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ABSTRACT. – Let(S,A,P ) be a probability space and letPn be the empirical measure bas
on i.i.d. sample(X1, . . . ,Xn) from P. Let F be a class of measurable real valued functions
(S,A). Forf ∈ F , defineFf (t) := P {f � t} andFn,f (t) := Pn{f � t}. Givenγ ∈ (0,1], define
εn,γ (δ) := 1/(n1−γ /2δγ ). We show that if theL2(Pn)-entropy of the classF grows asε−α for
someα ∈ (0,2), then, for allf ∈ F and allδ ∈ (0,�n), �n = O(n1/2),

Ff

( δ

c(σ )

)
� c(σ )

[
Fn,f (δ)∨ 1

σ
εn,γ (δ)

]
and

Fn,f

( δ

c(σ )

)
� c(σ )

[
Ff (δ)∨ 1

σ
εn,γ (δ)

]
,

whereγ = 2α
2+α

andc(σ ) ↓ 1 asσ ↓ 0 (the above inequalities hold for any fixedσ ∈ (0,1] with a
high probability). Also, define

δn(γ ;f ) := sup{δ: Ff (δ)� εn,γ (δ)} and δ̂n(γ ;f ) := sup{δ: Fn,f (δ) � εn,γ (δ)}.
Then for allγ > 2α

2+α

δ̂n(γ ;f )
δn(γ ;f ) → 1 asn → ∞

uniformly inF and with probability 1 (forγ = 2α
2+α

the above ratio is bounded away from 0 a
from ∞). The results are motivated by recent developments in machine learning, where th
used to bound the generalization error of learning algorithms. We also prove some more
results of similar nature, show the sharpness of the conditions and discuss the applica
learning theory.
 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Soient(S,A,P ) un espace probabilisé etPn la mesure empirique supportée p
l’échantillon (X1, . . . ,Xn) de n variables aléatoires i.i.d. tirées selonP. Soit F une classe d
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fonctions à valeurs réelles, mesurables sur(S,A). Pour f ∈ F , notonsFf (t) := P {f � t}
et Fn,f (t) := Pn{f � t}. Etant donnéγ ∈ (0,1], définissonsεn,γ (δ) := 1/(n1−γ /2δγ ). Nous
montrons que si laL2(Pn)-entropie de la classeF croit enε−α avecα ∈ (0,2), alors, pour toute
fonctionf ∈F et tout réelδ ∈ (0,�n), �n = O(n1/2),

Ff

( δ

c(σ )

)
� c(σ )

[
Fn,f (δ)∨ 1

σ
εn,γ (δ)

]
et

Fn,f

( δ

c(σ )

)
� c(σ )

[
Ff (δ)∨ 1

σ
εn,γ (δ)

]
oùγ = 2α

2+α
et c(σ ) ↓ 1 quandσ ↓ 0 (les inégalités ci-dessus sont valides avec forte proba

pour toutσ ∈ (0,1]). De plus, si l’on pose

δn(γ ;f ) := sup{δ: Ff (δ)� εn,γ (δ)} et δ̂n(γ ;f ) := sup{δ: Fn,f (δ)� εn,γ (δ)},

alors pour tout réelγ > 2α
2+α

δ̂n(γ ;f )
δn(γ ;f ) → 1 quandn → ∞

uniformément surF et avec probabilité 1 (pourγ = 2α
2+α

, le rapport ci-dessus reste strictem
positif et borné). Ces résultats sont motivés par des développements récents en appre
automatique où ils sont utilisés pour borner l’erreur en généralisation des algorithmes d’a
tissage. De plus, nous prouvons d’autres résultats généraux du même genre, nous mon
les conditions imposées sont précises et nous discutons de possibles applications en th
l’apprentissage.
 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Consider a measurable space(S,A) and letF be a class of real valued measura
functions on(S,A). Let {Xn} be a sequence of i.i.d. random variables, defined
probability space(�,�,P) and taking values in(S,A) with common distributionP. In
what follows,Pn denote the empirical measure based on the sample(X1, . . . ,Xn):

Pn(A) := n−1
n∑

i=1

IA(Xi), A⊂ S.

Given a real valued measurable functionf on (S,A), let

Ff (δ) := P {f � δ}, Fn,f (δ) := Pn{f � δ}.

In this paper, we prove upper and lower bounds onFf in terms ofFn,f uniformly in
f ∈F under suitable conditions on the metric entropy of the classF .
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It is well known that, even ifF is aP -Donsker class, the class of setsC := {{f � t}:
f ∈F, t ∈ R} does not have to beP -Glivenko–Cantelli, i.e., the supremum

sup
f∈F

sup
t∈R

∣∣Fn,f (t)− Ff (t)
∣∣

does not necessarily converge to 0. Koltchinskii and Panchenko [9] studied th
convergence ofFn,f to Ff in Lévy distance (uniformly overF ) and proved that thi
convergence is equivalent toF being aP -Glivenko–Cantelli class with the rate
convergence depending on the complexity of the class. The Lévy distance measu
closeness of two distribution functions not at the same point, but at two different p
(close to each other): if the Lévy distance betweenFn,f andFf is smaller thanε, then
for all t

Ff (t) � Fn,f (t + ε)+ ε and Fn,f (t) � Ff (t + ε)+ ε.

However, the closeness of the distributions in Lévy distance tells almost nothing
boundingFf (δ) in terms ofFn,f for thosef ∈ F andδ > 0 for whichFn,f (δ) is small,
so, one should try to controlthe ratioof Ff andFn,f rather than theirdifference. There
exists an important circle of problems in learning theory (related to the develop
of so-calledlarge margin classification algorithms, see the discussion below) whe
this question is crucial since the large margin algorithms tend to output functionsf for
which Fn,f (δ) remains small for large enough values ofδ. In such cases, it is rathe
natural to measure the closeness ofFn,f to Ff in a different way (that can be viewe
as a “multiplicative” version of Lévy distance). Namely, it is important to know tha
c > 1 that is sufficiently close to 1 with a high probability

Ff (δ)� cFn,f (cδ) and Fn,f (δ)� cFf (cδ)

for all f ∈ F and for allδ in a broad enough interval (unfortunately, it is impossible
have this type of bounds for allδ). To prove these bounds will be our goal and we g
below more precise description of the main results.

Note that Koltchinskii and Panchenko [9] dealt with a problem of boundingFf (0)
by an expression involvingcFn,f (δ) (bounding the generalization error in the contex
learning theory) which can be viewed as a special case of the above problem; the c
c involved in their bounds was large. It might be also of some interest to obtain bo
of the above type that take into account both the translations and the dilations
real line (i.e., combine the closeness in standard “additive” and in “multiplicative” L
distances), but there seems to be no obvious application of such more general bo
the moment.

For eachγ ∈ (0,1], define

εn,γ (δ) := 1
1−γ /2 γ

.

n δ
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In particular, we show that if theL2(Pn)-entropy of the classF grows asε−α with some
α ∈ (0,2), then forγ � 2α

2+α

P

{
∃f ∈F ∃δ � n1/2

t1/γ
: Ff

(
δ

c(σ )

)
� c(σ )

[
Fn,f (δ)∨ 1

σ
εn,γ (δ)

]}
�A(σ)exp{−θt}

(1.1)
and

P

{
∃f ∈F ∃δ � n1/2

t1/γ
: Fn,f

(
δ

c(σ )

)
� c(σ )

[
Ff (δ)∨ 1

σ
εn,γ (δ)

]}
�A(σ)exp{−θt},

(1.2)
whereA(σ) < +∞, σ ∈ (0,1] andc(σ ) ↓ 1 asσ ↓ 0 (the bounds hold for allt > 0 and
σ ∈ (0,1]; θ is a numerical constant).

Let now

δn(γ ;f ) := sup
{
δ: Ff (δ)� εn,γ (δ)

}
(1.3)

and

δ̂n(γ ;f ) := sup
{
δ: Fn,f (δ)� εn,γ (δ)

}
. (1.4)

These quantities provide the size ofδ for whichFn,f (δ) or Ff (δ) in bounds (1.1), (1.2
start exceeding the termεn,γ (δ) related to the behavior of the entropy of the classF .

Thus, for all δ � δ̂n(γ ;f ), Ff (δ/c) is bounded from above bycFn,f (δ) and, for all
δ � δn(γ ;f ), Fn,f (δ/c) is bounded from above bycFf (δ) (with high probability and
with somec > 1). We also show that, forγ > 2α

2+α
, such bounds hold for allc > 1 (for

all large enoughn).
We also study the asymptotic behavior of the ratiosδ̂n(γ ;f )/δn(γ ;f ) uniformly in

f ∈F . We show that, for allγ > 2α
2+α

(whereα is again the exponent of the entropy), t
ratios converge to 1 uniformly inF with probability 1. Forγ = 2α

2+α
, the ratios are known

to be bounded away both from 0 and from infinity uniformly inF with probability 1 (see
Koltchinskii and Panchenko [9]). We give examples showing that forγ < 2α

2+α
, the ratios

can tend to 0 or to infinity and also showing the optimality of the bounds (1.1), (1.2
The proofs of the main results are based on Talagrand’s concentration inequali

empirical processes (see Talagrand [17,18] and also Massart [14], where the ineq
are given in the form we are using them here) along with entropy type bounds
Dudley [5], van der Vaart and Wellner [20]). The method is close to the one us
Koltchinskii and Panchenko [8,9]. It is based on iterative localization of comple
of function classes with application of the concentration inequalities and the en
bounds at each iteration. The method can be of independent interest in the pr
related to bounding the ratios of empirical distributions to true distributions [6] as
as in nonparametric statistics (see Massart [15] for some close ideas).

Since the classI ◦F := {I(−∞,t ] ◦f : f ∈F, t ∈ R} can have large complexity (e.g.,
is not necessarily Donsker) and it is hard to relate its entropy directly to the entropy
classF, we had to approximate this class by the classes�◦F := {ϕ ◦f : f ∈F, ϕ ∈�}
with a properly choosen family of Lipschitz functions� approximating the indicator
of the intervals(−∞, t]. Such a smoothing allows us then to estimate the entrop
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� ◦F in terms of the entropy ofF, but the “price” of this approximation is the need
compareFf andFn,f at different points.

