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ETUDE DES POINTS SINGULIERS POUR UNE EQUATION
LINEAIRE DU PREMIER ORDRE

2 1, — Introduction

Dans un mémoire, Briot et Bouquet ont étudié
X2y +ay =0 (X)=Dbx+bx2+byx3+.....
ou o(x) est une fonction holomorphe de x pour x=0.
Ils ont étudié la série entiére vérifiant formellement
cette équation et ont montré que, pour que cette série
entiére fut convergente et fournisse par suite une so-
lution de I’équation holomorphe et nulle pour x=0,
il fallait et il suffisait que ’on ait :
72 23 74
Y b‘*_+b"i—l_ oo .=20
Horn, dans une série de mémoires parus dans le
journal de Crelle (tomes 113, 116, 117, 118, 119 et 120),
a généralisé les résultats obtenus par Briot et Bou-
quet. Notamment dans le tome 120 (année 1899), il
étudie I’équation linéaire plus générale :
xk'y +y G(x)=H(x)
ou K est un entier plus grand que l'unité et ou G(x)
et H(x) sont des fonctions holomorphes de x pour la
valeur x=0 de la variable. Horn montre d’abord
que I'on peut ramener cette équation a la forme :
xkH y' 4+ (1+a,x+tax®+... . +akxk)y=hx)

R =b, — b+ b,
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puis il étudie les solutions de cette équation au moyen
de I’expression de l'intégrale générale donnée par la
méthode classique et obtient en particulier les résul-
tats suivants :

by

1° Si x tend vers zéro a l'intérieur d’un secteur tel

1
1 tie réelle de — —
que la partie réelle de ——,

soit négative, c’est-a-dire
si cos K ¢ > 0, une seule solution de I’équation tend
vers 0 avec x (¢ étant 'argument de€ x).

20 Si x tend vers zéro a l’extérieur de ce secteur
toutes les solutions tendent vers 0 avec x.

3o 1l faut que K conditions soient satisfaites pour
que I’équation admette pour x =10 une solution holo-
morphe et nulle. Ces conditions sont obtenues en éga-
lant & zéro K quantités o; exprimées par des inté-
grales compliquées. Ces K quantités ne semblent pas
pouvoir étre exprimées au moyen de séries analogues
a la série figurant dans la condition trouvée par Briot
et Bouquet.

Dans un intéressant mémoire du « Tokohu mathe-
matical journal » (vol. VII, 1915, page 64), dont je
n’ai eu connaissance qu’apres la rédaction de mon tra-
vail, M. Watanabbe a donné la condition pour que
I’équation :

Xy =(at+ax)y +xo(x
ait une solution holomorphe et nulle pour x==0.

Dans ce travail, je montre :

1° Que l'on peut toujours ramener I'équation li-
néaire a la forme :

(D x*+y =y (A—Bxk) +g(x)

L’intégration de cette équation (II) se rameéne a I'in-
tégration de K équations de la forme :
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O xk+y =y (A—Bxk)+x" g (x%)
Chacune de ces équations (III) se rameéne par un
changement de variable trés simple & I’équation :
V) xy' =y n —Bx) + o (x)
2° Si l'on pose :

A {3“}‘1‘-—1(
T kx Xy K
uix)= € . Z(X)=nu dx
% ; u
ptr o
x k
;r=1,2 . k

Si 'on désigne par C une constante arbitraire et
par F (x) une fonction holomorphe pour x=0 repré-
sentée par une série entiere dont les coefficients s’ex-
priment en fonction des coefficients de (I) au moyen
de polynomes, I'intégrale générale de (II) prend la

forme :
r=k
y=Cu®x)+FE + 3 S Z (x)
r=1

Les S, sont des séries analogues a la série qui figure
dans la condition trouvée par Briot et Bouquet.

L’emploi de cette forme de DPintégrale générale
simplifie notablement la démonstration des propriétés
des solutions de II au voisinage de x=0.

3° Les conditions pour que (II) admettent une solu-
tion holomorphe et nulle pour x = 0 sont :

S, =o0 r=1,2..... K

Ce résultat a été établi par diverses méthodes ; les
unes utilisent I’étude directe de la série entiére véri-
fiant formellement (II), les autres s’appuient sur la
forme donnée a l'intégrale générale.

Dans un premier chapitre, j’établis la convergence
des séries employées dans la suite du travail.






CHAPITRE PREMIER

Théoremes préliminaires sur les séries

§ 1. — THEOREME I

Soient les séries entiéres :

o(X)=by+b x+byx2+......... + by x2+.. ..
N b, b, ; by
Y)=bot Xt ey T T i o) o ©

ol1 » est un nombre quelconque autre qu'un entier
négatif, qui annulerait un des facteurs du produit

(41 e O+ ).

Si la série ©(x) a un rayon de convergence non nul,
la série { (x) est convergente pour toute valeur de x.
Soit ¢ un nombre positif inférieur au rayon de con-

vergence de la série ¢ (x).

Puisque ¢ (x) est convergent pour | x| < p, on peut
trouver un nombre A positif, tel que I'on ait pour

toutes les valeurs de n:
s . s A
| ba | " <A c’est-a-dire : Iby | < —pn~
On aura donc :

+...
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n

bn xn Pn lb ] -’i
- S = n P
()\+1)()\+3) ..... (A+n) 1)\“"1) ()\_!_2)... ()\_l_n)l
_X_ n
< A P

G+ x+2) .. tn)|
Mais la série de terme général :
xn
A+ (R +2).... (k+n
est convergente pour toute valeur de x car le rapport

u, =

u“+1 X

uy, ontn+1
tend vers zéro quand n augmente indéfiniment. I1 en
sera de méme de la série de terme général Au, . La
série ¥ (x), dont le terme général est inférieur en
module au terme général A u, sera également con-
vergente quel que soit x.

§ 3. — TaEOREME II

Soient les séries entieres :

o (X)=Dby+ b x+byx2+ ... ..., + b, x® + ...
o | DI ])]1+2
® )= r+uK ' (c+nK)[r+m+1K] XA,
bnanti xP
+ (r+nkK)..... [r+(n+p) K]

oli v et K sont des nombres quelconques astreints a
la seule condition que r/K ne soit pas un nombre né-
gatif de valeur absolue plus grande ou égale a n.

Si la série o (x) a un rayon de convergence non nul,
la série ®(x) est convergente pour toute valeur de x.

La restriction apportée au nombre r/K montre
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quaucun des facteurs figurant dans Jes dénomina-
teurs des termes de @ (x) ne peut s’annuler.

Puisque la série o (x) est convergente pour |x|< p
il en est de méme de la série :

S, (X) = bn-H x4 bn+2 24,
et par conséquent de la série :
Se (x)=bpt1 X + bppa X2 +....
Or, si 'on écrit @ (x) sous la forme :

X
\ 1 K
“’("’zwnx[b"“”““‘r:j—f
- n
K
X\Q
bnis E)
+ ]
<1+n+1 T ofnt 2
K /] \K )

nous pouvons appliquer le théoréme I en posant :
r/K 4+ n=2» et en prenant pour variable x/K au lieu
de x.

La série @ (x) est donc convergente pour toute va-
leur de x si la série ¢ (x) a un rayon de convergence
non nul.

§ 4. — TaforeME 111
Soit la série :
D (X)=A,FA xFAx2+... ... + faxt+.. .
dont le coefficient An est donné par la relation :
WA, b,
- =h, +
EEE (3 +n) 3+1
by 7.2 b, a0
_— LA =3
TE+rn) G2 TN
oil ¢ est un nombre quelconque non entier négatif.
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Pour que la série ® (x) ait un rayon de convergence
non nul, il faut et il suffit que S, ait pour limite zéro
pour n infiniment grand. Le rayon de convergence de
la série ®(x) est alors au moins égal a celui de la
série :

o(x)=by+b x4+ byx2+ ....... + b, x2+ ...

