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ABSTRACT. — This paper concerns convergence in law properties of self-interacting diffusions
on a compact Riemannian manifold.
0 2003 Editions scientifiques et médicales Elsevier SAS

RESUME. — Cet article étudie les propriétés de convergence en loi des diffusions inter-
agissantes sur une variété riemannienne compacte.
0 2003 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Self interacting diffusions(as considered here) are continuous time stochastic
processes living on a Riemannian manifdll which can be typically described as
solutions to a stochastic differential equation (SDE) of the form

dX, = Fy(X,) odB — %(/VVXS(XI)dS> dt, 1)

0

where(B%),, is a family of independent Brownian motiornd, ), is a family of smooth
vector fields onM such thaty", F,(F, f) = Af (for f € C*(M)), where A denotes
the Laplacian oM andV, (x) a “potential” function.
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These processes are characterized by the fact that the drift term in Eq. (1) depends both
on the position of the process, and its empirical occupation measure up to time

t
1
I,Lt:;/axl‘ ds. (2)
0

The asymptotic behavior dfu,} is the subject of a recent paper by Benaim, Ledoux
and Raimond [1]. This paper provides tools and results which allow to describe the long
term behavior of 4, } in terms of the long term behavior of a certain deterministic semi-
flow {W¥,},>0 defined on the space of probability measureMnFor instance, there are
situations (depending on the shapeVgfin which {u,} converges almost surely to an
equilibrium pointu* of W and other situations where the limit set {of;} coincides
almost surely with a periodic orbit fob (see the examples in Section 4 of [1] and below

in Section 7). In the simple case whergconverges tq.* one expectsX;,,, s > 0) to
behave like a homogeneous diffusion of generator

1
L= EA +{(VV,, V),

whereV,-(x) = [ V,(x)u*(dy) and(-, -) denotes the Riemannian inner productMn
The purpose of this note is to address this type of question.

In Section 2, following [1], self-interacting diffusions on a smooth compact manifold
are defined. In Section 3, the basic tool of this paper is presented, namely the Girsanov
transform.

In Section 4, we show that on the event,;“converges towards.*”, the law of
(Xi4u» u = 0) givenBB;, = o (X, s < 1) is asymptotically equal to the law of the diffusion
with generatolL .- and initial conditionX;.

In Section 5, we show that the law of, ) given 5, is asymptotically equal to
IT(u,), the invariant probability measure of the diffusion with generdtgy, provided
s(t) — oo at a convenient rate. Moreover the lawXfgivenQ = {u, — u*} converges
towardsE[M*|S~2]. In particular, wheP(Q) =1, X, converges in law towards[..*].

Section 6 generalizes results of Section 5 to the law of the pr@dgss;)+.,, v = 0).

In Section 7, examples developed in [1] and [2], for whjch converges a.s. are
presented.

2. Background and notation

The notation and definitions here are from [1].

Throughout we letM denote ad-dimensional, compact connected smooft°]
Riemannian manifold. Without loss of generality (see Nash [4]) we shall assume that
M is isometrically embedded iR". We denoteC” (M), 0 < r < oo, the space of’”
real valued functions oM.

Given a metric spacg we letP(E) denote the space of Borel probability measures on
E equipped with the topology induced by the weak convergence. Recall that a sequence
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{P.}»>0 Of Borel probability measures afi converges weaklio P provided

lim fdPn:/fdP (3)

for every bounded and continuous functigit E — R. When E is compact (e.g.,
E = M), P(E) is a compact metric space.
Throughout we assume given a measurable mapping

V.MxM-—R,

4)
(u, x) = V(u, x) =V, (x).

We furthermore assume that for alle M, V,:M — R is a C* function whose first

derivatives are bounded (in the variablesndx). For u € P(M) we letV, € C*(M)

denote the function defined by

V) = [ Vo, (5)
M
andL, the operator defined ofi* (M) by
1
Luf=5AF ={(VVi. V), (6)

where (-,-), V and A stand, respectively, for the Riemannian inner product, the
associated gradient and Laplacianin

We let 2 denote the space of continuous paihsR, — M, equipped with the
topology of uniform convergence on compact intervdfs= B(2) the Borelo-field
of Q, X; the M-valued random variable defined B (w) = w(r); and B; the o-field
generated by the random variablgg;: 0 <s <1t}.