The problems of this nature are motivated by some recent developments in m
learning. More precisely, we deal with so-calledbinary classificationproblem, described
below (see also Devroye, Györfi and Lugosi [4]). Suppose that the spaceS is replaced
by S × {−1,1}. Functionsf in the previous definitions will be now replaced
(x, y) �→ yf (x). In a couple(x, y) ∈ S × {−1,1}, x is interpreted as an “instance
and y as a “label” assigned to this instance (we consider binary classification
for simplicity, all the results apply also to multiclass problems the same way as
done in Koltchinskii and Panchenko [9]). Let(X,Y ) be a random couple inS × {−1,1}
with unknown distributionP. It is supposed that the instanceX is observable, but th
label Y is not, and it is to be predicted based on the observation ofX. We will call
a function f :S �→ R a classifier. A classifierf predicts the label+1 if f (X) > 0
and the label−1 if f (X) < 0 (if f (X) = 0, f does not return any label). With th
conventions, the probability thatf either misclassifies, or does not return the la
is P {(x, y): yf (x) � 0}. In machine learning literature, this quantity is referred to
generalization error. The goal of learning is to find a classifier (in a given classF )
with a small generalization error. SinceP is unknown, it is replaced by the empiric
distributionPn based onn i.i.d. training examples(X1, Y1), . . . , (Xn,Yn) (independen
copies of(X,Y )). An important problem is to develop sharp probabilistic bounds on
generalization error of classifierŝf ∈F based on the training data. The quantityYf (X)

is often calledclassification marginof f. Correspondingly,

Ff (t) := P
{
(x, y): yf (x) � t

}
is called themargin distributionof f and

Fn,f (t) := Pn

{
(x, y): yf (x) � t

}
is called theempirical margin distribution(clearly, the generalization error is equ
to Ff (0) and the training error is Fn,f (0)). There has been a lot of attention to
calledlarge margin classification methods(voting methods, support vector machines
which learning algorithms output classifiers with the empirical margin distribution
is shifted to the right so that oftenFn,f (t) = 0 for positive (large enough) values oft. The
algorithms search for classifiers of this type in rather large function classesF that often
consist of “combinations” of functions from a simpler base classH (the “combinations”
are convex combinations in the case of such methods as boosting, or they m
implemented by large neural networks, etc.) The success of this type of metho
not been understood to the end yet, but it is clear that it has something to do
their ability to produce classifiers with large margin. We refer to Vapnik [21], Anth
and Bartlett [1], Cortes and Vapnik [3], Bartlett [2], Schapire et al. [16], Koltchin
and Panchenko [9] and references therein for the discussion of various aspects
problem.

One of the important results in this area is due to Schapire et al. [16] (see
Bartlett [2] who proved similar results in the context of neural network lear
and Koltchinskii and Panchenko [9], Koltchinskii, Panchenko and Lozano [11]
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refined and generalized these results using the methods of Gaussian and em
processes). Schapire et al. [16] considered the classF := conv(H), whereH is a Vapnik–
Chervonenkis class with VC-dimensionV (H) and showed that for a givenα ∈ (0,1)
with probability at least 1− α for all f ∈ conv(H)

Ff (0) � inf
δ

[
Fn,f (δ)+ C√

n

(
V (H) log2(n/V (H))

δ2
+ log

(
1

α

))1/2]
.

Let δ̂(f ) denote the solution of the equationδFn,f (δ) = √
V (H)/n. Plugging in the

above boundδ = δ̂(f ), one gets (up to logarithmic factors) the generalization erro
a classifierf from the convex hull of the order O((1/δ̂(f ))

√
V (H)/n). Boosting and

other large margin classification methods tend to produce classifiers with large va
δ̂(f ), so the above bound provides a partial explanation of their success.

The quantitiesδn(γ ;f ) andδ̂n(γ ;f ) were introduced by Koltchinskii and Panchen
[9]. They were calledtheγ -marginandthe empiricalγ -margin, respectively, and the
can be used to bound the generalization error of large margin classifiers. Indeed,

εn(γ ;f ) := εn,γ
(
δn(γ ;f )) and ε̂n(γ ;f ) := εn,γ

(
δ̂n(γ ;f )). (1.5)

We clearly have

εn(γ ;f ) ∈ [Ff

(
δn(γ ;f )− 0

)
,Ff

(
δn(γ ;f ))],

ε̂n(γ ;f ) ∈ [Fn,f

(
δ̂n(γ ;f )− 0

)
,Fn,f

(
δ̂n(γ ;f ))]. (1.6)

Then, by the bounds (1.1), (1.2) onFf , one gets that with high probability th
generalization errorFf (0) is bounded bycε̂n(γ ;f ) for all f ∈ F, whereγ � 2α

2+α
(if

γ > 2α
2+α

, then the result is true with anyc > 1 for all large enoughn).
The closeness of the ratios ofγ -margins to 1 (which is equivalent to the closenes

the ratio ε̂n(γ , f )/εn(γ, f ) to 1 and which allows one to usêεn(γ ;f ) as an estimat
of εn(γ ;f )) was first observed in the experiments of Koltchinskii, Panchenko
Lozano [10–12] in the case of classifiersf produced by a well known learning algorith
AdaBoost. On the other hand, it was proved by Koltchinskii and Panchenko [9] (a
follows from Theorem 1 below) that for allγ � 2α

2+α
we have

P

{
∀f ∈F : A−1 � δ̂n(γ ;f )

δn(γ ;f ) � A

}
� 1−B log2 log2nexp

{
−nγ/2

2

}
(with some constantsA,B > 0).

It is easy to see that the quantity

ε̂n(γ ;f ) = 1

n1−γ /2δ̂n(γ ;f )γ (1.7)

involved in the upper bound on the generalization errorbecomes smallerasγ decrease
from 1 to 0. The Schapire–Freund–Bartlett–Lee type of bounds correspond to the
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choice of γ (γ = 1). In the case whenF is the symmetric convex hull of a VC
classH with VC-dimensionV (H) the value ofα is equal to 2(V (H)− 1)/V (H) <

2 that allows us to haveγ < 1, improving the previously known bound. In fac
Koltchinskii, Panchenko and Lozano [10–12] computed the empiricalγ -margins of
classifiers obtained in consecutive rounds of boosting and observed that the bou
their generalization error in terms ofγ -margins hold even for much smaller values ofγ,

which leads to a conjecture that such classifiers belong, in fact, to a classF ⊂ conv(H)

of a smaller entropy than the entropy of the whole convex hull. Koltchinskii, Panch
and Lozano [11,12] consider the problem of adapting margin type quantities t
complexity of the classifier. Recently, Kégl, Linder and Lugosi [7] suggested some
interesting margin type bounds on generalization error in which the shattering dime
of the class is used instead of itsL2(Pn)-entropy.

Our main focus in this paper is bounding not only the generalization error, but al
true margin distribution functionFf . This might be essential in the development of la
margin classification methods since in many cases the goal may be to find a cla
f ∈F that not only has a small generalization error, but also has a large true margi
such thatFf (δ) remains small for large enough values of the marginδ > 0). Recent work
of Tsybakov [19] shows that ifη(x) := E(Y |x = x) (this regression function defines t
optimal Bayes classifier), then the convergence rates of empirical risk minimizers
Bayes risk crucially depend on the behavior of the distribution function of|η|. Estimation
of this margin type distribution function might be an important step in the develop
of adaptive classification algorithms (for which optimal convergence rates to the B
risk are attained), and bounding the true margin distribution by the empirical one
be very useful in the analysis of such methods.

In the current paper, we attempt to address these problems and we get the
outlined at the beginning of the Introduction, but under more general assumptio
the entropy of the classF . Our results also clarify the meaning ofγ -margins and give
a mathematical explanation of some of their intriguing properties observed earlier
experiments (such as the closeness to 1 of the ratio of the empiricalγ -margin to the true
γ -margin).

2. Main results

In this section we introduce some more general margin type quantities whose be
is related to the growth of the entropy of the classF .

Given a metric space(T , d), letHd(T ; ε) be theε-entropy ofT with respect tod, i.e.,

Hd(T ; ε) := logNd(T ; ε),

whereNd(T ; ε) is the minimal number of balls of radiusε coveringT . For a probability
measureQ on (S;A), dQ,2 will denote the metric of the spaceL2(S;dQ): dQ,2(f ;g) :=
(Q|f − g|2)1/2.
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Let , be the class of strictly concave nondecreasing functionsψ on [0,+∞) with
ψ(0) = 0 and such that

ψ(x)

x
→ 0 asx → ∞,

ψ(x)

x
→ +∞ asx → 0.

,0 will denote the class of functionsψ ∈ , such that

ψ(xy) �ψ(x)ψ(y), x, y � 0.

Suppose the following bound on Dudley’s entropy integral holds with someDn =
Dn(X1, . . . ,Xn) > 0 such thatEDn < ∞ and withψ ∈,:

x∫
0

H
1/2
dPn,2

(F, u) du� Dnψ(x), x > 0 a.s. (2.1)

The functionψ characterizes the complexity of the classF and it will be involved in
the definition ofψ-bounds andψ-margins below.

Assuming thatψ ∈, and givenε > 0, denote byδψn (ε) the solution of the equation

ε = 1

δ
√
n
ψ
(
δ
√
ε
)

(2.2)

with respect toδ. Similarly, for a fixedδ > 0, εψn (δ) denotes the solution of (2.2
with respect toε (sinceψ is strictly concave, the solutions are unique in both cas
Concavity ofψ implies that the functionϕ(x) := ψ(x)

x
is nonincreasing (also, sinc

ψ ∈,, ϕ((0,+∞))= (0,+∞)), and we have

δψn (ε)= ϕ−1(
√
εn )√
ε

.

Given a functionf, we definetheψ-boundas

εψn (f ) := inf
{
ε � 0: Ff

(
δψn (ε)

)
� ε

}
andthe empiricalψ-boundas

ε̂ψn (f ) := inf
{
ε � 0: Fn,f

(
δψn (ε)

)
� ε

}
.

The “dual” quantities will be calledtheψ-margins:

δψn (f ) := sup
{
δ � 0: Ff (δ) � εψn (δ)

}
and

δ̂ψ(f ) := sup
{
δ � 0: Fn,f (δ) � εψ(δ)

}
.
n n
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An easy consequence of these definitions is that

εψn (f ) = εψn
(
δψn (f )

)
and ε̂ψn (f ) = εψn

(
δ̂ψn (f )

)
. (2.3)

Clearly, we also have

εψn (f ) ∈ [Ff

(
δψn (f )− 0

)
,Ff

(
δψn (f )

)]
and

ε̂ψn (f ) ∈ [Fn,f

(
δ̂ψn (f )− 0

)
,Fn,f

(
δ̂ψn (f )

)]
.

(2.4)

In some of the statements and in the proofs below, we will need the truncated ve
of these quantities. Namely, given a functionf and t > 0, we definethe truncatedψ-
boundandthe truncated empiricalψ-boundas

εψn (f ; t) := inf
{
ε � t

n
: Ff

(
δψn (ε)

)
� ε

}
and

ε̂ψn (f ; t) := inf
{
ε � t

n
: Fn,f

(
δψn (ε)

)
� ε

}
.

Thetruncatedψ-marginsare defined as follows:

δψn (f ; t) := sup
{
δ � δψn

(
t

n

)
: Ff (δ) � εψn (δ)

}
and

δ̂ψn (f ; t) := sup
{
δ � δψn

(
t

n

)
: Fn,f (δ) � εψn (δ)

}
.