La condition est nécessaire.

En effet, on a :

A, x0 Sh(B+1)(B+2)... (8+n) <—’:—>n

/

et comme (3-+1) (34 2) ... (8 +n) <%> " augmente
indéfiniment avec n quelle que soit la valeur de
X/, A, Xx* augmentera indéfiniment si S, ne tend pas
vers zéro et la série @ (x) aura son terme général qui
augmentera indéfiniment. Pour que la série ® (x) soit
convergente, il est donc nécessaire que S, tende vers
zéro pour n infiniment grand.

La condition est suffisante.
Puisque S, tend vers zéro, on peut écrire :

b, % b, »»
bo + + c e e + ==

B+1 (B+1).. (B+n)
b,y w1 b »\n4p
_[r nti1 : Tt - n+p +”]
@B+1) .3+n+1) (G+1)...(F+n+p)

et par suite :

',\n An
F+1) G+2)...(B+n
bn+1 )\n+1 bn+p )\n+p
- [ B+1)E+2)...(3+n+1) et G+ @E+2).. . (¢+n+p) +]
A __=_[ » bat1 N 72 bays
" s+n+1  (@E+n+1)(@E+n+2)

ot

AP hn.).n + ]
+ (¢+n+1,...¢+n+p) .
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Soit p un nombre positif inférieur au rayon de con-
vergence de ¢ (x). Il existe un nombre fixe M tel que,
pour | x| < p, I'on ait :

| Doy | oot <M ou | bop | < b
quelle que soit la valeur de n. On en déduit :
e 1A |<p“[ LS
* et g+n41 ) T
fal» M
e et
1 2| 1

A

p“IA“I<M[

lg+n+1| I t+n+1]| | g+n+2]|

l
|

En appliguant la regle , on voit que la série

n

entre parentheses est convergente pour toute valeur
de /g et par suite en désignant par S, sa somme on
aura :

o | A | <MS,

Montrons que parmi tous les nombres S, ainsi défi-
nis il y en a un qui est plus grand que tous les autres.
Pour cela, 8 étant un nombre quelconque, nous pose-
rons :

=—q+a+bi
a étant réel et compris entre 0 et 1 (0 < a<1) et g étant
un entier positif ou nul. Ne considérons aussi que les
nombres S, pour lesquels on a n >qg—1.

On peut écrire :

B+n+1{>n+14a—q>0
et d’une facon générale :
[B+n+p|[>n+p+a—qg>0
car le module d’une quantité imaginaire est supérieur
ou égal a la valeur absolue de sa partie réelle qui est
positive dans ce cas puisque n > q—1, Posons :
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N 1 L 1
¢ nta—q+1 » (mta—q+1) (nt+a—q+2) Fe

on voit que tous les termes de S, sont inférieurs aux

termes correspondants de S’ et on peut écrire :
S >8S,

En désignant par S, le plus grand du nombre S’ ou
des nombres S, correspondants 4 n < q— 1 on pourra
donc écrire I'inégalité :

et | An | <M S,
valable quel que soit le nombre n consideéré.

La série ®(x) est donc convergente pour x| < _p
d’apres le théoréme d’Abel. Son rayon de convergence
est au moins égal au rayon des convergences R de © ()
car X et p peuvent étre pris aussi voisins que I'on veut
de R en satisfaisant aux conditions | x| < o <R.

COROLLAIRE
Un théoréme analogue s’applique a la série B, x,
st le coefficient Bn est donné par la relation :
‘U‘n Bn
r(cr+K)@+2K) ... [r+@{n—1)K]
o 0 we
ot T e TR TR e R rr R

En effet, cette relation peut s’écrire :

po"
= Bn
<K >
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Il suffit de poser A = % etB+1= Kr_ En appliquant

le théoréme précédent, on peut alors écrire :
La condition nécessaire et suffisante pour que la
série B, x soit convergente est que U'on ait :

0=Sn=°0+91ﬁ+9 - + e +-
‘ r 2 orr+K) r(r+K)r+zK)
et son rayon de convergence est au.moins égal a celui

de la série :
ot X+ pex+ ... + on X2 +

§ 5. — THEOREME IV
Soient les séries :
oe(x =by+b x+byx2+.... +byx". ...
Zx)=u,+u x+tuyx®-+..... +u,x» +....

ou1 les coefficients u, u, ... u sont donnés par les rela-
tions :
b by A by 32
U= — 2 + g + .
r rr+K) rx+K) (r+2K)
bpio AP
rir +K)y@e+2K)..... [r+p+K]

et d’'une fagon générale par :

-+

— bn-}-i bn+2 A
S T aK T @+ oK) [r+ (n + 1 K]
bnipir AP
(r+nK)..... [r+ (@ +p) K]
o r et K sont des nombres quelconques assujettis a
la seule condition de n’annuler aucun des facteurs
des dénominateurs des termes de uy,, c’est-a-dire ou
r/K n’est pas un entier négatif.

+.o...

Si la série ©(x) a un rayon de convergence R non
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nul, la série Z (x) a aussi un rayon de convergence R,
non nul et 'ona : R, > R.

En effet, puisque la série ¢(x) a un rayon de conver-
gence R non nul, nous pouvons trouver un nombre A
tel que pour toute valeur de n on ait :

A
b < —
b | < g
et par suite :
A | |t
o< 1+
Lot | | r+nkK | Rn+1[ Rir+m+1)K|

| #2 ]
+ R|ir+@+)K| |r+@m+2)K| +]

A ) | A
R ju, | < [1+
TS A Eawy
K
22
+ T - +]
BQIKQI ‘K+H+1 E+H+Z‘ -

La série entre parenthéses est convergente pour
toute valeur de X (il suffit pour le voir de prendre le

1 . .
) et a par suite une somme Bn. En rai-

rapport

Up4

Iln
sonnant comme pour le théoréme III, on voit que
parmi les nombres Bn il en est un B plus grand que
tous les autres et on peut par suite écrire :

AB

elr+mn K|

La série Z (x) est par suite convergente et son rayon
de convergence est au moins égal a R.

Re|un| <



CHAPITRE II

Transformations de 1'équation linéaire
D xK+tdy =[y H () + G(x) ] dx

§ 6. — SIMPLIFICATIONS DE L’EQUATION LINEAIRE I)

Dans I'équation (I) nous supposerons que K est un
nombre entier plus grand que 1 et que H (x) et G (x)
sont des fonctions holomorphes de x pour x=0,
c’est-a-dire développables en séries enti¢res avec un
rayon de convergence non nul.

Montrons d’abord que si le point origine x=y=20
est un point singulier pour P'équation différentielle,
on peut supposer H(0):20 G (0) =0.

En effet on a un point singulier pour x=0y= 0
si pour ce point les coefficients de dx et de dy sont
tous les deux nuls, ce qui exige d’abord G (0) =0.

Supposons maintenant H (0) =0. On pourra alors
diviser tous les termes de (I) par une certaine puis-
sance entiére et positive de x et comme apres cette
division on veut que la nouvelle fonction g (x) déduite
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de G (x) soit nulle pour x =0, il faut que I’exposant
du terme de moindre degré de G (x) soit supérieur a
I'exposant d u terme de moindre degré de H (x) et,
par suite, aprés avoir divisé par cette derniere puis-
sance de x I'équation (I), on aura une équation de la
méme forme ou l'on pourra supposer H (0) == 0
G (0) =0.

Simplifions maintenant la fonction H (x).

Puisque H (0) = 0 I’équation pourra s’écrire :

@) xkt1dy + [a+xA(x)] y dx = G (x) dx
ou « est un nombre essentiellement différent de zéro
et ot A (x) est une fonction holomorphe de x.

