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ABSTRACT. — We are concerned with the long time behavior of branching diffusion processes.
We give a partial answer to the following question: given a smooth deggity branching rate
and a spatial motion, does there exist a (nonspatially homogeneous) binary offspring distribution
such that the corresponding renormalized branching process tendsga(s.)idy as time grows
to infinity?
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RESUME. — On s'intéresse au comportement en temps long de certains processus de
branchement-diffusion. On donne une réponse partielle a la question suivante : étant donnés une
densité de probabilité réguliepg, un taux de branchement, et un mouvement spatial, existe-t-il
une loi de reproduction binaire (inhomogéne en espace) telle que le processus de branchement-
diffusion renormalisé correspondant converge presque srement, en temps infige( vieds .
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1. Introduction, notations and result

Consider a compact Riemannian manifdifl of classC>, and denote byl/y the
Riemannian measure oM, by V and A the Riemannian gradient and Laplacian
operators. Consider the diffusion proc¢&s},~o on M with generator

1
Lfx) =35 [Af(x) = Vu(x) - V f(x)], 1.1

whereu is aC* map fromM into R. It is well-known (see Ikeda and Watanabe [5],
p. 235) that strong existence and uniqueness holds for such a diffusion. We will also
need its stationary measurewhose explicit expression is

v(dy) = exp(—u(y)) dy. (1.2)
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We will denote by(f, h);2¢, = [, f()h()v(dy). Then it is well known thatL is
symmetric with respect to, in the sense that for ajf andh in C2(M),

1
(LS, h)r2w) = (Lh,f>L2(v>=—5/Vf(y)-Vh(y)v(dy)- (1.3)
M

Consider now a family of probability measures{@2}, {po(y), p2(y)},en indexed by
the points ofM. This family is called the “offspring distributions”.
We also need a “branching rate™ 0, which is simply a strictly positive real number.
Then, we consider the branching proc¢®s},~o, which is a Markov process with
values in

A:{Z‘SMQ”GN’ xl,...,xneM} (1.4)
i=1
(whereN = {0, 1, 2, ...}) starting fromg,, associated with the motioh, with the
branching raté. > 0, and with the branching probabiliti¢go(x), p2(x)}ccm-
We refer to Dynkin, [2] for the rigorous definition dit;'},>o (using the notation
of Dynkin, we are in the case whelg = X;, K(s,1) = A(t — s) and ¢'(x,z) =
po(x) + 22p2(x)).
Roughly speakingY;* stands for the point measure describing the positions atitime
of some particles which follow the dynamic below:
(i) Each particle has a random exponential clock with parametérdependent of
the others.
(i) Each particle moves independently of the others, according to the dynamic of the
diffusion process with generatdr.
(i) When the exponential clock of one particle (locatedyatings, the particle dies,
and the number of offspring is a random variable with law(y), p2(y)).
(iv) The only interaction between the particles is that birth time and position of
offspring coincide with the death time and position of their parent.
Foru=>"",4, in Aandh afunction onM, we set(u, h) =>_"_; h(x;).
We finally will use the extinction event, which we denote by

E={3, Vs>1, (Y5, 1)=0} = {3, (¥}, 1)=0}. (1.5)

Our main result is the following.

THEOREM 1.1. — Consider aC® strictly positive probability density function
go on M. Denote byg(y) = go(y)expu(y)). Assume thath > C, where C =
Sup.cy |Lg(x)/g(x)|. Assume that for som& € (0,1 — C/1),

1 Lg(y) > 1 ( Lg(y))
— S (1- o+ 28 —(14+co—-282) e
po(y) 2< O+Ag(y) p2(y) > + Co 2 () (1.6)

ThenP[£,] < 1, and the following convergence results hold
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(i) there exists a nonnegative random varial, strictly positive onc¢, such that
a.s., forallh e C(M),

—>00

lim e‘AC°’<Y;‘,h> = Zx/h(y)go(y) dy; a.7)
M

(i) almost surely, for alk € C(M),

Y  h
lim lg;{'< ! )

t—00 <th’ 1)

=1t [ hgo(dy, (1.8)
M

One easily checks that for ajl e M, po(y) + p2(y) = 1 and thatp,(y) € (0, 1).
Notice that (ii) is an immediate corollary of (i). Remark also that Theorem 1.1 is quite
natural. Indeed, our choice fgs, and p, ensures thatf.g + A(p2 — po)g = 2Cog.
Intuitively, this means thag is a sort of “stable state” (with an exponentially growing
number of particles): for eachin M, the particles which come at(thanks to the spatial
motion) are represented Hyg (x), the appearance (or disappearance) of new particles
at x by branching can be found iR(p2(x) — po(x))g(x), and this leads to the new
stateACopg(x).