The properties similar to (2.3), (2.4) hold in the truncated case as well.
The result below was proved in Koltchinskii, Panchenko and Lozano [12].

THEOREM 1. – Suppose that the condition(2.1) holds. Then there exist absolu
constantsA,B > 0 such that forĀ := A(1+ EDn)

2 and for all t � 2 logn

P
{∀f ∈F : Ā−1ε̂ψn (f ; t) � εψn (f ; t) � Āε̂ψn (f ; t)}
� 1−B log2 log2

n

t
exp
{

− t

2

}
. (2.5)

The next theorem and its corollary describes the asymptotic behavior of the ra
ψ-bounds andψ-margins.

THEOREM 2. – Suppose the condition(2.1)holds with someψ ∈, such that

ψ(x) � 2
√

2x
√

log
e

x
, x � 1,

and with

sup
n

EDn < +∞.

Suppose also that

supP {f � u} → 0 asu→ ∞. (2.6)

f∈F
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Then

P

{
0< lim inf

n
inf
f∈F

ε̂ψn (f )

ε
ψ
n (f )

� lim sup
n

sup
f∈F

ε̂ψn (f )

ε
ψ
n (f )

< +∞
}

= 1. (2.7)

Moreover,

P

{
sup
f∈F

∣∣∣∣ ε̂φn (f )
ε
φ
n (f )

− 1
∣∣∣∣→ 0 asn → ∞

}
= 1 (2.8)

for anyφ ∈, such that

φ(x)

ψ(x)
→ +∞ asx → 0. (2.9)

COROLLARY 1. – Suppose that the conditions of Theorem2 hold withψ ∈,0. Then

P

{
0< lim inf

n
inf
f∈F

δ̂ψn (f )

δ
ψ
n (f )

� lim sup
n

sup
f∈F

δ̂ψn (f )

δ
ψ
n (f )

< +∞
}

= 1. (2.10)

If nowφ ∈,0, φ(1) = 1 and

φ(x)

ψ(x)
→ +∞ asx → 0, (2.11)

then

P

{
sup
f∈F

∣∣∣∣ δ̂φn (f )
δ
φ
n (f )

− 1
∣∣∣∣→ 0 asn → ∞

}
= 1. (2.12)

The following theorem provides upper bounds onFf in terms ofFn,f and onFn,f in
terms ofFf uniformly over the classF satisfying the entropy condition (2.1).

THEOREM 3. – Suppose that condition(2.1)holds with someψ ∈ , such that

ψ(x) � x

√
log

e

x
, x � 1

and with

sup
n

EDn < +∞.

Then there existθ > 0 and for anyσ ∈ (0,1] A(σ) < +∞ andc := c(σ ) � 1, c(σ ) ↓ 1
asσ ↓ 0 such that for allσ ∈ (0,1] and all t � 2 logn

P

{
∃f ∈F ∃δ � δψn

(
t

n

)
: Ff

(
δ

c(σ )

)
� c(σ )

[
Fn,f (δ)∨ 1

σ
εψn (δ)

]}
�A(σ)exp{−θt}

(2.13)
and

P

{
∃f ∈F ∃δ � δψn

(
t

n

)
: Fn,f

(
δ

c(σ )

)
� c(σ )

[
Ff (δ)∨ 1

σ
εψn (δ)

]}
� A(σ)exp{−θt}.

(2.14)



V. KOLTCHINSKII / Ann. I. H. Poincaré – PR 39 (2003) 943–978 953

r

previ-
skii,
Remark. – It follows from the proofs below thatc(σ ) in Theorem 3 is of the orde
1 + O(σ λ) for someλ > 0 and thatA(σ) grows as a power ofσ asσ → 0. It would
be interesting to determine the best (the largest) possible value of the exponentλ for a
given exponent ofA(σ).

The next statement follows almost immediately.

THEOREM 4. – Suppose that condition(2.1)holds with someψ ∈ , such that

ψ(x) �
√
ax

√
log

e

x
, x � 1

(wherea > 2/θ, θ being the constant in(2.13), (2.14)). Suppose also that

sup
n

EDn < +∞

and condition(2.6)holds. Then, for for somec > 1, with probability1

∃N � 1 ∀n� N ∀f ∈F ∀δ � δ̂ψn (f ): Ff

(
δ

c

)
� cFn,f (δ) (2.15)

and

∃N � 1 ∀n� N ∀f ∈F ∀δ � δψn (f ): Fn,f

(
δ

c

)
� cFf (δ). (2.16)

Moreover, letφ ∈, be such that condition(2.9)holds. Then with probability1

∀c > 1 ∃N � 1 ∀n�N ∀f ∈F ∀δ � δ̂φn (f ): Ff

(
δ

c

)
� cFn,f (δ). (2.17)

and

∀c > 1 ∃N � 1 ∀n�N ∀f ∈F ∀δ � δφn (f ): Fn,f

(
δ

c

)
� cFf (δ). (2.18)

The proofs of the results are based on the following theorem that refines
ous bounds of this type obtained by Koltchinskii and Panchenko [9], Koltchin
Panchenko and Lozano [12].

THEOREM 5. – Suppose that condition(2.1) holds with someψ ∈ ,. Then, for all
δ > 0 and for all ε > 0, σ ∈ (0,1] such thatεσ � εψn (δ) ∨ 2 logn

n
, the following bounds

hold

P
{∃f ∈F Fn,f (δ)� ε andFf

(
Aν(σ )δ

)
�Bλ(σ )ε

}
�D

(
log2

log2 (εσ )
−1

1+ log2σ
−1

∨ 1
)

exp
{

−nσε

2

}
and
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at

m

P
{∃f ∈F Ff (δ) � ε andFn,f

(
Aν(σ )δ

)
�Bλ(σ )ε

}
�D

(
log2

log2 (εσ )
−1

1+ log2σ
−1

∨ 1
)

exp
{

−nσε

2

}
,

whereAν(σ ) := (1 − Aσν) ∨ 1
2, Bλ(σ ) := 1 + Bσλ, ν, λ > 0, λ � 1/2, λ + 4ν � 1,

A= Ā(1+ EDn)
2, B = �B(1+ EDn)

2, andĀ, �B, D are numerical constants.

3. Proofs of the main results

Proof of Theorem2. – First we show, following Koltchinskii and Panchenko [9], th
conditions (2.6) and (2.1) imply that with probability 1

lim
M→∞ lim sup

n→∞
sup
f∈F

Pn{f �M} = 0. (3.1)

Indeed, letg be the function fromR into [0,1] that is equal to 0 foru�M − 1, equal to
1 for u >M and is linear in between. Then

sup
f∈F

Pn{f �M} � sup
f∈F

Png(f )

� sup
f∈F

Pg(f )+ ‖Pn −P ‖G � sup
f∈F

P {f �M − 1} + ‖Pn − P ‖G,

where

G := {g ◦ f : f ∈F} ∪ {0}.
Since the first term tends to 0 asM → ∞, it is enough to show that‖Pn − P ‖G → 0 as
n→ ∞ a.s. By concentration inequalities, this reduces to showing thatE‖Pn−P ‖G → 0
asn→ ∞, which in turn would follow (by a standard symmetrization argument) fro

E

∥∥∥∥∥n−1
n∑

i=1

εiδXi

∥∥∥∥∥
G

→ 0,

where{εi} are i.i.d. Rademacher random variables independent of{Xi}. The entropy
bound for the Rademacher process yields

Eε

∥∥∥∥∥n−1
n∑

i=1

εiδXi

∥∥∥∥∥
G

� const√
n

√
2∫

0

H
1/2
dPn,2

(G;u)du.

Sinceg is Lipschitz with constant 1, we have

dPn,2(g ◦ f1, g ◦ f2) � dPn,2(f1, f2), f1, f2 ∈ F .

This easily gives (see (3.20) in the proof of Theorem 5)

H
1/2
d (G;u) � H

1/2
d (F;u)+ 1.
Pn,2 Pn,2
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.

is

s

t

Therefore, under the condition (2.1) and the condition supn EDn < +∞

E

∥∥∥∥∥n−1
n∑

i=1

εiδXi

∥∥∥∥∥
G

� const√
n

(
EDnψ

(√
2
)+ √

2
)→ 0,

which completes the proof of (3.1).
We will prove only (2.8). The proof of (2.7) is very similar (but somewhat easier)
Let σ ∈ (0,1] be an arbitrary (small) number. Denotetn := 2+γ

σ
logn (with γ > 0).

Since φ(x)

ψ(x)
→ +∞ asx → 0, for anyσ ∈ (0,1] there existsκ := κ(σ ) such that for

all x � κ ψ(x) � σφ(x). Suppose thatδψn (εσ )
√
εσ � κ . Sinceφ is nondecreasing, th

implies forσ ∈ (0,1) that

φ(δψn (εσ )
√
ε )

δ
ψ
n (εσ )

√
n

� φ(δψn (εσ )
√
εσ )

δ
ψ
n (εσ )

√
n

� 1

σ

ψ(δψn (εσ )
√
εσ )

δ
ψ
n (εσ )

√
n

= 1

σ
εσ = ε.

Using the fact that the concavity ofφ implies that the functionδ �→ φ(δ
√
ε )/δ

√
n is

nonincreasing, we easily conclude from the definitions ofδψn , δ
φ
n that

δψn (εσ )� δφn (ε). (3.2)

On the other hand, ifδψn (εσ )
√
εσ > κ , we have

σε = ψ(δψn (εσ )
√
εσ )

δ
ψ
n (εσ )

√
n

� ψ(κ/
√
εσ

√
εσ )

κ/
√
εσ

√
n

� ψ(κ)

κ

√
εσ

n
,

which implies

ε �
(
ψ(κ)

κ

)2 1

σn
.

Sincetn → ∞ asn → ∞, for all large enoughn we have

tn >

(
ψ(κ)

κ

)2 1

σ
.

Therefore, for allε > tn/n, we haveδψn (εσ )
√
εσ � κ , which, as we proved, implie

(3.2).
Next note that the conditionψ(x) � 2

√
2x

√
log(e/x) for x � 1 easily implies tha

ϕ−1(
√
y ) � e1−y/8 for y � 8 (recall thatϕ(x) = ψ(x)/x). Therefore, for largen, we

have (ifγ < 2)

δφn

(
tn

n

)
� δψn

(
tnσ

n

)
= ϕ−1(

√
tnσ )√

tnσ

√
n � e1−tnσ/8

√
tnσ

√
n = e√

tnσ
n−(2+γ )/8+1/2 → ∞.

