@book{AST_2011__338__1_0, author = {Arone, Greg and Ching, Michael}, title = {Operads and chain rules for the calculus of functors}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {338}, year = {2011}, mrnumber = {2840569}, zbl = {1239.55004}, language = {en}, url = {http://www.numdam.org/item/AST_2011__338__1_0/} }
Arone, Greg; Ching, Michael. Operads and chain rules for the calculus of functors. Astérisque, no. 338 (2011), 168 p. http://numdam.org/item/AST_2011__338__1_0/
[1] A generalization of Snaith-type filtration", Trans. Amer. Math. Soc. 351 (1999), p. 1123-1150. | MR | Zbl | DOI
- "[2] The Weiss derivatives of and ", Topology 41 (2002), p. 451-481. | MR | Zbl
, "[3] Derivatives of the embedding functor II : the unstable case", in preparation.
, "[4] A functorial model for iterated Snaith splitting with applications to calculus of functors", Fields Inst. Commun. 19 (1998), p. 1-30. | MR | Zbl
& - "[5] The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres", Invent. Math. 135 (1999), p. 743-788. | MR | Zbl | DOI
& - "[6] Homology and cohomology of ring spectra", Math. Z. 249 (2005), p. 903-944. | MR | Zbl | DOI
& - "[7] Axiomatic homotopy theory for operads", Comment. Math. Helv. 78 (2003), p. 805-831. | MR | Zbl | DOI
& - "[8] Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer, 1972. | MR | Zbl
& -[9] Bar constructions for topological operads and the Goodwillie derivatives of the identity", Geom. Topol. 9 (2005), p. 833-933. | MR | Zbl | EuDML | DOI
- "[10] A chain rule for Goodwillie derivatives of functors from spectra to spectra", Trans. Amer. Math. Soc. 362 (2010), p. 399-426. | MR | Zbl | DOI
, "[11] A note on the composition product of symmetric sequences in a symmetric monoidal category", arXiv:math.CT/0510490. | Zbl
, "[12] Duality and pro-spectra", Algebr. Geom. Topol. 4 (2004), p. 781-812. | MR | Zbl | EuDML | DOI
& - "[13] Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, Amer. Math. Soc., 1997. | MR | Zbl
, , & -[14] Koszul duality for operads", Duke Math. J. 76 (1994), p. 203-272. | MR | Zbl | DOI
& - "[15] Simplicial homotopy theory, Progress in Math., vol. 174, Birkhäuser, 1999. | MR | Zbl
& -[16] Calculus. I. The first derivative of pseudoisotopy theory", K-Theory 4 (1990), p. 1-27. | MR | Zbl | DOI
- "[17] Calculus. II. Analytic functors", K-Theory 5 (1991/92), p. 295-332. | MR | Zbl | DOI
, "[18] Calculus. III. Taylor series", Geom. Topol. 7 (2003), p. 645-711. | MR | Zbl | EuDML | DOI
, "[19] Generalized Tate cohomology", Mem. Amer. Math. Soc. 113 (1995). | MR | Zbl
& - "[20] Homotopy theory of modules over operads in symmetric spectra", Algebr. Geom. Topol. 9 (2009), p. 1637-1680. | MR | Zbl | DOI
- "[21] Homological algebra of homotopy algebras", Comm. Algebra 25 (1997), p. 3291-3323. | MR | Zbl | DOI
- "[22] Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, Amer. Math. Soc. 2003. | MR | Zbl
-[23] Model categories, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc. 1999. | MR | Zbl
-[24] Calculating limits and colimits in pro-categories", Fund. Math. 175 (2002), p. 175-194. | MR | Zbl | EuDML | DOI
- "[25] The curious history of Faa di Bruno's formula", Amer. Math. Monthly 109 (2002), p. 217-234. | MR | Zbl
- "[26] Basic concepts of enriched category theory", Repr. Theory Appl. Categ. 10 (2005). | MR | Zbl
- "[27] A chain rule in the calculus of homotopy functors", Geom. Topol. 6 (2002), p. 853-887. | MR | Zbl | EuDML | DOI
& - "[28] Model structure on operads in orthogonal spectra", Homology, Homotopy Appl. 9 (2007), p. 397-412. | MR | DOI
- "[29] Tate cohomology and periodic localization of polynomial functors", Invent Math. 157 (2004), p. 345-370. | MR | Zbl | DOI
- "[30] Goodwillie towers and chromatic homotopy: an overview", in Proceedings of the Nishida Fest (Kinosaki 2003), Geom. Topol. Monogr., vol. 10, Geom. Topol. Publ., Coventry, 2007, p. 245-279. | MR | Zbl
, "[31] Is there a convenient category of spectra?", J. Pure Appl. Algebra 73 (1991), p. 233-246. | MR | Zbl | DOI
- "[32] Equivariant stable homotopy theory, Lecture Notes in Math., vol. 1213, Springer, 1986. | MR | Zbl
, , & -[33] Higher topos theory, Annals of Math. Studies, vol. 170, Princeton Univ. Press, 2009. | MR | Zbl
-[34] -categories and the Goodwillie calculus I", preprint arXiv:0905.0462.
, "[35] Categories for the working mathematician, Graduate Texts in Math., vol. 5, Springer, 1971. | MR | Zbl
-[36] Model categories of diagram spectra", Proc. London Math. Soc. 82 (2001), p. 441-512. | MR | Zbl | DOI
, , & - "[37] Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., 2002. | MR | Zbl
, & -[38] The geometry of iterated loop spaces, Lectures Notes in Mathematics, vol. 271, Springer, 1972. | MR | Zbl
-[39] Parametrized homotopy theory, Mathematical Surveys and Monographs, vol. 132, Amer. Math. Soc., 2006. | MR | Zbl | DOI
& -[40] Dual calculus for functors to spectra", in Homotopy methods in algebraic topology (Boulder, CO, 1999), Contemp. Math., vol. 271, Amer. Math. Soc., 2001, p. 183-215. | MR | Zbl | DOI
- "[41] Spaces of algebra structures and cohomology of operads", Ph.D. Thesis, Massachusetts Institute of Technology, 1996. | MR
- "[42] -modules and symmetric spectra", Math. Ann. 319 (2001), p. 517-532. | MR | Zbl | DOI
- "[43] Algebras and modules in monoidal model categories", Proc. London Math. Soc. 80 (2000), p. 491-511. | MR | Zbl | DOI
& - "[44] Stable model categories are categories of modules", Topology 42 (2003), p. 103-153. | MR | Zbl | DOI
& , "[45] Operads, algebras and modules in general model categories", preprint arXiv.math/0101102. | Zbl
- "[46] Orthogonal calculus", Trans. Amer. Math. Soc. 347 (1995), p. 3743-3796. | MR | Zbl | DOI
- "