Since is polish,P(£2) equipped with the weak convergence is metrizable. A distance

d onP(R) is given by

for P andQ in P(2) whereZ, : 2 — R is continuous5,-measurable, anfZ,;; n > 1}
is dense iZ € CO%Q); | Z]lo < 1).

Forr >0, u e P(M) andw € 2, theempirical occupation measure af with initial
weightr and initial measureu is the sequencgu, (r, u, w) € P(M): ¢ > 0} defined by

t
1
Mz(",M,w)=r+t<"M+/5w(s)ds>, (8)
0

where [; 8, ds(A) = [y La(w(s)) ds, for every Borel sett ¢ M. In the following we
will denote byu;(r, u) the P(M)-valued random variable — u,(r, 1, w).

dpP,Q =) 2"
n=1
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A self-interacting diffusion associated Wis a family
{PerpixeM, r>0, peP(M)} CP(Q) 9)

such that
(I) Px.,r.,p.(XO = x) =1
(i) Forall f e C™(M),

M/ = F(X) — f@x) — / Ly £)(X,) ds
0

is aP, , ,-martingale relative t¢5,: ¢ > O}.
Existence and uniqueness of the self-interacting diffusion associatédggroved
in [1], Proposition 2.5. More precisely, it is shown in this paper that , can be
obtained as the law dfX,}, a solution (unique in law) of the following SDE ov:

N
dX, =Y Fi(X)odB] —VV,,n(X)dt, Xo=x, (10)
i=1
where (F1(x), ..., Fy(x)) denote the orthogonal projection of the canonical basis
(e1,...,ey) Of RYN on T,M and B, = (B},..., BY) is an N-dimensional Brownian

motion.

Forx e M andu € P(M) we letP, , € P(Q2) denote the probability measure én
such that

(i) Pru(Xo=x)=1

(i) Forall f e C*(M),

M = f(X,) — f(x)— /(Luf)(xs) ds
0

is aP, ,-martingale relative t¢5;: r > 0O}.
In other wordsp, , is the law of the diffusion proced¥;} with initial condition x and
generatolL, solution to the SDE:

N
dY,=> Fi(Y,)odB} —VV,(Y)dt, Yo=x. (11)
i=1

In the following E, ,, andE, , will respectively denote the expectation with respect
toP, ,, and toP, ,.
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3. TheGirsanov transform and some lemmas
3.1. TheGirsanov transform

Let B,=(BL, ..., B") be a standard Brownian motion oR”, P the law of
(Bs; s > 0), E the associated expectatioft, the P-completion ofo(B,, 0 < s < 1)
andF = F. Let{W}} be the solution to the SDE

N
=Y F(W"odB, Wj=xeM. (12)

ThenW* = (W, t > 0) is a Brownian motion o/ starting atr. We denote its lawp, .
Note thatW*:C(R* : RY) - Q = C(R* : M) is measurable. Let

t
X,r X ! w* 2
7% = ][5 9,00 (). 5 dB——/vaS(rm W)l as|.
0 i

(13)
where

o) = — +/5 d (14)
o) = ——{ru Ow.:fs’

and
i e [ (v 0). 6w - 5 [IovnPas). a9
0 ! °

Then {M;"""} and {M;"} are (P, {F;})-martingales. By the transformation of drift
formula (see [3], Section IV 4.1 and Theorem |V 4.2),

{Ex,w[z,] =E[M,""(Z, o W¥)],

EvulZ]=E[M""(Z 0 W*)] (16)

for every bounded®,-measurable random varialite. Note that this implies in particular
thatP,, P, , andP, ., are equivalent.
3.2. Somelemmas
The next lemma is a basic tool to estimate quantities such as
Ex.rwlZ:] — Ex ulZ:],

for larger andu” close tou.

