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ABSTRACT. — The natural filtration of a real Brownian motion and its excursion filtration are
sharing a fundamental property: the property of integral representation. As a consequence, every
Brownian variable admits two distinct integral representations. We show here that there are other
integral representations of the Brownian variables. They make use of a stochastic flow studied
by Bass and Burdzy. Our arguments are inspired by Rogers and Walsh’s results on stochastic
integration with respect to the Brownian local times.
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RESUME. — La filtration naturelle d'un mouvement brownien réel et la filtration de ses
excursions ont en commun une propriété fondamentale : la propriété de représentation intégrale.
Toute variable brownienne admet donc deux représentations intégrales distinctes. Nous montrons
ici qu’il existe d’autres représentations intégrales pour les variables browniennes. La construction
de ces représentations utilise un flot stochastique qui a été étudié par Bass et Burdzy. Nos
arguments s'inspirent du calcul stochastique par rapport aux temps locaux développé par Rogers
et Walsh.
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1. Introduction

Let (B;, t > 0) be a one-dimensional Brownian motion starting from 0. Denote by
(B:):>0 its natural filtration. One of the most fundamental properties of the Brownian
filtration is that everyZ?-bounded(B;)-martingale can be represented as a stochastic
integral with respect taB, and hence is continuous (for a nice application of this
representation result, see for example Karatzas et al. [7]). This representation property
is in fact equivalent to the integral representation(3f3..), namely that for every
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H e L£?(By), there exists a unique proceds) which is predictable with respect t#,)
such that

H =TF(H) +/hsst, (1.1)
0

and

E(/hfds) < 00,
0

(see, e.g., Revuz and Yor [9, Chapter V]). The representation (1.1) corresponds in
a natural way to the “time variable”. Rogers and Walsh [12] have established an
analoguous representation result with respect to the “space variableX ¢& and
consider the reflecting Brownian motion ¢noo, x] defined by

5 def
Bf(x) = Bp(t,x),

with po(z, x) d:e‘cinf{s > 0: [gdulp,<y > t}. Define&, d:‘afcr{li(x), t > 0}. It has been
shown that the family{&,, x € R} forms a filtration, which is called the Brownian
excursion filtration. Williams [17] proved that allf{)-martingales are continuous.
Rogers and Walsh [12] have given another proof of this result by showing that for any
H € L%(E), there exists a unique “identifiable” procegs(t, x), t >0, x € R) such

that

H=E(H)+%/ /qb(t,x)dLB(t,x), (1.2)

t>0 xeR

IE< (s, Bs)ds> < 00,
/

where Lz denotes the local time process relatedtoThanks to Tanaka’s formula, we
note that

and

H:E(H)—i—/ /¢(t,x)dM(t,x), (1.3)

>0 xeR

whereM(t, x) dzeffé Lg,<x)dBs, t 20, x eR.

Since £2(€,) = L?(By), this gives another representation for every element in
L2(Bxo).

We refer to Williams [17], Walsh [16], McGill [8], Jeulin [6], Rogers and Walsh [10-
14], Yor [18] together with their references for detailed studies of Brownian excursion
filtration (£, x € R) and related topics.

The purpose of this paper is to put in evidence other integral representations for the
Brownian variables. These integral representations will be done with respect to processes
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involving the local time of the Brownian motion with a generalized drift. More precisely,
for B, and B, two real constants, consider the equation

t t
X,(x)=x+B, + ﬂl/ds Lix,0<0) + ﬂz/ds x>0, 120 (1.4)
0 0

Bass and Burdzy [1] have shown that the solutions of (1.4)xfer R, form a C-
diffeomorphism onR. This implies in particular that for any fixed> 0, X,(x) is a
strictly increasing function of. We assume that; > 0 > 8,. They proved that in that
case the solutions are recurrent (i.e., with probability one for eack.(x) visits 0
infinitely often). Define the procesa/(¢, x), x e R, ¢t > 0) by

t
M(t,x) = /]]-(Xs(x)>0)st, xeR, t>0.
0

This process is connected, thanks to Tanaka'’s formula, to the local times at zero of the
semi-martingalesX, (x), t > 0), x € R, which can be seen as local times®falong
particular random curves.

Under the assumption tha&; > 0 > 8,, we will show that for every variablé of
L?%(B.), there exists a unique random procgssuch that

H=E(H)+/ /qb(t,x)dM(t,x). (1.5)

t>0 xeR

That way, we will obtain for the variablé& a family of integral representations indexed
by the parameterg; andg,.