Let us mention some literature on related topics. In the case of discrete-time multi-type
Galton—Watson processes, with a finite number of types, Kesten and Stigum [6] proved
aresult similar to (1.7). However, the result in that paper which would correspond to the
result{Z* # 0} = £ in our paper was not proved. Still in the context of [6], Kurtz et al.

[7] obtained a result of type (1.8), on the whole non-extinction set.

In the case of superprocessesish and in a quite general context, Pinsky [8] obtained
a result of type (1.7), when taking expectations. It has been recently improved by
Englander and Turaev [3], who replaced convergence “in expectation” by a (stronger)
convergence in law. Let us notice that these authors do not need a symmetry asumption
of type (1.3).

Let us now give two motivations for this problem. First of all, consider the following
problem in economics: suppose that the diffusion prodes$,~o corresponds to a
“natural” spatial motion (on the sphere for example) of some commercial products. As
time tends to infinity, the distribution of each of these products naturally tends to the
probability measure. Assume that some institution (political, or commercial), wants to
modify this distribution, in order that it becomgg= g dv, for someg fixed. To this end,
the institution can act by using taxes (very high at some places, and low or inexistent in
other places), or something else. Then, the independent spatial motions may be replaced
by a branching procedd’,},>0, with values inA. Theorem 1.1 shows how to choose the
offspring distributions (i.e., the tax rate as a function of the position), in order to obtain
asymptotically the desired distribution.

Consider now the following biological problem. Suppose that the diffusion process
{X.:};>0 corresponds to the dynamics of a “natural hereditary quality” of a population.
As time tends to infinity, the distribution of this quality tends to the probability
measurev. Assume now that by selecting the offspring, a biologist wants to transform
this asymptotical distribution. Theorem 1.1 shows how to select the offspring (as a
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function of the quality of the parent) in order to obtain asymptotically a given distribution
go = g dv of the qualities.

Let us now comment on our result. First remark that it wasenptiori obvious that
P[&,] < 1. Indeed, the choice gfy and p, yield that [,,(p2(x) — po(x))go(x) dx =
Co > 0, but it is possible that at some places(y) < po(y). The fact thatP[£,] < 1
comes from the fact that wherg, is large, i.e., where the (expected) asymptotic
distribution of our process is large, is greater tharpg. A discussion on this point
is given in Englander and Turaev [3] in the case of superprocesses (see Appendix B and
Lemma 8, the eigenvalue. is given here by.Co).

Let us explain our assumptions. Our main requirement is that the branching rate is
greater, in some sense, than the speed of the spatial motion. Our conditio')
is probably not necessary, but it seems that if the motion is “much faster” than the
branching rate, then one may not obtain any desired density: even if we force particles to
be born at the locations whegpg is large, then they will quickly move away from these
points.

The next assumption is thag is strongly equivalent to, in the sense thaty(y) dy =
g(y)v(dy), for some bounded from above and from below density functig¢since M
is compact). Although this condition is probably too strong, it seems that at least the
equivalence ofo(y) dy and ofv(dy) is necessary (this is also the case in [3]). Indeed,
if v(A) =0 for some subse# ¢ M, we can not force particles to go in the regidn
using only branching. On the other handy{fA) > 0 for some subsef ¢ M we can
not hope for the complete disappearence of particles, ieven by setting),(y) = 0 for
all yin A.

Finally, it would probably be possible to treat the more general case where the
offspring distribution chargeXN (instead of{0, 2}). In such a case and if this distribution
admits a second order moment, the conclusion of Theorem 1.1 might hold, replacing
(1.6) by, >0npa(y) =1+ Co— Lg(y)/2g(y).