(3.3)
Hence, using (2.6) and (3.1),

inf Ff

(
δφn

(
tn
))

→ 1

f∈F n
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and a.s.

inf
f∈F

Fn,f

(
δφn

(
tn

n

))
→ 1,

which implies that a.s. for large enoughn and for allf ∈F

εφn (f ) = εφn (f ; tn) and ε̂φn (f ) = ε̂φn (f ; tn).
Therefore, in the rest of the proof we can replace theφ-bounds by the truncatedφ-
bounds.

By the definition oftn, for all large enoughn we have

tn >

(
ψ(κ)

κ

)2 1

σ
∨ 2

σ
logn∨ 1

σ 2
.

Note that the conditionεσ � εψn (δ) is equivalent to the conditionδ � δψn (εσ ). Therefore,
for ε � tn/n andδ = δφn (ε) we haveεσ � εψn (δ) ∨ 2 logn

n
, which means that the bound

of Theorem 5 hold forε � tn/n andδ = δφn (ε).
Recall thatAν(σ )� 1 �Bλ(σ ). Applying the first bound, we get

P
{∃f ∈F Fn,f

(
δφn (ε)

)
� ε andFf

(
Aν(σ )δ

φ
n (ε)

)
�Bλ(σ )ε

}
�B log2

log2 (εσ )
−1

1+ log2σ
−1

exp
{

−nεσ

2

}
.

Next we setεj := Bλ(σ )
−j . LetJ = {j � 0: εj � tn/n} and

En := {∃j ∈ J ∃f ∈F : Fn,f

(
δφn (εj )

)
� εj andFf

(
Aν(σ )δ

φ
n (εj )

)
�Bλ(σ )εj

}
.

Note that for allj ∈ J

εj � Bλ(σ )
j0−j tn

n
,

wherej0 := inf J . Hence, we have

P(En)�B
∑
j∈J

log2
log2 (εjσ )

−1

1+ log2σ
−1

exp
{

−nεjσ

2

}

�B log2

(
log2 (n/tn)+ log2σ

−1

1+ log2σ
−1

)∑
j�0

exp
{

− tnσ

2
Bλ(σ )

j

}

�B ′(σ ) log2

(
log2(n/tn)+ log2σ

−1

1+ log2σ
−1

)
exp
{

− tnσ

2

}
. (3.4)

Suppose that for somej and for somef ∈ F, ε̂φn (f ; tn) ∈ (εj+1, εj ]. On the eventEc
n,

the inequalityFn,f (δ
φ
n (εj )) � εj implies thatFf (Aν(σ )δ

φ
n (εj )) � Bλ(σ )εj . Since, for

ϕ̄(x) := φ(x)

x
,

Aν(σ )δ
φ
n (εj ) = Aν(σ )ϕ̄

−1(
√
εjn )√

εj
�

ϕ̄−1
(√

Aν(σ )−2εjn
)√

Aν(σ )−2εj

= δφn
(
Aν(σ )

−2εj
)
,
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all
we also haveFf (δ
φ
n (Aν(σ )

−2εj )) � Bλ(σ )εj , which implies

Ff

(
δφn
(
Aν(σ )

−2Bλ(σ )ε̂
φ
n (f ; tn)))� Bλ(σ )

2ε̂φn (f ; tn).
Therefore, on the eventEc

n, we get for allf ∈F ,

εφn (f ; tn) �
(
Aν(σ )

−2Bλ(σ )∨Bλ(σ )
2)ε̂φn (f ; tn).

It follows from (3.4) that

P
{∃f ∈F : εφn (f ; tn)�

(
Aν(σ )

−2Bλ(σ )∨Bλ(σ )
2)ε̂φn (f ; tn)}

�B ′(σ ) log2

(
log2(n/tn)+ log2σ

−1

1+ log2σ
−1

)
exp
{

− tnσ

2

}
.

Quite similarly, using the second bound of Theorem 5, one can prove that

P
{∃f ∈F : ε̂φn (f ; tn)�

(
Aν(σ )

−2Bλ(σ )∨Bλ(σ )
2)εφn (f ; tn)}

�B ′(σ ) log2

(
log2(n/tn)+ log2σ

−1

1+ log2σ
−1

)
exp
{

− tnσ

2

}
.

By the definition oftn we have for allσ > 0

∑
n

B ′(σ ) log2

(
log2(n/tn)+ log2σ

−1

1+ log2σ
−1

)
exp
{

− tnσ

2

}
<+∞.

By Borel–Cantelli lemma, we conclude that with probability 1, eventually (for
largen), we have for allf ∈F

ε̂φn (f ; tn) < (Aν(σ )
−2Bλ(σ )∨Bλ(σ )

2)εφn (f ; tn)
and

εφn (f ; tn) < (Aν(σ )
−2Bλ(σ )∨Bλ(σ )

2)ε̂φn (f ; tn).
Since the above bounds hold for allσ > 0 andAν(σ ) → 1, Bλ(σ ) → 1, the result
follows. ✷

Proof of Corollary1. – The conditionψ(xy) � ψ(x)ψ(y) easily implies thatϕ(xy) �
ϕ(x)ϕ(y) andϕ−1(xy) � ϕ−1(x)ϕ−1(y). Hence, for allε > 0

δψn (ε) = ϕ−1(
√
εn )√
ε

= √
c
ϕ−1(

√
c−1cεn )√
cε

�
√
cϕ−1(c−1/2)δψn (cε),

which implies for allδ

cεψn (δ)� εψn

(
δ√

cϕ−1(c−1/2)

)
.

Sincec �→ c1/2ϕ−1(c−1/2) is an increasing continuous function and

c1/2ϕ−1(c−1/2)→ ∞ asc → ∞, c1/2ϕ−1(c−1/2)→ 0 asc → 0,
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ntly
f

for all A> 0 there existsc := C(A) > 0 such that

c1/2ϕ−1(c−1/2)= A.

Moreover,C(A) → ∞ asA→ ∞. Therefore, we have the following bound for allδ:

C(A)εψn (δ) � εψn

(
δ

A

)
.

Now, the assumption̂δψn (f ) � 1
A
δψn (f ) implies that

ε̂ψn (f ) = εψn
(
δ̂ψn (f )

)
� εψn

(
A−1δψn (f )

)
� C(A)εψn

(
δψn (f )

)= C(A)εψn (f ).

Therefore,

lim sup
n

sup
f∈F

ε̂ψn (f )

ε
ψ
n (f )

< C(A)

implies

lim inf
n

inf
f∈F

δ̂ψn (f )

δ
ψ
n (f )

>
1

A
.

Quite similarly,

lim inf
n

inf
f∈F

ε̂ψn (f )

ε
ψ
n (f )

>
1

C(A)

implies

lim sup
n

sup
f∈F

δ̂ψn (f )

δ
ψ
n (f )

< A.

Since C(A) → ∞ as A → ∞, the first statement of the corollary follows fro
Theorem 2.

The proof of the second statement is very similar if one takes into account th
conditionφ(1) = 1 implies

c1/2ϕ̄−1(c−1/2) ↓ 1 asc ↓ 1,

whereϕ̄(x) = φ(x)/x, which allows us to show that

C(A)εφn (δ)� εφn

(
δ

A

)
with C(A) ↓ 1 asA ↓ 1. ✷

Proof of Theorem3. – First note that it is enough to prove the bounds for sufficie
largen (since it is assumed thatt � 2 logn, for small enoughn the right-hand sides o
the inequalities can be made larger than 1 by a proper choice ofA(σ) which makes them
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trivial). Also, we are assuming in what follows in the proof that, for givent � 2 logn
andσ, ε andδ are such that

εσ � εψn (δ) � t

n
.

Now, note that for all largen the condition

εσ � t

n
� 2 logn

n

implies that

log2
log2(εσ )

−1

1+ log2σ
−1

� log2 log2(εσ )
−1 � enεσ/6.

Therefore, it follows from Theorem 5 that with somec = c(σ ) ↓ 1 asσ ↓ 0 we have
(under the assumptionεσ � εψn (δ))

P

{
∃f ∈F : Fn,f (δ)� ε andFf

(
δ

c

)
� cε

}
� D e−nεσ/3.

Note also thatεψn (δ) � t
n

iff δ � δψn (
t
n
) andεσ � εψn (δ) iff δ � δψn (εσ ). Denote

δj := δψn

(
t

n

)
(1+ σ )−j , j = 0,1,2, . . . ,

and let

J :=
{
j : δψn (εσ )� δj � δψn

(
t

n

)}
.

Denote also

E :=
{

∃f ∈F ∃j ∈ J : Fn,f (δj ) � ε andFf

(
δj

c

)
� cε

}
.

Then

P(E)� D
log(δψn (t/n)/δ

ψ
n (εσ ))

log(1+ σ )
exp
{

−nεσ

3

}
.

Since

δψn (t/n)

δ
ψ
n (εσ )

= ϕ−1(
√
t )√

t

√
nεσ

ϕ−1(
√
nεσ )

,

we get, using thatϕ(x) � √
log(e/x), x � 1, that for all largen

1
−1

√ � e−1+nεσ ,

ϕ ( nεσ )
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which implies

log
δψn (t/n)

δ
ψ
n (εσ )

� 1

2
log(nεσ )+ nεσ − 1+ log

ϕ−1(
√
t )√

t
� 2nεσ.

Then, for large enoughn andnεσ � t � 2 logn, we have

P(E)� D
2nεσ

log(1+ σ )
exp
{

−nεσ

3

}
� 4D

σ
exp
{

−nεσ

4

}
.

On the eventEc, for any j ∈ J and for anyδ ∈ (δj , δj−1], the conditionFn,f (δ) � ε

impliesFn,f (δj ) � ε, which in turn impliesFf (δj/c) � cε and henceFf (δ/c(1+ σ ))�
cε. Replacingc by c(1+ σ ) and 4D by D, this yields

P

{
∃f ∈F ∃δ ∈

[
δψn (εσ ), δ

ψ
n

(
t

n

)]
: Fn,f (δ) � ε andFf

(
δ

c

)
� cε

}
� D

σ
exp
{

−nεσ

4

}
.

Next we set

εj := (1+ σ )j
1

σ

t

n

and introduce the event

F :=
{

∃f ∈F ∃j � 0 ∃δ ∈
[
δψn (εjσ ), δ

ψ
n

(
t

n

)]
: Fn,f (δ)� εj andFf

(
δ

c

)
� cεj

}
.