In order to state properly this representation property, we first recall, in Section 2,
some results on the flol and some notations. In Section 3, we construct a stochastic
integration with respect toM (x,t), x € R, r > 0). We show that the arguments of
Rogers and Walsh [12] concerning the Brownian local time, can be adjustédl. to
But proving that every Brownian variable satisfies (1.5) requires other arguments. This
is done in Section 4. Some applications are then presented in Section 5. Indeed (1.5)
implies the predictable representation property of a certain filtrattop g indexed
by the starting points of the solutions of (1.4). As a consequence, all the martingales for
this filtration are continuous. This is used to study the intrinsic local time of the Xlow

Now, a natural question arises: what happens if instead of Eq. (1.4), we consider the
equation

Xt(x)zx—i—Bt—i—/dsb(XS(x)) (1.6)
0

with a “smooth” b (for example b in C!); Could we obtain a similar integral
representation for the Brownian variables? Paradoxically, a “smooth” drift makes the
situation much more complex. Indeed, in the special case of (1.4), the process of the
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local times at zero of the semi-martingal®s(x), x € R, actually corresponds to the
local time process of a single proce§§),>o, and the filtration(H,).cg mentioned
above is the excursion filtration ¢f;),>0. In the case of (1.6), this coincidence does not
occur, and one has to deal, in order to answer to the problem of integral representation,
with the entire local time process of each semi-martingalgx), ¢+ > 0). The main

issue, that we could not solve, is actually to write an analogue of Fact 2.3 (Section 2).

2. Some notation and results on Bass and Burdzy’s flow

We keep the notation introduced in Section 1 to present the following facts proved by
Hu and Warren in [5]. Some of these facts are extensions of Bass and Burdzy’s results
in [1].

FACT 2.1. -With probability one there exists a bicontinuous process; x € R,
t > 0) such that for every the processL;; ¢ > 0) is the local time at zero for the
semi-martingalg X, (x), ¢+ > 0). Moreover

0X;
™ (x) =exp((B2 — BVL). (2.1)

ConsiderY; defined as being the uniquec R such thatX;(x) = 0. Almost surely, for
every bounded Borel functiofj,

[rads= [ ayromwy). (2.2)
0 —00
where
elB2—B0t _ 1 )
K (£) def Bo—P1 if 1 # Po. £>0. (2.3)
l, if B1=po,

Note that the local times procegs’, ¢+ > 0, x € R) is indexed by the starting points
of the flow(X;(x)). This kind of local times process has been recently studied by Burdzy
and Chen [3] for a flow related to skew Brownian motion. The pro¢Esst > 0) plays
an important part in the next sections.

Notation 2.2. —

def

t
Ai(x) = /du L(x,(x)>0)s
0

o, (x) dzefinf{s >0: A;(x) >t}, xeR, >0,
H, d:er{Xa,(x)(x)’ >0}, xekR
FacT 2.3. -The family{H,, x € R} is an increasing family of -fields. Furthermore,
for everyx € R and H € L£?(H,), there exists a(3,, t+ > 0)-predictable process
(h;, t > 0) such that
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00 )
H=EH +/hs]l(xs(x)>0)st =EH +/hs]l(ys<x)st
0 0

:EH—}-/hsdsM(s,x), (2.4)
0
andEfom hf]l(ys<x) ds < 0.

3. Construction of the area integral

Following Rogers and Walsh [12], we set the two definitions below:

DEeFINITION 3.1.—A processp = (¢(t,x), t > 0,x € R) is said to be(H-)identi-
fiable if:

(i) The process$ep (a;(x), x), t = 0),cr is predictable with respect t0H, x By) er-

(i) Forall0<s <t, x € RsuchthatA;(x) = A;(x), we havep (s, x) = ¢ (¢, x).

We denote by the o -field generated by all identifiable processes.

Example—LetT > 0 andZ be twoH,-measurable variables. Lét> a. Then one
can easily check by using the arguments of Rogers and Walsh [12, p. 461] that the
process

def
P(t,x) = Z Ly (a),00) () La,p)(X)
is identifiable.

DEerFINITION 3.2.—A processp is called elementary identifiable ¢f belongs to the
linear span of the family

{Z]l(ag(a),ar(a)](t) ]l(a,b](x): a < b, Z e ,COO(Ha); OS S <Te ﬁoo(Ha)}

Foro(t,x) =27 ]l(as(a),ar(a)](t) ]l(a,b](x), we define

//¢dM dzefZ(M(aT(a),b) — M(ag(a),b) — M(ar(a),a) + M(as(a),a)).

