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GEOMETRIE DE SITUATION.

Démonstration de quelques théorémes ;

Par M. J. STEINER.

ANV
§. L

1. IL est généralement connu que si, par un quelconque P des
points du plan d’un triangle ABC et par ses sommets, on méne
trois droites AP, BP, CP , rencontrant respectivement en A/, B/,
C’, les directions des cotés BC, CA, AB de ce triangle, on aura
I'équation

AB/BC/.CA’/=BA’.CB".AC’ ;

et que, réciproquement, si trois points A/, B/, C/, sont tellement
situés sur les directions des c6tés d'un triangle ABC, que cette
équation ait lieu , les droites AA’/, BB/, CC/ concourront en un
méme point P, pourvu toutefois ( Annales, tom. XVYII, pag. 141)
Tom, XIX, n° I, 1.5 juillet 1828. z
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que cenx de ces points qui serout situés sur les cétés méme du
triangle , et non sur leurs prolongemens, soient en nombre inpair.
On sait que, dans le cas contraire, les trois points A/, B/, C/
appartiendraient & une méme droite.

2. Par les trois points A’, B’, C’ soit décrit un cercle coupant
de noaveau en A7, B/, C, les directions des cétés BC, CA | AB;
par la propriété des cordes ou des sécantes , issues d'un méme
point, on aura

ABZAB/=AC/AC" ,
BC.BC”=BA'BA” ,
CA.CA"=CB'.CB" ;

équations qui, multiplides membre & membre, donneront, en ré-
duisant, au moyen de la précédente (1),

AB".BC".CA"=BA".CB".AC" ;

ce qui prouve (1) que les droites AA/, BB”, CC” concourent
aussi en un méme point P/,

3. Parce que cette propriété est de nature projective, elle aura
lieu égualement lorsqu'on substituera an cercle uue ligue quelcon-
que du second ordre. En invoquant ensuite la théorie des polai-
res réciproques , on obtiendra les deux théorémes que voici :

THEOQREME. Les trois som-  THEOGREME. Les trois cétés

mets d'un triangle élant A, B, dun triangle étant A, B, C, et

C, et P étant un point quelcon-
que de son plan ; si A/, B/, C/
sont les. points ou les directions
des cétés BC, CA, AB, sont res-
peciivement rencontrées par les
droiies AP, BP, CP, ¢t que, par

P étant une droite tracée arbi-
trairement sur son plan; st A,
B/, C/ sont les droites gui joi~
gnent respectivement les sommets
BC, CA, AB, aux points AP,
BP, CP, et gu'on dicrive une



DE
ces trois points A, B/, G on
Sassse passer une ligne quelcon-
que du second ordre , coupant de
nouveau fles mémes c0iés respec-
tivement en A, B , G, les droi-
tes AA/, BB/, CC/ concour-
ront aussi toutes irois en un méme
point P/ (*).

Et réciproquement , deux
points P, P/ étant pris arbiirai-
rement sur le plan d'un trion-
gle dont les sommets sont A
B, C; st l'on mérne les droites
AP ¢t AP/, BP er BP, CP et
CP’, rencontrant respectivement
les directions des cétés BC , CA,
AB en A et AV, B/ et B7, ¢
e: C", ces six points appartien-
dront & une méme ligne du se-
cond ordre.

GEOMETRIE. 3

ligne quelconque du sccond or-
dre, touchant les trors droites
A, B, C/; en menant & cette
courbe, par les mémes sommets , les
tangentes A'", B, G les points
AA", BB, CC” appartiendront
aussi tous trols @ une méme droite
P/,

Et réciproquement , deux
droites P , P/ étant tracées arbi-
trairement sur le plan d'un trian-
gle dont les cotés sont A, B, C;
si lon joint respectivement les
points AP et AP, BP et BP/,
CP, et CY aux sommets BC, CA,
AB par des droites A! et N7, BY
et B, C' et CV, ces six droiles
“seront tangenies a une méme ligne
du second ordre.

4. On sait qne, lorsqu’une ligne du second ordre touche les

trois cOtés d'un triangle, les droites qui joigunent les points de con-
tact aux sommets respectivement opposés se coupent toutes trois au
méme poiut ; et que, réciproquement , trois droites menées par les
sommets d'un triaogle, de maniére & se couper an méme point,
rencontrent les cotés respectivement opposés en des points o ils
peuvent étre touchés par une méme ligne du second ordre, De 4
(3), et par la théorie des polaires réciproques , on pourra con=
clure ces deux théorcmes.

(*) En remplacant la ligne du second ordre par le systéme de deux droi-
tes, on obtiendrait quelques porismes déja connus.
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THEOREME. Les points de
contact des trois ¢dtés d'un trian-
gle avec deux lignes quelconques
du second ordre qui lui sont ins-
orites , appariiennent tous six a
une troisiéme ligne du second or-

dre.

5

THEOREME. Ies tangentes
menées , par les irois sommels
d'untriangle, d deux lignes quel-
conques du second ordre qui lui
sont circonscrites , touchent tou—
tes six une troisiéme ligne du sc-
cond ordre.

IL.

5. Des précédens théorémes on en déduit aisément d'autres ana~
logues , relatifs aux surfaces du second ordre comparées au tétracdre.
" Soit ABCD un tétraédre quelconque. Par un point quelconque
P de l'espace et par chacune de ses aréles concevons des plans
coupant les arétes respectivement opposées. Soient @ , &, ¢ les points
ot les arétes BC, CA, AB, sont respeclivement coupées par les
plans APD, BPD, CPD, et soient o, 3,y ceux ot les arétes op-
posées AD, BD, CD, sont respectivement coupées par les plans
BPC, CPA, APB, nos six plans se couperont deux A deux sui-
vaut les trois droites aa, &3, ¢y ; il est visible, en outre,

[ By, C, Da A/
Ca, Ay, Db B/
que les droites se couperont en un méme point ;
AB, Ba, D¢ -‘ G/
( Az, B, Cc \D'

et que les droites AA’, BB', CC’, DD’ se couperont toutes qua-
tre au point P,

Il est aisé de voir que , réciproquement, six points @, &, ¢,
o, 3,y dtaut pris respectivement sur les arétes BC, CA, AB, AD,
BD, CD d'un tétraedre ABCD , de telle sorte
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By, CB, Da ) A’
Ca, Ay, D? B/
gque les droites ) se coupent en un méme point ,
AB,Ba, D¢ | €/
Aa, B, Cc | D/

tes droites AA’, BB/, CC’, DD’ se couperont aussi toutes quatre
en un méme point P par lequel passeront aussi les trois droites
ao, bf, cy.

Ainsi , lorsque six points sont tellement situés sur les directions
des arétes d’un tétraédre, que les droites menées dans chaque face
par les points qui y sont situés et par les sommets de cette face
qui leur sont respectivement opposés se coupent toutes trois en un
méme point, les droites qui joignent deux i deux les poiats si~
tués sur les directions des arétes respectivement opposées se cou—
pent aussi toutes trois en un méme point et réciproguement.

I est & remarquer que les six pointsa, &, ¢, «, 3,y sont tellement
liés entre eux, que trois quelconques de ces six points, choisis de
maniére ane pas appartenir & une méme face , déterminent le point
P ct par suite les trois autres, ainsi que les droites ax, 483, cy.

6. Par les six points ¢, 5,c, «, 3, y cencevons une surface
quelconque du second ordre, coupant de nouvean les mémes aré-
tes du tétraédre en @', &', ¢’, &', 3,y ; les intersections de cette
surface avec les plans des faces du tétraédre seront des lignes du
second ordre coupant les cotés de ces faces en trois points tels que
les droites qui les joindront aux sommels respectivement opposés
se couperont en un méme point; donc (2) les droites qui join~
dront dans la méme face les trois autres intersections aux mémes
sommels se couperont aussi en un mdéme point; et par conséquent
(5) les points &', &', ¢, & , ', jouiront des proprietés que nous
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venons de voir appartenir aux points @,b,¢, «,f,y; de sorte
que les droites a’a’ , &3/, ¢’y/ concourront toutes trois en un méme
point P/; dela, et par la théorie des polaires réciprogues, on con-

clura ces deux théorémes :
THEOREME. i unc surface
quelconque du second ordre est
tellement située , par rapport @
un tétraddre , qu'elle coupe ses
aréles en six point a, b, c, «,
B,v, tels que les droites ao , b,
¢y qui joignent les pointsd'inter-
section qui répondent aux arétes
respectivement opposées concou-
rent toutes trois en un méme point
P, elle coupera de nouveau ces
mémes arétes en six autres points
a’, b/, e, of, B,y tels que les
droites a'a! , b3/, ¢y gui join-
dront les points d’intersecticn si-
tués sur les arétes respectivement
opposées concourront aussi fou-
ies trois en un méme point P' (*).

Et réciproquement , un point
P étant situé d'une maniére quel-
congue dans lespace; si lon con-
duit, par cepoint et parles aré-
tes d'un tétruédre , des plans cou-

THEOREME. Si une surface
quelconque du second ordre est
tellement située , par rapport &
un tétraeédre, que six plans tan-
gensa,b,c,a,B,yad cette sur-
Sace , conduits par les arétes du
tétracdre, sotent tels que les in-
tersections ao, bB, cy des plans
tangens issus des arétes respec—
tivement opposées soicnt toules
trors dans un méme plan P, les
siz autres plans tangens a', b,
c, o, B, v, menés a celte sur-
Sace par ces mémes aréies, serent
tels que les intersections /o, W'3,
¢y’ des plans tangens issus des
arétes respectivernent  opposees
seront aussi loules trois siluées
daas un méme plan ¥/,

Et réciproquement, un plar P
étant sitvé dune maniére quel-
congue dans lespace ; si, per
chacure des aréies d'un téiraé-
dre et par le point on ce plan

(#*) Er remplagant la surface du sccond ordre par le sysléme de deux

plans , on obtiendra des porismes analogues 4 ceux yue nous avons signalés

daus la précédeate note.
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pant respectivement leurs oppo-
sées, on obiiendra ainsi, sur ces
arétes , sixz points a, b, ¢, «,
By v tels que les drottes aa, b,
Cy qui joindront les points situés
sur les arétes opposées concour-
ront toutes trois au point P et
si, pour un autre point P/, éga-
lensent quelconque , on détermine ,
sur les mémes arétes, six nou-—
veaux points o/, b/, ¢/, o, B,
¥, tels que les droites a’a’ | B!,
¢y’ qui joindront les points si-
tués sur les arétes opposécs con-
courent qussi loutes Irois en ce
méme point ¥/, les douze points

a, b’C, Gy ﬁ’;'}’: a/,bi,c’, oc’,'

B,y seront tous situés sur une
méme surface du second ordre.

coupe son cpposée, on conduit un
plan , on obtiendra ainsi six
plansa, b, c,a,B,y, tes que
les drories ax, b3, ¢y, suivant les-
quelles se couperont ceux gui pas-
seront par les ardtes opposées,
seront toutes irois situées dans
le plan Py et si, pour un au-~
tre plan ®', également quclcon-
que, on conduit , par les mémes
arétes , six nouveaux plans a',
b/ , ¢, o, ﬁ/

drottes a'd/ \VE' | Y, suivant les-

» Y, tels que les

quelles se couperont ceux qui so-
ront issus des arétes opposées ,
sotent @ussi situées toutes 1reis
duns ce méme L, les douze pluns
a,b,c, o,B,y,a, b,

B’ .,y seront tous tangens a une

4
c’, o,

méme surface du second ordre.

7. 8i l'on congoit une surface guelconque da second ordre , qui

touche les six arétes d'un tétracdre donné, ses intersections. avec
les plans des faces de ce tétracdre serout des lignes du second or-
dre touchant les trois ciiés de ces faces; et si, dans ces mémes
faces, on méne des droites des trois sommets aux points de con-
tact des cOtés respectivement opposés , ces dicites (4) se couperont
en un méme peint; dot il suit (5) que les droites qui joiadront
deux i deux les points de contact situés sur les arétes opposces
se COUP‘:‘I’Oﬂt toutes LK’OiS el un [Uélﬂ(‘ P()illt.

Il est aisé de voir que, réciproquement , six points étant pris
respectivement sur les arétes d’un tétraédre, de telle sorte que les
droites qui joindroat deux & deux ceux qui seront situés sur les
arétes opposdes concourent touies trois en un ménte point, oo posira
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toujours concevoir une surface du
du tétraédre en ces six points.

E GEOMETRIE.

second ordre qui touche les arétes

De 1a et ensuite , par la théorie des polaires réciproques, on

pourra conclure (5) et (6), les

THEOREME. Si devx sur-
Jaces du second ordre touchent
l'une et l'autre les six arétes d'un
téiraédre , les douze points de
contact , situés deux & deux sur
ces arétes, a))partz'ena’ront g une
iroisiéme surface du second or-

dre (*).

deux théorémes suivans :
THEOREME. Si deux surfu-
ces du second ordre touchent l'une
et lautre les six arétes d'un té-
traédre , les douze plans tangens
@ ces surfaces , conduils deux &
~deux par ces arétes , toucheront
une troisiéme surface du second

ordre (*).

(*) Voici deux autres théofemes qui, s'ils sont vrais, comme ils parais=

sent

‘étre , formeront un complément fort naturel de cetie théorie; nous

en abandonnons l'examen & la sagacité de M. Steiner.

THEOREME. Si trois surfaces du
second ordre sont inscrites & un méme
tétraédre , les douze points oi elles tous
cheront ses faces appartiendront & une
quatriéme surface du second ordre.

Ces sortes de théorémes présentent
acheminer & découvrir, soit la relati

second ordre, soit la relation entre dix plans tangens

probléme dont la solution ne pourrait
metre a qui la science en serait red

THEOREME. Si trois surfaces du
second ordre sont circonscrites & un:
méme tétraddre, leurs douze planstan-
gens. par ses sommets toucheront une -
quatriéme surface du sécond ordre,
beaucoup d’intérét, comme pouvant

on entre dix points d'une surface du

3

4 une telle surface ;
que faire beaucoup d'houneur au géon

evable.
J. D, G
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METEOROLOGIE.

Résumé des observations barométriques , hy-
grométriques et thermométriques , faites d

Montpellier en 1827 ;

Par M. GERGONNE.

ARAARARANANNANWNRANANANAN

§ L

Observations baromeélriques:

CES observations ont été faites avec le baromeétre & niveau cons—
tant de Fortin, déjd déerit & la pag. 167 du précédent volume ; ex-
trémité de la pointe d’ivoire qui donne le niveau étant toujours
estimée 4 3g™,25 au-dessus des eaux moyennes de la mer; elles
ont été corrigées des 26 centiémes de millimétre dont le zéro de
ce barometre se trouve plus bas que celui du barométre de l'ob-
servatoire royal de Paris. Elles ont été ramendées ensuite & la tem-
pérature de la glace fondante, au moyen de la table de M. Bou-
vard, qui corrige & la fois la dilatation du mercure et celle de P’é-~
chelle. D’aprés un examen attentif de la situation de la pointe d’i-
voire , J'ai pensé que la correction de capillarité était trop légére
pour mériter d’étre tentée,

Les physiciens qui ont écrit sur les observations barométriques
ont indiqué des époques plus favorables que d’autres pour ces sor-

tes d’observations , et ces époques ont éié adoptées par le burean
Tom. XIX, 2
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des longitudes. Mais lorsqu’on est scul & observer et qu’on a des
devoirs obligés hors de chez soi, on ne peuat s’astreindre & ces
époques ; et il vaut mieux encore en choisir d’autres moins favo-
rables, que de confier les observations & autrui.

Fort heurensement & I'époque de midi , regardée comme la
plus importante de toutes, je suis toujours & peu prés siic d’étre
chez moi; j’ai donc pu prendre cette époque pour celle de départ,
Fen ai choisi trois autres, en ayant soin de faire ensorte 1.° de
pouvoir observer moi-méme 4 ces époques; 2.° de rendre les di-
verses époques équidistantes. Cest d’aprés cette double considé-
ration que je me suis fixé aux époques de 7 heures du matin,
midi, 5 heures et 10 heures du soir, temps vrai de Montpellier.
Mais , soit que je rentrasse quelquefois un peu trop tard, soit que
je me trouvasse obligé de sortir, soit enfin par toute autre cause
de distraction, il ne m’a pas toujours été possible d’observer ri-
goureusement & I'époque choisie. Du moins est-il vrai de dire que;,
daus ces circonstances , assez rares d'ailleurs, Pobservation n’a ja-
mais guere éié devancée ou retardée d'un quart d’heure; j'ai d'ail-
leurs tout lieu de croire qu’elle n’a guére été ni plus ni moins
souveut devancée que retardée , de sorte quiil y a beaucoup de
probabilités en faveur des compensations d’erreurs.

On voit, d’aprés cela, que, si I'on partage l'intervalle de temps
compris depuis gwaire heures et demie du matin d’un jour jusqu’d
minuit et demi du jour suivant en quatre parties égales, mes ob-
servations se trouveront placées aux milieux de ces quatre parties.
On pourra donc regarder la moyenne des quatre observations de
chaque jour comme la moyenne barométrique qui répond a cet in-
tervalle de vingt heures. Je me suis permis de la regarder comme
la moyenne des 24 heures, qui pourra-t étre réellement un peu plus
petite & raison du minimum qui a liea vers les ‘quatre heures du
matin.

. Je dois dire encore qu'il ne m’a pas toujours été possible d’ob-
server. Mais, afin qu'on puisse juger de meon assiduité , voici le
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tableau du nombre des observations par mois, pour les difléren-
tes heures du jour,

Ix

MOIS. 7 HEURES.| MIDL |5 HEURES| 10 HEURES.
Janvier. 27 27 29 Jo
Février. 2 24 27 27
Mars, 31 30 30 31
Avril, Jo 29 29 3o
Mai. 31 2 3o 31
Juin. 3o 27 29 2
Juillet. 29 3o 31 31
Aolt. 3o 25 28 31
Septembre. 29 29 28 28
Octobre. 28 28 28 31
Novembre. 3o 3o 29 Jo
Décenibre. 31 31 31 31
Sommes, 352 339 349 360

Jai pris les moyennes des observations faites, sans tenir au-

cun compte des observations omises ; M. Gambart, & Marsel!

Y
1 ¥e)
iv oy

sup-
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plée & celles-ci par des interpolations; c’est peut-étre mieux. Il cst
possible que jen use ainsi pour 1828.

I. Tableau des Moyennes Barométriques.

' 1 ~
1827. 7 HEURES.| MIDL. |5 HEURES. |10 HEURES| MOYENNE.

Janvier. 757,10 | 757,19 | 757,22 | 758,07 | 757,39
Février. 757,24 | 757,50 | 757,33 | 756,94 757,12

Mars. 756,85 | 759,21 | 758,92 | 759,88 | 759,47
Avril 759,10 | 759,13 | 758,54 | 758,75 | 758,88
Mai. 756,31 755,79 | 755,43 | 756,12 | 755,94
Juin. 757,13 756,78 756,26 757,23 756,85
Juillet. 760,91 760,39 | 759,56 | 760,56 | 760,36
Aott. 758,85 | 758,58 | 757,78 | 758,61 | 758,45

Septembre.| 758,87 | 759,27 | 758,75 | 759,22 | 759,03
Octobre. 755,47 | 755,49 | 755,25 | 755,95 | 755,54
Novembre | 759,56 | 759,47 | 758,47 | 759,89 | 799,35
Décembre. | 762,35 | 762,13 | 761,74 | 762,50 | 762,13

Moyennes. | 758,55 758,41 757,94 758,65 758,39

Ce tablean montre que la moyenne du jour différe peu de la
moyenne de midi,
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Il résulte donc de ce tableau que la moyenue barométrique &
Mountpellier , pour l'annde 1827, a été 758,3q.

11. Tableau des Mouvermnens Barome’triques.

1827. Maxivun. | MoYENNE, | MINIMUM. |OSCILLATIONS.
Janvier. 768,81 ~57,39 737,95 30,86
Février. 769,57 757,12 746,03 23,54
Mars. 767,86 759,47 745,81 22,06
Avril.- ~63,16 758,88 742,92 22,24
Mai. 762,43 755,94 758,08 4,35
Juain, 760,55 756,85 752,15 8,40
Juillet, 264,43 760,36 756,83 ~,60
Aotit, =63,15 758,45 752,88 10,27
Septembre.| 765,45 759,03 =47,20 18,25
Octobre, 763,36 755,54 747,63 15,73
Novembre.| 770,27 759,35 749.68 20,29
Décembre. | 771,11 ~62,13 744,90 26,21
Maximum.| 97,11 762,13 ~58,08 30,36
Moyenne. | G601 758,39 748,58 17,48
Minimum. | ~G6o,55 755,54 737,95 4,35
Oscillations 10.56 6,59 20.59 26,51
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Ce tableau donne, pour le plus grand maximum, VARE
Et pour le plus petit minimum , 737,95

Différence 33,16

Le sommet de la colonne de mercure a donc parcouru dans le
tube, en 1827, une longueur de 33,16.

§ IL

Observations hygromelriques.

Ces observations ont été faites avec un hygrométre a cheveu, de
Saussure , construit par Pixii, & Paris. La crainte de rompre le che-
veu m’a détourné de l'envie de le vérifier, de sorte que, dés son
arrivée ici, il a été mis en place tel que je l'avais regu.

Cet hygromeétre est placé dans une chambre assez grande ou,
durant lhiver, il y a du feu une partie de la journée ; mais il
est & plus de deux métres du tuyau de la cheminée, prés de la
fenétre, contre un mur de refend , & la distance de deux ‘pouces
du mur de face. Javais d’abord craint que l'absorption des eaux
pluviales par ce mur qui fait face an nord ne nnisit & la mar-
che de l'instrument ; mais des variations brusques et étendues, dans
le cours d’une méme journée, méme aprés plasieurs jours de for-
tes pluies, m’ont prouvé que mes craintes étaient peu fondées.

Les observations hygrométriques ont été faites aux mémes heu-
res du jour que celles du barométre ; elles sont donc en méme nom-
bre que ces derniéres, et il y a les mémes choses & dire sur les
unes et sur les autres, En voici les résultats :



ET HYGROMETRE. 15

I. Moyennes hygromeétriques.

1827 7 HEURES. | MIDL |3 IEURES.|10 HEURESMOYENNES
Jaavier. 70,0 68,8 70,0 69,5
Février. 76,1 25,3 75,6 76,2 75,8
Mars. 74,6 =5 73,8 741 75,0
Avnl. 71,5 70,5 70,7 71,5 71,1
Mai. 75,3 74.9 74,3 749 74,8
Juin, 68,5 64,5 63,8 64,2 65,2
Juillet. 57,8 55,4 55,3 56,2 56,4
Aofit 59,7 56,5 56,4 56,9 57,4
Septembre, 67,1 66,5 66,0 67,5 66,8
Qctobre. 85,8 84,8 88,3 88,4 86,8
Novembre. 80,7 8o,1 79,7 80,5 80,2
Décembre. 83,3 82,7 82,4 83,1 L 82,9
Moyennes. 72,5 71,6 71,3 72,0 71,8

On voit donc qu’d Montpellier, la moyenne hygroméirique pour
Pannée 1827 est 71,8; on voit aussi que la moyenne des jours dif-
fére peu de celie de midi.
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1. Tableau des Mouvemens Hygromeétriques.

1827, MaxmMuM. | MOYENNE, | MiNIMUM. |OSCILLATIONS.
Janvier, 78,0 69,5 56,0 22,0
Février. 84,0 75,8 70,0 14,0
Mars, 85.5 75,0 59,5 26,0
Avril, 79,0 71,1 . 60,5 18,5
Mai, 82,0 74,8 62,5 19,5
Juin, ~6,0 65,2 44,5 31,5
Juillet, »5,0 56,4 42,5 32,5
Aoftit, 70,0 57,4 43,0 27,0
Septewbre. 85,0 66.8 54,0 31,0
Octobre. 93,0 86,8 81,0 12,0
Novembre. 87,0 80,2 71,5 15,0
Décembre. 91,5 82,9 72,5 19,0
Maximum. §3,0 86,3 81,0 32,5
Moyenne. 82,2 71,8 59,8 22,4
Minimum 0,0 56.4 42,5 12,0
Oseillations 230 30,4 38,5 20,5
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Ce tableau donne, pour le plus grand mazimum , 93,0
Et pour le plus petit minimum , 2,5
’ Différence 50,5

Ainsi, & Montpellier, pendant 'année 1827, laiguille de I'hy-
grométre a parcouru, sur le cadran, 50 divisions et demie.

s IIL
Obseryvations Thermométriques.

Je n’ai différé jusqu’ici la publication des précédentes obser-
vations que pour pouvoir y joindre celies du thermométre que
je n'avais pu commencer quen avril 1827, faute d'un thermomdtre
qui piit m’inspirer une entiére confiance. Celui dont jai fait usage
est un thermométre a chemise de verre, de Fortin, qui marche as—
sez d’accord avec un grand thermométre étalon du wmdme artiste,
que jai recu en méme temps que celui-la, et qui a éé confronté
par M. Mathieu, avant son départ de Paris, avec ceux de l'ob-
se vatoire royal. Le thermométre tout en verre est placé en de-
hors d’une fenétre de mon cabinet, an secoud étage d’'une maison
faisant face an nord nord-est, de maniére cependant & ae pas tou-
cher les carreaux de vitre, et la je puis l'observer en transparent.
Les observations se font d’ailleurs aux heures déja indiquées pour
les autres instrumens, Comme la rue est un peu éiroite, on sent
que , dans l'hiver , la température doit y étre constamment moins
basse que dans la campagne. 1l y a méme I'été, de dix heures
du matin & deux heures de 'aprés midi, vne réverbération assez
forte que j’ai tiché de combatire de mon mieux , en fermaut
en pattie les contrevents, J'ai remarqué au surpius qu'il commence
a geler dans la campagne dés que mon thermomeétre est descenda
a 3° au-dessus de zéro.

Tom, XIX, 3
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I. Moyennes Thermometriques.

1827 ET 1828 |7HEURES| MIDI. |5 HEURES|10 HEURES|MOYENNES

Avril 1827, 12,48 | 17,12 | 15,91 12,82 14,58

Mai. 16,21 19,08 | 19,14 15,98 17,83
Juin, 20,31 | 23,83 | 23,06 19,47 21,67
Juillet. 24,98 | 29,0t | 29,08 24,83 26,98
Aofit. 21,24 | 25,84 | 25,53 21,46 23,52

Septembre. 17,33 | 22,16 | 20,76 18,03 19,57

Octlobre. 14,31 17,72 16,88 15,03 15,98
Novembre, 6,03 | 11,32 9,86 8,01 9,03
Décembre. 7,98 | 11,54 | 10,30 8,52 9,58
Janvier 1828. 6,98 | 10,65 9,48 6,75 8,47
Février. 6,86 | 10,90 | 10,22 73,5 8,88
Mars. 8,28 | 13,75 | 12,67 9,87 11,14

Moyennes. 13,66 | 17,62 | 16,01 14,02 15,60

Ce tableau donne, comme l'on voit, la température moyenne de
Vanndée, un peu plus faible que la température moyenne d’octobre.
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II. Tableauw des Mouvernens Thermométriques.

1827 ET 1828 | Maximun. | MOYENNE. | MINDMUM. |OSCILLATIONS,

e TR | A —e e
Avril 1827. 21,35 14,58 9,40 11,05
Mai. 23,70 17,83 12,35 11,35
Juin, 27,70 21,67 14,85 12,85
Juillet, 31,85 26,98 20,40 11,45
Aofit, 31,30 23,52 15,55 15,75
Septembre, 25,35 19,97 13,80 11,55
Gciobre. 20,70 15,98 7,60 13,10
Novembre, 15,70 9,03 — 0,05 15,75
Décembre. 16,50 0,58 1,85 14,65
Janvier 1828 14,70 8,47 3,15 1158
Février. 16,50 8,88 — 0,50 17,00
Mars. 21,00 11,14 1,80 19,20
Masxintuin, 31,85 26,98 20,40 19,20
Moyenne, 22,20 15,60 8,35 13,85
Minimum, 14,70 8,47 = 0,50 11,35
Oscillations. 17.15 18,51 20,90 7,35

T
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Ce dernier tableau donne, pour le plus grand maximum, 31°,85
Et pour le plus petit minimum, — 0,50
Différence  32°35
De sorte que , du 1.°f .avril 1827 au 1.°F avril 1828, le sommet

de la colonne de mercure a parcouru & Montpellier , dans le
tubé du thermométre , un espace de 32°,35.

\ iy
-

PHILOSOPHIE MATHEMATIQUE,

Note surla propriété fondamentale du triangle
rectiligne ;

Par M. B. D. C.

ANVVVVIVIAVAVINVIA VNNV

DANS la deuxiéme note de ses Elémens de géométrie , M. Le-
gendre a donné, de I'égalité de la somme des angles de tout trian~
gle rectiligne & deux angles droits, une démonstration contre la-
quelle on a élevé des objections de plus d’un genre , tant en France
que dans l'étranger (*). En réfléchissant sur ce sujet, il nous a
paru qu'on pouvait 6ter & ces objections une grande partie de lear
force , en présentant cette démonstration sous la forme suivante.

Soient @, &, ¢ trois nombres abstraits représentant les cotés d'un

(*) Voy. en particulier tom. X, pag. 161 et tom. XVI, pag. 259 du
présent recueil.
J. D. G,
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triangle rectiligne , mesurés avec une longueur quelconque prise
pou‘r unité; sotent 4, B, C trois nombres abstraits représentant les
angles respectivement opposés , mesurés avec un méme angle quel-
conque pris également pouar unité ; les six nombre @, &, ¢, A |
B, C varieront avec 'unité de mesure des longueurs et avec I'unité

. a b c A B
de mesure des angles ; mais les rapports T T T R o
c e o,
— en seront tout i fait indépendans.

Cela posé, comme un triangle est'

complétement déterminé par
ses trois cOtés, chacun des angles A4, B, C doit étre une fonction
déterminde des trois longueurs @, 4, ¢; en outre, cette fonction
doit étre de telle forme gu’elle demeure la méme si, sans chan-
ger l'unité de mesure des angles, on fait varier l'unité de mesure
des co6tés ; ce qui exige évidemment qu’elle ne se compose que des
rapports des cOtés entre eux ; et, comme ces rapporls sont tou-

jours traduisibles en rapports de deux d’entre eux au troisi¢me,

. ‘ a
puisque , par exemple, + ==—~» ous pourrons posex

“l“‘l“\ﬁ

eh!
p=e(f.2) ¢ @
=) 1

Or, on peut, en premier lieu, concevoir qu’entre ces trois équa—

. e . a b . . .

tions on élimine les deux rapports —, — , ce qui conduira 2
c c

une équation en A, B, C seulement; i/ y a donc, entre les irois
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angles de tout triangle rectiligne , une relation indépendante des
longueurs de ses ¢dlés ; ce qui revient encore & dire que , s/ deux
angles d'un triangle sont respectivement égaux & deux angles d'un
autre triangle, le troisiéme angle sera égal de pqrt et d'autre.
Ou voit enfin qu'un triangle reciiligne n'est point déterminé par
ses seuls angles , puisque donner les trois angles revient i n’en
donner que deux seulement.

Deux des trois équations (1) suffisent pour déterminer les deux
a 1 . .
rapports — , — ; cela revient & dire que, Jorsque deux des an-
[ c

gles d'un triangle rectiligne sont donnés, les rapports entre les
trois cotés de ce triangle , pris tour & tour, deux & deux , sont
complétement déterminés ; ce qui signifie, en d’autres termes, que
deux triangles rectilignes qui ont deux angles égaux -, chacun &
chacun , ont leurs cdtés homologues proportionnels.

Conservons les mémes notations , mais supposons qu’il soit ques-
tion d’un triangle sphérique, alors le triangle ne sera pas déter-
miné par ses trois cétés ; car si, sur deux sphéres indgales, on
construit deux triangles sphériques dont les cotés soient éganx cha-
cun & chacun, ces triangles ne seront point éganx. Afin douc qu’un
triangle sphérique soit complétement déterminé, il ne suffit pas de
douner les longueurs a, &, ¢ de ses trois cotés, il faut donner en
outre la longueur r du rayon de la sphére & laquelle il appartient,
longueur que nous supposerons d’ailleurs rapporiée a la méme unité
lindaire. ’ _ .

Chacun des teois angles 4, B, € du tﬁangle devra donc étre
une fonction déterminée de ces quatre longueurs ; de plus, cette
fonction devra éire de telle forme qu’elle demeure la méme si, sans
changer Funité de mesure des angles, on fait varier l'anité de me~
sure des longueurs ; ce qui exige évidemment que ces fonctions
ne renferment que les rapports enfre ces quatre longueurs prises
deux & deux, ou,ce qui revient au méme, les rapports de l'une
d’elles. aux trois autres; on devra donc avolr
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. a b c )
A:f(—- s T "") ’

r r r
c

a b
p=e(7. 70 7)o
a b c
r’_;’r)’

dquations en nombre insuffisant pour éliminer les trois rapports

a b c . . .

-, —, T, mais qui en donneront les valeurs en fonction de
A, B, C et donneront conséquemment les longueurs des cétés , lorsque
le rayon de la sphére sera connu. Ainsi, dans un triangle sphériqgue
il n'existe point de relation entre les angles, indépendante des cé~
s, et un tel triangle est tout aussi complétement déterminé par

ses irois angles que par ses irois cotés,

?

Retournons présentement au triangle rectiligne ; il est deux au-
‘tres cas ol un tel triangle est complétement déterminé par trois
de ses parties , savoir :

1.° Lorsqu'on donne deux angles et le cété compris;

2.2 Lorsqu’on donne deux cétés et Iangle compris ; et ces deux
cas ont cela de remarquable qu’ils se traduisent I'un dans I'autre
par la simple permutation des mots angle et cézé entre eux. M.
Legendre étant parti du premier, comme principe, pour établir qu’il
existe entre les angles de tout triangle une relation indépendante
de ses c6tés, on a conclu , de la relation entre les deux cas , qu'en
admettant le second & son tour comme principe , et permutant sim—
plement entre eux les mots angle et ¢6té, dans la démonstration
de M. Legendre , on établirait’, par un raisonnement tout aussi ri-
- gourenx que le sien, qu'il existe, entre les trois c6tés de tout trian-
gle , une relation indépendante de ses angles ; conclusion absurde
qui infirme complétement la validité du raisonnement qui y con-
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duit, et semble devoir infirmer également le raisonnement de M.
Legendre qui parait n’en diftérer aucunement.

Mais on doit remarquer qu’il'n’en est ainsi qu’autant qu’on fait
abstraction de tout principe subsidiaire de nature & rompre Vappa-
rente analogie entre les deux cas; et voild précisément pourquok
nous n’avons pas cru devoir débuter comme l'a fait M. Legendre.
Mais présentement que nous avons déjd démontré qu’il existe , en—
tre les trois angles de tout triangle, une relation indépendante de
ses cOtés ; comme il est d’ailleurs manifeste, 2 priors, qu’i.l ne
saurait exister, au contraire , entre les trois e6tés mne relation in-
dépendante des angles, attendu que deux cétés d’un triangle étant
donnés, on peut prendre le troisitme d’une infinité de maniéres dif-
férentes , toute parité qu’on prétendrait éiablic entre les deux cas
s’évanouit ainst complétement. '

Considérons en effet les deux équations

e=¢a,b,C), =4(4,B,c};

on n’est nullement fondé 4 dire que € ne saurait figurer dans le
second membre de la premiere, car, & cause de la relation que
Von sait exister entre les trois angles de tout triangle , on ceneoit
la possibilité de remplacer € dans ce second membre par une fongs
tion équivalente de 4 et B, qui pourrait fort bien alors n’y figu~
rer que par leur rapport, de sorte qu’on aurait ainsi

A
6:(9(1],5, F) y

équation qui n’offre plus rien d’absurde (*).

(*) Ik nous paratt que, pour qu'on piit remplacer € par une fomctiom
. A . .
équivalente du rapport 5 » il faudrait que Péquation de relation entse

les trois angles de tout triangle fat réductible a cette forme



FONCTIONNEL, 28

Au contraire, comme il n’existe aucune relation obligée entre les

trois c6tés d’un triangle, on n’a pas la méme ressource pour sau-

ver l'absurdité de la seconde équation, aussi long-temps qu’on lais-

sera subsister ¢ dans son second membre ; cette longueur ne sau-
rait donc y entrer, et 'on doit avoir simplement

C=Y4,B) ;

ce qui rentre complétement dans ce-que nous avons démontré dés
le début.

Au surplus, quand bien méme tous les géométres s’accorderaient
4 regarder comme tout & fait rigoureuse, soit la démonstration de
M. Legendre, soit celle que nous venons de tenter de lai substi-
tuer, soit enfin tout autre démonstration d’une forme analogue , on
ne saurait se dissimuler que ces sortes de démonstrations seraient
tout a fait déplacées dans le texte d’un traité élémentaire de géo-
métrie , & raison de leur pen d’analogie avec le ton général de ces
sortes d’ouvrages , pour lesquels conséquemment il resterait toujours
A désirer quelque équivalent,

c-r(3)

or, 4 moins qu'on admette, avec plusieurs géométres, que tout angle est un
nombre abstrait, cette équation mnous parait inadmissible , puisqu’en variant
I'unité de mesure des angles, son premier membre varie, tandis que le se~
cond ne change pas de valeur, On trouvera, au surplus, dans Dlarticle du

tom. X, déja cité, de plus amples réflesions sur ce sujet.
J. D, G.

Tom. XIX 4
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GEOMETRIE DE SITUATION.

Additions et corrections au mémoire sur les
propriétés des systemes de coniques , inséré
d la pag. 277 du précédent volume ;

Par M, Cuasres, ancien éleve de 'Ecole polytechnique,

[a %a Vo Sla Vo Vo Vi Sla Sl e Y Vi =

LES circonstances dans lesquelles nous avons écrit le mémoire in-
And A i | 2. e . . r
séré a la pag. 277 du précédent volume ne nous ayant pas laissé
toute la liberté d’esprit que nous aurions désiré , il en est résuité
diverses sortes d’omissions plus ou moins graves et quelques inexac-
titudes de rédaction. Nous destinons ceite note & les signaler,

ainsi que quelques incorrections qui se sont glissées dans I'impres—
sion,

47. Nous avons dit (20) : M. Poncelet a discuté trés-clairement
I'existence des centres d’homologie et des axes de symptose ; il faut
lire : cordes communes réelles ou idéales au lien de: axes de symp-
tose , parce qu'il a y une distinction a faire entre les six cordes com-
munes 4 deux coniques qui se coupent en quatre points; il est pos-
sible, en effet, qu’clles ne soient pas toutes des axes de symptose.
C’est ce que nous allons faire voir, en reprenant la discussion des
axes de symptose et des centres d’homologie de deux coniques ;
et en examinant un cas qui n’est pas énoncé dans lart. 20: ce-
lui ot les deux coniques se coupent en quatre points, sans avoir
de tangentes communes. Cela nous justifiera pleinement d’avoir eu
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recours & une expression nouvelle : celle d’axe de sympiose, en
prouvant qu’elle était indispensable,

48. Les théorémes (17) ou (1g) constituent la propriété fonda-
mentale des axes de symptose et des centres d’homologie de deux
coniques situées dans un méme plan,

D’apres les théorémes de la premiére colonne on voit que, pour
que le point de concours de deux tangentes communes a deux co-
niques soit un de leurs centres d’homologie, il faut que toute droite
qui, menée par ce point, rencontre 'une des couniques, rencontre
également l'autre. Cette condition exige que les denx coniques soient’
dans un méme angle de ces deux tangentes, ou partie dans un
angle et partie dans son opposé au sommet,

Cela fait voir que, gquand devx conigues sont extérieures l'une
@ lautre , elies n'ont que deux centres d'homologie, et, par suite
deux axes de symptose, bien qu'il y ait siz points de concours
de leurs qualtre langentes. communes. .

Pour quatre de ces points de concours, une droite menée par
l'un d’eux ne pourrait & la fois rencontrer les deux coniques; la
construction des théorémes (17) et (19) ( 1.7® colonne ), n’aurait
donc plus lieu ; ces quatre points , par conséquent, ne sont pas des
ceatres d’homologie.

La méthode, par laquelle nous avons ddduit les propriétés de
deux coniques quelconques de celles de deux coniques homothéti-
tiques , confirme ( ainsi que le fait voir l'art. 14 ) la distinction
que nous venons d’établir entre les six points de concours des qua-
tre tangentes communes & deux coniques extérienres I'une a l'autre.

50. Quand les deux coniques ont quatre tangentes communes et
se coupent en quatre points, chacun des six peint§ de concours,
deux & deux de leurs quatre tangentes communes, est un centre
d’homologie, parce qu'une droite menée par chacun de ces points
peut & la fois rencontrer les deux courbes; de sorte que la cons-
truction des numéros 17 et 19 ( 1. colonne ) est tonjours possible.

Cela est évident pour deux ellipses qui se coupent en quatre
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points , parce que deux quelconques de leurs quatre tangentes coms -
munes comprennent toujours ces deux courbes dans un méme angle.

Mais deux coniques quelconques qui se coupent en quatre points
et qui ont quatre tangentes communes peuvent étre considérées
comme les polaires réciproques de deux ellipses ; car il suffit de
prendre , pour centre de la conique directrice , un point compris dans
les deux coniques. Or, ces deux ellipses se couperont en quatre
points et auront quatre tangentes communes ; elles auront donc six
centres d’homologie et six axes de symptose ; et par suite les deux
coniques proposées auront également six axes de symplose el six -
centres d’homologie. \

Donc , deux coniques quelcongues qui se coupent en quaire
points et on! gqualre tangenies communes , ont Iou/'ours six cenires
dhomologice et sixz axes de sympiose.

51, Considérons maintenant deux coniques se coupant en quatre
poitts et n’ayant aucune langente commune ; leurs polaires récipro-
ques auront quatre tangentes communes et seront extérieures 'une
& lautre; elles n’auront donc (48) que deux axes de symptose et
deux centres d’homologie ; d’ot il suit que les deux coniques pro-
posées n'auront aussi que deux centres d’homologie et deux axes
de symptose, bien qu’elles aient six cordes communes,

‘Donc , deux coniques qui se coupent en quatre points et n’ont
pas de tangentes communes, n'ont que deux axes de symptose et
deux centres d'homologie.

8

L’une de ces deux coniques sera tonjours une hyperbole ; car
nous venons de voir qu’elles sont les polaires réciproques de denx
coniques extérienres I'une & l'autre; le centre de la conique direc-
trice sera toujours au-dehors d’'une an moins de ces deux courbes ;
Vautre conique pourra étre indistinctement une hyperbole , une el-
lipse ou une parabole.

-1l est facile de distinguer celles des six cordes communes aux
deux coniques qui seront les axes de symptose; ce sont celles qui
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auront des points au-dehors de deux coniques ; les quatre autres
seront entiérement comprises dans ces courbes,

Si, par exemple{ on a une hyperbole et une ellipse qui la ren-
contrent en quatre points dont deux sur une branche et deux sur
l'autre, les axes de symptose seront les deux cordes qui joindront
les points d’'une méme branche , parce que les prolongemens de
ces cordes seront au-dehors des deux coniques. Chacune des qua-
tre autres cordes, au contraire, joindra un point d’une branche a
un point de l'autre branche, et aura tous ses points compris dans
Pune ou dans l'autre courbe.

On voit clairement que les deux coniques n’ont aucune tangente
commune ; car toule tangente a I’hyperbole passe entre ses deux bran-
"ches et rencontre par conséquent l'ellipse qui est aussi comprise
entre les deux branches , puisqu’elle les rencontre l'une et lautre.

53. La distinction que nous venons d’établir entre les six cor-
des communes aux deux coniques, correspond A celle que nous
avons faite (4g) entre les six points de concours des quatre tan-
gentes communes & deux coniques extérieures l'une a l'autre.

Elle est ¢galement une conséquence des deux théorémes (17) et
(19) (2.™° colonne ), d'aprés lesquels il faut, pour qu’une corde
commune & deux coniques soit un axe de sympiose, qu'on puisse
mener , par des points de sa direction, des tangentes & l'une et &
l'autre courbe.

54. Quand deuz coniques ne se coupent qu’en deux points, elles
r'ont qu'un systéme de deux axes de symplose.

Car, si elles avaient deux autres axes de symptose , ils passeraient
par les deux points d’intersection des deux coniques et les cou-
peraient en deux autres points; les deux coniques auraient donc
quatre points communs, ce qui est contre I'Lypothése.

55. Quand deux coniques n'ont ni points communs ni tangentes
communes , elles ont un systéme daxes de symplose et n'en ont
gqu'un seul. . :

Nous avons déja dit (20) que les deux coniques ont toujours
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un syst¢me de deux axes de symptose, parce qu’il en existe gé-
néralement trois dont la recherche donne lien & une équation du
troisiéme degré qui doit avoir au moins une racine réelle.

Dans le cas énoncé ot deux coniques n’ont aucun point com-
mun , il ne saurait exister un deuxiéme systeme de deux axes de
symptose; car ces deux axes couperaient les deux premiers en qua-
tre points réels qui appartiendraient & la fois aux deux coniques,
ce qui est contre I'hypothése.

56. Nous venons de passer en revue les différens cas que peut
offrir le systeme de deux coniques, et notre discussion nous a con-
duit au résumé que voici:

Deux conigues situées dans un méme plan ont six axes de symp-
tose et siz centres d'homologie quand elles se coupent en gquaire
points et qu'elles ont quatre tangentes communes.

Dans tous les autres cas, méme dans celui ou elles se coupent
en qualre points , sans avoir de tangentes comimunes, elles n'ont
gue deux axes de symptose et deux centres d'homologie.

57. La discussion précédente fait voir qu’il était indispensable de
donner un nom particulier & ceiles des cordes communes & deux
coniques que nous avons appelées axes de symptose , et que la dé-
nomination simple de cordes communes est insufiisante , puisqu'il
peut arriver que , six cordes étant réelles, il n’y en ait pourtant
que deux qui jouissent des propriétés qui constituent les axes de
symptose.

C’est par une raison toute semblable que Pon n’aurait pu dé-
signer simplement les centres d’homologie comme les points de con-
cours des tangentes communes aux deux coniques, puisqu’il peut
arriver que deux seulement de ces six points jouissent des proprié-
tés qui constituent les centres d’homologie.

58, Malgré la différence qui peut exister (51) entre les six cor-
des communes & deux coniques, il est une propriété générale qui
leur appartient & toutes indistinctement , et que nous n’avons démon-
irée que pour les axes de symptose; elle consiste en ce que Jes polaires
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d'un point quelconque d'une corde commune & deux coniques , pri-
ses par rapport d ces deux courbes , se coupent sur la corde méme.

Cela résulte dela troisiéme partie du théoréme de l'art. 39 ( 2.%°
colonne ), parce que deux cordes communes peuvent éire regar—
dées comme une conique qui passe par les quatre points d’inter—
section des deux proposées.

5g. Pareillement, les six points de concours des quatre tangen—
tes communes & deux coniques, jouissent tous d’une propriété gé-
nérale que nous avons démontrée (21) pour les centres d’homolo-
gie; elle consiste en ce que Zoute droite menée par un quelcongue
des siz points d¢ concours des qualre tangenies communes & deux
coniques a ses pdles, relatifs aux deux courbes , en ligne droite
avec ce point de concours.

