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ABSTRACT. – We derive a moderate deviations principle for matrices of the formXN =
DN + WN whereWN are Wigner matrices andDN is a sequence of deterministic matric
whose spectral measures converge in a strong sense to a limitµD. Our techniques are bas
on a dynamical approach introduced by Cabanal-Duvillard and Guionnet.
 2003 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Nous démontrons un principe de déviations modérées pour la mesure sp
de matrices de la formeXN =DN +WN oùWN sont des matrices de Wigner etDN une suite
de matrices déterministes dont la mesure spectrale converge fortement vers une loi limµD.
Nous utilisons pour cela des techniques basées sur l’approche dynamique introduite par C
Duvillard et Guionnet.
 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

LetMN denote the set ofN×N Hermitian matrices, and letWN ∈MN be a Gaussia
Wigner matrix, that is, a symmetric or Hermitian matrix with real (respectively, comp
i.i.d. Gaussian entries of covarianceN−1 above the diagonal. We consider

XN =DN +WN
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for a diagonal matrixDN with diagonal elementsdN
i and spectral measurêµN

DN
:=

N−1∑N
i=1 δdN

i
converging towards a compactly supported probability measureµD, in

such a way that

c̃(ε) := max
i=1,2

max
N

sup
z∈C\R, |�(z)|�ε

N

∣∣∣∣trN(z−DN)
−i −

∫
(z− x)−i dµD(x)

∣∣∣∣<∞ ∀ε > 0

(A)
(where trN denotes the trace of the matrix, normalized by its sizeN ).

Denote byµ̂N
XN

the spectral measure ofXN . Recall (see, e.g., [19]) thatµ̂N
XN

converges
weakly to the compactly supported probability measureµ∗

1 whereµ∗
t = µD � σt , σt

denoting the Wigner semi-circular distributionσt(dx) = (2πt)−1
√

4t − x2 dx and �
denoting free convolution of measures.

Large deviations (in the scaleN2) and CLT’s forµ̂N
XN

are obtained in [5,6,9,12], by
dynamical approach based on the observation thatWN can be constructed as a Hermiti
or symmetric Brownian motion at time one. These large deviations are essential t
the study of so-called “matrix models” in physics, see [10]. It is our goal in this wo
extend this analysis to study moderate deviations ofµ̂N

XN
. Note that since exponential

good approximations at the scaleN2 are no longer such for the moderate deviation sc
considered here, this study is far from being a straight forward extension of the pre
analysis mentioned above. Our work can be considered as a non-commutative
analogue of the moderate deviations principle for the empirical measure of i.i.d. ra
variables, see [21].

In order to state our results, we first introduce some notations. LetStieljes(C) be the
complex vector space generated by the Stieljes functions{f (x)= (z− x)−1, z ∈ C\R}
(with x ∈ R), and denote byStieljes(R)⊂ C∞

b (R) the subset of real valued functions
Stieljes(C). Note that�(z− x)−1 ∈ Stieljes(R) for z ∈ C\R.

To any f = f1 ∈ Stieljes(C), we associate the functions �→ fs that solves the
differential equation

∂sfs(x)=−
∫

∂xfs(x)− ∂xfs(y)

x − y
dµ∗

s (y), f1(x)= f (x). (1.1)

In Section 4 below we show that (1.1) has a unique solution wheneverf (x)= c(z−x)−1,
z ∈ C\R (given by (4.1) and (4.2)). By the linearity of (1.1), the same applies for
f ∈ Stieljes(C).

For anyf,g ∈ Stieljes(R) and the corresponding solutionsfs , gs of (1.1), define

Vt (f, g)=
t∫

0

∫
(∂xfs)(x)(∂xgs)(x) dµ

∗
s (x) ds. (1.2)

In what follows, we letStieljes′(R) := {f ′: f ∈ Stieljes(R)} andLp
c (R) denote the

subset ofLp(R) consisting of functions of compact support. Let

FN(x) := µ∗((−∞, x])− µ̂N
(
(−∞, x]),
1 XN
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c (R) for anyp � 1 wheneverµD (and henceµ∗

1) is of compact support
Integration by parts shows that for allf ∈ C1

b(R),

XN(f ) :=
∫

f (x) dµ̂N
XN

(x)−
∫

f (x) dµ∗
1(x)=

∫
f ′(x)FN(x) dx.

With some abuse of notation we let〈g,G〉 denote the value of a linear functionalG
at g which is in a vector subspace ofCb(R) (to be understood from the context of t
statement), using also〈g,G〉 = ∫ g(x)G(x) dx in the caseG ∈ L1(R).

Our main result now reads

THEOREM 1.1. – For any aN → 0 such thatNaN → ∞, the sequence of rando
variables {a−1

N FN }N in L1
c(R) equipped with theStieljes′(R)-topology and the cor

responding cylinderσ -field, satisfies the Large Deviation Principle(LDP) with speed
(NaN)

−2 and good rate functionI (·) defined by

I (F ) := β

2
sup

h∈S tieljes(R)

{
〈h′,F 〉 − 1

2
V1(h,h)

}
(1.3)

with β = 1 (resp.β = 2) in the symmetric(resp. Hermitian) case.

(We refer to [8] for standard terminology concerning the LDP. Because the
function is the same for a range of speeds, we refer to the LDP in Theorem 1.
moderate deviation principle (MDP).)

Note that the topology for the MDP in Theorem 1.1 is weaker than theCb(R)-topology
of convergence in law. Some strengthening of the former topology can be achiev
considering theN -dependent centering

�FN(x) := Eµ̂N
XN

(
(−∞, x])− µ̂N

XN

(
(−∞, x]).

Specifically, withC′
b(R) := {f ′: f ∈ C1

b(R)} denoting the space of bounded continuo
functions which possess a bounded primitive, we have:

THEOREM 1.2. – For any aN → 0 such thatNaN → ∞, the sequence of rando
variables{a−1

N
�FN }N in L1

c(R) equipped with theC′
b(R)-topology and the correspondin

cylinder σ -field, satisfies the LDP with speed(NaN)
−2 and good rate functionI (·)

of (1.3).

As the rate functionI (·) is not particularly transparent to work with, we provide n
some useful information about it. First, it follows from the CLT of [9, Section 6] tha
anyh ∈ Stieljes(R),

V1(h,h)= lim
N→∞N2

E
(�XN(h)

2)= lim
N→∞ Var

(
NXN(h)

)
. (1.4)

Our proof of Theorems 1.1 and 1.2 provides also that for anyaN → 0 such that
NaN →∞,

V1(h,h)= 2 lim
N→∞(NaN)

−2 logE
(
eN

2aN �XN(h)
)

= 2 lim (NaN)
−2 logE

(
eN

2aNXN (h)
)
. (1.5)
N→∞
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Recall thatµ∗
1 has a densityp1 (see [2, Corollary 2]), and forF = f p1 with

f ∈ L2(µ∗
1) set

J (F ) := β

4

∫
f 2(x) dµ∗

1(x)+
β

4

∫∫ (
f (x)− f (y)

x − y

)2

dµ∗
1(x) dµ

∗
1(y) (1.6)

(which is well defined, though possibly infinite), settingJ (F ) =∞ for all F ∈ L1
c(R)

not of the above form. LetL1,∗
c (R) denote the subset ofL1

c(R) consisting of functions
whose support is contained in the support ofµ∗

1. In Section 6 we prove that

LEMMA 1.3. – The functionI (·) is finite only for linear functionals onStieljes′(R)

that are of the form〈h′,F 〉 = ∫ F(x)h′(x) dx for someF ∈L1,∗
c (R), in which case

β

4

(∫ ∣∣F(x)
∣∣dx)2

� β

4

∫
F(x)2

p1(x)
dx � I (F ). (1.7)

Further, I (F ) � J (F ) for F = f p1 with f ∈ C1
b(R), and more generally, for all

F ∈P := {fp1: f ∈ L2(µ∗
1), ∃Qδ polynomials such thatQδ L−→

δ→0
f,

lim inf
δ→0

J
(
Qδp1

)
� J (f p1)

}
.

Here, Qδ L−→
δ→0

f iff
∫
g(x)Qδ(x)p1(x) dx converges towards

∫
g(x)f (x)p1(x) dx for

any bounded continuous functiong on R.

In the special caseµD = 0, one can make the rate function more explicit. Indeed
this caseµ∗

t = σt andp1(y)= (2π)−1
√

4− y2, and one obtains

LEMMA 1.4. – SupposeµD = 0. Then, for everyh ∈ Stieljes(R),

V1(h,h)=− 1

2π2

2∫
−2

2∫
−2

h(x)h′(y)
y − x

√
4− y2

√
4− x2

dy dx. (1.8)

Moreover, assumeF = fp1 ∈ L1
c(R) for somef ∈ C3

b(R). Then

I (F )= J (F )=−β

2

2∫
−2

2∫
−2

F ′(x)F ′(y) log |x − y|dx dy. (1.9)

The expression in the right-hand side of (1.9) resembles Voiculescu’s non-comm
entropy ofDN +WN taken at the measureF ′(x) dx.

The structure of the article is as follows. In Section 2, we introduce the (matrix
ued) Brownian motionWN(t) and recall the elements of stochastic calculus we n
Section 3 is devoted to the proof of a CLT type approximation for the empirical St
transformMN

t (z) of XN(t) = DN + WN(t). Section 4 controls the influence of oth
centerings on the convergence properties ofMN

t (z). Our moderate deviations results a
proved in Section 5. We present first in Theorem 5.1 a finite-dimensional modera
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and then the projective limits argument leading to Theorems 1.1 and 1.2, deferri
proofs of Lemma 1.3 (via free probability theory) and Lemma 1.4 to Section 6.