We extend the above definition to all elementary identifiable processes by linearity.

Thanks to the arguments developed by Rogers and Walsh [12, proofs of Proposi-
tions 2.3 and 2.4], we have the following fact:

FacTt 3.1. -The o-field Z is generated by the family of elementary identifiable
processes.

The construction of the area integral with respectMois given by the following
theorem:
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THEOREM 3.1. —For any elementary identifiable procegswe have

EK//MM)Z] :Elzpz(s, Ys)ds]. 3.1)

Hence we can extend the isometry> [[ ¢ dM to all ¢ € L3(Z), where
£2(T) déf{ ¢ identifiable such thagg|2 &'k l / $2(s. Y,) ds] < oo}. 3.2)
0

Moreover, for anyg € £2(Z), the process([[ ¢ (t,y) Ly<dM(t,y), x € R) is a
continuous square-integrabl@<, )-martingale, with increasing process

o
</¢2(S,Ys) Liy,<nds, x €R>.
0

In order to prove Theorem 3.1, we first establish the next lemma:

LEMMA 3.2.-Fixa € R and letS and T be twoH,-measurable variables such that
0< S < T < oo. The procesgN,, x > a) := ([*1“) 1 <y, vy dBy, x > a) is a square-

ag(a)
integrable(*,)-martingale with increasing procesg;”'" 1<y, v ds, x > a).

Proof. -We assumef; > B,, the particular caseg; = B> = 0 being exactly the
Brownian motion case. Let > a. It follows from (2.2) and (2.3) that

ar(a) X

Liagy,<x) ds =/'<(L§T(a))d
0 a

_ X-a
Y 07—,
B1— B2

henceN, is square-integrable. The measurabilityNof with respect tdH, is immediate.
Indeed, for fixedr, the whole process["“ 1<y, dBy, t > 0) is H,-mesurable.
Considery > x > a and H € L*®(H,). We make use of the representation (2.4) fbr
to obtain:

oo oo

E((N} — NX)H) = E(/ ]]-(X<Y.‘<y) ]]-(ozs(a)<5<a1(a)) st X /:ﬂ_(y‘<x)hsdBS> = 0,
0 0

proving the martingale property. Thanks to the general result of Bouleau [2], we
immediately obtain the formula for the increasing process.

Proof of TheorenB.1 —The identity (3.1) follows from Lemma 3.2 once we note
the following fact: let 0K U < V < S < T be four’H,-measurable variables. The two
martingales

(M (ar(a),x) — M(ar(a),a)) — (M(as(a), x) — M(as(a),a))
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ar(a)
= ]l(a<Y5<x) dB;, x>a,
as(a)
and
(M (ay(a),x) — M(ay(a),a)) — (M(ay(a),x) — M(ay(a),a))
ay(a)
= ]]-(agYs<x)st, xza,
ay(a)
are orthogonal. Using Fact 3.1, the family of elementary identifiable processes is dense
in £?(Z). Hence we can extend the definition of area integral t¢ @l£%(Z).
To finish the proof of Theorem 3.1, it suffices to verify the last assertion for an ele-
mentary identifiable procegsof the formZ 1 (a).a7(a)1(t) La.p)(x) With Z € L>*(H,),
a<b, 0< ST ands, T € L*(H,). Then again by using Lemma 3.2, the process

(/ o, y) Ly dM(t,y), x ER)

= (Z // Lias@y,ar@]OL@xa () dM(t, y), x € R)

is a continuous square-integralil, )-martingale, with increasing process

ar(a) 00
<22 / Lagy,<xnb) ds, X eR) = </¢>2(s, Y,)ds, x €R>
0

as(a)

completing the whole proof. O

In some special cases, the area integral can be explicitly computed.

PROPOSITION 3.3. —Let ¢ be an element of?(Z) such that for every € R, the
process(¢ (a,(x),x), s > 0) is predictable with respect tB,, (), s > 0). Moreover,
we assume that almost surapy-, -) is continuous outside of a set of null Lebesgue
measure. Then the proce&s(s, Yy), s > 0) is (B,)-adapted, and we have

// o(s,y)dM(s,y) =7oqb(s, Y;) dB;. (3.3)

520, yeR 0

See Eisenbaum [4] for some related results on double integrals with respect to
Brownian local times.