Ce théoreme se déduit du précédent par la théorie des polai-
res réciproques. .

6o. Les axes de symptose et les centres d’homologie jouissent
de propriétés plus générales que celles énoncées par les théorémes
(17) et (19); nous les donnerons aprés avoir exposé les propriéiés
analogues des coniques homothétiques.

61. Les deux triangles dout il est question & lart. 30 ( pag.
290 ) n’en font évidemment qu’un seul; car on sait, d’aprés les
élémens de la théorie des transversales, que, quand un quadrila-
tére est inscrit dans deux coniques, le point de councours de deux
cOtés opposés est, par rapport & l'une et & l'autre courbes, le pdle
de la droite qui joint le point de concours des deax autres cotés
au point de concours des deux diagonales.

Nous reviendrons sur cette question qui fait partie essentielle
des propriétés du systéme de deux coniques, mais que nous avons
dii ajourner jusqu’d ce que nous ayous fait connaltre certaines pro-
priétés des coniques homothétiques, parce que la eonsidération des
axes de symptose est insuflisante pour la traiter complétement. Car
il existe en général trois points dont chacun a pour polaire , par
rapport & deux coniques données, la droite qui joint les denx au-
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tres, et ces trois points peuvent étre réels, bien que les deux co~
niques n’aient qu’un seul systéme d’axes de symptose.

Nous verrons, en effet, que ces trois points sont réels toutes les
Jois que les deux coniques se coupm;f en quatre points eu ne se
coupent pas du lout , et que deux sont imaginaires -et le troisiéme
toujours réel , quand les deux conigues ne se coupent qu'en deux
points.

Nous verrons aussi que deux des trois points en question, divi-
sent harmoniquement les segmens formés sur la droite qui les joint
1.° par les deux axes de symptose qui passent par le troisiéme point ;
2.° par les deux centres d’homologie qui leur correspondent ; 3.° par
chacune des deux coniques proposées; et, en général, par toute
conique qui passerait par les quatre points d’intersection réels ou
imaginaires de ces deux courbes (*).

—— ; —

GEOMETRIE DE SITUATION.

Note sur une inadvertance grave , commise d
la pag. 336 du précédent volume ;

Par M. GErRGONNE.

(o T Via Vg Via Vig Vo Vie Via STa V)

SOIT qu’on assujettisse une courbe plane 4 passer par un point
donné ou qu’on exige qu’elle touche une droite donnée, il nen ré-
sulte jamais gu’une condition unique, propre seulement & déter-
miner un des coefficiens de son équation; et si I'on assujettit & la

(*) Les corrections moins importantes sont indiquées dans I’errata du pré-
cédent volume.
J. D. G,
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fois cette courbe & passer par un point donné et & toucher uue
droite donnée, cela ne devra compter que pour deux conditions
seulement, propres & ditermincr deux des cocefficiens de son équa~
tion ; il importe pen d'ailleurs que le point donné soit hors de la
droite donnée ou qu’il soit situé sur cette droite.

Si, en effet , dans le dernier cas, (a,4) est le point donné,
I'équation de la droite donnée sera de la forme

y—b=m(r—a) ;

il faudra d’abord exprimer que le point (2, %) satisfait & I'équa-
tion de la courbe, ce qui donnera une premiére équation de con-
dition ; il fandra ensuite exprimer que la tangente & la courbe en
ce point, dont I'équation sera de la forme

y—b=M(x—a) ,

coincide avec la droite donnée, ce qui donnera , pour seconde équa-
tion de condition, M=m.

On voit, en particulier, que , si deux triangles sont inscrit et cir-
conscrit 'an & l'autre, assujettir une courbe a étre & la fois cir-
conscrite & l'un et inscrite & lautre, c’est lassnjettir & six condi-
tions distinctes ; si donc il s’agit d’une ligne du second ordre, dont
la détermination n’exige, comme l'on sait , que cinq conditions
seulement, le probléme sera plus que déterminé; il ne sera donc
possible que sous certaine condition ; aussi a-t-on vu ( tom. XVIHI,
pag. 323 ) qu’il fallait pour cela que les points de concours des
directions des cotés opposés dans les denx triangles , appartinssent
tous trois & une méme droite. On a vu aussi qu’il fallait que les
droites, qui joignaient les sommets opposés des deux triangles , con-
courussent toutes trois en un méme point ; mais ce n’est point 13 une
seconde condition, car on a vu ( tom. X VI, pag. 219) que ces

deux conditions se comportent réciproquement,
Tom. XIX 5
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Soit qu’on assujettisse une surface courbe a passer par un point
donné ou qu’on exige qu'elle touche un plan douné, il n’en ré-
sulte jamais qu'une condilion unique , propre seulement & détermi-
ner un des coefficiens de son équation. Si on lassujeuit & la fois
4 passer par un point donné et i toucher un plan donné, il y
aura & faire une distinction qui n’a pas lien dans la géométrie
plane. Ou bien le point douné sera situé hors du plan donné, au-
quel cas cela ne devra compter que pour deux coaditions pro-
pres sealement & ddéterminer deux des coefficiens de l'équation de
cette surface , ou bien le point donué sera situé dans le plan donné,
et alots les deux conditions devront compter pour Lrois, propres
4 ddterminer un nombre égal de coefficiens, )

Si, en effet, dans le dernier cas (@, %, c) est le point donné,
Iéquation da plan donné sera de la forme

z—c=p(v—a)+q(y—0) ;

il faudra d’abord exprimer que le point (&, 4, ¢ ) satisfait & I'é~
quation de la surface proposée, ce qui donnera une premicre équa-
tion de condition ; il faudra ensuite exprimer que le plan tangent
a la surface en ce point, dont I’équation sera de la forme -

s—c=P(e—a)+-Qy—P) ,

coincide avec le plan donné, ce qui donnera les deux autres équa-
tions de condition P=p, Q=4. )

On voit, en particulier, que, si deux tétraédres sont inscrit et
circonscrit I'un & lautre , assujettir une surface courbe & étre a la
fois circonscrite & l'un et inscrite & 'autre, c’est l'assujettir & douze
conditions distinctes , et non pas & Aui¢ , comme nous l'avions dit
par une inadvertance tout 4 fait impardonnable , et justement re-

levée par M. Bobillier dans la note de la page 336 du précédent
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volume ; note qui, conséquemment, doit étre réputée non avenue.
Si donc la surface est du second ordre seulement, comme nreuf
conditions suffisent pour déterminer une telle surface ; le probléme
sera plus que déterminé et ne scra possible que sous certaines con-
ditions ; aussi MM. Steiner et Bobillier ont-ils reconnu l'un et l'au-
tre qu’alors les droites, suivant lesquelles se coupent les plans des
faces opposdes des deux tétraddres, doivent appartenir toutes quatre
a une meéme surfuce gauche du second ordre , et que les droites
qui joignent les sommets opposés de ces téiraédres doivent aussi
appartenir 4 une méme surface gauche de cet ordre (*).

Mais voild qu’aprés avoir accusé ces deux élégans théorémes de
pécher par excés, nous sommes présentement obligés de les accu-
ser de pécher par défaut, c’est-a-dire, d’étre incomplets. En ad-
mettant, en effet, qu’ils ne se comportent pas I'un et l'autre , comme
leurs analogues , dans la géométrie plane, ce qui est tout au moins
trés-douteux , ils ne constitueraient encore que deux conditions dis-
tinctes, tandis qu’ici le nombre des conditions imposées excéde de
trois unités le nombre de celles qui sont nécessaires pour la dé-
termination compléte de la surface dont il s’agit. Voila donc un
sujet de recherche dont le défaut de loisir ne nous permet mal-
heureusement pas de nous occuper dans ce moment, mais auquel
les deux estimables géométres, auteurs de I'un et de l'autre théo-
rémes, voudront peut-étre bien donner quelque attention,

(*) Au moment ol nous corrigeons I'épreuve de cetie feunille, nous re-
cevons une lettre de M. Chasles qui signale également I'inconcevable er-
veur dont nous faisons ici I'humble aveu.
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QUESTIONS PROPOSILES.

Probléeme de situation ;
Par M. J. STteineER, de Berlin.

AWV VRV VWL

LE nombre des faces d’un polyédre étant donné, on peut deman.
der de quelle nature peuvent étre ces faces. On trouve, pour les
cas les plus simples, les résultats que voici :

> Nowmbre
2 des Faces.
E‘ | R e e ear
@
= e
=l =157
PlElElE
<] oa 2 o
z = )
‘.-”’ — afg .
[ Tétratdre. >’ r 4l o»
I 4 1 »
Pentaédres. {
2 2 3 »”
Corps —
p e 0 0 o< r ] 6 , »
2 5 » 1
3 /+ 2 »
k Hexaédre. (413 2]
5 2 4 »
6 2 2 2
7 » 6 »

Quelle est la loi générale?
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4 _r -~
GEOREITRIE FURE,

Développement d’'une série de théorémes relatifs
aux Seclions coniques ;

Par M. J. Steiner.

MNAANARAVIAWIRARANVW

I,

gz, de I'an quelconque P des points du plan d’un triangle ABC
(fig. 1), onabaisse, surles directions de ses c6tés BC, CA, AB,
respectivement, les perpendiculaires PA/, PB/, PC/, et qu'on joigne
le méwme point & ses sommets par des droites, on aura

BA"—CA”=0P"—CP’ ,
CB"—AB"=—CP'—AP ,

AC’—BC'=AP'—BP" ;

d'olt, en ajoutant, rédnisant et transposant ,

ES

AP B0 T =BA+ 4T s ()

(*) Pour un triangle sphérique, on aurait
CosAB/ . Cos.BC/, Cos.CA/—=Cos.BA’/. Cos.CB/.Cos.AC' ;

d’oli on déduirait des conséquences analogues.

Tom, XIX, n° II, 1.°% aoii 1828. 6
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telle est donc la condition nécesszire et suffisante pour que des
perpendiculaires élevées aux trois cotés BC , CA, AB d’un triangle
ABG, par des points A/, B/, C/ de leurs directions respectives,
concourent toutes trois en un méme poiat P.

Il en résulte immédiatement 1.° que les perpendiculaires éle-

vées aux cOtés d’un triangle, par leurs milieux , concourent toutes
trois en un méme point; 2.° que les perpendiculaires abaissées sur
les direclions de ces mémes cotés, des sommets respectivement op-
posés, concourent aussi toutes trois en un méme point.

2.

Par les pieds A/, B/, C/ des trois perpendiculaires, concevons

un cercle dont O soit le centre , lequel coupera de nouvean les
mémes c¢Htés du triangle aux points A7, B”, C”. Par les points
P et O soit conduite une droite , et soit prolongée cette droite au-
deld du point O d’une quantité OP/=O0P. Parce que les perpen-
diculaires qu’on abaisserait du point O sur les directions des trois
cdtés du triangle tomberaient sur les milieux des cordes intercep-
tées A’A” , B/B/, C/C/; il sensuit que les perpendiculaires éle-
vées & ces mémes cOtés, par les points A, B”, C”, doivent con-
courir toutes trois au point P/ On a donc ce théoréme:

»

»

»

»

»

»

« 8i, de I'nn quelconque P des points du plan d’un triangle
ABC, on abaisse, sur les directions respectives des cétés BC,
CA , AB de ce triangle , les perpendiculaires PA/, PB/, PC/, ct
si, par les pieds A/, B/, C/ de ces perpendiculaires, on fait
passer une circonférence dont O soit le centre et qui coupe

“de nouveau les directions de ces mémes cdtés en A%, Bi7 | C/,

les perpendiculaires élevées respectivement & ces mémes c6tés , par
ces trois derniers poinls , se couperont toutes trois en un méme
point P’ tel que le point O sera le milicu de la droite PP/ ».
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3.

Soient mendes les droites B'C’, C/A¢, A'B’ ainsi que B”C/. Les
angles AB/C/ et AC/B” qui ayant leurs sommets & la circonfé-
rence sappuient sur le méme arc B”C’, sont égaux; mais i cause
des quadrilatéres BPC'A, C/P'B//A inscriptibles an cercle , ces an-
gles sont respectivement égaux aux angles APC/, AP/B”; donc ces
derniers sont aussi ¢gaux entre eux. D’'an autre c6té, les angles
B'’PC/, B7P/C/, supplémens d'un méme angle A, sont ¢gaux en-
tre enx ; donc, par soustraction , les angles APB/ et AB/C/! sont
aussi égaux; et il en doit étre de méme de leurs complémens PAB/
et P/AC/Y 5 mais & cause du quadrilatére inscriptible au cercle,
a PAB’ on peut substituer son égal PC’'B’; donc ce dernier est égal
a P'AC”; puis donc que les cdtés C'P et AC” de ces deux angles
sont perpendiculaires I'un & Pautre, leurs c6iés C'B’ et AP’ seront
anssi perpendiculaires l'un & Pautre; et il devra en étre de méme
des droites C/A’, A’B/, comparées respectivement aux droites P/B,
P/C.

Soit @ le milicu de la corde B/C’, la droite Oa devra étre per-
peudiculaire & BC/, et, par suite, parallele & P’A. Pour les mémes
raisons si & et ¢ sont les milieux respectifs de C'A’ et A/D/, les
droites O4 et Oc seront respectivement perpendiculaires & celles-1a.

On a donc ce théoréme :

« Si, de 'un quelconque P des points du plan d’un triangle ABC,
» on abaisse, sur les directions de ses cotés BA, CA, AB, les per-
» pendiculaires PA’, PB', PC’, et si, des sommets du triangle,
» on abaisse , respectivement sur les directions des cotés B/C/, C'A/,
» A’B’ du triangle A/B/C’, d’autres perpendiculaires , ces trois der-
» nieres concourront en un méme point P/ (*). En outre, si l'on

(*) Ce théoréme n’est qu’un cas particulier d'un autre que nous avons pro-
posé de démontrer , sous le n.o 54, dans le 1I.¢ volume du Journal de M.
Crelle ( pag. 287 ) ol on trouveraaussi ses analogues , sous les n.%s 55 et 58,
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»
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ahaisse de ce dernier point, sur les directions des mémes cdids
du triangle ABC, des perpendiculaires P/A”, P'B” D/C//, les six
points A/, B/, C/, A7, B/, C/ appartiendront & une méme cir-
conférence ayant son centre O au milieu de la droite PP’ »,
De 14 on déduira facilement la solution de ce probléme :
« Des droites PA,PB, PC étant menées de 'un quelconque P
des points du plan d’un triangle ABC & ses trois sommets; ins—
crire & ce triangle un autre triangle A’'B'C’, dont les trois co-
tés B'C’, C'A’, A'B’ solent respectivement perpendiculaires & ces
droites ? »

.

Nous venons de faire voir cfue les angles PAC et P/AD sont

égaux; or, comme les circonstances sont les mémes relativement
aux trois sommets du triangle ABC, on doit avoir

Ang.PAC=Ang.P’AB ,
Ang.PBA=Ang PBC ,

v Ang.PCB=Ang P/CA ;

d'ot résulte ce théoréme : \

»

»

»

»

»

« Par Tun quelconque P, des points da vlan d’un triangle ABC,
soient menées & ses sommets des droites PA, PB, PC; si, par
les mémes sommets , on méne trois nouvelles droites faisant
respectivement , avec les cotés AB , BC, CA, des angles e’ga{nx aux
angles PAC, PBA ,PCB, ces trois derniéres droites concourront
en un méme point P/; et si, des points P, P/ on abaisse sur
les directions des cétéds BC, CA, BA du triangle les perpendicu-
laires PA7, PB/, PO/ P/A7, /B, P/C/, lears pieds A/, B/,
C/, A7, B7, G/ appartiendrout tous six 4 une méme circon-
férence ayant son centre O au milicu de la droite PP/ »,
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(82

Soit prolongée la perpendiculaire PA/, an-deld de A/, d'une
quantité A’Q=A'P, et soient menées QP’, coupant BC en M, OA’,
qui sera parallele & P'Q et d'une longueur moitié moiudre, et en-
fin PM ; d'aprés cette construction on aura MP=MQ , et, par suite,
MP--MP/=P/Q=20A"; en outre les angles P’MB, PMA , tous
deux égaux & l'angle QMC , seront conséquemment égaux entre eux.
Il résnlte de tout cela que.les points P, P’ sont les deux foyers
d’une ellipse tangente en M au cété BC , laquelle a son centre
en O et son grand axe ¢gal au diamétre du cercle dont le point
O est le centre; d'on il résulte qu’elle touche.ce cercle anx deux
extrémités de son grand axe; et, comine ce que nous venons de
prouver , relativement au ¢6té BC du triangle , se prouverait éga—
lement des.deux auntres, on a le théoréme suivant:

« 1.° Chacun des points de I'intérieur d'un triangle peunt étre con-
» sidéré comme lun des foyers d’une ellipse inscrite & ce trian-
» gle ;

» 2.° Les pieds des perpendiculaires abaissées des deux foyers
» d’une ellipse sur ses tangentes $ont tous situés sur une méme
» circonférence , ayantle graud axe de cette ellipse pour diamétre ;

» 3.2 Un /angle étant arbitrairement circonscrit & une ellipse ,

les droites menées de ses deux foyers au sommet de cet angle
» font des ungles respectivement égaux avec ses deux cétés ».

En conséquence de cette derniére propriété et de I'dgalité des
angles B/*C/, B/P/C/, les triangles rectangles P/C”A, P/B/A sont
respectivenmient semblables aux triangles rectangles PB'A, PC'A, ce
qui donne

PB”:PC:AP:AP ,

PB/:PC": AP: AP,

et, par suite,
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PR/.P/B/=P/CV ,

cest-d-dire ,

« 4.° Le reclangle des perpendiculaires abaissées des deux foyers
» d'une ellipse sur une quelconque de ses tangentes est constant ,
» et conséquemment égal au carré du demi-petit axe de lellipse ».

6.

Entre divers cas particuliers nous signalerons seulement le sui-
vaul : ‘ )

Supposons que le point P ( fig. 2 ) soit le centre du cercle cir-
conscrit au triangle ABC ; les pieds A/, B/, C/ des perpendiculai-
res PA/, PB/,PC/, abaissées de ce point sur les directions des c6-
tés BGC, CA, AB, en seront respectivement les milienx; et, par con-
séquent, les droites B’C/, C/A/, A’/B’ seront respectivement parallc-
les aux cOtés BC, CA, AB; et comme, par exemple, la droite
AP’ est (3) perpendiculaire & B/C’, elle sera aussi perpendiculaire
a BC, et, par conséquent, le point P’/ sera le point de concours
des perpendicuiaires abaissées des sommets du triangle ABC sur les
directions des cotés respectivement opposés. On a donc ce théoréme :

« Les milieux A’, B/, € des c6tés d’un triangle ABG, et les pieds
» A7, Bv, G/ des perpendicﬁlaires abaissées de ses sommets sur les
» directions de ces mémes cdtés, sont six points situéds sur la cir—
» conférence d’'un méme cercle dont le centre U est au milien
» de la droite PP/ qui joint le centre P du cercle circonscrit au
» triangle ABC avec le point P’ de coneours des perpendiculaires
» abaissées de ses sommets sur les directions des cotés opposés. Ces
» deux points P, P/ sont les foyers d’une ellipse inscrite au trian-
» gle ABG, laquelle est concentrique avec le cercle circonscrit au
» triangle A/B/C/ et a son grand axe égal au diamétre de ce cer-

-
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» cle, ou, ce qui revieni au méme ( puisque les cotés du trian-
» gle A/B/C’/ sont moitié de ceux du triangle ABC ), égal au rayon
» du cercle circonscrit au triangle ABC. En outre, les trois rayons
» PA, PB, PC seront respectivement perpendiculaires anx c6tés
» B'C", C"A”, A/B% du triangle "A”B/C/ ; enfin ces rayons se-
» ront tellement dirigds que les angles PAD, PBG, PCA, sont res-
peciivement égaux aux angles A”AC,P7AB, B"BA , C’CB ».

Sur la droite PP/ il existe un quatriéme point G ( Carnot ),
intersection des droites AA’, DB/, CC/ qui joignent les sommets
dua triangle ABC aux milieux des cdtés respectivement opposds ,
et les quatre points P, G, O, P’ sont situés harmoniquement, c’est-
a-dire , de telle ‘sorte qu'on a GO:GP::P'O:PP, ce qui revient
a 1:2::3:6. En outre, les points P', G sont les ceutres de simi-
litude des deux cercles qui ont leurs centres en O et P; donc le
cercle qui a son centre en O passe par les milieux des droites P/A,
P'B, P/C; et les points A7, B/, C”, sont les milieux respectifs
des droites P'A”, P/B/, P/C/ , prolongemens des droites P'A”,
P/B7, P/C, jusqu’a la rencontre de la circonférence qui a son cen-
tre en P (¥), - )

Le cercle qui a son centre en O jouit , en particulier, de cette
propriété bien digne de remarque: « il touche chacun des qua-

(*) De la, en particulier, on conclura facilement ce théoréme :

« 8i, sur la circonférence du cercle qui a son centre en P, on prend ar-
» bitrairement quatre points A, DB, C, D; ces quatre points seront, trois
» & trois, les sommets de quatre triangles inscrits auxquels correspondront
» quatre points P/, quatre points O et quatre -points G. Or, les quatre
» points de chaque sorte appartiendront &4 une wméme circonférence dont
».le rayon sera, pour les quatre points P/, égal & celui du cercle donmé;
» moitié de ce rayon, pour les quatre points O, et son liers seulement pour
» les quatre points G, En outre, les centres de ces trois nouveaux cercles
» serout , avec le point P harmoniquement situés sur une méme droite,
» comme le sont les qualre points P/, O, G, P; de sorte que le centre P
sera le ceutre de similitude commun de ces trois nouveaux cercies ».

<

)
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» tre cercles luscrits et ex-iuscrits an triangle ABC; cest-d-dive ,
» chacun des quatre cercles qui peuvent toucher & la fois les trois
» cOtés de ce wriangle »,

7.

Comme les propriétés de Vellipse démontrées ci-dessus {5) ont
lieu d’une manicre analogue pour toutes les autres coniques, ce
qui se prouve par de semblables considérations, on pent établir
ce théoréme plus geueral

« Chaque point pris & volonté dans le plan d’un triangle donné,
» est le foyer d’une conique inscrite ou ex-inscrite & ce triangle ;
» conique de laquelle on peut, par une eonstruction facile, dé-
» terminer l'autre foyer, le centre et le premier axe ». ‘

Proposons-nous d’abord de découvrir quelle relation il peut y
avoir entre la nature de la conique et la situation , par rapport au
triangle , du point pris arbitrairement pour foyer.

3.

Soit ABC ( fig. 3 ) le triangle donné, et soit P un point pris
arbitrairement sur son plan pour foyer *d'une conique touchant a
la fois les trois cotés de ce triangle.

De ce point P soient mendes les droites PA, PB aux deux som-
mets A, B de ce triangle. Pour déterminer l'autre foyer P/ de la
courbe, il faudra (5) conduire par les points A, B deux droites
AP’ , BP/ formant , respectivement avec CA , CB ou leurs prolonge-
mens, des angles égaux & PAB , PBA ; et le point P’ de concours
de ces deux droites sera le second foyer cherché. Afin donc que
la courbe soit une parabole, il faudra que ce second foyer soit
infiniment distant du premier, ou, ce qui revient au méme, il
faudra que les deux droites AP/ , BP/ soient paralléles; et récipro-
quemment, toutes les fois que ces deux droites seront parallelea,
la courbe sera une parabole.



GEOMETRIQUES. 45

Si alors on congnit par le sommet G vne paralléle & ces deux
deoites, cette prealidle divisera T'angle ACB en deux parties res—
peciivemet ¢gales anx angles que forment AP et BP avec les
prolongemens de CA et UB ; douc la somme de ces dens
derniers angles , est égale & langle G ; dounc aussi la somme des
deux angles PAB et PBA, respectivement éganx & ces denx-li,
doit anssi étre égile & ['angle ACB ; mais l'angle APB est supplé-
ment de la somme des deux angles PAB et PBA, donc il doit
étre aussi supplément de Pangle ACB; d'olt il suit que les qua-
e points A, B, G, P appartiennent & une méme circonférence ;
on a douc ce théoréme :

« Toutes les paraboles, touchant & la fois les trois cotés d’un
» méme tiangle, ont leurs foyers sur la circouférence du cercle
» circouscrit, et, réciprogquement, tout point de la circonférence du
» cercle circonscrit & un triangle est le foyer d’une parabole tou-
» chée & la fois par les trois cOtés de ce triangle ».

Daprés ce qui a été démontré ci-dessus (5, 2° ), les pieds des
perpendiculaires abaissées du foyer d’une parabole sur ses tangen-
tes sont tous situés sur la tangente au sommet de la courbe , et con-
séquemment en ligue droite; en combinant donc cette proposition
avec celle qui vient d’étre démontrée, on parviendra i ce théoréwe
connu (*):

« Les pieds des perpendiculaires abaissées sur les directions des
» trois cOtés d’un triangle , de l'un quelconque des points de la
» circonférence du cercle circonscrit, appartiennent tous trois i une
» méme droite ».

Il ne sera pas difficile de parvenir par les mémes considérations
A ce théoréeme plus général :

« Si,de 'un quelconque des points de la circonférence dun cer-

(*) Voy. Annales, tom, 1V, pag. 251.
J. D, G.

Tom., XIX 7
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» cle circonscrit A un triangle, on conduit, sur les directions de ses
» cotés , des obliques faisant, dans le méme sens, avec ces mé-
» mes cOtés, des angles égaux quelconques , les pieds de ces obli-
» ques appartiendront tous trois & une méme droite. En outre,
» toutes les droites qu'on obtiendra , en variant l'angle des obli-
» qucs, envelopperont une parabole qui aura pour foyer le point
» de départ de ces obliques ».

9

Revenons au probléme que nous nous étions proposé (7). Ob-
servons d’abord que le plan de la figure se trouve partagé tant
par les trois cdtés du triangle ABC, considérés comme des droi-
tes indéfinies, que par la circonférence du cercle, en iz régions
dont quatre finies et six indéfinies. Les quatre finies sout le trian-
gle lui-méme que nous désignerons par T, et les trois segmens
que nous désignerons respectivement par S,, §;, S,. Les six in-
ddfinies sont les opposées au sommet des trois angles du triangle
gue nous désignerons respectivement par A/, B/, C', et trois aa-
tres régions terminées chacune par un arc de cercle et par les pro-
longemens de deux cotés du triangle. Nous désignerons ces der-
ni¢res par T,, T,, T,.

En supposant les deux droites AP/, BP/ paralléles, nous avions
Pangle ACB égal a la somme des deux angles PAB et PBA ; mais,
si la somme de ces deax angles croit de maniére a devenir plus
grande que l'angle ACB, les droites AP/, BP/ convergeront en un
point P/, situé dans la région T,, et le point P passera aussi dans
cette méme région ; de sorte que Ja conigue ne pourra éire gu'uns
ellipse.

Si an contraire la somme des angles PAB et PBA diminue, le
point P passera dons la région ou segment S, tandis que le point
¥/ passera dans la région C/; d’ou il est aisé de conclure que /g
conigue ne pourra éire quwune hyperbole.
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Donc (8) on a le théoréme suivant :

« Tout point P, pris arbitrairement dans le plan 4’un triangle
ABC , est le foyer d’une conique touchant i la fois les trois cé-
tés de ce triangle; or, 1.° cette conique sera une parabole si
le point P est sur la circonférence du cercle circonscrit au trian-
gle; 2.° ce sera une e/lzpse si le point P est intérieur au trian-
gle, ou bien si, étant extérieur au cercle, il se trouve situé dans
Iespace terminé par un quelconque des cotés de ce triangle , et
les prolongemens des deux autres; 3.° enfin la courbe sera une
hyperbole si le point P est & la fois intérieur au cercle et ex-
térienr aun triangle, ou bien §’il se trouve situé dans P'opposé au
sommet de l'un des angles de ce triangle (*) ».

Et réciproquement,

« Une couique touchant & la fois les trois cotés d’un triangle
ABC; 1.9 si cette conique est une parabole, son foyer sera si-
tué sur la circonférence du cercle circonscrit; 2.° si cette cont-
que est une ellipse , ou bien elle aura ses deux foyers intérieurs
au triangle, ou bien ils seront tous deux extérieurs au cercle et
situés dans l'espace circonscrit par P'un des c6tés de ce triangle ,
et les prolongemens des deux autres; 3.° enfin, si cette conique
est une Ayperbole, un de ses foyers sera cowpris dans I'un des
trois segmens du cercle circonscrit extérieur au triangle, tandis
que lautre se trouvera situé dans 'opposé au sommet de l'an-
gle respectivement opposé de ce triangle »..

Ce que nous avons dit ci-dessus ( 5, 3° ) permet de préciser

mieax encore la situation relative des deux foyers dans le cas de
Iellipse et dans celui de I'hyperbole; il en résulte, en effet, que
deux tlangentes étant menées d’'un méme point a la courbe, et étant

mences les deux droites qui divisent en deux parties égales les qua-

(*) C'est le théoréme 32 que nous avions proposé a démontrer a la pag, 191

da IL.we  yolume du Journal de M. Crelle,
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“tre angles formés par ces deux tangentes, les deux foyers se trou-
veroat toujours situés d'un méme coté de l'une de ces droites et
de difiérens coOtés de lautre,

10

Nous avons déjd remarqué ( pag. 3 ) que si, par un point P

pris arbitrairement dans le plan d'un triangle ABC, et par cha-
cun de ses sommets, on méne trois droites AP, BP , CP, ren-
contrant les directions des cotés respectivement opposés en A/, B/,
C/, il existe toujours une conique qui touche les trois c¢dtés du
triangle en ces trois poiats. Examinons présentement quelle doit
étre la situation du point P sur le plan du triangle, pour que
la courbe soit une parabole , une ellipse ou une hypertole. Com-
mencons par le cas de la parabole dont la discussion n’offre au-
cune difficulté,
- Soit P (fig. 4) le foyer d’'une parabole, et soit AB une tan-
gente quelconque & la courbe, dont le point de contact soit en /',
Sur la droite PC/ soit pris un point G quelconque par lequel soit
menée la droite CDP/, paralléle & I'axe de la parabole , coupant
la tangente AB en D ; alors les droites CC/P et CDP/ couperont
la tangente AB sous le méme angle; de telle sorte que le triangle
DCC/ sera isocele.

Par le point G soient menées & la courbe deux nouvelles tan-
gentes CA , GB, lesquelles (8) formeront respectivement des an-
gles égaux avec les droites CP, CP/; d’oti on counclura que le trian-
ACB est i1socéle. Donc

« Si une parabole touche les trois cotés d’un triangle isocéle ,
» la droite menée par le sommet de ce triangle et par le point de
» contact de sa base passera constamment par le foyer de la courbe ».

De ce théoréme on conclut, sur-le-champ, le suivant:

« Si une parabole touche les trois cotés d'un triangle équilaté-
» ral, les droites qui joindront les points de contact des cétés du
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» triangle avec les sommets respectivement opposés concourront tou~
» tes trois au foyer de la courbe » ; et, par conséquent (8),

« Si une parabole tonche les trois cotés d’un triangle équilaté-

ral, les droites menées par les sommets et par les points de con~
» tact des cOtés respeclivement oppusés se coupent toutes trois en
» un méme point, et le lieu de ce point est la circonférence du
» cercle circonscrit ».

Sowt donc ABC (fig. 4 ) un triangle équilatéral, et soient me-
nées par ses sommels et par un quelconque P des points de la cir=
conférence du cercle circonscrit, les droites AP, BP, CP rencon-
trant en A/, B/, C/ les directions des cotés respectivement oppo-
sés; la conique qui touchera les trois c6tés du triangle en A', B/,
C’ sera donc une parabole dont le point P sera le foyer; et les
droites AA”, BB, CC”, menées par les sommets du triangle et
par les milieux A", B” , C” des cordes de contact B/C/, C’A/, A’'B/,
que lon sait étre paralleles & l'axe , seront ainsi paralleles entre
elles.

Supposons présentement que le point P se déplace sur la droite
CP, et que, par exemple, il passe en p dans Dintérieur du cer-
cle ; les points de contact A/, B/ passeront respectivement en a’,
&’ ; les cordes de contact C’/A’, C’B’/ deviendrout C’z’, C’/4’ dont
les milieux seront en 57 et a’/; et les droites Az”, BY' se ren-
contreront nécessairement dans l'angle A/LB/, ce qui s'apergoit ai-
sément si Lon considere le parallélisme de AA” et BB” de A”2”
et Bo/ et de B"6" et A'd'; et le point de concours £ de ces deux
droites sera le centre de la conique ; d’ou il est aisé de voir que
ceite courbe ne saurait éire alors qu’une ellipse. Si, au contraire ,
on suppose que le point P sort du cercle, les deux mémes droi-
tes Au’/, B4" iront coucourir dans l'opposé au sommet de l'angle
A'CP’; d’on on conclura qu’alors la courbe ne saurait étre qu'une
kyperbole. Donc

« Si, par un quelconque P des points du plan d’un triangle équila-
» téral ABC, et par ses summets , on méne les droites AP, P, CP,
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rencontrant les directions des c6tés respectivement opposés en A’
» B/, C’, la conique touchant les cétés du triangle en ces trois
» poiats sera une eHipse, une hyperbole ou uume parabole, suivant
» que le point P sera intérieur au cercle circonscrit, extérieur &
ce cercle ou sur sa circonférence, et vice versd ».

v

2

Ce théoréme est susceptible de généralisation et d’application
diverses qui vont présentement nous occuper.

r.

Par une projection paralléle sur un plan quelconque, la figure
dont les propriétés viennent de nous occuper se modifie comme il
suit :

1.° Ee triangle équilatéral ABC devient un triangle d’espéce
quelconque ; ’

2.° Le cercle circonscrit devient la plus petite ellipse circonscrite
au nouveau triangle , c’est-a-dire, celle dont le centre coincide avec
son centre de gravité, point de concours des droites qui joignent
ses sommets aux milieux des cétés respectivement opposés ;

3.° Les coniques touchant les trois cdtés du triangle changent
de forme, mais conservent leur caractére, c’est-d-dire, qu’elles de-
meurent ellipses, hyperboles ou paraboles , comme dans la figure
projetée. :

|

Réciproquement, tout triangle donné quelconque peut étre con-
sidéré comme une projection paralléle d'un certain triangle équi-
latéral. En conséquence le théoréme démontré (10) pourra étre gé-
néralisé comme 1l suit :

« Si, par un quelconque P des points du plan d’un triangle
quelconque ABC et par ses sommets, on meéne des droites AP,
» BP, CP, rencontrant les directicns des c6tés respectivement op-
posés en A’, B', C’, la conique qui touchera les trois cotés du
triangle en ces trois points sera une ellipse , une hyperbole ou
parabole , suivant que le point P sera intériear & la plus petite

9

¥ ¥

v
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s ellipse circonscrite au triangle ABC, extérieur & cette ellipse ou
» sur son périmetre méme, et pice versd ».

De ce théoréme on en déduit un autre encore plus général :

Par une projection centrale ou perspective, sur un plan quel-
conque , la fignre dont il vient d’éwre question se modifie comme
il suit :

1.° Le triangle donné devient un triangle quelconque ABC
( fig. 5); la plus petite ellipse circonscrite devient une conique
quelconque S circonscrite au nouveau triangle ; les tangentes & l'el-
lipse’, par les sommets da triangle , lesquelles sont paralléles aux
¢dlés respectivement opposés, devieunent des tangentes & la coni-
que S par les sommets du nouveau triangle , lesquelles rencon-
trent les directions des cdtés respectivement opposés de ce trian-
gle en trois points A’, B/, C/, appartenant & une méme droite ,
laquelle forme , avec les colés du triangle ABC, un quadrilatére com-
plet doat ces trois tangentes sont les diagonales.

2.° Toutes les paraboles touchant les trois c6tés du triangle douné
deviennent des coniques inscrites & ce quadrilatére complet;

3.° Les droites Aa, Bb, Cc joignant les sommets A, B, C du
triangle inscrit aux sommels respectivement opposés @, &, ¢ du
triangle circonscrit , formé par les tangentes anx sommets du pre-
mier, diagonales du quadrilatére complet, se coupent toutes trois
en un méme point S, poéle de la droite A’B’C/, relativement a la
conique circonscrite an triangle ABC ; enfin les polaires de ce point
S, relatives aux coniques inscrites au quadrilatére complet, envelop.
pent cette méine conique circonscrite au triangle ABC. Donc

« 1.° Etant donné un quadrilatére complet, ses cotés pris trois
> & trois forment quatre triangles; et on peut inscrire & ce qua-
» drilatére une infinité de coniques diflérentes ; 2.° les droites Aa,
» BB, Cy mendes par les points de contact de l'une de ces coni-
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ques avec-les coiés de lun ABC de ces quatre triangles, et par
les somwnets respectivement opposés se coupent toutes trois en un
mdme point D etle licu de ce point D est une certaine conique
circo: scrite & ce triangle 'ABC, et en méme temps inscrite au trian-
abc formé par les trois diagonales du quadrilatére complet, de
telle sorte qu’elle touche les cOtés de ce dernier triangle anx som-
mets da premier ABC; 3.° les droites Aa, B, Ce qui joiguent
les sommets respectivement opposés de ces deux triangles se cou-
pent toutes trois en un méme point S, pole du quatriéme c6ié
A’B’C’ da quadrilatére complet; et les polaires de ce point, re-
latives aux coniques inscrites au quadrilatére complet, envelop-
pent la conique circonscrite au triangle ABG; en outre, les treis
points o/, 3/, 3’, ol se coupent les cotés correspondans des denx
triangles ABGC , ofy, appartiennent & une méme droite , la-
quelle passe coastamment par le point S; 4.° enfin les coniques
a la fois circonscrites aux quatre triangles formés par les cdiés
du quadrilatére complet, pris trois & trois , et inscrites au trian—
gle formé par ses diagonales , se touchent deux & deux aux six
sommets A, B, C,A’, B, C' de ce quadrilatére complet, et el-
les sont tonchées en ces mémes points de contact par ses troig
diagonales ».

Et réciproquement,

« Si, 4 un triangle donné quelconque ABC, on circonscrit une
conique quelconque, et qu’ensuite par un point D, pris arbi-
trairement sur le périmétre de cette conique et par chacun des
sommets du triangle, on méne trois droites AD , BD, CD ren-
contraat les cotés respectivement opposés en trois points o, 3,
y ot ces cOtés sont touchés par une deuxiéme conique , cette
conique et toutes les antres . déterminées par une semblable cons-
truction , seront touchées par une meéme droite A'B'C’, déter-



GEOMETRIQUES. 53
» minde par les intersections respectives des directions des cotés du
» triangle ABG avec les tangentes mendées & la premicre comque
» par ses sommels respectivement opposes »

14

Supposons que le triangle ABC, le point D et la conique ins-
crite , touchaut ses cdtés en a, 3,y restant fixe, la conique pas—
sant par les quatre points A, B, G, D, varie de toutes les ma-
nic¢res possibles, la droite A/B/C/ roulera alors (13) sur ld conique
invariable , d'ott résulte le théoréme suivant :

» 1.° Etant donné un quadrilatére quelconque ABCD , on peut
» lui circonscrire une infinité de coniques différentes, lesquelles
» seront aussi inscrites & chacun des quatre triangles formés par
» les cotés du quadrilatére pris trois & trois; 2.° les tangentes AA’,
» BB, CC’', mendes a une quelconque de ces coniques par les
» sommets de 'un quelconque ABC des quatre triangles, ont lenrs
» intersections A/, B/, G, avec les directions des cotés respective-
» ment opposés de ce méme triangle situdes sur une méme droite;
» et l'enveloppe de cette droite est une certaine conique passant
» par les trois paints o, f, y d’intersection des truis systémes de
» deux droites joignant deux A deux les quatre sommets du qua-
» drilatére ABCD , et touchant, en ces trois points, les cdtés du
» triangle ABC ; 3.° les points o/, 3/, y/ d’intersection des cités
» correspondans des deux triangles ABC , ofy appartiennent tous
» trois & une méme droite %, polaire du quatriéme sommet
» D, relativement & la conique circonscrite au quadrilatére; en
» outre, les pdles de cette droite, relativement & toutes les coni-
» ques-qui peuvent étre circonscrites & ce méme quadrilatére, sont
» sur le périmétre de la conique enveloppe de la droite A/B/C’;
» 4.° enfin , les coniques &la fois inscrites anx quatre triangles foimés
» par les sommets du quadrilatére ABCD , pris trois & trois, et cir-
» conscrites an triangle «fy , se touchent deux a_deux aux trois poinis

Tom., XIX 8
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» a,B,y; de telle sorte que chacun de ces points est le point de
» contact de deux différentes paires de coniques; et en méme temps
» ces coniques sont touchles deux & deux, & leur point de contact,
« par les six droites qui joignent deux & deux les quatre sommets
» du quadrilatére donné ABCD ».

Par la théorie des polaires réciprogues on aurait pu déduire
ce théoreme de celul que nous avons précédemment démontré (12).

15.

Du théoréme précédemment démontré (6) on peut, par la con-
sidération des projections, en déduire un grand nombre d’antres.
En remarquant, par exemple, que les perpendiculaires, abaissées
d’un point quelconque de la circonférence du cercle circonscrit au
triangle ABC ( fig. 2 ) surles directions des c6tés de ce triangle, sont
respectivement paralléles anx trois hauteurs AA” , BB/, CC/, ainsi
quaux trois perpendiculaires PA’/, PB/, PC/, abaissées du cenue
de ce cercle sur ces mémes cotés, on en conclura que

« 1. Une conique queldonque étant circonscrite & un triangle
donné ABC, et élant menée par son centre P et par les mi-
lieux A’, B/, C’/ des cOtés du triangle , les droites PA’, PB/,
» PC/, les droites AA”, BB”, CC” menées par les sommets du
méme triangle, parallelement & celles-1a, se couperont tountes trois
» en un méme point P'; les six points A’, B, C', A7, B/, G/
» appartiendront & une seconde conique semblable & la prewmiére

et semblablement située ( Aomothétique ) ; le point P/, les deag
centres P, O et le centre de gravité G du triangle donné ap-
partiendront & une méme droite, et saront situés harmoniquement,
» de telle sorte qu'on aura OG:GP:OP:PP'::1:2:3:6; en
» outre (8), si de l'un quelconque D des points de la conique
» circonscrite au triangle ABC on abaisse , sur les directions de
ses cotés , des obliques respectivement paralleles anx droites PA’,
PB/, PC/, leurs pieds seront situés sur une méme droite »,

»

»



»

»

»

»

»

GEOMETRIQUES. 55
Et réciproquement ,
« 1L Si, par Pun quelconque P’ des points du plan d’un trian-
gle douné ABC et par ses sommels, on méne les droites AP’ ,
BP/, CP/, il y aura uve mfinité de points D tels qu'en me—
nant, de I'un de ces points sur les c6tés du triangle, des obli-
gacs respectivement paralleles & ces droites , leurs pieds appar—
tiendront tous trois & uue méme droite; et tous ces points D
sevont situds sur une méme cbuique circouscrite au triangle donué;
le centre P de cette conique sera le point de conecours des droi-
tes conduites par les milievx A’, B', C’ des cdtés du wuiangle ,
parallélement aux droites AP, BD/, CP/ ; etc.
Comme le point P’ de concours des trois hautears du triangle

ABC peut éire situé ou dans lintérienr de ce triangle, ou dans
Vune des trois régions a, fB,y, il sensuit que

»

»

»

»

»

« HL. Les deux coniques semblables et sewblablement situées
dont les centres sont P et O sont 1.° des ellipses, si le point
P/ est situé dans I'intérienr da triangle ABC , ou dans 'une des
trois régions o, 3, y; 2.° des hypeibales, si ee point P/ est si-
tué dans l'une des trois régions o, 3,9 ; 3.° des paraboles, si
ce point est infiniment distant du triangle ABC. En outre les
poiuts P et P/ sont des poiuts homologues des deux triangles
ABC et A'B'C ».

Dans le cas de la parabole ot le point P/ est a l'infini, les

droites AA”, BB” , CC/ sont paralleles, d’on il suit que

»

»

»

»

»

« IV. Si, par les somwets d’un triangle donné ABC, on
méne, dans une direction arbitraire , trois paralleles AA”, BB”,
CC” rencontrant les directions des c6tés opposés en A7, B/, C/7y
ces poiats et les milienx A/, B/, C/ des mémes cdtés appartien-
dront tous six & une méme parabole ». Et réciproquement « si,
par les milienx A/, B/, C/ des cOtés d'un triangle douné ARC,
on fait passer une parabole quelconque, coupant de nonveau
ces mémes ¢bOtés en A, B C/, les droites AA”, BB, CC/
seront nécessairement paralléles ». .
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16.

A Tlaide de la projection centrale, des précédens théorémes (15),

on déduira les suivans :

»

»

»

»

»

»

»

»

»

« 1. Uneconique quelconque étant circonscrite & un triangle donné
ABC ( fig. 6 ), et étant menées par un point G quelconque et
par les sommets du triangle des droites AG , BG, CG, coupant
les directions des cités opposés en A’, B/, €/, et étant menées
de plus les droites B/C/a, C/A/B, A/B’y, coupant les directions
des cOtés correspondans du triangle donné en «, f3, v, situés sur
une méme droite ofdy; enfin P étant le péle de cette droite, et
étant mendes les droites PA’a/, PB'F’, PC’Y’ coupant respective—
ment la droite afy en o', ', ¥ ; les droites AA”e/ , BB/3/
CC/y", coupant les cotés du triangle donné en A7, B7, C/,
concourront toutes trois en un méme point P’; les six points A/,
B/, ¢/, A7,B”, C/ appartiendront & une seconde conique; la
droite ofy sera une sécante commune a celte seconde conique
et a la premiére; les pdles P, O de cette droite, par rapport
aux deux coniques, et les deux points G et P’ appartiendront &
une méme droite PGOP’ sur laquelle ils seront harmonique-~
ment situés; en outre, si, par l'un quelconque D des points du
périmétre de la conique circonscrite au triangle donné et par
chacun des points &/, 3/, 9/, on meéne des droites, leurs points
d’intersection avec les c6tés correspondans du triangle donné ap-
partiendront tous trois & une méme droite »,

Et réciproquement , '

« IL Par un quelconque G des points du plan d’un triangle
donné ABC et par chacun de ses sommets , soient mendes les
droites AGA/, BGB/, CGC/ coupant respectivement en A’, B/,
C’ les directions des cOtés opposés; et soient ensuite mendes les
droites B'C'a, CAB, A’B’y , coupant les directions de ces méines
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cHtéds en o, ﬁ Y, pomts qul app%rlxe.:dront tous trois & une
méme droite oy ; si, par un autre point quelconque P, on méne
les droite PA%/, PB/3/, PCYy', lesquelles coupent la druite ofSy
en o, ¥,y , les droites Ad', Bf', Cy’ concourront en un méme
point P, Or, si des points o/, 3,7 on abaisse des obliques sur
les directions des cotés opposés du t7angle donné, de wmaniére
qu'elles se coupent en- un méme point D, et que lcurs pieds ap-
partiennent & uze méme droite, le lieu de ce point D sera une
certaine conique circonscrite au triangle donné; le point P secra
le pole de la droite afy relativement a cette conique, etc. »,

Ou, en d’autres termes: « 8i, par un quelconque P’ des points

»

»

»

»

»

»

»

»

»

»

du plan d’un triangle donné ABC et par ses sommets , on méne
des droites AP/, BP', CP/, et qu’ensuite on méne arbitrairement
une droite a/3/y/ coupant respectivement celles-1a en o/, %/, ¥/, il
y auara alors une infinité de points D tels que les droites Do,
DB’ , By’ coupent les c6iés correspondans du triangle donné en
trois points appartenant & une méme droite; et le lieu de ces
points D sera une une certaine conique circonscrite au triangle

douné, etc. »

« lII. Les deux points P, P/ (1) sont des points homologues par
rappovt aux triangles ABC, A/B/C’; quand l'un d'enx tombe sur
la droite oSy, l'autre zoincide avec lui, et alors la conique qui
passe par les six points A7, B/, C/, A7, B/, C” touche cette droite
o3y en ce point P on P/ ». Et réciproquement, « si une coni-
que passe par trois points donnds A¢, B/, C’ et touche une droite
donnée a3y, en un certain point Q, elle coupera les directions
des cotés du triangle ABC, déterminé par les droites A/a, B,
C’y, en wrois points A” , B”, C” leSquels seront situés sur les drm-
tes AQ,BQ, CQ, et vice versd, elc. ».