Dans un travail sur les cycles limites publié dans
le bulletin de la Société Mathématique de France
(tome LI, 1923, pages 104 et suivante), M. Dulac a
montré que x A (x) pouvait étre pris égal & —bx »
Il suffit pour cela de prendre comme nouvelle variable
indépendante une variable t liée & x par I’équation
différentielle :

)

M. Dulac montre en effet que I’'on peut choisir la
constante b pour que ’équation (2) précédente ait une
solution holomorphe t=F (X) nulle pour x=20.

La fonction F (x) est de la forme :

t=x+a,x2+ a, x3 4.
d’ou l'on tire réciproquement :
X=1t-4a,x2 4 a, x3 ...

L’équation (1) peut s’écrire :
e+ X A(x G (x
————————xk+1( )d = -X_k—(l-i—) dx

e+ x A (X) _a—Dbtk
T dx = YT dt

dy +y

ou en se servant de la relation (2) :
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9\ a—b tk R (t)
\3) dy+y Tdt: K1 dt
) titt dy +y (2 — b tk) dt = R (t) dt
L’équation II est encore de la méme forme que
I’équation I mais ne contient plus qu’un terme va-

riable de degré K.

§ 7. — EMPLOI D’EQUATIONS PLUS SIMPLES

POUR LA RECHERCHE DE LA SOLUTION (4)

Considérons donc I’équation :
4 x¥ dy =y [ — bx¥F] dx+ o (x) dx
ou l'on a :
o(x)=Dbyx+ byx2+.. . +by, x4+ ....

©(x) étant une fonction développable en série en-
tiere, on sait que celle-ci est absolument convergente
dans tout le cercle de convergence et que I'on peut,
par suite, grouper ces termes d’une fagon quelconque.
On pourra donc écrire :

r=K
o(x) = = X [aro-}—aﬂ XE+apx®+ ... +amx2k +...
r=1

Si lon cherche a vérifier (4) par une fonction holo-

morphe nulle pour x=10 de la forme :
Y=A X+ A, x2+Agx3+ ...+ A xn+ ...

Le calcul de détermination des coefficients :
A, A,....A,montre facilement les résultats suivants

1° Les coefficients de la forme : A; Awyy . ... Ajena
dépendent uniquement des coefficients 2, b et des
coefficients de la série :

a +a, xE+ a,,x%k+ .. oay, xek+ L,
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2° Plus généralement les coefficients de la forme :
Ay Apr oo Ar -
dépendent uniquement des coefficients ¢, b et des
coefficients de la série :
a0+ ap Xk Fapxxk4 ... + am xrk 4+ .

3° Ces coefficients sont Ies mémes que ceux des sé-
ries vérifiant formellement les K équations :
xttldy =y (¢« — b xk) dx + X" (A a;1 Xk + ape x%* +.. )
ou I'on donne ar les K valeurs 1, 2, 3 .. K—1, K.

Or, si I’équation (4) admet pour solution une fonc-
tion holomorphe nulle pour x =0 celle-ci étant abso-
lument convergente a I'intérieur de tout son cercle de
convergence, il en est de méme de toutes les séries
partilles déduites en supprimant certains termes dans
celles-ci et par suite les K fonctions (r= 1, 2, ... K).

Ve = Ar X" + A XUPE A+ Ao xMRE 4L
sont des fonctions holomorphes pour x=0.

Il s’en suit que si ’équation (4) admet pour solu-
tion une fonction holomorphe nulle pour x=20, il en
est de méme des K équations.

(5) xxt' dy =y (& — b xk) dx + x" (a,) +ay; xK ayp x2K 4. ..,

Réciproquement si les K équations (5) admettent
chacune une solution holomorphe pour x=0, il est
évident que la fonction somme de ces K fonctions
holomorphes sera une solution holomorphe de Péqua-
tion (4).

En résumé, l'étude des solutions holomorphes nulles
pour x=0 de Uéquation (4) et par suite de l'équa-
tion (1) se raméne a I'étude des solutions holomorphes
des K équations (5). La condition nécessaire et suffi-
sante pour que l'équation (1) ait une solution holo-
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morphe nulle pour x=0 s’obtiendra en écrivant que
chacune des K équations (5) a une solution holo-
morphe nulle pour x=0.

Nous aurons donc en général K conditions indépen-
dantes les unes des autres puisque dans le cas général
il est évident que les coefficients des séries :

ay t+ap XK+ ap x*X+ ...
sont indépendants les uns des autres.

§ 8. — REébpucTtioN DU cAS K QUELCONQUE AU cAs K=1

Considérons I'une des K équations (5)
xKH y' =1y (¢ — BxK) + x" (by + by x¥+ by x* + )
ol « est un nombre essentiellement différent de zéro
et ou r peut prendre les K valeurs 1, 2, 3... K-1, K.
A. — Faisons d’abord un changement de fonction
inconnue en posant :

bo
y=— —a" +ux"
o

u étant la nouvelle fonction inconnue. Nous aurons :

b
xK*i[—]:P—O x'l+rux™—t-4+u’ x"]m[uxr—— —OX"] [d —@xx]=
o

o
xrl:bo+b4xK+be2K+.... ]
ou en divisant par x":

b
XK[—EEQ-PI'H———Q

a o

+u@+u'x]=—bo+au + by + b, xK + by x¥K+. ..

b, (
Kty = [ a—(ﬁ-}-r)xK] +xK[b,+Lﬁ—@] + by x4+ ...
o
B. — Faisons maintenant un changement de varia-

ble indépendante en posant :
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xk =V
V étant la nouvelle variable indépendante
du du dv du
______ K—1 —
YER Ty F dv

L’équation devient :

) A
K xKH xK~t -g—;l=u[a-(ﬁ+r)xK] +xK[b,1+————~—b° (r+8)

] + by x*K ..

o
c’est-a-dire :
Kvg%l—:’ + u [a——(ﬁ-i-r)v] +v [b4+b°—(raip—)] +byve4 ...

Equation de la forme :

xeg-:f+y[a—cx]+b,x4b2x9+b3x3
En posant :

P ek

AT 7 T K

Nous sommes ainsi amené, pour chercher les con-
ditions d’existence d’une solution de (I) holomorphe
pour x=o0, 4 considérer successivement les équations:
xkH y =y H (x) + G (x)
ity =z (@ —B X)) + g (1)
tEt gy =y (a — B K) + 1 or (1K) r=12....K
vPu =u(a—cx)+ o (v)

On passe de la premiére équation a la seconde par
un changement de variable de la forme

t=x+4a,x2+}a,x3+4.....

On décompose ensuite la seconde équation linéaire
en K autres équations de sorte que l'on aura K équa-
tions pour exprimer que la premiére équation a une
solution holomorphe. On raméne ensuite chacune de
ces K équations a la derniére forme par un change-
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ment de fonction et un changement de variable en po-

sant :
b
y=— =x"+uzx et v=ak
o

Employant uniquement les variables x et y, nous
sommes amené « considérer dans cette étude les qua-

tre équations fondamentales :
y Hx) + G ()

() xk+y =y (A — BxX) + g (2)
(Il) xK+1y" =y (A — BrX)+ x" o, (xK)

av) 22y =y —p x)+o(x)
Et nous savons qu’entre les quatre constantes A, B,

(1) ak+y =
r=12..K

), B, existent les deux relations :
s=A 4= B+r
K K
Les coefficients de ¢ (x) sont les memes que ceux de
¢p (xX), a l'exception du premier qui est donné par

b, + bo (:rﬁ)

Nous appellerons aussi (II') (II') et (IV’) les équa-
tions (II) (I1I) (IV) dans le cas oit 'on aura soit B—o,

soit B=o.






CHAPITRE III

Etude de 1'équation linéaire

§ 9. — CoNDITION POUR QUE L’EQUATION (II) AIT UNE
SOLUTION HOLOMORPHE ET NULLE POUR X=0
DANS LE CAS K=1, p==o0.