Proof. —We can assume thathas compact support and is bounded. Define the finite
sum

def
ACBIEED Yo (e () x7) L0 ) L e 1 (5)s

siv1—si=1/n xjy1—x;j=1/n

fors >0, y e R. Since¢ (a(x), x) is H,-adaptedg, € L2(T).
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Moreover, the proces&p, (s, Y;), s > 0) is (B,)-adapted. Indeed, from our assump-
tion, ¢ (o, (x;), x;) e, (vt 4 (601 (5) is B,-measurable, sinag, (x;) andey,,, (x;) are
(By)- stopping times.

By definition,

[ #usopamis.y) = /oo¢,,<s, Y,)dB,. (3.4)
0

5§20, yeR

Thanks to our assumption, almost surgly(s, Y;) — ¢ (s, Y;) ds-a.s. It follows that
E(/(qﬁn — $)%(s, Ys)ds> -0, n— oo.
0

Consequently, the process (s, Y;), s > 0) is (I3;)-adapted. Hence the two integrals in
(3.4) converge irC? to the corresponding integrals fgrasn — oo, which completes
the proof. O

4. Integral representation

Now that stochastic integration with respect(® (x,7), x € R, ¢ > 0) has been
defined, the following theorem shows that every Brownian variable is an integral with
respect ta\/.

THEOREM 4.1. —Let (81, B2) be a couple of real numbers such thgat> 0 > B,. For
everyH e £2(By,), there exists a uniquéH,, )-identifiable process such that

H:E(H)—i—/ /¢(l,x)dM(t,x),

>0 xeR

IE< (1, Y,)dt) < 00,
/

whereY; denotes the unique € R such thatX, (x) = 0.

and

Proof. —Define

K d:ef{H € £2(By): H =E(H) + //¢(t, V) dM(t, y), for somep e zz(z)}. 4.1)
The proof of Theorem 4.1 is equivalent to showing that
K = L2(Bx).

The proof of the above equality is constructed as follows. We will define a family
(D,) of random variables such that:
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Step 4.2.For eachw > 1, D, C K. Furthermore, the algebra generatedibyis itself
included inkC.

Step 4.3.Let A, = o(D,). We havel?(A,) C K, for all n > 1, and A, is increasing
with n.

Step 4.4. Define A, get Vi1 A, We will prove thatA,, = B.. Consequently/C =

L2(Boo).

In what follows, we exclude the Brownian cagi & B, = 0) which has been already
treated by Rogers and Walsh [12]. We begin with the choice,0Keeping the notation
of Section 2, we define

7.(a) d=6finf{z‘ >0:L{>r}, r=>0,a€R,

(4.5)
def p o (j+D/2", 4 (j+1)/2" G+1/2", .
Dn = {er(j/zfl) ) L.[t/(]/z;é) —L.[Sl(j/zfl) . 0<S <t, ] EZ}
The main technical result is the following
LEMMA 4.2.—Fixa <beRandt >s > 0. Foranyi > 0,
b
Eexp(AL; ) < oo. (4.6)

For any smooth functiory : R, — R such that| f (x)| = o(e’**) as x — oo for some
go > 0, we have

f(L? ) €K, 4.7

f(L2 =L ) K. (4.8)

Proof. —Let x > a. Applying Tanaka’'s formula to the semimartingal&s(x) and
X.(a), we have

7 (a) X
L)rcr(a) =r+2a —x)—2 / ]l(a§Y:<x) dB, — Zﬁl/K(Li,(a))dy‘ (49)
0 a

Similarly to Lemma 3.2, one can prove that the proc(qés(“) La<y,<x)dBs, x 2 a) is
a square-integrabléH . )-martingale, with increasing procesng(Lir(a))dy, X =a).
Consequently there existq&,,)-Brownian motionW, independent o, such that:

7-(a) X
< / Lagr,<ndBs, x 20) = </\/K(L¥,(a>)d“~’yv X 2“)-
0 a

Hence, we obtain

Ly y=r+2a —x)— Z/Q/K(Lir(a)) dWy — Zﬂl/K(Lir(a)) dy. (4.10)
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This shows thatL(z,(a),a +t), t > 0) is an inhomogeneous Markov process (this fact
has been already noticed in [5]). SinBe> B2, x(x) < 1/(B1 — B2), it follows from
(4.10) and the Dubins—Schwarz representation theorem (see [9, Chapter V]) that

Ly ) SCoP(2ypr ) SCOR2  sup ). (@41

whereC &' g(+2"+20-alp1l/(B1-2) andy is a one-dimensional Brownian motion. It is
well known that the rhs of the above inequalities is integrable, hence (4.6) follows.