C’est 13 une propriété commune 3 toutes les coniques qui passent

par les trots mémes points donnés A/, B/ C’ et touchent la méme
droite donnée afy,



58 ‘ DEVELOPPEMENS

17.

Les précédens théorémes ont leurs polaires récl}vr;)ques s tel est,
par exemple, le suivant : ,

« Soit menée uné droite quelconque , coupant les c6tés d’un
» triangle donné ABC en a.B,7y; et, par un quelconque D des
» points du plan de ce triangle, soieut mendes les droites Do, DB,
» Dy, alors on pent abaisser, des sommets du triangle donné, sur
» les droites respectivement opposées , des obliques Ao/, BB’, Cy/,
» telles qu'elles se coupent en un méme point E , et que leurs
» pieds o/ , 8/, 9, appartiennent & une méme droite; cette droite
» enveloppera une certaine conique inscrite au triangle donné; etc, »
" Etc., etc.

. 18

Soit circonscrite une conique quelconque & un triangle donné
ABC fig. 7 ). Par les sommets de ce triangle, et par un quelconque
P/ des points de son plan , soient menées les droites AP//A%a,
BP/B/ , CP/C’y , coupant respectivement les directions des cotés
opposés du triangle en A ,B”, C#, et la courbe en o, 8, y. Si,
par un quelconque D des poinis du périmétre de cette conique,
on meéne les droites” D, DB, Dy, coupant les cétés opposés du
triangle donné en o, f'y'y', ces lrois points seront toujours situés
sur une méme droite o/f3’y/, passant par le point P/; car, & cause
de Phexagone inserit DPBCAaD, par exemple ( Pascal ), les trais
points o, 3, P/ appartiendront & une méme droite.

Lorsque le point D se meut sur le périmétre de la courbe, la
droite /3% tourne sur son point P/, et pice versd.

19.

Sapposons que la conique soit un cercle, et que les droites Aa,
BB, Cy soient respectivement perpendicalaires aux c6tés du trian-
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gle donné, alors le point D sera le foyer d'une parabole inscrite
4 ce triangle, et 'on aura (6)

P'A"—=A"a | P/B/’=B"j , P/C/'=Crry ,

Soit menéde la droite DE, paralléle & yP/; elle sera perpendi-
culaire & la tangente AB; et, en supposant qu’elle coupe «/f/y/ en
E et AB en F, on aura DF=FE, car yC'=C"P/; d’ot il snit
que le point E est situé sur la directrice de la parabole, et que
par conséquent la droite a3y’ est elle-méme cette directrice ; done

« Les directrices de toutes les paraboles inscrites a un méme
» triangle donné ABC se coupent toutes en un méme point P/
» inlersection des trois hauteurs de ce triangle; et

» Les intersections des trois hauteurs de tous les triangles circons-
» crits & une méme parabole sont toutes situdes sur la directrice
» de cette courbe (*) ».

“En remarquant que quatre droites données sur un plan peuvent °
étre touchédes par une méme parabole , on conclura de 13 la dé-
monstration du 4.6 théoréme de la pag. 302 du précédent volume ,
savoir :

« Dans les quatre triangles que forment trois a trois quatre droi-
» tes tracées sur un méme plan, les points de-concours des trois
» hauteurs apparticnnent tous quatre & une méme droite (**) »,

20.

En observant que les pieds F... des perpendiculaires abaissées
du foyer D sur les directions des cOtés da triangle ABC appar-

(*) Cest le théoréme 29, proposé a démontrer a la pag. 1g1 du 1L®¢yo-
lune du Journal de M. Crelle,

(**) Clest le théoréme 8 de endroit cité du Journal de M. Crelle.
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tiennent & une méme droite paralltle A la directrice o/f%/, cette
circonstance fournit un moyen trés-simple de résoudre , par pro-
“jection, le poobleme suivant :
« Une conique quelconque étant circonscrite & un triangle donné
» ABC; si de l'un quelconque D des points du périméire de la
courbe on abaisse , sur les cotés du triangle , des obliques respec-
tivement paralléles aux diamétres qui passent par les milieux de
» ces cOtés, leurs pieds F..... appartiendront & une méme droite.
» Cela posé, quelle doit étre Ia situation du point 1) sur la courbe,
» pour que cette droite soit paralléle & une droite donnée » ?
Si, en effet, on méne les droites Aa, BB, Cy respectivement
paralléles aux diamétres dont il s'agit, et qu’ensuite, par le point

de concours P’ de ces trois droites, on méne la droite &8, pa-

rallele & la droite donnde, les droites oo/, B3/, 777 se couperont au
point cherché D.

o

21.

De ce qui précéde il suit encore, comme cas particulier, que
« Les centres de tous les triangles équilatéraux circonscrits 4 une
» méme parabole sont situés sur la directrice de cette parabole » , et

« Les directrices de toutes les paraboles inscrites & un méme
» triangle équilatéral donné passent toutes par le centre de ce
» triangle ».

De 13 on conclura ( 5 et 11 ), parla projection paralléle, que

« Un triangle quelconque ABC étant circonscrit & une parabole
» donnée, et Q étant le point de concours-des droites qui joignent
» ses sommels aux points de contact des cotés respectivement op-
» posés; si l'on imagine tous les triangles pour lesquels ce point
» Q est le méme, les centres de gravité de tous ces triangles ap—
» partiendront & une méwe droite, polaire da point Q ; les plus
» petites ellipses circonscrites & ces mémes triangles seront sembla-
» bles et semblablement situées, et se couperont toutes en ce méme

» point Q »,
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Et réciproqnement,
« A chaque parabole inscrite & un méme triangle donné ARG
» correspond un point Q de concours des droites menées des som~
» mets aux points de coalact des cOlés opposés; et les polaires
» de tous les points Q, relalives anx paraboles correspondantes

» se coupent toutes en un méme point G, centre de gravité de
» ce triangle ».

22 -

Si, par les points A, B/, C//, milieux respectifs des droites
P, PB, Pry ( fig. 7 ), on meéne des droites respectivement pa-
rallcles & Do, BB, Dy, elles passeront par les milieux respectifs
des droites P'a’, P, P/, et concourront en un méme point D/
situé sur la conique qui passerait par les six points A’, B', ¢/, A",
B”, C” (6); de sorte que les trois points D, D/, P’ scront en ligne
droite. De 1a résulte ce théoréme di & M. Lamé.

« Quatre points A, B, C, P’ donnés sur un méme plan dé-
» terminent trois systémes de denx droitess AP/ et BP', BD/ et
» AC, CP/ et AB, qui se coupent respectivement en A/, B”,

C”. Silon coupe ces systémes par une droite quelconque o/ff’y/P/,

conduite par P’, et st, par les points A/, B/, G/, et par les mi-
» lieux des segmens de cctte droite, on méne des droites A1)/,
» B/, C”D/, ces droites concourront en un méme point D/, et
» le lien de ce point sera uue conique passant par les points A”,

B/, G, et par les milieux des droites BC, CA, AB, AP/, BP/,
» CP/, etc. »,

23.

Revenons de nouveaa au cas ot la conique circonscrite au trian-
gle donné ABC est un cercle. Dans ce cas , le point D est le foyer
et la droite a/f/y’P/ la directrice d’une parabole inscrite au trian-
gle; et conséquemment la polaire du point P/, relative 4 la para-

Tom. XIX. 9



G2 DEVELOPPEMENS
bole , passe par le poiut D, et est perpendiculaire & la droite P'D;

cette polaire enveloppera donc une certaine conique dont P/ sera
le foyer, et dont P'axe principal coincidera (5) avec le diamnétre PP/
du cercle circonscrit au triangle. Donc '

»

»

»

»

»

»

»

»

« Les polaires du point de concours P/, des trois hauteurs d’un
triangle donné ABC, relatives & toutes les paraboles inscrites &
ce triangle , enveloppent une certaine conique dont le point P/
est le foyer, dont l'axe principal passe par le centre du cercle cir-
conscrit au triangle donné, et qui est iuscrite an triangle formé
par les paralleles menées aux cotés du triangle donné par les
sommets de ce triangle ».
Oua plus généralement , par les projections,
« Les i)olaires de Tun qnelconque P’ des points du plan d’un
triangle donné ABC , relatives & toutes les paraboles inscrites &
ce triangle, enveloppent une conique inscrite au triangle formé
par des paralléles aux trois cotés du triangle donné, conduites
par les sommets de ce triangle ».

24.
Il résulte encore de 1a, par la projection centrale (12),
« Les polaires de I'un quelconque des points du plan d’'un qua-
drilatére complet, relatives & toutes les coniques inscrites 4 ce
quadrilatére, enveloppent une nouvelle conique touchant les
trois dinganales du méme quadrilatére ».

25.

Lorsque le point P/ passe i l'infini, ses polaires deviennent des

diamétres dont les conjugués, concourant en ce Point P/, sont

alors paralleles, et , comme les premiers sont tangens & une cer—
taine conique (24), ils seront paralitles deux & deux ; d’ou l'on
conclut que

« Entre les coniques inscrites 4 un méme quadrilatére donné,
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» on n’en saurait trouver trois ayant un systéme de diamétres con-
» juguds paralléles ; mais, si 'on trace arbitrairement, pour l'une
» de ces coniques, un systéme de diamétres conjugués, il existera
» une aulre conique inscrite dont deux diamétres con]uaues seront
» paralléles & ceux-la ». Donc
« Si l'on propose d’inscrire & un quadrilatére une conique dont
» deux diamétres conjugués soient paralléles & deux droites don=
» nées, le probléme n'aura que deux solutions au plus ».

. 26.

On sait que les centres de toutes les coniques C, C’, C”, ... ins-
crites & un méme quadrilatére complet donné, sont situés sur la
droite D qui joint les milieux de ses trois diagonales. Les conju-
gués A, A/, A", ... de ce diamétre commun D touchent une
certaine conique S (25), dott il suit qu’en général , entre les dia-
métres A, A/, A", ... 1l doit y en avoir deux paralléles & une
droite arbitraire L. Et réciproquement , entre les conjugués des dia-
métres paralléles & une droite donnée L, il s’en trouve générale-
ment deax qui coincident avec la droite D; d'ott I'on conclut que
cette droite ouche la conique S. Donc

« Dans les coniques inscrites & un méme quadrilatére donné, les
» conjugués des diamétres paralleles & une méme droite envelop-
» pent une méme conique , et ‘toutes les conigues enveloppées qui
» résulient des diverses directions de cette droite , sont inscrites au
» quadrilatére complet formé par le lieu des cenires des coniques de
» la premiére série et par les irois diagonales du quadrilatére com-
» plet donné ».

27.

Les diamctres paralléles se coupent en un méme point & l'in-
fini, et lorsqu’on varie leur direction commune, tous les points
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de concours appartienncnt & une méme droite également & Vin-
fini. Les poles de cette droite, par rapport aux mémes coniques ,
en sont les centres situés sur la droite qui joint les milienx des
trois diagonales da quadrilatere complet donné. De 13, par les pro-
jections centrales, on conclura les théorémes snivans :

« 1.° Les poles d’ane droite quelconque , relatifs a toutes les
» coniques inscrites & un mdéwme quadrilatére. complet donné , sont
» situés sur une méme droite ; 2.° les polaires de l'un quelcon-
» que des points de cette droite enveloppent une certaine conique,
» et toutes les conigues enveloppées qu'on obtient, en variant la
» situalion de ce point sur cette droite , sont inscrites au qua-
» drilatére dont les cétés seront cette méme droite et les trois dia~
» gonales du quadrilatére complet donné ; 3.° si la polaire tourne
» sur I'un des points de sa direction , la droite des poles enve-
» loppera une nouvelle conique, etc. »

28,

Ces divers théorémes ont teurs polaires réciprogues ; tel est, par
exemple , le suivant :

« 1.° Les polaires d’un point quelconque, relatives & toutes les
» coniques circonscrites & un méme quadrilatére donné, concourent
» toutes en un méme point; 2.° les péles d’'une droite quelcon-
» que passant par ce point sont situés sur une certaine conique,
» et toutes les coniques de cette sorte que l'on obtient, en variant
» la direction de la droite conduite par ce point , sont circonscrites
» au quadrilatére dont les sommets sont ce méme point, et les trois
» polats o concourent les systémes de droites qui joignent deuz
» & deux les quatre sommets du quadrilatére donné; 3.° si le pole
» décrit une droite, le point de concours des polaires décrira une
» nouvelle conique, etc. »



Tom XIX, plan.Lpag.37-G4.
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GEOMETRIE DE SITUATION.

Démonsiration de quelques proprictés du trian-
gle , de Pangle triédre et du tétraédre , con-
sidérés par rapport aux lignes et surfaces
~du second ordre;

Par M. CrasLEs, ancien éléve de I'Ecole polytechnigue.

MAMATVLVVWVI VR VWA

DES théorémes sur les hexagones inscrit et circonscrit aux lignes
du second ordre , on déduit immédiatement comme corollaires les
deux propositions suivantes :

1. Deux triangles étant Inscrits el circonscrits @ une lzgne du
second ordre , de telle sorte que les sommets de [l'inscrit soicnt
les points de contact des cités du circonscrit

Les points de concours des di- Les droites qui joignent les
rections des cOtés respectivement  sommets respectivement opposés
opposés des deux triangles ap~ des devx Iriangles concourent
partiennent tousirois @ une méme  toules irois en un méme point.
droite.

Cette droite et ce point sont polaire et péle, l'un de lautre,
par rapport & la courbe dont il s'agit.

De cette double proposition résulte immédiatement la suivante:

2. Deux angles triédres de méme sommet étant inscrits et cir—
conscrits & une surface conigue du sccond ordre , de telle sorte

Tom, XIX , no III, 1. septembre 1828, 10
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que les arétes de linscrit soient les lignes de contact des faces
du circonscrit ,

Les intersections des plans des Les plans déterminés par les
Jaces respectivement opposées des  arétes respectivement opposées des
deux tétraddres sont situées tou- deux tétraédres se coupent lous
tes trois dans un méme plan. trois suivant une méme droite.

Ce plan et cetie droité sont polaire et pdle , 'un de l'autre , par
rapport & la surface conique dont il sagit.

Soit inscrite & la surface conique une autre surface quelconque
du second ordre, cette nouvelle surface se trouvera aussi inscrite
4 Pangle triédre circonscrit & la premicre, et ses points de con-
tact avec les faces de cet angle tri¢dre se trouveront sur les arétes
de l'inscrit. De 14 résulte cet autre théoréme :

3. Un triangle et un angle triédre étant inscrils et circonscrits
a une méme surface quelconque du second ordre, de telle sorte
que les sommets du triangle soient les points de contact des fa-
ces du tétraedre , ~ ) A

Les points ou les directions Les plans déterminés par les
des cdtés du triangle sont cou~ sommels du triangle et par les
ptes par les plans des jfaces res— aréles respectivement opposées de
pectivement opposées de langle [langle triédre se coupent tous
triedre appartiennent tous trois {irois suivant une méme droite.
& une méme droite.

Ces deux droites sont polaires conjuguées l'une de l'autre , par
rapport & la surface du second ordre dont il s'agit.

Il est clair que, réciproquement, quand trois points seront pris
respectivement sur les faces d’un angle tri¢dre , de telle sorte que 'une
des 4deux parties du théoréme ait lieu, l'autre aura lieu également,
‘et alors une infinité de surfaces du second ordre pourront toucher
les faces de l'angle triedre en ces trois points; toutes ces surfa-
ces se couperont suivant une méme ligne du second ordre , circons—
crite an triangle qui a ses sommets en ces trois points, et inscrite
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A celui suivant lequel Pangle triedre est coupé par le plan de ce-

lui-la.

4. THEOREME. Deux tétraddres étant Pun inscrit et lautre
circonscrit @ une méme surface quelconque du second ordre , de
telle sorte que les sommets de linscrit sorent les points de eon—

tact du circonscrit,

Les droites qui joignent les
sommets respectivement opposés
dans les deux tétraédres sont qua-
tre génératrices d’'un méme mode
de génération d'une méme sur-
Jace du second ordre,

Et les quatre droites, suivant
lesquelles se coupent trois ¢ trois
les douze plans conduits par les
aréies du circonscrit et par les
sommets de linscrit non situés
dans les faces du circonscrit qui
déterminent ces arétes , sont qua-
tregénératrices du deuxrémemode
de génération de cette méme sur-
Jace du second ordre (*).

Les droites suivant lesquelles
se coupent les plans des faces
respectivement opposées dans les
deux télraédres somt qualre gé-
nératrices d'un méme mode de
génération d'une méme surface
du second ordre.

E¢ les quatre droites que dé-
terminent trois & trots les douze
points suivant lesquels les arétes
de linserit sont coupées par les
plans des jfaces du circonserit
qui ne conliennent pas les extré—
mités de ces arétes, sont qualre
génératrices du deuxiéme mode
de génération de cette méme sur-
Jace du second ordre (*).

(® Voi'a Ie complément que nous aviens désiré & la pag. 35 du présent
volume pour cet élégant théoréme. Ce complément peut aussi se déduire

assez simplement de l'analyse de M.

Bobillier.

On a vu, en effet, & la page 328 du précédent volume , que les faces d’un
tétraédre étant données par les équations linéairesen x,y , z, A=o0, B==o,

C=0, D=0, une surface quelconque da second ordre, circonserite i ce té-

traédre , était donnée par I’équation

6BC+5CA~+-cAB44AD+4-2BD4+CD==0 ,.
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Et, non seulement ces deux surfaces sont polaires réciprogues
l'une de l'autre, par rapport a la surface du second ordre dont
1l s'agit, matis leurs huit génératrices sont , chacune & chacune,
polaires conjuguées ou réciprogues , par rapport d celle méme sur-

Sace.

et qu’alors les équations des faces du tétraédre circonscrit dont les points
de contact étaient les sommets de linscrit étaient '

C+cB~i—xD=o s
cA-4aC4-gD=o0 ,
¢B-4-bA49D=0 ,

«A4-8B4+4C=o0 ,
On a vu , de plus, que les plans des faces respectivement opposées des

deux tétraédres se coupaient suivant quatre droites appartenant & une méme
surface du second ordre donnée par I’équation

eByDrtu(gbtyc)A | D4 (2A4-Bo4-2C)(bcA4caB4abC)=o ,
+p(re+=a)B
+y(aa+//a’b)C

et que les droites joignant les sommets respectivement opposés apparlenaient
foutes quatre & une autre surface dusecond ordre ayant pour équation

(Bb—yc)(pb+4yc—na)(aBC2AD) ?
+(ve—aa)(yct2a—pb)(6CA4LBD) { —¢o .

?

- (sa=p5)(2a-Bb=—yc)(cAB4CD)

or, la premiére de ces deux équations est également satisfaite par chacun
des quatre systemes d'équations
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Démonstration. Chacune des deux parties du théorime est facile

A démontrer directement ; mais, attendu qu’'elles se déduisent 'une
de l'autre par la théorie des polaires réciproques; nous nous bor-
nerous & donner la démonstration de la premiére ; démonstration
susceptible d’ailleurs d’une traduction pareille & celle de '"énoncé.

A B C
—+5+_-=0, D=o,
B C D
st ot =0, A=o,
C., A D

’_+_"|""=0 ’ CZO’

€quations que on reconnaitra facilement pour étre celles des quatre gé-
nératrices du deuxieme mode de génération de la seconde partie du théoréme.

On s’assurera de méme que l'autre équation du second degré est satisfaite
par chacun des quatre. systémes d'équations

" (8b=y)A+a(BB—yC)=0 » (yc—aa)B+4b(yC—al)=o , (aa—Fb)C-c(xA—pgB)=o0,
(yc—wa)A+4-£(yD=aB)=0 , (2a—fb)B+5(«D—bC)==0, (fb=—yc)C}a(2D=—cA)=o0 ,
(wa==Pb)A+y(aCampD)==0 , (Bb=—yc)B+a(bA—3D)=0 , (yc=—aa)CB(cB—aD)=o0,
(Bbw=rc)D4-a(6C—cB) ,
{(ye=aa)D4-b(cA=—aC)., )
i
(za==Lb)D~4-c(aB—>bA) ;

lesquelles sont celles des douze plans qui se coupent trois & trois suivant
les quatre géuératrices du deusieme mode de génération de la premiére partie

du théoréme.
J. D, G.
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Les droites qut vont de trois sommets du tétraédfe ecirconscrit
A leurs opposés respectifs dans linscrit sont dans trois plans qui
se coupent-(3)-suivant une méme droite, passant par le quatri¢me
sommet; la droite qui va de ce sommet & son oppesé dans l'ins-
crit rencontre aussi cette droite; donc les quatre droites qui joignent
les sommets respectivement opposés dans les deux tétraédres s’ap-
puyent sur quatre autres droites partant de ces mémes sommels ;

70

ce qui prouve qu’elles appartiennent & une surface du second or-
dre , donc ces quatre autres droites sont des génératrices du deuxi¢me
mode de génération.

Les quatre droites qui joignent
les sommets respectivement oppo-
sés , danslesdeux tétraédres, étant
des génératrices d’'un méme mode
de génération d’une surface du
second ordre, on en peut dé-
duire les conséquences suivantes :

5. 8¢ deux de ces quatre drot-
tes concourent en un méme point ,
les deux autres devront concou-
riren un autre point ; et, St Irois
d’entre clles concourent enun méme
point , la qualriéme deyra aussi
passer par ce pornt.

Les quatre droites suivant les-
quelles se eoupent les plans des fa-
ces opposées , dans les deux tétraé-’
dres, étant des ge’néralricés d’'un
méme mode de génération d’une
surface du second ordre, on en
peut déduire les conséquences sui-
vantes:

5. 8¢ deux de ces guatre droi-
les sont situées dans un méme
plan, les deux autres devront aussé
étre situées dans un eutre plan ;
et , si trois d'entre elles sont dans
un méme plan, la quatriéme de-
vra aussi étre dans ce plan.

Ces dispositions sont en effet les seules qui puissent permettre

alors de mener, par chacun des points de 'une quelconque des qua~
tre droites, une droite qui s'appuye i la fois sur les trois autres.
Dans ces circonstances particuliéres , la surface du second ordre,
lieu de ces quatre droites, se trouve remplacée par deux plans ou
par un plan unique. On doit aussi remarquer que, quand les qua-~
tre derniéres droites sont dans un méme plan, les quatre premi¢-
res concourent en un méme point, pole de ce plan..
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Les théorémes ci-dessus (4) ont leurs réciproques qui peuvent

&re énoncés comme il suit :

6. 8¢, par les sommets d'un té-
iraédre , on méne quatre droites
qui soient des génératrices d'un
méme mode de génération d'une
surface du second ordre , ces droi-
ics perceront les plans des jfaces
respectivernent opposées en qua-
tre points par lesquels on pourra
Jaire passer une surface du se-
cond ordre inscrite au iétraédre
dont il s'agit.

6. 87, dans les plans des faces
d'un tétraédre , on trace quaire
droites qui soient des génératri-
ces d'un méme mode de généra-
tion d'une surjace du second or-
dre , ces droitess. avec les som-
mets respectivement opposés ., dé-
termineront quatre plans que
pourra toucher une surface du
second ordre circonscrite au té-

tratdre dont il sagit.

Ces deux théorémes pouvant étre déduits I'un de l'antre parla
théorie des polaires réciproques, il nous suffira de démontrer le
premier.

Soient A, B, C, D les quatre sommets du téiraédre ; puisque les
droites menées par les trois premiers A, B, C, appartiennent 3 une
surface du second ordre dont une génératrice du méme mode de
génération passe par le quatriéme sommet D, on pourra, par ce
dernier sommet , mener une génératrice du deuxiéme mode de gé-
nération , laquelle s’appuyera sur les trois droites conduites par leg
sommets A, B, C; donc, par les points ou ces trois droites per-
ceront les plans des faces opposées, on pourra (3) faire passer une
infinité de surfaces du second ordre touchant ces plans en ces trois
points; 1'une de ces surfaces pourra donc étre choisie de maniére
4 toucher aussi la quatriéme face du tétraddre ; et la droite qui
joindra le point de contact au sommet D, qui lui est opposé, ap-
partiendra (4) 4 la surface du second ordre déterminde par les trois
premieres droites; ce sera donc précisément la quatriéme droite ;
le théoreme est donc démontré,

Les propriétés des angles tricdres et des tétraidres inscrits et
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circonscrits anx surfaces du second ordre, (que nous venons,, comme
on le voit, de déduire d’une maniére fort simple des propriétés
analogues et bien connues des triangles inscrits et circonscrits aux
coniques , ne sont que des cas trés particuliers de théorémes géué-
raux, relatifs & Pangle tricdre et an-tétraddre, placés d’'une manicre
quelconque , par rapport & une surface du second ordre.

7. THEOREME. S/, par rapport & une méme surface fixe
quelconque du second ordre , on prend

Les péles des trois faces d'un Les polaires des irois aréles
angle tri¢dre, les plans conduits d'un angle triédre , les polaires
par ses aréles et par les pdles relatives & chacune des aréics
des faces respectivernent opposées  perceront les plans des faces res-
se couperont tous trois suivant une pectivernent opposées en  Irois
méme droite. points qui appartiendront & une

méme droite.

Les deux droites seront polaires lune de l'autre, par rapport
& la surface du second ordre dont il s'agit.

Démonstration. Chacune des deux parties de ce théoréme résul-

tant de l’autre, par la théorie des polaires réciprogues, il nous
suffira de démontrer la premiére.

Pour y parvenir, prenons les trois arétes de l'angle triédre dont
il sagit pour ies axes des coordonnées, et supposons qu ‘alors 1é-
quation de la surface du second ordre soit

Az*+By*t Cz’+-2Dyzs+-2Eza4-2Fry 4 2Gr4-2Hy+ 2Kz L=

les plans conduits par les arétes et par les poles des faces respecti~
vement opposées auront respectivement pour éguations

{ EH:—=(DG 4 FK)H4-BK G4 L(FD~BE) }y={ FK?em(EH+DG)K+CGH+I(DE—CF, }z=o0 ,
{FK:—~(EH+DG)K+CCH 4 I(DE~CF)) 2 | DG* —(FK +EH) G4 AHK 4 L(EF~AD) ) x=0)

{DG2 = (FK+EH)G+AHK4L{EF-AD) }x—{ E H*—(DG4FK)H+BKG+L(FD—BE) }y =0}
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or, il est manifeste que chacune de ces trois équations est comportée
par les deux autres; donc les plans qu’elles expriment se coupent
tous trois suivant une méme droite dont la double équation est

{DG—(E:14+FK)GA+AHK4L(EF—AD)}x

—({EH*—FK+DG)H4-BKG+L(FD—BE)}y

—{FK*—()G4EH)K+4CGHAL(DE—CF)}z;

ce qui démontre le théoréme.

Si le sommet de langle triédre est au centre de la surface di-
rectrice , le thforéme devient celui-ci:
8. 87/ un angle triddre a son sommet au centre d'une surface

du sccond ordre,

Les plans conduits par ses aré-
ies et par [ s diamétres conjugués
aux plans des faces respective-
ment op,;0sées se coupent (ous
trois szivant une méme droite.

Les plans diamétrauz conju-
gués auzx trois arétes coupent les
plans des faces respectivement op-
posées suivant trois droites qui
sont situées dans un méme plan.

Ce plan est le diaméiral conjugué de la droite dont il s agit.

Si la surface du second ordre est une sphére, on a alors ce

théoréme :

Les plans conduits par les aré-
tes d'un angle iriédre , perpen-
diculairement & ceux des faces
respectivement opposées , se cou-
pent lous lrois suivant une méme
droite.

Les plans condutts par le som-
met d'un angle triédre , perpen~
diculairement & ses arétes , cou-
pent les plans des faces respec-
tivement opposées suivant trois
droites situces dans un méme
plan.

Le plan et la droite dont il s’agit sont perpendiculaires l'un &

Lautre.
En d’autres termes :
Tom. XIX

11
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"Deux angles triddres SUPPLEMENTAIRES l'un de l'autre ayant
méme sommet ,

Les plans qui contiennent leurs
arétes correspondantes se cou-
pent tous lrois suivant une méme
droite.

Les drottes suivant lesquelles
se coupent les plans des faces cor—
respondantes sont toutes irois
dans un méme plan.

Et ce plan et cette droite sont perpendiculaires I'un & lautre.

Supposons que , dans le théoréme (7), la surface du second or-
dre soit une surface conique , de méme sommet que l'angle trie-
dre, et soit mené un plan transversal quelconque ; ce plan coupera
la surface conique suivant une ligne du second ordre et langle
tri¢dre suivant un triangle ; il coupera en outre les droites conju-
gudes aux trois faces de l'angle triédre en trois points qui seront,
par rapport & la courbe , les poles des trois cotés du triangle ; il cou~
pera enfin les plans conjugués aux arétes suivant trois droites qui
seront, par rapport ala méme courbe , les polaires des sommets
du triangle ; on aura donc ce théoréme de géométrie plane:

9. Un triangle et une ligne du second ordre étant situés dansi.
un méme plan,

Les droites qui joignent les
sommels du triangle aux pobles
des cOtés respectivement opposés
se coupent toutes trois au méme
point.

Les points de concours des di-
rections des cotés du triangle ct
des polaires des sommets respec-
livement opposés appartiennent
tous trois @ une méme droite,

Et cette droite et ce point sont polaires lun de lauire.

Ce théoréme donne naissance & plusieurs autres.

Si, par exemple, le triangle est inscrit ou circonscrit & la courbe,
on retombe sur le théoréme (1) qui n'est ainsi qu’un cas par-

ticulier de celui-ci.

Si I'an des sommets du triangle est au centre de la courbe , on

obtient ce théoréme :

10. Les droites menées par les sommets d'un triangle , paral-
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Vlement aux conjugués des diaméires dune conique parallles &
ses cotés , concourent toutes trois en un méme point.
Et, si cette conique est remplacée par deux droites perpendicu-
laires 'une & lautre , le théoréme se changera en celui-ci:

11. 87, par les sommets d'un triangle , on méne des droites fai-
sant, avec une droite quelconque , des angles supplémentaires res-—
pectifs de ceux que font les cités opposés avec cetie méme droite
ces trois droites concourront en un méme point.
~ Si dans le théoréwme 19 la conique devient infiniment petite,
en restant homothétique avec une autre conique donnée, on aura
ce théoréme :

12. 87, par les sommets d'un triangle on méne des diaméires
2 une conique tracée sur son plan , les conjugués de ces diameé-
ires couperont les directions des cdtés respectivement opposés en
irois points qui appartiendront & une méme droite.

Si Pon remplace la conigae par deux droites perpendiculaires -
I'une & Pautre, le théoréme se changera en celui-ci:

v3. 87 l'on méne des drottes aux trois sommets d'un triengle , de
lun quelcongue des points de son plan , les perpendiculaires menées
a ces drottes , par ce méme point , rencontreront les directions des
cotés respectivement opposcs en irols poinits qui appartiendront &
une méme drotte.

Considirons une conique tracée sur une surface du second or-
dre et un triangle dans son plan; les plans polaires des sommets

u trianele , pris par rapport a la surface courbe, passeront par
du triangle, ar rapport
les polaires de ces mémes sommets rises dans la conique; et

Y » jue ;

les polaires des c6tés du triangle, prises par rapport & la surface
courbe , passeront par les poles de ces mémes cd1és , pris dans la
conique ; or, ces trois polaires doivent concourir en un méme
point, pdle du plan du triangle, par rapport & la surface courbe;

d'ot il suit que le théoréme (9) peut prendre cet énoncé plus
général :
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14. Un triangle et une surface quelconque du second ordre exis-

tant ensemble dans lespace

Les plans déterminés par les
sommets -du iriangle et par les
polaires des cdtés respectivement
opposés se coupent tous Irols sui-
vant une méme droite.

Les points ou les plans polai-
res des sommets du triangle cou~
pent les directions des cotés res-
péctz'vemerzt opposés appartiennent
tous trois & une méme droite.

E¢ ces deux droites sont polaires réciproques par rapport é la
surface du second ordre dont il sagit.
Nous pourrions démontrer ce théoréme d’une autre manidre qui

.\

consisterait a

le déduire, par une transformation polaire , du théo-

réme (7); nous en conclurions alors le théoréeme (9) de géométrie

plane.

En supposant que la surface du second ordre devient infiniment

petite , en restant homothétique avec une surface donnée , on obtient
une nouvelle démonstration du théoréme (8); et, en supposant que
le plan de la conique soit tangent & la surface du second ordre,
on- obtient une nouvelle démonstration du théoréme (12).

On pourrait ajouter & ce qui précede plusieurs autres théorémes
relatifs au systéme d’une conique et d’un triangle tracés dans son
plan ; mais nous préférons passer de suite & une proposition plus
importante.

15. THEOREME. Une surface quelconque du second orcre et
un tétraédre quelconque étant situés d'une maniére quelconque dans
Lespace,

Les droites qui joignent les som-
mets du téiraédre aux pdles des
Sacesrespectivement opposées sont
quatre génératrices d'un méme
mode de génération d'une auire
surface du second ordre.

Les drottes y suivant lesquelles
les plans des faces du tétraédre
sont coupés par les plans polai-
res des sommels respeclivement
opposés, sont quatre génératrices
d'un méme mode de génération

d'une autre surface du second
ordre,
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Et, non seulement , ces deux nouvelles surfaces du second or-
dre sont polaires réciproques lune de lautre, par rapport & la
surface du second ordre proposée , mais en outre les quatre gé-
nératrices de l'une sont polaires réciproques des qualre générairi-
ces de lautre, chacune a chacune.

Démonstration, Les deux parties de ce théoréme résultant I'une
de lautre , par 'la théorie des polaires réciproques, il doit nous
suffire de démontrer la premiére.

Par la premiére partie du théoréme (7), les droites qui joignent
trois sommets du tétraédre aux poles des faces respectivement op—
posées sont comprises dans trois plans se coupant suivant une méme
droite qui passe par le quatriéme sommet; d’ot il suit que cette
derniére s'appoye a la fois sur les trois autres. Or, la droite qui
joint le quatriéme sommel au pdle de la face opposée a aussi ce
sommet pour point commun avee cette quatriéme droite; d’ou il
suit que celle-ci s'appuye & la fois sur les droites qui joignent les
quatre sommets aux poles des faces respectivement opposées. On
peut donc mener, par chaque sommet du tétraédre, une droite
qui sappuye A la fois sur les quatre droites dont il s’agit; ces
quatre droites sont donc , en effet, quatre génératrices d’un méme
mode de génération d’une méme surface du second ordre.

Les quatre droites qui, menées par les sommets du tétraédre,
s’appuyent ainsi, & la fois, sur les quatre autres, sont, comme nous
en avons déja fait la remarque (4) , quatre génératrices du deuxi¢me
mode de génération de la surface dn second ordre déterminée par
les quatre premieres,

Ce théoréme est d’une grande généralité, et conduit 3 une mul-
titude de propriétés nouvelles du tétraédre.

Et, d’abord , si une ou plusieurs faces du tétraédre dont il s’agit,
sont tangentes & la surface du second ordre, ces faces auront pour
péles leurs points de contact avec elles ; comme & linverse , si un
ou plusieurs de ses sommets sont sur cette surface, leurs plans po-
laires seront les plans tangens 4 ces sommets, d’olt I'on voit déja



»8 THEOREMES
que ce théoréme comprend , comme cas particulier , celui que nous
avons démontré directement ci-dessus (4).

Si l'on suppose un des sommets placé au centre de la surface,
la premiére partie de ce théoréme (15) donne celui-ci:

16, Les paralléles menées, par les sommets d'un tétraddre , aux
conjugués des plans diamétraux d'une surface quelconque du se-
cond ordre , respectivement paralléles a ses faces, sont quatre gé-
nératrices d'un méme mode de génération d'une autre surface du
second ordre.

Nous pouvons donc ajouter , d’aprés le théoréme (6) que,

~ Par les points on ces quaire droites sont respectivement cou-
ples par les plans des faces opposées , on peut faire passer une
surface du second ordre tangente & ces quatre faces.

Si la surface du second ordre est supposée sphéiique, on aura
ce théoréme : A

Les perpendiculaires abaissées des sommets d'un tétraddre sur
les plans des faces respectivement opposées , sont quaire généra-
trices d'un méme mode de génération d'une méme surface du se-
cond ordre.

Si, dans le théoréme (15), la surface du second ordre devient
infiniment petite, en restant homothétique avec une surface donndée
du méme ordre, on en conclura celui-ci:

17. Les plans diamétraux d'une surface du second ordre , con-
jugués aux diamétres de celte surface dont les directions passent
par les sommets d'un tez‘raedre, coupent les plans des faces res-
pectivement opposées de ce téiraédre suivant quatre génératrices
d'un méme mode de génération d'une autre surface du second ordre.

Si la surface du second ordre est sphérique , ce théoréme se mo-
difiera comme il suit :

Les plans conduits par un méme point quelconque de l'espace
perpendiculairement aux droites menées de ce point aux sommets

d'un téiraédre , coupent les plans des faces respectivement oppo-
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sbes de ce téiraddre suivant quatre génératrices d'un méme mode
de génération d'une surface du second ordre.

Si les six arétes du tétraédre sont tangentes A la surface du se-
cond ordre, le thdoréme (15) devient celui-ci:

18. Une surface du second ordre touchant a la fo's les six aré-

tes d'un tétraédre,

Dans l'hexaédre octogone cir-
eonscrit , dont les faces seront les
plans tangens aux six points de
contact , les diagonales joignant
les somimets respectivement oppo-
sés seront quaire génératrices
d'un méme mode de génération
d'une autre surface du sccond
ordre.

Dans l'octaldre hexagone ins-
crit , qui aura ses sommels aux
six points de contact, les dror-
tes suivant lesquelles se couperont
les plans des faces respectivement
opposés seront quatre génératri-
ces d'un méme mode de généra—
tion d’une aulre surface du se-
cond ordre.

Et ces deux surfaces seront polaires réciprogques l'une de I'au-

tre , relutivement @& la surface proposée.

Les poles des faces d’un tétraédre sont les sommets d’un deuxi¢me

tétracdre dont les faces ont respectivement pour poles les sommets
du premier. Si les arétes de celui-ci sont tangentes & la surface
directrice du second ordre, les arétes correspondantes de l'autre
en serout les tangentes conjuguées, et le précédent théoréme pourra
s’énoncer ainsi :

19. 8¢ les six aréles dun tétraédre sont ioutes tangentesd une
méme surface du second ordre, les conjuguées de ces tangentes
sont les siz arétes dun nouveau télracdre qui pourra éire dit
conjugué auw premier,

Les droites qui joindront les Les intersections des plans des

sommels respectt’vement opposés ’ faces re.fpertz'vement oppo.se’e.v ’

dans les deux tétraédres, seront
quatre géncrairices d'un méme
mode de génération d'une autre
surface du second ordre.

dans les deux tétraédres , seront
quatre générairices d'un méme
mode de génération d'une auire
surface du second ordre,
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Et ces deux surfaces seront polaires réciproques Pune de Pau-
tre , relativement a celle que touchent les douze arétes des feux
tétraédres.

Si l'on suppose , dans le théoréme (15), que la surface Gicesteicee
se rédoit & une conique, on en conclura celui-ci :

-20. Une conique et un tétraddre existant ensemble dans I'es-
_pace , les droites qui joignent les sommets du tétraédre avec les
poles des droites suivant lesquelles le plan de cette conique coupe
les plans des faces respectivement opposées, sont quatre généra-
trices d'un méme mode de génératioi: d'une méme surface du se=
cond ordre.

Si l'un des axes de la conique devient nul, elle se réduit &
une ‘droite d’une longueur limitée , et le théoréme se change dans
celui qui suit: ; ,

21. Une transversale pergant les plans des quatre faces d’un té-
iraddre, et deux points fixes étant pris arbifrairement sur cette
transversale ; si lon joint par une droite chaque sommet du tétraé-
dre avec le point de cette transversale , quatriéme harmonigue , aux
deux points fixes et & celui on elle perce le plan de la face op-
posée , on obtiendra ainsi quatre génératrices d'un méme mode de
génération d'une surface du second ordre.

Si I'un des points fixes était & l'infini, on avrait une autre pro=
position que nous nous dispenserons d’énoncer.

Si la surface directrice du théoréme (15) est une surface coni-
que , on obtiendra le théoréme suivant :

22. Les plans diamétraux d'une surface conique du second or-
dre, conjugués aux droites qui joignent son sommet aux quatre
sommets dun tétraddre, coupent les plans des faces respective-
ment opposées suivant quaire génératrices d'un méme mode de gé--
nération d'une surface du second ordre, _

Ce théoréme aurait pu étre déduit de celui quile précéde (20),
au moyen d'une transformation polaire. 1l n’est, au surplus, qu'un
cas particulier du théoréme (17).
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On peut supposer que la surface conique devient le systéme de
deux plans, que ces plans se coupent & angles droits, qu'’ils sont
paralléles, que T'un d’eux passe a linfini; ce qui offrira tout au.

de théor¢mes différens.

Les théorémes (20) et (22) donnent lieu a deux autres théo-
rémes plus généraux , susceptibles de diverses conséquences.

Si, en effet, par la conique, on congoit une surface quelcon-
que du second ordre, la polaire, par rapport & cette surface du
second ordre, d’une droite située dans le plan de la conique, per-
cera ce plan en un point qui sera précisément le pole de cette
droite , par rapport & cette méme conique; et si, dans la surface
conique , on inscrit une surface quelconque du second ordre, la
polaire, par rapport & cette derniére surface, d’une droite menée
par le sommet du céne, sera comprise dans le plan diametral de
ce méme coéne conjugué a la droite dont il s’agit; nos deux théo-
rémes prendront donc la forme suivante :

23. Une surface du second ordre et un itéiraédre existant en=
semble dans lespace ,

Les droites menées des som— Les drottes suivant lesquelles
mets du téiraédre aux points o les plans des jfaces du téiraédre
un plan ﬁxequelconque est percé sont coupés par les plans con-
par les polaires de ses intersec- duits par un point fixe quelcon~
tions , avec les plans des faces que, et par les polaires des droi-
respectivement opposées , sont qua-  tes qui joignent ce point fixe aux
tre génératrices d'un méme mode sommets respectivement opposés ,
de génération d'une autre sur— sont gquatre génératrices d'un
Jace du second ordre. méme mode de génération d'une

autre surface du second ordre.

Sz le plan et le point fize sont polaires réciproques l'un de lau-
tre, il en sera de méme des deux nouvelles surfaces du second
ordre.

Si, dans la premiére partie du théoréme , le plan transversal

passe 4 linfini, on retombe de nouveau sur le théoréeme (16) ,
Tom. XIX 12
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et si, dans la seconde, on suppose que le point fixe coincide avec
le centre de la surfice , on retrouve le théoréme (17). '

Si, dans ce qui précede, les faces du tétraédre avaient pour
poles , relativement & la surface du second ordre, les sommets
repectivement opposés, ce qui, pour une méme surface fixe du
second ordre , peut avoir lieu dans une infinité de téiraédre ; cha-
que aréte aurait pour polaire laréte opposée, et alors les théore-
mes ci-dessus n’auraient plus d’application. Mais, en considérant
ces tétraddres relativement & uune deuxiéme surface fixe du second
ordre, ils se trouveront jouir de diverses propriétés bien remar—
quables, dont lexamen fera partie d’un autre travail. Nous nous
bornerons , pour le présent, & en extraire, sans les démontrer, les
propositions suivantes :

24. Deux surfaces du second ordre étant données dans lespace ,
si lon congoit un angle iriédre mobile et variable autour de son
sommet! fixe , tel que les polaires de ses arétes, relatives & la
premiére de ces deux surfaces, soient constamment dans les plans
des faces respectivement oppose’e.s_‘; . ‘

1.° Les points o les aréies 1.°
de langle triédre variable per-

Les plans tangens menés
& la deuxiéme surface par les

ceront la deuziéme surface se-

ront les sommets d'un octaédre
kexagone variable, inscrit & celle
deuzxiéme surface , lequel sera
constamment circonscrit & une

troisi¢me surface fize du second
ordre.

B

[+] L Ve . J
2 &S surjaces comques cur-

conscrites @ la deuxiéme surface,

suivant ses inlerseciions avec les
trois faces de l'angle iriédre va-
riable , envelopperont constam-

polaires des arétes de langle trid-
dre variable seront les faces d'un
hexaédre octogone variable , cir—
conscrit acette deuxiéme surface
leguel sera constamment inscrit
& une troisiéme surface fixe du
second ordre. '

2% Les surfaces coniques cir-
conscrites & la deuxiéme surface
dont les sommets seront les po-
les des faces de l'angle tricdre
variable , se coupcront constam-
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ment une quatriéme surfuce fixe ment sur une quatriéme surjace
du second ordre. Sixe du second ordre.

Si le sommet fixe de V'angle triedre variable est le centre méme
de la premiére surface fixe du second ordre, ses arétes seront évi-
demment trois diamétres conjugués de cette surface, et il en ré-

sultera les propositions suivarntes :

1.° 8, par un point fixe, on conduit trois droites mobiles ,
constamment paralléles & itrois diaméires conjugués d'ure sur-
Juace fixe du second ordre, c2s droites perceront une deuxiéme sur-
face fixe du second ordre wuz sommels d'un octabdre kexagone
variable inscrit, lequel sera constamment circonscrit & une Il'qi—-
sitme surface fixe du méme ordre.

2.° 87, par un point fixe, on conduit trors plans moliles , cons-
tamment paralléles a trois plans diamétraux conyngués d'une sur-
face fixe du sccond ordre, lcs surfuces conigues circonscrites &
une deuxiéme surface fixe du second ordre, suivant ses intersec-
tions avec ses plans mobiles, envelopperont constamment une troi-
sidme surface fixe du méme ordre. )

3.2 8¢, six plans mobiles dans Cespace et paralléles deux & deux
sont constamment paralléles a trois plans diamétraux conjuguésd une
premiére surface fixe du second ordre , et tangens @ une deuxiime
surface fixe de cct ordre, ces pla;m Jormeront un parallélipipéde
variable circonscrit , lequel sera constamment inscrit @ une troi-
siéme surjace fize du méme ordre.

