Spectre automorphe des variétés hyperboliques et applications topologiques
Astérisque, no. 303 (2005) , 238 p.
@book{AST_2005__303__R1_0,
     author = {Bergeron, Nicolas and Clozel, Laurent},
     title = {Spectre automorphe des vari\'et\'es hyperboliques et applications topologiques},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {303},
     year = {2005},
     mrnumber = {2245761},
     zbl = {1098.11035},
     language = {fr},
     url = {http://www.numdam.org/item/AST_2005__303__R1_0/}
}
TY  - BOOK
AU  - Bergeron, Nicolas
AU  - Clozel, Laurent
TI  - Spectre automorphe des variétés hyperboliques et applications topologiques
T3  - Astérisque
PY  - 2005
IS  - 303
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2005__303__R1_0/
LA  - fr
ID  - AST_2005__303__R1_0
ER  - 
%0 Book
%A Bergeron, Nicolas
%A Clozel, Laurent
%T Spectre automorphe des variétés hyperboliques et applications topologiques
%S Astérisque
%D 2005
%N 303
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2005__303__R1_0/
%G fr
%F AST_2005__303__R1_0
Bergeron, Nicolas; Clozel, Laurent. Spectre automorphe des variétés hyperboliques et applications topologiques. Astérisque, no. 303 (2005), 238 p. http://numdam.org/item/AST_2005__303__R1_0/

[1] J. Adams, D. Barbasch & D. A. Vogan, Jr. - The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, vol. 104, Birkhäuser Boston Inc., Boston, MA, 1992. | MR | Zbl

[2] A. Andreotti & H. Grauert - « Théorème de fìnitude pour la cohomologie des espaces complexes », Bull. Soc. Math. France 90 (1962), p. 193-259. | MR | Zbl | EuDML | Numdam | DOI

[3] J. Arthur - « Unipotent automorphic representations : conjectures », Astérisque (1989), no. 171-172, p. 13-71, Orbites unipotentes et représentations, II. | MR | Zbl | Numdam

[4] J. Arthur, « An introduction to the trace formula », preprint, 263 pages, 2005. | Zbl | MR

[5] J. Arthur & L. Clozel - Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. | MR | Zbl | Numdam

[6] M. W. Baldoni Silva - « The unitary dual of Sp(n,1),n2 », Duke Math. J. 48 (1981), no. 3, p. 549-583. | MR | Zbl | DOI

[7] N. Bergeron - « Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques », Enseign. Math. (2) 46 (2000), no. 1-2, p. 109-137. | MR | Zbl

[8] N. Bergeron - « Asymptotique de la norme L 2 d'un cycle géodésique dans les revêtements de congruence d'une variété hyperbolique arithmétique », Math. Z. 241 (2002), no. 1, p. 101-125. | MR | Zbl | DOI

[9] N. Bergeron - « Lefschetz properties for arithmetic real and complex hyperbolic manifolds », Int. Math. Res. Not. (2003), no. 20, p. 1089-1122. | MR | Zbl | DOI

[10] N. Bergeron & L. Clozel - « Spectre et nomologie des variétés hyperboliques complexes de congruence », C. R. Math. Acad. Sci. Paris 334 (2002), no. 11, p. 995-998. | MR | Zbl | DOI

[11] P. Bernat & J. Dixmier - « Sur le dual d'un groupe de Lie », C. R. Acad. Sci. Paris 250 (1960), p. 1778-1779. | MR | Zbl

[12] I. N. Bernstein & A. V. Zelevinsky - « Induced representations of reductive p-adic groups. I », Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, p. 441-472. | MR | Zbl | EuDML | Numdam | DOI

[13] A. Borel - « Automorphic L-functions », in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, p. 27-61. | MR | Zbl

[14] A. Borel & Harish-Chandra - « Arithmetic subgroups of algebraic groups », Ann. of Math. (2) 75 (1962), p. 485-535. | MR | Zbl | DOI

[15] A. Borel & N. R. Wallach - Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, N.J., 1980. | MR | Zbl

[16] R. Bott & S. S. Chern - « Some formulas related to complex transgression », in Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, p. 48-57. | MR | Zbl | DOI

[17] R. Brooks - « The spectral geometry of a tower of coverings », J. Differential Geom. 23 (1986), no. 1, p. 97-107. | MR | Zbl | DOI