Nous retrouvons le cas traité par Briot et Bouquet.
Nous pouvons obtenir de la maniére suivante la con-
dition pour que cette équation ait une solution holo-
morphe nulle pour x=0. L’équation peut s’écrire :

Xy —hy=o0(x) =bx+b; x>+ byx3 +....
et la solution générale prend la forme :

S
)\ )\ X X
_x _xf i_w_dx
y = Ce + e X2
o

Précisons la définition de I’intégrale

e o (x)
f(x) = f X2 dx

w>
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Désignons par S, le demi-plan de la variable com-
)\
plexe x pour lequel la partie réelle de X est négative.

Partons de 0 suivant un chemin intérieur a S,, dans le
voisinage de 0 et aboutissant & un point x situé ou
non dans S,; f (x) sera I'intégrale curviligne prise sui-
vant ce chemin.

L’intégrale n’est pas en général une fonction uni-
forme car lorsqu’on tourne de 2 = autour de I’origine,
I'intégrale augmente de 2 =i R en appelant R le résidu
de la fonction sous le signe

.

Pour que y soit holomorphe il est donc essentiel que
Pon ait R==0. Or il est facile de voir que I’on a:

N 7\2 )\3
R—bo+b1/\+b92!+b3 3!+...

Cette condition nécessaire est suffisante car si elle
est vérifice y est une fonction uniforme et le point
x=0 est un point essentiel isolé. Toutes les solutions
sont de la forme

By By

+ E‘%+,..+——+?-’rBO+A4x+A2x‘2+...+A“x“+....
. :

x2

N]>’

mais la présence du terme Ce permet de trou-
ver une de ces solutions pour lesquelles on a B;=0 et
alors un calcul d’identification donne de suite :

— B;=%By 5 —2By=2ABy..... n B, =4ABn
Si B=0 on a donc B; = B,=...=B, = o et la fonc-
tion y devient une fonction holomorphe nulle pour
x=0.
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§ 10. — CONDITIONS POUR QUE L’EQUATION (II) Arr unE
SOLUTION HOLOMORPHE ET NULLE POUR X=(
DANS LE cAs 8=0.

Ce cas, qui est une premiére généralisation du cas
traité par Briot et Bouquet, peut se ramener comme
nous I’avons vu au cas de I’équation (IV), mais il me
semble intéressant de le traiter directement sans faire
les changements précédents de fonction et de varia-
ble. Considérons donc I’équation :

Iy 1y — Ay =0 x)=byx+ b x2+ by x3 + ...

Un raisonnement analogue a celui qui est fait au
paragraphe (7) permet de considérer séparément les
K équations

(UIY xEHy — Ay = X" (gt oy XK + po x 2K+ ...
ou r prend successivement les valeurs 123..... K-1, K,
il suffira et il faudra, pour que (II)’ ait une solution
holomorphe nulle pour x=0, que les K équations ainsi
écrites admettent chacune une solution hclomorphe
nulle pour x=0.

Cherchons une solution de P’équation (III)’ de la
forme
y = A X"+ A xMHE + A xR A A, xR 4

En identifiant les coefficients des termes en x +nK
on a la formule de récurrence :
r+m—1)K] Aug — AA, ="
Les coefficients A, A, ..... A, sont donnés par les
n-+1 équations :



:—PO 1

— :——ﬁll D
Ao . A

2

— A, = Pe I
r

PD"- 1 )\n—-l

— A, _ = -
) K n-? r+m—2)K|r@c+K)...[r4 (n—3)K]
N pn ‘/\n
_'An—i - = -
) K rt+n—1K||rir+K, . [r+{n-2)K]

Si I’'on multiplie ces (n+1) équations par les fac-
teurs placés en regard et si 'on additionne ensuite
toutes les équations ainsi obtenues, on obtiendra :

r (r + K).

O=potp %;*" e

L r+(@m—DK]

0+ An [ N A 4 A2
— o, — —_— ...
Po 7 f1 r PQr(r«i—K)—'—

An
+ fn
¢ r(r+K).. [r+(n—1)K]

La série p, + p; X% + p,x 2K+, .. ayant un rayon de

convergence non nul, le corollaire du théoréme III
montre que la condition nécessaire et suffisante pour
Ia convergence de la série entiere vérifiant formelle-
ment 'équation (III)’ est :

7 72 An
‘ r(r+K)+ +‘onr(r+ Kj...[r+(n—1 K]+m
et le rayon de convergence est au moins égal a celui

de la série de terme général o x"K
En donnant successivement a r dans la condition
(C) les valeurs 1, 2..... K et en prenant pour gy g, ps . ¢"

les coefficients de la série ©" (xK) correspondante,
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on obtient les K conditions de convergence de la série
entiére. Le rayon de convergence de cette série est
celui de la série g (x) —.

Remarques.

1° Si K=1, on est dans le cas traité par Briot et Bou-
quet. En faisant r=1 on retrouve ainsi la condition
donnée par ces mathématiciens.

2° Si K>1, on doit décomposer I’équation (II)’ en
K équations (III)’ et par conséquent I’équation (II)’ ne
sera vérifiée par une solution holomorphe et nulle
pour x =0 que si le nombre X satisfait a ces K condi-
tions.

3° On peut encore remarquer que dans la décompo-
sition de I'équation (II)’ en K équations de la forme
(III)’, la derniére équation peut s’écrire :

XKty — Ay = xK[pg+py xB+ gy x2 + ]
et se raméne immédiatement au cas oiu K=1 en posant
u=xK dou u = KxK!
On a alors I’équation :
Kuy —iy=gu-+pui+tpgu+....

§ 11. — FORME GENERALE DE L'INTEGRALE GENERALE
DE II DpANS LE cas : B=0

Pour obtenir lintégrale générale de (II)’, nous sa-
vons que nous devons considérer K équations analo-
gues a (I1I)’ et nous mettrons 'intégrale générale sous
la forme d’une somme de divers termes. Cette forme
d’intégrale générale nous donnera comme cas particu-
lier les conditions de convergence déja obtenues pour
la série vérifiant formellement I’équation (II)’.

Considérons donc une des équations (III)’:
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() x®F1y" =%y + x" (py + py XK+ g x2K +. .. .)

Considérons a priori la série Z (x) :
Z(x)=uyx"+ u, x"FK + gy x"E |4 g, xrek4
ol nous posons :

LN AP

P1
= — + + ...
to r—’fr(r-i-K) *opn rr +K)....(+pK)

et d’'une facon générale :

Pn+1 Pn+97\
U, = - +...
r +nkK (r+nK)[r+m+1) K]
AP
(r+nK).... [r+{n+p)K]

D’apres le théoréeme (II), toutes les séries u, sont

o+

Pp+n+1

convergentes pour toute valeur de x et d’apres le
théoréme (IV) la série Z (x) a un rayon de conver-
gence au moins égal a celui de la série p, x"K

Cherchons la fonction F(x) telle que la fonction
Z (x) soit solution de I'équation :

xK+1 7" — % Z = F (3)

On voit facilement par identification que l'on doit

avoir :
F (x) = — Wy x" + (rug — auy) x™HoK + .

+ xrtnk g [r+(n—1)K]Jupg —hu? | +....

ou en remarquant que :
[r+(m - 1) K] up—y — Au" = p®
F(x)= —hupx" + oy x"HK + g xTHK ||+ g0 xrtnk
y et Z sont donc respectivement solution des équa-
tions :
(4) xEHy — Ay = X" (pp + py XK+ pa x*(+....)
(B) xKHZ' — W =3x"(— huy + py xK+ pg x¥E +., )
et I'on sait de plus que la série Z (x) vérifiant formel-
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lement (5) a un rayon de convergence non nul au
moins égal a celui de Ia série g x°K
On en conclut que la fonction y —Z sera solution
de 'équation :
Xk (y —Z') — " (y— Z) = X" (py + Aup)
On en tire par intégration de cette derniére équa-
\ion qui est une équation linéaire du premier ordre :

— X A

k Kk, k
ey + )\uo)er f xr—k—1e BX' gy
o

]

y=Z+ Ce

Précisons la définition de l'intégrale que nous in-
troduisons. Désignons par S, un secteur du plan de

la variable complexe x pbur lequel la partie réelle
A
de " est négative. L’intégrale introduite sera I’inté-

grale curviligne prise suivant un chemin partant de
0 a lintérieur du secteur S, au voisinage de 0 et abou-
tissant & x situé ou non dans le secteur S.