We get

P(F )� D

σ

∞∑
j=0

e−nεj σ/4 = D

σ

∞∑
j=0

exp
{

− t (1+ σ )j

4

}

� D

σ
e−t/4

∞∑
j=0

e−tjσ/4 = D

σ
e−t/4(1− e−tσ/4)−1

,

where we used a simple inequality(1+ σ )j − 1 � jσ . Note that, forσ < 1/2,

1− e−tσ/4 �
(
tσ

4

)
e−tσ/4 �

(
tσ

4

)
e−t/8

and forσ � 1/2

1− e−tσ/4 � 1− e−t/8 � 1

2
,

since t � 2 logn andn can be assumed large enough. This yields (with someD) the
bound

P(F )� D

2
e−t/8.
σ
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to
On the eventFc, for anyj , for anyε ∈ (εj−1, εj ], for all f ∈ F and for any

δ ∈
[
δψn (εσ ), δ

ψ
n

(
t

n

)]
⊂
[
δψn (εjσ ), δ

ψ
n

(
t

n

)]
,

the conditionFn,f (δ) � ε impliesFn,f (δ) � εj , which implies thatFf (δ/c) � cεj and
henceFf (δ/c) � c(1+ σ )ε. If we replacec by c(1+ σ ), the above remarks allow us
show that

P

{
∃f ∈F ∃ε � t

σn
∃δ ∈

[
δψn (εσ ), δ

ψ
n

(
t

n

)]
: Fn,f (δ) � ε andFf

(
δ

c

)
� cε

}
� D

σ 2
exp
{

− t

8

}
.

If δ � δψn (t/n) and

ε := Fn,f (δ)∨ εψn (δ)

σ
,

we haveεψn (δ) � t/n and henceε � t/(σn). At the same time, we haveεσ � εψn (δ),
which impliesδ � δψn (εσ ). Therefore, we obtain

P

{
∃f ∈F ∃δ � δψn

(
t

n

)
: Ff

(
δ

c

)
� c

[
Fn,f (δ)∨ εψn (δ)

σ

]}
� D

σ 2
exp
{

− t

8

}
.

The proof of the second inequality is similar.✷
Proof of Theorem4. – We settn := 1+γ

θ
logn with γ ∈ (0, (aθ)/2 − 1). Theorem 3

implies that the event{
∃f ∈ F ∃δ ∈

[
δ̂ψn (f ), δ

ψ
n

(
tn

n

)]
: Ff

(
δ

c(σ )

)
� c(σ )

σ
Fn,f (δ)

}
occurs with probability at most

A(σ)e−θtn =A(σ)n−1−γ .

By Borel–Cantelli Lemma, this implies that with probability 1

∃N � 1 ∀n�N ∀f ∈F ∀δ ∈
[
δ̂ψn (f ), δ

ψ
n

(
tn

n

)]
: Ff

(
δ

c(σ )

)
� c(σ )

σ
Fn,f (δ). (3.5)

The conditionψ(x) � √
ax

√
log(e/x) for x � 1 implies thatϕ−1(

√
y) � e1−y/a for

y � a, which in turn implies that

δψn

(
tn

n

)
� e−tn/a

√
tn

n1/2 = t−1/2
n n1/2−(1+γ )/(aθ) → ∞.

Since

supP {f � u} → 0 asu→ ∞

f∈F
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wing
2) and

t

e

n

and a.s.

lim
u→∞ lim sup

n→∞
sup
f∈F

Pn{f � u} = 0

(see the proof of Theorem 2), we get

inf
f∈F

Fn,f

(
δψn

(
tn

n

))
→ 1 a.s.

This implies that with probability 1

∃N � 1 ∀n� N ∀f ∈F ∀δ � δψn

(
tn

n

)
: Ff

(
δ

c(σ )

)
� 1 � c(σ )

σ
Fn,f (δ), (3.6)

(provided thatc(σ )/σ > 1). Together with (3.5) this proves (2.15).
The proof of (2.16) is exactly the same.
The proof of (2.17) and (2.18) is also similar, if one takes into account the follo

observations made in the proof of Theorem 2 (specifically, see the derivation of (3.
(3.3)). First, by (3.3), for large enoughn

δφn

(
tn

n

)
� δψn

(
tnσ

n

)
� δψn

(
tn

n

)
.

Therefore,δ � δψn (tn/n) impliesδ � δφn (tn/n), which is equivalent toε := εφn (δ)� tn/n.
Because of this (see the proof of (3.2)), we haveδψn (εσ )

√
εσ � κ , which implies that

δψn (εσ )� δφn (ε)= δ, or, equivalently,εφn (δ) � 1
σ
εψn (δ). This allows us to rewrite the firs

bound of Theorem 3 the following way

P

{
∃f ∈F ∃δ � δψn

(
tn

n

)
: Ff

(
δ

c(σ )

)
� c(σ )

[
Fn,f (δ)∨ εφn (δ)

]}
� A(σ)exp{−θtn}.

(3.7)
By the definition ofδ̂φn (f ), this implies that the event{

∃f ∈F ∃δ ∈
[
δ̂φn (f ), δ

ψ
n

(
tn

n

)]
: Ff

(
δ

c(σ )

)
� c(σ )Fn,f (δ)

}
occurs with probability at mostA(σ)n−1−γ , and, by Borel–Cantelli Lemma (as in th
proof of (3.5)), with probability 1

∃N � 1 ∀n�N ∀f ∈F ∀δ ∈
[
δ̂φn (f ), δ

ψ
n

(
tn

n

)]
: Ff

(
δ

c(σ )

)
� c(σ )Fn,f (δ).

Since we can assume thatc(σ ) > 1 for all σ ∈ (0,1], we can get rid of the restrictio
δ � δψn (tn/n) by exactly the same argument as before (see (3.6)). Givenc > 1, we can
chooseσ small enough so thatc(σ ) < c and conclude that with probability 1

∃N � 1 ∀n� N ∀f ∈ F ∀δ � δ̂φn (f ): Ff

(
δ
)

� cFn,f (δ),

c
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f

nd
an be

at
and since the last events are monotone with respect toc, this completes the proof o
(2.17). Similarly, the second bound of Theorem 3 leads to (2.18).✷

Proof of Theorem5. – The method of the proof was developed in Koltchinskii a
Panchenko [8,9]. Throughout the proof “const” denotes a constant; its values c
different in different places. Define

r0 := 1, rk+1 = (
ε +C

√
rkεσ

)∧ 1 (3.8)

whereC = c(1+EDn) with a sufficiently large constantc > 1 (which will be determined
later in the process of the proof). A simple induction shows that eitherε + C

√
εσ � 1

andrk ≡ 1, orε +C
√
εσ < 1, and in the last case{rk} is a nonincreasing sequence th

converges to the solution̄r of the equation

r̄ = ε +C
√
r̄εσ . (3.9)

A simple computation shows thatr̄ is bounded from above byε(1 + b
√
σ ) with some

constantb > 0. Letdk := rk − r̄ . Then

dk+1 = rk+1 − r̄ = C
√
εσ
(√

rk − √
r̄
)
�C

√
εσ
√
rk − r̄ = C

√
εσ
√
dk.

By induction, this implies that

dk � C1+2−1+···+2−(k−1)
(εσ )2−1+···+2−k = C2(1−2−k)(εσ )1−2−k = (

C
√
εσ
)2(1−2−k)

.

As soon as

2k � log2 (εσ )
−1

1+ (1− λ) log2σ
−1

, (3.10)

we havedk � 2C2εσ λ. If λ � 1/2, we also have in this case (with some constantb)

rk � ε
(
1+ bσ λ

)
.

Next we define

r̃0 := 1, r̃k+1 = C
√
r̃kεσ ∧ 1.

Clearly r̃k � rk for all k � 0. We also have (in the case whenC
√
εσ < 1)

r̃k = C1+2−1+···+2−(k−1)
(εσ )2−1+···+2−k = C2(1−2−k)(εσ )1−2−k = (

C
√
εσ
)2(1−2−k)

.

Let γk := (εσ/r̃k)
1/2 = C2−k−1(εσ )2−k−1

. Then

γk−1 + γk−2 + · · · + γ0 =C−1[C√
εσ + (C√

εσ
)2−1 + · · · + (C√

εσ
)2−k]

�C−1(C√
εσ
)2−k(

1− (C√
εσ
)2−k)−1

. (3.11)
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e

As far as

2k+1 � ν−1 log2 (εσ )
−1

log2σ
−1 + (4ν)−1

, (3.12)

we have (
C

√
εσ
)2−k

� 2−1/4
√
Cσν

and hence

γk−1 + γk−2 + · · · + γ0 � 2−1/4C−1/2σ ν
(
1− 2−1/4C1/2σ ν

)−1 � 2C−1/2σ ν, (3.13)

provided thatσ � 2−1/νC−1/(2ν). Note also that ifε < C−4, then, forσ ∈ (0,1], C√
εσ �

(εσ )1/4, which implies

(
C

√
εσ
)2−k

� 2−1/8σ ν/2 � 2−1/8

and

γk−1 + γk−2 + · · · + γ0 � C−1 2−1/8

1− 2−1/8
� 1

2

(for a sufficiently largeC). If σ > 2−1/νC−1/(2ν) andε �C−4, then the inequalities of th
theorem are trivially satisfied by choosing the constantB large enough (so thatBλ(σ )ε >

1). With an exception of this trivial case, we have (assuming that 2C−1/2 � C1/2)

γk−1 + γk−2 + · · · + γ0 �
√
Cσν ∧ 2−1. (3.14)

Note that ifλ+ 4ν � 1, then both (3.10) and (3.12) are satisfied for somek.
Let δ > 0. Define

δ0 = δ, δk := δ(1− γ0 − · · · − γk−1), δk,1/2 = 1

2
(δk + δk+1), k � 1.

Next we setF0 := F , and define recursively

Fk+1 :=
{
f ∈ Fk: Ff (δk,1/2) � ε + C

2

√
rkεσ ∧ 1

}
.

For k � 0, consider a continuous functionϕk from R into [0,1] such thatϕk(u) = 1 for
u� δk,1/2, ϕk(u) = 0 for u� δk , andϕk is linear forδk,1/2 � u� δk . Also, for k � 1, let
ϕ̄k be a continuous function fromR into [0,1] such thatϕ̄k(u) = 1 for u � δk, ϕ̄k(u) = 0
for u � δk−1,1/2, and ϕ̄k is linear for δk � u � δk−1,1/2. It follows from (3.14) that
δk ∈ (δ(1 − aσ ν ∧ 2−1), δ) for all k such that (3.12) holds (with somea > 0). Let us
introduce the following function classes:

Gk := {ϕk ◦ f : f ∈Fk} ∪ {0}, k � 0,

and

�Gk := {ϕ̄k ◦ f : f ∈Fk} ∪ {0}, k � 1.
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some

t

Then, fork � 1,

sup
g∈Gk

Pg2 � sup
f∈Fk

Ff (δk) � sup
f∈Fk

Ff (δk−1,1/2) � ε + C

2
√
rk−1εσ ∧ 1� rk

and

sup
g∈�Gk

Pg2 � sup
f∈Fk

Ff (δk−1,1/2) � ε + C

2
√
rk−1εσ ∧ 1� rk.

