@book{AST_2002__281__R1_0, author = {Duquesne, Thomas and Le Gall, Jean-Fran\c{c}ois}, title = {Random trees, {L\'evy} processes and spatial branching processes}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {281}, year = {2002}, mrnumber = {1954248}, zbl = {1037.60074}, language = {en}, url = {http://www.numdam.org/item/AST_2002__281__R1_0/} }
Duquesne, Thomas; Le Gall, Jean-François. Random trees, Lévy processes and spatial branching processes. Astérisque, no. 281 (2002), 153 p. http://numdam.org/item/AST_2002__281__R1_0/
[1] The continuum random tree I. Ann. Probab. 19, 1-28. | MR | Zbl | DOI
(1991)[2] The continuum random tree II: An overview. In: Stochastic Analysis (M.T. Barlow, N.H. Bingham eds), pp. 23-70. Cambridge University Press, Cambridge. | MR | Zbl | DOI
(1991)[3] The continuum random tree III. Ann. Probab. 21, 248-289. | MR | Zbl | DOI
(1993)[4] A random walk approach to Galton-Watson trees. J. Theoret. Probab. 13, 777-803. | MR | Zbl | DOI
, (2000)[5] Lévy Processes. Cambridge University Press, Cambridge. | MR | Zbl
(1996)[6] Fluctuation theory in continuous time. Adv. Appl. Probab. 7, 705-766. | MR | Zbl | DOI
(1975)[7] On distribution tails and expectations of maxima in critical branching processes. J. Appl. Probab. 33, 614-622. | MR | Zbl | DOI
, (1996)[8] Historical Processes. Memoirs Amer. Math. Soc. 454. | MR | Zbl
, (1991)[9] Probabilités et potentiels, Chapitres XII à XVI: Théorie du potentiel associée une résolvante, théorie des processus de Markov. Hermann, Paris | Zbl | MR
, (1987)[10] A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab., to appear. | MR | Zbl
(2001)[11] Branching processes in simple random walk. Proc. Amer. Math. Soc. 51, 251-274. | MR | Zbl | DOI
(1975)[12] A probabilistic approach to one class of nonlinear differential equations. Probab. Th. Rel. Fields 89, 89-115. | MR | Zbl | DOI
(1991)[13] Diffusions, Superdiffusions and Partial Differential Equations. Amer. Math. Soc. Colloquium Publications, Vol. 50. Providence, 2002. | MR | Zbl
(2001)[14] Markov Processes: Characterization and Convergence. Wiley. | MR | Zbl
, (1986)[15] An Introduction to Superprocesses. University Lecture Series vol. 20. American Math. Society, Providence. | MR | Zbl
(2000)[16] An Introduction to Probability Theory and Its Applications, Vol. II, 2 sec. ed.. Wiley, New York. | MR
(1971)[17] The structure of reduced critical Galton-Watson processes. Math. Nachr. 79, 233-241. | MR | Zbl | DOI
, (1977)[18] Contour processes of random trees. In: Stochastic Partial Differential Equations (A. Etheridge ed.). London Math. Soc. Lect. Notes 216, pp. 72-96. Cambridge University Press, Cambridge. | MR | Zbl | DOI
(1995)[19] On the contour of random trees. SIAM J. Discrete Math. 12, 434-458. | MR | Zbl | DOI
(1999)[20] Asymptotic behaviour of continuous time, continuous statespace branching processes. J. Appl. Probab. 11, 669-677. | MR | Zbl | DOI
(1974)[21] On the convergence of sequence of branching processes. Ann. Probab. 2, 1027-1945. | MR | Zbl | DOI
(1974)[22] Marked excursions and random trees. Séminaire de Probabilités XXXIV. Lecture Notes Math. 1729, pp. 289-301. Springer. | MR | Zbl | EuDML | Numdam | DOI
(2000)[23] Théorèmes limites pour les processus. Lecture Notes in Math. 1117, 298-409. Springer, Berlin. | MR | Zbl
(1985)[24] Limit Theorems for Stochastic Processes. Springer, Berlin. | MR | Zbl | DOI
, (1987)[25] On solutions of . Comm. Pure Appl. Math. 10, 503-510. | MR | Zbl
(1957)[26] On the height profile of a conditioned Galton-Watson tree. To appear.