4. Le lieu des points de l'espace par lesquels on peut mener
@ une surface fixe du second ordre, trois tangentes respectivement
paralléles & trois diamétres conjugués d'une deuwxiéme surface fizxe
de cet ordre, est une troisiéme surjface fixe du méme ordre.

Ces théorémes sont susceptibles de nombreuses conséquences que
nous nous réservons de développer dans un autre article ot nous
ferons connaitre diverses autres propriétés de langle ditdre , de
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I'angle triédre et du tétraddre , considérés par rapport & une-sur-
face du second ordre (*).

P. S. Nous nous apercevons, en terminant, d’'une inadvertance que nous
devons nous empresser de réparer.

Immédiatement avant le n.° 13, il faut lire ce qui suit :

12 bis. 8/ des rayons incidens , partant des trois sommets d'un
triangle , vont concourir en un méme point dune droite réfléchis-
sante , située d'une maniére quelconque dans son plan, les rayons
‘réfléchis rencontreront les directions des ¢diés respectivement op-
posés en trois points qui appartiendront & une méme droite.

Si I'on remplace la conique par un cercle, on obtiendra cet autre
théoréme, déja énoncé par M. Bobillier (4nnales, tom. X VIII, pag. 185).

13. 87, de l'un quelconque des points du plan d’un triangle , on
méne des droites ¢ ses sommets , elc., etc.

Les théorémes (12 bis) et (13), ont leurs analogues dans l'espace , iIui 2]

(*) M. Chasles désire que, dés aujourd’hui , nous fassions savoir 4 nos lec-
teurs, 1.° qu'il nous a adressé , sous la date du 8 juillet dernier, un mé-
moire sur les projections stéréographiques, dont le contenu renferme quel-
ques propositions déja publiées par M. Bobillier dans la Correspondance de
M. Quetelet ( tom. IV, pag. 153 ) ; 2.° que, par une lettre de Nice, en
date du 15 janvier dermier, il nous avail déja annoncé étre depuis long-~
temps en possession de ces propositions et d’auires analogues. Nous nous
empressons de faire cette déclaration pour conserver les droits de M. Chas-
les, dans le cas ol 'abondanee des matiéres nous contraindrait de différer
la publication de son travail,

M. Chasles désire également qu’on sache qu'il est en état de remplacer par
de la géométrie pure les quelques lignes de calcul que renferme le présent

mémoire., .
’ J. D. G' -
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déduisent du théoréme (22) , comme ceux-la se déduisent du théoréme (i12);
les voici:

Si des plans , conduits par les quatre sommets d'un tétraédre , se
coupent suivant une méme droite tracée dans un plan fize quelconque
les plans conduits par cette droite, de manitre & faire, dans un
vutre sens , les mémes angles avec le plan fizxe , couperont les plans
des faces respectivement opposées du téiraddre , suivant quaire géné-
ratrices d'unméme mode de génération d'une surface du second ordre.

Si, de l'un quelconqgue des points de I'espace , on mene des droites
aux quaire sommets d'un tétraédre , les plans condutls par le méme
point, perpendiculairement & ces droites , couperont les plans des
Jaces respectivement opposées , suivant quaire générairices d'un
méme mode de génération d'une surface du second ordre.

—

GEOMETRIE ELEMENTAIRE,

Recherche des relations entre les rayons des
cercles qui touchent trois droites données sur
un plan et entre les rayons des sphéres qui
touchent quatre plans donnés dans Uespace ;

Par M. J. StrEiNER.

ANVVIVVWIAVIAVVVVRANAN

1. SOIENT a,b,c les trois cHtés d’un triangle ; ces cdtés, eonsi~
sidérés comme des droites indéfinies , divisent le plan du triangle
en sept régions, dont une seule finie qui est le triangle lui-méme,
Trois des six autres sont terminées chacune par un c¢6té du trian-
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gle et les prolongemens des deux autres au-deld des extrémités de
celui la. Quant aux trois derniéres ce sont des angles respective-
ment, opposés & ceux du triangle.

Comme trois conditions sont nécessaires - pour déterminer un cer-
cle, ce n’est que dans les quatre premiéres régions gue l'on peut
se proposer d'inscrire des cercles. L’'un de ces cercles sera intérienr
au triangle ; c’est proprement le cercle Znscrit, dout nous désigne-
rous le rayon par r; les trois autres seront ce que M. Lhuilier a
appelé les cercles ex-inscrits ; nous désignerons respectivement leurs
rayons par «, fB, y, suivant les cdtés du triangle sur lesquels ils
sappuyeront. On démontre aisément que ces quatre cercles sont
touchés 3 la fois par celui que l'on feit passer par les milicux des
cOtés du uiangle,

Soit 7' l'aire du triangle ; en considirent les triangles qui ayant
pour bases les trois cdtés a, &, ¢ du triangle donné et pour som-
mets les centres des quatre cercles, on a

2T=r{a+4b+c) ,
2T=u{l4-c—0) ,
2T=f ct+a—-12) ,

2T =y(a+b—7) .

En prenant la somme des produits respectifs de ces équations pag
—a3y, By, yxr, 4-xBr, il -vient, en divisant 27 ,

By =rBytyxtaf) ,
ou bien

R |~

=t +

N~
.-
P~

N
Ay

) ¢
£



ET TETRAEDRE. 87
Cest-d-dire, Vinverse du rayen du cercle inscrit & un triangle est
égal & la somme des inverses des rayons des trol's cercles ex—ins—
crits au méme iriangle (*).

Ou, en d'autres termes , le parallélipipide rectangle , construit
sur les rayons des trois cercles ex—inscrils , est équivalent & la
somme des trois parallélipipides rectangles construits sur ces mé-
mes rayons pris deux & deux et sur le rayon du cercle inscrit.

Au moyen de la relation (2) le rayon de chacun des quatre cer-
cles se trouve déterminé par les rayons des treis autres.

Si le trniangle est équilatéral, on a

a=B=y=3r=tk,
/% étant la hauteur du triangle.
II. En observant que
16T =(a+b+c)(b4-c—a)(c-}a—b)(a+b—c) 5

le produit des équations (1) donne, en réduisant

TI*=aflyr , 3)
d’olt ‘
T=\/afyr 3

c'est-d-dire , laire d'un iriangle est égal & la racine carrée du
du produit des rayons des quatre cercles qui touchent a la jfois ses
trois cétés. Théoréme publié pour la premiére fois par Mahieu, et

(™ H y a plusieunrs mois que ce théoréme nous a été adressé, avec plu-
sieurs autres, par M. Bobhillier, dans une nole que le défaut d’espace nous a
empéché jusqu’ici de publier, :
J. D. G,
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postérieurement par M. Lhuilier. ( 4nnales, tom. I, pag. 150 ) (*)
Pour le triangle sphérique, on aurait

Sin.t T._... \/Tang aTang.sTang.yTang,r
28in.;e.5in.;54,Sin.;e

Si de leqnatlon (3) on élimine tour A tour les quatre rayons, aw
moyen de la relation (2), on trouvera

Frdratab | Epmr(ftr) 'w—'(w-i-*)—r' ap—r(atp)

T?— w2 By - e (4)

Des équations (1) on tire (3)

=p-n =, ®

- B

d’ott

«=—r Bo=rp y—r

et par suite (3)

(*) Ce théoréme fait aussi partie de la note de M. Bobillier.
J. D. G.
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—_ (amesr) (B=y) (=)
460: e aT . (7)
Soit It le rayon du cercle eirconscrit; on sait que
abe
R— T
done (y)
(a==r)(g=r)(y=r}
= = > )
Er 4i-lnact » de cette valeur, au moyen de la relation (2) , on
trouvera

N N I s
A= e () 9

) Tlarrls les dquatioms (5) on peuat éerire

ci Lien, ea développant et ordonnant,

EP R L AL _')1 (; o\
cies=T l'j \“‘+13+7,7"+ By +.yu+u13

re
r aBy )

s£a moyen de la relation (2), les deux premiers termes de ce développe-
1aeni disparaissent , et on a simplement

Tom, XIX, 13



y TRIANGLE

Si, de la mé&me valeur, on élimine successivement «, 3, ¥, au moyen
de la méme relation, on trouvera

(B=2)(r==r)(B4%) __ (y==r)(a==r)(y+e2)  (a=r)(P=r)(2+48)
R— ‘ — —= .(10)
4(RBy==pre=yr) 4(yo—yr—ar) 4 (aB—ar——gr)

IIL Si le triangle est supposé rectangle, en désignant par ¢ I'hy-

pothénuse, on aura 2T'=ab, au moyen de quoi les équations (1)
deviendront ‘

ab
= bpcama
ab
6“— c4-a—b ’
(11)
— ab ~
v_— a+b—c ’ e
. ab
T adbec
Ta Ta T T
dbC——T(E ;:r——}- ;;;—.:‘E; 3
ou bien (3)
ebe=T(a-p4-y==r) ;
d’olt enfin

R= T(at-bt—7) 5

c'est-a-dire , le rayon du cercle circonscrit & un triangle est le quart de lexcés
de la somme des rayons des trois cercles ex-inscrits & ce triangle sur le rayon
du cercle inscrit, Cet élégant théoreme appartient a M. Bobilier.

J' D‘ G'



ET TETRAEDRE. 91
En divisant chacune des trois premiéres par la derniére, il vien-
dra, en chassant les dénominateurs ,

re-tb4-cy=a(b+c—a)=plcta—b)=y(a-};-b=sc) ,
d’oli on tirera aisément

pla=r)  alf=r) _ rlatp) (12)
a - b - c ’ B

Ainsi (11), siles trois c6tés du triangle rectangle sont commen-
surables, les rayons des quatre cercles le seront aussi, et récipro-
quement (12).

Si, par exemple, il s’agit da triangle de Pythagore, pour le-
quel on a a=3, b=4, ¢=5, on aura

I
©
fo ¥

onne 245=(a-{-)-=c* oun bien
20b=(adb-4tc)(a+l -¢) ;
wais les denx dernidres équations (r1) dounent

abh2
R

T kbt atb—e;

doze
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ab
ywr=—=T;
2

équation qui, comparée & I'équation (3), donne
f=yr=T ; (13)

c'est-d-dire , dans tout triangle rectangle, le rectangle des rayons
des cercles ex-inscrits , qui répondent aux deux cdiés de langle
droit , est équivalent au rectangle des rayons du cercle inscrit et
du cercle ex-inserit qui répond a lhypothénuse, et 'un et autre
sont équivalens & l'aire du triangle.

1V. Soient @, 4, ¢, d les quatre faces d’un tétraédre dans leur
ordre de grandeur, de la plus grande & la plus petite ; ces faces,
considérdes comme des plans indéfinis , diviseront I'espace en guinze
régions , dont une seule finie qui sera le tétra¢dre lui-méme. Qua-
tre des quatorze restantes seront terminédes chacune par une des
faces du tétraédre et par les prolongemens des plans des trois au-
tres au-deld de celle-la. Il y en aura siz dont chacune sera terminée
par les prolongemens des plans des quatre faces au-dela d’une méme
aréte. Enfin, les quatre derniéres seront des angles triédres opposés
a ceux du tétraédre.

Cowmme quatre conditions sont nécessaires pour déterminer une
sphére, ce n’est que dans les onze premiéres régions qu’on peut
se proposer d’inscrire des sphéres. Mais il est aisé voir qu’il ne
saurait y en exister i la fois dans les six régions sur les arétes,
opposées deax & deux, et que lexistence d’une sphére, dans l'une
d’elles , entraine I'impossibilité d’en inscrire une dans la région qui
lui est opposée.
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Il ne saurait donc y avoir plus de huit sphéres, une inscrite et

sept ex-inscrites qui touchent a la fois les quatre faces d’un tétraé-

dre, considérées comme des plans indéfinis; et ces derniéres se di-

visent en deux classes , savoir: quatre sphires ex-inscrites aux fa-
ces, et les trois aulres ex-inscrites aux arétes.

Soit 7 le rayon de la sphére inscrite; soient a, #, vy , 8 les rayons
des quatre sphéres respectivement ex~inscrites sar les faces @, &,
¢, d; solent o/, ', y/ les rayons des sphéres ex-inscrites respec-
tivement sur les arétes ed ou bc, bd ou ca, c¢d ou ab; soiL en-
fin T le volume du tétracdre. ‘

En. counsidérant les tétracdres ayant leur sommet commun aux
centres de ces différentes spheres et pour bases les faces du tétraé-
dre T, on trouvera aisément

3T =r(a+4b+4c+4d) , (1)
IT=a(b+c+d=a) , (2)

3T=p(c+d+4a—0) , 3)

3 T=y(d bk b—c) » @
3T=3a+bte—d) , ®)
3T=tol(bf-c—a—d) , (6)
3T=+p(ba—bmd) , 0

3T==y(a}b—c—d) ; %)
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les signes des seconds membres des trois derniéres équations de-
vant étre pris de maniére que ces seconds membres soient positifs.

Des équations ( 2, 3, 4, 5 ) on tire aisément

3T 7 1 1 1 1
e== 7( stLte—3 )

En substituant ces valeurs dans I’équation (1) il viendra

Z=Il4c4 45 (10)

1
B %

cest-d-dire , la somme des inverses des rayons des sphéres ex-ins-

crites sur les faces d'un tétraddre , est double de l'inverse du rayon
de la sphére qui lui est inscrite.

Les mémes valeurs (9) substituées dans les équations ( 6,
8 ) donnent
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+;_‘-""‘"‘— » (!l)

we

c’est-d-dire , la somme des inverses des rayons des sphéires ex-
inscrites sur deux des faces d'un tétraidre , moins la somme des
inverses des rayons des sphéres ex-inscrites sur ses deux autres
Saces , est double de Pinverse du rayon de la sphére ex-inscrite
sur laréte des deux premiéres ou sur l'aréte des deux derniéres
Jaces.

On voit donc que les rayons de nos huit sphéres sont liés 1és

uns aux autres par quatre relations au moyen desquelles quatre d’ea=
tre eux sont déterminés par les quatre autres.

En ajoutant et retranchant tour & tour chacune des équations
“(11) & I'équation (10) on aura

\ ' \

1 1 1 1 1 1 1 1

- —_— -~ - -_—— T =

¢+a\ r_“,’ ,B+1 I‘+¢/,
l+l__!_|_1 e 1 1 1 \ (13
3 5'—;_;:>(12) s o=Tx 5 (3)
1 ' X 1 t S 1 1

—crs ___—_-_"|"—' o .__—_—-———.—

bope al e S nb i —ta=oF o
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cest-d-dire , la somme des incerses des rayons des sphires ex-
inscrites sur deux faces d'un tétradre , est égale & la somme ou &
la différence des inverses des rayons de la sphére inscrite et de

la sphére ex-inscrite sur Paréte de ces deux faces ou sur son op-
posée.

Si le tétraddre est régulier, on a a=fi=y=d=2r, ¢/=f=)=o;
d’ol résulte ce théoréme :

Si, & un angle triddre régulier dont les trois angles plans sont
les deux tiers d'un angle droit, cn inscrit une suiie de spheres , de
maniére que chacune dellzs touche celle qui la précéde immédia-

tement, les rayons de ces sphires formeront une progression géa-
métrigue dont la raison sera deux.

&7 SEenToR

QUESTIONS PROPOSEES.
Probléme de géoméirie.

SI , 2 un angle triédre donné quelconque , on inscrit une suite
de sphéres, de telle sorte que chacune d’elles touche cell: qgui la

précéde immédiatement, quelle loi suivront les rayons des sphires
ainsi 1nscrites?

AZA R R Sy oo e 5 ga ot ao ey
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GEOMETRIE ANALYTIQUE.

e
.

Hecherches sur les courbes algébriques de tous
les degrés ;

Par M. le docteur Prucker, professeur & I'Université de
y P
Bonn.

ARAAATRVIIAVIVIVRRATIN

JE me propose , dans l'essai que Fon va lire, de donner quelques
exemples d'une méthode a l'aide de laquelle on peut déduire, im-
médiatement et sans aucuune sorte de calcal, un grand nombre de
propriéiés générales des courbes de tous les degrés, de la simple
considdration de la constitution algébrique des dquations qui les re-
présentent. Dans un autre essai, qui suivra de pres celai-ci, jé~
tendral ces considérations aux surfaces courbes.

§ I

On sait que cinq points sont nécessaires sur un plan pour dé-
terminer complétement une courbe du secoud degré, et que, géné-
ralement parlant, il n’en saurait passer qu’'aue seule par cing points
donnés ; d’ott 1l suit qu'on en peut faire passer une infinité par quatre
points dounés ; il n'est donc pas étounant , daprés cela, que
deux courbes de ce degré se coupent en quatre points.

tJais on sait aussi que neuf points suffisent sur un plan pour déter-
miner complétement une courbe du troisicme degré, et, quen gé-
néral , il n’en saurait passer plus d’une par neuf points donnés; on

Tom. XIX , n° IV , 1.%% octvbre 1828, 1

o=
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doit donc, d’aprés cela, éprouver quelque surprise de voir deux
courbes de ce degré se couper en neuf points.

Pareillement , quatorze points suffisant sur un plan pour déter-
miner complétement une courbe du quatri¢me degré ; el une courbe
unique de ce degré poavant en général étre counduite par ces qua-
torze points ; on ne saurait voir sans surprise deux courbes de ce
degré se couper en seize points,

En géuéral, le nombre des points nécessaires , sur un plan, pour
déterminer complétement une courbe du 7. degré est, comme
m-41 m--2

I ) 2
ce degré par un tel nombre de points. D'un autre c¢ité, deux cour-
bes de ce degré, tracdes sur un méme plan , peuvent se couper
en m* points. St donc on choisit le nombre entier m , de telle sorte
que =" soit au motus égal & -T-n-—?—l-- mjz
toutes les valears de 2>2; on aura un exemple de denx courbes
du méme degré se coupant en autant de points an moins qu’en
exigerait la déternination compléte de l'une d’elles.

I'on sait,

—1, et il n'en saurait passer plus d’une de

—1, ce qul arrivera pour

Cramer, dans son Introduction a l'analyse des courbes alglbri-
ques, est le premier , je crois, qui ait signalé cette espéce de pa- '
radoxe qui s’explique aisément en remarquant que , lorsqu’il est
question du nombre des points nécessaires et suffisans sur un plan,
pour déterminer completement une courbe d’un degré déterminé,
on sous-entead tounjours que ces points sont pris au hasard , et ne
sont lids entre eux par aucune relation particuliére. Je lavais ren-
coutré moi-méme en discatant la théorie de losculation des lignes
courbes; en cherchaut & Vinterpréter géoméiriquement, j'ai éué con-
duit 4 guelques théorémes assez singuliers au premier aspect, mais
trés-féconds en beaux corollaires ; ils ont déjd paru autre part, mais
je crois devoir les reproduire ici avec plus de développemens. J'in-
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diqnerai ensuite briévement quelques-unes dos applications dont ils
sont susceptibles.

§. 1L

Bicn qu'en général , passé m==2, le nombre m* des peints d’in-
“tersections de deux courbes da i degré soit plus grand que le
m--1 m-2

— -
d’clles, on peut néanmoins faire passer par ces 7* points, non senlement

nombre

—1 des points nécessaires pour détermiuer I'une

les deux courbes dont ils sont les intersections , muis encore tue in—
finité d’auntres courbes du 7™ degré, de sorte qu’il fant se don=
ner un point de plas poar déterminer complélewent une d'entie
elles. Si; en effet, on représente par

2 cewem "/—-——
M=o, M=o ,
les équations de ces deux courbes, 'équation du méme degré
plli4-M'=o0 ,

dans laquelle p est supposé un coefficient constant indétermind, ex—~
primera une infinité d’autres courbes da m.*™ degré, passant par
les m* points d'intersection des deunx premiéres; mais si on se
donne arbitrairement un nouvean point de I'une d’elles, outre ceux-la
il en résultera une équaiion linéaire pour la détermination de p;
de sorte qu’alors la courbe sera complétement déterminée.

m<41 m-2

Cela posé , soient ——- —2 points donnés sur un plan;
2

concevons qu’on ait décrit toutes les courbes, en nombre infini,

qui peuvent passer par ces points , et comldcrons deux d’entre

elles en particulier ; elles auront m* points d’iutersection ,
m-=-1  m—+-2 m+x m-{-2

22 .._)

nouveaux points; or, d'aprés ce qui préctde, par ces 7 pomts,

savoir : les ~ 2 points donnés, et " (
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on pourra faire passer une iufinité d'autres courbes du m.*"™ de-

4
ore

o

puisqu’elles passeroni par les

toutes ces courbes passent aussi par les rzf--(

&, lesquelles scront les autres courbes de la série dont il s’agit,
m-1

m~4-2

2

—2 points donués; donc

M1 Mmoo )

I 2

points restans; en invoquant douc le principe de dualité on aura

ces deux théorémes:

THEOREME 1. Toutes les
courbes du m.*™ degré qui passent
m~-r m--2

1 2

—2 méines

par les

points fixes , se coupent en outre
m-f- 1

QuUEr M°— ———
. 1

mwf-2

+-2,autres

mémes points fizes.

Ainsi, par exemple, toutes les
courbes du troisieme degré qui
passent par les huit mdmes points
fixes , se coupent en oulre en un
neuvitme méme point fixe. De
méme encore , toutes les courbes
du quatriéme degz_'é qui passent
par les treize mémes points [ixes,
se coupent toutes en outre en trois
autres mémes points fixes, et ainsi
du reste,

THEOREME 1.

les courbes de m.*™

Toutes
classe qui

, m-4-1 m-a2
touckent les - —_—2
1 2
mémes droites fixes, touckent en
m~1 mef-2
oulre les m°— - “+2,
1 2

autres mémes droites fixes.

Ainsi, par exemple, toutes les
courbes de troisiéme classe qui
touchent les huit mémes droites
fixes , touchent en outre une nen-
vieme méme droite fixe. De méme
encore, toutes les courbes de qua-
tri¢me classe quitouchent les treize
mémes droites fixes , touchent en
outre les trois autresmémes droites
fixes , et ainsi du reste.

Rien n’empéche d’admettre, dans le théoréme qui précede, que

tous ou partie des points fixes donnés se confondent par groupes
plus ou moins nombreng en un point unique , auquel cas les cour—
Les dont il s’agit auront en ces points des contacts d’ordres plus.ou
‘moius élevés.
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Ainsi, par exemple, au lieu de considérer toutes les courbes du
troisiéme degré qui passent par les huit mémes points fixes, on peut
considérer toutes celles qui , passant par les deux mémes points fixes,
ont entre elles , en chacun de ces points, un contact de quatre
points on du troisicme ordre ; et l'on verra, en vertu du théoréme,
qu’elles doivent se couper toutes en un troisiéme point.

Nous n’avons cemparé , dans ce qui préceéde, que des courbes
exprimdes par des équations complétes dans lesquelles tous les
coefliciens étaient supposés indéterminés ; mais en assujétissant ces
courbes a certaines conditions, nous pourrons rabaisser, & volonté,
le nombhre des constantes arbitraires de leur équation commune.
Nous pourrons , par exemple, regarder comme donnés , un certain
nombre de ces coefliciens pour toutes les courbes gue nous compa-
rons, ou bien supposer qu’il existe entre tous on partie d’entre eux
un certain nombre d’équations de condition, Ces considérations con-
duisent au théoréme suivant plus général que celui que nous avions
d’abord établi :

THEOREME II. Etant donnés n coefficiens de l'équation géné-
rale ds m.™ degré & deux indélerminées , ou encore élant don-
nées n épuations linéaires enire tous ou partic de ces cocfficiens ;
toutes les courbes représentées par I'équation générale , ainsi mo-
m:H - mjz —(n4-2) mémas points fixes

mbr o +(n+t2) au~

I 2

difiée et passant par les

donnés , se couperont en oulre qux M’——

tres mémes points fixes.
Il est évident que, dans l'application de ce théoréme, on ne
m-1 m--2

~ doit pas supposer 7> —— -
I 2

T

§ IIL

Notre théoréme, sons sa premiére forme, ne saurait s’appliquer qu’aux
courbes des degrés supériears au second ; mais , sous la seconde,
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il s’applique fort bien aux courbes du second degré. Il prend alors
la forme particuliere que voici :

Etant donnés n cocfficiens de I'équation générale du second de-
gré a deux indéterminées , ou encore , étant données m équalions
linaires entre tous ou partie de ces coefficiens ; toutes les cour-
bes représenties par l'équalz’on générale ainsi, modifiée et passant
par les 4—n mémes points fixes donnds , se coupent en outre aux
n auires mémes points fizes.

Ainsi I'équation générale du second degré a deux indétermindes
élant

Az =By’ 42Cxy4-2Dr~+2Ey+-F=o0, (1)

dans laquelle il est permis de supposer F conauj; si I'on doune
1.° un des cing autres coefliciens et trois points ; 2.° deux d'entre
eux et deux points ; 3.° trois d’entre eux et un point; 4.° enfin
quatre d’entre eux, il y aura, dans tous les cas, un nombre infini
de courbes représentées par l’équation (1), et toutes ces courbes

passerout par les quetre mémes points. Il en sera de méme si, au
licu de se donner un certain nombre de ces coefliciens , on se donne

un égal nombre d’équations entre tous ou partie d’entre enx. On
va voir, par quelques exemples pris au hasard, avec quelle faci-
lité on déduit de 1 la plupart des propriétés des courbes du second
degré.

On sait que , dans Phypothése des coordonnées rectangulaires , I'é-
quation (1) représente des hyperboles équilatéres lorsqu'on a
A-4-B=o0; donc ‘ ‘

Toutes les hyperboles équilatéres qui passent par les irois mé-
mes®points donnés , se coupent en oulre en un guatriéme poini fize,

Le systéme de deux droites perpendiculaires I'une & l'autre peut,
comme l'on sait, étre considéré comme une hyperbole équilatére ;
en conséquence, les trois systémes de bases et de hauteurs, d’'un
méme triangle, peuvent étre considérés comme trois hyperboles équi-
lateres ayant trois points communs, qui sont les sommets du trian-

—
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gle ; clles doivent donc avoir un quatri¢me point commun ; et aiosi
se trouve démontré que les trors heuteurs de tout triangle con-

courent en un méme point.
cC C

Etant donné T'un des deux rapports — ou 4, on connaitdeux
diametres conjugnés de la courbe, dont un est paralléle & I'un des
axes des coordonnées; donc
~ Toutes les coniques qui ont deux diamétres conjugués parallé-
les & dewx droites fizes, et qui passent par trois points fixes, se
coupent en ouire en un quatriéme point fixe.

La counsiruction de ce quatriéme point étant trés-facile, on pourra
trouver tant de points qu'on voudra, 1.° d'une conique dont on con-
naitra quatre points, avec les directions de deux diamétres con-
juguds; 2.* d'one conigue dont on connaitra trois points , avec les
directions de deax systémes de diamétres conjugués.

Et de 13 encore cet autre théoréme:

Toutes les coniques qui passent par les quatre mémes pornls fives
ont un systéme de diamétres conjugués paralleles @ deux droiles
Jixes.

On sait que I'dquation
BydCx4-E=o

est celle du diamétre de lacourbe (1" dont le conjugué est paralléle
N . E 7 ’
4 l'ase des x; d’on il suit que, — Gtant donnéde, on connaitra le
P

poiat d’iutersection de ce diamdétre avec l'axe des y; cest-d-dire,
si cet axe rencontre la courbe, le point milieu de la corde inter-
ceptée. Etant douné un quelconque (@, 4 ) des points de la di-
rection de ce diamétre, on aura

Bb4Cot-E=o ,

c’est-d-dire , une équation linéaire entre les trois coefficiens B, C,
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E. En connaissant de plus I'un quelconque ( @/, 4/ ) des points de
la direction du diamétre dont le conjugué est paralléle & l'axe des
y , on aura semblablement

Aa'4-Ch/'+D=o ;

c’est-i-dire , une équation linéaire entre les trois coefficiens 4, C,
D. Enfin, une droite quelconque étant donnée par l'équation

ax+@y+7=0 ’

Uéquation du diamétre dont le conjugué lui est paralléle sera

By +Cx4-E)y=(Az+Cy +D) ;

équation linéaire par rapportd 4, B,C, D, E. On pourra se don-
ner une, deux, trois ou quatre équations de la méme forme. Dans
ce dernier cas, en supposant un de ces coefliciens donné, ce qui
est permis pourvu qu'on rende au dernier terme £ son indéter-
mination , ils seront tous complétement déterminés excepté celui-la.
De ces cousidérations se déduisent , sur-le-champ, les théorémes sui-
vans:

Toutes les conigques qui passent par trois points donnés, et dans
lesquelles les conjugués des diamétres parallcles @ une méme droite
“fize vont concourir en un méme point fixe, se coupent en ouire en
un quatriéme point.

Si tant de coniques qu'on voudra passent loutes par les quatre
mémes points , les conjugués de leurs diamlires paralléles @ une
méme droite fixe concourront tous en un méme point fixe.

Ce dernier théoréme , dti & M. Lamé ( Annales , tom. VII, pag.
229 ), peut étre complété de la manitre suivante :

8¢ la droite , & laquelle les diamétres sont paralléles , tourne sur
Tun gquelconque des points de sa direction , le point de concours
des conjugués de ces diaméires décrira une conique , licu géoméiri-
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ques des centres de toutes les coniques passant par les quatre points

donnés (*).
87 deux coniques sont telles qu'elles interceptent, sur une méme

100

droite donnée , des cordes dont les milicux coincident ; la méme
chose aura lieu pour toutes les coniques qui, passant par les qua-
tre points d'intersection de ces deux 14 , couperont la droite donnée.

Généralement, zoutes lasiconiques passant par f—n points don-
nés , et assujéties en outre & la condition que les comjugués de
n de leurs diamétres , pard?]éles @ n droites données , passent par
n poinls fixes, se coupent en oulre en n points.

Sin=4,les coniques seront semblables et concentriques , de ma-
nitre que les points d’intersection passeront & linfini.

Pour dernier exemple , supposons deux points (2,8 ), (a’/, 4)
tels que I'nn d’eux soit situé sur la polaire de Pautre relativement
a la courbe (1); cette circonstance sera exprimée par I’équation

b Bb'+ Ca'+ E)+ta(Aa'4-Co'+4-D)4-(Da’'+Eb' +F)=o ,
ou
Aad’4-Bbb +C(ab'+ba’)+D(a+-a’)+E(b + o) +F=0 ;

équation dont la symétrie prouve qu’alors réciproquement I'autre
point se trouve situé sur la polaire du premier. Or, c'est 13 une
équation lindaire entre les coefficiens de I'équation (1), et chaque
systéwe de deux pareils points en foarnirait une semblable; done

Toutes les conigues passant par
4—n points donnés , et assujéties
@ la condition que, par rapport
a elles , les polaires de n points
donnés quelconques passent res-
pectz’vemenl par autant de poz'rzts

Toutes les coniques touchant
4—n droites données , et assujéties
a la condition que , par rapport
a elles , les pdles de n droites
données quelconques soicnt situés
respectivement sur autant de droi-

(*) Clest précisément ce qui a été
volume.

Tom. XIX,

démontré a la pag. 106 du précédent

J. D. G,
15
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également donnés , se coupent tes également données , touchent
toutes aux quaire mémes quires loules les quaire mémes autres
points. , ' droites fives.

On voit de suite que ce dernier théoréme conduit & ceux qui
ont été démontrés auparavant, lorsqu’on suppose que les n poles
passeant a l'infini. :

Bouu, 8 juin 1828,

GEOMITRIE DE SITUATION.

Recherches sur les lois générales qui régissent
les courbes algébriques ;

Par M. BoziLrLier , professeur & I'Ecole des arts et métiers
de Chélons-sur-Marne.

ARWVVVIARINIWARARANN

NOUS nous proposons, dans ce qui va suivre ,.de revenir de ‘nou-
veau sur des propositions déja démontrées , pour les établir d'une
maniere & la fois plus simple, plus directe et plus générale.
Soit une courbe quelconque du 7. degré, rapportée & denx axes
quelconques et espriinée par l'équation
M=o , (1)

L

en x et y. L’¢quation de la tangente 2 cette courbe, en I'un quel-
conque ( 2/, y’ ) de ses points, sera, comme l'on sait,

dzr amr
T T+

(y—y")=o ; (2)

d)r/
les coordonnées &/, y/ du peint de contact étant lides par I'équa-
tion de relation
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];I,::O . (3)

" indéterminés , on veut profiter de leur indé-

a passer par un point (a, 4)
donné sur le plan de la courbe , il fandra exprimer que I'équation
(2) est satisfaite en y faisant simultanément =¢ et y==b, ce qui

la cliangera en celle-ci

Si, laissant et y
termination pour assujétir la tangente

amr
o (a5 @——y')_o,

ou, ce qui revient au méme,

(9«“’-—0)—!‘ (}’ —b)=o0; ).

de sorte que les poims de contact des tangentes & la courbe (1),
issues du point!( @, b ), seront donnés par le systtme des deux
¢quattons (3) et (4), ou, ce qui revient au méme , par la com--
binaison de I'équation (1). avec I'équation

‘1’3 et G == s ()

ces points seront donc ceux ol la courbe proposée sera coupée par
celle qu’exprime I'équation (3). A

L’équation (5) n’étaat 'comme‘l'équétidn (1), que du mrm de-
gré'seuleme‘nt , il s’ensfui;"q'ue‘ le nombre des points de contact ,
ni conséquemment le nombre des tangentes issues du point (@, 5)
ne saurait étre supérieur 3 m* (*); mais nous allons voir que le

(*) C’est sans doute par de semblables considérations que VV’armg, dans
ses Miscellanea ‘Analityca que nous n'avons pas présentement sous la main ,
& une courbe

s

fixe & m? limite du nombre des tangentes qu’on peut mener
du mJeme degré , de I'un quelconque des points de son plan.
J. D, G.
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nombre de ces tangentes est réellement inférieur A cette: limite.
Lorsque des points sont donués sur un plan par le systéme de
deux équations en z et y, ils le sont également par le systeme
de I'une d’elles et d’une combinaison quelcongue de l'nne et de
l'autre. En conséquence , puisque les points de contact des tangen-
tes issues du point (@,4 ) sont donnés par le systéme des deux
équations (1) et (5), ils le seront aussi par la premiére de ces
deux 13, combinée avec l’equatlon

dam

(x—a)+ y (y—0)=mM ; (©6)

laquelle sera ainsi, comme I’éciualion (5), celle d'une courbe cou-
pant la proposée anx points de contact cherchés. Or, en vertu da
théoréme connix sur les fonctions homogénes, tous les termes de
m dimensions en z et y disparaissent de celle-.ci qui ne s’éléve
conséquemment qu'au (2 —1)“™ degré; en la combinant donc avec
I'équation (1) elle ne donnera au plus que m(m—r1),systémes de va-
leurs pour les coordonnées des points de countact; d’ott il suit que
le nombre des tangeates menées a la proposée par le point (@,8)
ne pourra s’élever au-dessus de cette limite (*).

(*) De méme que, par suite du théoréme des fonctions homogenes , la
limite m? fixée par Waring se trouve trop élevée, il se pourrait qu’en vertu .
de quelque autre théoréme, inapercu jusqu’ici , la limite m(m—1) le
fitt trop aussi; car il faut bien remarquer que des deux équations (1) et
(6), la premiére seule est quelconque, tandis que l'autre en est déduite
d’une maniére tout a fait particuliére. Or, s’il élait vrai qu'on ne pit pas
mener 4 une courbe du m./jm¢ degré m(m=1) tangentes d'un méme point,
Al serait {aux que la palaire réuproque d’une cout‘be du m eme degré dit
s'élever au [m(m-4-1)]"* degré. MNM. les commissaires de PAcadémie royale
des sciences ont donc été fondds a dire ( Bulletin des sciences mathemattques s

~avril 1828, pag. 227 ) que cette dernicre proposition était encore a démon~
trer. M. Poncelet nous a lui-mdme offert des exemples de courbes du troi-
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L’équation (6) étant ainsi celle d’une courbe qui coupe la pro-
posée en ses points de contact avec les tangentes qui lui sont me-
nées du point quelconque (z, &) de son plan, et cette équation
n’étant que du (m—1)*™ degré seulement; en invoquant le prin-
cipe des polaires réciproques on sera conduit & établir ces deux
théorémes :
THEOREME 1. Les points

de contact des tangentes menées

THEOBEME I. Les tangen-

tes menées & une courbe du m.™*

@ une courbe du m.™ degré, de
lun quelconque des pornts de son
plan , sont tous situés sur une
courbe du (m-—1)"™ degré au

degré , par ses interseclions avec
une transversale rectiligne quel-
conque, louchent toutes une cour be
du (1) degré au plus (*).

plus ( ).

si¢me degré, auxquelles on ne pouvait mener que trois tangentes par un
quelcouque des points de lear plan; mais il ne nous en a point indiqué
de ce degré, .pour lesquelles ces tangentes soient au nombre de six, 11 ne
nous a pas méme mon'ré, ce (ui aurait pu suffire, une courbe continue tra-
cée arbitrairement 4 la main, de laquelle on vit clairement 1.° qu'aucune
droite ne peut la couper en plus de trois points; 2.° que, néanmoins d’un
certain point , on peut Iui mener six tangentes.
J. D. G,

(*) M. Poncelet observe, avec beaucoup de raison ( Bulletin des sciences
mathématiques , mai 1828, pag. 301 ), que c’est par erreur que M. Bobillier
et nous, avons attribué ce théoreme a M. Vallés, attendu qu’il se trouve
clairement mdlque a la pag. 215 de notre VIILe volume. Du reste ,
reur de M. Bobillier sur ce point est fort excusable , car il ne connaxt pas
notre VIIL® volume qui ne se trouve plus aujourd'hui dans la librairie ;
et quant a nous, si M. Poncelet veut bien prendre la peine d’ouvrir no-,
tre XVL.e volume, & la page 132, il y verra proposé 4 démontrer, comme
nouveau , un théoréme que nous avions nous-méme démontré a la page
282 de notre IX.¢ volume, et il ne saurait raisonnablement exiger de nous
que nous ayons plus de mémoire de ses ccuvres que des nétres. Puisse-t-il
vivre assez long-temps pour apprendre , par sa propre expérience , qu’avec

Tige la mémoire se perd tout aussi bien que les cheveusx. D
J. D. G,

Ier-
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Cette courbe est ce que nous
avons appelé ( Annales, tom,
XV, pag. 253 ) la courbe po-
laire da point dont il s’agit, par
rapport a la courbe directrice pro-
posée.

COURBES

Cette courbe est ce que nous
avons appelé (.A_/zmzies, tom.
XVIHI, pag. 203 ) la courbe po-
laire de la droite dontil s'agit,
par rapport & la courbe directrice
proposée,

Si le point de départ { @, &) des tangentes est mobile sur un
droite ayant pour équation y==az , on devra avoir b=aae, ce qui
changera I'équation (6) en celle-ci:

dy

aM am - aM
—_— — ]2 — e —_—
xdx +}’ M 0< da +ot dy

dM

(7)

Si, dans cette équation, on considére 2 comme un paramdtre

variable , cette équation ne pourra étre satisfaite que par les sys—

b

témes de valeurs qui satisferont a la fois aux deux suivantes:

am anmr dant dnm -
,-a;-}-ya}-::m]ﬂ,, —_— o — =0 ; (8)

lesquelles exprimeni deux courbes du (m—1)*" degré, qui se cou-
pent en (m—1)* points sevlement; or, comme lorigine est quel-.
conque , la droite donnée par I'équation y==xz est une droite quel-
conque ; de sorte qu’en invoquant la théorie des polaires récipro-

ques on aura ces deux théorémes :

THEOREME 1II. Ees courbes
polaires de tous les points d'une
droite indéfinie , relatives & une
directrice quelconque du m.*™* de-
gré , se coupent toutes auzx (m—2)*
mémes points fizes.

Ces points sont, ce que nous
avons appelé ( dnnales , tom.

THEOREME 11. Les courbes
polaires de toutes les droites qui
passent par un méme point fize,
relatives @ une directrice quel-
congue de mX>™ classe , touchent
toutes les (m—1)* mémes droi-
tes fizes.

Ces droites sont, ce que nous

avons appelé ( Aznnales , tom.
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XVII, pag 254 ) les points po-
laires de la droite dont il s’agit,
relativement a la courbe direc~
trice proposde.

Iy
AVII, pag. 254 ) les droites po-
laires du point dont il sagit, re-
lativement & la courbe directrice
proposée.

Si, dans les équations (8) , on suppose o variable, les points d'in~

tersection des deux courbes varieront ‘aussi ; mais ces points seront
toujours situés sur la premitre des deux courbes , dans ’équation
de laquelle « n’entre pas; or, faire varier « c'est faire tourner la
droite y=oaz autour de.l'origine, qui est quelconque sur le plan de
la courbe (1); et comme d’un autre cété, la premiére des équa-
tions (8) n’est autre chose que I’équation de la courbe polaire de
Porigine, on a encore ces deux théorémes :

THEOREME III. 8¢ une droite
tourne, dans le plan d'une courbe
directrice | autour de l'un des
points de sa direction , les points
polaires de cette droite parcour-
ront la courbe polaire de ce pornt

THEOREME II1. 8i un point
parcourt une droite , dans le plan
d'une courbe direcirice , les droi-
tes polaires de ce point envelop-
peront la courbe polaire de cette
droite fixe.

Jrxve.

- Soit p une constante indéterminée, et soient deux courbes du
m.! ™ degré données par les équations M'=o0 , M''=o0; I'équation
générale des coarbes de ce degré passant par leurs intersections sera,
comme l'on sait,

M'+p M =0 3 (9
posant donc

M=M4pM",

il viendra , en difiérentiant ,

dM__ dmr - am aM - dm A
doe — dx iz dy = dy # :i}— ’
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substituant ensuite dans (6), en y faisant @ et 3 nuls, on obtien~
dra, pour la courbe polaire de lorigine , relativement i la di-
rectrice (9) ,

dmy amr d’VI danm
Pk e )x-l- +r g )J’—’”(M"H*M”)
ou bien
Lam | awr amn amr
-|-y — —mM’—H» ( - 7 T—-mM”):o . (10)

Or, quelle que soit la valeur attribuée 4 la constante arbitraire g,
cette courbe polaire passe évidemment par les (m——1)* points fixes
donnés par les deux équations

dM' dm

-l-y - _m]'l an

— =mM" ;

dnr
o T dy

on a donc ces deux théorémes:
THEOREME 1V. i tant de *
courbes dum.*™ degré qu’on vou-

THEOREME 1V. 87 tant de
courbes de m.*™ classe giu’on vou-

dra passant toutes par les m* mé-  dra ont toutes les m* mémes tan-

mes points fixes , les courbes po-
laires d'un point quelconque , re-
latives a toutes celles-1d , passe-
ront toutes par les (m—1)" mé-
mes points également fizes.

C’est 1a, comme l'on vait, la

gentes fizes , les courbes polaires
d'une droite quelcongue, relatives
& toutes ces courbes , auront tou-
tes les (m—1)* mémes tangenies
également fizes.

premiére partie des deux théo~

rémes de la page 256 du précédent volume, et les deux autres
seralent tout aussi faciles & établir.

Si P'équation M"=—=o est homogéne en z et y, elle exprimera le
systeme de m droites réelles ou idéales, passant par lorigine ; et
conséquemrment les courbes comprises dans ‘1'équation (9) auront
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7 sécantes communes, issues d’'un méme point; or, 4 cause de
Ihomogénéité de M”, on a identiquement

au moyen de quoi l'équation (10) de la courbe polaire de L'ori-

gine, se réduit simplement a

anz

9124

T e -'{“'}” ——d-;’—':mﬂl/ H

dw

de sorte que cette polaire est alors indépendante de la constante
arbitraire p; on a donc ces deux théorémes :

THEOREME V. 8 tant de
courbes du w."™ degré gu’on vou-
dra ont touies les m® mémes
points communs, disiribués m a
o sur m droltes, concourant en
un méme point , ce point n’'aura
gu'une courbe polaire unique par
ropport & toutes les courbes pro-
posées ; cetle polaire conliendra
conséguemment les points de con-
tact de toules les tangenies me-
nées a ces courbes par le méme

point.

THEOREME V. Si tant de
courbes de m™ classe qu’on vou-
dra ont toutes les m® mémes tan-
genies communes , concourant m
a m en m points, apparienant
a une méme droite, cetie droie
rn'uura gu'une courbe polaire uni-

Y

que par rapport & loutes les
courbes proposées ; celie polaire
sera conséquemment enveloppée
par les tangentes menées a tou-
tes ces courbes aux pornis ou el-

les sont coupées par cette droite.

En supposant , en particulier, m=2, on dédunira de li ces deux

propositions connues :

Les points de contact des tan-
gentes menées a toutes les lignes
du second ordre circonscrites &
un méme quadrilatire, par le
point de concours de deux ¢diés

Tom. XIX

Les tangentes menées @ tou—
tes les lignes du second ordre
inscrites @ un méme quadrila-
tére par leurs points d'intérsec-
tion, avec la droite qui joint deux

10
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/ drilasd 's de ce quadril
opposés de ce quadrilatere , ap-  sommels opposts de ce quadriia~
par/z’ennent tous G une scule et iére, concourent loules en un
méme droiie , poloire commune scul et méme point, pdle com-
de ce point , relativement & tou- wunde celte droiie , relativement
tes ces courbes, a toutes ces courbes.

GEOMETRIE DE SITUATION.

Double théoréme de géométrie & trois dimen-
sions ;

Par M. GERGONNE.

[ Via Via Vlg Vi o Vi, VL VL Ve VR B Y

'»ON a vu,a la page 149 du précédent volume, que nous étions
redevables & la sévére critique de M. Poncelet de la double clas-
sification des lignes et surfaces courbes que nous avons adoptée de-~
puis lors; double classification tont & fuit indispensable (*) A rai-
son de sa liaison intime avec le principe de duelité (**) 5 et quil

/
serait tres-peu philosophique de vouloir repousser sous le prétexte

(* Nous disons indispensable , dans U'hypothise du moins o le degré de
la pol\aire réciproque d’ane courbe serait plus clevé que le sien; ce qui peut
dlre vrai, mais que des juges trés-compélens, da cheix de M, Poncelet lui-
méme , ne regardent pas comme suffisamment démontré,

(**) Nous avons long-temps hésité 4 employer cette expression, tant &
cause du mauvais accueil que regoivent d’ordinaire du public les locutions
noavelles, gue parce que le mot dualité est un des termes d’une philosophie
dout nous faisons assez peu de cas. M. Poncelet , en ladoptant, en adop-
tant méme le mot irialité , nous a beaucoup enhardis a en faire usage,
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qu'elle est inusitée en géomdtrie, puisqu’alors il fandrait aussi re-
jeter , du Traité des propriétés projectives , et de beaucoup d’autres
ouvrages modernes , d’excellentes choses qu’on ne rencontre ni dans
Appollonius ni dans les autres auteurs de la méme époque.