2. Itô’s calculus

Let HN(·) (respectively,SN(·)) be a N × N Hermitian (respectively, symme
ric) Brownian motion constructed via independent real valued Brownian mo
(βi,j , β̃k,l)

1�k<l�N
1�i�j�N by

H
k,l
N =



1√
2N

(βk,l + iβ̃k,l) if k < l,

1√
2N

(βl,k − iβ̃l,k) if k > l,

1√
N
βl,l if k = l

and

S
k,l
N =

√
1+ δk=l√

N
βk∧l,k∨l ,

respectively. TakeWN(t) = HN(t) in the Hermitian case andWN(t) = SN(t) in the
symmetric case. Then,WN(1) is a complex (respectively, real), Wigner matrix. Letµ̂N

t

denote the spectral measure ofXN(t) = DN +WN(t) (note thatµ̂N
1 = µ̂N

XN
), thenµ̂N

t

can be studied by use of Itô’s calculus as we now explain.
It was proved in [3,6] that̂µN

. satisfies an Itô’s formula (in the special case wh
µ̂N
D = δ0, assumption which is in fact clearly irrelevant). Then, if we denote, for

f,g ∈ C2,1
b (R× [0,1]), anys � t ∈ [0,1], and anyν· ∈ C([0,1],P(R)),

Ss,t(ν, f )=
∫

f (x, t) dνt (x)−
∫

f (x, s) dνs(x)−
t∫

s

∫
∂uf (x,u) dνu(x) du

− 1

2

t∫
s

∫∫
∂xf (x,u)− ∂xf (y,u)

x − y
dνu(x) dνu(y) du, (2.1)

and

〈f,g〉νs,t =
t∫

s

∫
∂xf (x,u)∂xg(x,u) dνu(x) du, (2.2)

we have

THEOREM 2.1 [6]. – In the Hermitian case, for anyN ∈ N, anyf ∈ C2,1
b (R× [0,1])

and anys ∈ [0,1), (Ss,t (µ̂N , f ), s � t � 1) is a bounded continuous martingale w
quadratic variation 〈

Ss,·(µ̂N , f
)〉

t
= 1

2
〈f,f 〉µ̂N

s,t . (2.3)

N
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In the symmetric case, for anyN ∈ N, anyf ∈ C2,1
b (R × [0,1]) and anys ∈ [0,1),

(S̃s,t (µ̂N , f ) := Ss,t(µ̂N , f ) − (2N)−1
∫ t
s

∫
f ′′(x) dµ̂N

u (x) du, s � t � 1) is a bounded
continuous martingale with quadratic variation

〈
S̃s,·(µ̂N , f

)〉
t
= 2

N2
〈f,f 〉µ̂N

s,t .

Note that it is not hard to see (see [6] or [11]) that the law ofµ̂N· is tight in both
Hermitian and symmetric settings. The limit points are characterized by

Ss,t(µ∗
· , f )= 0 (2.4)

for all functionsf ∈ C2,1
b (R×[0,1]). It can be shown (see [6, Corollary 1.4] or [12]) th

such an equation has a unique solutionµ∗· , given by the free convolutionµ∗
t = µD � σt .

In the sequel, we shall be interested in specific test functions of the Stieljes type

f (x, t)= ct

zt − x
(2.5)

with a complex-valued differentiable functionz· : [0,1] → C\R with non-vanishing
imaginary part and a complex-valued differentiable functionct : [0,1] → C. Observe
that in this case, for anyν ∈ C([0,1],P(R)),

1

2

∫∫
∂xf (x,u)− ∂xf (y,u)

x − y
dνu(x) dνu(y)

= cu

∫
1

zu − x
dνu(x)

∫
1

(zu − x)2
dνu(x). (2.6)

3. Central limit approximation

Following Israelsson (see [13, Proposition 1]), we prove the following central
type approximation. Throughout, we setβ = 1 in the symmetric case andβ = 2 in the
Hermitian case.

LEMMA 3.1. – Consider Hermitian or symmetric matrices such that(A) holds. Then
for anyη > 0, there exists a finite constantC(η) such that for allN andz ∈ C\R, z =
a + ib, |b| � η,

max
j=1,2

sup
τ∈[0,1]

E

[∣∣∣∣trN(z−XN(τ)
)−j −

∫
(z− x)−j dµ∗

τ (x)

∣∣∣∣2]1/2

� C(η)

N
. (3.1)

Proof. –Israelsson [13] considers only the symmetric case with Ornstein–Uhlen
entries. Hence, for completeness, we next adapt his approach to the context of the
The main idea, used also by [5] and [9] is to choose(c·, z·) in such a way that th
finite variation term in Theorem 2.1 is negligible. Whereas Cabanal-Duvillard [5]
Guionnet [9] choose a non-random(c·, z·) that is independent ofN and then contro
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the remainder term of finite variation, we follow Israelsson [13] in choosing(c·, z·)
randomly and depending onN in such a way that this term completely vanishes.

We first consider the Hermitian case andj = 1 in (3.1). Forz ∈ C \R denote

MN
t (z)= trN

(
zI−XN(t)

)−1
, Mt(z)=

∫
(z− x)−1 dµ∗

t (x).

Applying Theorem 2.1 tof (x, t) of (2.5), and using (2.6) it is easy to check that for a
continuously differentiable functions(c·, z·) such thatzt stays uniformly away from th
real axis,

ctM
N
t (zt )= c0M

N
0 (z0)+

t∫
0

[
(∂scs)M

N
s (zs)+ cs(∂szs)∂zM

N
s (zs)

− csM
N
s (zs)∂zM

N
s (zs)

]
ds +mN

t (z·, c·)

with the bounded, complex valued, martingalemN(z·, c·) having the quadratic variation

〈�(mN(z·, c·)
)〉

t
= 1

N2

t∫
0

∫
�
(

cu

(zu − x)2

)2

dµ̂N
u (x) du,

〈�(mN(z·, c·)
)〉

t
= 1

N2

t∫
0

∫
�
(

cu

(zu − x)2

)2

dµ̂N
u (x) du. (3.2)

Since|z−x| � |�(z)| for x ∈ R, it follows thatMN
t (·) andMt(·) are uniformly Lipschitz

continuous onC \R× [−|b|, |b|]. Specifically, there∣∣MN
t (z)−MN

t (z̃)
∣∣∨ ∣∣Mt(z)−Mt(z̃)

∣∣� |b|−2|z− z̃|. (3.3)

Fixing τ ∈ [0,1], following Israelsson [13], we choose(c·, z·) = (cN· , zN· ) to be the
solution of

∂tz
N
t = 1

2

(
MN

t

(
zNt
)+Mt

(
zNt
))
, zNτ = z, (3.4)

∂tc
N
t = 1

2

(
∂zM

N
t

(
zNt
)+ ∂zMt

(
zNt
))
cNt , cNτ = 1, (3.5)

whose existence and uniqueness we next prove. Indeed, the sign of�(MN
t (ξ)+Mt(ξ))

is opposite to that of�(ξ). Thus, takingu(l)t , l = 0,1, . . . , such thatu(l)τ = z for all
l, u

(0)
t = z for t ∈ [0, τ ] and

∂tu
(l+1)
t = 1

2

(
MN

t

(
u(l)t
)+Mt

(
u(l)t
))
,

it is easy to see by induction that|�(u(l)t )| � |b| for all t ∈ [0, τ ] andl � 0. The uniform
Lipschitz property ofMN

t (·) + Mt(·) implies by Gronwall’s lemma that the sequen
u(l) converges uniformly on[0, τ ] to the unique solution of (3.4). The existence o
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unique solution of (3.5) is then clear. Note thatt �→ |�(zNt )| is monotone non-increasin
on [0, τ ]. Moreover, by (2.4), it is easy to check that fort ∈ [0, τ ],

cNt Mt

(
zNt
)= cN0 M0

(
zN0
)+ t∫

0

[−cNs Ms

(
zNs
)
∂zMs

(
zNs
)+ (∂scNs )Ms

(
zNs
)

+ cNs
(
∂sz

N
s

)
∂zMs

(
zNs
)]
ds

= cN0 M0
(
zN0
)+ t∫

0

cNs

2

(
Ms

(
zNs
)
∂zM

N
(
zNs
)+MN

s

(
zNs
)
∂zM

(
zNs
))
ds, (3.6)

where (3.6) is a consequence of (3.4) and (3.5). Similarly, we find that

cNt M
N
t

(
zNt
)= cN0 M

N
0

(
zN0
)+ t∫

0

cNs

2

(
MN

s

(
zNs
)
∂zM

(
zNs
)+Ms

(
zNs
)
∂zM

N
(
zNs
))
ds

+mN
t

(
zN· , c

N
·
)
. (3.7)

Subtracting (3.6) from (3.7) we find that

cNt
(
MN

t

(
zNt
)−Mt

(
zNt
))= cN0

(
MN

0

(
zN0
)−M0

(
zN0
))+mN

t

(
zN· , c

N
·
)
. (3.8)

Let bNs = �(zNs ), noting that |bNt | � |b| for t ∈ [0, τ ]. Let vNs = |cNs |2 and aNs =
�(∂zMN

s (zNs )+ ∂zMs(z
N
s )), noting that

∣∣aNs ∣∣� ∣∣∂zMN
s

(
zNs
)∣∣+ ∣∣∂zMs

(
zNs
)∣∣� 2

|bNs |2
� 2

|b|2 , (3.9)

whereas∂tvNt = aNt v
N
t , vNτ = 1, by (3.5). SincevNt = exp(− ∫ τt aNs ds), it follows that

sup
t∈[0,τ ]

∣∣cNt ∣∣� exp
(|b|−2). (3.10)

Thus, by (3.2), for anyt ∈ [0, τ ],〈�(mN
(
zN· , c

N
·
))〉

t
+ 〈�(mN

(
zN· , c

N
·
))〉

t

= 1

N2

t∫
0

∫ ∣∣∣∣ cNs

(zNs − x)2

∣∣∣∣2 dµ̂N
s (x) ds � e2|b|−2

N2|b|4 (3.11)

implying that

E
∣∣mN

t

(
zN· , c

N
·
)∣∣2 = E

〈�(mN
(
zN· , c

N
·
))〉

t
+E

〈�(mN
(
zN· , c

N
·
))〉

t
� e2|b|−2

N2|b|4 .