To end this introduction, we would like to give the main intuition of our result (1.8).
On &¢, it is quite clear that the number of particlég*, 1) grows to infinity withz.
Applying the Markov property, we may write, for eaghy > 0, for allh € C(M),

Y1) xi
(Yioh) 1y DA S ) w9
(Y4, 1) Zl(itxll) (YSX;, 1) (Yr, 1) ’
where X! (for i € {1,..., (Y}, 1)}) are the locations of the particles atand where

conditioned or¥;, {st; }s>0 are independent branching processes with initial conditions
8xi. Hence, expecting that a law of large numbers holds, we might take the limit as
tends to infinity, and obtain that for some measuren M,
o )y EQYS h)pdx)
i=oo (Y, 1) [y EQYE, 1)u(dx)
where the last equality stands for a definition. One can checlé thsatisfies the partial
differential equation: for alp € C2(M),

at<ézﬂ’ ¢> = <‘§[uv L¢ + )"(pZ - p0)¢> - )"<Etuv P2 — p0><ézﬂ’ ¢> (111)

(&5 h), (1.10)



N. FOURNIER, B. ROYNETTE / Ann. |. H. Poincaré — PR 39 (2003) 979-991 983

But p, and po have been chosen in such a way that the only stationary solution of this
P.D.E. isgo(x) dx. Hence, we expect that for any, £/ goes, as tends to infinity, to
go(x) dx. Letting s tend to infinity in (1.10) gives us the desired conclusion.

2. Proof

In this section, we give the proof of our result. The assumptions of the previous section
will always be supposed to hold.

We will use the notatiori for a constant whose value changes from line to line.

We will first obtain some martingale properties of our branching process, which will
in particular allow us to control the speed of growth of the size of the population.

Then, we will use a well-chosen orthonormal basig.fv). We will first prove (1.7)
for each element of this basis, and then extend the result to any continuous funktion
onM.

We first of all recall the generator af*.

LEMMA 2.1. —The process$Y, },>o is a Markov process with values . We denote
by L its generator. Forf € C>(M) andu € A, we set

Fl(uy=(u, f) and G’'(w) =(u, )% (2.1)

Then

£F @ =(p. L + (3o~ %)f> (22)

LG (1) = (1. 12+ 19 412) + 208, 1) L + (30— %) 7). @3

Proof. —Consider an element = 37 ;§,, of A. Consider alsap € C?(R) and
f € C3(M) . Then one easily checks that

LI NI =Eu[o((Yr, )]0
¢<Zf(xf")> + 1> {pax) [d (1 £ + F () — b (s )]
i=1 t=0 i=1

+ poCx) [ (. £) — Fx)) — b (s 1))}, (2.4)

whereX* are independent diffusion processesMwith generatorL, starting fromy;.
Using the explicit expression gfy and p,, we first obtain (2.2) by setting(x) = x, and
then (2.3) by setting (x) =x°. O

:81E

Then we deduce some martingale properties of our branching process.

COROLLARY 2.2.— Let f € C?(M). Then the process

t

M =5 (YT F) — F(x) — / e—AC°S<Y;‘ Lf - f%> s (2.5)
0
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is a cadlag (with an a.s. finite nhumber of jumps on each compact time interval
martingale starting fron® with (predictablg quadratic variation

(M0, = [ €D (v a2 419 £ ds. (2.6)
0

The proof of this corollary is immediate: it suffices to apply Ité’s formula, (2.2) and
(2.3).
We thus obtain some results about the growth of the populatioinaseases.

COROLLARY 2.3.—
() There exists a constart such that for allr > 0, all x in M,

E[e (Y}, g)] = g(x), 2.7)
E[e 2% (y* ¢)%] < A. (2.8)

(i) Hence, for any bounded nonnegative measurable funétion M, there exists a
constantA,, such that for allr > 0, all x in M

E[e 7 (Y}, h)] + E[e 2% (Y*, h)?] < Ay (2.9)
Proof. —We first prove (i). Using Corollary 2.2 witlf = g, it is obvious that
M8 =e oY g) — g(x) (2.10)

is a martingale starting from 0. Hence (2.7) holds. Next, using the expression of the
bracket ofM*:¢, we deduce that

t
E[e % (v}, g)"] = %(x) + / e MO E[e (Y], Ag? + | VgI?)] ds
0

rg2+|Vg|?
<g2(x)+Hg7|g|

t
[ e e (v g)]ds
o

t
<A+ A/e"‘COS ds < A, (2.11)
0

the value of the constam changing from line to line. Point (i) is an immediate
consequence, since for amybounded, there exists a constatit such that for all
YEM, h(y) <Apg(y). O

In order to build a suitable basis #f(v), we introduce some operators.

