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RÉSUMÉ. – Cet article étudie les propriétés de convergence en loi des diffusions
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1. Introduction

Self interacting diffusions(as considered here) are continuous time stoch
processes living on a Riemannian manifoldM which can be typically described a
solutions to a stochastic differential equation (SDE) of the form

dXt =
∑
α

Fα(Xt) ◦ dBαt − 1

t

( t∫
0

∇VXs (Xt ) ds
)
dt, (1)

where(Bα)α is a family of independent Brownian motions,(Fα)α is a family of smooth
vector fields onM such that

∑
α Fα(Fαf ) = �f (for f ∈ C∞(M)), where� denotes

the Laplacian onM andVu(x) a “potential” function.
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These processes are characterized by the fact that the drift term in Eq. (1) depen
on the position of the processXt, and its empirical occupation measure up to timet :

µt = 1

t

t∫
0

δXs ds. (2)

The asymptotic behavior of{µt } is the subject of a recent paper by Benaïm, Led
and Raimond [1]. This paper provides tools and results which allow to describe th
term behavior of{µt } in terms of the long term behavior of a certain deterministic se
flow {�t}t�0 defined on the space of probability measure onM. For instance, there ar
situations (depending on the shape ofV ) in which {µt } converges almost surely to a
equilibrium pointµ∗ of � and other situations where the limit set of{µt} coincides
almost surely with a periodic orbit for� (see the examples in Section 4 of [1] and be
in Section 7). In the simple case whereµt converges toµ∗ one expects(Xt+s, s � 0) to
behave like a homogeneous diffusion of generator

Lµ∗ = 1

2
�+ 〈∇Vµ∗ ,∇〉,

whereVµ∗(x)= ∫
Vy(x)µ

∗(dy) and〈· , ·〉 denotes the Riemannian inner product onM .
The purpose of this note is to address this type of question.

In Section 2, following [1], self-interacting diffusions on a smooth compact man
are defined. In Section 3, the basic tool of this paper is presented, namely the G
transform.

In Section 4, we show that on the event “µt converges towardsµ∗”, the law of
(Xt+u, u� 0) givenBt = σ (Xs, s � t) is asymptotically equal to the law of the diffusio
with generatorLµ∗ and initial conditionXt .

In Section 5, we show that the law ofXt+s(t) given Bt is asymptotically equal to
�(µt), the invariant probability measure of the diffusion with generatorLµt ; provided
s(t)→ ∞ at a convenient rate. Moreover the law ofXt given�̃= {µt → µ∗} converges
towardsE[µ∗|�̃]. In particular, whenP(�̃)= 1, Xt converges in law towardsE[µ∗].

Section 6 generalizes results of Section 5 to the law of the process(Xt+s(t)+v, v � 0).
In Section 7, examples developed in [1] and [2], for whichµt converges a.s. ar

presented.

2. Background and notation

The notation and definitions here are from [1].
Throughout we letM denote ad-dimensional, compact connected smooth (C∞)

Riemannian manifold. Without loss of generality (see Nash [4]) we shall assum
M is isometrically embedded inRN . We denoteCr(M), 0 � r � ∞, the space ofCr

real valued functions onM .
Given a metric spaceE we letP(E) denote the space of Borel probability measure

E equipped with the topology induced by the weak convergence. Recall that a seq
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{Pn}n�0 of Borel probability measures onE converges weaklyto P provided

lim
n→∞

∫
f dPn =

∫
f dP (3)

for every bounded and continuous functionf :E → R. When E is compact (e.g.
E =M), P(E) is a compact metric space.

Throughout we assume given a measurable mapping

V :M ×M → R,

(u, x) �→ V (u, x)= Vu(x).
(4)

We furthermore assume that for allu ∈M, Vu :M → R is aC1 function whose firs
derivatives are bounded (in the variablesu andx). Forµ ∈ P(M) we letVµ ∈ C1(M)

denote the function defined by

Vµ(x)=
∫
M

V (u, x)µ(du), (5)

andLµ the operator defined onC∞(M) by

Lµf = 1

2
�f − 〈∇Vµ,∇f 〉, (6)

where 〈· , ·〉, ∇ and � stand, respectively, for the Riemannian inner product,
associated gradient and Laplacian onM .

