ ∣∣〈Y x
s ,Rthp

〉
e−λC0s − aZx〈g,h〉L2(ν)

∣∣. (2.41)

Using (2.33), (2.37), and (2.35) allows to conclude that choosing firstt small enough
thenp large enough, and finallys large enough yields to (2.39). This ends the proof.✷

To conclude, we just have to verify thatZx is strictly positive on the set where the
is not extinction.

LEMMA 2.10. – Recall thatEx is the extinction set.
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ty
(i) OnEc
x , lim t→∞〈Y x

t ,1〉 = +∞ a.s.
(ii) Furthermore,

P
[
Ec
x ∩ {Zx = 0

}]= 0. (2.42)

Proof. –We first prove (i). Recall that〈Y x
t ,1〉 is N-valued. Hence, one easily unde

stands that it suffices to show that for allN ∈ N∗ = {1,2,3, . . .}, P [lim inf t→∞〈Y x
t ,1〉 =

N] = 0. Let thusN ∈ N∗ be fixed. First notice that

p̃0 = inf
y∈Mp0(y) � 1

2

(
1−C0 − C

λ

)
> 0. (2.43)

Then, setT0 = 0, S0 = 0, and define recursively the stopping times

Sn = inf
{
s > Tn; �

〈
Y x
s ,1

〉 �= 0
}
,

Tn+1 = inf
{
s > Sn; 〈Y x

s ,1
〉= N

}
, (2.44)

where�〈Y x
s ,1〉 = 〈Y x

s ,1〉 − 〈Y x
s−,1〉. Then,

P
[
lim inf
t→∞

〈
Y x
t ,1

〉= N
]
= P

[
lim
n

Tn = ∞,
∑
n�1

1�〈Yx
Sn

,1〉=−1 < ∞
]
. (2.45)

Due to the Borel–Cantelli lemma, this last quantity equals 0, since conditionnaly o
sequence{Tn, Sn}n�1, the events{�〈Y x

Sn
,1〉 = −1} are independent and with probabili

bounded below bỹp0.
Next, we prove (ii). Denote byB = Ec

x ∩ {Zx = 0}. On the setB, lim t→∞〈Y x
t ,1〉 =

+∞ a.s., while limt→∞ e−λC0t〈Y x
t ,1〉 = 0.

For anyt � 0, denote byXi
t , for i ∈ {1, . . . , 〈Y x

t ,1〉}, the points of the support ofY x
t .

Then one may write, for alls � 0, t � 0,

〈
Y x
t+s,1

〉
e−λC0(t+s) = e−λC0t

〈Yx
t ,1〉∑
i=1

e−λC0s
〈
YXi

t
s ,1

〉
, (2.46)

whereYXi
t are independent branching processes starting fromδXi

t
conditioned onFt .

Making s tend to infinity, we deduce, using Lemma 2.9 and the fact that〈1, g〉L2(ν) = 1,
that onB, for all t ,

〈Yx
t ,1〉∑
i=1

ZXi
t = 0. (2.47)

Using Corollary 2.8(i) and the notations therein, we thus obtain that for allt � 0, all
N � 1,

P [B] � P

[
N∑
i=1

ZXi
t = 0,

〈
Y x
t ,1

〉
� N

]
+P

[〈
Y x
t ,1

〉
<N,Ec

x

]
� (1− α)N + P

[〈
Y x,1

〉
� N,Ec

]
. (2.48)
t x
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Making t tend to infinity, we deduce (using (i)) that for eachN � 1, P [B] � (1− α)N .
Sinceα > 0, we conlude thatP(B) = 0, which was our aim. ✷

The conclusion is now straightforward.

Proof of Theorem1.1. – Let x ∈ M be fixed. We already have proved (see Co
lary 2.8(ii)) thatP [Ex] < 1. Since for anyh ∈ C(M), 〈h,g〉L2(ν) = ∫

M h(y)g0(y) dy,
point (i) is straightforward from Lemmas 2.9 and 2.10, while point (ii) is an immed
consequence of point (i).✷
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