[18] D. Bump - Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997. | MR | Zbl

[19] M. Burger, J.-S. Li & P. Sarnak - « Ramanujan duals and automorphic spectrum », Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, p. 253-257. | MR | Zbl | DOI

[20] M. Burger & P. Sarnak - « Ramanujan duals. II », Invent. Math. 106 (1991), no. 1, p. 1-11. | MR | Zbl | EuDML | DOI

[21] W. Casselman & D. Miličić - « Asymptotic behavior of matrix coefficients of admissible representations », Duke Math. J. 49 (1982), no. 4, p. 869-930. | MR | Zbl

[22] L. Clozel - « Spectral theory of automorphic forms », à paraître (Conférence du Park City Math. Institute, AMS/IAS, 2002). | Zbl | MR

[23] L. Clozel, « Changement de base pour les représentations tempérées des groupes réductifs réels », Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 1, p. 45-115. | MR | Zbl | EuDML | Numdam | DOI

[24] L. Clozel, « Motifs et formes automorphes : applications du principe de fonctorialité », in Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, p. 77-159. | MR | Zbl

[25] L. Clozel, « On the cohomology of Kottwitz's arithmetic varieties », Duke Math. J. 72 (1993), no. 3, p. 757-795. | MR | Zbl | DOI

[26] L. Clozel - « Démonstration de la conjecture τ », Invent. Math. 151 (2003), no. 2, p. 297-328. | MR | Zbl | DOI

[27] L. Clozel & E. Ullmo - « Équidistribution des points de Hecke », in Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, p. 193-254. | MR | Zbl

[28] J. Cogdell, J.-S. Li, I. Piatetski-Shapiro & P. Sarnak - « Poincaré series for SO(n,1) », Acta Math. 167 (1991), no. 3-4, p. 229-285. | MR | Zbl | DOI

[29] J. W. Cogdell & I. I. Piatetski-Shapiro - « Remarks on Rankin-Selberg convolutions », in Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, p. 255-278. | MR | Zbl

[30] P. Deligne - Cohomologie étale, Springer-Verlag, Berlin, 1977, Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1 2 , Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier, Lecture Notes in Mathematics, Vol. 569. | MR | Zbl

[31] P. Delorme - « Théorème de Paley-Wiener invariant tordu pour le changement de base C/𝐑 », Compositio Math. 80 (1991), no. 2, p. 197-228. | EuDML | MR | Zbl | Numdam

[32] P. Delorme - « Formules limites et formules asymptotiques pour les multiplicités dans L 2 (G/Γ) », Duke Math. J. 53 (1986), no. 3, p. 691-731. | MR | Zbl | DOI

[33] J.-P. Demailly - « Théorie de Hodge L 2 et théorèmes d'annulation », in Introduction à la théorie de Hodge, Panor. Synthèses, vol. 3, Soc. Math. France, Paris, 1996, p. 3-111. | MR | Zbl

[34] J. Dixmier - Les C * -algèbres et leurs représentations, Les Grands Classiques Gauthier-Villars, Editions Jacques Gabay, Paris, 1996, réimpression de la 2e édition (1969). | MR | Zbl

[35] H. Donnelly - « On the spectrum of towers », Proc. Amer. Math. Soc. 87 (1983), no. 2, p. 322-329. | MR | Zbl | DOI

[36] H. Donnelly, « Elliptic operators and covers of Riemannian manifolds », Math. Z. 223 (1996), no. 2, p. 303-308. | MR | Zbl | EuDML | DOI

[37] H. Donnelly & C. Fefferman - « L 2 -cohomology and index theorem for the Bergman metric », Ann. of Math. (2) 118 (1983), no. 3, p. 593-618. | MR | Zbl | DOI

[38] W. Duke, J. B. Friedlander & H. Iwaniec - « The subconvexity problem for Artin L-functions », Invent. Math. 149 (2002), no. 3, p. 489-577. | MR | Zbl | DOI

[39] J. Elstrodt, F. Grunewald & J. Mennicke - « Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces », Invent. Math. 101 (1990), no. 3, p. 641-685. | MR | Zbl | EuDML | DOI

[40] D. B. A. Epstein - « Complex hyperbolic geometry », in Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, p. 93-111. | MR | Zbl