We let � denote the space of continuous pathsw :R+ → M , equipped with the
topology of uniform convergence on compact intervals;B = B(�) the Borelσ -field
of �, Xt theM-valued random variable defined byXt(w) = w(t); andBt theσ -field
generated by the random variables{Xs: 0� s � t}.

Since� is polish,P(�) equipped with the weak convergence is metrizable. A dista
d onP(�) is given by

d(P,Q)=
∞∑
n=1

2−n
∣∣∣∣ ∫ Zn dP −

∫
Zn dQ

∣∣∣∣ (7)

for P andQ in P(�) whereZn :�→ R is continuous,Bn-measurable, and{Zn; n� 1}
is dense in{Z ∈ C0(�); ‖Z‖∞ � 1}.

For r > 0, µ ∈P(M) andw ∈�, theempirical occupation measure ofw with initial
weightr and initial measureµ is the sequence{µt(r,µ,w) ∈P(M): t � 0} defined by

µt(r,µ,w)= 1

r + t
(
rµ+

t∫
0

δw(s) ds

)
, (8)

where
∫ t

0 δw(s) ds(A)= ∫ t
0 1A(w(s)) ds, for every Borel setA⊂M . In the following we

will denote byµt(r,µ) theP(M)-valued random variablew �→ µt(r,µ,w).
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A self-interacting diffusion associated toV is a family

{
Px,r,µ: x ∈M, r > 0, µ ∈ P(M)

}⊂ P(�) (9)

such that
(i) Px,r,µ(X0 = x)= 1.
(ii) For all f ∈ C∞(M),

Mf
t = f (Xt)− f (x)−

t∫
0

(Lµs(r,µ)f )(Xs) ds

is aPx,r,µ-martingale relative to{Bt : t � 0}.
Existence and uniqueness of the self-interacting diffusion associated toV is proved

in [1], Proposition 2.5. More precisely, it is shown in this paper thatPx,r,µ can be
obtained as the law of{Xt}, a solution (unique in law) of the following SDE onM :

dXt =
N∑
i=1

Fi(Xt ) ◦ dBit − ∇Vµt (r,µ)(Xt) dt, X0 = x, (10)

where (F1(x), . . . , FN(x)) denote the orthogonal projection of the canonical b
(e1, . . . , eN) of R

N on TxM and Bt = (B1
t , . . . ,B

N
t ) is anN -dimensional Brownian

motion.
For x ∈M andµ ∈ P(M) we let Px,µ ∈ P(�) denote the probability measure on�

such that
(i) Px,µ(X0 = x)= 1.
(ii) For all f ∈ C∞(M),

Mf
t = f (Xt)− f (x)−

t∫
0

(Lµf )(Xs) ds

is aPx,µ-martingale relative to{Bt : t � 0}.
In other words,Px,µ is the law of the diffusion process{Yt} with initial conditionx and
generatorLµ solution to the SDE:

dYt =
N∑
i=1

Fi(Yt) ◦ dBit − ∇Vµ(Yt) dt, Y0 = x. (11)

In the followingEx,r,µ andEx,µ will respectively denote the expectation with resp
to Px,r,µ and toPx,µ.
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3. The Girsanov transform and some lemmas

3.1. The Girsanov transform

Let Bt = (B1
t , . . . ,B

N
t ) be a standard Brownian motion onRN , P the law of

(Bs; s � 0), E the associated expectation,Ft the P-completion ofσ (Bs, 0 � s � t)

andF = F∞. Let {Wx
t } be the solution to the SDE

dWx
t =

N∑
i=1

Fi(W
x
t ) ◦ dBit , Wx

0 = x ∈M. (12)

ThenWx = (Wx
t , t � 0) is a Brownian motion onM starting atx. We denote its lawPx .