The conclusions (4.7) and (4.8) follow from a martingale projection argument. Let us
first show (4.7). Using the Markov property £, x > 0), we obtain

7 (a)’

E(f( t,(a)) |H ) - Mb(x Lt,(a)) a<x< b,

whereu,(x, l) = E(f(Ln(a)) | Ly ) =1). It can be checked that the functiap(, -)
belongs toCY2([a, b) x R,) andu, is continuous ona, b] x R, (see Stroock and
Varadhan [15, Theorem 6.3.4]). Applying 1t6’s formula to the marting&lef (L. @) |
‘H,), x > a), we obtain:

E(f( r,(a)) |H )_ub(x’l‘i,(a))

=up(a,t) — 2/ ol y Lr,(a)) (Li,(a))d/vvy

— upla. 1) — 2 / / 5 (5. W Loyen dM(s, ),

wheregy (s, y) £ 2% (y, LY )1 /i (LY ) Lwni(3) Lo @)(s) is an identifiable process.
Hence for eachx < b, E(f(L® @) | Hx) € K. The continuity of the function,(-, -)
implies that wherx tends tob,

E(f( r,(a)) | Hx ) —”b(x L)rc (a)) o ”b(bv L};,(a)) = f(LZ(a))‘

This convergence also holds lt, by the fact that syp., ., E(L?, ,,)? < oo (cf. (4.11)).
Hencef (L? @) €K, sincel is closed inc2.
To show (4 8), we consider the stopping timé:) and define the new flow

def _
Xu () Z Xopr ) (X oty (), u>0, xeR,

where X (a)(x) denotes the unique € R such thatX, ) (y) = x. By using the strong
Markov property, the flonX has the same law &, and is independent &, ,). Define

L and7 relative toX in the same way a& andt are defined relative t&. We have
(a) — t(a) = ft—s(o) and

La+x La+x _L Xzg(a)(a+x)

v~ La@=L: 0 - X€ER,
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and by using Fact 2.1,
Xow(@+) = [ dy expl(2— BOLYL).
0

Since L and 7 are independent of. and z, it follows from (4.10) that the process
(Lijj) — Lij(r;j), x > 0) is an (inhomogeneous) Markov process, and (4.8) follows by

the same method. O

Step 4.2. The first assertiorD, C K follows from Lemma 4.2. To show the second
assertion, we first note the following fact: kt, ¢, € £2(Z) such that the supports ¢f
andg, are disjoint. Define

0 [[66.name ek, i=12

We will show that ifH; € £* and H, € £* (so thatH, H» € £?), then
H\Hp e K. (4.12)
To this end, we use the projectiofis= 1, 2)

H(0) E'E(H, | H,) = E(H) + / / $i(5. ) Ly ey AM (s, ).

Thanks to Theorem 3.1, we know thaf;(x)) and (H>(x)) are two continuous
martingales. Note thaf Hi(y) dHx(y) = [[ Hi(y)¢2(s, y)dM(s,y) (which can be
proven by approximating, by elementary identifiable processes). Ité’s formula yields
to

HyHy = E(HyHy) + / / (Hi(3)2(s. ) + Ho(ba(s. y)) dM(s, y) € K,

because the finite variation term vanishes thanks to the assumption of disjoint supports
of ¢ and¢,. Moreover we note directly from Definition 3.1 that the prodéti of
an (H,).cr-predictable proces& (x)) and anH-identifiable processy (x,t), x € R,
t > 0) is still H-identifiable. Hence, (4.12) is proved.

Thanks to (4.12) and Lemma 4.2 applied fgx) = x* for k > 0, Step 4.2 is
established. O

Step 4.3. Using Step 4.2 and (4.6) and applying a result due to Rogers [10,
Lemma 3], the inclusiorC?(A,) C K follows. Let us show that

Ay C Auia. (4.13)

Letx < y € R. Denote byv defy Y Since onz, (x), 7,(»)), X~1(0) < y, we have

T (x)"

LZ

nn = L Vizy.