LEMMA 2.4.—For f € C3(M), andz > 0, we define

R f(x) = E[e (Y~ f)]. (2.12)
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ThenRr, is a semi-group with generatdt defined by

L
K6 =Lf@ — fo) 22, (2.13)
Consider also thé&-transform ofR, defined by
1
0. f(x) =—=R[fgl(x). (2.14)

g(x)

ThenQ, is a Markovian semi-group, and the associated generator is given by

1
Kf(x)= o )( [fgl(x) — f(x)Lg(x))

== [Af(x) +Vf(x)- (Zﬂ — Vu(x ))] (2.15)
2 g(x)

The stationary measure @, is g2v, and for allk and f in C?(M),

~ ~ 1
(Rh. f) oy = (0 R oz = =5 [ VIO - VhOISEO0@. (2.1
M

Proof. —We first prove that, is a semi-group. Let thug € C?(M), and lets, t > 0.
We first write Y}, | asZ&l’” st;’ whereX! (fori € {1,..., (Y, 1)}) are the locations

of the particles at, and where conditioned af;, {sté}go are independent branching
processes with initial condition,:. We obtain

t

Ry f(x)=E —*CO’ZE{ e o (Y Xi| )| F)

—)»Cot tz R f

=E|e *AC0f<YX R.f)] = RiIR, f1(x). (2.17)

Next, it is clear from Corollary 2.2 that the generator Bf is given by K. It is
immediately deduced tha®, is a semi-group and that (2.15) and (2.16) hold. The fact
that Q, is Markov (i.e.,Q,;1=1) is deduced from Corollary 2.3(i).0

Next we present useful properties Bf.

LEMMA 2.5.—
(i) There exist som€® functionsq(t, x, y) andr(t, x, y) on (0, co) x M x M such
that for all measurable functiorf on M,

0,f(x) = / gt N fdy.  Rf(x)= / r(t ) fO)dy.  (2.18)

M M

(i) The semi-grougR,),>o is strongly continuous, this is, for alye C (M),

lim | Rih — hloe =0, (2.19)
11—
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Proof. —The generatoik of Q, is the generator of af-valued uniformly elliptic
diffusion process, so that it is well-known, see, e.g., Fefferman and Sanchez-Calle [4],
p. 268, that there exists@> functiong(z, x, y) on (0, c0) x M x M such that for all
measurable functiorf on M, Q, f(x) = [,,q(t, x,y) f (y)dy. Hence,

Rtf(x):g(x)Qt[ }(X) / e ’y)f( )dy (2.20)

and thus (i) holds with (¢, x, y) = q(z, x, y)g(x)/g(y), which has the same regularity
asr sinceg is C*, bounded from below and from above.

It is also standard thatQ,),>o is strongly continuous, from which point (i) it is
immediately deduced. O

We now build a basis of?(v), of which the elements are eigenfunctionskaf

LEMMA 2.6. —There exists an nondecreasing sequefisg,>o of nonnegative real
numbers and a sequengg, },~o of real-valued functions o such that
(i) po=0,andp, >0foralln>1,
(i)) {¥n}as0is an orthonormal basis af?(M, v), and o = g/+/ [, g2dv,
(iii) foralln>0, Ky, =—p,¥, and forallr >0, Ry, =€ 'v,,
(iv) forall n, ¥, € C®(M),
(v) forallt>0, >, o€ <oo0.

Proof. —Consider the eigenvalues and eigenfunctionskof K¢, = —p,¢,, for
all n > 0, wherep, are nonnegative real numbers. (It is clear from (2.16) that the
eigenvalues o are nonpositive.) One easily deduces that for eagh0, anys > 0,
Qi = e—p;1t¢n_

Next, notice that for each> 0 fixed, Q; is a Hilbert—Schmidt operator. Indeed, this is
a straightforward consequence of Lemma 2.5, and of Ex 49-b p. 1086 of [1]. This implies
that its spectrum is discrete, and th@ holds (sinceQ,,, is Hilbert-Schmidt). We
number theo, in nondecreasing order and note that it follows classically that p;.
We choosd¢, } an orthonormal basis df2(M, g%v). Finally notice thajpg = 0, and that

the associated (renormalized) eigenfunctiopds=1/,/ [,, g2dv.

Then the sequenceg, = g¢, satisfies the conclusion of the lemma. Indeed, points
(i) and (i) are straightforward. Next, it is clear that for eact 0, K, = gK ¢, =
_gpn¢n = _ann- In the same SpiritRIWn = th¢n- HenceROWn = WIM andatRIWn =

gat Qt¢n = —Pn8 Qt¢n = _anIWn’ and (”I) follows.