We have by (3.10) and assumption (A) that∣∣cN0 (MN
0

(
zN0
)−M0

(
zN0
))∣∣= ∣∣cN0 ∣∣∣∣∣∣trN(zN0 −DN

)−1 −
∫ (

zN0 − x
)−1

dµD(x)

∣∣∣∣
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en

data
� e|b|−2
c̃(|b|)
N

.

With cNτ = 1, we thus see that (3.8) yields the bound

E
[∣∣MN

τ

(
zNτ
)−Mτ

(
zNτ
)∣∣2]1/2 � e|b|−2

c̃(|b|)
N

+ e|b|−2

N |b|2 .

Sincez ∈ C\R, N andτ ∈ [0,1] are arbitrary, this completes the proof of (3.1) wh
j = 1, in the Hermitian case. Still in the Hermitian case, let us now prove it forj = 2
and, without loss of generality, forz ∈ C+\R. First, observe that∣∣∣∣trN(z−XN(τ)

)−2 +N

(
MN

τ

(
z+ 1

N

)
−MN

τ (z)

)∣∣∣∣� 1

N |b|3 , (3.12)∣∣∣∣∫ (z− x)−2 dµ∗
τ (x)+N

(
Mτ

(
z+ 1

N

)
−Mτ(z)

)∣∣∣∣� 1

N |b|3 . (3.13)

Therefore, it is enough to bound

ηNτ :=N

(
MN

τ

(
z+ 1

N

)
−MN

τ (z)

)
−N

(
Mτ

(
z+ 1

N

)
−Mτ(z)

)
.

We proceed as above by considering a martingale representation ofηNτ , given, if
(zNt (z), c

N
t (z)) are the functions constructed in (3.4) and (3.5) with terminal

(zNτ (z), c
N
τ (z))= (z,1), by

ηNt =NcNt

(
z+ 1

N

)(
MN

t

(
zNt

(
z+ 1

N

))
−Mt

(
zNt

(
z+ 1

N

)))
−NcNt (z)

(
MN

t

(
zNt (z)

)−Mt

(
zNt (z)

))
.

By (3.8),

ηNt = ηN0 +N

(
mN

t

(
zN·
(
z+ 1

N

)
, cN·

(
z+ 1

N

))
− (mN

t z
N
· (z), c

N
· (z)

)) := ηN0 +�mN
t (z).

Note that since�(zNt (z′)) � �(z) = b > 0 for z′ = z or z′ = z + N−1, (3.3) and (3.4)
imply that ∣∣∣∣∂t(zNt (z+ 1

N

)
− zNt (z)

)∣∣∣∣� |b|−2
∣∣∣∣zNt (z+ 1

N

)
− zNt (z)

∣∣∣∣,
whereas (3.5), (3.9) and (3.10) imply that∣∣∣∣∂t(cNt (z+ 1

N

)
− cNt (z)

)∣∣∣∣
� e|b|

−2|b|−3
∣∣∣∣zNt (z+ 1

N

)
− zNt (z)

∣∣∣∣+ |b|−2
∣∣∣∣cNt (z+ 1

N

)
− cNt (z)

∣∣∣∣.
Therefore, Gronwall’s lemma gives fort � τ
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∣∣∣∣zNt (z+ 1

N

)
− zNt (z)

∣∣∣∣� 1

N
e(τ−t )/|b|2,∣∣∣∣cNt (z+ 1

N

)
− cNt (z)

∣∣∣∣� 1

N |b|3 e(2(τ−t )+1)/|b|2. (3.14)

Using the above control, we can boundηN0 . To this end, let

ηN0 =NcN0

(
z+ 1

N

){
MN

0

(
zN0

(
z+ 1

N

))
−MN

0

(
zN0 (z)

)−(M0

(
zN0

(
z+ 1

N

))
−M0

(
zN0 (z)

))}+N

(
cN0

(
z+ 1

N

)
− cN0 (z)

){
MN

0

(
zN0 (z)

)−M0
(
zN0 (z)

)}
= I + II .

The first term can be decomposed as follows

I =−NcN0

(
z+ 1

N

)(
zN0

(
z+ 1

N

)
− zN0 (z)

)
×
{

trN
(
zN0 (z)−DN

)−2 −
∫ (

zN0 (z)− x
)−2

dµD(x)

}

+NcN0

(
z+ 1

N

)(
zN0

(
z+ 1

N

)
− zN0 (z)

)2

×
{∫ (

zN0

(
z+ 1

N

)
− x

)−1(
zN0 (z)− x

)−2
d
(
µ̂N

0 −µD

)
(x)

}
= I1 + I2.

By (3.10), (3.14) and assumption (A) we find that

|I1| �N e|b|
−2 1

N
eτ/|b|

2 c̃(|b|)
N

and

|I2| �N e|b|
−2 e2τ/|b|2

N2

1

|b|3
so that we have found a finite constantC1(b) such that

|I |� C1(b)

N
. (3.15)

Moreover, by (3.14) and assumption (A),

|II | � N
1

N |b|3 e(2τ+1)/|b|2 c̃(|b|)
N

resulting, with (3.15), with the existence of a finite constantC2(b) such that

∣∣ηN0 ∣∣� C2(b)
. (3.16)
N
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wing

.13),

etric

et

ds
Moreover�mN· (z) is a martingale whose martingale bracket can be computed. Follo
(3.11), we find〈�(�mN(z)

)〉
τ
+ 〈�(�mN(z)

)〉
τ

= 1

N2

τ∫
0

∫ ∣∣∣∣ NcNs (z+N−1)

(zNs (z+N−1)− x)2
− NcNs (z)

(zNs (z)− x)2

∣∣∣∣2dµ̂N
s (x) ds

� 1

N2

τ∫
0

(
(N |cNs (z+N−1)− cNs (z)|)2

|bNs (z+N−1)|4
)
ds

+ 1

N2

τ∫
0

( |cNs (z)|2|N(zNs (z+N−1)− zNs (z))|2
(|bNs (z)| ∧ |bNs (z+N−1)|)6

)
ds

� C3(b)

N2
, (3.17)

whereC3(b) is a finite constant derived from (3.10) and (3.14). From (3.12), (3
(3.16) and (3.17), we conclude that

E

[∣∣∣∣trN(z−XN(τ)
)−2 −

∫
(z− x)−2 dµ∗(x)

∣∣∣∣2]1/2

� 2

N |b|3 + C2(b)

N
+ C3(b)

1/2

N
= C4(b)

N

finishing the proof of the lemma in the Hermitian case. When we consider the symm
case (studied already by [13]), an extra term of the form(2N)−1

∫ τ
0 cNs ∂

2
zM

N
s (zNs ) ds

appears in (3.8). This term is in turn bounded byCN−1 log(1+ 1
|b|) (see [13, p. 9] for

details), completing the proof of the lemma.✷
4. A martingale representation for MN(z)

In Section 3, we used the martingale representation (3.8) ofMN· (zN· ) to estimate its
rate of convergence asN →∞. Here, we shall follow more closely [9] and [5] to g
a similar representation but fordeterministic functions (ct , zt ), independent ofN , in
order to study the moderate deviations of the sequence{MN(z)−M(z)}N . To this end,
let (c·, z·) be the solution of

∂tzt =Mt(zt), z1 = z= a + ib, (4.1)

∂tct = ∂zMt(zt )ct , c1 = c. (4.2)

By the same arguments as above, we see that|�(zt)| is non-increasing on[0,1], with
existence and uniqueness of(ct , zt ) as a result. Further, in analogy with (3.8) one fin
that

c
(
MN

1 (z1)−M1(z1)
)= c0

(
MN

0 (z0)−M0(z0)
)+ rN1 (z·, c·)+mN

1 (z·, c·) (4.3)

with mN(z·, c·) the martingale of (3.2) and
1
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),

eafter

]
eral
rN1 (z·, c·)=−
1∫

0

ct
(
MN

t (zt )−M(zt)
)
∂z
(
MN

t (zt )−M(zt )
)
dt

+ 1β=1(2N)−1

1∫
0

ct∂
2
zM

N
t (zt ) dt.

We claim that

LEMMA 4.1. – For anyz ∈ C\R, c ∈ C andaN → 0 such thatNaN →∞,

lim sup
N→∞

(NaN)
−2 logP

(∣∣rN1 (z·, c·)
∣∣� aN

)=−∞.

Proof. –Let bt = �(zt). From (4.1) we see that|∂tbt | � |∂tzt | � 1/|bt | � 1/|b|. So,
with b1 = b, we have that supt∈[0,1] |bt | <∞. In analogy with the derivation of (3.10
we have by (4.1) and (4.2) that

C1 = C1(b, c) := sup
t∈[0,1]

|ct |<∞. (4.4)

Notice that

1β=1(2N)−1

∣∣∣∣∣
1∫

0

cs∂
2
zM

N
s (zs) ds

∣∣∣∣∣� N−1C1|b|−3,

so without loss of generality we may and shall ignore this term, considering her
β = 2. Recall [11], that iff is Lipschitz of norm‖f ‖L := supx !=y(|f (x)− f (y)|/|x −
y|), then(

ωij (t)
)

1�i,j�N
:= (βij (t), β̃ij (t)

)
1�i�j�N

�→ (
trN f

(
XN(t)

)−E trN f
(
XN(t)

))
is Lipschitz for the Euclidean norm with constant 2‖f ‖L/N (this was shown in [11
for DN = 0, but the proof of [11, Lemma 1.2(b)] extends verbatim to the gen
case, hence all conclusions of [11] extend as well). Consideringf (x) = (z− x)−1 and
∂zf (x)=−(z− x)−2 for which ‖f ‖L � |�(z)|−2 and‖∂zf ‖L � |�(z)|−3 it follows that
for anyξ ∈ C\R× [−|b|, |b|], andt ∈ [0,1],(
ωij (t)