L’intégrale générale se présente donc comme la
somme de trois fonctions :

1° Une fonction holomorphe Z (x) dont le rayon de
convergence est au moins égal au rayon de conver-
gence de la série o x"K,

2° Une fonction uniforme mais non holomorphe

A

— Kxk

multipliée par une constante arbitraire : Ce

3¢ Une intégrale multipliée par une fonction uni-
forme non holomorphe. L’intégrale n’est pas une fonc-
tion uniforme car le résidu R de la fonction sous le
signe [‘ n’est pas nul et par suite la valeur de linté-
grale' augmente de 2 =i R Jorsque I’on tourne autour
de l'origine.
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La fonction y ne pourra donc étre holomorphe que
si les deux derniéres fonctions sont affectées d’un
coefficient nul. Toute combinaison linéaire d’une fonc-
tion uniforme non holomorphe et d’une fonction non
uniforme ne peut, en effet, fournir une fonction ho-
lomorphe.

L’équation (III)’ aura donc pour solution une fone-
tion holomorphe et nulle pour x=0 si ’on prend la
constante arbitraire C égale a zéro et si le coefficient
eo T »u, de lintégrale est nul, ce qui donne la con-
dition :

N 22

T TP r r+ K) +

n

rir+K) . [r+Mm—1) K]
et I’équation (II)’ aura pour solution une fonction ho-
lomorphe nulle pour x=0 si les K équations (III)* ad-
mettent chacune une solution holomorphe nulle pour
x=0, c’est-a-dire si K conditions analogues a (6) sont
satisfaites.

(6) O =po+py

+ en

+o

§ 12. — AUTRE METHODE DE FORMATION DE L’INTEGRALE
GENERALE DE (II)’

L’équation 1:
() xMly —ihy=o(x =byx+ by x2+ by x3+...
admet pour solution générale les fonctions :

IS

X
- . ” Kx¥

A A e © 1X)

- -k - x K+1
y=Ce K}\ +e KX, o) X

Considérons la fonction :




-

A X A

- K KK
Yo=c¢ Kz f xn-k—te Kx dx
o

qui est une solution particuliére de I’équation :
xk+1Y — A Y= xn
I. — Cherchons une relation entre la fonction Y,

et la fonction Y,_x définie d’une maniére analogue en
remplacant n par n— K. La fonction :

Z=aY,— b Y. x
sera solution de : xK+1 7' — 3 Z = axn b xn—k
et si 'on veut que cette derniére équation admette une
solution de la forme : Z = C x»¥ ou C est une cons-
tante, on aura :

Cin K)yxn —ACx" k= ax" — bhxn-k
d’ou l'on tire par identification :
C=1 B=x a=—n—K

et par suite, en identifiant x"-¥ avec Z, on a la re-
lation suivante entre Y, et Y,. x:

8 M=K Yy, — 2Y,_g = x"K
relation que ’on aurait pu obtenir aussi en dérivant

la fonction A
KxkK
e

xP
et intégrant.
La différenciation donnait :

( A A N
KxK KxK . Kx¥
xP e =p xP-le — aAxPK-le

L’intégration donnait ensuite :

N X A

I X
K Cx K K
) xPer :p‘/ xl’-lekx -“Af xP—K-’er dx
o



)
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et on obtient la relation (8) en faisant p—=n—K et en
n

KxK

multipliant les deux membres de (9) par e
II. — Si dans la relation (8) on fait 'successivement
n=qK+r ; n=(q—1) K+r..... n=K-r, on obtiendra
les g—1 équations :
[q—1K + r] Yexir — A Yootk =x@ 1K+ 1 (K +1).. [ (q—2) K+71]

@ (q—R)K+r] Yg-1gir— A Yqorpr=%xa-K+r | 3(K+r1) . [(q—3) K+T1]

(g-2)
(g-1)

(

(2 K+ r) Y2K+r — A YQK+r = x2K+r Na-3 (K + 1)
(K=r) Ygir — AYgy, = xKir A2
Si 'on multiplie toutes ces équations par les fac-
teurs placés en face d’elles et qu’on les additionne, on
aura la relation :
K+r) (K+2r)...[(q—2)K+r] Yegir =
K+r)EK+2r)....[(q-2) K+r]xa1K+2
+ A K+r).. [(q=8) K+r|x@2Kr+ 0+
+ A3 (K +r) x2K+r 4 30-2 xK+r + 301 Yg o,
ou en résolvant par rapport a Yquir :
10) Yoo = o7 p XATHRT ST +
(q—1; K+r r+@q—1)K][r+ (g—2) K]
2a—2 xk+r 791 Ygoy

+ r+(@—1) K]... (K+2r) (K+r) + (r + (q—1) K] ... (K+2r) (K+r)

Le calcul de la solution particuliéere Ygqi. de
I’équation
xK+t Yqu_;.r — A Y"'CHI' = xaK+r
est ainsi ramené quel que soit le nombre positif et
entier q au calcul de l'intégrale analogue Yk, de
I'équation
xK+t V,K+|- — A YK—,Lr = xr+K
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III. — Si P'on considére maintenant une des équa-
tions (III)’ servant a la résolution de I’équation (II)’
(I xBH Y — XY =x"(pg + 5y xK+p x¥K +.. )
le calcul précédent permet de mettre 'intégrale géné-
rale de (III)’ sous la forme d’une série entiére et de
Pintégrale générale de I'équation:

- ‘/\
Ah  xkHw — AW =x"(p t ¢4 T

a2 A3
r(r-f—K)+PS r(r+K) (r+2K) o)

Le terme général ug x9+" de la série entiére s’ob-
tient en faisant la somme de tous les termes du méme
degré dans toutes les expressions (10) de Yq4. trou-
vées plus haut. Le coefficient uq est ainsi donné par:

Patt Parz * 4
gK+r qK+r) [(q+1)K+r]

Pats M
(@K+1) [(q+ ) K+r1] [(q+2) K+r]

D’aprés le théoréme (IV) et un raisonnement déja
employé, le rayon de convergence de cette série en-
tiére est égal au rayon de convergence de 3 (xX)

P2

Ug=

CONCLUSIONS
Si nous posons :

S bty ¥
TR TR T R re+K)y 7

S est une série convergente pour toute valeur de A
d’apres le théoréme (II) et la solution générale de cha-
que équation (III)’ se met sous la forme :

A 7 X r\

K CTLE
Y=23ug xt%+"+ Ce Kx + Se Rx /
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et ’on retombe sur les conclusions du paragraphe pré-
cédent n° 11.

§ 13. — ETubpE DE L’EQUATION (IV) DANS LE cAs
ol B EST ENTIER

av)y xy — (O —8x)y=o¢((Xx) = bx+bx*+ ... +by xrt + ... ..
Si =0, nous sommes dans le cas traité par Briot
et Bouquet.
Si B est un nombre entier positif ou négatif, nous
allons ramener I’équation IV au méme cas 8=0 en
changeant la fonction inconnue : Posons en effet
y=ux’
u étant la nouvelle fonction inconnue. On obtient la
nouvelle équation :

x2[u' x" + ru x| =ux"{A—3x) + byx+ bx2+ ..
ou en divisant par x':
(13) x2u'=u[r—(g+r)x]=Dbyx!""+ b x* "+ b, x> +....
et on peut en tirer les conclusions suivantes :
A. — Si B est un entier positif, on raméne 1’équa-
tion IV au cas traité par Briot et Bouquet, en posant
r——2_B, cat alors tous les exposants 1—r, 2—r..... sont

des entiers positifs.