Point (iv) is an immediate consequence of the previous lemma: for an§ fixed,
VY, =€ Ry, =€ [, v, (r(t,-,y)dy. Sincer(t, -, -) is C* on M x M, the usual
Lebesgue theorem allows to conclude the proof. Finally, point (v) has already been
proved. O

We now study the asymptotic behaviour of*€&’(Y*, ) for eachn. This will be
sufficient, sincgy,} is a basis ofL?(M, v).
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LEMMA 2.7.—
(i) There exists a nonnegative random varia@tesuch that a.s. and ih?(),

lim e v (y* ¢) = Z"~. (2.21)

t—>0o0

Furthermore, there exists a constafitsuch that for allx € M,
E[z]=g(). E[(z")]]<A. (2.22)

(i) Foralln>1,as.,
lim e (Y, y,)=0. (2.23)

—>00

Proof. —-We begin with (i). We know from Corollaries 2.2 and 2.3 thef* =
e *Co(y¥ ¢) — g(x) is a martingale starting from 0 and boundedIify from which
(i) is a straightforward consequence.

We now prove (ii). We seW* = e o' (Y~ ). Using Corollary 2.2 and the fact
thatLy, — ¥, Lg/g = Ky, = —p,¥,, we deduce that

t
W = i (x) — pa / W ds + M*, (2.24)
0
whereM*-¥» is defined in (2.5). This equation can be solved explicitely:

13
W =e P |y, (x) + [ e dMEV . (2.25)
t S
0

Denote byO!~ = [;€*dM*¥». We clearly just have to check th&t"* = e~/ O~
goes a.s. to 0 asincreases to infinity. This will be done by using the Borel-Cantelli
lemma: it suffices to check that for aay- 0,

P[ sup |D"*| > 8} < 0. (2.26)
k>1 [k,k+1]

But for all &,

—2kpn

P[[sup D| > 6| < P| sup [0f| > eé | <A=——E[(0}3)7]  (2.27)

k,k+1] [k,k+1]

by using Doob’s inequality, sinc®”* is a martingale. Finally, an easy computation
using the quadratic variation @™~ (which is obtained from that o#/*-¥», which is
given in Corollary 2.2), using Corollary 2.3 and Lemma 2.6(iv) shows that for some
constant4,,,

[ Onx

/ e g 2o (yx XW3+|VWn|2>dS]
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t
<A, / e @0 s LA, (L+ 1) (P! 4C0 1 1), (2.28)
0

We furthermore deduce that, for some constat,

P[ sup |D| > s} < Ape(k +2) [e7*C0k 4 g72k] (2.29)
[k,k+1]

which allows to conclude that (2.26) holds. This ends the prodf.
We deduce the non-triviality of the extinction event.

COROLLARY 2.8.— Recall thaté, is the extinction event.
(i) Sete=inf,c) g(y)/2> 0. Then

a=inf P[Z*>¢] >0. (2.30)

xeM
(i) sup,cpy PIEI<1—a.

Proof. —We first check (i). Thanks to Lemma 2.7(i), we know that foraalin M,
E[Z*] = g(x) andA = sup,.,, E[(Z")?] < co. Thus

§(X)=E[Z 1z | + E[Z" 17| <&+ «/Z\/P[Zx > ¢] (2.31)

which allows to conclude the proof. Point (ii) is now obvious, since it is clear from
Lemma 2.7(i) that, C {Z* =0} Cc{Z* <¢}. DO

We now extend Lemma 2.7 to continuous functions\n

LEMMA 2.9. - Seta :=1/(f,, g?dv). Then for allh € C(M), a.s.,

lim e (Y, h) =aZ*(h, g) 12, (2.32)

t—00

Proof. —~We prove this result by using the previous lemma. We thus congider
C(M). We first recall that due to Lemma 2.5(ii),

Iing) |Rh —h|e =0. (2.33)
t—
Then we splith and R;k according to the orthonormal basis:

h=> (h ¥ 2a Ve Rh=> (h. V) 120,)€ " Y. (2.34)

n=0 n=0

Then we consider the approximation = >~ _o(h, V) 12(s) Y-

Then it is clear from Lemma 2.7, sing& = g/+/ [,, 8°dv and pg = 0, that for any
t>0andanyp > 1, as.,
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p
lim &Y Rihy) =D € (h, Yia) 12 lim €YY )
n=0
ZX

= (h, Vo) 1200y~
OL()\/fMgTdv

Furthermore, using Lemma 2.5(i), one easily checks that forrany, there exists a
constantA(¢) such that for alk > 0,

1¥nlloo = € 1R W lloo < A) € 1Yl 20y = A1) €™ (2.36)

from which we deduce that for all> O,

:aZx(h,g)Lz(U). (235)

”Rth - Rthp”oo =

D)2y €Y,
n>p
(by applying (2.36) withr /2 instead of) which goes to 0 ap tends to infinity, according
to Lemma 2.6(v).