Note thatWx :C(R+ : R
N)→�= C(R+ :M) is measurable. Let

Mx,r,µ
t = exp

[ t∫
0

∑
i

〈∇Vµxs (r,µ)(Wx
s

)
,Fi
(
Wx
s

)〉
dBis − 1

2

t∫
0

∥∥∇Vµxs (r,µ)(Wx
s

)∥∥2
ds

]
,

(13)
where

µxt (r,µ)=
1

t + r
(
rµ+

t∫
0

δWx
s
ds

)
, (14)

and

Mx,µ
t = exp

[ t∫
0

∑
i

〈∇Vµ(Wx
s

)
,Fi
(
Wx
s

)〉
dBis − 1

2

t∫
0

∥∥∇Vµ(Wx
s

)∥∥2
ds

]
. (15)

Then {Mx,r,µ
t } and {Mx,µ

t } are (P, {Ft})-martingales. By the transformation of dr
formula (see [3], Section IV 4.1 and Theorem IV 4.2),{

Ex,r,µ[Zt ] = E
[
M
x,r,µ
t

(
Zt ◦Wx

)]
,

Ex,µ[Zt ] = E
[
M
x,µ
t

(
Zt ◦Wx

)] (16)

for every boundedBt -measurable random variableZt . Note that this implies in particula
thatPx, Px,µ andPx,r,µ are equivalent.

3.2. Some lemmas

The next lemma is a basic tool to estimate quantities such as

Ex,r,µr [Zt ] − Ex,µ[Zt ],
for larger andµr close toµ.

LEMMA 3.1. – For a = 1,2 letAat = (Aa,1t , . . . ,Aa,Nt ) be aR
N -valued bounded{Ft}-

previsible process. Suppose that for all0� s � t∥∥A1 −A2∥∥� δ(t) (17)
s s
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for some deterministic functionδ : R+ → R+. Let

Ma
t = exp

[ t∫
0

∑
i

Aa,is dBis − 1

2

t∫
0

∥∥Aas ∥∥2
ds

]
, a = 1,2.

Then there exists a positive constantC such that for anyFt -measurable random variabl
Zt bounded by1 in absolute value,∣∣E[M1

t Zt
]− E

[
M2
t Zt

]∣∣� eCtδ(t). (18)

The constantC depends only onsupa,s ‖Aas ‖∞.

Lemma 3.1 will be proved in Section 8. Note that Lemma 3.1 and the Girs
transforms given in Section 3.1 imply thatPx,r,µ converges weakly towardsPx,µ as
r → ∞. More precisely

LEMMA 3.2. – There exists a positive constantC (depending only onsup
x,y

‖∇Vy(x)‖)

such for anyBt -measurable random variableZt bounded by1 in absolute value,

∣∣Ex,r,µ[Zt ] − Ex,µ[Zt ]
∣∣� eCt

r + t . (19)

Proof. –There exists a constantC such that‖∇Vµ‖∞ �C and‖∇Vµs(r,µ)−∇Vµ‖∞ �
Ct/(r + t), for all 0� s � t . The result then follows from Girsanov formulas (16) a
Lemma 3.1 applied with{

A1,i
s = 〈∇Vµs(r,µ)(Wx

s

)
,Fi
(
Wx
s

)〉
,

A2,i
s = 〈∇Vµ(Wx

s

)
,Fi
(
Wx
s

)〉
. ✷ (20)

4. The asymptotic of PXt,r+t,µt (r,µ)

Here we shall prove:

THEOREM 4.1. – Letµ∗ :�→ P(M) denote aP(M)-valued random variable. Le
�̃= {w ∈�: lim t→∞µt(r,µ,w)= µ∗}. ThenPx,r,µ-a.s. on�̃,

lim
t→∞d(PXt ,r+t,µt (r,µ),PXt ,µ∗)= 0. (21)

COROLLARY 4.2. –For every bounded and continuous functionZ :�→ R, Px,r,µ-a.s

lim
r→∞

∣∣Ex,r,µ[Z ◦ θt |Bt ] − EXt ,µ∗[Z]∣∣1
�̃

= 0, (22)

whereθt :�→� is the shift on� defined byθt (w)(s)=w(t + s).
Proof. –By the Markov property, we have

Ex,r,µ[Z ◦ θt |Bt ] = EXt ,t+r,µt (r,µ)[Z], (23)
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Proof of Theorem4.1. – Follows directly from the following estimate:

PROPOSITION 4.3. – Let {µr : r > 0} ⊂ P(M). Assume that

lim
r→∞µ

r =µ∗

in P(M). LetZt be a random variableFt -measurable and bounded by1 in absolute
value. Then

lim
r→∞ Ex,r,µr [Zt ] = Ex,µ∗[Zt ] (24)

uniformly inx ∈M .
More precisely, there existsC > 0 (depending only onsupx,y ‖∇Vy(x)‖) such that

∣∣Ex,r,µr [Zt ] − Ex,µ∗[Zt ]
∣∣� eCt

(
1

r
+ ε(r)

)
, (25)

whereε(r)= supx ‖∇Vµr (x)− ∇Vµ∗(x)‖.

Note that limr→∞ ε(r) = 0 (sincex �→ ∇Vµr (x) − ∇Vµ∗(x) is equicontinuous inx
and converges towards 0 for everyx).

Proof. –Lemma 3.1 applied with{
A1,i
s = 〈∇Vµr (Wx

s

)
,Fi
(
Wx
s

)〉
,

A2,i
s = 〈∇Vµ∗

(
Wx
s

)
,Fi
(
Wx
s

)〉 (26)

implies ∣∣Ex,µr [Zt ] − Ex,µ∗[Zt ]
∣∣� eCtε(r). (27)

The conclusion follows from this last inequality combined with Lemma 3.2 and
triangle inequality. ✷

5. The convergence in law of Xt

For everyµ ∈ P(M) let �(µ) ∈ P(M) denote the invariant probability measure
the diffusion process with generatorLµ. That is

�(µ)(dx)= e−2Vµ(x)

Z(µ)
λ(dx), (28)

whereZ(µ) is the normalization constant.
Let us first remark that asr → ∞, the law ofXt under Px,r,µ converges weakly

towards the law ofXt under Px,µ (see Lemma 3.2). We also have the converge
lim t→∞ Ex,µ[g(Xt)] = �(µ)g 1 for all g ∈ C0(M). The next proposition shows th

1 For a measureµ andf ∈ L1(µ) we letµf denote
∫
f dµ.
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Ex,r,µ[g(Xt+s)|Bt ] = EXt ,r+t,µt (r,µ)[g(Xs)] and�(µt(r,µ))g are close whens and t
tends to∞ at a certain rate.

PROPOSITION 5.1. – For all t � 1, r > 0, s > 0 andg ∈C0(M),

∣∣Ex,r,µ[g(Xt+s)|Bt]−�(µt)g∣∣� ‖g‖∞
(

eCs

r + s + t +C e−s/κ
)
, (29)

whereC andκ are positive constants depending only onV .

The proof of Proposition 5.1 is given in Section 8.

COROLLARY 5.2. –
(i) For all positives and all g ∈C0(M),

lim sup
t→∞

∣∣Ex,r,µ[g(Xt+s)|Bt]−�(µt)g∣∣�C‖g‖∞ e−s/κ . (30)

(ii) Let s be a real valued positive function such that

1 � exp
(
s(t)

)� t1/C (31)

whent tends to∞. Then for allg ∈C0(M),

lim sup
t→∞

∣∣Ex,r,µ[g(Xt+s(t))|Bt]−�(µt)g∣∣= 0. (32)

Proof. –Straightforward. ✷
Remark5.3. – LetLt denote the law ofXt+s(t) knowingBt . Then Corollary 5.2 mean

thatLt is asymptotically equal to�(µt). That is, limt→∞ distw(Lt ,�(µt))= 0, where
distw is a distance onP(M) for the weak topology.

Remark that Proposition 5.1 and Corollary 5.2 make no assumption on the asym
of {µt }. Let �̃ ∈ B be the event that “µt converges towardsµ∗”, whereµ∗ is aP(M)-
valued random variable. In [1] and [2], several examples of self-interacting diffu
for which Px,r,µ(�̃) = 1 are given (these examples are shortly presented in Sectio
The following theorem describes the law ofXt+s(t) knowingBt on �̃.

THEOREM 5.4. – Let s(t) be as in Corollary5.2. Then, the law ofXt+s(t) knowing
Bt converges weakly towardsµ∗ Px,r,µ-a.s. on�̃. That is, for allg ∈C0(M),

lim
t→∞ Ex,r,µ

[
g(Xt+s(t))|Bt]= µ∗g (33)

Px,r,µ-a.s. on�̃.