Nous devons aussi & cetle attention scrupuleuse avec laquelle M.
Poncelet' veatbienscruter tout ce qne nous publions dans notre recueil ,
de réparer une omission que nous avions commise a la pag. 326
de notre XL¢ volume. Nous avions essayé de démontrer, en cet en
droit, par les principes de la statique , un curieux théoréme de géo-
métrie plane de M. Coriolis,; ainsi qu'an autre théoréme que le
principe de dualité nous en avait fait déduire. Parvenus & la fin de
notre tiche , nous nous aperciimes que la démonstration que nous
avions donnée du premier de ces deux théorémes n’exigeait pas
nécessairement que fes points qu’on y considérait fussent situés dans
un méme plan; mais, tout en faisant celte remarque, nous diimes
ajouter qu’il n'en était pas de méme des droites dont il éait ques-
tion dans le second, autendu que, tandis que deux poids peuvent
toujours se composer .en un seul, deux forces, au contraire, ne
peuvent se composer en une seule, qu’autant que ces forces sont si-
tudes dans un méme plan,

M. Poncelet observe présentement, avec beaucoup de raison , que
le théorcine de M. Coriolis, étendu, comme nous l'avoas fait, aux
trois dimensions de Uespage, n'en a pas moins un correlatif qui
s'en déduit en y remplacant les peints par des plans. Clest, en of-
fet, une remarque qui nous avait échappé, mais dont nous n’au-
rvions pu faire d’ailleurs ancun usage en l'endroit cité, qguaud bien
méme elle seserait alors offerte & notre esprit, attenda que , d'une
part, nos moyens de démonstration n’auraient pu atteindre 4 ce nou-
veau théoréme, et que , d’une auntre, les iddes de dualité n’dtaient pas
assez répandues & cette époque pour quil pit nous-éire perianis de
conclure ce théor¢me de l'autre, comme un simple corcliaire.

Aujourd'hui, au contraire, qu’il doit étre bien connu que tous
les thioremes de sitmation marchent par couples, il nous sufia
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d’avoir démontré I'un d’eux, & l'endroit cité, pour que l'autre soit
admis sans contestation. Ils peuvent d’ailleurs étre démontrés, cha-
cun en particulier et méme sans aucune sorie de calcul, comme
il arrive pour tous les théorémes de ce genre, en suivant une mar-
che analogue & celle qui a été indiquée A la pag, 69 de notre XIL®
volume; et c’est une chose & laquelle nous regrettons de n’avoir
pas songé en publiant notre article de la pag. 209 de notre XVIL¢®
volume , article dont la démonstration de ces deux théorémes au-
rait fait un supplément trés-convenable.. Nous noas bornerons ici &
présenter les deux énoncés dans une rédaction unique,

THEOREME. Soient, dans l'espace, n{ i:;zzs } quelconques

numérotés arbitrairement ainsi qu’il suit

(1), (@), (3) e () & (1.7 Série).

points

plans {’
diatement supérienr, déterminera une droite; de telle sorte qu’on
aura ainsi z—1 droites:, que l'on pourra désigner respectivement

Chacun de cesg avec celui qui portera le numéro immé-

points

par l'ensemble des indices des deuxg
plans

g qui déterminent cha-

cune d’elles, en cette maniére

(D@ > @) B)E) s wivins (i—1)(7)

Soient n——xg points pris

plans conduits E respectivement , et d’'une maniére

. oL fosur . . .
out 2 fait arbitraire par { °% 71 droites ; et soient désignés ces
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{ points }

par l'ensemble des numéros de la droite Sul‘g laquelle
iplans § par

, situé
chacun d’eux est

. ¢ en cette manicre :
conduit

(152) , (2,3)5 (3, 4)s wuwee (n—1,m) o (2.7 Séric )

En prenant deax & deux, de toutes les maniéres possibles, les
oints .. . 4.

: Pl g des deux séries, dont les indices comprennent ensemble
P ans

trois nombres consécutifs de la suite naturelle , sans répétition ni

points

lacune, ces couples de § détermineront une nowuvelle série

plans
de 2(n—z2) droites dont chacune pourra encore étre désignée par
points
plans
sa d{termination , en cette maniére :

'ensemble des indices des deux{ i qui auront concouru &

(1)(2,3) 5 (2)(354) 5 (3)(4,5) 5 wmses (;"2)("“‘ RN

(r52)(3), (2,3){4), (3,4)5) 5 waue (=2, n—1)(n) 3

Or, 1l arrivera que les droites portant les mémes nombres & leurs
indices , lesquelles sont, comme l'on voit, les droites correspon-

. concourront oint
dantes dans les deux hgnesS . en un méme {° .
2 seront situées plan

e s
et donneront ainsi naissance a n—a2 nod‘veaux% }quel'on pourra

P ans
également désigner respectivement par l'ensemble des indices des
deux droites qui auront concouru a déterminer chacun d’eux, en
cette manicére : :

(1,253)5 (2,3, 4)s By 4, B) y wons (7—2,n—1,n) s ( 3.0 Séric)
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En prenant de-nouveau deux & deux, de toutes les manidres
' pointsg

des trois séries dont les indices portent
plans

possibles, ceux des%
ensemble quatre nombres consécutifs de la suite naturelle , sans ré-

oo . . Oints , .
pétiudn -ni lacune, ces couples. de gPI g détermineront de nou-
‘plans

velles droites , au nombre de 3{n—3), dout chacune pourra , de
la méme maniére, étre désignée par l'ensemble des indices des

points . : . , . .
dEﬂX 1 quL auront concouru a sa determmatlon ., €n celle
plans

maniére :
(1)(2,3.4) , (2)(3,4,5) (3)(4;5,6) s eoes (1—=3) 2, n—1, 1) .
(5,3)(3,4) 5 (2:3)(4,5) , (3,4X(5,6) ; weews (=3, n—2)(n=—1, 1) ,

(123)(4) » (23,4)(5) 5 (BooB)6) » wome (23, ez, 1) (1) .

/.

Or , il-arrivera que les systémes de trois droites portant les mé-
mes nombres & lenrs indices, lesquelles sont, comme lon voit,

. . . N concourront
celles qui sont inscrites dans une méme colonne,

seront situdes-
S oint

en un méme
{ plan

;, et donneront ainsi naissance a n—3 nou-

'

plans
veaux

_ que Von pourra continuer & ddsigner respectivement
points o

‘par V'ensemble des indices des droites qui auront concourn & leur.
détermination , en. celte maniére::

(1,2,3:4)5 (23,45), (334,5,8) v (1=3 ) 2y ety 1) o (4im¢ Séric')

En poursuivant continuellement le méme procédé , on obtiendra
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concourant

> t n~~=4) droit
siiccessivemen 4( ') €s gsituées

g quatre & quatre en

ints concourant
_ \poin uis 5(z—>5) droites cing & cing en
? 42Plans » P ( ) situdes g a 1
oints . . :
n—-égplms g, et ainsi de suite ; de sorte que l'on parviendra fina=
] :

lement & n—1 droites désignées respectivement par
5 e
([)(2,374 9 ‘tesevesce iZ-—I, 72) »

(1,2)(3,4,5 5 enue m=—1,7) ;

-

- EIE
© ® 8 5 o 8 0 5 ¢ © 0 e 0 o

¢ w

(1,2,3, wee n—2)(—1, 7)

-~

(12,35 e =2, n—1)(n)

v,

concourant ) point . f e,
o toutes en un unique désigné par
{ situdes plan

{1,2,3 versnsns B=2, n=~1,7) ,
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GEOMETRIE DE SITUATION.

Rectifications de diverses propositions énoncées
dans les Annales ;

Par M. GErRGONNE.

ARMVIIVVVWAARRARRANIBVVVRIAAARR.
\

EN annoncant ( Bulletin universel , mai 1828, pag. 302 ) que les rectifi-
cations que nous avions indiquées ( .4nnales, tom. XVIII, pag. 149 ) pour
notre Mémoiré sur les lois générales qui régissent les lignes et surfaces cour-
bes (tom. XVII, pag, 214 ) étaient loin de suffire, M. Poncelet nous avait
tellement effrayés que mnous n’avions pas eu le courage de relire ce mé-
moire, dans la crainte d’y trouver trop & réformer. M. Chasles a bien voulu
prendre cette peine et y joindre obligeamment celle de nous indiquer les
propositions qu’il avait trouvé defectueuses ou inexactement déduites. Nous
avons étd agrdablement surpris en apprenant que tout portait uniquement
sur quelques corollaires trés-accessoires , et qui n'intéressent en aucune
sorte le fond de notre travail ni de mos doctrines. Il ne s’agit , en
effet, que des corollaires VI de la pag, 240 et des corollaires II de la pag.
244, quon pourra supprimer si l'on veut, ou bien que l'on conservera
en y substituant, au contact simple qui s’yl trouve mentionné, un contact du
second ordre , et en modifiant d’'une maniére convenable les considérations
qui aménent les corollaires VII de la pag. 24o.

La nécessité de ces rectifications tient, comme 'observe trés-hien M.
Chasles, a ce que, pour que deux surfaces du second degré qui se tou-
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ehent en un point sc coupeni en outire suivant une courbe plane , il ne
suflit pas qu'elles aient en ce poiut un simple contact , mais qu’il faut que
le contact qui existe entre elles soit un contact du second ordre.

Comme ceci n’'intéresse que nous, nous y attachons assez peu d'impor-
tance; mais il est d’autres rectifications ui nous tiennent beaucoup plus
au cceur, parce qu’elles intéressent M. Chasles, & qui nous avons fait dire,
en divers endroits,, des choses qu’il n’avait pas ditcs et qui ne sont point
parfaitement exactes.

D’abord , dans le XVIIL® volume, pag. 317, ce qui suit le 4.9 doit étre
Iu ainsi:

A ces principes on pourra joindre cncore les suivans qui, au
surpius , ne sont point nécessaires pour la premiére solution du pro-
bléme et dont fa seconde n’exige que l'application du dernier :

1.° Le péle d'une -droite , par rapport & un point directeur ,
est ce point lui-méme.

2.° La polaire d'un point, par rapport & un point directeur
considéré comme conique infiniment petite, est le conjugué du dia-
métre qui contient lauvire point.

3.° La polaire d'un point, par rapport & une drotte directrice,
est une paralléle & cetle droite située du ¢oté opposé, & la méme
distance ou “en est le point.

4.° Le péle d'une paralléle ¢ une droite directrice est un quel-
conque des points d'une paralléle & cette méme directrice situde
8 la méme distance du cité opposé.

Dans le méme mémoire , pag. 319, ligne 16 , il faut remplacer la con-
jonction et par le pronom relatif qui.

Dans le dernier mémoire du XIX.® volume, pag. 66, le verbe couperont
doit étre remplacé par le verbe toucheront.

Le n.o 24, pag. 82, doit &tre lu comme il-suit:

24. Une surface directrice du second ordre et une auire sur—
Jace du méme ordre éiant données dans [lespace ;

!

Si lon congoit un angle trié- SZ lon congoit un triangle va-
Tom. XIX, 17
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dre
son sommel , supposé fixe , tel
gue la polaire de chacune de ses
arétes soit constamment dans le
plan de la face opposée ;

pariable et mobile autour de

1.° Les points d'intersection
des aréles de l'angle triddre , par
la seconde surface , seront les
sommets d'un octaédre hexagone
variable inscrit, lequel sera cons-
tamment circonscrit & une iroi-
siéme surface fixe du second or-
dre.

2.° Les plans mobiles tangens
8 la fois aux courbes suivant
lesquelles la seconde surface sera
coupée par les trois faces de l'an-
gle triédre , seront les faces d'un
autreoctaedre hexagone variable
constamment circonscrit & une
quatriéme surface fixe du second
ordre.

RECTIFICATIONS

riable et mobile dans son plan ;
supposé fizxe , tel que la polaire
de chacun de ses ¢01és passe cons-
tamment par le sommet opposé ;

1.° Les plans tangens menés &
la seconde surface, par les cotés
du triangle , seront les faces d'un
hexaédre octogone variable cir-
conscrit , lequel sera constamment
inscrit & une troisiéme surjace
Jixe du second ordre.

2.8 Les poinis mobiles d'inter—-
section des surfaces conigques cir-
conscrites a la seconde .s'm"face
dont les sommels scront cenz di
iriangle, seront les sommets d'un
hexaédre octogone variable, cons+
tamment inscrit @ une qualriéme
surface fize du sccond ordre.

Et , si le triangle et langle triddre sont polaires réciproaues

Pun de lautre, les deux octaidres hexagones et les deux hexaé-

dres octogones seront aussi polaires réciproques les uns des au-

tres , chacun & chacun.

Le 2.° de la page 83 doit étre lu de la maniére suivante ;

2.° 87, par un point fixe , on conduit trois plans mobiles , cons=
tamment paralléles & trois points diaméiraux conjugués d'une sur-
Jace fixe du second ordre , les plans tangens & la fois aux cour-

bes suivant lesquelles ces trois plans couperont une deuziéme sur-
Jace fixe du second ordre, seront les faces d'un octatdre hexg-



ESSENTIELLES. 123

gone vartable constamment circonscrit & une troisiéme surfuce fixe
du second ordre.

Enfin nous observerons que le dernier théoréme du mémoire ( pag. 85 )

n’est autre que le théoréme du n.® 17 ( pag. 78 ) reproduit sous une
autre forme (¥).

(*) Nous saisissons avec empressement cette occasion pour témoigner mno-
tre regret de ce que quelques personnes aient semblé prendre le change
sur le sens de la note qui se trouve placée au bas de la pag. 309 de notre
XVIIf.e volume. Il est certes hien loin de notre pensée de vouloir dispu-
ter 4 M. Chasles la propriété de son beau théoréme sur les projections
stéréographiques , théoréme dont il est en possession depuis plus de qua-
torze ans. Notre but était uniquement, en écrivant cette pote, d’informer
ceus de nos lecteurs qui pouvaient lignorer, que ce théoréme est aujour=
d’hui bien connu et journellement appliqué par les géomdétres allemands ,
soit que quelqu'un d’entre eux y soit aussi parvenu de son cbté, soit, plus
probablement, qu'ils en aient pris counnaissance dans la Correspondance sur
LEcole polytechnique et dans le Traité des surfaces du second degré, de M,
Hachette; ouvrages qu'ils citent assez fréquemment.

Nous n’avons entendu parler , au sarplus , que de la premiére partie du
théoréme, et non de la seconde , comme pourrait le faire croire la ma-

nicre dont il a été rendu compte du mémoire dans le Bulletin universel
{ juillet 2828, pag. 15 ).
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ANALYSE ALGEBRRIQUE.

Note sur un symptéme dexistence de racines
imaginaires, dans les équations algébriques;

Par M. GERGONNE.

AAVVVVIVIRNR TR VRATVAARAARAR

IL a été démontré, dans le XVI.® volume du présent recueil ( pag.
385 ), qu'autant on rencontre , dans une équaticn alglbrigue, de
séries de trois termes consécutifs formant une proportion coniinue
par quotiens , autant I'équation a de covples de racizes imeginai-
res au moins.

Bans une lettre qu’il nous a fait 'honnear de nous- adresser
il y a déja un pen de temps, M. Dupré, éléve distingué de I'Fcole
normale du collége royal de Louis-le-Grand, et qui, comme onl'a vu
( tom, XVIII,; pag. 68), s’est aussi occupé des symptémes d’existence
des racines imaginaires dans les équations , objecte contre cette propo-
sition qu’il s’ensuivraitqu’une équation compléte du troisicme degré,
dont les quatre termes forrieraient.une progression par quotiens,
devrait aveir quatre racines imaginaires.

Mais il résulte clairement de la démonstration méme , donnée &
V'endroit cité , que , dans le cas de plusienrs séries de trois termes
consécutifs formant une proportion continne par quotiens, la pro-
position ne saurait étre vraie qu’autant que les plus voisines de
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ces séries de trois termes conséculifs n’auraient au plus qu'um
terme commun, ce qui ne saurait avoir lieu dauns le troisiéme de-
gré. L’équation du degré le moins élevé, dans laquelle on pourra
rexcontrer deux séries drsjointes de trois pareils termes, sera dong
une équation du quatr/iéme degré. Elle sera de la forme

a*xédaziA - bat-br==0

qui revient

{ex’ L (14 y/Bab=3) 2L} {aa’ S L (1 —y/ Tat=d)a 40} =0 ;

et qui a, en effet, ses quatre racines imaginaires.

M. Bupré, qui s'occope aussi de recherches d’'un ordre plus
élevé , observe, dans la méme lettre , gn'an lien de réduire les
fonciions elliptiques , comme on le faii ordinairement aux trois

dx xdx )
(x2+alﬁ ’ H 4

o' =/ A4Bx>+Cxt, on pourrait les réduaire seulenient aux deux

formes

dernieres formes , attendu que la premiére n'est qu’un cas particulier
ue la secconde. On a, en efiet, comme le prouve la différentiation ,

RV Arc. (Sm..... V y y_.-—— ‘+;V
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X & o de
qui donnera / =, lorsqu’on saura intégrer —,
R 2 A
(=Y )

ui rentre dans de
qut a (x24-a) R *

4 14 |4 ¥
GE@METREE ELEMENTAIRE,
Rectification approchée de la circonférence ;
Par M. Specar, étudiant en philosophie & Berlin..

AUVIVIRRARAAARNARRY

Oxa

33146
! i“ =3,14159]953-nuw 5

mais on Sait que

= 3, 14 1 592653...-.;:- >

voild donc une expression finie du nombre = qui n’est pas fautive
d’un millioniéme Q'unité.

Or, cetle expression peut éire mise sous la forme
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r 13 1T \?
22T

et alors elle sera facile & construire graphiquement, ainsi que Vaire
approchée d’un cercle dont le rayon sera donnd (*),

( Extrait du Journal de M. Crclle, tom. IIT, pag. 83 |

(*) Quelque apprechée que soit cette expression, elle est moins toutefeis
que la formule

5 80V 10 -
o= BV 3 205926536 et
240 ’

que nous avons fait copmaiire dans le VIIL® volume du présent recueil
{ pag. 252 ).
J.D. G
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PROPOSKEES.

QUESTIONS

PROPOSEES.

Théorémes de géométrie proposés & démonirer

Par M. J. SteinER, de Berlin,

AN

SOIENT , sur un méme plan, six
points dont trois sur une droite
et trois sur une autre. St lon
joint, deux & deux, les pointsd’une
série & ceux de l'autre série par
neuf droites, ces droiles se cou=
peront, dcux & deux, en diz-
kuit nouveaux points distribués,
trots & trois, sur s7z droites qui
concourrownt elles-mémes , trois A
trois , en Jewx nouveaux points,

SOIENT , sur un méme plan, siz
droites dont trois concourant en
un point et trois en un autre. Les
droites d’'une série auront, avec
celles de I'auntre série, neuf points
d’intersection ; ces points déter-
mineront, deux a deux, dix-Auit
nouvelles droites concourant, trois
a trois , en sZx poiuts qui seront

© enx-mémes, rois i trois, sur deuz
nouvelles droites.




SURFACES ALGEBRIQUES DE TOUS LES DEGRES. 1ag

GEOMETRIE ANALYTIQUE.

Recherches sur les surfaces algébriques de tous
les degrés ;

Par- M. le docteur Prucker, professeur & I'Université de
Bonn,

AAAMAAA MAA AN AMAA MAA MM AAA AMAA MAANMAA MANMAA MAR
§. L

ON sait que nezf points sont nécessaires dans I'espace , pour de-
terminer complétement une surface du second degré, et que, géné~
ralement parlant, on n’en saurait faire passer qu'une seule par neuf
points donnés : d’ou il suit qu'une infinité de surfaces de ce degré
peavent passer par les huit mémes points. On ne saurait donc étre
surpris , d’aprés cela, de voir trois surfaces du second degré se
couper en Auif points,

Mais on sait aussi que diz-neuf points sont nécessaires pour dé-
terminer cowmplétement une surface du troisiéme degré, et qﬁ’en
général , il n’en saurait passer plus d’une par dix-neuf points don-
nés; et on doit, en conséquence , éprouver quelque surprise en
considérant que trois surfaces du troisiéme degré se coupent en
vingt-sept points,

Pareillement , frente-quatre points de 'espace déterminent com-
plétement une surface conique du quatrieme degré; et néanmoins
trois surfaces de ce degré peuvent avoir entre elles sofzante-qua-
fre points communs.

En général, le nombre des points de l’espace nécessaires pour

Tom., XIX , n° V¥V, 1.5* nopembre 1828. 18
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- . ; m-1
la détermination compléte d’une surface du m.*™ degré est ——=

-—3— =1, elces points n’en déterminent qu’une seule. D’un
2

autre coté, trois surfaces de ce degré peuvent se couper en m?
points de D'espace. Si donc on choisit le nombre entier 7z, de telle
m-+41 m-42 m+43
1 2 3
arrivera toujours pour m>2, on aura un extmple de trois sur-
faces du méme degré, assujéties 4 passer par plus de points qu’il
n'en faudrait pour la détermination compléte d’une seule d’entre
elles.

sorte que m3 soit plus grand que —1, cequl
p 8 q

Voild donc un paradoxe apparent tout a fait analogue & celui
qui nous a déji eccupé , relativement aux lignes courbes, dans un
précédent article , et qui s’explique, comme celui-la, en considé-
rant que, lorsqu’on parle du nombre des points de I'espace né-
cessaires et suffisans pour la détermination compléte d’une surface ,
on sous-entend toujours qu’il s’agit de points pris an hasard dans
l'espace , n’étant liés entre eux par aucune relation; et que tels ne
sont point, en général , les m*® points d’intersection de trois sur-
faces da m.™ degré.

Ce paradoxe donne naissance 3 des théorémes analogues & cenx
que nous avons déduits, 4 la pag. 97 do présent volume, du sem-
blable paradoxe relatif aux lignes courbes ; théorémes non moins
féconds que ceux-1d en conséquences curieuses, et dont la recher-
che va présentement nous occuper.

§ 1L

Deux surfaces du m.* degré se coupent, comme l'on sait, sui-
vant une courbe & double courbure, dont la projection sur un plan
quelconque est, en général, une courbe du (m*)*™ degré; et trois
pareilles surfaces se coupent, comme nous venons de l'observer,
en m*® points au plus,
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Soient donc

.ﬂf:o', M'=o0 M=o ;

4

les équations de ces trois surfaces; l'équation
pM—A4-p M 4-M" =0 ,

dans laquelle p et p/ sont supposées des constantes indéterminées ,
sera celle de toutes les surfaces du m.*™ degré, passant par les m3
points d’intersection des trois premiéres; de sorte que, bien que
ces points soient, en général, en plus grand nombre qu’il n’est
nécessaire pour déterminer complétement une de ces surfaces, ils
les laisseront toutes néanmoins indélermindes. Mais si I'on se donne
seulement deux points de plus, ces derniers, joints aux 7? autres,
détermineront complétement une de ces surfaces ; car ils donneront
naissance & deux déquations de conditions lindaires en p et p/, qui
sufiront pour déterminer ces deux coefliciens, et , par suite, pour
particulariser la surface cherchée.
Remarquons , en outre , que les équations

pMAMI=0 ;  wM/A+M'=0 , pM-4pM=o,

représentent respectivement toutes les surfaces du m.™ degré pas—
sant par les courbes & double courbure, intersections deux 2
deux des surfaces proposées. Une surface du . degré n'est donc
pas déterminée par la seule condition de passer par les courbes &
double courbure , intersections de deux autres surfaces de ce degré.
Mais ici un seul point de I'espace par lequel une de ces surfaces,
en nombre infini, sera assujélie a passer, suflira pour la déter-

miner complétement; car il en résultera une équation linéaire, soit
. . 174
en p, soit en p’, soit en — , suffisante pour fixer la valeur de
P .

ce coeflicient,
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On voit par la que toutes les surfaces du 7.*™ degré qui pas-
sent par les m* points d’intersection de trois autres surfaces de ce
degré, et en outre par un point donné, ont la méme courbe d’in-
tersection,

Concevons présentement que, sur la courbe d’intersection de deux
m-4-1 m-2

2

m<+3 . . . . -

3— =2 poiuts; si I'on y ajoute un nouveau point quelconque
de l’espace, une troisiéme surface, assujétie & passer par tous ces -
points , sera complctement déterminée ; mais nous venons de voir
qu’elle le serait aussi, si on Dassujétissait & passer par ce méme

surfaces du m./*™ degré, on prenne arbitrairement

point et par la courbe d’intersection des deux premiéres; en in-
voquant donc le principe de dualité,, on aura ces deux théorémes:

THEOREME I. Toutes les sur- THEOREME I. Toutes les sur-

Saces du w.*™ degré qui passent
m--1 ma m+43
3

2

4
par les —2mé-

mes points, se coupent , en géné-
ral , suivant une méme courbead
double courbure.

Donc, en particulier ,

Corollaire. Toutes les surfaces
du second ordre qui passent par
les huit mémes points, se cou-
pent suivant une méme courbe a
double courbure.

Jaces de m>™ classe qui touchent
m-1 m$2 m-43
les “——""3

I 2

2 M8mes

plans , sont , en général , circons-
crites & une méme surface dé=

veloppable.

Corollaire. Toutes les surfaces
du second ordre qui touchent les
huit mémes plans, sont inscrites
4 une méme surface développa-

ble.

De méme , trois surfaces du 7. degré se coupant en m?* poinis ;

m-4-2 m43
3

si 'on prend mTI

—

3 de ces points, et qu'on y joigne

deux points quelconques de l'espace , une quatriéme surface de ce
degré sera tout aussi complétement déterminée, par ce systéme de
points , qu’elle le serait par les deux derniéres et par la totalité des
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m? points d'intersection des trois premiéres ; en invoquant done
encore ici le principe de dualité, on aura ces deux théorémes :

THEOREME II. Toutes les

surfaces du m.*™ degré assujéties

m4r m+2 m$3

a passer par 3 -3

points donnés , passent en outre
m+41 m+42 m<43

2z 3 +3

par les m*—

mémes poinis fixes.
Donc , en particulier,
Corollaire. Toutes les surfaces
du second ordre qui passent par
sept points donnés, ont en ou-
tre un huitieme point commun (*).

THEOREME 1II. Toutes les
surfaces dem.*™ classe assujéties
m+41 m-a2 m3 3

2 3

& toucher

plans donnés , touchent en outre
mer w2 m3

I 2 3 +3
mémes plans fixes.

les M3

Corollaire. Toutes les surfaces
du second ordre qui touchent sept
plans donnés , ont en outre un
huitiéme plan tangentcommun (*),

{* Dansle troisiéme volume du Journal de M. CRELLE ( pag. 200 et 205),
on recontre ces deux théorémes fort analogues 4 ceux-la,

THEOREME. Toutes les surfaces du
second ordre gqui passent par sept des

THEOREME. Toutes les surfaces du

second ordre qui touchent sept des hu.t

huit sommets d’un hexaédre octogone , faces d'un octaédre hexagone, touchent

passent aussi par le huitiéme et lui sont aussila huitidme et lui sont conséquem=

conséquemment circonscrites.

ment inscrites.

Un anonyme démontre le premier de ces théorémes , par un calcul direct
qui n'est pas dépourvu d’une certaine élégance ; M. Steiner en déduit lau-

tre par la théorie des polaires réciproques.
Le premier de ces théorémes, le seul qu’il soit nécessaire de démontrer,
nous parait pouvoir étre assez simplement établi comme il suit:

Soient

M=o ,

M=o ,

Mr=o , K3

trois équations du second degré en x,y, z, dont chacune esprime deus
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Ici encore , comme nous l'avons déja remarqué pour les lignes
courbes , on pourra admettre que tous ou partie des points fixes
donnés se confondent par groupes plus ou moins nombreux en
un point unique , auquel cas les surfaces dont il s’agit auront, en
ces points, des contacts d’ordres plus ou moins élevés.

On peut également ici, comme alors, remplacer chaque poiat
donné de la surface cherchée, soit par I'vn des coefficiens de son
¢quation, soit par une équation linéaire entre tous ou partie de ces
coefliciens. Nos deux théorémes ses changeront ainsi dans les deux
théorémes plus généraux que voici : ‘

THEOREME III. Etant donnés n cogfficiens de Péquation gé-
nérale du m.*™ degré, & trois indéterminées , ou encore , ¢tant
données n équations linéaires entre tous ou partie de ces cocffi~
ciens , toutes les surfaces représentées par I'équation générale ainsi
m--1  m4-2 m-}-3 — (n2) me-

1 2 3

modifide , et passant par les

plans ; elles seront satisfaites toutes trois par Tes coordonnées des sommels de
I'hexaédre octogonme gui aura ces couples de plans pour les plans de leurs

faces opposées; or, tout point qui satisfera & ces trois équations satisfera
aussi & I'équation du ‘second degré

M4/ M4-M'"=0 ,. (2) -

dans laquelle g et x’ sont deux constantes indétermindes; donc , cette,
derniére est 1'équation commune & toutes les surfaces du second ordre cir-
conscrites 4 l'hexaédre octogone dont il s’agit; et , comme d’ailleurs, cet
hexaedre se trouve visiblement déterminé par sept de ses huit sommets, il
s‘ensuit que , pourvu qu'une surface du second ordre passe par ces sept
sommets , elle devra nécessairement passer par le huitiéme.
Au surplus, ce théoréme se trouve aussi compris dans le théoréme V de
la pag. 246 de notre XVILe vol.
’ J. D. G.
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mes points fixes , se couperont suivant une seule et méme courbe
@ double courbure.

Donc, en particulier ,

Corollaire. Etant donnés n coefliciens de I'équation générale du
second degré, a trois indéterminées, ou encore, étant données n
équations linéaires , eutre tous ou partie de ces coefliciens ; toutes
les surfaces représentées par I'équation générale ainsi modifiée, et
passant par les 8—z» mémes points fixes, se couperont suivant ane
seule et méme courbe & double courbure.

THEOREME 1V. Etant donnés n coefficiens de l'équation gé-
nérale du W™ degré, & trols indéterminées, ou encore, étant
données n éguations linéaires entre tous ou partie de ces coeffi-
ciens , toutes les surfaces représentées par l'équation générale ainsi
m-4t m-4-2 m-3

LR P (043) mé-

m--1

mes points fixes donnés , se couperont, en outre , aux M3— —— -

I
m<-2 m--3 .
_ —_,;_—-[—(11-{-3) , autres mémes points fixes,

Donc, en particulier,

modifiée , et passant par les
I 2

Corollaire. Frant donnés n coefliciens de I'équation générale du
du second degré, a trois indétermindes, ou encore, étant données
n équations lindaires , entre tous ou partie de ces coefficiens, tou-
tes les surfaces représentées par I'équation générale ainsi modi-
fide, et passant par les 7—n mémes points fixes donnés , se cou-
perout, en outre, aux n-1, autres mémes points fixes,

Il est essentiel d’observer que , dans tout ceci, on suppose
que I'ua des termes de I'éguation générale est privé de son coeffi-
cient ; ou, ce qui revient au méme, que le coeficient de I'un de
ses termes est une quantité donnée,

On fera, de ces diverses propositions, un usage pareil & celui que
nous avons fait, pag. 102, de leurs analogues relatives avx lignes
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courbes.. On en déduira, par exemple, sans aucune sorte de cal-
cul, les propositions suivantes :

I. Toutes les surfaces du second ordre passanl par six points
donnés, et assujéties, en outre, & cette condition que les plans dia-
métraux , conjugués a des diametres. paralléles & une droite fixe, se
coupent tous en un point donné, passeront en outre par deux nou-
veaux points fixes. :

-1I. Toutes les surfaces du second ordre passant par cinq points
donnés, et assujéties en outre & une des conditions suivantes : 1° que
les plans diamétraux conjugués & des diamétres paralléles & une
droite fixe,se coupent tous suivant une méme droite ou soient pa-
ralléles & un méme plan; 2.° que les diamétres conjugués & des
plans diamétraux paralléles concourent en un point donné ou soient
paralléles 3 une droite donnée, passeront en outre par trois nou-
veaux points fixes,

~ HIL Toutes les surfaces du se-
cond ordre passant i)ﬁl‘ six points
donnés, et assujéties en outre A cette
condition que les plans polaires
d’'un méme point donné se cou-
pent tous en un autre point donné,
passeront par deux nouveaux
points fixes.

IV. Toutes les surfaces du se-
cond ordre passant par cinq points
~donnés , et assujéties en outre
cette condition que les plans po-
laires d’'un méme point se cou-
pent tous suivant la méme droite,
passeront en outre par troisnou-
veaux points fixes.

Y. Dans toutes les surfaces du

II. Toutes les surfaces du se-
cond ordre touchant six plans
donnés , et assujéties en outre i
cette condition que les pdles d’un
méme plan donné soient tous
dans un autre plan donn¢, tou-
cheront deux nouveaux plans
fixes.

IV. Toufes les surfaces du se-
cond ordre touchant cinq plans
donnés, et assnjéties en outre &
cette condition que les pdles d’un
méme plan soient tous situés sur
une méme droite , toucheront en
outre trois nouveaux plans fixes.

Y. Dans toutes les surfaces du
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secoud ordre passant par sept
poiats donnés, les plans polai-
res d’un point quelconque se cou-
pent tous en un autre point fixe.

VI. Dans toutes les surfaces du
second ordre passant par huit
points donnés, les plans polaires
d’un point quelconque se coupent
tous suivant une méme droite
fixe.

139
second ordre touchant sept plans
donnés , les péles d’un plan quel.
conque sont tous situés daus un
autre plan fixe. '

VI. Dans toutes les surfaces du
second ordre touchant huit plan;
donnés , les poles d’un plan quel-
conqﬁe sont tous situés sur une
méme droite fixe.

VII. Dans toutes les surfaces du second ordre passant par sept
points dounnés, les plans diamétraux conjugués aux diamétres pa-

ralléles & une méme droite fixe, se coupent en un méme point fixe,

VIII. Dans toutes les surfaces du second ordre passant par huit
points donnés, les plans diamétraux conjugués aux diamétres pa-
ralléles a4 une méme droite fixe, se coupent tous suivant une au-

tre droite fixe.

IX. Toutes les surfaces du se-
cond ordre, assujéties a la condi-
tion que les plans polaires de
quatre points donnés passent res-
pectivement par quatre droites
données , ont la méme courbe
d’intersection.

Et. , etc., ete,

Tom. XIX.

IX. Toutes les surfaces du se-
cond ordre , assujéties a la con-
dition que les poéles de quatre
plans donnés soient situés respec-
tivement sur quatre droites don-
nées , sont inscrites & une méme’
surface développable.

Bonn, 8 juin 1828,

19
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GEOMETRIE DE SITUATION.

Recherches sur les lois générales qui régissent
les surfaces algébriques ;

Par M. BogiLLieg , professeur 3 I'Ecole des arts et mé-
tiers de Chélops-sur-Marne,

INAVVIARAWTIRAARANANIWARNA

NOUS nous proposons , dans ce qui.va suivre , de revenir de nous
veau sur des propositions déja démontrées, pour les établir d’une
maniére 3 la fois plus simple, plus. directe et plus générale.

Soit une surface quelconque du 7™ degré, rapportée A trois
axes quelconques et exprimée par-1’équation

M:o-, | (1)

A

en -z, y et z. L’équation du plan tangent 4 cette surface, en 'un
quelconque (a/,y/,z' ) de ses poims, sera, comme l'on sait,

v

dx, et O ) T e=)=0 . (2)

les coordonnées 27, y/, 2/ du po,mt de contact élant lides par I'é~
4 .
quation de relation

M=o . 3)

Si, laissant 2/, ', Z’ indéterminés, on veut profiter de lenr
indétermination_pour assujélir le plan tangent & passer par un point
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(a,%,c¢), donné dans lespace, il faudra exprimer que I'équa-
tion (2) est satisfaite en y faisant simultanément z=¢, y=0, z2=¢,
ce qui la changera en celle-ci:

dnr dw

T e+ T Gy T (—)=o

ou, ce qui revient au méme,

dmr

¥ (@ a)+ (y -—5)+ (Z —)=0; (4

de sorte que les points de contact des plans tangens a la surface
(1), 1issus du point ( @, b, ¢ ), seront donnés-par le sysiéme des
deux équations (3) et (4), ou, ce qui revient au méme, par la
combinaison de 'équation (1) avec l'équation

it (ot 3 S U=+ L G—o=05 ()

ces points seront donc cenx ol la surface proposée sera coupée par
celle qu’exprime I'équation (5); c’est-d-dire , qu'ils seront ceux d’une
certaine courbe & double courbure, Mais, d’'un autre céié, il est
visible que, si une surface conique ayant son sommel au point
(a,5,c), est circonscrite & la surface (1), tout plan tangent 2
cette surface conique le sera aussi & la surface (1) et passera par
le point (@, 5, c); donc la Courbe*de contact de la surface (1),
avec la surface conique circonscrite ,” ayant son sommet en (‘a , b,
"¢ ) est le lieu des points de contact de cetle sirface (1)avec tous
ses plaus tangens issus du point (@, 4, c); donc enfin la ligne
de contact de cette surface (1), avec la surface conique circonscrite
qui a son sommet en (a,4,c), est donnée par le systéme des
_équations (1) et (5); d'ott I'on voit que cette courbe de contact
est situce dans la surface exprimée par I'équation (5); elle appar-
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tient donc au plus & une surface du m." degré, comnie la pro-
posée ; mais nous allons voir qu'elle appartient réellement & une
surface d’un degré moindre. ' ;
Lorsqu’une courbe & double courbure est donnée dans I'espace
par le systéme de deux équations en z, y, z, elle l'est également
par le systtme de l'une d’elles et d’une combinaison quelconque
de l'une et de l'autre. En conséquence, puisque la ligne de con-
tact du céne circonscrit, qui a son sommet en (a,b,c ), est don-
née par le systeme des équations (1) et (5), elle le sera aussi par

la premiére de ces équations combinée avec I'équation

L

dam dM aM
T =t O (r=b T ==l 5 6

.
laquelle sera ainsi, comme I'équation (5), celle d’une surface cou-
pant la proposée suivant la courbe de contact cherchée. Or, en
vertu du théoréme connu sur les fonctions homogénes, tous les’
termes de 7 dimensions en x, y, z disparaissent de cette équa=
tion qui ne s’éléve conséquemment qu'au (m—1)*" degré; donc -
la courbe de contact se trouve sur une surface qui ne saurait
excéder ce degré; de sorte qu’en recourant au principe des polai-
res réciproques on a ces deux théorémes ;

THEOREME I. La courbede ~ THEOREME I. La surface
contact d'une surface du m.*™ de- développable circonscrite & une
gré avec une surfdce conique cir- surface de m.*™ classe, suivant
conscrite , appartient & une au- son inlersection avec un plan ,
tre surface du (m—1)""* degré itouche une autre surface de
au plus (*). (m—1)*™ classe au plus.

(* M. Poncelet observe , avec beaucoup de raison ( Bulletin des sciences
"mathématiques , mai 1828 , pag. 301 ), que c’est par erreur que M. Bobillier
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Cette surface du (m—1)*" de-
gré est ce que nous avons appelé
(Annales, tom. XVIII, pag 258)
da surface polaire du sommet du
cone, par rapport & la surface a
laquelle il est circonscrit,
dérée comme directrice.

consi-
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Cette surface de (m—1)*™ classe
est ce que nous avons appelé
( Annales,tom. XVIII, pag. 258 )
la surface polaire du plan cou-
pant , par rapport & la surface
coupée par ce plan, considérée
comme directrice,

Si le sommet (a,d,c) de la surface conique circonscrite
est mobile sur une drioite donnée par les équations =0z , y=0z,
on devra avoir ¢==ac , b=0c , ce qui changera I'équation (6) en

celle-ci

( '+J’ ™ _|..z (l-]z —mM) — (oc —E -}-ﬁ I %?)‘—:05 (7)

laquelle sera satisfaite , quel que soit ¢, en posant séparément

am dM  am

aM dM dM
_;+ya—y-+z-é;=mM. oca-;-{—ﬁ:]— =4 =©° - )

Or, en faisant ainsi courir le sommet de la surface .conique cir-
conscrite le long d'une droite, les plans tangens & la surface (1),
conduits par cette droite, ne cesseront pas d’étre tangens 4 cette
surface conique et auront conséquemment, avec la surface (1), les
mémes points de contact qu'elle ; donc on obtiendra ces points de
contact en combinant I'équation (1) avec les deux équations(8);
donc les équations (8) expriment une courbe & double courbure

et nous, avons attribué ce théoreme & M. Valles,

formellement énoncé , bien que sans démonstration , dans I'Adpplication de

Vanalyse & la géométrie de MonGk ( édit. de 1807 , pag. 15 ). Cela prouve que

nous ne devons, ni Pun ni l’autre , lutter de mémoire avec M. Poncelet,
J. D. G.

attendu qu'il se trouve
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qui perce la surface (1) d ses- points de contact avec les plans tan-
gens issus de la droite: donnée. par les équations r=az, y=pfz;
et, attendn que ses équations sont l'une et l'autre du (m—1)*"™
degré seulement , le nombre des points de contact., et par suite ce-
lui des plans tangens, ne pourra étre supérieur & m(m—:)’; on a

donc ces deux théorémes :

THEOREME 'II. Par une
méme drotte on ne saurait con-
duire & une surface du wm.™
degré plus de w(m—1)* plans
tangens. Leurs points de contact
avec elles sont tous situés sur une
courbe & double courbure, in-
tersection de deux surfaces du
(m—1)*™ degré.

Cette courbe & double cour-
bure est ce que nous avons ap-
pelé ( Annales’, tom, XVIH,
pag. 258 ) la courbe polaire de
la droite par laquelle les plans
tangens sont conduils, par rap-
port & la surface qu’ils touchent,
considérée comme directrice.

THEOREME 1II. Une méme

droite ne sauraitpercer une sur-
Jace de .m.*™ clusse en plus de
m{m— 1)* pornts. Les plans tan-
gens par ces points touchent tous
une méme surface développable ,
ciyconscrite & deux surfaces de
fom—1)= classe (*).
- Cette surface développable est
ce que nous avons appelé ( An-
rales , tom. XVIH, pag. 258 )
la surface développable polaire
de la droite qui perce la surface
‘proposée , par rapport i cette sur-
face considérée comme direc-
trice,

Si, dans les équations (8), on suppose « et f3 variables, ce qui

(*) Cela ne veut pas dire que la surface polaire d’une surface du m,im* de«

_gré soit jamais une surface du [m(n—=1)2]*7* degré ; mais uniquement qu'elle
me saurait jamais étre d’'un degré plus élevé. Ainsi le théoréme de M. Pon-
celet sur le degré de la surface polaire d'une surface proposée, théorime
qui pourrait fort bien d'ailleurs &tre vrai, est encore & démontrer, comme
Tont fort bien remarqué MM, les Commissaires de 'Académie royale des
sciences ( Bulletin des scicnces mathématiques o avril 1828, pag. 227 ).

© JD. G
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revient & faire tourner notre droite aatour de l'origine, d’'une ma-
ni¢re tout & fait arbitraire ; sa courbe polaire variera sans cesse de
situation , mais elle ne quittera pas la surface exprimée par la pre-
micre de ces deux équaiions, puisque cette équation est indépen-
dante de « et ; or, ceite surface n’est autre (6) que la surface

polaire de l'origine ; on a douc ces-deux théorémes :

THEOREME III. 87 une
droite tourne dans lespace au-
tour de l'un quelconque des points
de sa direction , sa courbe po-
laire , relative @ une surface quel-
congue du wm*™ degré, décrira
la surface polaire de ce point.

THEOREME III. Si une
drotte se meut dans lUespace sur
unplan fixe , sa surface dévelop-
pable polaire , relative a une sur-
Sace quelconque de mJ*™ classe,
sera constamment tangente & la
surface polaire de ce plan.

Si l'on pose p=FKa, ce qui revient & supposer que notre droite,
située dans le plan des xy, a pour équation y=kx, la derniére

des équations (8) deviendra

aM dMr dM
i ko — —_—
o dx + * dy dz 2

dam
dy —-0 L

Ces équations , avec la premiére des équations (8), déterminant
(m—1)? points fixes , il en résultera ces deux théorémes:

THEOREME IV. Si une
droite tourne autour de l'un des
points de sa direction dans un
plan quelconque passant par- ce
point , sa courbe polaire , relative
& une surface quelcongue du
m, "™ degré , variable avec elle ,

THEOREME 1V. Si une
droite se meut dans un plan de
maniére & passer conslamment
par un méme point de ce plan;
sa surface développable polaire,
relative & une surface quelcongue
de m.™ classe, variable avecelle,
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passera constamment par (m—1)?
poinis fizes , situés sur la surface
polaire de ce point.

Ces points sont ce que nous
avons appelé ( Annales, tom.
XVIHI, pag. 258 ) les points po-
laires de ce plan, par rapport &
la surface proposée , considérée
comme directrice.

SURFACES

touchera constamment (m—1)*
plans fizes , tangens & la surface
polaire de ce plan.

Ces plans sont ce que nous
avons appelé ( Annales , tom.
XVIII, pag. 258) les plans po-
lgires de ce voint , par rapport
a la surface proposée, considérée
comme directrice.

Soit A une constante indétermipée, et soient deux surfaces du
mim degré données par les équations M/=o0, M//=o ; I’équation
générale des courbes de ce degré , passant par leur commune sec-

tion, sera comme l'on sait,

MA- M=o ;

posant donc

(9)

M=M\M"

il viendra, en.différentiant,

aM _dw
dz ~ dx
dM _ am
dy - dy
dM dmy
dz =~ dz

+) S

dmr

-

dx *

amr
&

dmr
dz °’

substituant ensuite dans (6), en y faisant «, )/ , ¢ nuls, on ob-
tiendra, pour la surface polaire de l'origine, relativement 3 la

surface directrice (9) ,
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amr

ou bien

dnmr dm

dm amr
x -——-I-_y 5 +z-——- —-—mM-«}-)(x — y — ™
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dmr dmr
- t& 5 —mH" )=o.

Or, quelle que soit la valeur attribude & la constante arbitraire 1,
cette surface polaire passe évidemment par la courbe & double cour~
bure donnée par les deux équations

dnr amr dmr
z — =mM ,

w e —
dx dy * dz

dnMr dmr dnMn
z dx ¥ dy e dz

=mM",

lesquelles ne sont l'une et l'autre que du (m—1)*" degré seule-

ment;

THEOREME V. 8¢ tant de
surfaces du w'™ degré qu'on
voudra se coupent toutes sui-
vant la méme courbe ¢ double
courbure ; les surfaces polaires
d’'un point quelconque de l'espace,
relatives @ toutes celles-la, se
couperont toutes ausss suivant
une méme courbe & double cour-
bure , intersection de deux sur-
Jaces du (m—1)*™ degré seu~
lement.

on a donc ces deux théorémes :

THEOREME V.- Si tant de
surfaces de m.™ classe qu'on
poudra sont toutes inscriles a une
méme surface développable ; les
surfaces polaires d'un plan quel-
congue , relatives a toutes celles-
I, seront toules aussi inscrites
& une méme surface déceloppa-
bile , circonscrite @ devx surfa-
ces de (m—1)™ classe seule-
ment.