LEMMA 3.1.—Fora=1,2letA? = (A%, ..., A%N) be aR"-valued boundedF, }-
previsible process. Suppose that for@k s < ¢

AL — A2 <8@) (17)
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for some deterministic functioh: R, — R,. Let

t t
Mf:exp[/ZAg,idBj - %/HA?HZ‘{S]’ a=12
o ! 0

Then there exists a positive constahsuch that for anyF,-measurable random variable
Z, bounded byl in absolute value,

[E[M}Z,] —E[M?Z,]| <€“'8(2). (18)

The constanC depends only oBup, ; [|A{ |-

Lemma 3.1 will be proved in Section 8. Note that Lemma 3.1 and the Girsanov
transforms given in Section 3.1 imply that ., converges weakly towards, , as
r — 0o. More precisely

LEMMA 3.2. — There exists a positive constafit(depending only oaup||VV 1)
such for any3;-measurable random variablg; bounded by in absolute value,

eCt

|Ex,r,p,[Zt] - Ex,u[Zt]| < (19)

r+t

Proof. —There exists a consta@tsuch thaf| VV, [l < C and||[VV, ¢ ) — V Voo <
Ct/(r + 1), for all 0 < s < z. The result then follows from Girsanov formulas (16) and
Lemma 3.1 applied with

A:SL)Z = <VVNS(”M)(WSX)’ E(W_Y)C)>’ (20)
AZ = (VV, (W), B (W])). O
4. Theasymptotic of Px, 4¢, u,(r,p)

Here we shall prove:

THEOREM 4.1. - Letu*:Q — P(M) denote aP(M)-valued random variable. Let
={w e Q: lim,_ o, (r, u, w) = u*}. ThenP, , ,-a.s. ons2,

tlLrgod(PXz,rH,m(r,u)v Px, ) =0. (21)
COROLLARY 4.2. —For every bounded and continuous function2 — R, P, , ,-a.s.
rIL”SO |Ex.rulZ 06,181 — Ex, +[Z]|15 =0, (22)

whered, : @ — Q is the shift onQ2 defined by, (w)(s) = w(t + s).

Proof. —By the Markov property, we have

Ex,r,,u[z o etllgt] = EX,,tJrr,,u,(r,,u)[Z]v (23)
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and the result follows from Theorem 4.10
Proof of Theorend.1 — Follows directly from the following estimate:
PrROPOSITION 4.3. — Let{u": r > 0} C P(M). Assume that

lim u" =u*

r—00

in P(M). Let Z; be a random variableF;-measurable and bounded Hlyin absolute
value. Then

lim E.,wlZ]=E.1Z] (24)

uniformly inx € M.
More precisely, there exists > 0 (depending only osup, , V'V, (x)||) such that

1
|Ex,r,p,’[Zt] - Ex,;/,*[Zt]‘ < eCI <; + 8(1")> ) (25)

wheree(r) =sup, [VV,r (x) — VV,-(x)].

Note that lim_ e(r) =0 (sincex — VV, (x) — VV,«(x) is equicontinuous in
and converges towards 0 for every

Proof. —Lemma 3.1 applied with

ALY = (VV, (WF), F;(WX)), (26)
implies
|Exur[Zi] = Ex e[ Z,]] < €e(r). 0

The conclusion follows from this last inequality combined with Lemma 3.2 and the
triangle inequality. O

5. Theconvergencein law of X;

For everyu € P(M) let I1(u) € P(M) denote the invariant probability measure of
the diffusion process with generatby,. That is

—2V,,(x)
Z(w)

whereZ(u) is the normalization constant.