Proof. –It follows from Theorem 3.8 in [1] thatµ∗ is (almost surely oñ�) a fixed
point of�, i.e.,�(µ∗)= µ∗. The proof now follows from Corollary 5.2(ii) and the fa
that� :P(M)→ P(M) is continuous. ✷
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COROLLARY 5.5 (Convergence in law). –For all g ∈C0(M),

lim
t→∞ Ex,r,µ

[
g(Xt)1�̃

]= Ex,r,µ
[
(µ∗g)1

�̃

]
. (34)

In particular, if Px,r,µ(�̃)= 1 then for allg ∈C0(M),

lim
t→∞ Ex,r,µ

[
g(Xt)

]= Ex,r,µ[µ∗g], (35)

i.e.,Xt converges in law towardsEx,r,µ[µ∗] whent tends to∞.

Proof. –In view of Theorem 5.4

lim
t→∞ Ex,r,µ

[
Ex,r,µ

[
g(Xt+s(t))|Bt]1�̃]= Ex,r,µ

[
(µ∗g)1

�̃

]
. (36)

It then suffices to prove that limt→∞ at = 0 where

at = Ex,r,µ
[
Ex,r,µ

[
g(Xt+s(t))|Bt]1�̃ − Ex,r,µ

[
g(Xt+s(t))1�̃|Bt]]. (37)

Let�t = 1
�̃

− Ex,r,µ[1�̃|Bt ]. Then

at = Ex,r,µ
[
Ex,r,µ

[
g(Xt+s(t))|Bt]�t − Ex,r,µ

[
g(Xt+s(t))�t |Bt]]. (38)

Hence|at | � 2‖g‖∞Ex,r,µ[|�t |] and consequently limt→∞ at = 0 because limt→∞�t =
0 a.s. ✷

6. The convergence in law of (Xt+u,u � 0)

In the previous section we were only interested by the asymptotic of the law ofXt+s
knowingBt . These results can be extended to the law of(Xt+s+u; u� 0) knowingBt .
The following proposition is analogous to Proposition 5.1 (and implies Proposition

PROPOSITION 6.1. – For all t � 1, s > 0, u > 0 andZu a Bu-measurable random
variable bounded by1 in absolute value, then

∣∣Ex,r,µ[Zu ◦ θt+s|Bt ] − E�(µt ),µt [Zu]
∣∣�( eC(s+u)

r + s + u+ t +C e−s/κ
)
, (39)

whereC andκ are positive constants depending only onV .

The proof of Proposition 6.1 is given in Section 8.

COROLLARY 6.2. – For any positiveu andZu a Bu-measurable random variabl
bounded by1 in absolute value, we have

(i) For any positives,

lim sup
t→∞

∣∣Ex,r,µ[Zu ◦ θt+s|Bt ] − E�(µt ),µt [Zu]
∣∣� C e−s/κ . (40)
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(ii) Let s be a function like in Corollary5.2, then

lim sup
t→∞

∣∣Ex,r,µ[Zu ◦ θt+s(t)|Bt ] − E�(µt ),µt [Zu]
∣∣= 0. (41)

Proof. –Straightforward. ✷
This corollary shows that the law of(Xt+s(t)+v; v � 0) knowingBt is asymptotically

equal to the law of a diffusion with generatorLµt and initial distribution�(µt). In
particular, (ii) says that

lim
t→∞d(Pt ,P�(µt ),µt )= 0, (42)

wherePt is the law of(Xt+s(t)+u; u� 0) knowingBt .
Like in the previous section, we now focus on�̃. The following theorem shows th

on �̃, givenBt , (Xt+s(t)+u; u� 0) converges in law towards a diffusion with genera
Lµ∗ and initial distributionµ∗ (note thatµ∗ satisfiesµ∗ = �(µ∗) so thatµ∗ is the
invariant probability measure of this diffusion).