C’est 12, comme l'on voit, la premiére partie des deux théoré-

mes de la pag. 262 du précédent volume, et les quatre autres se-
raient tout aussi faciles & établir,
Si Péquation M=o est homogene en EAVERE elle exprimera le
Tom, XIX 20

damw dnr dn dm amr , "

(10)
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systéme de m plans passant par l'origine ; et conséquemment leg
surfaces comprises dans I'équation (9) auront # plans cordes com-
muns , issus d’un méme point; or, ;‘i cause de '’homogénéité de M,

on a identiquement

dmpr dp
X — —
dx r dy

an moyen de quoi l'équation (10), de la surface polaire de I'ori-

1

gine , se réduit simplement &

dny
z dx

dnr

any

- —— — 7
-y 3 —+z 0 mM’

de sorte que cette surface polaire est alors indépendante de la cons~
tante arbitraire ); on a donc ces deux théorémes :

THEOREME V1. Si tant de
surfaces du m.*™ degré gu'on
voudra se coupent toutes suivant
les m mémes courbes planes du
m. ™ degré, dont les plans pas-
-sent lous par un méme point ;
ce point n'aura gqu'une surface
polaire unigue par rapport a tou-
tes les surfaces proposées; la-
quelle surface polaire contiendra
conséquemment les courbes de
eontact de toutes les surfaces co-
nigues circonscrites , ayant leur
sommet en ce méme point.

THEOREME V1. S/ tant de
surfaces de m.*™ classe qu’on
poudra sont toutes inscrites aux
m mémes surfaces coniques de
m.*™ classe, ayant leurs som-
mets dans un méme plan; ce
plan n'aura qu'une surface po-
laire unique , par rapport & tou-
tes les surfaces proposeés ; la-
quelle surface polaire sera con-
séquemment inscrite @ toules les
surfaces développables circonseri-
tes & ces surfaces , suivant lears
Intersections avec ce méme plan.

En supposant, en particulier, m=2, on déduira de li ces deux

propositions connues :
Tant de surfaces du second
.ordre qu'on voudra se coupant

Tant de surfaces du second
ordre qu’on voudra étunt inscri-
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suivant les deux mémes coniques ;
un point quelconque de la com-
mune section des plans des deux
courbes aura le méme plan po-
laire relatif o toutes ces surfa-
ces ; lequelcontiendra leurs lignes
de contact avec les surfaces co-
nigues circonscrites qui auront
leur sommet en ce point.

147
tes aux deux mémes cdnes; un
plan quelconque , passant par les
sommets de ces deux cénes , aura
le méme pdle relatif & toutes ces
surfaces; et toutes les surfaces
coniques circonscrites , suivant
les intersections de tes surfaces
par ce plan, auront leurs som~
mets en ce méme point.

Soient présentement ) et . deux constantes indétermicées , et soient
trois surfaces du m."™ degré , données par les équations M/=o,
M=o, M=o ; I’équation générale des surfaces de ce degré pas-

sant par les m® intersections de

M/+AM//+FM///= Q3

posant donc

celles-1a sera , comme l'on sait,

(1)

M:]ﬂ'-{—)\ﬂ "—[—-{J.M”’ ,

il viendra, en différentiant,

dM dn dMr . dmm
= I ™ o
dM dar +) dMr dMm
& T Ay oy T e’
daM dM/ anm dppm
& - a rPie n e el

substituant ensuite dans (6), en y faisant @, &, ¢ nuls, on ob-
tiendra , pour la surface polaire de l'origine, relativement & la sur-

face directrice (11)
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U oy B e
-}-A[xd—d—M;:”— +y %—f’i +z %g——mll_l” > =o0; (12)
(o oy B B

or, quelles que soient les valeurs attribuées aux deux constantes
arbitraires X et g, cette surface polaire passe évidemment par les
(m—1)* poinis donués par les. trois équations

anr anr an
* o v og e =

an anm amr

[N — — — 17
¢ty g 2 =mi,

avm am dn /”
£ +3: 5 4z P =mM" ;

on a donc ces deux théorémes :

THEOREME VII. Si tant de
surfaces du m.*™ degré gu’on
voudra passent toutes par les
~m?
Jaces polaires d'un point quel-

mémes points fizxes ; les sur-

conque de lespace , relatives &
toutes celles-ld , passeront tou-
tes par le (m—1)? mémes points ,
édgalement fizes.

THEOREME VIL Si tant de
surfaces de m.™ classe qu'on_
voudra touchent toutes les m?® .
mémes plans fizes ; les surfaces
polaires d'un plan quelconque ,
relatives a toutes celles-ld , tou—
cheront toutes les (m—1)® mé-
mes plans , également fizes.

C’est 1a, comme l'on voit, la premiére partie des deux théo~
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rémes de la pag. 267 du précédent volume, et les quatre. autres
seraient tout aussi faciles a établir.

Si les deux équations M=o , M/"/=o0 sont homogénes en x,
y, z, chacune d'elles exprimera 72 plans passant par origine; de
sorte que leur ensemble exprimera m* droites distribuées m 4 m
sur m plans passant par un méme pojnt, et dont chacane percera
en m points la surface donnéde par I'équation M/=o ; alors donc
I'équation (11) exprimera toutes les surfaces de m.™ degré pas—
sant par les m® mémes points, distribués m & m sur m* droites,
situées elles-mémes 7 & m dans m plans se coupant en un méme
point; or, & cause de I’homogénéité de M/ et M/, on aidenti-
quement

amr dm damr
yov——— —— ] (24

x dx Y dy +z dz mM ?
dnm dmm dmn

X ——— — _— 1/ .
ot 5 e =M

au moyen de quoi l'équation (12) de la surface polaire de lori-
gine, se réduit simplement a

de sorte que cette polaire est alors indépendante des constantes ar-
bitraires A et p; on a donc ces deux théorémes :

THEOREME VIII, Si tant de
surfaces du m.'*™ degré qu'on
voudra ont toutes les m® mémes
points communs, distribués m &
m sur m* droites , situées elles-
mémes m am dans m plans , se

coupant en un méme point; ce

THEOREME VIII. Si tant de
surfaces de mi™ classe quon
voudra ont toutes les m® mémes
plans tangens communs, se cou-
pant m a m suivant m* droites
concourant elles-mémes m & m
en m points, silués dans un méme
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point n'aura qu'une surface po-
laire unique , par rapport & tou-
tes les surfaces proposées. Cette
surface polaire contiendra con-
séquemment les courbes de con-
tact de toutes les surfaces comi-
ques circonscrites , ayant leur
sommet en ce méme point.

En supposant, en particulier ,
propositions suivantes :

Soit un hexaddre octogone dans
lequel les douze arétes concourent
quatre & quatre en trois points ;
et soient tant de surfaces du
second ordre qu'on voudra cir-
conscrites & cet hexaddre: lun
guelconque des irois points de

concours des aréles aura , por.

rapport @& toutes ces surfaces ,
le méme plan polaire , lequel
contiendra conséquemment tou-
tes les co}zi.yues suivant lesquel-
les elles seront touchées par les

surfaces coniques circonserites .

qui auront leur sommet commun
en ce pornt:

POLAIRES.
plan 5 ce plan n’aura qu'une sur-
Sace polaire unique , par rapport’
& toutes les surfaces proposées.
Cette surface polaire sera con-
séquemment inscrite & toutes les
surfaces développables circonseri-
tes gqux surfaces dont il s'agit,
suivant leurs intersections avec
ce méme plan.
m=2, on déduira de 13 les deux

Soit un octaddre hexagone dans
lequel les douze aréies soient qua-
tre & quatre dans trois plans ;
el sotent tant de surfaces du se-
cond ordre qu'on voudra inscri-
tes a cet octabdre: lun quelcon-
que des trois plans qui contien-
dront les arétes aura, par rap-
port @ toutes ces surfaces , le
méme péle , lequel sera consé-
quémment le sommet commun de
toutes les surfaces coniques cir-
conscrites suivant les intersec-
tions de ces surfaces par ce
plan. '
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GEOMETRIE FLEMENTAIRE.

Mesure du volume du tétracdre;
Par M. GERGONNE.

NMANVVVLVVVIVVRAANANYA

SoxT un triangle isocile  ACB dont la base AB soit quelconque
et la hautenr égale & une longueur donnée H. Soit construite
une suite indéfinie d’autres triangles isocéles A,C.B,, A.C,B,, A,
CB;, e tels que les sommets du premier soient les milieux des
cétés du triangle ACB, et que les sommets de chacun des autres
soient les milieux des c6tés de celui qui le précéde imméd:iatement.
Il a déja été remacqué ( Annales, tom, XVII, pag. 151), et il
est d’ailleurs facile de voir que ces triangles, tous semblables
et continuellement décroissans, tendront sans cesse A se réduire
4 un point unique P, tellement situé sur CC, ou H quon aura

CC, H
CP= 5=+

Dans la série des longueurs
N CC| ’ C,C’ 9 C.C’ s CSC‘ y C‘Cs PRI TR

chaque longueur sera moitié de celle qui la précéde immédiate~
ment, et, comme la premiére est égale 4 H, on aura

H H H H
CC= = Cac3=—"' ’ C3C0= '8"" ) CCs= l_é- y seeeee 3

on aura donc, d’aprés cela,

C,C,=C,C,—C,C,= .’z- ,
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l " H
C.Cs;c;c‘—‘C605———é' »
fI
C;C,-—-C;Cs"‘c C 4 ’

op

C P——— "—' —-C C;+CQC5+C5C7+C7CS+-Q1» ’

~ donc, en Sublituant

H :
3 + 16 + 64 + 256 + )

1024

Cela posé , soit T un tétraédre quelconque dont la base soit
B et la hauteur H; on sait ( voy. Euclide ou M. Legendre )
quil peut étre décomposé en deux prismes triangulaires équivalens

et en deux tétraddres égaux ; que chacun de ces prismes triangu-
‘o L. B H . BH . .
laires a pour mesure X TE=5 de sorte que le volume to-
T a

H . ,
tal des deux est B X Si donc on représente par 7, chacun.

des tétraédres qux, avec eux, formem le tétraédre donné , on aura
=B ‘— +zT L.

Si V'on désigne respectivement par B, ‘et M, la base et la hauteur
de chacun des téiraédres T, , et qu'on les décompose de la méme
maniére, en désignant par T chacun des deux tétraédres qui ré-
sultent de la décomposition de chacun d’eux, on aura de méme

H,
T,:B,X —Z- +21’, '

et ainsi de suite; de sorte qu’on pourra écrire indéfiniment
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T=B>(1;-£+2T,, \

T,—=B,% }—I-'--]- T,;

T,=B,% T 2T,

@ 0 ¢ o s 8 o s 0 @ o

En prenant la somme des produits respectifs de ces équations par
1,2,4,8, wa. et réduisant, il viendra

H,
T=Bx —4- “+2B,% ‘——- +4B X — +8B3>< —+.,. ’
ou bien
H H, H, H, .
T-—-BX "'4" +4B,X '8""+IGBQ>< ;E"+64Bax 'é"z', +.u- [

mais on a

B: 4B,='-16B,=64B5=.uu H

donc

T:B.(-;i + 5+ l6+33+ LR

et comme on a d’ailleurs

H _H H H
H‘:‘—‘? 2 H'::T N H3:-8—' > H‘i:T ) s

il viendra, en substituant,

(M s ),

1024
cest~-A-dire (1)
Tom. XIX, 21
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H
F=BX— 3
T3
on obtiendra donc le volume d'un tétraddre en multipliant 'aire
de sa base par le tiers’ de ‘sh hauteur.

De la méme mani¢re quan, moyen du triangle nous venonsg
de demomrer que

H

H. . H . .
—— = T+ i b{ + +'“'"‘P ?
‘3

256
on démontrera , A lulde du tétraddre, que

H H

:_+81

L be -

=29

Il a été démontré , 3 la pag. 250 du précédent volume, que e
volume d'un tétraédre est le sixiéme "du produit de deux arétes
opposées , du  sinus tabulaire de langle qu'elles jforment entre
elles et de leur perpendiculaire commune. .

M. Martinelli, cadet au corps-royal des Pontonniers & Modéne,
qui ne connait pas:sans doute la démonstration que mnous rappe-
lons ici, nous en a récemment adressé une qui, pour le fond,
revient & celle-ld; mais il nous en a en méme temps communiqué
une autre qui lui a &é suggérée par M. le professeur Tramontini ,
et qui , 4 raison de son élégante simplicité, nous a paru ne de~
voir pas étre passée sous silence. La voicl :

On sait que deax arétes opposées d’un tétraédre sont toujours
comprises daus deux plans paralléles, dontla distance est égale a la
perpendiculaire commuune entre ces deux droites.

Soit donc ABCD le téiraedre dont il s’agit. Par les arétes op-—
posées AB et CD conduisons deux plans paralléles, et supposons que le
premier de ces plans soit le plan méme de la figure. Soit C'D’la pro- -
jection de CD sur ce plan, si PQ estla perpendiculaire commune
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C/
A T B
D/

eux arétes opposées ABet CD, ses deux extrémités se projéteront
en P A l'intersection de AB et C/D/.

Par AB et PQ soit conduitl un plan; ce plan, perpendiculaire &
celui de la figure, coupera le tétraédre suivant un triangle AQB, que
L'on pourra cousidérer comme base commune de deux autres tétraé-
dres, CAQB et DAQB, dont celui-la sera la somme. Leurs hauteurs
CE et DT se projéterontsuivant C/E/=CE et D’¥/=DF, toutes deux
perpendiculaires & AB. L’aire de leur base commune AQB aura
pour expression -ABXPQ ; de sorte qu’en représentant par 7' le
volame du tétra¢dre, on aura

T ABXPQX & CE/4 : ABXPQX : D/F's= § ABXPQx(C/E--DIFY) ;
mais on a
C'E'=PC’Sin.(AB,CD) , DE/=PD'Sin.(AB,CD) ;
d’oit
C/E/4 D/F'=(PC/4-PD/)Sin.(AB,CDY=C/D'Sin.(AB,CD)=CDSin.(AB,CD) ;
douc , en substituant

T=% ABxCD<PQxSin.(AB,CD) .

Il pourrait arriver que le point P, au lien de se trouver sur
C/D/, se trouvat sur son prolongement, Pour plier la démonstra~
tion & ce cas, il ne s’agirait que de remplacer les scmmes par des
différences.
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QUESTIONS PROPOSEES.

|

QUESTIONS PROPOSEES.

Théorémes de géométrie proposés-da démontrer;

Par M. BoBILLIER.

(e S Vo Vo Vi Nig Vo Vo Vo Vi Vb Vo Y

SI un tétraédre et une surface
conique du second ordre existent
ensemble dans l'espace ; les sec-
tions de la surface conique par
les plans des quatre faces du té-
traédre détermineront , deux a
deux, six nouvelles surfaces co-
niques du ‘second ordre, dont
les sommets, situds dans un méme
plan, seront trois & trois aux in-
tersections de quatre droites, tra-
cées dans ce plan.

Le plan des sommets des six
nouvelles surfaces coniques sera
le plan polaire du sommet de la
premiére, relativement & la sur-
face du second ordre inscrite a
cette méme surface conique et
touchant & la fois les plans des
quatre faces du téiraddre.

SI un tétraédre et une ligne du
second ordre existent ensemble
dans l'espace ; les surfaces coni~
ques qui auront pour base com-
mune cette ligne du second or-
dre et leurs sommets anx quatre
sommets .du tétracdre détermine~
ront, deux a denx , six nou-
velles lignes du second ordre,
dont les plans, concourant en un
méme point, se couperont trois
4 trois , suivant quatre droites,
passant par ce point,

Le point de concours des plans
des six nouvelles lignes du se-
cond ordre sera le pole du plan
de la premiére , relativement a
la surface du second ordre cir-
conscrite & cette méme ligne du
second ordreet passantd la fois par
les quatre sommets du tétraddre.
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GEOMETRIE DE SITUATION.

- Recherches sur les projections stéréographiques ,
et sur diverses propriétés générales des sur-
faces du second ordre;

Par M. CrasLes, ancien éleve de I'Ecole polytechnique.

VIV AV VWUV VARV

A LA pag. 153 du IV.™¢ volume de la Correspondance mathé-
matigue de M. Quetelet , M. Bobillier a donné, sur les projections
stér@iographiques, quelques théorémes que j’avais dé‘j?x rencontrés de
mon cbté et que jaunongais méme a M. le Rédacteur des Annales,
par une lettre de Nice , en date du 15 janvier dernier , n’étre que
des cas particuliers de théorémes plus généraux sur le méme su-
jet. Jaurais meéme publié, dés cette époque, les résultats auxquels
]’étais parvenan ; mais, pour étre intelligible , sans avoir besoin d’en-
trer dans des détails de définitions, il était nécessaire que jexpli-
quasse d'abord ce que j’entendais par axes de symptdse et par cen-
tres d’homologie des coniques , et c'est & ce qui m’a déterminé
3 publier d'abord ce qu'on a vu sur ce sujet dans les dnnaoles. Je
vais présentement exposer les résultats que j’avais antérieurement ob-
tenus sur les projections 'sléréographiques.

§ L

1. Les deux parties du théoréme que j’ai déjd publié sur les
projections stéréographiques ( Traité des surfaces du second ordre
om. XIX ,n 6, 1.5 décembre 1828. 22
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par M. Hachette, 1817 ; Annales de mathématiques, tom. XVIII,
pag. 307 ) peuvent étre généralisées comme il suit :

Plusieurs surfaces du second ordre étant inscrites & une méme
surface de cet ordre, I'eil étant plucé en un quelconque des points
de cette derniére , et le plan du tableau étant paralléle & son plan
tangent en ce point ;

1.° Tous les contours apparens des surfaces inscrites seront, en
perspective , des coniques homothétiques ;

2.° Les cenires de ces coniques seront les projections des poles
des plans des lignes de contact de ces surfaces avec celle d laquelle
elles sont inscrites , pris par rapport & celle surface, ou respec—
tivement par rapport &' chacune des autres.

Soit en effet s, s’,s//..... une suite de surfaces du second ordre
inscrites & une surface § du méme ordre; le céne € qui déter-
mine le contour apparent de s et la surface § sont deux surfaces
du second ordre circonscrites & cette surface s, et qui, par con-
séquent , se coupent suivaut deux courbes planes, dont les plans
passent tous deux par la droite d’intersection des plans des cour-
bes suivant lesquelles elles touchent cette surface s ( Correspon-
dance sur I'Ecole polytechnigue , tom, llI, pag. 339 ). Mais le
cdne € ayant son sommet sur la surface §, une de ses intersec-
tions avec cette surface se réduit & un point, et le plan de cette
intersection n’est autre que le plan tangent & § par son sommet ;
ce cone C coupera donc la surface § suivant une deuxiéme courbe -
plane, dont le plan , ainsi que le plan tangent, passera par la droite
suivant laquelle se coupent les plans des deux lignes de contact
de s avec les surfaces § et C.

Le cone C coupant la surface § suivant une courbe plane, sa
section par le plan du tableau sera, suivant le théoréme cité ( An-
nales , tom. XVII, pag. 307 ), une conique homothétique & la
section de la surface § par ce méme plan ; mais cette section sera
évidemment la perspective da contour apparent de la surface s ;
donc la perspective du contour apparent de la surface s, et par
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suite les perspectives des contours apparens des surfaces s, s/, $//,....
seront toutes homothétiques avec la section de la surface § par le
plan du tableau ; elles serout donc aussi homothétiques entre elles ;
la premiére partie du théoréme se trouve donc ainsi démontrée.

Le plan de lintersection du céne € avec la surface §,le glan
de la ligne de contact des deux surfaces § et s et le plan tan-
gent & S conduit par I'eil, se coupent tous trois, comme on vient
de le voir, suivant la méme droite, d’ou il suit que les poles des
deux premiers, relatifs a4 la surface §, seront sur une droite pas—f
sant par l'ceil ; or, le centre de la section du céne € par le plan
du tableau est ( deunxiéme partie du théoréme cité ) sur la droite
qui va de U'ceil au pole du premier de ces plans; nous pouvons
donc dire également qu’il est sur la droite qui va de l'ceil an péle
du deuxi¢me plan; c'est-d-dire , au péte du plan de la ligne de
contact des deux surfaces § et s, lequel pdle est évidemment le
méme, soit qu'on le prenne par rapport d la surface § ou quon
le prenne par rapport & la surface s.'La seconde partie du théo-
réme se trouve donc également démontrée,

Remarquons que la surface s pourrait n’avoir qu’un contact ima-
ginaire avec la surface §; mais le théoréme et sa démonstration
auraient toujours lieu , parce que le plan de la ligne de contact
serait toujours réel,

Cette ligne de contact pourrait se réduire & un point, auquel
cas les deux surfaces auraient un contact du troisitme ordre en ce
point,

Les surfaces s, s/, 5/, «.... peuvent se réduire & des courbes pla-
nes tracées sur la surface S ; alors on retombe sur le théoreme
ordinaire des projections stéréographiques.

Si la surface s se réduit & une ligne droite, le milieu de sa
perspective se trouvera sur la perspective de sa polaire réciproque,
par rapport a la surface S. On peut énoncer ainsi la proposition
4 laquelle donne naissance la considération de ce cas particulier :

2. Deux droites, polaires réciproques lune de lautre , par rap-
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port & une surface du second ordre, ont pour perspectives, par
rapport & un @il situé en un point de cette surface , et & un ta-
bleau paralléle au plan tangent en ce point , des paralléles & deux
diamélres conjugués de la section de la surface du second ordre
par le plan du tableau.

Ces deux droites se coupent & leurs milieux.

Si la surface S est un ellipsoide ou un hyperboloide & deux
nappes, il n’y a qu'une de ces droites qui ait ses deux extrémités
réelles , et les extrémités de l'autre sont imaginaires. Mais si la
surface S est un hyperboloide & une nappe, les deux droites ont,
P'une et 'autre, leurs extrémités réelles ; de sorte qu’elles sont alors
les deux diagonales d’un parallélogramme.

En eflet , deux droites D, D/, polaires réciproques I'une de I'au-
tre, par rapport & une telle surface, rencontrent son plan tangent,
conduit par I'eeil , en deux points tels que, si l'on considére ces
points comme les sommets de deux cdnes circonscrits 3 cetle sur—
face , les plans des lignes de contact passeront par ces deux droi=
tes D’ et D, respeclivement, et couperont counséquemment le plan
tangent suivant deux droites qui passeront respectivement par les
sommets des deux cdnes, et seront deux tangentes conjuguées; ces
deux droites seront donc paralléles & deux diamétres conjugués
de la section faite dans I’hyperboloide par un plan paralléle au plan
tangent. Or, les plans qui détermineront les perspectives des deax
droites D, D)/ passeront par ces deux tangentes conjuguées, et cou-
peront le plan du tableau sunivant deux droites qui leur seront res-
pectivement paralléles; ces deux droites , perspectives de D et D,
seront donc paralléles & deux diamétres conjugués de la section de

Ihyperboloide par le plan du tableau. ‘

Il résulte dailleurs de la deuxiéme partie du théoréme géné-
ral (1), et en considérant la corde comme surface insciite , que
le point d'intersection de ces deux droites en sera le milieu com-
mun,
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Le théoréme suivant est compris dans la démonstration précé=-
dente :

3. Le plan tangent mené & une surface du second ordre par
lune des exirémités de l'un des deux diamétres, lieux des centres
des sections circulaires de cetie surface, est percé par deux droi-
tes polaires réciproques l'une de lautre en deux points ,tels que
les droites menées du point de contact du plan tangent @ ces deux-
lé sont perpendiculaires Iune & lautre.

On peut généraliser davantage les théorémes ci-dessus en fai-
saut la perspective sar un plan quelconque qui ne soit pas paral-
lele an plan tangent conduit par leeil,

On a alors le théoréme suivant:

4o 8¢ plusieurs surfaces du second ordre sont inscrites & une
méme surface de cet ordre, et quon en jfasse la perspective sur
un plan quelconque pour un il situé en un quelconque des points
de la surface enveloppanie ;

1.° Les perspectives des contours apparens des surfaces enyelop-
pées seront des coniqum 7111' auront loutes un méme axe de Symp-
tose, intersection du plan du tableau avec le plan tangent con-
duit par l'eil a la surface enveloppanie.

2.° Les pioles de cet axe de symplose , par rapport & ces coni-
ques , seront les per.ypectives' des péles relatifs o la surface en-
veloppante , des plans de ses lignes de contact respectives avec les
surfaces enveloppées.

3.° Deux droites polaires réciprogues l'une de l'autre , par rop-
port & la surface enveloppante , auront pour perspectives deuvx au-
tres droites qui couperont la commune section du plan du tableau
avec le plan tangent par lI'ail , en deux points tels que le plan ‘po-
laire de chacun, relatif @ la surface enveloppante , passera par
lautre; et chacune de ces droites sera divisée /zarmom'quemem‘ aux
devx points ow elle rencontrera lautre et l'intersection des deux
plans.

On pourraii démontrer directement ce théoréme, mais on le dé-



162 PROJECTIONS

duit du précédent par la seule observation que deux coniques ho-
mothétiques , situdes dans un méme plan, ont pour perspective su
un plan quelconque deux coniques dont un des axes de symptose
est l'intersection da plan du tableau avec le plan conduit par l'eeil,
parallélement 3 celui des deux coniques homothétiques ; et en ob-
servant, en outre , que quatre points en ligne droite, et en propor-
tion harmounique , ont pour perspective ( CARNOT ; Théorie des trans-
versales , pag. 8o ) qnatre points égalewent en proportion harmo—
nique. Ces considérations suffisent pour conclure le théoréme (4)
da théoreme (r1).

Si les surfaces inscrites se réduisent & des courbes planes, on
obtiendra ce théoréme qu'il nous sera utile d’énoncer :

5. Pour un tableau plan quelconque et pour une situation quel-
conque de leil, sur une surface du second ordre ;

1.° Les perspectives des sections planes de cetle surface ont un
axe de symplose commun , intersection du plan du tableau avec le
plan tangent conduit par ['eil. '

2.° Les pbles de cet axe, par rapport & ces conigues , sont les
perspectives des sommets des cdnes circonscrits & la surface du se~
“ond ordre , suivant les sections planes respectives.

Nous pouvons dire , d’aprés ce qui précéde, que , réciproquement,

6. S plusieurs coniques ont un axe de symptose commun, elles
pourront éire considérées comme la perspective dautant de sections
planes | faites dans une surface du second ordre.

Ce principe conduit immédiatement aux propriétés générales de
deux coniques quelconques, et & celles de trois coniques qui ong
un méme axe de symptose, avec autant de facilité et de prompti-
tude que le théoréme analogue sur les ‘coniques homothétiques nous
a conduit aux propriétés de ces courbes ( Annales, tom. XVII ,
pag. 305 ). Ce moyen ne nécessite pas l'emploi des transforma-
tions polaires, mais si nous avons préféré a ce moyen, et & plusieurs
autres que nous aurions pu également employer , la marche que nous
avons suivie { Annales, tom. XVIII, pag. 277 ) pour la recher-
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che des propriéiés générales des systemes de coniques ; c'est que
certaines questions relatives & ces courbes présenteraient des difli-
culiés si on voulait déduire leur solution de la solution des questions
analogues relatives aux sections planes d’une surface du second or-
dre, tandis que d’autres procédés appliqués aux coniques homothé-
tiques , 'analyse algébrique, par exemple , lears convienneat par-
faitement, On pourra donc traiter ces questions, relativement aux
coniques homothétiques , par les moyens les plus faciles, et on les
appliquera ensuite , par les transformations polaires, aux coniques
quelconques.

Si, dans le théoréme (5), on suppose que les courbes tracées
sur la surface du second ordre sont dans des plans passant par une
méme droite, la perspective de cette droite sera un axe de symp-
tose commun aux coniques perspectives de ces courbes. Donc,

8. Les perspectives , pour un tableau quelconque et un wil si-
tué d'une maniére quelconque sur une surface du second ordre, de
tant de sections planes qu’on voudra faites dans cette surface , par
des plans se coupant suivant une méme droite , sont des coniques
gui ont deux axes de symplose communs.

Ainsi dans la construction des cartes de géographie, si la pro-
jection se faisait sur un plan non paralléle an plan tangent a la
sphére, conduit par Veeil , les projections des cercles de la sphére
ne seraient plus des cercles , mais des coniques ayant toutes un
méme axe de symptose , et les projections des méridiens ou des
paralléles seraient des coniques ayant leurs centres sur une méme
conique , et jouissant de toutes les autres propriétés d’une série de
coniques circonscrites @ un méme quadrilatére,

Il est facile de voir que , quand deux surfaces du second or-
dre se coupent suivant deux courbes planes, on peut leur inscrire
une infinité d’autres surfaces du méme ordre; le théoreme (4) donne
donc celui-ci, plus général que le précédent :

9. 8¢ tant de surfaces du second ordre gu'on veudra, sont ins-
crites @ la fois @ deux autres surfaces de cet ordre, et que lon
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considére un quelconque des points de l'intersection de ces denx-
¢f comme le sommet commun d'une série de cones circonscrits auyx
premiéres , les sections de ces cones , par un plan transversal quel-
conque , seront des coniques ayant pour azes de symptose communs
les droites suivant lesquelles ce plan sera coupé par les plans tan-
gens aux deux surfaces enveloppantes, conduits par le sommet
commun de tous ces cones.

§ IL

Par une transformation polaire,, I'un ou l'antre des théorémes
(1) et (4) donne le suivant : ‘

10. Plusieurs surjaces du second ordre étant circonscrites & une
méme surface de cet ordre, et un plan tangent étant mené @ cette
derniére , par un quelconque de ses points ;

1.° Ce point sera un centre d'homologie de toutes les coniques,
prises deux & deux, suivant lesquelles les surfaces enveloppantes
seront coupées par le plan tangent ;

2.° Les polaires respectives de ce point, par rapport @ ces co-
niques , seront les droites suivant lesquelles ce méme plan sera
coupé par les plans des lignes de contact de la surface envelop-
pée avec ses enveloppantes.

Il est bien entendu, d'aprés ce que nous avons dit (1), que les
“contacts des enveloppantes avec l'enveloppée peuvent étre imaginai-~
res, et que ces contacts, supposés réels, peuvent n’avoir lieu qu'en
un point pour chaque surface circonscrite qui a alors un contact
du troisiéme ordre, en ce point, avec la surface enveloppée.

En supposant que les surfaces circonscrites sont des cones , on ob-
tiendra le théoréme suivant :

11. Plusieurs cénes étant circonscrits & une méme surface du se-
cond ordre, et un plan tangent étant mené & cette surface par
un -quelconque de ses points';
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1.° Ce point sera un centre d homologie des intersections , pri-
ses deux & deux , des cones avec le plan tangent ;

2.° Les polaires respectives de ce point, par rapport & ces mé-
mes interseclions , seront les intersections de ce méme plan avec
les plans des lignes de contact.

Il est clair que, réciproquement,

12, 8Z plusieurs coniques , prises deux & deux, ont un centre
commun d'homologie, on pourra les considérer comme les sections
d'autant de cénes circonserits & une méme surface du second or-
dre , tangente au plan des coniques & leur cenire commun d'ho-
mologie.

Considérons denx cénes circonscrits & une méme sarface du se-
condordre , le plan tangent a cette surface,, en 'un quelconque de ses
points , les coupera suivant deux coniques qui auront le point de
contact pour un de leurs centres d’homologie , d’aprés ce qui préceéde.
Il est aisé de voir qu’un deuxieme centre d’homologie de ces
deux coniques sera celui ol le plan tangent sera percé par la droite
qui joindra les sommets des deux cdnes; car, par ceite droite , on
peut mener deux plans tangens communs & ces deux cones ; d’olt
il suit que, par le point ou elle perce le plan des deux coniques ,

on pourra lear mener des tangentes communes; ce qui proave que
ce point est un centre d’homologie.

On couclut de 1 ce théoréme assez remarquable:

13. 8¢ lon circonscrit @ une méme surface du second ordre plu-
sicurs cdnes dont les sommels sotent situés sur une méme droite
quelconque , tout plan tangent & cette surface coupera ces cones sui-
vant des coniques qui auront deux cenires d'homologie communs ,
et qui jouiront conséquemment de toutes les propriétés d'une sé-
riec de coniques inscrites & un méme quadrilatire.

14. Ce qui précéde offre un nouveau moyen de démontrer les
propriétés géndrales de deux coniques quelconques , et celles de
trois coniques qui ont un méme ceutre d’homologie. Par exemple,

on voit , sur-le-champ, que ces trois coniques , prises deux a deux,
Tom. XIX. 23
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ont leurs trois centres d’homologie conjugués & celui-la, situés en
ligne droite.

Car, si I'on considére ces coniques comme les sections faites dans
trois cones circonscrits & une surface du second ordre , par un plan
tangent & cette surface, leur centre d’homologie commun sera le
point de contact de ce plan tangent , et leurs trois centres d’ho-
mologie conjugués & celui-la seront les points ol ce méme plan
sera percé par les droites qui joindront deux A deux les sommets
des trois cOnes; or., ces droites sont toutes trois dans le plan que
déterminent les sommets des trois cénes ; donc ces trois centres se-

- ront dans Dintersection de ce dernier plan avec le plan tangent,
cest-d-dire qu’ils appartiendront 4 une méme droite,

Cette méthode n’exige pas l'application de la théorie des polai-
res réciproques ; mais alors il faut démontrer directement les pré-
cédens théorémes , ce qui n'est pas difficile, et non pas les dé-
duire, comme nous 'avons fait, de ceux que nous avons établis
sur la projection stéréographique.

15. Sitant de surfaces du second ordre gu'on voudra sont circons-
crites & la fois & deux surfaces données de cet ordre , tout plan tan-
gent,commun & ces deux derniéres,couperales surfaces enveloppantes
suivant des coniques qui auront pour centres d'homologie communs les
points de contact de ce plan avec les deux surfaces enveloppées.

Toutes ces coniques auront conséquemment leurs centres en ligne
droite , et jouiront de toutes les propriéiés connues d’une série de
coniques inscrites & un méme quadrilatére.

Tout cela résulte du théoréeme (10).

Dans le cas particulier ou le plan tangent & la surface envelop-
pée du théoréme (10) la touche en l'une des quatre extrémités
des deux diamétres, lienx des centres de ses sections circulaires
un céne circonscrit, dont le sommet se trouvera situé sur la di-
rection de ce diamétre, sera coupé par le plan tangent sunivant un
cercle dont le centre sera le point de contact du plan tangent; ce
point sera, d’aprés le théoréme (10), le centre- d’homologie de ce
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cercle et de la section faite par ce méme plan tangent dans toute
autre surface quelconque da second ordre circonscrite & la-surface
proposée ; ce centre sera donc le foyer de cette.section ( PONCELET,
Propriétés projectives , pag. 261 ); mais la polaire du foyer d’une
conique est la directrice relative & ce foyer ; donc, -

16. Quand plusieurs surfaces du second ordre sont circonscrites
& une surface unique de cet ordre, le plan tangent & cette der-
niere , @ lune des exirémités d'un des diamétres , lieux des centres
des sections circulaires , coupe toutes les auires suivant des coni-
gues qui ont pour foyer commun le point de contact du plan tan-
gent , et dont les directrices respectives sont les droites suivant les~
quelles ce plan tangent est coupé par les plans des lignes de con-
tact de la surface enveloppée avec les surfaces enveloppailes.

En remarquant que les sections planes paralleles faites dans un
cone ont leurs foyers sur deux droites passant par son sommet, on
pourra, da théoréme qui vient d’éire démontré, conclure le sui-
vant :

17. 87, du sommet d'un cdne circonscrit & une surface du se-
cond ordre , on méne des droites aux deux extrémités de l'un des
diameétres de cette surface , licux des centres de ses sections c¢ir—
culaires ; tout plan paralléle au plan diamétral con/'u,gué de ce dia-
mélre coupera le cone suivant une conique dont les jfoyers seront
les points ou cc méme plan sera percé par ces deux drottes.

Il résulte de 1 que:

18. 87 plusieurs cones ont leurs sommets sur une droite passant
par une des extrémités de l'un des diaméires, lieux des centres
des sections circulaires d'une surface du second ordre ; le plan tan-
gent & cette surface , & Paulre extrémité du méme diamétre, cou-
pera tous ces cones suivant des coniques ayant leurs deux foyers
communs , et qui , par conséquent, Sormeront deux séries d'ellipses
et d'hyperboles telles que les courbes de chagque série couperont
orthogonalement les courbes de lautre série.

Le théoreme (17) fait voir que,
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19. S, du sommet d'un céne circonscrit & une sphére, on méne
des dreites auwx deux extrémités de l'un quelconque de ses dia-
métres , tout plan perpendiculaire & ce diamétre coupera le céne
suivant une conique dont les foyers seront les points ou le plan
coupant sera percé par ces deux droites.

Le théoréme (16) comprend celui-ci :

20. 87, @ une méme surface de révolution du second ordre , on
inscrit deux sphéres , tout plan tangent commun & ces deux sphé~
res coupera la surface enveloppante suivant une conique dont les
Joyers seront en ses points de contact avec les deux sphéres.

Ce dernier théoréme avait déja été démontré pour le cone, par
M. Quetelet, et pour I’hyperboloide & une nappe, par M. Dan-
delin. ( Voy. dnnales, tom, XV , pag. 387 ).

'§. IIL

21. La propriété la plus importante des cénes circonscrits & une
méme surface du second ordre est, sans contredit, celle que MonGE
a donnée dans sa Géoméirie descriptive , car elle est la base de
la théorie des péles, dont on n’a cessé de s'occuper depuis lors ,
et qui a déa rendu les plus grands services a la géométrie.

Les cones circonscrits & une surface du second ordre, et qui
ont leurs sommets en ligne droite, jouissent de quelques autres
propriétés dont il ne parait pas qu'on ait songé encore i s'oc-
cuper; elles sont, il est vrai, d’une bien moindre importance que
celle que nous venons de rappeler, mais elles ne sout pas néan-
moins dépourvues d'un certain intérét,

Nous avons déja démontré (11) le théoréme suivant que nous
rappelons , parce qu’il fait partie des propriétés générales des cénes
circonscrits & une méme svrface du second ordre.

22. 8¢ plusieurs cénes , circonscrits @ une méme surface du se-
cond ordre, ont leurs sommets sur.une méme droile, tout plan

tangent & ceite surface coupera les c¢dnes circonscrits suivant des
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com'ques qui auront deux centres d’'homologie communs ; savoir :
le point de contact de ce plan tangent et le point ou il sera percé
par la droite sur laguelle les sommets de ces cones seront situés.

Si la droite, lieu des sommets des cones, perce la surface du
second ordre en deux points, les plans tangens en ces deux points
couperont le plan des coniques suivant des droites qui feront par-
tie de cette série de courbes.

23. 87 plusieurs cénes , circonscrits a une méme surface du se-
cond ordre ,ont leurs sommets sur une méme droite , les plans po—-
laires d’un point quelconque de [lespace, relatifs & tous ces cones ,
envclopperont un nouveau céne dont le sommet sera le pdle, pris
par rapport & la surface donnée du second ordre, du plan con-
duit par le point donné et par la droite, licu des sommets des cénes.

Soient en effet p le point donné, s le sommet de P'un des co-
nes circonscrits a la surface donnée du second ordre et P le plan
de la ligne de contact dé cette surface avec le céne dontle poiut
s est le sommet,

La droite ps perce le plan P en un point dont les plans polai-
res , par rapport a la surface du second ordre et au cOne circons-
crit, passent par la polaire de ce point, prise par rapport 4 laligne
de contact, située dans le plan P, Or, cette droite est la polaire
de la droite ps, par rapport & la surface du second ordre ; elle
passe donc par le péle de tout plan conduit par la droite ps; d’olt
il suit qu’elle passe par le péle du plan conduit par le point p et
par la droite lieu des somanets des cones. Or , le plan polaire, par
rapport au cdne, est le méme que le plan polaire de tout autre
point de la droite ps; donc, le plan polaire du point p passe par
un point fixe qui est le poéle da plan conduit par le point p et
par la droite , lieu” des sommets des cones ; d’ott il suit que ce plan
roule sur un coéne.

Par le point » menons un plan tangent & la surface du second
ordre; ce plan coupera le cone suivant une conique et le plan po-
laire suivant une droite qui sera la polaire du point p, par rap-
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port & cette conique; or, ce plan tangent coupe tous les cénes sui~
vant des coniques qui ont deux centres d’homologie communs ,
toutes les polaires du point p, relatives & ces coniques envelop-
pent donc une autre conique ( Annales, tom. XVIII, pag. 296 ) ;
d’ont il suit que la surface conique enveloppée par les plans po-
laires de ce point , relatifs aux cdnes circonscrits, est une surface co-
ni(fue de second ordre, comme nous I’avions annoncé.

24. 8¢ des cones circonscrits & une surface du second ordre ont
leurs sommets sur une méme droite , les polaires d'une transver—
sale quelconque , relatives & ces cones , forment un hyperboloide
qui passe par la polaire de cette transversale prise par rapport
¢ la surface du second ordre. -

En eflet, la polaire d’'une droite , par rapport & un coéne, n’est
autre chose qu¢ la droite diamétrale conjuguée au plan mené par
cette droite et par le sommet du cdne , et passe aussi par ce som=
met., Mais si, par la droite donnée, on conduit un plan tangent
a la surface du second ordre, il coupera tous les coénes suivant des
coniques qui auront deux centres d’homologie communs (22); les
poles de cette droite, par rapport & ces coniques, seront donc sur
une méme droite D ( Annales, tom. XVIII, pag. 296, 3.°); or,
ces poles appartiennent évidemment aux polaires de la droite, par
rapport aux cones respectivement ; d’ott il suit que ces plans s’ap-
puyent sur la droite D.

Si, par la droite donnée, on conduit un deuxiéme plan tangent
a la surface du second ordre, on obtiendra une deuxiéme droite
sur laquelle s’appuyeront également les polaires; or, elles passent
aussi par la droite, lieu des sommets des cones; elles s’appuyent
donc sur trois droites fixes, ce qui prouve qu’elles appartiennent &
un hyperboloide & une nappe. .

Il est facile de voir que les polaires d’une droite , par rapport
4 deux surfaces du second ordre circonscrites 'une & l'autre, se
rencontrent en un point du plan de la ligne de contact de ces sur-
faces; donc les polaires de la transversale , par rapport aux céues,
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rencontrent toutes sa polaire par rapport & la surface du second or-
dre, laquelle se trouve ainsi sur I'’hyperboloide.

Le théoréme est donc complétement démontré.

Si, par la transversale, on méne un plan quelconque , il cou-
pera les cones suivant des coniques; et il est clair que les poles
de la transversale, par rapport & ces coniques, seront sur l'hyper-
boloide , lieu des polaires de la droite ; Z/s seront par conséquent
sur une conique ; et, si le plan mené par la transversale tourne
sur cette droite, la conique engendrera I'hyperboloide.

25. 87 des cénes circonscrits & une surface du second ordre ont
leurs sommets sur une méme droite, les plans diamétraux conju-
gués d une méme droite , relatifs & tous ces cones , envelopperont un
nouveau céne,

En effer, le plan diamétral conjugné & une droite, par rapport
4 un céne, est le plan diamétral conjugué & la paralléle a cette
droite conduite par le sommet du cone ; le théoréme énoncé résulte
donc du théeréme (23) dans lequel on supposerait que le point
donné passe a linfini,

26. 87 des cénes. circonscrits & une surface du second ordre ont
leurs sommets sur une méme droite, 1.° tous les diaméires con-
Jugués @ un méme plan , relatifs & ces cones , appartiendront é un
hyperboloide passant par la droite diaméirale de la surface du
second ordre , conjuguée & ce plan ; 2.° les centres des coniques
suivant lesquelles ce plan transversal coupera les cones circonscrils
seront sur une autre conique.

Pour obtenir la démonstration de ce théoréme, il suffit de sup=
poser , dans le théoreme (24), que la transversale passe & l'infini,

Si le plan transversal est paralléle & la droite qui contient les
sommets des cones circonscrits, 'hyperboloide se réduira & un plan;
car, dans ce cas, les deux plans tangens & la surface du second
ordre, paralleles & celui-la , couperont les cdnes suivant des coni-~
ques dont les centres seront sur deux droites paralléles aun lieu des
somets des cones.
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§ IV.

27. Des courbes planes, tracées sur une surface du second or-
dre , correspondent, au moyen de la doctrine des polaires récipro-
ques, & des cones circonscrits & une autre surface du méme ordre;
d’ott il suit que leurs propriétés générales correspondent aux pro-
priétés générales de ces cones. Ainsi les théorémes du précédent
paragraphe donnent naissance & de nouveaux théorémes qu’il doit nous
suffire d’énoncer. Au surplus , leur démonstration directe ne présen-
terait aucune difficulté, on la déduirait des principes exposés dans
le §. I, comme nous avons déduit celle des théorémes relatifs aux
cones circonscrits des principes exposés dans le §. IL

Rappelons d’abord le théoréme (8) qui peut étre énoncé ainsi :

28. 87 des courbes planes , tracées sur une surface du.second
ordre , sont dans des plans passant par une méme droite, les co-
nes qui auront ces courbes pour bases et pour sommet commun un
guelcongue des points de la surface du second ordre, seront cou-
pés par tout plan transversal suivant des coniques qui, prises deux
& deux , auront mémes axes de sympiose.

Ces coniques jouiront, conséquemment, de toutes les propriétés
d’une série de coniques circonscrites 3 un méme quadrilatére.

Si, par la droite suivant laquelle se coupent les plans des cour-
bes tracées sur la surface du second ordre , on peut conduire deux
plans tangens & cette surface; aux deux points de contact, consi-
dérés comme deux courbes infiniment petites, correspondront, sur
le plan transversal , deux points qui feront partie de la série de
coniques ; ou bien, si chaque plan tangent touche la surface du se-
cond ordre suivant deux droites, & ces droites correspondront, sur
le plan transversal, deux systémes de droites faisant partie de la
série de coniques.

Par les polaires réciproques, le théoréme (23) donne le suivant:

29. 8iles plans de plusieurs courbes planes , iracées sur une sur-
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face du second ordre, se coupent suivant une méme droite , tout
plan transversal coupera ceux de ces courbes suivant des droites
dont les pdles respectifs , relatifs a ces mémes courbes , seront sur
une conique, contenue dans le plan polaire du point ou le plan
transversal coupera la droite , section commune des plans de ces
courbes.

Au théoréme (24) correspond pareillement celui-ci:

3o. 87 les plans de plusieurs coniques, tracées sur une surface
du second ordre , se coupent suivant une méme droite ; toute droite
transversale percera ces plans en des points dont les polaires res-
pectives , relatives & ces coniques, appartiendront & un hyperbo-
loide qui econtiendra la polaire de la transversale, prise }mr rap-
port & la surface du second ordre.

Si, par les coniques, on fait passer des cénes ayant pour sommet
commun un quelconque des points de la transversale, il est clair
que les plans diamétraux respectifs de ces coénes, conjugués i la
transversale, passeront par les polaires des points ol celte droite
percera les plans des coniques; ces polaires étant prises respecti-
vement par rapport 4 ces mémes coniques. Ces plans seront donc
tangens a ’hyperboloide, lieu de ces polaires, et envelopperont con-
séquemment un coéne; de sorte qu'on a ce théoréme :

31. 8¢ les plans de tant de coniques qu'on youdra ,iracées sur
une surface du second ordre, se coupent tous suivant une méme
droite , et st des cones ,ayant leur sommet commun en un quelcon-
gue des points de Uespace, ont ces coniques pour bases, les plans
polaires respectifs d'un autre point quelconque de lespace, rela-
tifs & ces cones, envelopperont un nouveau céne.