B. — Si 8 est un entier négatif, on aura encore ra-
mené I’équation (IV) au méme cas en posant r——=_§
si les r premiers coefficients by b,... b,_; de la série
du second membre sont nuls. On obtient ce dernier
résultat en posant

y=Ax+A;x2+ ...+ A X"+ V
V étant une fonction nouvelle inconnue et A; A,.. A,
étant les r premiers coefficients de la série vérifiant
I’équation IV,
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Aprés ce changement de fonction I’équation sera
remplacée par une équation analogue en V mais ou
les r premiers coefficients b, b,... b, seront nuls.
La transformation y==u x* devra donc ramener I'équa-
tion (IV) au cas traité par Briot et Bouquet.

§ 14. — CONDITION POUR QUE L'EQUATION IV AIT UNE SO-
LUTION HOLOMORPHE ET NULLE POUR X=A)
DANS LE CAS Ol LE NOMBRE § EST QUELCONQUE.

Pour que I’équation II ait une solution holomorphe
nulle pour x=0, il faut, comme on I’a vu, qu'il en soit
de méme des K équations linéaires (IV) déduites de II.

Soit donce :

y=A x+ A, x*+ ...+ A "+ L.
la série entiere vérifiant formellement I’équation :
V) X2y =( —Bx)y=o(x)= bpx + bx2+ by x0+' + ...
On aura :
Xy =Ax2+2A,x3+ ... +1n—1) Apg x" +...
Exy =0BA; x2+ B Ax*+ ... + 08 Ay x® +...
Ay =RAA X+ AAx2+RA;x3+. . +RA, X" +...
¢ (X) = bex + bx2+byx3+. . + bpyx" +...

Par identification des coefficients des mémes puis-

sances de X con a la relation de récurrence :
Ay 3+ n —1) = XA, + by

d’out le systéme suivant pour calculer les coefficients
Ay A, Ay



O= A, +b, {

XA, b, .
A= a1 B+ 1 A

ONA, b, 2
A= s T iToe s+ 1
A _ AAn4 ba An—2

" n+g—2  n+f—2| E+D)(E+2)....8+n—3)
A — _MAs N bn_1 n—t

" n+g—1  n+g—1| G+HBE+2)....8+n—2)

Pour calculer A, il suffira de multiplier toutes ces
équations par les fonctions qui sont placées dans la
seconde colonne et d’additionner toutes ces équations.
On obtient :

_ AL b,

O_(3+1)({5+2)..(3+n—2)+b°+ ;3+1+
by 22 B+1) ...0¢+n—1)

GrhH@E+e + br ot

On peut donc calculer tous les coefficient A, au
moyen de cette formule et ceci d’'une maniére unique
pourvu qu’aucun des facteurs du produit

E+H@R+2)...(E+n)
ne soit nul et nous sommes précisément dans
ce cas puisque P n’est pas un nombre entier.

D’apres le théoréme III, la condition nécessaire et
suffisante pour que cette série entiére vérifiant for-
mellement I’équation (IV) soit convergente est que
Pon ait :
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b, & b, 2 b, w»
+ +..oo + +
B+1  @R+1HE+? @+1)...8+n)
et si S=0, on sait que la série A, x» a un rayon de
convergence au moins égal a celui de la série o (x).
Dans cette démonstration, il n’est pas utile de trai-
ter a part le cas oul B est un nombre entier positif ou
nul ; il suffit de supposer que 8 n’est pas un entier

négatif. On retrouve encore pour §=0 la condition
donnée par Briot et Bouquet.

S=bo+ cee =0

§ 15. — FORME DE L’INTEGRALE GENERALE
DE L’EQUATION IV

L’équation (IV) est une équation du 1 ordre dont
la solution générale obtenue par les procédés classi-
ques prend la forme

M| >

" A X
— "~ XRe
x x |

2 9 (x)dx
4— v/

XA " ooxs O
ou C est une constante arbitraire,
L’intégrale curviligne introduite est prise suivant

le chemin indiqué au paragraphe 9.
A

X
. e . .
La fonction — 2 (%) peut se développer en série
x2 0

y=

de Laurent qui sera convergente a l'intérieur d’un
cercle de rayon non nul au moins égal au rayon de
convergence de la série »(x) (Le centre 0 en étant
naturellement exclu).

Quand on aura intégré cette série de Laurent mul-
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tipliée par le facteur x4 on aura donc comme résul-
tat une nouvelle série de Laurent multipliée par le
facteur x# et quand on multipliera le résultat ainsi

)\

X

e -
obtenu par —— on aura encore une série de Lau-
Xp

rent puisque le facteur x# (3 étant supposé non en-
tier) aura disparu et on pourra écrire :

A
e X
= C + L
y XA
B B
avecL=...x—n+... +—=+By+ A x+ A x2+.
n X

Pour que I’équation (IV) admette une solution ho-
lomorphe nulle pour x==0, il faudra donc, la fonction
holomorphe étant un cas particulier de la série de
Laurent :

1° Que cette fonction y soit uniforme, ce qui exige
C=0, puisque B est supposé non entier ;

2° Que la série de Laurent ait son terme constant
nul puisque la fonction holomorphe doit étre nulle
pour x=0;

3° Que tous les termes de la série de Laurent de la

Bn . .
forme —- soient aussi nuls.
X
Nous allons montrer que les deux premiéres condi-

tions entrainent nécessairement la troisiéme. Soit L
la série de Laurent vérifiant ’équation :

2y — (A —px)y=o9 () = by x +b, x2+ b2x?+.
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X2y = — [— B, +
Ayx2+2A2x34 .. +n A, x0H 4

X =—)[B+&+B—Q+ +Ei+ |
y \ 0 " SERLEEEE an T

2B, 3B, - nBn
—t 5 e +
X

xﬂ———1

-X[A4x+A2x9+....+A“x“+.;.

B, Bn
4ot

B
ﬁxy=a[B,+ ;2+-; mcs SIR B

Q[Box+A,x9+.‘., + Ap x4+

® (X) = byx +byx2+ By x3 +....
En égalant les coefficients des termes en 'x, on ob-
tiendra :
8B, =)A,+Db,
En égalant les coefficients des termes en x2:
A—2A,+BA = b,
et d’'une maniére générale en égalant les coefficients
des termes en X" on aura la formule de récurrence :
n—1) Ant — A Ap+ 8 Apt1 = bay
L’égalité des termes constants donne de méme :
— B, —%B,+8B, =0 ou « By=B, (1)
en égalant les coefficients de -}12 on aura :
— 2B, —AB;, +5B,=0 ou 7B, =B, (E—2)

\ 1
et en égalant les coefficients de — on a la formule de
X

récurrence :

—m=+1) By — 2By + ¢Bupy =0 ou
7\Bn=Bn+1 (p—n—1)

Si donc nous prenons B, les formules
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ABy=B; (g—1)

ABr = Bn+1 —mn- 1)

donnent puisque 8 n’est pas supposé entier :
O=B,=By—= ..... = B,
et la série de Laurent se réduit a une série entiére.
Les coefficients A; A, ... A, sont alors donnés par
les formules
KA, +Dby=0
ANAyg+ b= A (B +1)

AAp+ by = App B+n—1)

Les termes de la série entiére sont donc calculables
d’'une maniére unique par ces formules et le raison-
nement fait au début montre que la série entiére ainsi
obtenue sera convergente et aura un rayon de conver-
gence non inférieur a celui de la série o (x).

Pour obtenir la condition nécessaire et suffisante
pour que I’équation (IV) ait une solution holomorphe
nulle pour x=0, il suffit donc d’écrire que la série de
Laurent représentant la fonction

4 x *

X . X
e Xe e o (X) dx
x?2 )

XP [v)

a son terme constant nul.