Let us first remark that as — oo, the law of X, underP, ,, converges weakly
towards the law ofX, underP, , (see Lemma 3.2). We also have the convergence
lim; oo E. . [g(X)] = TI()g?! for all g € CO(M). The next proposition shows that

() (dx) = A(dx), (28)

1For a measurg andf e L) we letuf denotef fdu.
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Evrul8(Xix)IBi] = Ex, it e [8(X5)] @nd I (u, (r, n))g are close when and ¢
tends tooo at a certain rate.
PROPOSITION 5.1. —Forallt >1, r >0, s >0andg € CO(M),

Cs

|Ex,r,M[g(Xt+S)|Bt] - H(;,L,)g‘ < ”g”m(m

e e‘S/K>, (29)

whereC andk are positive constants depending onlydn
The proof of Proposition 5.1 is given in Section 8.
COROLLARY 5.2. —
(i) For all positives and all g € C°(M),

Ilm Sup‘Ex,r,,u [g(XtJrs)lBt} - H(Mt)g| g C“g”oo e_S/K‘ (30)

—>00

(ii) Lets be areal valued positive function such that
1< exp(s@t)) <Y€ (31)

whent tends toco. Then for allg € CO(M),

”msup‘Ex,r,u [g(X,+.g(,))|Bt} - H(Mt)g| =0. (32)

—00
Proof. —Straightforward. O

Remark5.3. — LetZ, denote the law oK,y knowingB,. Then Corollary 5.2 means
that £, is asymptotically equal tdl(u,). That is, lim_ o dist, (L;, [T(u,)) = 0, where
dist, is a distance oP (M) for the weak topology.

Remark that Proposition 5.1 and Corollary 5.2 make no assumption on the asymptotic
of {u,}. Let Q € B be the event that!, converges towardg*”, where * is aP(M)-
valued random variable. In [1] and [2], several examples of self-interacting diffusions
for which me(ﬁ) =1 are given (these examples are shortly presented in Section 7).
The following theorem describes the lawXf, ;,, knowing B, on Q.

THEOREM 5.4. — Lets(¢) be as in Corollary5.2 Then, the law of, ., knowing
B, converges weakly towards' P, .. ,-a.s. onQ. That s, for allg € Cco(m),

tILn;o Evrn[8Xis)IBi] = 1"g (33)

P, ,,-a.S. ONQ.

Proof. —It follows from Theorem 3.8 in [1] thar* is (almost surely o) a fixed
point of IT, i.e., IT(*) = u*. The proof now follows from Corollary 5.2(ii) and the fact
thatIT: P(M) — P(M) is continuous. O
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COROLLARY 5.5 (Convergence in law). For all g € CO(M),
lim B [g(XD)1g] = Errp[(178) 5] (34)
In particular, if me(fz) = 1then for allg € CO°(M),
Iim By [9(X0)] = Evruligl, (35)

i.e., X, converges in law towards, , ,[x*] whent tends tooco.

Proof. —In view of Theorem 5.4

lim Ex,r,u [Ex,r,p, [g(XH-S(I)) |Bt] 15} = Ex,r,u [(M*g)lﬁ] . (36)

—>0o0

It then suffices to prove that lim o, a;, = 0 where
a; = Ex,r,u [Ex,r,u [g(XtJrs(t)) |Bt] 15 - Ex,r,u [g(XtJrs(t))lﬁlBt} ] . (37)

LetA; =15 — E, , .[15]B;]. Then

a = Ex,r,p, [Ex,r,p, [g(Xt—i-s(t))lBt} A — Ex,r,p, [g(Xt+s(t))At |BIH . (38)

Hencela;| < 2||gllEx - .[1A:|] and consequently lim, o a, = 0 because lim, o, A, =
Oas. O

6. Theconvergencein law of (X;y,,u > 0)

In the previous section we were only interested by the asymptotic of the 1aiy,of
knowing B,. These results can be extended to the lawXgf ;,; u > 0) knowing ;.
The following proposition is analogous to Proposition 5.1 (and implies Proposition 5.1).

ProrPosITION6.1.— Forall t > 1, s >0, u > 0and Z, a B,-measurable random
variable bounded by in absolute value, then

eC (s+u)

— + Ce‘s/"), (39)
r+s+u-+t

‘Ex,r,,u[zu o 9t+s|Bt] - El‘l(u,),,u,[zu]‘ < (

whereC and« are positive constants depending only¥n
The proof of Proposition 6.1 is given in Section 8.