(For k = 0, the first inequality also holds sincer0 = 1.) Consider the events

E(k) := {‖Pn − P ‖Gk−1 �K1E‖Pn − P ‖Gk−1 +K2
√
rk−1εσ +K3εσ

}
∩ {‖Pn − P ‖�Gk

� K1E‖Pn − P ‖�Gk
+K2

√
rkεσ +K3εσ

}
, k � 1,

By concentration inequalities of Talagrand [17,18] (see also Massart [14]), for
values of the numerical constantsK1,K2,K3 > 0,

P
((
E(k)

)c)� 2e−nεσ/2.

We setE0 = �,

EN :=
N⋂
k=1

E(k), N � 1.

Clearly,

P
(
Ec

N

)
� 2N e−nεσ/2. (3.15)

We will prove by induction with respect toN the following statement:
For anyN such that

N + 1� log2
1

ν

log2(εσ )
−1

log2σ
−1 + (4ν)−1

, (3.16)

we have on the eventEN :

(i) ∀f ∈F Fn,f (δ) � ε "⇒ f ∈FN

and

(ii) sup
f∈Fk

Fn,f (δk) � rk, 0 � k � N.

The statement holds forN = 0. We assume that it holds for someN � 0, such tha
N + 1 still satisfies condition (3.16). Then, on the eventEN ,

sup
f∈Fk

Fn,f (δk) � rk, 0 � k � N,

and

∀f ∈F Fn,f (δ) � ε "⇒ f ∈FN.
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zation

rt and
Suppose thatFn,f (δ)� ε for somef ∈F . The induction assumptions imply thatf ∈FN

on the eventEN . Hence, on the eventEN+1,

Ff (δN,1/2)�Fn,f (δN)+ ‖Pn −P ‖GN

� ε +K1E‖Pn − P ‖GN
+K2

√
rNεσ +K3εσ. (3.17)

Given a classG, let

R̂n(G) :=
∥∥∥∥∥n−1

n∑
i=1

εiδXi

∥∥∥∥∥
G
,

where{εi} is a sequence of i.i.d. Rademacher random variables. The symmetri
inequality yields

E‖Pn −P ‖GN
� 2EIEN

EεR̂n(GN)+ 2EIEc
N
EεR̂n(GN). (3.18)

Using the entropy inequalities for subgaussian processes (see van der Vaa
Wellner [20], Corollary 2.2.8), we get

EεR̂n(GN)� const√
n

(2 supg∈GN Png
2)1/2∫

0

H
1/2
dPn,2

(GN;u)du. (3.19)

By the induction assumptions, on the same eventEN

sup
g∈GN

Png
2 � sup

f∈FN

Fn,f (δN) � rN .

We use the bound on the Lipschitz constants ofϕk−1 andϕ̄k

L = 2(δk−1 − δk)
−1 = 2δ−1γ −1

k−1 = 2

δ

√
r̃k−1

εσ
� 2

δ

√
rk−1

εσ
,

to get

dPn,2(ϕN ◦f ;ϕN ◦g) =
(
n−1

n∑
j=1

∣∣ϕN

(
f (Xj)

)−ϕN

(
g(Xj)

)∣∣2)1/2

� 2

δ

√
rN

εσ
dPn,2(f, g).

By the definition of the classGN ,

H
1/2
dPn,2

(GN ;u) �
√

log
(
NdPn,2

(
F; δ

√
εσu

2
√
rN

)
+ 1

)
.

Since forN � 1,

√
log(N + 1) �

√
logN + log

(
1+ 1

N

)
�
√

logN + 1

N
�
√

logN + 1,
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t

t

we get

H
1/2
dPn,2

(GN;u) �H
1/2
dPn,2

(
F; δ

√
εσu

2
√
rN

)
+ 1. (3.20)

Note that forεσ � εψn (δ) the inequalityψ(δ
√
εσ/2)/(δ

√
n) � εσ holds. Recall also tha

εσ � 2 logn
n

. It follows that, on the eventEN ,

1√
n

(2 supg∈GN Png
2)1/2∫

0

H
1/2
dPn,2

(GN ;u)du� 1√
n

(2rN )1/2∫
0

[
H

1/2
dPn,2

(
F; δ

√
εσu

2
√
rN

)
+ 1

]
du

� 1√
n

2
√
rN

δ
√
εσ

δ
√
εσ/2∫

0

H
1/2
dPn,2

(F;v) dv +
√

2rN
n

� 1√
n

2
√
rN

δ
√
εσ

Dnψ

(
δ
√
εσ√
2

)

+√2rNεσ � 2Dn

√
rN√

εσ
εσ +√2rNεσ � 2(Dn + 1)

√
rNεσ . (3.21)

Now (3.19) and (3.21) imply that on the same event

EεR̂n(GN) � const(1+Dn)
√
rNεσ . (3.22)

SinceEεR̂n(GN+1) � 1, we conclude from (3.15), (3.18) and (3.22) that

E‖Pn −P ‖GN
� const(1+ EDn)

√
rNεσ + 2P

(
Ec

N

)
� const(1+ EDn)

√
rNεσ + 4N e−nεσ/2.

By condition (3.16) and the fact thatεσ � 2 logn/n, we have

4N e−nεσ/2 � 4 log2

(
4 log2(εσ )

−1)e−nεσ/2 � const·εσ
(we assume here thatεσ � κ for someκ ∈ (0,1); note that if εσ > κ , then also
εσ λ > κ and the bounds of the theorem become trivial with sufficiently largeB so that
Bλ(σ )ε > 1). Therefore (note thatrN � εσ ),

E‖Pn − P ‖GN
� const(1+ EDn)

√
rNεσ .

By (3.17), on the eventEN+1

Ff (δN,1/2) � ε + const(1+ EDn)
√
rNεσ . (3.23)

Choosing the constantc and thus also the constantC = c(1 + EDn) in the recurren
relationship (3.8) properly, we ensure that on the eventEN+1

Ff (δN,1/2)� ε + C

2

√
rNεσ .

This implies thatf ∈ FN+1 and proves the induction step for (i).
To prove (ii), note that on the eventEN+1
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sup
f∈FN+1

Fn,f (δN+1)� sup
f∈FN+1

Ff (δN,1/2)+ ‖Pn − P ‖�GN+1

� ε + C

2

√
rNεσ +K1E‖Pn −P ‖�GN+1

+K2
√
rN+1εσ +K3εσ. (3.24)

Using the symmetrization inequality, we get

E‖Pn − P ‖�GN+1
� 2EIEN

EεR̂n(�GN+1)+ 2EIEc
N
EεR̂n(�GN+1). (3.25)

Similarly to (3.19)

EεRn(�GN+1) � const√
n

(2 supg∈�GN+1
Png

2)1/2∫
0

H
1/2
dPn,2

(�GN+1;u)du. (3.26)

The induction assumption implies that on the eventEN+1

sup
g∈�GN+1

Png
2 � sup

f∈FN

Fn,f (δN,1/2) � rN .

Since the Lipschitz constant ofϕ̄k is bounded by(2/δ)
√
rk−1/(εσ ), we have

dPn,2(ϕ̄N+1 ◦ f ; ϕ̄N+1 ◦ g)=
(
n−1

n∑
j=1

∣∣ϕ̄N+1 ◦ f (Xj )− ϕ̄N+1 ◦ g(Xj)
∣∣2)1/2

� 2

δ

√
rN

εσ
dPn,2(f, g).

Similarly to (3.21), we have on the eventEN+1,

1√
n

(2 supg∈�GN+1
Png

2)1/2∫
0

H
1/2
dPn,2

(�GN+1;u)du � 1√
n

(2rN)1/2∫
0

[
H

1/2
dPn,2

(
F; δ

√
εσu

2
√
rN

)
+ 1

]
du

� 1√
n

2
√
rN

δ
√
εσ

δ
√
εσ/2∫

0

H
1/2
dPn,2

(F;v) dv +
√

2rN
n

� 1√
n

2
√
rN

δ
√
εσ

Dnψ

(
δ
√
εσ√
2

)
+√2rNεσ

� 2Dn

√
rN√

εσ
εσ +√2rNεσ � 2(Dn + 1)

√
rNεσ . (3.27)

Combining all the bounds, we prove that on the same event

sup
f∈F

Fn,f (δN+1) � ε + C

2

√
rNεσ + const(1+ EDn)

√
rNεσ . (3.28)
N+1
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),

ar, it

at

.
avior

ts
Properly choosing the constantc > 0 (and, thus,C in the recurrent relationship (3.8)
we get on the eventEN+1

sup
f∈FN+1

Fn,f (δN+1) �
(
ε +C

√
rNεσ

)∨ 1 = rN+1,

which completes the proof of (ii) and of the induction step. Recall that, in particul
means the following: on the eventEN , the assumptionFn,f (δ) � ε implies thatf ∈FN ,
and henceFf (δN) � rN .

To complete the proof of the first bound of the theorem, it’s enough to recall thN

can be choosen to satisfy the inequalities

log2
log2(εσ )

−1

1+ (1− λ) log2σ
−1

− 1� N � log2
1

ν

log2(εσ )
−1

log2σ
−1 + (4ν)−1

− 2,

which implies thatrN+1 � ε(1+ aσ λ) for some constanta. We also have (since 4ν < 1)

log2
1

ν

log2(εσ )
−1

log2σ
−1 + (4ν)−1

− 2 � log2
1

ν

log2(εσ )
−1

log2σ
−1 + 1

,

which is bounded by

D

(
log2

log2(εσ )
−1

log2σ
−1 + 1

∨ 1
)

with some constantD.
The proof of the second inequality is similar with minor modifications.✷

4. Applications to learning problems and examples

In this section, we deal with a binary classification problem, i.e.,S is replaced by
S × {−1,1} andf is replaced byS × {−1,1} $ (x, y) �→ yf (x) (see the introduction)
Theorems 1 and 2 of Section 2 immediately imply the following result about the beh
of the generalization error.

COROLLARY 2. –Under the conditions of Theorem1, there exist numerical constan
A,B > 0 such that forĀ := A(1+ EDn)

2 and for all t � 2 logn

P
{∃f ∈F : P

{
(x, y): yf (x) � 0

}
� Āε̂ψn (f ; t)}� B log2 log2

n

t
exp
{

− t

2

}
. (4.1)

Moreover, if (2.6)holds, then with probability1

lim sup
n→∞

sup
f∈F

P {(x, y): yf (x) � 0}
ε̂
ψ
n (f )

< +∞. (4.2)

Under the conditions of Theorem2,

lim sup
n→∞

sup
P {(x, y): yf (x) � 0}

ε̂
φ
(f )

� 1. (4.3)

f∈F n
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e

ities:
e

avior
If supf∈F P {(x, y): yf (x) � 0} > 0, then thelim sup in the last equation is equal to1.

Thus, for any classifier̂f ∈F , with probability 1

P
{
yf̂ (x) � 0

}
�
(
1+ o(1)

)
ε̂φn (f̂ ).