)
1�i,j�N

�→ (
MN

t (ξ)−Mt(ξ)
)
, and

(
ωij (t)

)
1�i,j�N

�→ ∂z
(
MN

t (ξ)−Mt(ξ)
)

are Lipschitz functions of norm at most 2/(|b|2N) and 2/(|b|3N), respectively.
Therefore, [11] provides the existence of a universal constantc > 0 such that for any
δ > 0,N andt ∈ [0,1],

P
(∣∣MN

t (zt )−Mt(zt)−E
[(
MN

t (zt )−Mt(zt)
)]∣∣� δ

)
� e−cδ2b4N2

, (4.5)

P
(∣∣∂z(MN

t (zt)−Mt(zt)
)−E

[
∂z
(
MN

t (zt)−Mt(zt)
)]∣∣� δ

)
� e−cδ2b6N2

. (4.6)

By Lemma 3.1, we have that for some finiteC2(|b|) and allN ,

sup
∣∣E[(MN

t (zt )−Mt(zt)
)]∣∣�C2

(|b|)N−1 (4.7)

t∈[0,1]
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nts
and

sup
t∈[0,1]

sup
|�(z)|�|b|

E
[∣∣∂z(MN

t (z)−Mt(z)
)∣∣2]1/2 �C2

(|b|)N−1. (4.8)

Fixing aN → 0 such thatNaN →∞, if we let

ψN :
(
z,ωij (t), s

)
1�i,j�N

�→ (
MN

t (z)−Ms(z)
)
∂z
(
MN

t (z)−Ms(z)
)
, (4.9)

it follows from (4.5), (4.6), (4.7) and (4.8) that forK >K0 := C2(|b|)/ infN(NaN),

P
(∣∣ψN

(
zt ,ω(t), t

)∣∣� 4K2a2
N

)
� P

(∣∣MN
t (zt )−Mt(zt)

∣∣� 2KaN
)+ P

(∣∣∂z(MN
t (zt )−Mt(zt)

)∣∣� 2KaN
)

� 2e−cK2b4(1∧b2)(aNN)2. (4.10)

Turning to estimate the integral appearing inrNt (z·, c·), note that|MN
t (z) −Ms(z)| �

2/|�(z)|, |∂z(MN
t (z) − Ms(z))| � 2/|�(z)|2, whereasω(t) �→ (MN

t (z) − Ms(z)) and
ω(t) �→ ∂z(M

N
t (z) − Ms(z)) are Lipschitz for the Euclidean norm with consta

bounded by 2/(|�(z)|2N) and 2/(|�(z)|3N), respectively. Hence,

∣∣ψN

(
z,ω(t), s

)−ψN

(
z,ω(s), s

)∣∣� 8

|�(z)|4N
∥∥ω(t)−ω(s)

∥∥
2 (4.11)

(where‖ω‖2
2 :=

∑
1�i,j�N ω2

ij ). Moreover,∣∣Mt(z)−Ms(z)
∣∣= lim

N→∞
∣∣E trN

[(
z−XN(t)

)−1]−E trN
[(
z−XN(s)

)−1]∣∣
= lim

N→∞
∣∣E trN

[(
z−XN(t)

)−1(
HN(t)−HN(s)

)(
z−XN(s)

)−1]∣∣
� 1

|�(z)|2 lim
N→∞E trN

[∣∣HN(t)−HN(s)
∣∣]

� 1

|�(z)|2 lim
N→∞

√
E trN

[∣∣HN(t)−HN(s)
∣∣2]= |t − s|1/2

|�(z)|2 (4.12)

and similarly, ∣∣∂z(Mt(z)−Ms(z)
)∣∣� 2|t − s|1/2

|�(z)|3 ,

implying that∣∣ψN

(
z,ω(t), t

)−ψN

(
z,ω(t), s

)∣∣
� 2

|�(z)|2
∣∣Mt(z)−Ms(z)

∣∣+ 2

|�(z)|
∣∣∂z(Mt(z)−Ms(z)

)∣∣
� 6|t − s|1/2

|�(z)|4 . (4.13)

In view of (3.3) and the analogous bound∣∣∂zMN(z)− ∂zM
N(z̃)

∣∣∨ ∣∣∂zMs(z)− ∂zMs(z̃)
∣∣� |b|−3|z− z̃|,
t t



1026 A. DEMBO ET AL. / Ann. I. H. Poincaré – PR 39 (2003) 1013–1042

ction
for |�(z)| ∧ |�(z̃)| � |b|, it follows that∣∣ψN

(
zt ,ω(t), s

)−ψN

(
zs,ω(t), s

)∣∣� 8|b|−4|zt − zs |� 8|b|−5|t − s| (4.14)

(the last inequality comes from (4.1), as|∂tzt | � 1/|b|). With n = Aa−2
N , we have by

(4.4), (4.11), (4.13), and (4.14) that forN large enough,∣∣∣∣∣
1∫

0

csψN

(
zs,ω(s), s

)
ds

∣∣∣∣∣�C1

[
aN

3
+ n−1

max
i=0

sup
s∈[i/n, (i+1)/n]

∣∣∣∣ψN

(
zi/n,ω(s),

i

n

)∣∣∣∣]

�C1

[
aN

3
+ n−1

max
i=0

∣∣∣∣ψN

(
zi/n,ω

(
i

n

)
,
i

n

)∣∣∣∣
+ 8|b|−4N−1 n−1

max
i=0

sup
s∈[i/n, (i+1)/n]

∥∥∥∥ω(s)− ω

(
i

n

)∥∥∥∥
2

]
.

So, by (4.10) withK =KN = (12aN)−1/2, for someC4 =C4(b) > 0,

P

(∣∣∣∣∣
1∫

0

csψN

(
zs,ω(s), s

)
ds

∣∣∣∣∣� C1aN

)

� 2ne−C4aNN2 + nP

(
sup

s∈[0,1/n]

∥∥ω(s)∥∥2 � |b|aNN
24

)
. (4.15)

Combining Brownian scaling, Chebyshev’s inequality and Désiré André refle
principle, we see that for anyC = C5(b),

nP

(
sup

s∈[0,1/n]

∥∥ω(s)∥∥2
2 � C(aNN)2

)
� nP

(
N∑

i,j=1

sup
θ∈[0,1]

ωij (θ)
2 �ACN2

)

� n
{
2e−AC/3

E
[
eω11(1)2/3]}N2

� e−N2
,

providedA � A0(b) is large enough. Thus, withNaN → ∞ and aN → 0, it follows
from (4.15) that

lim sup
N→∞

(NaN)
−2 logP

(∣∣rN1 (z·, c·)
∣∣� C1aN

)
� lim sup

N→∞
a−1
N

[
2aN | logaN | −C4

]=−∞,

as needed to complete the proof.✷
5. Moderate deviations

Ford <∞ andf = (f (1), . . . , f (d)), f (i) ∈ Stieljes(R), let

XN(f) :=
(∫

f(x) dµ̂N
1 (x)−

∫
f(x) dµ∗(x)

)
∈ R

d.

We next prove thatXN(f) satisfies the moderate deviation principle inR
d per fixed

f ∈ Stieljes(R)d .
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the

e, [8,

s the
rder to

n case

)

,
n

THEOREM 5.1. – For any aN → 0 such thatNaN → ∞, any d < ∞ and f ∈
(Stieljes(R))d , the sequence of random vectors{a−1

N XN(f)}N satisfies the LDP inRd ,
with speed(NaN)

−2 and the good rate function

If(x)= β

2
sup

λ1,...,λd

{
d∑

i=1

λixi − 1

2

d∑
i,j=1

λiλjV1
(
f (i), f (j)

)}
, (5.1)

for V1(f, g) of (1.2).

In particular, consideringd = 1 andβ = 2, we see that the good rate function for
LDP of a−1

N XN(h) in R is x2/(2V1(h,h)). SinceNaN → ∞ andh ∈ Stieljes(R) is a
Lipschitz function, it follows from [11, Theorem 1.1(b)], after some algebra, that

lim sup
N→∞

(NaN)
−2 logE

(
eλN

2aN�XN(h)
)
<∞,

for all λ <∞. From Lemma 3.1 we see that the same applies when�XN(h) is replaced
by XN(h), and (1.5) then follows by applying Varadhan’s lemma (see, for exampl
Theorem 4.5.10]).

Proof. –Our strategy consists of applying theorem [17, Theorem 2.2] that yield
moderate deviations principle for martingales. Some preparations are needed in o
check that its conditions are satisfied in our setup. We first consider the Hermitia
β = 2.

Any h ∈ Stieljes(R) is of the form

h(x) :=
=∑

k=1

c(k)
(
z(k) − x

)−1
, (5.2)

for some= <∞, c(k) ∈ C andz(k) = a(k)+ ib(k) with b(k) != 0. Combining assumption (A
with (4.4) we have that

∣∣c(k)0

(
MN

0

(
z
(k)
0

)−M0
(
z
(k)
0

))∣∣� C(k)

N
,

for someC(k) <∞ and allN . Applying Lemma 4.1 and the representation (4.3) fork =
1, . . . , =, it thus follows that{a−1

N mN
1 (h)}N is exponentially equivalent to{a−1

N XN(h)}N
at speed(NaN)

−2 → 0, in the sense of [8, Definition 4.2.10], where,

mN
t (h) :=

=∑
k=1

mN
t

(
z(k)· , c(k)·

)
,

is the continuous martingaleS0,t (µ̂N , h) (or S̃0,t (µ̂N , h)), of Theorem 2.1. Hence, by [8
Theorem 4.2.13], it suffices to prove the LDP at speed(NaN)

−2 and good rate functio
If(x) for

a−1mN(f) := a−1(mN
(
f (1)), . . . ,mN

(
f (d)

)) ∈ R
d.
N 1 N 1 1
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tiable

ence,
f
any

s is
s

,

e

-

To this end, note that thecontinuousmartingalea−1
N mN

t (f), with a−1
N mN

0 (f)= 0, trivially
satisfies Cramér’s condition [17, (2.6)] on the compensator, while the differen
everywhere function (inλ1, . . . , λd ),

Gt(λ) := 1

2

d∑
i,j=1

λiλjVt

(
f (i), f (j)

)
,

satisfies the strict convexity condition [17, (G)] (see the discussion in [17, p. 49]). H
with n = (NaN)

2, by [17, Theorem 2.2] the sequence{a−1
N mN· (f)} satisfies the LDP o

speed(NaN)
−2 in D[0,1], equipped with the Skorohod topology, provided that for

δ > 0,

lim sup
N→∞

N−2 logP

(
sup
t∈[0,1]

∣∣N2〈mN(h)
〉
t
− Vt (h, h)

∣∣> 2δ
)
< 0, (5.3)

whereh(x) :=∑d
i=1λif

(i)(x) ∈ Stieljes(R) (after some algebra one sees that thi
exactly condition [17,(supE)] in our context). LetV t denote the matrix of entrie
Vij (t) := d

dt
Vt (f

(i), f (j)). For eachx ∈ R
d and positive semi-definite matrixV =

{Vij }di,j=1, let

L(x,V ) := sup
λ1,...,λd

{
d∑

i=1

λixi − 1

2

d∑
i,j=1

λiλjVij

}
.