THEOREM 6.3. – For any positiveu and Zu a boundedBu-measurable random
variable,

lim
t→∞ Ex,r,µ[Zu ◦ θt+s(t)|Bt ] = Eµ∗,µ∗[Zu] (43)

almost surely oñ�, wheres(t) is as in Corollary5.2.

Proof. –The proof is the same as the one of Theorem 5.4.✷
Note that Theorem 6.3 implies that oñ�, Pt converges weakly towardsPµ∗,µ∗ .

COROLLARY 6.4 (Convergence in law). –For any positiveu andZu a boundedBu-
measurable random variable,

lim
t→∞ Ex,r,µ

[
(Zu ◦ θt )1�̃

]= Ex,r,µ
[
Eµ∗,µ∗ [Zu]1�̃

]
. (44)

In particular, if Px,r,µ(�̃)= 1 then

lim
t→∞ Ex,r,µ[Zu ◦ θt ] = Ex,r,µ

[
Eµ∗,µ∗[Zu]]. (45)

Proof. –The proof is the same as the one of Corollary 5.5.✷
Note that (44) and (45) respectively imply that the law of(Xt+u; u � 0) given

�̃ converges weakly towardsEx,r,µ[Pµ∗,µ∗ |�̃] and thatEx,r,µ[PXt ,r+t,µt (r,µ)] converges
weakly towardsEx,r,µ[Pµ∗,µ∗] providedPx,r,µ(�̃)= 1.

7. Examples

SetδV (x, y)= supu∈M(Vu(x)−Vu(y))− infu∈M(Vu(x)−Vu(y)). In [1], Corollary 4.4,
it is proved that when sup(x,y)∈M2 δV (x, y) < 1, then� has a unique fixed pointµ∗
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and limt→∞µt(r,µ)= µ∗ Px,r,µ-a.s. The associated self-interacting diffusions prod
examples for whichPx,r,µ(�̃)= 1, but the limitµ∗ is not random.

From the different interactions, we distinguish those such thatV is symmetric and
defines a positive or a negative self-adjoint operator acting onL2(λ), that can be written
in the formV = α ∫C G(u, x)G(u, y)ν(du), whereC is compact,ν is a Borel probability
measure,G :C ×M → R is continuous andα ∈ R. We call them gradient interaction
These interactions produce examples for whichPx,r,µ(�̃)= 1 and the limitµ∗ may be
random (see [2]).

Whenα is positive, we say it is a self-repelling interaction and whenα is negative, we
say it is a self-attracting interaction. It can be proved (see [2]) that, ifV 1 is a constan
function, for all repelling cases or weakly attracting cases (α > −αG, with αG > 0),
the empirical occupation measure of the associated self-interacting diffusion con
towardsλ a.s. But, whenα <−αG, this is not the case, andµt may converge toward
µ∗ �= λ.

The interaction, on then-dimensional sphereSn,

V (x, y)= 2α cos
(
d(x, y)

)
(46)

is a gradient interaction. This example is developed in [1], Section 4.2. Whenα � −(n+
1)/4,µt converges towardsλ a.s. and whenα <−(n+1)/4, there exists aSn-valued ran-
dom variablev such thatµt converges a.s. towards exp[βn(α)cos(d(x, v))]λ(dx)/Zn,α ,
whereZn,α is the normalization constant andβn(α) is a constant depending only o
n andα. In [1], Section 4.2, an example of interaction onSn (which is not a gradien
interaction) for whichPx,r,µ(�̃)= 0 is given.

8. Proofs

8.1. Proof of Lemma 3.1

LetC be a constant such that both‖Aat ‖2 and‖Aat ‖ are lower thanC. Let

Et = exp

[ t∫
0

〈
A1
s ,A

1
s −A2

s

〉
ds

]
, (47)

andNt =M2
t (M

1
t Et)

−1. Observe thatMa
t andNt are exponential martingales solutio

of the SDEs 
dMa

t =Ma
t

(∑
i

Aa,it dBit

)
,

dNt =Nt
(∑(

A2,i
t −A1,i

t

)
dBit

)
.