Let α ∈ (0,2) andψ(x) ≡ x1−α/2. Let γ := 2α
α+2. As in the introduction, we defin

γ -margins of a functionf as follows:

δn(γ ;f ) := sup
{
δ > 0: δγ Ff (δ)� n−1+γ /2},

δ̂n(γ ;f ) := sup
{
δ > 0: δγ Fn,f (δ)� n−1+γ /2}.

Note that Koltchinskii and Panchenko [9] used slightly different (truncated) quant
the suprema there was over the setδ ∈ (0,1). We will use for these quantities th
notationsδtn(γ ;f ) andδ̂tn(γ ;f ). It’s easy to see that

δtn(γ ;f ) = δψn
(
f ;nγ/2), δ̂tn(γ ;f ) = δ̂ψn

(
f ;nγ/2).

Theorem 1 immediately implies (recall (2.3) and the definition ofεn,γ from the
introduction) that if for someα ∈ (0,2) andDn > 0, EDn < ∞

HdPn,2
(F;u) � D2

nu
−α, u > 0 a.s., (4.4)

then for anyγ � 2α
α+2 there exist constantsA,B > 0 such that forĀ := A(1+ EDn)

2

P

{
∃f ∈F : P

{
(x, y): yf (x) � 0

}
� Ā

n1−γ /2δ̂tn(γ ;f )γ
}

� B log2 log2nexp
{

−nγ/2

2

}
(4.5)

(Koltchinskii and Panchenko [9]). Theorem 2 shows that as soon asγ > 2α
2+α

lim sup
n→∞

sup
f∈F

n1−γ /2δ̂n(γ ;f )γ P{(x, y): yf (x) � 0
}

� 1 a.s. (4.6)

In fact, Theorems 1 and 2 imply the following corollary about the asymptotic beh
of γ -margins (and the same is true for their truncated versions).

COROLLARY 3. – If the condition (4.4) holds with someα ∈ (0,2), then for all
γ � 2α

2+α

lim sup
n

sup
f∈F

δ̂n(γ ;f )
δn(γ, f )

< +∞ (4.7)

and

lim sup
n

sup
δn(γ ;f )
δ̂ (γ , f )

<+∞. (4.8)

f∈F n
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ey are
les in
]). Let
e

Moreover, for allγ > 2α
2+α

P

{
sup
f∈F

∣∣∣∣ δ̂n(γ ;f )
δn(γ ;f ) − 1

∣∣∣∣→ 0 asn → ∞
}

= 1. (4.9)

Consider now the case ofψ(x) ≡ x
√

log(e/x) for x � 1 andψ(x) ≡ x for x > 1.
Then, by a simple computation,

δψn (ε) = e1−nε

√
ε
, ε � n−1.

If we define

ε̂VC
n (f ; t) := inf

{
ε � t

n
: Pn

{
f � e1−nε

√
ε

}
� ε

}
, (4.10)

then under the condition

HdPn,2
(F;u) � D2

n log
1

u
∨ 1, u > 0 a.s.,

with someDn = Dn(X1, . . . ,Xn),EDn < +∞ (which holds, for instance, ifF is a VC-
subgraph class), we get from Theorem 1 that with some numerical constantsA,B > 0
for all t � 2 logn

P

{
∃f ∈F : P

{
(x, y): yf (x) � 0

}
� Āε̂VC

n (f ; t)}� B log2 log2
n

t
exp
{

− t

2

}
,

whereĀ :=A(1+ EDn)
2. Now Theorem 2 adds to this that as soon as

φ(x)

x
√

log(x−1)
→ ∞ asx → 0

we haveε̂φn (f )/ε
φ
n (f ) → 1 uniformly inf ∈F a.s.

We construct below examples that show the sharpness of our main results. Th
close to some examples in Koltchinskii and Panchenko [9] (earlier, similar examp
the context of CLT in Banach spaces were looked at by Ledoux and Talagrand [13
S be the space of all sequences converging to 0 and letF be the set of all coordinat
functions:F := {fk: k � 1}, fk(x) = xk, x = {xk} ∈ S. Let

Xn :=
{
εk,n

λk

}
k�1

,

where{εk,n: k � 1, n � 1} are i.i.d. Rademacher random variables and

λk := 1
−1

√ , k � 1,

ϕ ( log(k + 1) )
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t

en-

and
ϕ being a nonincreasing positive function withϕ(δ) → +∞ asδ → 0. We assume tha
with some constantK > 0

x∫
0

ϕ(u) du� Kxϕ(x), x � 0,

and that for anyε ∈ (0,1) and, for all large enoughx, ϕ−1(x) � εϕ−1(εx) (for instance,
ϕ(x) = x−α/2 for α ∈ (0,2), or ϕ(x) = √

log(e/x)∨ 1 are functions of this type).
Finally, assume that the sequence of labels{Yn} is a Rademacher sequence indep

dent of{Xn}. Clearly, in this case the generalization error of any classifierf ∈F is equal
to 1/2.

PROPOSITION 1. –The condition(2.1)holds for the sequence{Xn} withDn = D, D

being a numerical constant andψ(x) := xϕ(x), ψ ∈,. The condition(2.6)also holds
for the classF . For anyφ ∈, such that

φ(x) = o
(
ψ(x)

)
asx → 0,

we have

lim
n

sup
f∈F

εφn (f )

ε̂
φ
n (f )

= +∞ (4.11)

and

lim
n

sup
f∈F

ε̂φn (f )

ε
φ
n (f )

= 2. (4.12)

In addition,

lim
n

sup
f∈F

P {(x, y): yf (x) � 0}
ε̂
φ
n (f )

= +∞. (4.13)

Moreover, there existsA> 1 such that

lim inf
n

sup
f∈F

εψn (f )

ε̂
ψ
n (f )

�A (4.14)

and

lim inf
n

sup
f∈F

ε̂ψn (f )

ε
ψ
n (f )

� A. (4.15)

It follows that

lim inf
n

sup
f∈F

P {(x, y): yf (x) � 0}
ε̂
ψ
n (f )

� A. (4.16)

In particular, it means that iff̂ is a classifier that minimizes the boundε̂φn (f ) on
the classF (a natural choice from the point of view of “large margin” approach)
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φ(x)

ψ(x)
→ 0 asx → 0, then

P {(x, y): yf̂ (x) � 0}
ε̂
φ
n (f̂ )

→ ∞ a.s.,

i.e., in this case the margin type boundε̂φn (f̂ ) can become way too optimistic. To avo
this, the definition of the margin type bounds is to be related to the complexity o
class (the conditionφ(x)

ψ(x)
→ ∞ asx → 0 guarantees this).

Proof of Proposition1. – First note that since the condition (2.6) holds, theψ- and
φ-bounds can and will be replaced by their truncated versions withtn % logn (see the
argument at the beginning of the proof of Theorem 2). Next, for

k � exp
{
ϕ2(ε)

}− 1=: N(ε)

we have‖fk‖∞ � ε. This immediately implies‖fk‖L2(Pn) � ε, which means

NdPn ,2(F; ε) � exp
{
ϕ2(ε)

}
,

and the condition (2.1) follows. Next, it’s easy to see that forδ < λ−1
k , Ffk (δ) = 1/2.

It means that for allk < N(δφn (1/2)) we haveFfk (δ
φ
n (1/2)) = 1/2, which implies

εφn (fk; tn)= 1/2. Fork < N(δφn (1/2)), this yields

P
{
εφn (fk; tn) < Aε̂φn (fk, tn)

}= P

{
ε̂φn (fk, tn) >

1

2A

}
,

which for k < N(δφn (
1

2A)) (or, equivalently,λ−1
k > δφn (

1
2A)) is equal to

P

{
Fn,fk

(
δφn

(
1

2A

))
>

1

2A

}
= P

{
n∑

j=1

I{εk,j=−1} >
(

1

2
− δ

)
n

}
,

whereδ = 0.5(1 − A−1). Using well known computations for binomial probabiliti
(based on Stirling’s formula), the last probability can be bounded from above by

1− cn−1/2 exp
{−4nδ2}

(see Koltchinskii and Panchenko [9]). This implies that

P
{
εφn (fk; tn) < Aε̂φn (fk, tn)

}
� 1− cn−1/2 exp

{−n
(
1−A−1)2}

for all k <N(δφn (
1

2A)).
Let ϕ̄(x) := φ(x)

x
. If φ(x) = o(ψ(x)) asx → 0, we have

ϕ̄(x) � σϕ(x)
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lli

n

into
for all σ > 0 and small enoughx > 0. If φ ≡ ψ , then the above bound holds withσ = 1.
Then a simple argument shows that for all large enoughn

ϕ̄−1
(√

n

2A

)
� ϕ−1

(
1

σ

√
n

2A

)
.

By the assumptions onϕ, we get

δφn

(
1

2A

)
= ϕ̄−1(

√
n/(2A))√

1/(2A)
� ϕ−1((1/σ )

√
n/(2A))√

1/(2A)
� ϕ−1

(
1

2Aσ

√
n

)
.

Therefore

N

(
δφn

(
1

2A

))
� exp

{
ϕ2
(
ϕ−1

(
1

2Aσ

√
n

))}
= exp

{
n

4A2σ 2

}
:=Kn.

By independence of the components ofXn, we get

P
{∀k �Kn: ε

φ
n (fk; tn) < Aε̂φn (fk, tn)

}
=

Kn∏
k=1

P
{
εφn (fk; tn) < Aε̂φn (fk, tn)

}
�
(
1− cn−1/2 exp

{−n
(
1−A−1)2})Kn

� exp
{

−cn−1/2 exp
{

−n
(
1−A−1)2 + n

4A2σ 2

}}
= o

(
n−2) asn → ∞,

provided that

1

4A2σ 2
>

(
1− 1

A

)2

.

If σ < 1/2, it is satisfied for all 1<A< 1
2σ , and forσ = 1 it’s true if A is close enough

to 1. In the case whenφ(x) = o(ψ(x)) σ can be taken arbitrarily small. Borel–Cante
lemma shows in this case that for anyA with probability 1

sup
f∈F

εφn (f ; tn)
ε̂
φ
n (f ; tn)

is eventually (for all largen) larger thanA. In the case whenφ = ψ the same conclusio
holds for someA> 1.