By [17, (2.4)], the good rate functionJf(·) for the LDP of{a−1
N mN· (f)} is

∫ 1
0 L(φ̇(t),V t ) dt

for φ(·) absolutely continuous withφ(0)= 0, and infinite otherwise. Sincea−1
N mN· (f) ∈

C[0,1] and {φ: Jf(φ) < ∞} ⊂ C[0,1], it follows from [17, Theorem C] that the sam
LDP applies inC[0,1] equipped with the uniform topology. The LDP for{a−1

N mN
1 (f)}

with the good rate functionIf(x)= L(x,
∫ 1

0 V t dt) then follows by the contraction prin
ciple forφ(·) �→ φ(1) and the convexity of(x,V ) �→ L(x,V ).

We turn to the remaining task of proving that (5.3) holds for anyδ > 0 andh ∈
Stieljes(R). Fixing δ and h, since the monotone functiont �→ Vt (h, h) is uniformly
continuous on[0,1],

sup
0�s�t�1, t−s�1/n

{
Vt (h, h)− Vs(h, h)

}
< δ,

for somen= n(δ) <∞, so withN2〈mN(h)〉t non-decreasing int , (5.3) follows as soon
as we show that

lim sup
N→∞

N−2 logP
(∣∣N2〈mN(h)

〉
t
− Vt (h, h)

∣∣> δ
)
< 0, (5.4)

for any fixedt ∈ [0,1]. Recall that

N2〈mN(h)
〉
t
− Vt (h, h)=

t∫ [∫
(∂xhs)

2(x) dµ̂N
s (x)−

∫
(∂xhs)

2(x) dµ∗
s (x)

]
ds. (5.5)
0
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By the linearity ofh �→ hs via (1.1), the right-hand side of (5.5) is a quadratic fo
in c(k), k = 1, . . . , =, of the finite decomposition (5.2) forh ∈ Stieljes(R). Thus, for
proving (5.4), we may and shall replace(∂xhs)

2 in (5.5) byg(zs, z̃s, x) := [(zs − x)(z̃s −
x)]−2, wherezs and z̃s are the solutions of (4.1) forz1 = z and z1 = z̃, respectively.
Doing so, we need only show that for anyη > 0 andz, z̃ ∈ C \R,

lim sup
N→∞

N−2 logP

( 1∫
0

∣∣φN

(
zs, z̃s,ω(s), s

)∣∣ds > 5η

)
< 0, (5.6)

where foru, v ∈ C \R, s ∈ [0,1] andW ∈MN ,

φN : (u, v,W, s) �→ trN g(u, v,W)−
∫

g(u, v, x) dµ∗
s (x).

Let b = |�(z)| ∧ |�(z̃)|> 0. Consider the bounded-Lipschitz norm

‖ν‖BL := sup
{∣∣∣∣∫ f dν

∣∣∣∣: ‖f ‖L +‖f ‖∞ � 1
}

on the space of Borel measures onR. Note that‖µ̂N
t − µ∗

t ‖BL → 0 in probability, as
N →∞, for eacht ∈ [0,1]. Since‖g(zs, z̃s, ·)‖∞ � b−4 and‖g(zs, z̃s, ·)‖L � 4b−5, it
follows that ∣∣∣∣E trN g

(
zt , z̃t ,XN(t)

)− ∫ g(zt, z̃t , x) dµ
∗
t (x)

∣∣∣∣� η, (5.7)

for all N � N0(η, t). It also follows by [11, Theorem 1.1b] that for somec > 0 and all
N, η > 0, t ∈ [0,1],

P
(∣∣trN g

(
zt , z̃t ,XN(t)

)−E
(
trN g

(
zt , z̃t ,XN(t)

))∣∣� η
)
� e−cη2b10N2

. (5.8)

By the same argument leading to (4.12) we see that‖µ∗
t −µ∗

s‖BL �
√|t − s|. Moreover,

since‖g(zs, z̃s, ·)‖L � 4b−5, and|g(zs, z̃s, x)−g(zt , z̃t , x)| � 2b−5(|z̃t − z̃s|+ |zt −zs|),
similarly to (4.11) and (4.14) we have that for someC4 = C4(|b|) <∞,∣∣φN

(
zt , z̃t , ω(t), t

)− φN

(
zs, z̃s,ω(s), s

)∣∣
�
∣∣φN

(
zt , z̃t , ω(t), t

)− φN

(
zt , z̃t , ω(t), s

)∣∣
+ ∣∣φN

(
zt , z̃t , ω(t), s

)− φN

(
zt , z̃t , ω(s), s

)∣∣
+ ∣∣φN

(
zt , z̃t , ω(s), s

)− φN

(
zt , z̃s,ω(s), s

)∣∣
+ ∣∣φN

(
zt , z̃s,ω(s), s

)− φN

(
zs, z̃s,ω(s), s

)∣∣
� b+ 4

b5
|t − s|1/2 + 8

b5N

∥∥ω(t)− ω(s)
∥∥

2 +
4

b5
|z̃t − z̃s| + 4

b5
|zt − zs|

� C4

(
1

N

∥∥ω(t)− ω(s)
∥∥

2 + |t − s|1/2
)
.

Takingn=A/η2, we then have for allA>A0(b),
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f is
1∫
0

∣∣φN

(
zs, z̃s,ω(s), s

)∣∣ds � η+ n−1
max
i=0

∣∣∣∣φN

(
zi/n, z̃i/n,ω

(
i

n

)
,
i

n

)∣∣∣∣
+ 8

b5N

n−1
max
i=0

sup
s∈[i/n,(i+1)/n]

∥∥∥∥ω(s)− ω

(
i

n

)∥∥∥∥
2
.

We now have (5.6) by combining the latter inequality, (5.7), (5.8) applied att = i/n, i =
0, . . . , n− 1, and the fact that

nP

(
sup

s∈[0,1/n]

∥∥ω(s)∥∥2
2 � Cη2N2

)
� nP

(
N∑

i,j=1

sup
θ∈[0,1]

ωij (θ)
2 � ACN2

)
� e−N2

,

which holds for allA large enough. For symmetric matrices, note that the only differ
is that the bracket of the martingalesmN(h) is twice what it is in the Hermitian case (s
Theorem 2.1). ✷

Proof of Theorem 1.1. –Equip the algebraic dualX of Stieljes′(R) with the
Stieljes′(R)-topology and the smallestσ -field A such thatF �→ 〈f ′,F 〉 :X → BR are
measurable for eachf ′ ∈ Stieljes′(R). We note thatStieljes′(R) is a separating family
for Lp

c (R): recall that�(z − x)−1 ∈ Stieljes(R) and hence�(z − x)−2 ∈ Stieljes′(R).
But, if for f ∈ Lp

c (R) it holds that�[∫ (z − x)−2f (x) dx] = 0 for all z ∈ C \ R then
�[∫ (z − x)−1f (x) dx] = C for all z ∈ C \ R, andC = 0 by taking |z| → ∞. Hence,
since on compact setsStieljes(R) uniformly approximates any polynomial and sin
the latter are dense inLp

c (R), we conclude thatf = 0. Thus, we can identify, for an
p � 1, Lp

c (R) as a subset ofX . In particular, we may and shall identifyFN with
{f ′ �→ ∫

f ′(x)FN(x) dx} ∈X .
Fix aN → 0 such thatNaN →∞. Combining [8, Theorem 4.6.9] and Theorem 5.1

see that{a−1
N FN }N satisfies the LDP in(X ,A), with speed(NaN)

−2 and the good rat
functionI (·) of (1.3). By Lemma 1.3 we know thatI (·)=∞ outsideL1,∗

c (R)⊂ L1
c(R),

so with{a−1
N FN } ⊂ L1

c(R), Theorem 1.1 follows from [8, Lemma 4.1.5(b)].✷
The following is an immediate corollary of Theorem 1.1 and Lemma 3.1:

COROLLARY 5.2. – The conclusion of Theorem1.1continues to hold true whenFN

is replaced by�FN(x)= Eµ̂N
1 ((−∞, x])− µ̂N

1 ((−∞, x]).
The advantage of working with�FN is that it allows us to strengthen the topology

which moderate deviations hold. For anyd < ∞ and f = (f (1), . . . , f (d)) ∈ (C1
b(R))d ,

define

�XN(f ) :=
∫

f ′(x)�FN(x) dx = trN f(XN)−E trN f(XN) ∈ R
d, (5.9)

by integration by parts.
Let K ′ = [k− − 1, k+ + 1], whereK = [k−, k+] is a compact interval containin

the support ofµ∗
1. We now have the following approximation lemma whose proo

deferred:
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LEMMA 5.3. – Assumef, fm ∈ (C1
b(R))d, d <∞, are such that

lim
m→∞ sup

x∈K ′

∣∣∂x(f (i) − f (i)
m

)
(x)
∣∣= 0 (5.10)

for i = 1, . . . , d. Then, for anyδ > 0 and anyaN → 0 with NaN →∞,

lim sup
m→∞

lim sup
N→∞

(NaN)
−2 logP

(∣∣�XN(f )− �XN(fm)
∣∣> δaN

)=−∞. (5.11)