(48)
i
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Therefore 
d

ds
E
[(
Ma
s

)2]= E
[(
Ma
s

)2∥∥Aas ∥∥2]� CE
[(
Ma
s

)2]
,

d

ds
E
[
(Ns)

2]= E
[
(Ns)

2∥∥A1
s −A2

s

∥∥2]� δ2(t)E
[
(Ns)

2], (49)

for s � t . Hence, by Gronwall’s lemma, fora ∈ {1,2}{
E
[(
Ma
t

)2]� eCt ,
E
[
(Nt)

2
]
� exp

(
tδ2(t)

)
.

(50)

Notice that we also have

|Et − 1| � exp
(
Ctδ(t)

)− 1. (51)

Using these estimates and Schwartz inequality, we get∣∣E[M2
t Zt

]− E
[
M1
t Zt

]∣∣= ∣∣E[Zt(NtEt − 1)M1
t

]∣∣
� E

[(
Nt(Et − 1)+Nt − 1

)2]1/2
E
[(
M1
t

)2]1/2
� eCt/2

[(
exp
(
Ctδ(t)

)− 1
)

exp
(
tδ2(t)

2

)
+ (exp

(
tδ2(t)

)− 1
)1/2

]
.

Since eu − 1� ueu we easily obtain∣∣Ex,r,µ[Zt ] − Ex,µ[Zt ]
∣∣� eCtδ(t), (52)

for C large enough. This proves the lemma.✷
8.2. Proof of Propositions 5.1 and 6.1

Let Pµ = (P µt )t�0 denote the semigroup of the diffusion with generatorLµ.

LEMMA 8.1. – Letg :M → R be a bounded continuous function, then fort � 1,∣∣Pµt g(x)−�(µ)g∣∣�C‖g‖∞ e−t/κ , (53)

for some constantC andκ depending only on‖V ‖∞.

Proof. –Let ‖ · ‖2 be theL2-norm defined by

‖f ‖2
2 =

∫
M

f 2(x)�(µ)(dx). (54)

Then, by standard semigroup inequalities (see [1], Section 5.2)∥∥Pµt g−�(µ)g∥∥2 � e−t/κ∥∥g−�(µ)g∥∥2, t > 0, (55)∥∥Pµt g−�(µ)g∥∥∞ � Ct−n/2
∥∥g−�(µ)g∥∥2, 0< t � 1, (56)

for some constantκ > 0 and 0<C <∞ depending only on‖V ‖∞. Combining (55) and
(56) leads to
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using

lated

aris,

North-

–63.
∥∥Pµs g−�(µ)g∥∥∞ = ∥∥Pµ1 (Pµs−1

(
g−�(µ)g))∥∥∞

�C e−(s−1)/κ∥∥g−�(µ)g∥∥2

� 2C e−(s−1)/κ‖g‖∞
for all s > 1. ✷

Proof of Proposition5.1. – By the Markov property

Ex,r,µ
[
g(Xt+s)|Bt]= EXt ,r+t,µt (r,µ)

[
g(Xs)

]
. (57)

Hence∣∣Ex,r,µ[g(Xt+s)|Bt]−�(µt)g∣∣
�
∣∣EXt ,r+t,µt (r,µ)[g(Xs)]− EXt ,µt

[
g(Xs)

]∣∣+ ∣∣EXt ,µt [g(Xs)]−�(µt)g∣∣
and the result follows from Lemmas 3.2 and 8.1.✷

Proof of Proposition6.1. – This is almost the same proof. By the Markov property

Ex,r,µ[Zu ◦ θt+s|Bt ] = EXt ,r+t,µt (r,µ)[Zu ◦ θs].
Hence∣∣Ex,r,µ[Zu ◦ θt+s|Bt ] − E�(µt ),µt [Zu]

∣∣
�
∣∣EXt ,r+t,µt (r,µ)[Zu ◦ θs] − EXt ,µt [Zu ◦ θs]

∣∣+ ∣∣EXt ,µt [Zu ◦ θs] − E�(µt ),µt [Zu]
∣∣.

The first term of the right-hand side of preceding equation can be dominated
Lemma 3.2. For the domination of the second term, letϕ(x)= Ex,µt [Zu], then{

EXt ,µt [Zu ◦ θs] = Pµts ϕ(Xt),
E�(µt ),µt [Zu] =�(µt)ϕ. (58)

We then conclude using Lemma 8.1.✷
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