The proof of the remaining statements is quite similar. One just has to take
account that Fork < N(δφn (1/2)),

P
{
ε̂φn (fk; tn) < Aεφn (fk, tn)

}= P

{
ε̂φn (fk, tn) <

A

2

}
= P

{
Fn,fk

(
δφn

(
A

2

))
<

A

2

}

= P

{
n∑
I{εk,j=−1} <

(
A

2

)
n

}
= P

{
n∑
I{εk,j=+1} �

(
1

2
− δ

)
n

}
,

j=1 j=1
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As

the
whereδ = 0.5(A − 1) andA ∈ (1,2) and continue as in the previous part of the pr
(one should also take into account that

ε̂φn (f )

ε
φ
n (f )

� 2

sinceεφn (f )= 1/2 andε̂φn (f ) � 1). ✷
The following result is a special case of Proposition 1 (and its proof is quite simi

the proof of this proposition; alternatively, the result of this type can be deduced di
from Proposition 1 using (1.5) and (1.7)). It shows that the conditionγ > 2α

2+α
is sharp

for the uniform convergence of the ratios ofγ margins to 1 while the conditionγ � 2α
2+α

is sharp for the boundedness of the ratios. Namely, let

Xn := {εk,n(2 log(k + 1)
)−1/α}

k�1,

whereα ∈ (0,2) and {εk,n: k � 1, n � 1} are i.i.d. Rademacher random variables.
before,S is the space of all sequences converging to 0 andF := {fk: k � 1}, fk(x) =
xk, x = {xk} ∈ S. The sequence{Yn} of labels is also the same as before, so
generalization error of any classifierf ∈F is equal to 1/2.

PROPOSITION 2. –The condition(4.4) holds for the sequence{Xn} with Dn = D,
D being a numerical constant. For allγ < 2α

2+α
,

lim
n

sup
f∈F

δ̂n(γ ;f )
δn(γ, f )

= +∞ (4.17)

and

lim
n

sup
f∈F

δn(γ ;f )
δ̂n(γ, f )

= 21/γ . (4.18)

It implies that

lim
n

sup
f∈F

n1−γ /2δ̂n(γ ;f )γ P{(x, y): yf (x) � 0
}= +∞. (4.19)

Let zα denote the solution of the equation

2−α/4zα/2 + z2α/(α+2) = 1.

Thenzα < 1 and forγ = 2α
2+α

lim inf
n

sup
f∈F

δ̂n(γ ;f )
δn(γ, f )

� 1

zα
(4.20)

and

lim inf
n

supn1−γ /2δ̂n(γ ;f )γ P{(x, y): yf (x) � 0
}

� 1

z
. (4.21)
f∈F α
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rem 3.
We also have

lim inf
n

sup
f∈F

δn(γ ;f )
δ̂n(γ, f )

�
(
1− 2−1−α/4)−(2+α)/(2α)

. (4.22)

Finally, we present a proposition that shows the sharpness of the bound of Theo

PROPOSITION 3. –Under the conditions of Proposition1, there existc(σ ) > 1,
β1 > 0 and β2(σ ) > 0, σ ∈ (0,1] sucht thatc(σ ) ↓ 1, β2(σ ) ↓ 0 as σ ↓ 0, and for
large enoughn

P

{
∃f ∈F ∃δ � δψn

(
t

n

)
: Ff

(
δ

c(σ )

)
� c(σ )

[
Fn,f (δ)∨ 1

σ
εψn (δ)

]}
� 1− exp

{−β1 enβ2(σ )
}

(4.23)

and

P

{
∃f ∈F ∃δ � δψn

(
t

n

)
: Fn,f

(
δ

c(σ )

)
� c(σ )

[
Ff (δ)∨ 1

σ
εψn (δ)

]}
� 1− exp

{−β1 enβ2(σ )
}
. (4.24)

Proof. –We use the notations of Proposition 1. If

k < N(δ) := exp
{
ϕ2(δ)

}− 1,

thenFfk(δ) = 1/2 andFfk(δ/c) = 1/2 for all c > 1. Therefore we have

P

{
Fn,fk (δ)� 1

c
Ffk

(
δ

c

)}
= P

{
Fn,fk (δ)� 1

2c

}

= P

{
n∑

j=1

I{εk,j=−1} >
(

1

2
− τ

)
n

}
� 1− β1n

−1/2 exp
{−4nτ 2},

whereτ = 1
2(1− c−1) andβ1 > 0 is a constant. Hence forK <N(δ),

P

{
Fn,fk (δ) � 1

c
Ffk

(
δ

c

)
, k = 1, . . . ,K

}
�
(
1− β1n

−1/2 exp
{−4nτ 2})K

� exp
{−β1n

−1/2 exp
{−n

(
1− c−1)2 + logK

}}
.

If 1
σ
εψn (δ) <

1
2c , or equivalentlyδ > δψn (σ/(2c)), then

P

{
Fn,fk (δ)∨ 1

σ
εψn (δ) � 1

c
Ffk

(
δ

c

)
, k = 1, . . . ,K

}
� exp

{−β1n
−1/2 exp

{−n
(
1− c−1)2 + logK

}}
.

By the definition ofδψn ,

δψn
(
σ/(2c)

)=√
(2c)/σϕ−1(√σ/(2c)n

)
.

The condition onϕ−1 implies (since
√
σ/(2c) � 1) that√

(2c)/σϕ−1(√σ/(2c)n
)
� ϕ−1(σ/(2c)√n

)
.
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Hence

ϕ2(δψn (σ/(2c)))= ϕ2(√(2c)/σϕ−1(√σ/(2c)n
))

� ϕ
(
ϕ−1(σ/(2c)√n

))2
= σ 2/

(
4c2)n.

Then it is easy to see that, for large enoughn and for someδ ∈ (δψn (σ/(2c)), δ
ψ
n (t/n)),

logN(δ) � σ 2

8c2
n.

Therefore, we can choose logK of the orderσ 2/(8c2)n to get

P

{
Fn,fk (δ)∨ 1

σ
εψn (δ) � 1

c
Ffk

(
δ

c

)
, k = 1, . . . ,K

}
� exp

{−β1n
−1/2 exp

{−n
(
1− c−1)2 + σ 2/

(
8c2)n}}.

If now c = c(σ ) ↓ 1, σ ↓ 0 is such that

σ 2

8c2
>

(
1− 1

c

)2

,

then with some choice ofβ2(σ ), β2(σ ) ↓ 0 asσ ↓ 0, we have

P

{
∀f ∈F ∀δ � δψn

(
t

n

)
: Ff

(
δ

c(σ )

)
� c(σ )

[
Fn,f (δ)∨ 1

σ
εψn (δ)

]}
� exp

{−β1 enβ2(σ )
}
, (4.25)

which implies the first inequality of the proposition.
To prove the second inequality, note that

P

{
Ffk(δ) � 1

c
Fn,fk

(
δ

c

)}
= P

{
Fn,fk

(
δ

c

)
� c

2

}
= P

{
n∑

j=1

I{εk,j=−1} � nc

2

}

= P

{
n∑

j=1

I{εk,j=+1} >
(

1

2
− τ

)
n

}
� 1− β1n

−1/2 exp
{−4nτ 2},

whereτ = (c − 1)/2. The rest of the proof is quite similar.✷
Acknowledgement

This paper was written when the author was visiting the Department of Stat
University of Washington and H. Poincaré Institute in Paris. The author is very tha
to these institutions for their hospitality and also to Jon Wellner for numerous discus
on the problems closely related to the paper and to Olivier Bousquet for help with
parts of the manuscript. The author is especially thankful to the anonymous referee
exceptionally careful reading of the manuscript, noticing numerous mistakes and m
a number of suggestions that improved the paper.



978 V. KOLTCHINSKII / Ann. I. H. Poincaré – PR 39 (2003) 943–978

ridge

ize of
ry 44

.
ger-

rint,

ds for
nce

nce,

nction
y II,

aliza-

rror of
000,

2001,

oting
Eds.),
1, in:

nvex
Appl.

1991.
pirical

c. Sci.

ion of

1996)

With
REFERENCES

[1] M. Anthony, P. Bartlett, Neural Network Learning: Theoretical Foundations, Camb
University Press, 1999.

[2] P. Bartlett, The sample complexity of pattern classification with neural networks: the s
the weights is more important than the size of the network, IEEE Trans. Inform. Theo
(1998) 525–536.

[3] C. Cortes, V. Vapnik, Support vector networks, Machine Learning 20 (1995) 273–297
[4] L. Devroye, L. Györfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition, Sprin

Verlag, New York, 1996.
[5] R.M. Dudley, Uniform Central Limit Theorems, Cambridge University Press, 1999.
[6] E. Giné, V. Koltchinskii, J. Wellner, Ratio limit theorems for empirical processes, Prep

2003.
[7] B. Kégl, T. Linder, G. Lugosi, Data-dependent margin-based generalization boun

classification, in: D. Helmbold, B. Williamson (Eds.), Proc. of 14th Annual Confere
on Computational Learning Theory, COLT2001, Lecture Notes in Artificial Intellige
Springer, New York, 2001, pp. 368–384.

[8] V. Koltchinskii, D. Panchenko, Rademacher processes and bounding the risk of fu
learning, in: E. Giné, D. Mason, J. Wellner (Eds.), High Dimensional Probabilit
Birkhäuser, Boston, 2000, pp. 444–459.

[9] V. Koltchinskii, D. Panchenko, Empirical margin distributions and bounding the gener
tion error of combined classifiers, Ann. Statist. 30 (2002) 1–50.

[10] V. Koltchinskii, D. Panchenko, F. Lozano, Some new bounds on the generalization e
combined classifiers, in: T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), Proc. of NIPS’2
in: Advances in Neural Information Processing Systems, Vol. 13, MIT Press,
pp. 245–251. URL:http://www.boosting.org/.

[11] V. Koltchinskii, D. Panchenko, F. Lozano, Further explanation of the effectiveness of v
methods: the game between margins and weights, in: D. Helmbold, B. Williamson (
Proc. of 14th Annual Conference on Computational Learning Theory, COLT200
Lecture Notes in Artif. Intell., Springer, New York, 2001, pp. 241–255.

[12] V. Koltchinskii, D. Panchenko, F. Lozano, Bounding the generalization error of co
combinations of classifiers: balancing the dimensionality and the margins, Ann.
Probab. 13 (1) (2003) 213–252.

[13] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-Verlag, New York,
[14] P. Massart, About the constants in Talagrand’s concentration inequalities for em

processes, Ann. Probab. 28 (2000) 863–885.
[15] P. Massart, Some applications of concentration inequalities to statistics, Ann. Fa

Tolouse (IX) (2000) 245–303.
[16] R. Schapire, Y. Freund, P. Bartlett, W.S. Lee, Boosting the margin: a new explanat

effectiveness of voting methods, Ann. Statist. 26 (1998) 1651–1687.
[17] M. Talagrand, A new look at independence, Ann. Probab. 24 (1996) 1–34.
[18] M. Talagrand, New concentration inequalities in product spaces, Invent. Math. 126 (

505–563.
[19] A. Tsybakov, Optimal aggregation of classifiers in statistical learning, Preprint, 2002.
[20] A.W. van der Vaart, J.A. Wellner, Weak Convergence and Empirical Processes.

Applications to Statistics, Springer-Verlag, New York, 1996.
[21] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.