Proof of Theorem 1.2. –Fixing aN → 0 such thatNaN → ∞ and f ∈ (C1
b(R))d ,

there exists a sequence of functionsfm ∈ (Stieljes(R))d for which (5.10) holds. Then
by (5.11), the random sequences{a−1

N
�XN(fm)}N are exponentially good approximatio

of {a−1
N

�XN(f )}N in R
d . Recall Corollary 5.2, that{a−1

N
�FN }N satisfies the LDP inL1

c(R)

equipped with theStieljes′(R)-topology, with speed(NaN)
−2 and the good rate functio

I (·) of (1.3). By (5.9),a−1
N

�XN(fm) is for eachm the image ofa−1
N

�FN under the mapF �→∫
f ′m(x)F (x) dx :L1

c(R) → R
d which is continuous with respect to theStieljes′(R)-

topology. If F ∈ L1
c(R) has I (F ) � α then F/p1 ∈ L2(µ∗

1) with µ∗
1((F/p1)

2) � 2α
(see (1.7)). By the Cauchy–Schwartz inequality inL2(µ∗

1) and (5.10) we thus have tha

sup
{∣∣∣∣∫ f ′(x)F (x) dx −

∫
f ′m(x)F (x) dx

∣∣∣∣: I (F ) � α

}
�
√

2αµ∗
1

(|f ′ − f ′m|2
)1/2 → 0

as m → ∞ for eachα < ∞. Consequently, by [8, Theorem 4.2.23] it follows th
{a−1

N
�XN(f )}N satisfies the LDP inRd with speed(NaN)

−2 and the good rate function

If(y)= inf
{
I (F ): F ∈L1

c(R),

∫
f ′(x)F (x) dx = y

}
.

With Stieljes′(R) ⊂ C′
b(R) a separating family forL1

c(R), similarly to the proof of
Theorem 1.1 we identifyL1

c(R) as a subset of the algebraic dual�X of C′
b(R), mapping

�FN to {f ′ �→ ∫
f ′(x)�FN(x) dx} ∈ �X . We equip �X with the C′

b(R)-topology and the
corresponding cylinderσ -field. It then follows by [8, Theorem 4.6.9] and the abo
LDPs for{a−1

N
�XN(f )}N that{a−1

N
�FN }N satisfies the LDP in�X , with speed(NaN)

−2 and
the good rate function

Î (G)= sup
d<∞

sup
f∈(C1

b
(R))d

If
(〈f ′,G〉)

= sup
d<∞

sup
f∈(C1

b
(R))d

inf
{
I (F ): F ∈L1

c(R),

∫
f ′(x)F (x) dx = 〈f ′,G〉

}
. (5.12)

In particular, by (1.7),

Î (G)� sup
g∈C′

b
(R)

inf
{
β

4
µ∗

1

(
h2): h ∈L2(µ∗

1), µ
∗
1(gh)= 〈g,G〉

}

= β

4
sup

g∈C′ (R)

〈g,G〉2
µ∗

1(g
2)
. (5.13)
b
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Applying Lemma 6.2 for the function̂I (·) and the vector spaceW = C′
b(R), we see tha

(5.13) implies thatÎ (G) < ∞ only if G ∈ �X belongs also toL1,∗
c (R) (and moreove

G/p1 ∈ L2(µ∗
1)). Consequently, with{a−1

N
�FN }N ∪ {G: Î (G) < ∞} ⊂ L1

c(R), by [8,
Lemma 4.1.5(b)] the LDP we obtained for{a−1

N
�FN }N holds also withinL1

c(R). Since
〈f ′,G〉 = ∫ f ′(x)G(x) dx for anyG ∈ L1

c(R), consideringF = G in (5.12) we clearly
see thatÎ (G) � I (G). On the other hand, by [8, Lemma 4.6.5],

I (G)= sup
d<∞

sup
f∈(S tieljes(R))d

inf
{
I (F ): F ∈L1

c(R),

∫
f ′(x)F (x) dx = 〈f ′,G〉

}
,

for any G ∈ X , which in comparison with (5.12) shows thatÎ (G) � I (G) for all
G ∈ L1

c(R), completing the proof of the theorem.✷
Proof of Lemma 5.3. –We bring the proof in the real (symmetric) case, the Hermi

case being similar. By union of events bounds, it suffices to consider the case ofd = 1
in (5.11). To this end, setθ ∈ C1

b(R) such thatθ(x)= 1 for all x ∈K andθ(x)= 0 for all
x /∈K ′. Fixing f,fm ∈ C1

b(R) for which (5.10) holds, letgm(x) := θ(x)(f (x)− fm(x)),
so thatδm = ‖g′

m‖∞ → 0 asm→∞. By (5.9) and [11, Theorem 1.1(b)], it then hol
that for someC > 0 and allm,N, δ > 0,

P
(∣∣�XN(gm)

∣∣> δaN
)
� 2exp

(
−Cδ2(NaN)

2

δ2
m

)
.

Since�XN(f )−�XN(fm)= �XN(gm)+�XN(hm) for hm(x)= (1− θ(x))(f (x)−fm(x)), it
suffices to show that�XN(hm) is exponentially negligible, i.e., that for anym andδ > 0,

lim sup
N→∞

(NaN)
−2 logP

(∣∣�XN(hm)
∣∣> δaN

)=−∞. (5.14)

To see (5.14), setYN =NaN�XN(hm) andZN(λ)= E eλYN . Denoting byXij the ij entry
of the matrixXN , we use a variant of Herbst’s argument, similar to the proof of
Theorem 1.1(b)]. To this end, forλ > 0, let

GN(λ) := λ2ZN(λ)
d

dλ

(
λ−1 logZN(λ)

)= E

(
eλYN log

(
eλYN

ZN(λ)

))
. (5.15)

With hm a Lipschitz function, recall that∑
1�i�j�N

(
∂Xij

trhm(XN)
)2 � 2 trN

(
h′
m(XN)

2)
(see [11, (2.12)]). Consequently, applying the logarithmic Sobolev inequality fo
multivariate Gaussian distribution of(Xij , 1 � i � j � N) and the differentiable
function exp(λYN/2), we have by (5.9) that for some universal constantc < ∞ and
all λ > 0,N ,
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ment
GN(λ)� cE

( ∑
1�i�j�N

(
∂Xij

eλYN/2)2)

= cλ2(NaN)
2
E

(
eλYN

∑
1�i�j�N

(
∂Xij

trN hm(XN)
)2)

� 2cλ2a2
NE
(
trN
(
h′
m(XN)

2)eλYN ). (5.16)

With hm bounded,YN � cmNaN for somecm <∞ and allN . Hence, for anyλ, κ > 0,

E
(
trN
(
h′
m(XN)

2)eλYN
)
� κ

8
ZN(λ)+ eλcmNaN P

(
trN
(
h′
m(XN)

2)� κ

8

)
.

Sincehm(x)= 0 for x ∈K that contains the support ofµ∗
1, clearlyµ∗

1((h
′
m)

2)= 0. Note
that(h′

m)
2 ∈ Cb(R), so trN(h′

m(XN)
2)= µ̂N

XN
((h′

m)
2)→ µ∗

1((h
′
m)

2) (see, e.g., [19]). With
{µ̂N

XN
}N exponentially tight at scaleN2 (see [1]), an application of [11, Theorem 1.1(

after truncatingµ̂N
XN

to a large enough compact and uniformly approximating(h′
m)

2 on
this set by a Lipschitz function, reveals that also|µ̂N

XN
((h′

m)
2)− Eµ̂N

XN
((h′

m)
2)| → 0, in

fact with probability decaying exponentially in scaleN2, implying that

P

(∣∣µ̂N
XN

(
(h′

m)
2)−µ∗

1

(
(h′

m)
2)∣∣� κ

8

)
� e−cN2

,

for somec > 0 (this last conclusion can also be seen directly by mimicking the argu
for the upper bound in [6, Theorem 1.3 and Corollary 1.4], with initial conditionDN ).
With aN → 0 we thus deduce that for allε, κ > 0, λ ∈ (0, ε−1N] andN >N0(m, κ, ε),

E
(
trN
(
h′
m(XN)

2)eλYN
)
� κ

4
ZN(λ). (5.17)

Combining (5.15), (5.16) and (5.17) we see that for everyκ > 0,ε > 0 and suchλ andN ,

d

dλ

(
λ−1 logZN(λ)

)
� cκa2

N

2
.

SinceZN(0)= 1 andZ′
N(0)= 0, it follows thatZN(λ)� exp(cκa2

Nλ
2/2). Therefore, by

Chebysheff’s inequality,

P
(�XN(hm) > δaN

)= P
(
YN > δNa2

N

)
� ZN(λ)e−λδNa2

N � ecκa
2
N
λ2/2−λδNa2

N .

Choosingε = cκ/δ andλ= ε−1N it follows (applying the above once forhm and once
for −hm) that

lim sup
N→∞

(NaN)
−2 logP

(∣∣�XN(hm)
∣∣> δaN

)
� − δ2

2κc
.

Sinceκ is arbitrary, (5.14) follows, thus completing the proof of the lemma.✷
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6. Free probability: properties of V1(·, ·) and I (·)
We have following [3] and [4], that if we letEs be the differential operator onC1(R)

with values inC0(R) given by

Esf (x) :=
∫

f (x)− f (y)

x − y
dµ∗

s (y),

then (1.1) reads

∂sfs(x)=−Es ◦ ∂xfs(x). (6.1)

Let M(R) denote the space of finite, complex, Borel measures onR. Consider the
following vector subspaces ofCk(R), k � 1,

Gk :=
{∫

eiξx dν(ξ)+
n∑

p=1

apx
p: n <∞, ap ∈ C, ν ∈M(R),

∫
|ξ |k d|ν|(ξ) <∞

}
.