COROLLARY 6.2. — For any positivex and Z, a I5,-measurable random variable
bounded by in absolute value, we have
() For any positives,

imSup|E. , . [Z, 0 045181 — Enguy) [ Za]] < C €7/, (40)

—>0o0
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(i) Lets be afunction like in Corollarnp.2, then

lim sup‘Ex,r,,u[Zu © 0t+s(t)|Bt] - El'[(,u,),,u,[Zu]‘ =0. (41)

—>0o0

Proof. —Straightforward. O

This corollary shows that the law 0¥, )+,; v = 0) knowing 3, is asymptotically
equal to the law of a diffusion with generatdr,, and initial distributionIT(sx,). In
particular, (ii) says that

Nim d(Py, Prigu).u) =0, (42)

whereP, is the law of(X,)+.; u > 0) knowing ;.

Like in the previous section, we now focus @n The following theorem shows that
on g, givenB;, (X,+sn+u; u = 0) converges in law towards a diffusion with generator
L, and initial distributiony* (note thatu* satisfiesyu™ = IT(u*) so thatu* is the
invariant probability measure of this diffusion).

THEOREM 6.3. — For any positivex and Z, a boundedB,-measurable random
variable,

tILrgo Ex,r,,u[zu o 0t+s(t)|Bt] = Eu*,u*[zu] (43)

almost surely orf2, wheres(z) is as in Corollary5.2
Proof. —The proof is the same as the one of Theorem 5.
Note that Theorem 6.3 implies that 6h P, converges weakly towards, -

COROLLARY 6.4 (Convergence in law). For any positivex and Z,, a boundeds,, -
measurable random variable,

tll)ngo Ex,r,//. [(Zu © 91)15} = Ex,r,,u [Ep.*,p.* [Zu]lfﬂ . (44)
In particular, if P, ., () = 1 then
tll—>rgo Ex,r,,u[Zu o et] = Ex,r,,u [Eu*,u*[zu” . (45)

Proof. —The proof is the same as the one of Corollary 5.5

_ Note that (44) and (45) respectively imply that the law (&f,,,; u > 0) given
Q converges weakly towards, , [P« 2] and thatE, , ,[Px, r4s, 0] CONVerges
weakly towardsE, ., [P+ ] providedP, . ,(€) = 1.

7. Examples

Setdy (x, y) = sUR,ep (Vi (x) — Vi () —infuepr (Vi (x) = Vi (). In [1], Corollary 4.4,
it is proved that when syp,,.,238v(x,y) <1, thenIl has a unique fixed point*
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and lim_, o i, (r, n) = n* Py, ,-a.s. The associated self-interacting diffusions produce
examples for whictP, ., (€2) = 1, but the limitx* is not random.

From the different interactions, we distinguish those such thé& symmetric and
defines a positive or a negative self-adjoint operator actinfjagh), that can be written
inthe formV =« [~ G(u, x)G (u, y)v(du), whereC is compacty is a Borel probability
measureG :C x M — R is continuous and € R. We call them gradient interactions.
These interactions produce examples for Wlﬁgb,ﬂ(ﬁ) =1 and the limitu* may be
random (see [2]).

Whena is positive, we say it is a self-repelling interaction and whédga negative, we
say it is a self-attracting interaction. It can be proved (see [2]) thatlifs a constant
function, for all repelling cases or weakly attracting cases-(—ag, with ag > 0),
the empirical occupation measure of the associated self-interacting diffusion converges
towardsa a.s. But, wherw < —ag, this is not the case, angd, may converge towards
[T

The interaction, on the-dimensional spherg”,

V(x,y)=2acodd(x,y)) (46)

is a gradient interaction. This example is developed in [1], Section 4.2. When (n +
1)/4, u, converges towardsa.s. and when < —(n+1)/4, there exists &'-valued ran-
dom variablev such thaf, converges a.s. towards ep («) cosd (x, v))IA(dx)/Z,. 4,
where Z, , is the normalization constant arg}(«) is a constant depending only on
n ande. In [1], Section 4.2, an example of interaction 8h (which is not a gradient
interaction) for Whichx,W(SNZ) =0 is given.