[41] D. Flath - « Decomposition of representations into tensor products », in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, p. 179-183. | Zbl | MR

[42] S. Gelbart & H. Jacquet - « A relation between automorphic representations of GL(2) and GL(3) », Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, p. 471-542. | MR | Zbl | EuDML | Numdam | DOI

[43] I. M. Gel'Fand & S. V. Fomin - « Unitary representations of Lie groups and geodesic flows on surfaces of constant negative curvature », Doklady Akad. Nauk SSSR (N.S.) 76 (1951), p. 771-774. | MR | Zbl

[44] I. M. Gel'Fand, M. I. Graev & I. I. Pyatetskii-Shapiro - Representation theory and automorphic functions, Generalized Functions, vol. 6, Academic Press Inc., Boston, MA, 1990, Translated from the Russian by K. A. Hirsch, Reprint of the 1969 edition. | MR | Zbl

[45] R. Godement & H. Jacquet - Zeta functions of simple algebras, Springer-Verlag, Berlin, 1972, Lecture Notes in Mathematics, Vol. 260. | MR | Zbl

[46] W. M. Goldman - Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1999, Oxford Science Publications. | MR | Zbl

[47] P. Griffiths & J. Harris - Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons Inc., New York, 1994, Reprint of the 1978 original. | MR | Zbl | DOI

[48] G. Harcos - « Uniform approximate functional equation for principal L-functions », Int. Math. Res. Not. (2002), no. 18, p. 923-932. | MR | Zbl | DOI

[49] Harish-Chandra - « Representations of a semisimple Lie group on a Banach space. I », Trans. Amer. Math. Soc. 75 (1953), p. 185-243. | MR | Zbl | DOI

[50] M. Harris & J.-S. Li - « A Lefschetz property for subvarieties of Shimura varieties », J. Algebraic Geom. 7 (1998), no. 1, p. 77-122. | MR | Zbl

[51] M. Harris & R. Taylor - The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001, With an appendix by Vladimir G. Berkovich. | MR | Zbl

[52] S. Helgason - Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001, Corrected reprint of the 1978 original. | MR | Zbl | DOI

[53] R. E. Howe & C. C. Moore « Asymptotic properties of unitary representations », J. Fund. Anal. 32 (1979), no. 1, p. 72-96. | MR | Zbl | DOI

[54] H. Iwaniec - Spectral methods of automorphic forms, second éd., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI, 2002. | MR | Zbl

[55] H. Jacquet & R. P. Langlands - Automorphic forms on GL(2), Springer-Verlag, Berlin, 1970, Lecture Notes in Mathematics, Vol. 114. | MR | Zbl

[56] H. Jacquet, I. I. Piatetskii-Shapiro & J. A. Shalika - « Rankin-Selberg convolutions », Amer. J. Math. 105 (1983), no. 2, p. 367-464. | MR | Zbl | DOI

[57] H. Jacquet & J. A. Shalika - « On Euler products and the classification of automorphic forms. II », Amer. J. Math. 103 (1981), no. 4, p. 777-815. | MR | Zbl | DOI

[58] H. Jacquet, « On Euler products and the classification of automorphic representations. I », Amer. J. Math. 103 (1981), no. 3, p. 499-558. | MR | Zbl | DOI

[59] H. Jacquet - « Principal L-functions of the linear group », in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc, Providence, R.I., 1979, p. 63-86. | Zbl | MR

[60] H. Jacquet & J. Shalika - « The Whittaker models of induced representations », Pacific J. Math. 109 (1983), no. 1, p. 107-120. | MR | Zbl | DOI

[61] H. Jacquet & J. Shalika, « Rankin-Selberg convolutions : Archimedean theory », in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, p. 125-207. | MR | Zbl

[62] D. Kazhdan - « Some applications of the Weil representation », J. Analyse Mat. 32 (1977), p. 235-248. | MR | Zbl | DOI

[63] H. H. Kim - « Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2 », J. Amer. Math. Soc. 16 (2003), no. 1, p. 139-183 (electronic), With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. | MR | Zbl | DOI

[64] A. W. Knapp & B. Speh - « Status of classification of irreducible unitary representations », in Harmonic analysis (Minneapolis, Minn., 1981), Lecture Notes in Math., vol. 908, Springer, Berlin, 1982, p. 1-38. | MR | Zbl | DOI