(1998)[27] The limit of a sequence of branching processes. Z. Wahrsch. verw. Gebiete 7, 271-288. | MR | Zbl | DOI
(1967)[28] A class of path-valued Markov processes and its applications to superprocesses. Probab. Th. Rel. Fields 95, 25-46. | MR | Zbl | DOI
(1993)[29] Hitting probabilities and potential theory for the Brownian path-valued process. Ann. Inst. Fourier 44, 277-306. | MR | Zbl | EuDML | Numdam | DOI
(1994)[30] The Brownian snake and solutions of in a domain. Probab. Th. Rel. Fields 102, 393-432. | MR | Zbl | DOI
(1995)[31] Spatial Branching Processes, Random Snakes and Partial Differential Equations. Birkhaüser, Boston. | MR | Zbl
(1999)[32] Branching processes in Lévy processes: The exploration process. Ann. Probab. 26, 213-252. | MR | Zbl | DOI
, (1998)[33] Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses. Ann. Probab. 26, 1407-1432. | MR | Zbl
, (1998)[34] The Hausdorff measure of the support of two-dimensional super-Brownian motion. Ann. Probab. 23, 1719-1747. | MR | Zbl | DOI
, (1995)[35] A LIFO queue in heavy traffic. Ann. Appl. Probab. 11, 301-331. | MR | Zbl | DOI
(2001)[36] The depth first processes of Galton-Watson trees converge to the same Brownian excursion. Preprint. | MR | Zbl
, (2001)[37] On a certain class of infinitely divisible distributions. Israel J. Math. 16, 1-19. | MR | Zbl | DOI
(1973)[38] Probabilistic classification and representation of positive solutions of in a domain. PhD thesis, Université Paris VI.
(2002)[39] The branching process in a Brownian excursion. Séminaire de Probabilités XXIII. Lecture Notes Math. 1372, pp. 248-257. Springer. | MR | Zbl | EuDML | Numdam | DOI
, (1989)[40] Dawson-Watanabe Superprocesses and Measure-valued Diffusions. Notes from the Ecole d'été de probabilités de Saint-Flour 1999. To appear. | MR | Zbl
(1999)[41] On the inequality . Pac. J. Math. 7, 1641-1647. | MR | Zbl
(1957)[42] Brownian local times and branching processes. Séminaire de Probabilités XVIII. Lecture Notes Math. 1059, pp. 42-55. Springer. | MR | Zbl | EuDML | Numdam
(1984)[43] On the conditioned exit measures of super-Brownian motion. Probab. Th. Rel. Fields 115, 237-285. | MR | Zbl | DOI
, (1999)[44] Non-degenerate conditionings of the exit measures of super-Brownian motion. Stoch. Process. Appl. 87, 25-52. | MR | Zbl | DOI
, (2000)[45] Asymptotic behavior of superprocesses. Stochastics Stoch. Reports 49, 239-252. | MR | Zbl | DOI
(1994)[46] Limit theorems for stochastic processes with independent increments. Theory Probab. Appl. 2, 138-171. | Zbl | MR | DOI
(1957)[47] A branching process with mean one and possibly infinite variance. Z. Wahrsch. verw. Gebiete 9, 139-145. | MR | Zbl | DOI
(1968)[48] Limit theorems for critical Markov branching processes with several types of particles and infinite second moments. Math. USSR Sbornik 32, 215-225. | Zbl | MR | DOI
(1977)[49] Reduced branching processes. Theory Probab. Appl. 25, 584-588. | Zbl | MR | DOI
(1980)[50] Limit distributions of the distance to the closest common ancestor. Theory Probab. Appl. 20, 602-612. | Zbl | MR | DOI
(1975)