Et, si le sommet commun de tous ces cbnes se meut sur une
droite passant par ce point, le cone, enveloppe des plans polaires
de ce méme point ,enveloppera tui-méme un hyperboloide.

Si, dans le théoréme (29), on suppose le plan transversal situé
A linfini, on aura ce théoréme : '

32. 87 les plans de tant de coniques qu'on voudra , tracées sur

Tom., XIX 24
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une surface du sccond ordre, se coupent tous suivant une méme
droite , les centres de ces coniques seront tous sur une nouvelle co-
nigue , contenue dans le plan diamétral de la surface du second
ordre conjuguée & cette droite.

Le théoréme (30), quand la droite passe & l'infini, devient ce-
lui-ci: :

33. 8¢ les plans de tant de coniques qu’on voudra , tracées sur
une surface du second ordre, se coupent tous suivant une méme
droite, les diamétres de ces coniques conjugués aux droites sui-
vant lesquelles leurs plans seront coupés par un plan iransversal
quelcongue , appartiendront & un hyperboloide qui passera par le
diamétre de la surface du second ordre conjugué & ce plan.

34. Les théorémes des §. III et IV donnent, comme cas parti-
culiers , plusieurs propriétés des cordes d’une conique issues d’un
méme point, ainsi que des angles circonscrits ayant leurs sommets
sur une méme droite. Comme nous nous proposons de les repro-
duire dans une autre occasion , nous nous dispenserons de les énon-
cer icl.

On peut faire d’autres applications des précédens théorémes: par
exemple , on s’en sert utilement pour démontrer les deux parties de
celui-ct :

Par des coniques tracées sur une surface du second ordre, de
telle sorte que les plans de ces coniques se coupent tous suivant
une méme drotte , sotent décrites d'autres surfaces du second or-
dre, loutes inscrites ou circonscrites & celle-la;

1.° Une infinité de ces surfaces pourront toucher un méme plan
donné , et le liew géométrique de leurs points de contact avec Ilui
sera une conique ; ' ‘

2.° Une infinité de ces surfaces pourront passer par un point
donné , et leurs plans tangens en ce poz';zt envelopperont un cone.

Si, dans le premier cas, le plan donné passe par la commune
section des plans des coniques, la conique, lien des points de con-
tact , se réduira & un point.



QUESTIONS RESOLUES. 175
Si, dansle second cas, le point donné est sur la droite, licu des

poles des plans des coniques, toutes les surfaces du second ordre
circonscrites auront un méme plan tangent en ce point.

La surface du second ordre & laquelle sont inscrites les autres sur—
faces pourrait étre un céhne,

Les théorémes des deux §. ITL et IV ne sont eux-mémes que
des cas particuliers des propriétés générales des systémes de sur-
faces du second ordre inscrites ou circonscrites a la fois & deux au-

tres surfaces du méme ordre; propriétés dont la recherche fera le
sujet d’un autre article.

QUESTIONS RESOLUES.

Solution de deux des six problémes de géomé-

trie énoncés a la pag. 105 du précédent
polume ,

Par un ABOoNNE.

MAAANANARANANANN

P ROBLEME I. Sur le plan d'un triangle donné décrire un cer-
cle qui intercepte, sur les directions des trois cdtés de ce triangle,
des cordes égales & trois drottes données ?

Solution. Comme il faut trois conditions pour déterminer un cer-
cle sur un plan, on voit d’abord que le probléme est déterminé,
c’est-a-dire qu’il ne peut étre résolu que par un nombre de cercles
limité.

Si l'on exigeait seulement que les cordes interceptées par le cer-
cle cherché, sur les directions des deux cétés d'un méme angle du
triangle donné , fussent égales & deux droites données, le probléme
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deviendrait indéterminé, c'est-i-dire qu’il pourrait étre résolu par
une infinité de cercles se succédant les uns aux autres sans in-
terrupdon ; les centres de tous ces cercles seraient donc sur une cer-
taine courbe. A chaque sommet du triangle répondrait une sembla-
ble courbe, et les courbes, répondant aux trois sommels, se coupe~
raient anx centres des cercles qui résoudraient le probléme. Voyons
donc quelle est la- nature de ces courbes.

Soient @, 4 deux des c6tés du triangle donné et y I'angle com-
pris; prenons ces deux c6tés pour axes des x et des y , et chei-
chons sur quelle courbe se trouvent situés les centres de totis les
cercles qui interceptent, sur ces mémes c6tés, des longueurs données
2a’ et 24/,

Soit (7,2 ) l'un de ces centres; les perpendiculaires abaissées
de ce point sur les deux cotés @, b seront respectivement zSin.y
et #Sin.y; leurs pieds tomberont sur les milieux des cordes 22/ et
2l’ ; -de sorte qu’en ajoutant respeclivement @’ et 5 aux carrés
des longueurs de ces perpendiculaires, on aura deux expressions
du carré du rayon du cercle qu'on pourra égaler entre elles ; ce qui
donnera

2*Sinty4a* =2 Sin 45" ,

c'est-a-dire ,

‘z_ua__ a/i—b'z

“e

Sin.2y

telle est donc P'équation du lien des centres de tous les cercles qui
interceptent sur tes ‘deux cotés 2, 4 de l'angle y du triangle donné,
des longueurs respectivement égales & 24" et 24’

On reconnait cette équation pour celle d’une hyperbole dont les
asymptotes divisent en deux parties égales les quatre angles que for-
ment les directions des €ités a el &; ces asymptotes sont donc rec-
tangulaires, et conséquemment I’hyperbole est équilatére ; elle passe
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d’ailleurs par les quatre points donnés par les deux doubles équa-.
tions

al s bl
, u==+ — s
Sin.y

It
— Sin.y

dont les distances aux deux cités @ et & sont respectivement +a/

et +5/; la solution du probléme proposé est donc renfermée dans le
théoréme suivant :

THEOREME 1. Aux trois cbtés a, b, ¢ dun triangle donn!
soient menées , de part et d'autre , des paralléles qui en soient res-
pectivement distantes des quantités données a', b’ ,c’; ces trois
couples de paralléles formeront, par leur rencontre, trois paral-
lélogrammes ayant leurs centres aux trois sommets du triangle.
A chacun de ces parallélogrammes soit circonscrite une hyperbole
équilatére, ayant pour asymptotes les deux droites, perpendiculai-
res l'une @ lautre , divisant en deux parties égales, tant l'angle
du triangle donné qui a son sommet au centre du parallélogramme ,
que le supplément de cet angle. Les trois hyperboles ainsi décri-
tes sc couperont en quaire points, cenires d'aulant de cercles qui
intercepteront , sur les directions des trois cdtés a,b, c du trian-
gle donné, des longueurs respectivement égales & 21/, 2b/, 2¢/.

Les centres des cercles cherchés ainsi déterminés , rien ne sera
plus aisé que d’en trouver les rayons respectifs ; car , pour chacun
d’eux, en abaissant de son centre des perpendiculaires sur les di~
rections des trois coés @, b, ¢, et prenant, sur ces mémes direc-
tions , de part et d’autre, des pieds de ces perpendiculaires, des

longueurs respectivement égales 4 @/, &/, ¢/, on obtiendra six points
de la circonférence & décrire.

Si deux des trois longueurs données o/, 5/ ,¢/ étaient égales en-
tre elles, l'unie des trois hyperboles se réduirait & ses asymptotes,
et il serait facile de ramener les intersections de chacune de ces
asymplotes, avec l'une des deux autres hyperboles, & celle de cette
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méme asymptote avec un cercle ; de sorte qu’alors le probléme se-
rait rigoureusement résoluble avec la régle et le compas,

Si les longueurs données 4, 4/, ¢/ étaient toutes trois égales en-
tre elles, les hyperboles se réduiraient toutes trois & leurs asymp-
totes, et les centres des quatre cercles cherchés ne seraient autres
alors que les centres des cercles inscrits et ex-inscrits au triangle
proposé ; ce qui est d’ailleurs évident.

PROBLEME IL Sur Ile plan d'un triangle donné décrire un
~cercle tel que les angles circonscrits qui auront mémes sommets que
ce triangle soient égaux a trois angles donnés ?

Solution. Commre il faut trois conditions pour déterminer un cer-
cle sur un plan, on voit d’abord que le probléme est déterminé,
c’est-a-dire qu’il ne peut étre résolu que par un nombre de cer-
cles limité.

Si l'on exigeait senlement que les angles circonscrits au cercle
cherché , ayant pour sommets deux des sommetsdu triangle donné ,
fussent égaux & deux angles donnés, le probléme deviendrait indé-
terminé, cest-a-dire qu’il pourrait étre résolu par une infinité de
cercles, se succédant les uns aux autres sans interruption ; les cen-
tres de tous ces cercles seraient donc sur une certaine courbe. A
chaque c6té du triangle répondrait une semblable courbe, et les
courbes répondant aux trois cités se couperaient aux centres des
cercles qui résoudraient le probléme. Voyons donc quelle est la na-
ture de ces courbes.

Soient ¢ un des cétés du triangle donné et o, B les deux angles
adjacens ; prenons ce coté pour axe des z , le sommet de 'angle «
pour origine et la direction de lautre c6té de cet angle pour axe
des y, et cherchons sur quelle courbe se trouvent situés les cen-
tres de tous les cercles tels que les angles circonscrits qui ont mé-

-mes sommets que les deux angles o« et 3 soient égaux & deux an-
gles donnés 2a’ et 2/,

Soit (#z,z) le centre de 'un de ces cercles ; les droites qui
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le joindront aux deux sommets de « et B auront respectivement
pour longueurs

\/t*-{-ztuCos adus , l/u’-{-zu(t-—c)Cos.u-}-(t—-—c)z H '

lesquelles multiplides respectivement par Sin.o’/ et Sin.f’ donneront
deux expressions du rayon du cercle cherché que I'on pourra éga-
ler entre elles; on aura donc en quarrant

/

(£~-21uCos.a+2")Sin o/ ={u*~2u(t—c)Cos.a~-(t—c)*}Sin P/ ;

telle est donc I'équation du lieu des centres de tous les cercles
tels que les angles circonscrits qui ont mémes sommets que les an-
gles a« et 3, adjacens au coté ¢ du triangle donné, sont respecti-
vement égaux aux angles donnés 20/ et 2f3/,

On reconnait aisément que cette équation est celle d’'un cercle,
qui a son centre sur I'axe des x , cest-d-dire, sur la direction du
c6té ¢ du triangle donné; de sorte qu’il suffira, pour pouvoir le
décrire, de connoaitre les deux extrémités de celul de ses diamé-
tres qui est dirigé suivant cette droite; c’est ce & quoi on parvien-
dra en faisant dans cette équation z=—o, et en déterminant les
deux valeurs de 7 qui en résultent. On obtient ainsi

£°Sin.’o/==(¢—c)*Sin.*"
d’'ou

“FeSin.o/=(t—c)Sin.f’
et par conséquent

cSin. B!

Sin,A8’ o= Sin.«/
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On reconnait aisément que ces valeurs répondent & deux points,
I'un sur le cOté ¢ lui-méme ct V'autre sur son prolongement, dont

les distances & ses deux extrémités sont en raison inverse des si-
" tus des angles a/ et (3’ qui leur correspondent ou en raion directe
de lears cosécantes ; de sorte que la solution du probléme proposé
est renfermé dans le théoréme suivant:

THEOREME II. Des sommets des trois angles o, 3,y dun
triangle donné , pris tour @ tour pour centres, soicnt décrils trois
cercles dont les rayons, dailleurs de grandeur arbitraire ; soient
respectivement proportionnels auzx cosécantes de trois angles don-
nés o , 3,y , et soient délerminés les cenires dhomologie ou de
similitude de ces trois cercles , pris successivement deux ¢ deux,
8¢, sur les distances entre les deux centres d'homologie relatifs &
chaque couple de cercles, prises tour & tour pour diamétres, on
décrit trois nouveaux cercles , ces derniers passeront tous trois par
deuz points , centres de deux cercles tels que les angles circons—
erits qui auront mémes sommels que les trois angles o, B, v du
triangle donné seront respectivement égaux & aa!, 28/, 29/ (¥).

(*) C'est exactement 4 cela que revient, ponr le fond , une solution qui
nous a 6té adressée par M. Pagliani’, cadet au corps royal des Pionniers a
Modéne ; mais l'auteur se borne & démontrer une construction que sa saga-
cité lui a suggérée, tandis qu'ici Panalyse fait découerir cette construction.

On sait que tous les points du plan de deus cercles, desquels ces cercles
sont vus sous des angles égaux sont ceux de la circonférence décrite sur la
distance entre leurs centres d’howologie , prise pour diametre ; d’ott il suit
que les deux points du plan de trois cercles d’olt ces cercles sont vus sous
des angles égaux sontceux ol se coupent les trois cercles décrits de la méme
maniere, par rapport a ces trois-la, pris tour 4 tour deux i deux. D'aprés
cette remarque le théoréme pourra étre trés-briévement énoncé comme il
suit:

Le centre du cercle qui est vu des sommets dun triangle donné sous trois
angles donnés, est le point d'ou l'on yerrait, sous des angles égaux , trois
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Les centres des deux cercles qui résolvent le probléme ainsi dé-
terminés, rien ne sera plus facile que d’en trouver les rayons res-
pectifs; car, pour chacun, en joignant son centre aux sommets des
trois angles a«, 3,9 par des droites, et menant, par les mémes
sommets , de nouvelles droites faisant respectivement avec celles-14
des angles o/, (¥, 9" ; les perpendiculaires abaissées du centre sur
ces derniéres seront des rayons du cercle a décrire.
> Si deux des trois angles donnés o/, 3, 7/ élaient égaux entre eux,
Pun des cercles, lieux des centres des cercles cherchés, se réduirait
4 une perpendiculaire sur le milien de I'un des c¢dtés du triangle
donné, axe de symptose ou axe radical des deux avtres; et, si ces
trois angles étaient égaux, les trois cercles se réduisant tous alors &
des perpendiculaires sur les milienx des c6tés du triangle donné,
le centre da cercle cherché ne serait donc autre que le centre du
cercle circonscrit & ce triangle ; ce qui est d’ailleurs évident,

A cause de la parfaite analogie qui existe entre ces deux proble-
mes , on était fondé & soupconner que, puisque le premier se ré-
sout par des intersections d’hyperboles équilatéres , I'autre se résou-
drait par des intersections de cercles.

Les quatre autres problemes de l'endroit cité ne seraient pas plus
difficiles & traiter que ces deux-la, si les formules de la géoméirie

analytique a trois dimensions, relatives aux axes de coordonnées
obliques , nous étaient plus familieres.

Lyon, le 28 juillet 1828,

eercles qui auraient pour centres les sommets du triangle , et dont les rayons

seraient respectivement proportionnels aux cosécantes des moitiés des trois an-
gles donnés.

J. D. G.

Tom, XI1X 25
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QUESTIONS PROPOSEES.

Théorémes de géométrie proposés a démontrer
Par M. F. Sarnus.

la Sla Vio Wiy S Vi, Vi Vlo Vie Via Vi Vio V]

I LES milienx des cordes interceptées par une conique, sur des
droites issues d’un méme point, sont sur une autre conique qui
lui est homothétique et qui passe par le point dont il sagit.

Il. Les milienx des cordes interceptées par une surface du se-
cond ordre, sur des droites issues d’'un méme point de lespace ,
sont sur une autre surface du second ordre qui lui est homothé~
tique et qui passe par le point dont il s’agit.

Probléemes a résoudre.

I. Quel est le lien des droites qui divisent en deux parties éga-
les les angles suivant lesquels une surface conique du second or-
dre est coupée par les plans conduits par une méme droite menée
par son sommet ?

II. Quel est le lien des centres de toutes les sectious faites dans
une sarface du second ordre par des plans qui se coupent sui-
vant une méme droite ? '

HI. A quelle courbe sont tangentes les droites qui divisent en
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deux parties ¢égales les angles circonscrits & une conique , qui ont
leurs sommets sur une méme droite ?

IV. A quelle surface sont tangens les plans qui divisent en deux
parties égales les angles diédres circonscrits & une méme surface
conique du second ordre, qui ont leurs arétes sur un méme plan
conduit par son sommet ?

V. Les diamétres principaux des surfaces coniques circonscrites
a une méme surface du second ordre, qui ont leurs sommets sur
une méme droite, sont-ils tangens 4 une méme courbe, et quelle
est cette courbe ?

VI. A quelle sarface sont tangens les plans qui divisent en deux
parties égales les angles diddres circonscrits & une méme surface
du second ordre, qui ont leurs arétes dans un méme plan?

VI A quelle surface sont tangens les plans qui divisent en deux
parties égales les angle diédres circonscrits & une méme surface du
second ordre, dont les arétes passent par un méme point. ?

VIIL. A quelle surface sont tangens les diamétres principaux des
surfaces coniques circonscrites & une surface du second ordre, qui
ont leurs sommets dans un méme plan?

Probléme proposé par M. W. H. T.

Quelles doivent étre les dimensions d'un cylindre droit, inscrit
a4 une sphére , pour que sa surface ou son volume soit un maxi-
muin ?

Probléemes proposés pdr M. L. P. E. R.

I. Lorsqu’on donne les trois cétés d'an triangle, le triangle est
donné, et, parsuite, sont aussi donnés les rayons des quatre cer~
cles inscrits et ex-inscrits , entre lesquels il doit conséquemment
exister une cerlaine relation. ( Annales, tom. XIX , pag. 86 ).
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Mais , parce que la ligne droite n'est quun cas particulier du
cercle , un triangle n’est qu’un cas particulier du systéme de trois
cercles anxquels huit autres cercles peuvent étre tangens.

Or, trois cercles sont déterminés sur un plan par six élémens;
savoir : leurs rayons et les distances entre leurs centres; d’ou 'on
voit que les rayons des huit cercles qui les touchent tous trois
sont des fonctions de ces six élémens, et qu’en conséquence il doit
exister deux relations distinctes entre ces huit rayons.

On propose d’assigner ces deux relations ?

II. Des considérations analogues prouvent qu’il doit aussi exister
deux relations distinctes entre les angles générateurs des huit co-
nes de révolution qui touchent, & la fois, trois cbénes donnés de
révolution de méme sommet.

On propose également d’assigner ces deux relations ?

I1I. Des considérations analogues prouvent encore que , de méme
qu’il existe deux relations distinctes ( Annales, tom. XIX , pag.
94 ) entre les rayons des huit sphéres qui touchent & la fois les
quatre faces d’un téraédre donné, il en doit exister six entre les
rayons des seize spheres qui touchent, a la fois, quatre sphéres
données,

On propose aussi d'assigner ces six relations?
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HYDRO-DYNAMIQUE.
Mémoire sur les oscillations des corps flottans ;

Par M. F. Sarrus, docteur agrégé &s sciences, professcur
de mathémaliques et de physique a Perpignan,

VIATMUIRTIVILVRA VA VY VARV

I,JE probléme qui fait le sujet de cet essai, traité avec loute la
généralité dont il est susceptible , consisterait & déterminer les di-
vers mouvemens d’oscillation que peat prendre un corps solide li-
Lre, pesant, plongé en tout ou en partie dans un fluide dégale=
ment soutis & l'action de la pesanteur, mais qui peut étre indif-
féremment compressible ou incompressible , homogene ou composé
de couches de nature différente.

Dans I'dtat actuel de la science, la solution rigoureuse de ce
probléme est, pour ainsi dire, impossible; aussi les divers géomeé-
tres qui oat essayé d’en résoudre quclgues cas particuliers , n’ont-
ils pu y parvenir qu'au moyen des bypothéses suivantes , savoir :

1.° Que la pressicn qu’éprouve chicun des points du corps flot-
tant peut étre calculée comme si le fluide n’avait aucun mouve-
ment; .

2.° Que les divers mouvemens du corps floltant sont assez pe-
tits pour qu'il soit permis de négliger , sans errear scnsible, les
quantités de l'ordre des carrés ou produits de ces mouvemens;

3° Que les dimensions du corps flottant sont assez petites pour
qu'on puisse regarder la pesanteur comme une force de grandeur
constante, agissant saivant des directions paralléles.

Tom. XIX ,n° 7, 1.5 janvier 182g. 26
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Comme dans les cas réellement utiles, ges diverses suppositions
ne s'écartent que bien peu de la vérité , lés résultats auxquels elles
conduisent peuvent étre considérés comme suffisamment appro-
chés ; nous les adopterons donc dans ce qui va suivre; mais, 3
cela prés, nous présenterons une solation purement analytique da
probléme géuéral, tel que nous l'avons posé ci~dessus.

Représentons , suivant l'usage, par g la gravité, la masse d’une
molécule quelconque du corps flottant par D, la pression normale
qu'éprouve chaque point d’un élément w de la surface de ce corps
par p, la normale correspondante, mesurée depuis un point de
cette droite pris dans l'intérieur du corps, par r, prenant l'axe des
z vertical et dirigé de haut en bas, et observant que la‘pression
p tend & diminuer la longuear 7 de la normale, nous aurons, pour
déterminer le mouvement du corps flottant, I'équation, ‘

S ( d’x)n-{-d;)t’f)’-‘-d‘z}z )DmISgsle{l—/))war , (l)
dans laquelle les intégrales indiquées par la caractéristique S sont
relatives & la moldcule Dm, et doivent s’étendre a toute la masse
du corps flottant, tandis que l'intégrale indiquée par la caracté-
ristique / est relative & l'élément w, et doit s'étendre seulement &
toute la partie de la surface de ce méme corps qui est baignée par
le fluide. On doit observer, en outre, que les variations 8z, dy, dz
ne sont pas enticrement arbitraires, parce qu’elles doivent satis-
faire & la condition d’invariabilité de distance entre deux molécu-
les quelconques. Cette condition va nous conduire & la forme la
plus générale de ces variations.

Lo désignaut par =,y ,z, X, Y, Z les coordonndes de deux
molécules quelconques du corps flottant, le carré de leur distance
sera exprimé par
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(—X) (=Y (e~ 25
dont la variation doit étre identiquement nulle; ce qni donne
oz(x—X}(a:r—3A3~F(y~Y )@y —3Y, )+(?—-Z )@z—42) ,

laquel'le:\ doit étre satisfaite, quelles que soient les valeurs particu—~
liéres des coordonnées z,y,z, X, ¥, Z.

En prenant successivement pour (X, V,Z ) lrois points fixés
mvanablement avec la masse da corps flottant, l'on arriverait i
trois équations semblables 3 la précédente , et au moyen desqaels -
les ‘on parviendrait A déterminer 8z, 8y , 8z, en fonction de x,
¥y, z, des coordonndes des trois pomts auxiliaires et des variations
de ces coordounées ; c’est-2-dire en fonction de z, y, z et d’au-
tres quantités qui ont la méme valéur pour "toute autre molé-
cule, Cela posé, si I'on différentie I'équation ci-dessus, successive-
ment par rapport & x,y, z, et que l'on observe que X, ¥, Z
doivent étre traités comme des constantes, I'on trouvera

o._ax..ax+(x-x>-—+(y —x) L H(e=2) 5 di=
¢ ddy z .
6ty Fh(r—) f—-x-(y—m 7)o
- ddx - | ; do ddz
0=82—8Z (5—X). 7= +(r—F) - +(:—Z) .

En différentiant celles-ci, & leur tour , successivement par rapport
4 X,Y,Z, et observant que, dans ce cas, ces quantités et leurs
variations sont les seules que l'on doive traiter comme variables,
on trouvera ‘
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dde doxX ddx 43y ddx déz
o= tx o =yt Ttz
doy dix ddy ddy ddy doz
o=t — , o=—4+ =, _— R
dx dYy dy dY dz dY

doz déxX ddz diy doz diz
o=t 3 = — ;3 o= —— - ——

x dz dy dz dz dz

o/

Comme les différens termes qui entrent dans ces équations sont in~
dépendans les uns des z, y, z et les autres de X, Y,Z, on
en conclura sans peine qu’ils sont tous indépendans tant de x, ¥,
z que de X, ¥, Z, et que, par conséquent , on doit avoir iden~

tiquement
ddx _ déxX ddxe . déX ddx _ déx
de dX ’ dy Ay ' Az dz °?
ddy 3y dyy Aoy ddy  AdY
dv  dX ’ Ay  dYy > 4z 4z ’
A0z Az 4z ddz _ doz
Jde T dX 7 Yy dy ’  dz ~ dz ’

dont la comparaison avec

ddx ddy  ddz N

e T
ddy ddz ddx

e
Y o o

déz dix  ddy

w0 e =
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en désignant par A, p, v des quantités quelconques indépendantes
de x, y,z, et qui doivent conserver leurs valeurs pour toutes les
molécules.

Présentement les diflérentielles totales de dx, 8y, 8z, prises en
regardant le temps comme constant, donnent identiquement

dow ddx dox
ddr= . dr4- i dy+

dz?)f—— da‘y dr4—— da\f dy~4- dc?y dz ,

d8z= = dat iﬁid + e

lesquelles , an moyen des résultats que nows venons d’obtenir, se
-réduiront &

ddzx =vdy—pdz ,
ddy =M z—vdx ,

ddz=pdar—2dy ;

qui, par leur intégration , nous donneront pour dx, dy, dz les va-
leurs suivantes:

=atoy—ps 5
Sy=p-}-dz—vz , » (2)
dz=y +;.zx—)y, 5

dans lesquelles « , 8, y sont des quantités indépendantes de x,y,
z , mais d’aillears arbitraires,
Avant de substituer ces valeurs de 8z, dy , dz dans I'équation (1),
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il convient de meltre le terme fpwdr de cette équation sous nne
forme qui se préte plus facilement aux calculs que nous aurons
a effectuer par la suite,

Lorsque le corps flottant est entiérement plongé dans le fluide ,
cette intégrale fpwdr doit étre prise dans toute I'dtendue de la
surface de ce corps. Or, on pourra toujours admettre qu’il en est
ainsi , pourvu qu’on regarde, s’il le faut, la densité du fluide comme
étant nulle dans une étendue plus on moins considérable. Au moyen
de ce pelit artifice, nous n’aurons plus besoin de distinguer le cas
olt le corps flottant est enti¢rement plongé dans le fluide de celui
ol il ne l'est qu’en partie seulement,

Cela posé, soient @, b, ¢ les coordonnées de l'origine de la
normale ; nons aurons

r*=(a—z)'+(b—y)'+(c—z2)* .
et par suite

a=—x Gy Comz

6]‘_—-:—- --;— 81'-— —;-— 3x- 61,‘ >

r

d’olt on conclura

— [pwdr=fpw. :r—_x_ Sz /pw. -Qb-::—’-’ Sy--/po. i;f dz &

Présentement nous observerons que I'expression est celle du

cosinus de l'angle que ferait cetle normale avec une paralléle me-
née par son pied ; & l'axe des # ; et que, par suite, celte expression.
est aussi celle du cosinus de I'inclinaison de 'élément w sur le plan

des yz ; de sorle que la projection de cet élément sur le plan des
a=——x

yz est, abstraction faite de son signe, égale & w. -——r—.AppelanE'

donc dydz cette projection, nous aurons
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a—x

w. =+dydz ;

r

le signe -} on — devant éire convenablement déterminé. Pour re-
connaitre quel est celui de ces deux signes qu’il faut prendre, dans
chaque cas particulier, considérons une droite indéfinie paralléle &
I'axe des x; les valeurs de y etde z,relatives aux différens points
de cette droite, seront toujours les mémes; il n’y aura que celle de
# qui changera. Nommant donc «,, #,, 23, ... les valeurs de z
qui ‘sont relatives aux points ou la droite perce la surface du corps
flottant, et supposant ces valeurs ‘rangées dans un ordre tel que
Yon ait '

Xy—x, >0 , L3—2x,>0 , X ==Z30 5 sarase g

ce qui est toujours possible , on verra sans peine que les différens
points de cette droite, pour lesquels x se trouve compris entre z,
et z,, z, et x,, &y el Xy, cuen.. sont situds dans l'intéricur du
corps flottant , -et les autres, c’est-a-dire , ceux pour lesquels z se
trouve compris entre x, el &y, &, €l &5, .eevnwne en dehors de ce
corps ; ce qui exige que les points d’intersection de la droite avec
la surface da corps flottant soient en nombre pair, et, de plus,
que, par cela senl que la normale r doit étre tout entiére dans
I'intérieur du corps flottant, on ait

a,—x,>0 , a,~—z,40 , A3=—2320 g iecoeer

8,y @) G35 sueee- Teprésentant les valeurs de @ qui correspondent
aux normales r,, 7,, 73, .... relatives & #,, 2,, &5 ,..... Si donc on
représente par w,, w,, @y, ..... les ‘élémens de la surface du corps
flottant qui se trouvent situés aux différens points ol cette surface
est percée par la paralléle & l'axe des » dont il vient d’étre ques—
tion, nous pourrons faire '
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w,. —-—-——a'-x? =-{dydz ,
Ty

w,.gl—;::—{v—'—:——d_ydz )

;. ‘—Ii—r——.-x—.—'— =--dydz ,

a & ¢ o e ® o e ¢ e s @

Ea observant que ces élémens peuvent toujours éire pris de telle
grandeur que leurs projections soient ¢gales entre elles, nous con-
clurons de la

Q==X =

a,—x, a, =2y ..
plwl' ——T—ax,-l-p,w,. “-"‘.—‘85!',""}73(03. _—;r——"‘s.ira"‘" YT
1 2 3 .

=—dydz(p.d7.—p .07, 4p 2 —pdrsti.) ,

en désignant par p,, p., 7s . .. les valeurs de p qui sont relati-
ves aux élémens w,, w,, wy, wen

Maintenant nous observerons que les valeurs de 8z, , dx, ,duy, ...
doivent éwre données par la premiere des équations (2), et que,
par conséquent, elles ne sont fonctions que des coordonnées y, z,
lesquelles conservent leurs valeurs dans toute ’étendue de la trans-
versale , et qu’ainsi l'on a

Or,=0r,=8r=.co0e..=0z ;

ce qui change le résaltat obtenu ci-dessus en celui qui suit :

a=—x

— 8z, +p.m, f—;x—’ 3a‘;+p3w3.

T

a,—Xx
BRI
-

3

i@

=—dydzdz(p.—p,Fp~pita) .
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Présentement , st 'on regarde » comme une fonction pmcméxt

analytique dont lexistence a lieu dans tous les points de Pespace,
on pourra faire

d
p’“pl+/)3_p4+"““":/ EZ:_ dx ’

pourvu seulement que I'on ne prenne I'intégrale du second mem-~
bre que pour les points situés dans l'intérieur du corps flottant ;
par suite nous aurons

8 wemXy a,~—x, — d
P -—-;T—-Sx,’{-p,w,- = 0z, 4-py0s. a’r’r Fvn=—dydzdr -£ dz .

L d

. . , X
Pour obtenir l'intégrale fpow. dx, nous n’aurons qu’a pren-

”
dre la somme de toutes les expressions analogues & celle qui forme
le second membre de cette équation, ce qui nous donnera

- d d
Jpo. =28z =—(fflydade [ L dr=—piadydz T o2,

r

on aura semblablement

Coman

b d d
e 3y=——f[/dmdydz.:i}p—3_y, Spo T2 de=—fffdadydz. I 3z,

r
et par suile
i ’ dp dp ’ :]_;_7_ ,) .
Spwdr=—-f/fdxdydz L g ot o)
ou enfin

Spodr=S/[f3p dzdydz ;

Vintégrale du second membre devant étre prise dans toute I'éten—
Tom., XIX 27
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due de l'espace occupé par le corps flottant. En substituant cette
valeur dans I'équation (1) elle deviendra

S( dzxd‘x-l-d;):)"i'dzzsz > Dm=gS3zDm—/[/3p.dzdydz . (3)

Il nous reste 3 mettre dans cette équation la valeur de dp, va-
leur que nous ne pouvons trouver qu'en supposant I'équilibre du
fluide; ce qui donne, comme l'on sait,

en désignant par A la densité de ce fluide. Au moyen de cette
valeur , I’équation (3) deviendra

S ( dzx é‘x:§-d2y3y+d=zé‘z

Ak ) Drm=gS8zDm—g [ffAdz.dedydz ; (5)

dans laquelle il faudra substituer les valeurs de dxz , dy, 8z, don-
nées par les équations (2) ; mais il convient auparavant de lui
faire subir encore une transformation.

Désignons par X, ¥, Z les coordonnées du centre de gravité
du corps flottant, et faisant

z=X+2/, y=Y4+y , z=Z 4z,
nous aurons identiquement
SzDm=SXDmn4-Sz'Dm=mX~+Sz'Dm ,
SyPm=SYDm~+Sy/Dm=mY¥Y+Sy'Dm ,

SzDm=8ZDmn~+-Sz'Dm=mZ~+Sz'Dm ;

mais d'un autre c6té, par la propriété du centre de gravité, on
doit avoir
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mX=8SxDm , mY=8yDm , mZ=8zDm ;
d’'olt on conclura
Sz/'Dm=—o , Sy'Dm=o , Sz/Dm=0 .

Au moyen de ces valeurs, le premier membre de I'’équation (5)
deviendra

A2 X3 X4-d Y IY+d2ZZ4-d2 X dw/}-A> Y By/f-d2Z 82!
dz?

S Dm .
d2x/8X4-day! dY J-d 22/ dZ~d2x! du'f-d 2y dy/d 22/ 32!

dia

Maintenant les valeurs de X, Y, Z étant les mémes pour tou-
tes les molécules Dm , ces quantités et leurs différentielles pour-
ront se mettre hors du signe S, ce qui nous donnera

2 X3X4-d:Y Y 4d2ZoZ d2X0X4-d2 Y Y 4d2Z8Z
S<d * dea * )Dm:m( + dta = )

S g:_}s dx'Dm=— EE Séx'Dm
de= dea
d2Y 42y ,
d=Z , d:2Z
S "Ez—‘ 62 Dm-— -?t—z- SSZ/D”I Py
s &% sxDm—3x8 L= Dm ;
dea dia

dzyl A _ dzyl
s 22 8¥Dm=315 32 Dm,
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d2z/
di2

s %T 82Dm=82T X% Dim .

Au moyen de ces valeurs, le premier membre de I'équation (5)
deviendra

d:X0X4-d2 Y IY+d2Z3Z dzx’du!f-d2y! Sy f-d22'dz’
m< + i L )-{-«S( rowt d’;f“l-dz z )Dm

tandis que le second sera
8S(8Z4-02")Dm =g f[f(8Z4-32/)Ada’dy/dz’ ,
ou encore |
gmdZ —g3Z fffAdx'dy’dz/—g [[fdz/ Ada’dy/dz’

en observant que S3z’Dm=o. Cette équation (5) pourra donc se
mettre sous la forme ‘

da2 d2 Y. LYV A) dax! dc/-d2y/dy/J-d 22!
m< XoX+- 3:5* +d Z)—[-S( x!d.e’ - th_y-i- 2! dzr >Dm

©)
=gmdZ —gdZ[[fAdz/dy/dz'—g [ff3z/Ada'dy'd2"

Lorsque le corps flottant est entiérement libre , les valeurs de
38X, 8Y, 8Z sont arbitraires et indépendantes de da/, 8y, dz/ ; d'ott
il résulte que leurs coefliciens doivent étre identiquement égaux
dans les deux membres de cette équation, ce qui donne les équa—
tions

dzXxX d2Y d=Z Py
- =0 ——=0, m. F:gm-—-g/ffAdx dy'dz" , (7)

lesquelles serviront a déterminer le mouvement du centre de gra-
vité du corps flottant et réduiront l'équation (6) i la suivante:
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P day/dy/-d2z/d
s( ddsidylys dolie )sz—-g//faz'Adx'dy’dZ’ . (8)

Présentement , les équations (2) nous donneront, comme cas par-
- ticulier,
X=atv¥V—pZ ,

Y =p+4+1Z—X ,
0Z—=y+4pX-1Y ,

lesquelles retranchées des équations (2) donnent
Wy—Y)—p(z—Z)=dxr—3X ,
Me—2Z)—v(z—X)=dy -4 ,
p(z = X)— Ay —¥)=8z—8Z ;

ou, ce qui revient au méme,

ou! =vy/—pz’ ,
Ay/=Az/—va’! ,
Oz/=pa/—Xy’ ,

d’aprés les valeurs #=X--z/, y—=Y-y’, z=Z-}z/, posées ci-dessus.
Au moyen de ces valeurs, 1'équation (8) deviendra, en mettant
A, p, v hors du signe d’intégration ,

d*y/ ! d2z!
)s(——z' e Z>Dm ‘

a/d2zl—z/d2x!
S ( — ) Dm ) ==gufffAz'dx'dy'd'4ga [JfAy'da'dy'dz’ ;

y’d’x'—x’dzy’
S ( —ET—) Dm |
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laquelle devant avoir lien quelles que soient les valeurs de A,p, v,
donuera identiquement

1d2 xp ! 2y
s( g )Dm=0,

s(%ﬂ)m:-—g/ffé&x/«ix’dy’dz’ @

td2z! =zt d2 )
S ( LY ) D=y () Ay'dardyda’

équations qui serviront & déterminer le mouvement du corps flot-
tant autour de son centre de gravité.

Pour déduire les conditions d’équilibre du corps flottant de cel-
les qui précédent, il suffit évidemment de supposer les vitesses

dxX dYy dz dx’ dy’ dz/
d PP A PR S PR A PR e

constantes et nulles ; ce qui rédunit les équations (7) et (9) aux
suivantes

m=/[ff Adx'dy/dz! ,
o=/[ffAx'dz'dy'dz’, (10)
o=/ Ay'dz'dy’dz’ ;

dont la premiére indique que, dans I'état d’équilibre , la masse du
corps flottant doit étre égale & celle du fluide qu’il déplace, tan--
dis que les deux autres indiquent que les centres de gravité de
ces deunx masses doivent étre situés dans une méme verticale. Tel-
les sont en effet les conditions nécessaires et suffisantes pour assu-
rer I'équilibre. Nous nous occuperons plus loin de la recherche de
celles qui peuvent en garantir la stabilité,
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Présentement , concevons, par le centre de gravité du corps flot-
tant, trois axes rectangulaires fixes par rapport & ce corps, mais
mobiles avec lni dans l'espace. Si l'on représente par @, &, ¢ les
coordonnées d’un point quelconque relatives a ces axes , nous au-
rons

dz/dy’dz/=dadldc ,

puisque les denx membres de cette équation représentent également
le volume Dm d’une molécule quelconque du corps flottant. Par
suite , on aura, en général

S Pda/dy/dz/—= f Pdadbdc . (11)

On parviendrait au surplus 4 la méme conclusion par I’application
des procédés conmus pour la transformation des intégrales, Cest
ainsi que nous transformerons les seconds membres des équations
(7) et (9).

Ce qui préceéde aura toujours lieu , quelles que soient les direc-
tions des axes @, 5, ¢ ; de sorte que rien ne nous empéche de sup-
poser que , si le corps flottant était en équilibre, ont et 2'=a ,
y'=b,z'=c. Si l'on fait, dans ce cas, '

xl=a+xll , y1=5+y” , zI=£+le ..

les quantités 27/, y//, z// seront trés-petites et de méme ordre que
les vitesses que peuvent prendre les molécules Dz ; on pourra donc,
sans erreur sensible, négliger les quantités de l'ordre de leurs car-
rés et produits. De plus, les quantités 2", y”, z” devront étre
telles que la distance de deux molécules ne soit pas altérée par leur
présence et conserve la méme valeur que si ces quantités étaient
absclument nulles. On peut donc employer , pour les déterminer,
les considérations qui nous ont conduit aux équations (2) , et
poser par conséquent
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x!=vb—pc ,
y!'=le—va ,
Zl=pa—2b ,
ou A, p, v sont des fonctions inconnues, autres que celles des équa-
“tions (2), du temps et de constantes indépendantes de «, 4, c,
qu’il s’agit de déterminer, et ol nous supprimons les constantes
o, B, v, atendu que 2/, ¥/, z// doivent étre nuls en méme temps
que &, b, ¢. Nous aurous ainsi
w/=atob—pc ,
y'=b+dc—va ,
z':c—{—p.a—)&ﬁ ’

et par suite, en négligeant les carrés et produits de A, p, v,

! Q2 ! A2y _ FEY': L dzx d2pe
i =) e o —be -
x/d2z/mmzld 2! d2ge dzy d=a
D ———— 2 3 — — — —
des (™ a?) dez be dez ab dez ?
y'd2zl—z/d2y’ _ 2y oy d2A a%e dzy
da =—('+¢) dts +ab de» +cq dea ?

multipliant les deux membres de ces équations par Dz, intégrant
par rapport a la caractéristique S et posant, pour abréger,

S(4*4-c*)Dm=4 , SécDm=¢6 ,
S(¢’4-e*Dm=E8B , ScaDm=H ,
S(a*+-4")Dm=C , SabDm=K ,

on trouvera
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y/d’x’—-x’d’y' dza dag

S( DIM_.-—]-C —H e —0 i
x’d’z’-—z’d x! d2e d2y dzn

S(f )l)m-——kl? G'a;-——K::E; ’ (12)
y'd”»z/—'Z'd’y’ ) . dz2a d2z dzy

S( ds )D’”‘""A w TE A

valeurs qu’il convient de mettre & la place des premiers membres
des équations (9), et c’est ce que nous ferons dés que nous an-
rons mis en évidence les quantités A, p, v, Z qui doivent en-
trer dans leurs seconds membres. :

L’équation (4), relative & I'équilibre du fluide, ne peut avoir
lien qu’autant que la densité A est fonction de z seulement; mais
nous avons fait

z2=Z Yz =c-}pa—io+Z ;

parsuite A doit étre supposé fonction de cette quantité c4pa—o+2,
et d’autres quantités constantes , mais indépendantes de ¢, 4, .
Supposant donc que lorigine des coordonunées primitives z, y, z
ait été prise de telle sorte que, dans D’état d’équilibre, I'on et
Z =0, ce qui est toujours possible , nous pourrons regarder Z comme
étant de méme ordre que A, p,v, et par conséquent négliger son
carré et les autres termes de méme ordre , ce qui nous permeitra

de faire
A= AO-{- " (ea—Io+-Z) ,

en désignant par A, la valeur de A qui aurait lieu dans le cas
d’équilibre, Nous trouverons ainsi , en négligeant toujours les quan-
tités de l'ordre des carrés et produits de A, p, v, Z,

dAo dAo

>

Ar' =al A0 A —p ( A —a’
Tom. XIX. 28



OSCILLATIONS

202

—uab °+z-"-"iz

Ay'=bA =0l 4 (cAo

Au moyen de ces valeurs, nous trouverons, en employant la trans-
formation indiquée par U'équation (11),

JAdzdy/dz = fffAdadbde=//[/A, dad&dc-}-Z[f/ = daddde

e /ffa S22 dadbde—h/ffB o dadbde 5
JJAzdz'dyldz’'= fffAx'dadbdc = [ffal, dadbdc+Zf/fa = dadbdc

o [ dadbdo—p [ (ce—a® i“L)dadzdc_z Sifab St daddde 5

LYy dz'dy'de'=//f Ay dadbde= [1/bAdadbdot-Z [ 22 dadsde

—o i atsodadbdo- fff (cBy— =2 ) dadbdo—tpffa

Maintenant on doit observer que @, 4, ¢, A, sont les valeurs
de 2/,y’, z/, A qui auraient lieu dans le cas d’équilibre , et que,

conséquemment, on doit avoir identiquement (10)

JffAdadbde=m ,

JfaA dadbdec=0 ,
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JbAdadbde=o0 ;
ayant donc égard & ces conditions et posant, pour abréger,
Sl “52-dadbde=ff(A—ANdadb=L

e 22 dadbde = 1 (A/—A)adadd=M

da,

JIft == dadbde=f[/(A/'— ANbdadl=N ,

J//fa* i;;f deddde=f/(AV—A")a’dadb=P ,

J5 S22 dadbdo=/1f (A/—A)bdads=(Q

da,
de

Sab —= dadbde=/f/(A"—A)abdadb=R ,

Jfjed dadbde=MV
nous trouverons

JAdx'dy!'dz/ =m+LZ 4 pM—IN
S/TAx"dz/dy'd 2’ = MZ—p(mV —P)—IR ,

S/ Ay dz'dy/dz! = NZAXm V—Q)+4pRR 5

équations dans lesquelles L, M, N, P, Q, R, V expriment des
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constantes qui dépendent de la nature du fluide, de celle du corps
flottant et de la figure de ce corps.

En comparant ces résultats et ceux que donnent les équations
(12) avec les équations (7) et (9), nous trouverons enfin

d:X dY \
—_— =0 ° —_— =0 ’

de2 dea

Z
m —-+glZ +gMp—gNi=o0 ,

d2y d: ‘u —
c—6 Hdﬂ =0, ) (13)
e _x I 6 g MZ—g(mV—Pym—gR)=0
de2 an de L ?
dza day

d2
A —K = —gNZ+4g(mV—Q)—ghp=0; )

dn T der

et telles sont les équations finales qu’il nous reste a intégrer pour
avoir résolu le probléme que nous nous étions proposé.

d . dont e e, dX
Les deux premiéres donnent, par une premicre intégration, =

Yy )
et — constantes, et conséquemment nulles lorsque le corps flot-

tant est parti du repos, on méme, lorsqu’ayant re¢a une impul-
sion primitive , les composantes transversales sont nulles, Dans ce
cas , les valeurs de X et ¥ sont constantes et par conséquent s,
& lorigine des petites oscillations, le centre de gravité du corps
Slottant se meut sur une verticale, il ne sortira pas de cette droite
pendant loute leur durée.

Pour intégrer les quatre équations restantes, noas les réduirons
d’abord & trois, en éliminant v entre elles ; les équations A intégrer
seront ainsi
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a:Z
m “+g(LZ4-Mp—NXN)=—o ,
L. dou d=x
(BC—6*) 57 —(CK+GH)— +Cs{MZ—(mP—~Pp—RN=o0, | (1f)

. dzpe . 422 '
(CK+GH) <5 —(AC—H) % +Cg{NZ—(mP—Q)f-Bu} =0 ;

auxquelles nous appliquerons le procédé indiqué dans la section VI
de la Mécanique analytigue. Nous poserons donc

A=pZ p=qgZ ,

et chacune de ces équations ‘prendra la forme
— +rZ=0 5 (1 5)

pPs q,r désignant des constantes qui doivent satisfaire aux équa-
tions de condition que l'on trouvera en mettant ces valeurs dans
les équations (14) ; équations de condition qui seront

g§(L~+Mg—Np)—mr=o ,
C{M—(mV—PYg—Bpy=r{(BC—6")g—(CK~-+GH)p} ,
Co{ N—(mV—Q)p+Lg}=r{(CK+CH)g—(AC~H)p} ,

et qui serviront 3 déterminer ces constantes. En effet, les deux
derniéres , résolues par rapport a p et ¢, donnent

M[(CK+GH)r—=gCR]~N[(BCm=G2)r—gC(mV—P)]
[(CK+GH)r—gCR)*=—[(4C—H>)r—g C(mV —Q)1[(BC—~G2)r—gC(mV =~ P)] ’

p=—4C.
(16)

- C N[(CK+4-GH)r=—gCR]=M[AC—H?)r—gC(mV—Q)]

q—+g ' [(CK4-GH)r—gCh)*=[(AC~H>)r—gC(mV=—Q)][(BC~G*)r—gC(mF—P)] *




206 OSCILLATIONS

Mettant ces valeurs dans la premiére, nous trouverons, en chas-
sant le dénominateur,

(mr=gL){ ((CK+4+GH)ramg CR]:=[( AC—H?)rmmg C(mV=Q)J[(BC—G?)r=mg C(mV'~=P)] } -

(17)

g C{ M [(AC—H:)r =g C(m V= Q)] —2MN[(CK +GH)r~g CR)4N3[(BC~G*)r=gC(mV=P)] }=o0

équation du troisi¢me degré qui fera connaitre toutes les valeurs
de r, d'ott on conclura ensuite celles de p et ¢ au moyen des
formules (16); de sorte qu'en général il y aura trois systémes de
valeurs pour les constantes p, ¢, r, correspondant aux trois raci-
nes de l'équation (17).