[65] A. W. Knapp & G. J. Zuckerman - « Classification of irreducible tempered representations of semisimple groups », Ann. of Math. (2) 116 (1982), no. 2, p. 389-455, | MR | Zbl | DOI

A. W. Knapp & G. J. Zuckerman - « Classification of irreducible tempered representations of semisimple groups » erratum : Ann. of Math. (2), 119 (1984), no. 3, p. 639. | MR | Zbl | DOI

[66] A. W. Knapp - Representation theory of semisimple groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001, An overview based on examples, Reprint of the 1986 original. | MR | Zbl

[67] S. Kobayashi & K. Nomizu - Foundations of differential geometry. Vol. II, Wiley Classics Library, John Wiley & Sons Inc., New York, 1996, Reprint of the 1969 original, A Wiley-Interscience Publication. | MR | Zbl

[68] H. Kraljević - « Representations of the universal convering group of the group SU(n,1) », Glasnik Mat. Ser. III 8(28) (1973), p. 23-72. | MR | Zbl

[69] S. S. Kudla - « The local Langlands correspondence : the non-Archimedean case », in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, p. 365-391. | MR | Zbl

[70] J.-P. Labesse & J. Schwermer - « On liftings and cusp cohomology of arithmetic groups », Invent. Math. 83 (1986), no. 2, p. 383-401. | MR | Zbl | EuDML | DOI

[71] S. Lang - SL 2 (𝐑), Graduate Texts in Mathematics, vol. 105, Springer-Verlag, New York, 1985, Reprint of the 1975 edition. | MR | Zbl

[72] R. P. Langlands - « On the classification of irreducible representations of real algebraic groups », in Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Providence, RI, 1989, p. 101-170. | MR | Zbl | DOI

[73] N. Lohoue & S. Mehdi - « The Novikov-Shubin invariants for locally symmetric spaces », J. Math. Pures Appl. (9) 79 (2000), no. 2, p. 111-140. | MR | Zbl | DOI

[74] W. Lück - « Approximating L 2 -invariants by their finite-dimensional analogues », Geom. Fund. Anal. 4 (1994), no. 4, p. 455-481. | MR | Zbl | EuDML | DOI

[75] W. Luo, Z. Rudnick & P. Sarnak « On the generalized Ramanujan conjecture for GL(n) », in Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math., vol. 66, Amer. Math. Soc., Providence, RI, 1999, p. 301-310. | MR | Zbl | DOI

[76] G. A. Margulis & G. A. Soĭfer « Maximal subgroups of infinite index in finitely generated linear groups », J. Algebra 69 (1981), no. 1, p. 1-23. | MR | Zbl | DOI

[77] Y. Matsushima - « A formula for the Betti numbers of compact locally symmetric Riemannian manifolds », J. Differential Geometry 1 (1967), p. 99-109. | MR | Zbl | DOI

[78] C. Moglin & J.-L. Waldspurger « Le spectre résiduel de GL(n) », Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, p. 605-674. | MR | Zbl | EuDML | Numdam | DOI

[79] C. Moglin & J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, vol. 113, Cambridge University Press, Cambridge, 1995, Une paraphrase de l'Écriture. | MR | Zbl

[80] G. D. Mostow - « On a remarkable class of polyhedra in complex hyperbolic space », Pacific J. Math. 86 (1980), no. 1, p. 171-276. | MR | Zbl | DOI

[81] T. Oda - « A note on the Albanese variety of an arithmetic quotient of the complex hyperball », J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, p. 481-486. | MR | Zbl

T. Oda - « A note on the Albanese variety of an arithmetic quotient of the complex hyperball », J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1982), no. 3, p. 481-486. | MR | Zbl

[82] T. Ohsawa & K. Takegoshi - « Hodge spectral sequence on pseudoconvex domains », Math. Z. 197 (1988), no. 1, p. 1-12. | MR | Zbl | EuDML | DOI

[83] E. Pedon - « Harmonic analysis for differential forms on complex hyperbolic spaces », J. Geom. Phys. 32 (1999), no. 2, p. 102-130. | MR | Zbl | DOI

[84] V. Platonov & A. Rapinchuk - Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press Inc., Boston, MA, 1994, Translated from the 1991 Russian original by Rachel Rowen. | MR | Zbl