Also notice that sinceg is bounded away from 0 and since*€%(Y*, g) is a
converging martingale, one easily obtains that the random variable

t
< |k Al = e /2 (2.37
<llaA(5) e (@3

n>p

U= sup e (yr 1) (2.38)

s€[0,00)

is a.s. finite. We may finally conclude the proof. We approxintalbsy R;%,, for p large
andr small. Lete > 0 be fixed. We have to show that there a.s. exissich that for all
§ 2 Se,

(Y5, h) e —aZ%(g, h) 2| <e. (2.39)
We use the previous estimates: for any 0, ¢+ > 0, andp > 1,
[V h) €70 —aZ (g h) 2, < |5 1) €7 = (YT R €777

+ [(Y, Rh) €0 — (Y, Rk, ) e "%

+ (Y, Rihy) €77 —aZ¥ (g, h) 2. (2.40)
Using (2.37) and (2.38), we deduce that forsalt, p,

|<st’ h> e —az" (g h>L2(v)|
<U x [llh = Rihlloe + 1l 2 A (%) 3 ep,m]

n>p
+ (Y, R, ) €775 —aZ (g, h) 20 (2.41)

Using (2.33), (2.37), and (2.35) allows to conclude that choosingsfsstall enough,
thenp large enough, and finallylarge enough yields to (2.39). This ends the proafi

To conclude, we just have to verify that is strictly positive on the set where there
is not extinction.

LEMMA 2.10. — Recall that&, is the extinction set.
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(i) Oné&:, lim, (Y5, 1) =400 a.s.
(i) Furthermore

PlEcN{z*=0}] =0. (2.42)

Proof. —We first prove (i). Recall thatY*, 1) is N-valued. Hence, one easily under-
stands that it suffices to show that for alle N, = {1, 2,3, ...}, P[liminf,_, (Y, 1) =
N]=0. Let thusN € N, be fixed. First notice that

1 C
Do = i > — - _— . .
Po }!QL po(y) 2 3 (1 Co—+ > >0 (2.43)

Then, setly =0, Sy =0, and define recursively the stopping times

S, =inf{s > T,; A(Y},1)+#0},
T =inf{s > 8,; (Y7, l> =N}, (2.44)
whereA(Y", 1) = (Y}, 1) — (Y, 1). Then,

Pliminf (v}, 1) = N| =P [Iilrn T, =00, law 1--1<00|. (2.45)

t—00
n>1

Due to the Borel-Cantelli lemma, this last quantity equals 0, since conditionnaly on the
sequencgT,, S,}.>1, the eventgA(Y; , 1) = —1} are independent and with probability
bounded below by,.

Next, we prove (ii). Denote by = £ N {Z* = 0}. On the setB, lim,_, (Y, 1) =
+00 a.s., while lim_, o, e €0 (Y, 1) = 0.

For anyr > 0, denote be;', fori e {1,...,(Y;}, 1)}, the points of the support df".
Then one may write, foral >0, r > 0,

(¥",1)
1) e *Colt+s) — g=4Cor Z g *Cos sz 1), (2.46)

i=1

<Yt)f|»s’

whereY*: are independent branching processes starting ﬂ@pmondrtroned onF,.
Making s tend to infinity, we deduce, using Lemma 2.9 and the factthag), 2, = 1,
that onB, for all 7,

¥

Y z% =0 (2.47)
i=1

Using Corollary 2.8(i) and the notations therein, we thus obtain that far:alD, all
N >1,
N
PIBISP|Y. Z% =0,(Y",1)> N| + P[(¥/,1) < N, &]
i=1

<A-a)V + P[(Y), 1) <N, &, (2.48)
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Making ¢ tend to infinity, we deduce (using (i)) that for eadbh> 1, P[B] < (1 — a)".
Sincea > 0, we conlude thaP (B) = 0, which was our aim. O

The conclusion is now straightforward.

Proof of Theoreml.l —Let x € M be fixed. We already have proved (see Corol-
lary 2.8(ii)) that P[£,] < 1. Since for anyh € C(M), (h, g)120) = [y B(¥)&0o(y) dy,
point (i) is straightforward from Lemmas 2.9 and 2.10, while point (ii) is an immediate
consequence of point (i). O
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