A

A X
re
]

Or le terme de * ¢ (x) ayant b, x? en facteur

peut s’écrire :
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x£ b“[ x“-‘-l—)n(“—”—i--)ﬁ x84+ M X
21 (n—2)!

)\n-l )\n 1
to—nt T oar §+""]

et apreés intégration il devient :
ab Xn n xn—1 N2 xn—2
X A — — ...
"[B+n ﬁ+n——1+2! (5+n-——2+
\n—2 x2 20—t X 20
+(n—-—2)! g+2 * (n—1)1 g+1 Y 8 +]
et par suite on pourra écrire :

o\
.__.Z‘_ X ;
x XA e _ A a2 )3
¢ f X2 ? () dx= [1——;+2!x’— 31x3 +”"‘]A
xR o
avec ©
1 A 22 28
A““[a+m—nx+2uw—mﬂ+3ua—&ﬁ+
X N A2 A3
+b‘[s+1+ 8 + 21(3—1) x +31(g—2)x2+"“]

X2 » xnt 22 xn—2
+ bn[ﬁ-i—n -+ ctn—1 + Sl@E+n_1 {—:l +....
En multipliant ces deux séries on obtient une nou-
velle série de Laurent. Le terme constant de cette sé-
rie de Laurent est lui-méme une série entiére en A
S=Cy+Cyn + Cen2+ 333+
et I'on obtient facilement :
b,
e
b, by  byx

C, = — — =
e X (R )

(,0 -

1 1 1 b, 22
Ca=bs [z!a' e+1+zl<a+z>]“ E+HDE+2)
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et d’une fagon générale :

C —1 1 1 1 S
" n[n!{&_(n—-—-i)!({3+1)+(n—2)!ca+2)2!

(=1 *_.’_w_]

@F+n)n!
Or il est facile de voir que la quantité entre paren-
|
théses est égale a
g pBE+FHE+T2) ...+
en décomposant la fraction 1
S
P X (x+1) (x+2) ..... (x+10)
en éléments simples
A
On a en effet le coefficient Ak du terme . kk en fai-
sant x=—K dans
1
x (x+41) ..... x+K—1) x4+K+1) ..... (x+n)
Le terme constant s’écrit donc :
b, » b, 22 by, At

o
S= -1 by+ +
a[ i Tt et T T EEnGETY .. (6 +n)

et Pon retrouve la condition de convergence trouvée
plus haut en écrivant S=0.

On peut retrouver peut-étre plus simplement ce ré-
sultant en raisonnant de la maniére suivante :

Tes équations :

A By= By (6—1)
ABy= By (§—2)

)\A{_{"bo_—_@Bo
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AAg+ by = A1 (3+1)

10

NAp+ by y=Ap (B+Fn—1t)
permettent de calculer les coefficients d’une série de
Laurent vérifiant formellement I’équation donnée et
nous avons vu que cette série sera convergente a I'in-
térieur du cercle de convergence dont le rayon est au
moins égal au rayon de convergence de la série v (x).
I1 suffit pour cela de choisir arbitrairement le nom-
bre A,. Les équations (9) donnent alors les coefficients
A; Ay . A, enfonction de A, et les équations (10) don-
nent B, B;.. By
On a vu de plus que si ’on prenait A, tel que B;=0,
c’est-a-dire A A, +b,=0, la série de Laurent devenait
une série de Mac-Laurin. Nous allons voir qu’il suffit,
pour qu’il en soit ainsi, que l'on ait :
b; 2 b, 22 by, wn
O=S=ht ot e ere T G ety T T
En effet, soit :
bp a0 by xntt
+ , dnns
GHU. . @Gtn) @) E+2) @E+nt1)
le reste de la série S.

n

La série S est absolument convergente pour toute
valeur de X puisque la série ¢ (x) a un rayon de con-
vergence non nul (Théoréme I). Prenons :

A An

TE@E+Y. S (+n—1

Rn

c’est-a-dire :

by bnit %
An T g+n +(3+n) (g5+n+1)+""'




bn_.1 lln S
+ 4+
B+ n—1 (B+n—1) @+ n)
on en déduit si n>1 la formule de récurrence
(a + n— 1) An.__1 = bn__j + A An
Les nombres An ainsi définis sont donc bien les
coefficients A, de la série de Laurent ; ils se calcu-
lent en fonction de A, et 'on a
b, by, » b; 22
o + + - +....
g+1  E+HNE+2)  E+H1)E+H2)E+3)
Pour que Ia fonction de Laurent devienne une série
entiére, il faut et il suffit que 'on ait :
AA,+b=0

An——1 =

A,

c’est-a-dire :

b, bs % b, 22

—S—b, + "
0 LT AN+ @D (5+2)(2+3)

Fuenn

REMARQUE. — Si 'on était parti de I’équation :
() xkty =y (A —Bxk)+ g(x)
on aurait eu les K équations :
(111 x*+y' =y (A —Bxk)+xk o, (xk) r=12...K

et on aurait eu les K conditions S=0, ou I'on aurait

A B-4-r
Lo b .
posé : A= K et B—= K
Les coefficients b, b, b, de la série S auraient été

les mémes coefficients que ceux des séries o, (x¥)
a I’exception du premier qui aurait été remplacé par
b, (r+B)

b,+ A
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§ 16. — AUTRE METHODE DE FORMATION
DE LA SOLUTION GENERALE DE IV
aVv) X2y —(h—px)y=o(x) = byx+b;x2+byx3+ ...,
Nous allons suivre une marche semblable a celle du

paragraphe 12. La solution générale de IV s’obtient
X

en ajoutant a la solution générale C e * de I'équa-
.
tion linéaire sans second membre une solution par-
ticuliére de I’équation linéaire avec second membre
et nous prendrons pour celle-ci la fonction déja in-
diquée au paragraphe précédend.
I\

X

e *J ¥ e

X8 o X

x A
X

Pour lui donner une nouvelle forme, nous consideé-
rerons la fonction :

X N

%
Yo=¢ * f xn+6—2e © dx
xB o
solution particuliére de I’équation :
14) 2y —( —px)y=x8

1° Cherchons d’abord une relation entre la fonc-
tion Y, et la fonction Y,_; définie de la méme ma-
niére.

La relation (9) de la page 35 ol nous faisons K=1
donne :

-

I X A b

15) xpex———pf xp-lexdx—lf x2 e 7 dx
o o

w| >
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ou en faisant p=n--8—1 et en multipliant Ies 2 mem-

bres par e x
XA

16) x»1=m+g—1) Yo — 2 Yu
20 Cette formule de récurrence nous donne les re-
lations suivantes :

)\Yn—l xn—1

n+g—1 — Yo = n+g—1 1

X Yoo xn—2 A

n+pg—2 Yot n+8—2 n+g—1
AYy ¥ — — x3 P
8+ 3 YT g+ 3 m+g—1) (n+p—2)...(8+4%)
~ Y, Y. x2 PRt
8+ 2 T g+ 2 m+p—1)m+p—2)...B+3)
rY, oy X AR
8+ 1 T a1 m+pg—1)(@+ps—2)...0+2

En multipliant toutes ces relations par les facteurs
placés en regard et en les ajoutant on obtient :

. ‘)\n—l Y] + X A2
T+ E+2)...(3+n—1) E+1E+2).. (+n—1)
X% )\Il—3 X3 )\n—‘i
+
* @®+2)...B+n—1) @+4...(F+n—1) T
Xn—?)\ Xn—i

+

E+n—2) E+n—1) + g+n—1

3° Si nous considérons I’équation (IV), le calcul pré-
cédent permet de mettre la solution particuliére con-
sidérée sous la forme de la somme de la série entiére
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3 up x* et de lintégrale particuliére analogue de
I'équation:

x2y' —(—Bx) y=S x
en appelant S la somme de la série entiére toujours

convergente d’apres le théoreme (I) :
7\ & 3
S=hotbh Tt e T ey T a2 5+9)

Le terme général u, x* de la série entiére s’obtient
en faisant Ia somme de tous les termes de méme de-
gré dans toutes les expressions Y, (formule 17), ce
qui donne :
_ bn + A bn—H + »2 bn +2 +
6+n (g+n)g+n+1)  E+m@B+n+1)@+nt2 " T
D’apres le théoréme II toutes les séries u, sont con-
vergentes pour toute valeur de X et d’apres le théo-
réme IV la série enticre X u, x® a un rayon de con-
vergence au moins égal & celui de la série v (x)
La solution générale de IV prend alors la forme :

+ees

Uy

N

IS

S X
Ce Ly nys e X / xi—1 e dx
YT ke =t ¥ xt ©

On retrouve la condition S=0 pour que la fonc-
tion 19 puisse étre holomorphe et nulle pour x=0. Il

suffit alors de prendre la constante C égale a 0.