8. Proofs

8.1. Proof of Lemma 3.1

Let C be a constant such that batA“||? and || A¢|| are lower tharC. Let

t

[ atat—a%)as
0

E, =exp , 47

andN, = M*(M!E,)~1. Observe that1¢ and N, are exponential martingales solutions
of the SDEs

dM! =Mf<ZA§“' dB;’),

dN, =N, < > (AP - A,l*i)dBf).

1

(48)
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Therefore
d
TEL(M0)"] = E[(M)") AL|°] < CE[(M7)7], )
d
TE[(N)?] =E[(N)?| AT = AZ[7] < 8° B[N
for s <t. Hence, by Gronwall’s lemma, fer e {1, 2}
E[(Mta)z] <e, (50)
E[(N)?] < exp(t8%(1)).

Notice that we also have
|E, — 1] < exp(Ct8(t)) — 1. (51)
Using these estimates and Schwartz inequality, we get
[E[M?Z] —E[M]Z]| = |E[Z/(N,E, — Y M}]|
<SE[(N(E — D + N, — 1)7]"%e[(MD) ] 7?
t62(l‘)) + (exp(t8%()) — 1)

1/2

< 2| (exp(Cts (1)) — 1) exp<
Since é — 1 < u € we easily obtain
ExrnlZ] — Ev Wl Z]| < €98(0), (52)
for C large enough. This proves the lemmal
8.2. Proof of Propositions 5.1 and 6.1

Let P* = (P/"),>o denote the semigroup of the diffusion with generatqr
LEMMA 8.1.— Letg: M — R be a bounded continuous function, then#¢r 1,

|PFg(x) — TI(n)g| < Cliglleo €%, (53)

for some constant and« depending only ofiV || .
Proof. —Let | - ||» be theL?-norm defined by

I113= [ F@ngo). (54)
M
Then, by standard semigroup inequalities (see [1], Section 5.2)
1Pg —(wgl, < e |g = Mgl >0, (55)
1P/g — (W, <Ct?g —M(wgl,, 0<r<1, (56)

for some constant > 0 and O< C < oo depending only ot V ||».. Combining (55) and
(56) leads to
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1Pfg = TT(wg |l = | P (Pa(8 = TT(W8)) |
<Ce Vg —I(wel,
<2Ce ¥ gl
foralls >1. O

Proof of Propositiorb.1 — By the Markov property

Ex,r,p. [g(Xt+s) |Bt] = EX,,r-H.,p,,(r,u) [g(Xs)] . (57)
Hence

‘Ex,r,,u [g(XtJrs)lBt} - H(Mt)g|
g ‘EXt,rth,u,(r,,u) [g(Xs)] - EX,,ut [g(Xs)} | + |EX,,,u, [g(Xs)] - H(Mt)g‘
and the result follows from Lemmas 3.2 and 8.10

Proof of Proposition6.1 — This is almost the same proof. By the Markov property

Ex,r,u[Zu o 91+S|B[] = EX,,r+t,p,,(r,u)[Zu o Gs]
Hence

‘Ex,r,u[zu o 91+S|Bl] - EH(;/,,),;L, [Zu]‘
< |EX,,r+t,u,(r,p,)[Zu o 95] - EX,,;/,, [Zu o 95]| + |EX,,;/,,[Zu o 95] - EH(M,),M, [Zu]|
The first term of the right-hand side of preceding equation can be dominated using

Lemma 3.2. For the domination of the second termglet) =E, ,,[Z,], then

{ EX,,/J.,[Zu o 95] — PSM’QD(X,), (58)

EH(;/,,),;L, [Zu] = H(M;)gﬂ

We then conclude using Lemma 8.10
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