We let G ⊂ G3 be the vector space of functionsg :R → C for which a solution
f (x, s) = fs(x) ∈ C3,1(R × [0,1]) of (6.1) with time marginalsfs ∈ G3 and boundary
conditionf1(x)= g(x) exists. Recall that when�(z) > 0,

(z− x)−1 = i
∫

R+

eiξ(z−x) dξ ∈ G3,

with analogous expression for(z−x)−1 when�(z) < 0. Hence,Stieljes(C)⊂ G3, which
as we have seen in (4.1) and (4.2) implies thatStieljes(C)⊂ G. We next define

V1(f, f ) :=
1∫

0

µ∗
s

(|∂xfs|2)ds
for anyf = f1 ∈ G. By our assumption thatµD is compactly supported, there exists
compact setK ⊂ {x ∈ R, d(x,supp(µD)) � 2} that contains the support ofµ∗

s for all
s ∈ [0,1]. For anyf ∈ G, the continuous function∂xfs is uniformly bounded on th
compactK × [0,1], implying thatV1(f, f ) is finite.

We use free probability theory to prove the following approximation lemma.

LEMMA 6.1. – Leth,g ∈ G. Then,∣∣V1(h,h)
1/2 − V1(g, g)

1/2∣∣� µ∗
1

(∣∣∂x(h− g)
∣∣2)1/2

.

Proof. –Eq. (6.1) implies that wheneverf1 ∈ G,

∂s∂xfs(x)= ∂x∂sfs(x)=−∂x ◦Es(∂xfs)(x). (6.2)

Let (A, τ ) be a non-commutative probability space on which a free Brownian motiS·
and a self-adjoint variableD of lawµD, free withS are defined. Recall that the opera
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Xs with law µ∗
s can then be seen as the solution of the free differential equation

dXt = dSt , X0 =D.

Forf ∈ G1 consider the stochastic integral

t∫
0

∂̄f (Xu)FdSu := i

t∫
0

1∫
0

∫
R

eiξαXu dSu eiξ(1−α)Xuξ dν(ξ) dα

+
n∑

p=1

ap

p−1∑
l=0

t∫
0

Xl
u dSuX

p−l−1
u

(cf. [3]). Then, for anyψ(x, t) continuously differentiable with respect tot and with
time marginalsψ(· , t) ∈ G2 we have that,

ψ(Xt, t)=ψ(X0,0)+
t∫

0

∂̄ψ(Xu,u)FdSu+
t∫

0

∂x ◦Euψ(Xu,u) du+
t∫

0

∂tψ(Xu,u) du.

(6.3)
The formula forψ(x) that does not depend on timet is derived in [3, p. 392] (apar
from an erroneous factor of 1/2 in thedu term there). The generalization toψ(x, t) with
smooth time dependence is then straight forward. Takingf = f1 ∈ G and applying (6.3
for ψ(x, t)= ∂xft(x), we find by (6.2) that

∂xft(Xt )= ∂xf0(X0)+
t∫

0

∂̄ ◦ ∂xfu(Xu)FdSu.

By [3, Proposition 3.2.3] it then follows thatt �→ ∂xft(Xt ) : [0,1] → (A, τ ) is anL2-
martingale with respect to the filtrationAt generated byD and {Su; u � t}, i.e.,
∂xft(Xt)= τ(∂xf1(X1)|At ) for any t ∈ [0,1] with τ(·|At ) the projection ontoAt in the
non-commutativeL2(A, τ ) space (obtained by completion ofA with respect to the norm
τ(| · |2)1/2). Consequently, withf̄ denoting the complex conjugate off , for all t ∈ [0,1],

µ∗
t

(|∂xft |2)= τ
(
∂xft(Xt)∂xf̄t (Xt )

)= τ
(
τ
(
∂xf1(X1)|At

)
τ
(
∂xf̄1(X1)|At

))
� τ

(
∂xf1(X1)∂xf̄1(X1)

)= µ∗
1

(|∂xf |2),
and therefore

V1(f, f ) � µ∗
1

(|∂xf |2).
Fix h,g ∈ G and apply this inequality forf = h− g ∈ G, to get

V1(h,h)
1/2 � V1(g, g)

1/2 + V1(h− g,h− g)1/2 � V1(g, g)
1/2 +µ∗

1

(∣∣∂x(h− g)
∣∣2)1/2

which completes the proof.✷
The next lemma is a key ingredient in the proof of Lemma 1.3.
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LEMMA 6.2. – LetW ⊂ Cb(R) be a vector space that separates points inL1
c(R) and

is dense inL2(µ∗
1). Suppose that

I (F ) � β

4
sup
g∈W

〈g,F 〉2
µ∗

1(g
2)
, (6.4)

for everyF ∈W ′ (the algebraic dual ofW). Then,I (·) is finite only forF ∈L1,∗
c (R), in

which case(1.7)holds.

Proof. –LetH be the Hilbert space equipped with the scalar product(h, g)= µ∗
1(hg)

constructed by taking the quotient ofW by the equivalence relation(h,h) = 0 and
completed for the norm‖ · ‖L2(µ∗

1)
. Then, the inequality (6.4) shows that for anyF

such thatI (F ) <∞, the linear mapg �→ 〈g,F 〉 :W → R has operator norm of at mo√
2I (F ) <∞ for the‖ · ‖L2(µ∗

1)
-norm, hence can be extended continuously toH. Thus,

by Riesz’s theorem there existsh ∈H such that

〈g,F 〉 =µ∗
1(hg)=

∫
g(x)

(
hp1(x)

)
dx, ∀g ∈H.

Further, if (g, g)= 0 for someg ∈W then we find directly from (6.4) that〈g,F 〉 = 0
for otherwiseI (F ) = ∞. We conclude that there exists anh ∈ H such that〈g,F 〉 =∫
g(x)(hp1(x)) dx for all g ∈W .
Letting F̃ (x)= hp1(x), we deduce that〈g,F 〉 = ∫ F̃ (x)g(x) dx and, sincep1 is com-

pactly supported (see [2]) andh ∈L2(µ∗
1), it follows thatF̃ belongs toL1,∗

c (R). SinceW
separates points inL1

c(R) we may and shall identifỹF with g �→ ∫
F̃ g dx ∈W ′, hence,

identifying in the sequel̃F andF . Further, withW being a dense subset ofL2(µ∗
1),

I (F ) � β

4
sup
g∈W

〈g,F 〉2
µ∗

1(g
2)

= β

4
µ∗

1

(
h2)= β

4

∫
F 2(x)

p1(x)
dx,

proving the right inequality in (1.7). The left inequality in (1.7) is an immediate co
quence of the Cauchy–Schwartz inequality inL2(µ∗

1). ✷
Proof of Lemma 1.3. –To simplify the notations, we only consider the caseβ = 2. Let

S = S1 be a semicircular variable and self-adjointD of law µD free withS, defined on
the non-commutative probability space(A, τ ). LetC〈D,S〉 denote the set of polynomia
functions inD andS with complex valued coefficients, withC〈S + D〉 (R〈S + D〉),
denoting the subset of polynomials inS +D, with complex (respectively, real) value
coefficients.

Noting that the set of polynomial functions is closed with respect to the operatoEs ,
which reduces the degree of the polynomial, it is proved in [9] thatC〈S + D〉 ⊂ G.
Moreover, an explicit non-negative operatorG :C〈D,S〉 �→ C〈D,S〉 is constructed
there, such thatτ(PGP) � 0 for anyP ∈ C〈D,S〉, while for anyP ∈ C〈S +D〉,

V1(P,P )= τ
(
P ′[(I +G)−1P ′]), (6.5)

τ
(
P(S +D)(I +G)P (S +D)

)
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,

ly,

y

=µ∗
1

(
P 2)+ ∫ (P(x)− P(y)

x − y

)2

dµ∗
1(x) dµ

∗
1(y). (6.6)

We assumed thatµD is compactly supported, hence so isµ∗
1 and we can approximate

in view of Weierstrass theorem, any functionh ∈ Stieljes(R) by polynomial functions
Ph
n such that

µ∗
1

((
∂x
(
h−Ph

n

))2)� n−2. (6.7)

By Lemma 6.1 and (6.5), then

V1(h,h)= lim
n→∞V1

(
Ph
n ,P

h
n

)= lim
n→∞ τ

((
∂xP

h
n

)[
(I +G)−1(∂xP h

n

)])
� lim sup

n→∞
τ
((
∂xP

h
n

)2)
= lim sup

n→∞
µ∗

1

((
∂xP

h
n

)2)= µ∗
1

((
∂xh
)2)

,

where we have used the fact thatG : C〈D,S〉 �→ C〈D,S〉 is non-negative. Consequent

I (F )= sup
h∈S tieljes(R)

{
〈h′,F 〉 − 1

2
V1(h,h)

}

� sup
h∈S tieljes(R)

{
〈h′,F 〉 − 1

2
µ∗

1

(
(h′)2)}= sup

h∈S tieljes(R)

{ 〈h′,F 〉2
2µ∗

1((h
′)2)

}
. (6.8)

The vector spaceW = Stieljes′(R) ⊂ Cb(R) is dense inL2(µ∗
1). Fixing a linear

functionalF on W , we thus deduce from (6.8) and Lemma 6.2 thatI (F ) < ∞ only
for F ∈ L1,∗

c (R), in which case the inequalities of (1.7) hold.
We turn to prove thatI (F ) � J (F ) for all F ∈ P . To this end, fixh ∈ Stieljes(R).