[85] G. Prasad - « Semi-simple groups and arithmetic subgroups », in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) (Tokyo), Math. Soc. Japan, 1991, p. 821-832. | MR | Zbl

[86] J. D. Rogawski - Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, vol. 123, Princeton University Press, Princeton, NJ, 1990. | MR | Zbl

[87] T. Sakai - Riemannian geometry, Translations of Mathematical Monographs, vol. 149, American Mathematical Society, Providence, RI, 1996, Translated from the 1992 Japanese original by the author. | MR | Zbl

[88] P. Sarnak - « The arithmetic and geometry of some hyperbolic threemanifolds », Acta Math. 151 (1983), no. 3-4, p. 253-295. | MR | Zbl | DOI

[89] G. Schiffmann - « Intégrales d'entrelacement et fonctions de Whittaker », Bull. Soc. Math. France 99 (1971), p. 3-72. | MR | Zbl | EuDML | Numdam | DOI

[90] H. Schlichtkrull - « The Langlands parameters of Flensted-Jensen's discrete series for semisimple symmetric spaces », J. Fund. Anal. 50 (1983), no. 2, p. 133-150. | MR | Zbl | DOI

[91] A. Selberg - « On the estimation of Fourier coefficients of modular forms », in Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, p. 1-15. | MR | Zbl

[92] F. Shahidi - « Local coefficients and normalization of intertwining operators for GL(n) », Compositio Math. 48 (1983), no. 3, p. 271-295. | MR | Zbl | EuDML | Numdam

[93] F. Shahidi - « Fourier transforms of intertwining operators and Plancherel measures for GL(n) », Amer. J. Math. 106 (1984), no. 1, p. 67-111. | MR | Zbl | DOI

[94] F. Shahidi - « Local coefficients as Artin factors for real groups », Duke Math. J. 52 (1985), no. 4, p. 973-1007. | MR | Zbl | DOI

[95] J. A. Shalika - « The multiplicity one theorem for GL n », Ann. of Math. (2) 100 (1974), p. 171-193. | MR | Zbl | DOI

[96] G. Shimura - « Automorphic forms and the periods of abelian varieties », J. Math. Soc. Japan 31 (1979), no. 3, p. 561-592. | MR | Zbl | DOI

[97] B. Speh - « Unitary representations of GL(n,𝐑) with nontrivial (𝔤,K)-cohomology », Invent. Math. 71 (1983), no. 3, p. 443-465. | MR | Zbl | EuDML | DOI

[98] Y. L. Tong & S. P. Wang - « Harmonic forms dual to geodesic cycles in quotients of SU(p,1) », Math. Ann. 258 (1981/82), no. 3, p. 289-318. | MR | Zbl | EuDML | DOI

[99] T. N. Venkataramana - « Cohomology of compact locally symmetric spaces », Compositio Math. 125 (2001), no. 2, p. 221-253. | MR | Zbl | DOI

[100] M.-F. Vignéras - « On the global correspondence between GL(n) and division algebras », notes de l'Institute for Advanced Study, Princeton, 1984.

[101] D. A. Vogan - « Isolated unitary representations », to appear in the 2002 Park City summer school volume. | MR | Zbl

[102] D. A. Vogan, Jr. - « The unitary dual of GL(n) over an Archimedean field », Invent. Math. 83 (1986), no. 3, p. 449-505. | MR | Zbl | EuDML | DOI

[103] D. A. Vogan, Jr. & G. J. Zuckerman - « Unitary representations with nonzero cohomology », Compositio Math. 53 (1984), no. 1, p. 51-90. | MR | Zbl | EuDML | Numdam

[104] N. R. Wallach - Harmonic analysis on homogeneous spaces, Marcel Dekker Inc., New York, 1973, Pure and Applied Mathematics, No. 19. | MR | Zbl

[105] N. Yeganefar - « Formes harmoniques L 2 sur les variétés asymptotiquement hyperboliques complexes », in Séminaire de Théorie Spectrale et Géométrie. Vol. 21. Année 2002-2003, Sémin. Théor. Spectr. Géom., vol. 21, Univ. Grenoble I, Saint, 2003, p. 55-59. | MR | Zbl | EuDML | Numdam

[106] R. J. Zimmer - Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. | MR | Zbl