A
X

§ 17. — PROPRIETES DES SOLUTIONS
DE L’EQUATION DIFFERENTIELLE
DANS LE VOISINAGE DE L’ORIGINE

Pour étudier les solutions de 1’équation (I) nous sa-
vons que nous devons étudier les solutions des K
équations de la forme



—_ 52 —

av) =y =0—8x)y+o(x)

ol = d avec r=1, 2...... K—1, K.

et par suite nous sommes amené a étudier les K

fonctions transcendantes introduites dans la formule
(19)

X
e
@) F(x= " f xile dx
0]

f
|
| >

A
La droite (D) pour laquelle la partie réelle de < est

nulle divise le plan de la variable complexe x en deux
demi-plans : Le demi-plan P,, pour lequel la partie

réelle de — est négative et le demi-plan P, pour le-
X

quel elle est positive. Soit S le point représentant la
variable complexe x. Désignons par A, un angle de
sommet O aussi voisin que I'on veut de deux droits
et intérieur au demi-plan P,, c’est-a-dire ne contenant
aucun point de D a son intérieur ou sur ses cotés.
Dans les mémes conditions on désignera par A, un
angle de sommet O intérieur a P,.

Premier Cas. — Le point S est dans Uangle A,

Pour définir F(x) nous prendrons I’intégrale le long
du segment de droite OS. On voit facilement que I'on
définit ainsi une fonction analytique dans A,. Mon-
trons que lorsque x tend vers O dans A,, F(x) tend
vers O.

En effet, pour intégrer le long de la droite OS nous
poserons x = p ei» (w restant constant et p variant de
Oa |x|, | x| désignant le module du point S).
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Si nous considérons seulement les modules des
quantités complexes et si nous désignons par v une
quantité positive, nous aurons:

v

e b
e r
|[Fx)| <H((p)= _p/;f rf—1 e dx
o

Nous allons montrer que H (p) tend vers O avec p
tendant vers O. Nous avons :

Y\’ y
(rﬁ+1e r) =e r[(@-i—i)rﬁ—l-vrﬁ—i]

ce qui donne par intégration :

4 v y P y
. - = \ _ X
f rf—1e P dar= ipﬁ-{—ie P—&f ré e Yar
o v Y o

et par suite :

e pt+ e

J e T
v v pf e dr

H@e=——

La quantité e T est maximum pour r =p et par

suite
P y v op prtt v
frﬁe Pdr<e Pfr/3=g+1e P
o o

E:jrﬁe rdr<a—_‘_9‘—1
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quantité qui tend vers O pourp=s— O
Les fonctions H (p) et par suite F (x) tendent bien
vers O quand x tend vers O dans I’angle A,.

n

Comme dans ce cas la fonction Ce  de la for-
XA

mule (19) augmente indéfiniment avec x tendant vers
zéro, nous retrouvons le résultat connu :

Si x tend vers zéro dans un angle A, a l'intérieur et
sur les cotés duquel la partie réelle de — est négative,
X

la seule solution de I’équation différentielle (IV) qui
tende vers O avec x est celle qui correspond a C=0.
Toutes les autres solutions croissent indéfiniment lors-
que x tend vers O.

Deuxiéme Cas. — Le point S est dans I'angle A,

A Tintérieur de cet angle et sur ses cOtés, la partie

-

A s
réelle de — est positive.
X

Pour définir F(x) dans 1’angle A,, nous prendrons
a Pintérieur du demi-plan P, dans I’angle A, un point k
fixe S,. De O comme centre, nous décrirons un cercle
passant par S,. Soit S, le point de rencontre de ce
cercle avec la demi-droite OS. L’intégrale figurant
dans (20) sera prise le long du chemin OS, S, S. Rien
ne serait changé dans les raisonnements qui vont sui-
vre si l'intégrale était prise a partir de S, suivant
S, S, S. Nous conservons le chemin OS, S, S pour que
la fonction F(x) définie par (20) soit la méme que S
soit intérieur a I'angle A, ou intérieur a I’angle A,. Il
est évident que, si 'on va de S, & S suivant un che-



min faisant avec S; S, S un contour fermé ne conte-
nant pas O a son intérieur, la valeur de F(x) ne change
pas. Nous poserons donc :

AT A

F(x)ze__x_ xf—1 e " dx +fx13—1exdx
xt | 708, S, S, S

L’intégrale prise suivant le chemin O S, S, est finie

A
X

M| >

et comme on la multiplie par ¢ quantité qui

tend vers zéro avec x, on voit que cette partie de F(x)
tend vers O avec x. Il reste a4 considérer :
I A

F, (x)=e X xi—1e * dx

XA S, S



~ 56 ~

Si lon intégre en posant x = p ei», en raisonnant
comme précédemment, on est amené a considérer la
fonction réelle :

Yy

_Y R hd
D)= e e f ri—te ' dr
B

en posant R=0S,>0 e=0S>0
R est fixe; v est nombre positif dans ’angle A,, il va-
rie avec 'argument ¢ du ‘point S mais reste fixe sur
la droite O S.

¢ est un nombre positif tendant vers O avec S ten-
dant vers O.

L’intégration par partie employée deux fois donne:

v y v TR
- +1 = et
o) ——e ° BVQ rﬁ*2er+~;~er
L e
> R Y
r
L EFDEr e Pf e dr
y2 pB

Le premier terme du second membre tend vers O
avec p. Montrons qu’il en est de méme du second
terme. Considérons pour cela les 3 fonctions :

M R
a@=rHe’; gel=e Ff@); f(p)=/u(r)dr

vy

ef P
v

La dérivée u’(r) ne s’annule que pourr = o = i
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A. — a n’est pas compris entre O et R

La fonction u est infinie pour r=o et par suite dé-

croissante de p & R et I’on peut écrire :
vy

fp) < gpette P (R — p) et par suite g(p) <p (R—p)
La fonction @ (p) tend bien vers O avec p tendant
vers O.

B. — « est compris entre O et R

On peut encore supposer que 'on a p < o puisque
I'on fait tendre p vers zéro et I'on a encore :
o R

f :/u(r)dr +/ u (r) dr

p o
Lorsque r varie de p a ¢,u(r) est maximum pour
r=p.
La premiére intégrale est inférieure & :
@ —p)u(p)
Lorsque r varie de « a R, u(r) est maximum pour
r=R et la seconde intégrale est inférieure a :

(BR—a) u(R)
On a donc:

Y d
f(p)<(oc—~p)p'@ﬂeP + R — a) REH eR
Yy Yy
m, R,
g)<(@—pp+ (R — « RFe e —~
p

g (p) tend donc vers O avec p etil en est de méme
de @ (p) et de F(x). On a le résultat connu :
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St le point x représenté par S tend vers O suivant
une courbe (C) intérieure a un angle A, ayant ou non
une tangente en O, on voit que toutes les solutions y
de l'équation IV tendent vers zéro avec X.
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