Taking the polynomial functionP = Ph
n of (6.7), we find by Lemma 6.1 that for an

f ∈ L2(µ∗
1),

〈h′, f p1〉 − 1

2
V1(h,h)� 〈P ′, f p1〉 − 1

2
V1(P,P )+ n−1

(∫
f 2(x)p1(x) dx

)1/2

+ n−1(V1(P,P )1/2 + V1(h,h)
1/2)

� 〈P ′, f p1〉 − 1

2
V1(P,P )+ n−1‖f ‖L2(µ∗

1)

+ n−1(n−1 + 2V1(h,h)
1/2).

Consideringn→∞ we see that for anyh ∈ Stieljes(R),

〈h′, f p1〉 − 1

2
V1(h,h)� sup

P∈R〈S+D〉

{
〈P ′, f p1〉 − 1

2
V1(P,P )

}
. (6.9)

By the non-negativity ofG, (6.5) and (6.6), it follows that for anyh,Q ∈ R〈S +D〉,(∫
(h′Qp1)(x) dx

)2

= (τ(h′(S +D)Q(S +D)
))2
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T for
at

that
r

� τ
(
h′(I +G)−1h′)τ(Q(I +G)Q

)
= V1(h,h)

[
µ∗

1

(
Q2)+ ∫ (Q(x)−Q(y)

x − y

)2

dµ∗
1(x) dµ

∗
1(y)

]
. (6.10)

Therefore, by (6.9) and (6.10), it follows that

I (Qp1)� sup
P∈R〈S+D〉

{
〈P ′,Qp1〉 − 1

2
V1(P,P )

}

= 1

2
sup

h∈R〈S+D〉
(
∫
(h′Qp1)(x) dx)

2

V1(h,h)

� 1

2

[
µ∗

1

(
Q2)+ ∫ (Q(x)−Q(y)

x − y

)2

dµ∗
1(x) dµ

∗
1(y)

]
= J (Qp1). (6.11)

Equipped with (6.11), letQδ be the polynomial functions appearing in the de
nition of F = fp1 ∈ P . Then, by (6.11) and the lower semi-continuity off �→
I (f p1) :L2(µ∗

1)→R,

I (f p1) � lim inf
δ→0

I
(
Qδp1

)
� lim inf

δ→0
J
(
Qδp1

)
� J (fp1),

as stated. In particular, we have that forf ∈ C1
b(R),

J (f p1)= 1

2

∫
f 2dµ∗

1 +
1

2

∫∫ ( 1∫
0

f ′(αx + (1− α)y
)
dα

)2

dµ∗
1(x) dµ

∗
1(y)

(see (1.6)). For suchf , by Weierstrass theorem there exist polynomialsQδ such that
∂x(Q

δ − f ) → 0 uniformly on the compact, convex hull of the support ofµ∗
1, hence

also J (Qδp1) → J (f p1), implying that f p1 ∈ P and completing the proof of th
lemma. ✷

Proof of Lemma 1.4. –Again, up to multiplying the rate function by 2−1β, we can
only consider the caseβ = 2. Forh ∈ C2

b([−2,2]), let

A(h) := − 1

4π2

2∫
−2

2∫
−2

h(x)h′(y)
y − x

√
4− y2

√
4− x2

dy dx,

and recall that by [14, Theorem 2.4] this is half the asymptotic variance in the CL
the spectral measure of Wigner matricesWN . Consequently, in view of (1.4) we see th
(1.8) holds whenµD = 0.

We provide instead a direct proof which is also the key to showing thatI (·) = J (·).
Recall that whenµD = 0, thenµ∗

1(dy)= σ1(dy)= (2π)−1
√

4− y21|y|�2 dy is the well
known semi-circle law. Our starting point is [9, Remark (6.2)], where it is shown
V1(h,h)= σ1(h

′[(I +G)−1h′]) for polynomial functionsh, with G the integral operato
with domainD ⊃ C2([−2,2]), such that for|x| � 2 andf ∈ C2([−2,2]),
b b
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the

using

all

n

nd
Gf (x) := 2PV
∫

f (x)− f (y)

(x − y)2
σ1(dy)

= xf ′(x)− 2

2∫
−2

1∫
0

1∫
0

αf ′′(ηαy + (1− ηα)x
)
dα dησ1(dy), (6.12)

wherePV stands for Cauchy’s principal value, and the second line follows from
identity

PV
∫
(x − y)−1σ1(dy)= 0.5x ∀|x| � 2, (6.13)

(see, e.g., [16, p. 74]), and the fact that

1∫
0

1∫
0

αf ′′(ηαy + (1− ηα)x
)
dα dη = f (y)− f (x)− (y − x)f ′(x)

(x − y)2
.

In particular, we see thatGf ∈ Cb([−2,2]) whenf ∈ C2
b([−2,2]). Let C1

b(σ1) denote
the subset ofg ∈ Cb([−2,2]), such thatψ ′

g(y) := ∂y(g(y)
√

4− y2 ) ∈ L1((−2,2)). As
already noted in [9, Remark (6.2)], integrating by parts the first line of (6.12) and
the fact that

PV

2∫
−2

(x − y)−1∂y
(√

4− y2
)
dy = π (6.14)

for x ∈ (−2,2) (see [18, Eq. (6), p. 174]), we obtain the following formula, valid for
g ∈ C1

b(σ1),

[
(I +G)g

]
(x)= 1

π
PV

2∫
−2

ψ ′
g(y)

x − y
dy := ĥ′(x), −2< x < 2. (6.15)

By [18, p. 178], for any givenĥ ∈ C2
b([−2,2]), Eq. (6.15) has a unique solutio

ψ ′
g(·) ∈ L1((−2,2)) such that

∫ 2
−2ψ

′
g(x) dx = 0. This solution is given by

ψ ′
g(x)=

1

π
PV

2∫
−2

√
4− y2

√
4− x2

ĥ′(y)
y − x

dy. (6.16)

We thus see that for all̂h ∈ C2
b([−2,2]), g = (I +G)−1ĥ′ ∈ C1

b(σ1) is well defined and
satisfiesg(x) = (4− x2)−1/2

∫ x
−2ψ

′
g(t) dt . Moreover, we have from (6.15), (6.16) a

integration by parts, that for̂h as above,

σ1
(
ĥ′[(I +G)−1ĥ′])= 1

2π

2∫
−2

ĥ′(x)ψg(x) dx =− 1

2π

2∫
−2

ĥ(x)ψ ′
g(x) dx = 2A(ĥ).

(6.17)
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Using once more (6.14) resulting withPV
∫
(x − y)−1(

√
4− y2 )−1 dy = 0 for |x| � 2,

we note that for anŷh ∈ C2
b([−2,2]),

A(ĥ)=− 1

4π2

2∫
−2

2∫
−2

ĥ′(y)
(ĥ(x)− ĥ(y))

y − x

√
4− y2

√
4− x2

dy dx

= 1

4π2

2∫
−2

2∫
−2

ĥ′(y)
1∫

0

ĥ′(αx + (1− α)y
)
dα

√
4− y2

√
4− x2

dy dx. (6.18)

Since
∫ 2
−2(4 − x2)−1/2dx < ∞, it is not hard to see, from (6.17) and (6.18), t

σ1(Q
′
n[(I + G)−1Q′

n]) converges toσ1(h
′[(I + G)−1h′]) for any h ∈ C2

b(R) and
polynomial functionsQn such thatQn and Q′

n approximateh and h′ uniformly
on [−2,2]. By Lemma 6.1,V1(h,h) = limnV1(Qn,Qn) as soon asQ′

n approximate
uniformly h′ on [−2,2] (being the support ofµ∗

1), so in particular the equalityV1(h,h)=
σ1(h

′[(I +G)−1h′])= 2A(h) extends to allh ∈ Stieljes(R), resulting with (1.8).
Turning to prove (1.9), fixf ∈ C3

b([−2,2]) andh ∈ Stieljes(R). Then,ĥ′ := h′ − (I +
G)f ∈ C1

b([−2,2]) andg := (I +G)−1h′ ∈ C1
b(σ1) exists, hence by (6.17),

2A(ĥ)= σ1
(
(g− f )

[
(I +G)(g − f )

])
= σ1

(
f
[
(I +G)f

])+ σ1
(
h′[(I +G)−1h′])− σ1

(
g
[
(I +G)f

])
− σ1

(
f
[
(I +G)g

])
.

From the definition ofG in (6.12), we also have thatI +G is a symmetric non-negativ
operator on the functionsf andg considered here, with

σ1
(
g
[
(I +G)f

])= ∫ g(x)f (x)σ1(dx)

+
∫∫

(g(x)− g(y))

(x − y)

(f (x)− f (y))

(x − y)
σ1(dy)σ1(dx)

= σ1
(
f
[
(I +G)g

])
. (6.19)

So, with 0� σ1((g− f )[(I +G)(g− f )]) <∞, we have that

A(ĥ)= 1

2
σ1
(
f
[
(I +G)f

])+ 1

2
σ1
(
h′[(I +G)−1h′])− σ1(f h

′) � 0. (6.20)

SinceStieljes′(R) is dense inC1
b([−2,2]), approximating∂x((I + G)f ) uniformly on

[−2,2] by a sequenceh′′
n, with hn ∈ Stieljes(R) (also approximating uniformly th

function (I + G)f and its primitive), it follows from (6.18) that thenA(ĥn) → 0. We
thus deduce from (6.20) that forF = f p1 with f ∈ C3

b([−2,2]),

I (F ) := sup
h∈S tieljes(R)

{
〈h′,F 〉 − 1

2
V1(h,h)

}

= sup
{
σ1(h

′f )− 1

2
σ1
(
h′[(I +G)−1h′])}
h∈S tieljes(R)
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2
σ1
(
f
[
(I +G)f

])− inf
h∈S tieljes(R)

A(ĥ)= 1

2
σ1
(
f
[
(I +G)f

])
=

2∫
−2

{
PV

2∫
−2

F ′(y)
(x − y)

dy

}
F(x) dx,

where the last line comes from (6.15). Integrating by parts finally gives

I (F )=−
2∫

−2

2∫
−2

F ′(y)F ′(x) log |x − y|dx dy. ✷
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