Z
w(y)’
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Write o’} d:esz—" for j € Z andn > 1. Applying the above observation to=a’} = agfl,

y=ayfh andz =a",, = a3}, we obtain

an+1
z _ L 2j+2
T (y) Ty (ag]trll) ’

a"
L j+L L*?

t,(a;.’) =Lgw =

L

n+1

with v d:efLZZZ,}H). This shows thaij(*a%;) is A,+1-measurable, as desiredd
vidy; J
Step 4.4. Forx € R, we will prove that(L> ,, y € R) is A,-measurable. In fact,

7 (x)”
if y > x, we have thatL), ., = liM,.oc. 21 x4tz LU 55 IS Ax-measurable.

T (x

Now considery < x, observe thal; , =inf{u > 0: L}, > 1} is A,-measurable.

Using Fact 2.1, for alt, x, 7;(x) = fRK(Li(x))dy is A.,-measurable. We obtain that
the procesd.: is A,,-measurable. Hence the same holds«@k:), which implies that
(Y, t = 0) is A.-measurable. Applying (1.4) with = Y;, we have

1 t

B, = —Y, — ﬂl/]l(ys>yt)ds — /32/1(ys<yt)ds, t 2 0
0 0

ConsequentlyB;, ¢ > 0) is A.,-measurable.
Finally, using Steps 4.2 and 4.3, we obtain

L2(As) CK C L2(Bso) = L2(Aw),

implying the desired result and completing the whole proof of Theorem 411.

5. Applications

Since L?(Hs) = L%(Bs) (cf. Step 4.4), by standard arguments, the following
corollary follows immediatly from Theorem 4.1.

COROLLARY 5.1. —Every £?-bounded(H,)-martingale (N,, x € R) admits a con-
tinuous version with the following representation

N, =E(No) + / / Yt Y) Loen dM(, y),

t>0 yeR
for some identifiable process.
Define now
LrErr . t>0xeR, (5.1)

which is called the intrinsic local time in the Brownian motion cage £ 8, = 0).
In the Brownian motion case, McGill [8] showed the important result that for a fixed
t > 0, the procesg; is a continuous semimartingale in the excursion filtration, and gave
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an explicit decomposition of this semimartingale. With different approaches, Rogers
and Walsh [13] and [12, Theorem 4.1] gave the canonical decompositi(ir; ahd
interpreted the martingale part as an area integral with respect to local times. Here, we
ask the same question for the flow. Note thas L* is continuous. Define

U () Einf{x e R: A,(x) > 1}, r>1, (5.2)

and (1) %' % for r < t. Observe thaty.(¢) is nonincreasing and continuous. Using
(1.4) withx = . (¢), we obtain that for > 1:

Xr (Wr(t)) = Wr(t) + Br + ,811’ + (,82 - ﬂl)t’ (53)
since A, (¥, (¢)) = t. We denote by(x,(¢), r > 1) the local time at O of the continuous
semimartingal€ X, (¥, (¢t)), r > t).

THEOREM 5.1 (81 > 0> ). —Fixt > 0anda € R. The proces$1:f, x>a)is an
(H,)-continuous semimartingale with the following canonical decomposition

L*=N,+V,, x>a,

where

def

N, = _2//]]-(a<y<x/\¢s(t))dM(Sa y), X za,

is an (H,)-continuous martingale, with increasing proces;ﬁoOo Lia<y,<xny, () dS,
x>a),and

a(a)
Vi=L{ -2 —a") =26 / Lre<un ) dS + (hay (1) = Aoy (). x> a,
oy (x)
is a bounded variation process adapted1d,).

Proof. —Notice that 0< Xy, (1) (x) = X4, r) (Yo, ) (1)) By applying Tanaka’s formula
to the continuous semimartinga¥e(v.(¢)) and to the continuous semimartingae(x)
at timeso; (x) anda, (a), we obtain in the same way as Rogers and Walsh in [13, proof
of Theorem 2]:

a;(a)
LY —Li=-2(x"—a")— 2B / Ly <y ) A5 + (Ao () (1) = Ay (@) (1))

az(x)

o0
- 2/1<a<ys<mw§(t>>d3s‘
0

Therefore the proof of Theorem 5.1 will be completed once we show that

[[#6.name.y =7¢<s, Y,)dB,. (5.4)
0
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for the identifiable proces® (s, y) d:ef]l(a<y<x/\,/,s(,)) (x, z are fixed). Observe that

{a,(y) < S} = {t < As(y)} = {WS(Z‘) < y} Hence¢(s, )’) = ]]-(s<oz,(y)) :ﬂ-(a<y<x)- Thanks
to Proposition 3.3, (5.4) follows. O
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