Maintenant en intégrant I'équation (15) on trouve

Z=TCos.ty/r +USinty/r ,
T et U éiant deux constantes; il en résulte

A=p(TCos.ty/r+USinty/7) ,

p=¢g(TCos.ty/r+USinty/r ;
cette solution n’est que particaliére , mais en méme temps elle est tri~-
ple, puisqu’il y a trois systémes de valeursde p, ¢, r; donc, d’aprésla
théorie de l'intégration des équations linéaires & coefficiens constans,
on aura lintégrale compléte en prenant la somme des trois inté-
grales particuliéres qui répondent A ces systémes; de sorte qu’en
désignant par 7/, 7", 7" les trois racines de I’équation (17), et par

PP P ¢, ¢, g" les valeurs de p et ¢ qui leur correspon-
dent respectivement, on aura

T/Cos.ty/r 4-U'Sinidy/7v
Z= +T”Cos‘t‘/;7l+U”Sin.t‘/ﬁ( (18)

AT"Cos.ty/ 7i4=U"Sin.ty/ rir
et ensuite
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p!(TCos 1y/ 74 U'Sin.ty/ 77) ¢/(T"Cos.t \/7i-} U'Sinut /7)
d={ 4p"(T"Cos.zy/7+U"Sinsty/7) \, p=] ~4¢"(T"Costy/ri4-U"Sinty/ ) 5. (19)
+p”/(T/”COSJ‘/;/7"|' U”/Siﬂ.l‘v‘;/—/;) +qI”(T,/COSJ‘/17;+ U”’Sin.t‘/ '7;-)

en désignant par 7V, TV, T, U’, U”, U six constantes tout
4 fait arbitraires , dont les valeurs ne dépendent que de ['état ini-
tial da corps flottant.

Maintenant I’équation

dzv d2ee dza
o C — =G — —H — =0,
de2 da s 07

qui fait partie des équations (13) donne, en intégrant,
Cv—Gp—H)=0+-0"7 , (20)

dans laquelle O et 0/ sont deux nouvelles constantes qu’il fandra
déterminer d’aprés l'état initial du fluide.

Cette équation servant & déterminer v, en fonction de A et g
déja donnés par les équations (19), la solution générale du pro-
bléme que nous nous étions proposé se trouve ainsi tout a fait com-
pléte, du moins dans le cas ol I'équation (17) a ses trois raci-
nes inégales. Dans le cas contraire, les expressions (18) et (19) ne
sont plus complétes, la précédente solution est alors en défaut,
et il en serait de méme si une des racines de I'’équation (17) était
nulle ; mais il est heureusement facile d’obtenir , dans ces cas mémes,
la solution générale du probleme.

Supposons, en effet, que l'on ait y/ri=y/74-7, 7 étant une quan-
tité trés-petite , nous aurons

_ o o
Cos.z\/ 71=Cos.ty/ r'm— ;— Sin.zy/ ri-~ l—zg- Co5.24/ Fromsseen
1.
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. Sin 1y/F=Sin.ty/ 7 Costy/ e o Sinty/ s
et par suite
TCos.ty/ 74 U"Sin.ty/ 7
= T"Cos.z\/ r-U"Sint\/ 741(iT/Cos.t\/ ri—iU)
T"'Cos.t\/ 74+-U"Sin.ty/ v

+ L (o i—Tr8in 1y/7)
T"Cos.ty/ ri4U"'Sin.ty/ ol = . 4
+ - (T"Cosy/ 7= UVSin.ty/ 7)

+.-t--on.o.u..-o-;

de sorte que sil'on fait, pour abréger,

U‘ v/ T ;
U= — , T'=— , U4U/=U,, T'4+T'=T,,

z

les équations (18) et (19) deviendront

=T,Cos.t\/ 74 U,Sinty/ 7+tU,Cos.t\/ 742 T, Sinty/ 7
T/ Cos.ay/ 74U Sin.y/ g = A,
2
A= p!(Ty41U,)Cos.2y/ Fidp/(Us4-2T,)Sinty /7

+p”/T”/CoS.t‘/‘_r‘,T,+p///U//,'Sin_t‘/;;,',_"_P/, -:.t—; r ’
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p=¢ (T.4+1U,)Cos.ty/7i4q'(U,4-¢T,)Sint\/ s

}-}-q”’T’”Cos.z’V7ﬂ7+q/’/U’”Sin.t ‘/7.,;7_{_71_ %H ;

A, ', IT désignant, par abréviation, tout ce que nous n’avons pas
écrit, Or, lorsqu'on aara r/==r" ou i=o, ces équations se rédui-
ront simplemeat &

Z=(T,4-tU,)Cos.ty/ri4(U,~41T,)Sin1\/74-T"/Cos.t\/ rir 4 U"'Sin.z\/ v ,
y=p{ T 4-2U,)Cos.ty/ 7 4-p!(U,4-1T,)Sin 2/ 74-p" (T Cos.ty/ 7 4= U"Sinuty/ 77, 4 (21)
p=g{T4-tU,)Costy/ r+¢/(U,41T,)Sindy/ r4¢"(T"Cos.t/ rir 4-U"Sinty/ rir) .

Il faudrait agir & pen prés de méme si les trois racines étaient éga~
les entre elles on encore si P'une d’elles était nulle. Soit, par exem-
ple, dans ce dernier cas, r” la racine nuile; alors le terme
T/Cos.ty/r" se réduira & T, et le terme U”Sinzy/r que Fon

_ Sinanrm,
peut wmettre sous la forme Uy 7. g ou encore sous celle-

r/l
Sin.n 7
___;/7[__.

sion qui est égale a 2U,.

ct U,. , devra étre remplacé par la limite de celte expres-

Telles sont les modifications que doivent subir les formules (18)
et (19) daus les cas particuliers, pour qu’etles puissent donner la
solution compléte du probléme.

Nous pouvons maintenant connaitre quelles sont les conditions
nécessaires et suflisantes pour assurer la stabilité de I’équilibre da
corps flottant.

1.° Si les trois racines de I'équation (17) sont réelles, indgales,

Tom, XI1X 29
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positives et différentes de zéro, les expressions (18) et (19) se-
ront enticrement périodiques, et alors le corps flottant se trouvera
dans une situation d’équilibre stable.

2.° Si l'une des trois racines de cette équation est nulle, les
deux autres étant réelles, positives et inégales, les formules (18)
et (19) , outre les termes périodiques, contiendrout un terme
de la forme zU,; mais ce terme sera identiquement nul lorsque
le corps flottant n’aura point regu d’impulsion primitive; c’est le
cas d’équilibre indifférent.

3.* Si I’équation 747) n’avait point de racines positives, chacun
des termes des formules (18) et (1g) contiendrait des exponentiels,
et 1"équilibre serait complétement instable.

Dans tous les autres cas, les formules (18), (19) ou (21) con-
tiendront des termes périodiques et des termes croissant indéfini-
ment avec le temps. Ou congoit que ces derniers peuvent alors étre
rendus nuls par une impulsion primitive, et c’est dans ce cas qu’on
dit du corps flottant que son équilibre est de nature mixte.

Dans un autre article nous ferons quelques applications de la théo-
rie que nous venons d’esposer, et nous considérerons en outre, sous
un autre aspect, les conditions de stabilité des corps flottans.
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GECMETRIE ELEMENTAIRE.

Sur les quatre cercles qui touchent les trois
cotés d'un méme triangle, et sur les huit
sphéres qui touchent les quatre faces d’un
méme tétraédre ;

Par M. L. P. F. R.

NWAARNTTVIAVVVVIAVN

Nous nous proposons , dansce qui va suivre , d’ajouter quelques
résultats nouveaux a ceux qui ont été donués par MM. Steiner et
Bobillier, & la pag. 85 du présent volume, en conservant leurs.
notations pour la commodité du lecteur.

En désignant par o/, §, ¢/ les perpendiculaires abaissées sur les
directions des cotés a, b, ¢ du triangle T, des sommets respecti~
vement opposés, on a cetle triple équation

aa' =bb/—=cc'=2aT ,

de laquelle tirant les valeurs de 2, 4, ¢ pour les substituer dans
les formules (1), il viendra, en divisant par 27,
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X
T=a/+3’-+¢:7 ?
X kg X I
u—g ;'7_0' ’
( (14)
b 4 1 1 1
8 o Vo o ?
1 1 b4 X
¥y a’ v o 7|

c’est-a-dire , Linverse du rayon du cercle inscrit & un iriangle est
égal & la somme des inverses des trois hauteurs de ce triangle ;

Linverse du rayon de l'un quelconque des trois cercles ex-ins-
crit , est égal & la samme des inverses des hauteurs qui répondent
oux deux autres , moins l'inverse de la hauteur qui répond é celui-la.

En rapprochant la premiére des équations (14) de I'équation (2) ,
on peut dire encore que /a somme des inverses des rayons des
trois cercles ex—inscrits , est égale d la somme des inverses des trois
hauteurs du triangle.

Les équations (5) donnent

Bo= a(B—rY(y—r)

r

Aly=—r) (a=r)
r

ca=

y(a=~r)(B—r)
r

ab=

-

d’olt , en ajoutant,

3apyema(By-tyet-af)r4-(2-4-p45)rz

r

bed-cat-ab =

e

mais I'équation (2). donne
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aBy=r(By4ya-tof) ; (15)
en substituant donc , on aura

betrcatab=0y+yataftor4-prdyr ,  (16)

c'est-a-dire , la somme des produits, deux & deux , des rayons des

quatre cercles qui touchent & la fois les trois cités d'un triangle,

est égale @ la somme des produits, deux a deux ,de ces trois coiés.,
Les mémes équations (5) donnent

3asy—(By+yat-ud)r
afByr

at-btc= T;

ou, en vertu des équations (3) et (15)

. r(8y+yat-al)tapy
a+tbtec= T H

et par conséquent

ofBy4-Byr—4-yar-~t-aBr="T(a4-b-}c) ; (17)

c’est-d-dire , Ja somme des produits, irois & trois ,des rayons des
quatre cercles qui touchent les trois cdtés d'un iriangle , est égale
¢ lafre du triangle , multipliée par son périmétre.

L’équation (8) donne, en développant,

afy—(By+yrd-aB)r4-(ad-p4o)r2—r3
4ra

R=

ou, en réduisant, au moyen de I'équation (15),
B:i—(a—l-—ﬁ-[—-'y—-r) 5 (18)

c’est I'élégant théoréme de M. Bobillier.
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Si I'on pose a--b+c=2s, en quarrant les équations (1) et ayant
égard & I'équation (3), on aura

By Bor var i
? = —-r— ’ (S'-a)’: T H (‘9'—5)’= _/_;e‘— 4 (S—-c) = _y— ’ ('9}

ou, en vertu de I'équation (15),
s*=Py+yatof , |}

(s—a)y’=By—rB+7) ,

(s—8)* =yoa—r(74a) ,
(s—¢)*=ofi—r(a4p)

au moyen de quoi les équations (4) deviennent

4

«ly By ve ap
T=— —r =r =r — . (2%‘)‘
s Sr—q s—0 Se=—C -

Si, au meyen de la premiére des équations (19), on élimine 7
des trois autres, elles deviendront

_ By b yo «3
S—a=—— , Se—b= — Sm—f=— — |,
5~ S R
d’vtt on tirera:
ﬁ—-ﬁy §2imen /g St p 3
a= K Iy &: P y 66— < 5

ou, en y mettant pour s sa valeur donnée par la premiére des équa~
tions (20),

o= XD g ok veds
Vertyatad ’ Vertyetas 7 T \artyatup

formules qui feront connaitre les trois cotés d’an triangle lorsque
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I'on connaitra les rayons des trois cercles qui lui sont ex-inscrits;

on en tire

ety  Blyta)  y(atp)

a 14 <

: (33)

Si le triangle est rectangle et que ¢ en soit 'hypothénuse, on
aura @*4-b'=c", cest-a-dire (22),

@ Bty)’ B (3a) =y (o4-B)°
ou bien, en développant et réduisant
aBtay+Py=y" , (=4)
€quation qui, comparée & (15), donne, comme I'a trouvé M. Steiner,
ap=yr ; (25)

mettant cette valeur pour o dans (24) et divisant par y, on aura
encore

r4atp=y . (26)

A l'aide de ces deux dernitres équations on peuvt faire dispa-
raitre des divers résuliats obtenus deux des quatre rayons; on trouve
ainsi, pour le triangle rectangle,

S=9

a=atr—=y—p ,

b=ptr=y—a ,
SN V)]

—atp=y—r ,

T=of=yr ,

R} (@+p)=10—7).
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Soient D,, D, , Dg, D, les distances du centre du cerele eircons-
crit aux centres des cercles inscrits et ex-inscrits , on aura, comue
Von sait ( Annales , tom. XIV , pag. 56 ),

D* —R'—-2Rr ,
D*,=R*4-2Rz ,

i ; (28)
D'y=R+2RB,

D =R+4-2Ry .

En prenant la somme de ces quatre équations, et ayant égard & l'équa-
tion (18), il viendra

DD D g IP =12 1" ; (29)

cest-A-dire , la somme des carrés des distances du centre du cer—
cle circonscrit & un triangle aux centres des cercles inscrit et ex-

inscrit & ce triangle , est égale & douze fois le carré du rayon de
ce cercle circonscrit.

Des mémes équations (28) on tire encore
D' 4D’ =2 B2 R(y==r) B’“+D",3=2R‘+2R(bc+ﬁ) 3
mais , si le triangle est rectangle, L'équation (26) donne |

y—r=a+4-p3 ;

donc alors
D’,A+D’7=D’¢+D’B ; (30)

c'est-d-dire, la somme des carrés des distances du centre du cer-
cle circonscrit a un triangle rectangle aux centres des cercles ex-
inscrits qui répondent aux deux colés de Pangle droit, est éga/é a
la somme des carrés des distances de ce méme centre, au cenire
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du cerle ex-inscrit qui répond & lhypothénuse et au cenire du
cercle inscrit.

Tous ces divers résultats doivent avoir leurs analognes relatifs
aux huits sphéres qui toucheut & la fois les quatre faces d’un té-
traddre ; bornons-nous au cas le plns simple. S

Soient @/, 4/, ¢!, d' les perpendiculaires abaissées sur les plans
des faces @, b, ¢, d du tétraédre 7' des sommets respectivement
opposés ; on aura cette quadruple éqnation

ad! = bt/ =ce!=dd'=3T ,

de laquelle, tirant les valenrs de @, &, ¢, 4 pour les substituer dans
les huit équations de la pag. 93, il viendra, endivisant par 37,

I I I I I
TSty tatao (31)
1 T I T \
PRI Tl
I__x I 1 t
imotata—Te
[ (32)
I I I
yoate Tty T
I -_I I I T
sSete T Ty )
A
+ilIgr_I_ L |
— o ¢ al a'
1 I I I 1
rr=sta—ai—e | O
1 I 1 I T
+ =t - ————
— a! b ¢! dr J

Tom. XIX. 30
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c’est-a-dire , 1 ° linverse du rayon de la sphére inscrite & un
tétratdre , est égale & la somme des inverses de ses quatre hau—
lteurs ;

2.° Linverse du rayon de lu sphére ex-inscrite sur une des
Jaces d'un tétraédre , est égale & lu somme des inverses des hau-
teurs qui répondent aux irois autres faces , moins linverse de lo
hauteur qui répond & celle-la ;

3.° Enfin, linverse du rayon de la sphére ex-inscrite sur lune
ou lautre de devx aréles opposées d'un tétraddre , est égale d la
différence entre la somme des inverses des hauteurs qui répondent
aux deux faces qui se coupent suivant lune de ces deux arétes
et la somme des inverses des hauteurs qui répondent aux deux fa-
ces qui se coupent suivant son opposée.

-

GEOMETRIE DE SITUATION.

Sur le degré de la polaire réciproque d'une
| courbe proposcée.

Par M. GErRG 0NN E.

VVVVWUVWWUVVVVVVVANAVVUAN NN

J’AI remarqué , i la pag. 108 du présent volume, que M. Ponce-
let avait fort bien prouvé que la polaire réciproque d’une courbe
du 7. degré ne pouvait étre d’'un degré supérieur au [m(m—ri)]e,
mais non qu’elle pouvait s’élever jusqua ce degré; et que, loin
de nous avoir donné des exemples de courbes du troisiéme degré,
dont les polaires réciproques s'élevassent jusqu'an sizxiéme degré,
il nous avait précisément donné des exemples du contraire,
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Pour suppléer , & cet égard, au silence de M. Poncelet, sans

m’engager dans des calculs trop prolixes , j’ai cholsi la courbe du
troisi¢ine degré donnée par I'équation fort simple.

<_x. )1{-(.?.’. )3_—:1 :
a b
et, en prenant pour directrice la circonférence donnée par I'équation
x:—l—yz:r’ ,
j’ai trouvé pour I'équation de sa polaire réciproque
(031‘3-—-53"}/3)2:7‘6(03:03—{—[)’ys) s

équation qui est bien en effet du sixiéme degré; ce qui donne
quelque probabilité au théoréme général de M. Poncelet, sans toute-
fois en constituer une démonstration.

J'avais dit anssi, en Pendroit cité, que M. Poncelet aurait pu,
tout au wmoins, nous montrer une courbe de laquelle on vit 3 la
fois clairement, 1. qu'une méme droite ne saurait la couper en plus
de trois points; 2.° que néaumoins on peut lui mener six tangen-
tes de certains points de son plan. M. le docteur Plucker m’indi-
que deux exemples de ces sortes de courbes ; le premier est celui
de la courbe dounée par I'équation

zy*=(x—a)(x—b)(x—r¢)

( Newton Opusc., tom. 1, pag. 185, plan. IV, fig. 22 ); le se-
cond est la courbe de la figure 44, dans V'Introduction au calcul
différentiel d’EULER ( tom. II, chap. X, n.% 241 ).

On pourrait objecter au théoréeme de M. Poncelet que, si la po-
laire réciproque d’une courbe du . degré est, en général, une
courbe du [m(m—i)]™ degré, la polaire réciproque de celle-ci,
prise par rapport & la méme directrice , devrait étre , par la méme
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raison, du {[m(m=1) [m(m—1)—1]}"" degré, tandis qu’an con=
traire cetle polaire réciproque, n’étant autre chose que la propo-
sée clle-méme, ne doit étre que du m.*™ degré seulement; mais
on doit remarquer que la polaire réciproque d’une courbe propo-
sée n'est par la courbe la plos générale de sen degré, et qu'elle
est de la classe de celles dont les polaires réciproques n’atteignent
pas le masimum du degré aunquel pourraient s'élever, en géndral,
les polaires réciproques des courbes d’un degré pareil au sien.

GROMETRIE ANALYTIQUE.
Note sur un article de la Revue encyclopédique;

Par M. GERGONNE.

ARAAVVVRV VIV

DANS le numéro de juillet 1828 de la Repue encyclopédigue , pag.
233, M. Ferry, 'un des rédacteurs de cet intéressant recucil, a
bien voulu ramener I'attention de ses lecteurs sur les Annales. de
Mathématigues , en rendant compte da numdro de mai 1828 de
cette collection. Mais la manitre dont s'expligue M. Ferry sur un
mémoire de M. Bobillier, contenu dans cette livraison , mdémoire
qul signale d’ailleurs comme fort remarquable , nous semble prou-
ver que les idées mémes les plus saines et les plus lumineuses ont
beson d’éwre souvent reproduites avant d'obtenir Taccueil auquel
clles ont droit,

D’aprés les conventions admises dans la géoméirie analytique ,
une ¢quation de la forme
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o(x,y)=0

exprime tous les points d’un plan dont les cocrdonndes penvent la
résoudre ; et ou sait que, géndralement parlant , ces points sont
ccux d'vue certaine ligne continue, droite on courbe. De 14 il
résulte évidemment que le sysitme de deunx équations , telles que

plz,y)=o0, Y=, y)=o0,

exprime des points isolés les uns des autres, lesquels sont cenx oft
sc coupent les lignes que représentent ces deux ¢qualions prises sé-
parément. Ces points sont en eflet les seuls dont les coordonnées
puissent satisfaire A ces deux dquations & la fois.

Prisentement, qu'exprimera I’équation

@@, x) &' (@, )" (%, ¥)r=0 ?

Yvidemment clle exprimera la totalité des points du plan des axes
dont les coordonuédes réduiront son prewmier membre & zéro; or,
comme ce premier membre est un produit de facteurs, il pourra
devenir nul d'autant de maniéres qu’il a de facteurs; de sorte que
les points dout il s'agit scront ceux des courbes données par les

équations
elo,y)=o , @ (@,y)=0 , @"(X,¥)==0, wuw

Si ces principes doivent étre admis, et nous ne voyons pas tro
, Y

par quel c6té ils pourraient étre vulnérables, il faudra nécessaire-

ment admettre que 'équation

(ax4-by-f-ci(@zd-b'y4c’) =0 (1)

gxprime le systéme dg deux droites, tout comme I'équation
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(ax4-by-c)(a'a4-b'y+c') (@24 5"y d-c")=o0 (2)

exprime le systéme de trois droites,

Or, comme un angle est complétement déterminé par ses deux
ctés , et un triangle par les trois droites qui le termiuent, il s’en-
sait que l'on pourra fort bien dire que I'équation (1) exprime un
angle et I'équation (2) un triangle , tout comme on dit que I’équa-
tion

(w—ay+(y—by'=r

exprime un cercle, bien qu’elle n’en exprime que la circonférence..
Si présentement on pose , pour abréger,

axtbyte=A4 , datbyte=4", a’x+b"y+c'=A";

on pourra dire alors que I'équation 4=—=o0 exprime une droite, que
Féquation AA'=o exprime un angle et quenfin I'équation’' 44’4 =0
exprime un triangle, '

Or, il ressort manifestement de la contexture du mémoire cité
de M. Bobillier que c’est 1a tout ce quil a prétendu dire, et nous
ne pouvons comprendre comment M. Ferry a pu se demander si
la mitaphysique de l'auteur ne pourrait pas éire contesiée , et dire
que lenuée de la nouvelle route que s’est frayée M. Bobillier aurait
besoin d'étre plus éclairée.

Sans doute, la combinaison des équations de trois droites ne
donne pas et ne saurait donner tous les points, ni méme ancun
des points de lintérieur du triangle qu'elles terminent, pas plus
que léquation d’un cercle ne doune des points de lintérieur de
ce cercle ; mais tout prouve, dans Fécrit de M. Bobillier, que ce
n’est point non plas de la sorte qu’il I'a entendu. €e n'est pas,
au surplas, que l'analyse se refuse 4 exprimer des espaces limités,
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mais c'est alors & des inégalités quelle a recours, et c'est ainsi,

par exemple, que linégalité
(r—a) o (y—b) <

exprime tous les points et les seuls points de l'intérieur d’un cer-
cle dont le centre est en (a,5) et dont le rayon est r; et c’est
méme 13 le fondement de cette nouvelle branche d’analyse que ®M.
Yourier a désignée sous le nom de Calcul des inégalités.

Si M. Ferry est curieux de ces sortes de spéculations, il pourra
consulter un article de la pag. 134 de notre XVII,™® volume , qui
le renverra a plusieurs autres ou on prouve que toute ligne, toute
surface ou tout volume d’une étendue limitée peut étre exprimée
par un plus ou moins grand nombre d’équations et d’inégalités,
dont l’ensemble exprime non seulement les limites de ces lignes ,
de ces surfaces et de ces volumes, mais encore tous les points et les
seuls points compris entre elles, et cela sans qu'on soit le moins
du monde fondé a en prendre texte pour dire que la métaphysi-
que, que nous naimons pas plus d’ailleurs que M. Ferry, porze
son vbscurité jusque dans les mathématiques , ow il semble gu’elle
ait entrepris d'éteindre le flambeau de l'évidence , lors méme gu'elle
n’égare pas. Mais , encore un coup, ce n’est point du tout de cela
qu’il est question dans le mémoire de M. Bobillier.
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QUESTIONS PROPOSLES.

Problémes de - géom¥irie.

I A. quelle courbe sont tangentes les droites sur lesquelles abais-
sant des perpendiculaires des sommets d’an polygone , la somme

algébrique de ces perpendiculaires est égale & une longueur donnée ?

IL. A quelle surface sont tangens les plans sur lesquels abaissant
des perpendiculaires des somwmets d’'un polyédre, la somme algébri-
que de ces perpendiculaires est égale & une longueur donnde 2

Autre.

Si, dans Péquation d’une courbe, on change respectivement x et y
a? b2 . 9, . L1
en — et — , ou si, dans I'équation ‘d’'une surface, on change res-
a? b2 c?

pectivement x,y, z en — , — , — ,onobtiendral’équation d’une
X y z

nouvelle courbe ou d’une nouvelle surface, qui pourra étre dite
laréciprogue de la premiére , attendu qu’on pourra repasser de celle-
ci & l'antre par la méme transformation qui aura servi d passer de
Vautre a celle-ci.

Cela posé, on propose d’examianer quelles sont les relations gé-
nérales les plus remarquables entre deux courbes ou deux surfa~
ces réciproques l'nue de lautre?
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HYDRCDYNAMIQUE.

Mémoire sur les petites oscillations de leau
contenue dans un cylindre ;

Par M. Poi1sson.

( Lu & I'Académie des sciences, le 27 octobre 1328 ).
MMUVVTVAWARNVIN VWA

(M) SOIENT z,¥,z, les coordonnées rectangulaires d’un point quel-
conque du fluide, au bout du temps #, compté de lorigine du
mouvement. Les vitesses du méme po:nt, suivant les axes des coor~
données , seront exprimées , comme on sait, par les différences par-
tielles, relatives & #, ¥, z, d’une fonction de ces trois variables et
de 7; et, si Pon représente cette fonction par ¢, il faudra qu’on
ait

d:p dzp d e
W Tt = 1

Prenons pour le plan des x, 4, celui du nivean du fluide dans
I'état d’équilibre, T'axe des z étant vertical et dirigé dans le sens
de la pesanteur. Représentons cette force par g. Au boul du temps
¢, soit z* lordonnde d'un point quelconque de la surface du fluide ;
nous aurons

do
oy e— .
L= - 2
g de 2 ()
équation dans laquelle on fera z=o. Afin que les mémes points
restent constamment 3 cette surface , il faudra qu’on ait aussi

Tom, XIX ,n° 8, 1.°7 février 182q. 31
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do  d2¢
6§ 3z an ? S

pour z=o. Si l'on suppose que le fond da vase soit un plan ho-
rizontal , et si I'on désigne par % la profondeur de leau, on aura
encore

do

PP (4)

pour z=4; ce qui exprime que les mémes molécules du flnide res—
tent constamment en contact avec le fond du vase.

(3) L’eau étant contenue dans nn cylindre vertical, il conviendra
de transformer les coordonnées horizontales # et y, en deux au-—
tres plus approprides a la question. Plagons leur origine sur l'axe
de ce cylindre ; soit r la perpendiculaire abaissée du point qui leur
correspond sur cet axe, et J l'angle compris entre le plan de ces
deux droites et celui des #, y; on aura

z=rCos.} , y=rSin.} ,
et I'équation (1) deviendra

dz2¢ dz¢ 1 do 1 dze X
mTmtr ots = O

La vitesse, suivant le prolongement de r, sera esprimée par
de . . .
373 st donc on appelle 2 le rayon du cylindre, il faudra quon

ait



D'UN LIQUIDE. , 227
pour r=a; condition nécessaire pour que les mémes molécules res-
tent constamment adjacentes & la surface latérale du cylindre, et
analogues aux déquations (3) et (4) relatives & la surface du fluide
et au fond du vase. On doit observer que, si les conditions expri-
mées par ces trois équations n’étaient pas constamment remplies,
pendant le mouvement du fluide, ce mouvement serait trés-com-
pliqué et peu susceptible d'étre déterminé par le calcul. C’est pour
cela que Lagrange a mis ces équations , dans la Mécanique ana-
Iytique, au nombre de celles qui doivent concourir a la détermi-
nation du mouvement,

Cela posé, la question que nous aurons & rdésoudre se divisera
-en deux parties : la premicre consistera & satisfaire, par la valeur
la plus générale de ¢, aux équations (3), (4), (5), (6); dans la
seconde , il s’agira de déterminer , d’aprés I’élat initial du fluide,
les quantités arbitraires que cette valeur générale pourra renfer—
mer. o
(3) Les valeurs.de ¢ et de ses différences partielles sont égales
pour Y=o et Y =2a, puisqu’elles appartiennent & un méme point
du fluide, = étant le rapport de la circonférence au diamétre.
Cela élant, quelle que soit cette fonction ¢, on pourra la repré-
seuter par la formule connue

o= ot Lz (fTocoag—par ) o)
et les différences partielles de ¢, ou les vitesses du fluide, seront
aussi exprimées par les différences partielles de cette méme for-
mule dans laquelle ¢’ est ce que devient ¢ quand on y met {/
a la place de ¥; 7 représente un nowbre enticr et positif , et la
somwme = gétend & toutes les valeurs de z , depuis n=1 jusqu’a
n==quo,
En intégrant par parties, on a



228 PETITES OSCILLATIONS
d=¢/
/ WCOS.H(\I;“\%’)(’\P

= %% Co8.n(h—) —np/Sinn (Y ) —n*f'Cos.1 (bt ) 5

aux deux limites {/=o0 et /=25 , les termes compris hors du
signe /" ont la méme valeur et disparaissent, en conséquence , dans
I'intégrale définie ; on aura donc simplement

L Cos b= ) dY = —n [ T Cosn(p—)dY
° d-\le °

D’aprés cela si I'on met §/ et ¢’ au lieu de { et ¢ dans I'é-
quation (5), que I'on intégre tous les termes depuis /=0 jasqu’d

/=20, apres les avoir muhiPliés par -:—r Cos.n(y—{/dy’ et que

l'on fasse, pour abréger ,

L [T eCon-ppiv=e,  @®
w o
il en résultera

“d2p d» 1 dv n2

dz2 dra r dr ra =0 . (9)

En méme temps les équations (3), (4), (6) donneront celles-ci :

de d’v_o dv__ de
8% — @ ~° =0 g =0, (10

dont la premiére aura lieu pour z=o, la seconde pour z=#4 et
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la troisitme pour r=a. En faisant usage de ces équations (9) et
(10) on n’aura plus & s’occuper de la variable ¢, qu’elles ne con-
tiennent pas explicitement.

(4) Dans un autre mémoire (¥) j’ai donné, sous forme finie, l'in-
tégrale compléte de l'équation (9) ; mais, pour résoudre le pro-
blé¢me proposd, il sera plus commode , ainsi que je l'ai fait dans
d'autres cas ; d’employer la valeur de ¥ sous la forme équivalente

p=Z(Ue™+-Ve™)

m étant une constante arbitraire, ¢ la base des logarithmes népé-
ricns, U et 7 des fonctious de r et 7 indépendantes de z, et =
une somme qui s’étend & toutes les valeurs possibles, réelles ou ima-
ginaires de m, U el V.

Pour satisfaire & la seconde équation (10), il faudra prendre

U:Be""‘" , V—Re™ ,
R étant une nouvelle fonction de r et 7. On aura alors

p=2("0 e~ R ;

et, si I'on substitue cette valeur de ¢ dans 'équation (g) qui
doit avoir lieu pour toutes les valeurs de z, on en conclura

dzR 1 dR n:R .
oty o ti=o. (11)

r

On a va, dans le mémoire que je viens de citer, qu'on satisfait &
cette équation différentielle du second ordre , en prenant

(*) Journal de I'Ecole polytechnique , XIX.® cahier, pag. 215 et 475
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‘B=7"fﬂCos.(eros.w)Sin.’:wdw; (12)
© . -

et que son intégrale compléte se réduit & cette valeur particuliére
de R, muluplide par une constante arbitraire, lorsqu’on y sup-
prime la partie qui deviendrait infinie pour r=—=o0, ce qui fait dis-
paraitre la seconde constante arbitraire. En observant que celle qui
subsiste peut étre une fonction de z, nous la représenterons par 7.

La troisiéme équation (10) ayant aussi lieu pour toutes les va-
leurs de 7, on en conclut '

dR

— =0
dr ’

pour r==a, ou, ce qui est la méme chose,

) / :[nCos.(maCos.w—-maCos.wSin,(maCos‘w)]Sin.”'wdw::o; (13)

—

équation transcendante qui servira & déterminer 7 pour chaque
valeur du nombre » et pour n=o.

Comme la premiére équation (10), relative & la surface ou A
z=o0, doit subsister pour toutes les valeurs de r, en y mettant
pour ¢ sa valeur, on en couclura

mh -mh diT

mh ~mh
gm(e — )T—]—‘e —}-e i =05

et, si l'on fait, pour abréger

gm(emh__e—mh) =k3 ,

emh _+_ e-mlb
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Iintégrale compléte de cetle équation sera

T=PCos.kt+4+QSin k¢ ,

P et @ étant deux constantes arbitraires.
Maintenant la valeur de v, qUI satisfait aux ¢quations (9) et

(10), sera
p=3(PCos.kt+QSin kt) R(¢""" 4~ (14)

la fonction R étant donnée par la formule (r2), et la somme =
s'étendant & toutes les valeurs possibles de P et Q, mais seulement
aux valeurs de m tirdes des équations (13). Ses racines sont deux
a deux égales et de signes contraires ; mais on peut réunir en un
seul les deux termes de la somme = quirépondent 3 chaque cou-
ple de racines, et n’élendre ensuite cetle somme quaux: valeurs de
m dont les carrés sont différens.

(31 Pour déterminer les coelliciens P et Q en fonctions de m,
d’aprés I'éiat initial du fluide, je ferai usage de la méthode que
jai déjd ewployée dans beaucoup d’autres cas, et dont cette dé-
termnination fournira nn exemple digne de remarque.

Soit 7' une racine quelconque de l'équation (3); multiplions
I’équation (9) par (¢""=Y4-¢~"*=%)dz , puis intégrons tous ses ter-
mes, depuls z==o jusqu'd z=4%; en faisant pour abréger

kR, . 3
[ Nesgempioms,
° ,

nous aurons

W) 0= ‘ nu
( dz» + dra + ~—T =0.
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Eu intégrant par parties, on a

! liwz) mm!(h-z) d2¢
e ~+-e ) —dz
dz2
w(h~s) wne(hez) \ o whes) " e (heg) \ A l mheg) )N
(3 e T-+(e . l—e >m’v+m’:/‘<e “+e )‘,dz ;
P .

3 la limite z=4%, les termes compris hors du signe / disparaissent
en vertu de la scconde équation (10); 4 lautre limite z==o0, il
se réduisent a :

en ayant égard a la tronsleme équation (10), appelant 4’ ce que.
devient lf"lorequ on change m en m’, et désignant par ¢/ la vas.
lear de ¢ qui répond a z=o. Nous auarons donc

h s mCt=1) —~m'(h—=%) \ d2p d
e ]
° & + ) dz2 z

~mh N d2p!

- J\ de +]{ﬁp,>’

e X MR
=mY— — (6‘ ~+e
et, par conséquent,

dzu r du n“u

dr +; Frala -]-m”u——-g— e +e )( W _I_mz )

3

’ . ) ’ -V ‘ .
équations que nous pourrons écrire de cette “autre- maniére :

d’-u\fr— 7 . 1
dr2 —-\Il - Z

T )

/2

- (15)
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Je désigne par R/ ce que devient 2 quand on y change m en
m’. Au moyen de l'intégration par parties , on aura

dunr , -
f T B ‘/r df‘
d u\JF —_ — d.BN/F ~ d= RN/
== - R/vr—uVr T—-’:ﬁ\/r " dr ;

Les termes compris sous le signe [ s’évanouissent avec r; ils s'éva-
nouissent également pour r=a, & cause que lon a, & cette se-
conde limite,

du dR’/
— =0 ,. —_—

ar- dr

on aura donc

a deuNtt a d2.RByr .
jO. o B‘/rdf——fo—é'r‘;——ll rdl‘ ?

par conséquent, si Pon muliiplie I'dquation (15) par R/y/rdr, et
qu’on intégre ses deux membres depuis r==o0 jusqu'd r=a, il en
résultera

j [dzRVr —< )BVr m/ZB/V;]UVFJr
1o i S0/ Ripdr .

—— c k2 'Ry .

n(e )\ S +ffopﬁrdr>

Mais , d’aprés 'équation (1v),

&R 7 v\ BN,
o AP ) TRy E=o

Tom. XIX 32
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ce qui fait disparaitre le premier membre de I'équation précédente,
et la réduit a.

d*./ ze'R/rdr 4% f ? o'Rrdr=o .

ds? °

L’intégrale: compléte de celle-ci est

a . ' >
/ ¢'R'rdr=P'Cos.k/t-}+Q'Sin. k't (16)
(<]
P’ et ( désignant deux coustantes arbitraires, Pour les détermi-
ner , jobserve 1.° qud lorigine du mouvement, ou quand /==0,
do . . .
la valeur de —- qui répond & z=o, est donnée par I'équation (2)
8¢ .
d’aprés la figure initiale du fluide; 2.° que si I'on a exercé a la
sarface une percussion quelconque, la valeur de ¢ est aussi don-
née , d’aprés Dexpression de cette force, pour z=o et r—o. Si
donc on fait =0 et z==o0, dans I’équation (8) et dans sa différen—

. .ot .o de/ .
tielle relative & #, les valeurs initiales de »' et —; seront aussi

gdt
connues , et de la forme

¢'=FrCos.ny+F'rSin.n{ , ‘

Qo . (r7)
o =fr.Cos.nd4-f7.Sin.ny ; [

‘Fr, ¥'r, fr, fr, étant quatre fonctions de la seule variable r, qui
seront données , dans chaque exemple particulier, depuis r=o jus-

qud r==q4. Cela étant, je fais 7==0 dans I'équation (16) et dans
sa différentielle relative a z; il vient

P’:Cos.nlj ¢ R’rFr.dr-{-Sin.nJ” R/r¥/r.dr
=] ©
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Cos.nt Si
Ql_____ L]Zl-?—j aR/rfr.dr_i_ g__lkr:i.j aB’I‘f,f.dr ,
o

=]

pour les valeurs demandées de P/ et @/. 1l ne reste plus qu'a dé-
terminer , d’aprés ces valeurs, celles des coefficiens P et @, con-
tenus dans la formule (14).

En faisant z=o, dans cette formule , on en déduit

¢'=%(PCos.kt+QSinkt) R(e™ 4-¢="") ;
expression que je substitue dans le premier membre de I"équa-
tion (16). Comme son second membre ne contient que le cosinus
et le sinus de k¢, il faudra, pour qu'elle soit identique, qae les
termes dépendans d’un autre angle %z disparaissent dans son pre-

mier membre ; ou, antrement dit, si m” difiére de m*, et, par
suite £* de /A*, il faudra qu’on ait

fali’li’rdr=o. (18)
(=]

Dans le cas particulier de m'=m , et d’aprés les valeurs trouvées
pour P/ et ¢/, on aura en méme temps

P(e’""-l—e‘"‘")jaﬁzrdr
(=4

=Cos.n\]af * Rr¥r.dr+Sin n%/‘ * BrF'rar
(=} (=]

Q(c"‘"‘—]—e"'"")‘[  Rrdr

o Sinnd
= Mj *Brrdr4 £ u n&f * Rrirrdr
k o k ©

(19)
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" cequi détermine les valeurs des coefliciens P et Q, relativemeng
a une racine quelconque m de I'équation (13).

La formule (14) ne contenant plus maintenant que des quanti-
s connues, il en sera de méme a l'égard de la formule (7), qui
peut étre écrile ainsi :

=3y , (20)

la somme = sétendant A toutes les valeurs de 7, depuis n=0"jus-
qu'a n== , pourvu que l'on ne prenne que .la moitié de son pre-
mier terme. Les différences partielles de cette -expression de ¢, re-
latives &4 ¢, z,r,{, feront counaitre, & un instant quelconque, la
figure de la surface dn fluide, et les vitesses de la molécule quii
répond aunx coordonnées z,r, . Eu appelant p la pression, rap~

portée & l'unité de surface, qui a‘lien an méme point, on aura
=gre— —
P=8— 7 »

la densité du flaide étant prise pour unité; et cette pression étant
supposée nulle & la surface. L’état du-fluide est donc complétement
déierminé, et la solution compléte du probléme proposé est don-
née par la formule (20).

Cette expression ge ¢ dépendra, en général, de deux somwna-
tions successives : I'une relative aux racines 72 de P'équation (13}, et
l'avtre relative au nombre . Au moyen .de l'équation (18), on
prouverague ces racines sont toutes réelles, quel que soit le nom-
bre n, qui entre dans I'équation (13). Je crois inutile de répéier
ici cette démonstration qui se trouve -déja en p]dsieurs endroits de
mes autres wmémoires (*). I en résulte que tous les termes de 'ex~

",

- (* Voy. aussi le Bulletin de la société philomatique ,- octobre 1826, pag,
145.
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pression de ¢ sont périodiques, ce qui devait étre, en effet, puis-
que le fluide a été écarté d'un état d'équilibre szable. Mais, pour
qu> tous les poials reviennent ensemble au méme état, et qu'il
eaccute des wscillations isochrones, il fandra, & cause que les va-
lears de £ sont incommensurables, que tous les termes de la doun-
ble somme qui donne la valenr de ¢, se réduisent & un seul, et
que tons lvs autres soient nuls, en vertu de I'état initial du fluide.

(7) Silefluide n’a recu, & Vorigine , aucune percussion, et que
les molécules sotent parties de U'état de repos, la valeur initiale de
¢ sera nuHe et il en résultera Fr=o0, F/r=0 et P=o0. Supposons
de plus qu’d l'origine du mouvement, on ait fait prendre a l'ean
la forme d’un solide de révolution, dont I’axe soit celui méme da
vase qui la contient; il est évident qu’elle conservera constamment
une semblable forme , et que la fonction ¢ sera indépendante de I'an-
gle Y. En vertu de I'équation (8), la quantité ¢ sera nulle pour tou-
tes les valeurs de »n, excepté pour n=o; les deux quantités ¢ et
¢ ne différeront pas I'une de l'autre; pour #==o , on aura

?
B:/ aCos.(eros.co)dw ; (21)
(-]

et, si l'on supprime le coeflicient P dans la formule (14), elle
deviendra

p=2Q ("D e—"""0D) ( f ” Cos.(eros.w)dw> Sin.kz.
(=]

En y substituant pour @ sa valeur relative & n—o0, et donnée par
la seconde équation (17) , on aura

P=g= Ol;ir{frrd(:r f Cos.(mrCos. w)dw\ZE'_"l‘f , fz2)

A ’ . ,
olt T'on a fait, pour abréger,
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m(b—g) o= m(h—T)
e lh-l—-e h 7
e. -+ s

’

et conservé la lettre R & la place de sa valeur donnée par I'équa—-
tion (21). _ '

L’expression de ¢'ne dépend, comme on voit , dans ce cas par-~
ticulier, que d’une seule somme =, qui répond aux valeurs de m
tirdes de I'équation (17), et relatives & n=o0, ce qui réduit celte
équation A

/ﬂ Sin.(maCos.w)Cos.w.dw=o0 , (23)

=]

ou, ce qui est la méme chose, a

22 3x2 43 Sx4

= (1.2)? + (1.2.3)2 - (1.2.3.4)? + (;.2.3.45)=

—sreese =m0 ’

en développant son premier membre suivant les puissances de ma,
supprimaut le facteur me commun 3 tous ses termes , et faisant
m’a’ =4z,

Si l'on fait n=o0 , dans la seconde équation (17), on a

vy =fr,

pour 2=o; et, comme ¢ est la valeur de » ou de ¢ qui répond
ad z=o, il résulte de Péquation (2) que frest la valeur de z/ re-
lative & 7=o. Ainsi, la fonction fr, donnde arbitrairement, que
renferme l'équation (22), est l'ordonnée d'un point quelconque de
la surface de Peau & lorigine de son mouvement. D’aprés cela ,
si Uon fait =0 et z==o0, dans l'équation (a2) différenciée par rap-
port a z, on en conclura
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K]

fr—== %ﬁi(/ 'COS-(eros.wfdw) H
shtrdr °

et cette expression en série sera propre & représenter la fonction
fr, pour toutes les valeurs de la variable, depuis r==o0 jusqu’a
r=—a.

L’une des racines de I’équation (23) est m==o ; pour cetle va-
leur de m on a

Sin k¢
Tk

Z=1 , RBR—w , k=o ,

—=i o

et , par conséquent,

o= gt] p (:mrfa rir.dr ) ;
wa °

mais , & cause de l'incompressibilité du fluide, le volume que re-
présente 2w/ ‘rfr.dr doit éire égal & zéro, le terme de ¢ qui ré-
pond & m=o0 est donc aussi nul; et c’est pour cela que nous avons
fait abstraction de cette racine de I'équation (23) en développant
son premier membre,

(8) Observons, en terminant ce mémoire, que, si 'on différen-
cie I'équation (2) par rapport & r, et qu'on ait égard & I'équa-
tion (6), on en conclura

——._0’

dr

pour r=a. Si donc on coupe la surface du fluide par un plan
passant par l'axe du cylindre, les tangentes aux extrémités de la
courbe d'intersection , c'est-a-dire, aux points ol cette courbe ren-
contre la surface du vase , demeureront constamment horizontales,
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pendant toute la durée du mouvement, Il faudra donc que cette
condition soit remplie par I'état initial et arbitraire de la surface:
si_elle ne I'était pas, les mémes molécules du fluide ne resteraient
pas adjacentes & la surface lutérale du vase , du moins péndanl les
premiers instans du wouvement qui ne pourrait plus tre déter—
miné par les formules précédentes. Cette restriction provient, comme
on voit, des équations difiérentielles du problé¢me que nous avons
emprantées de la Mécanique analytique. 11 en résulte que le cas,
qui parait le plas simple, ot le fluide est terminé & Porigine du
mouvement, par un plan incliné, échappe eependant & lanalyse
fondée sur ces équations.

Lorsque la surface du fluide sera celle d’un solide de révolu-
tion , ses plans tangens extrémes serout constamment horizontaux ,
et il faudea qu’a l'origine du mouvement cette surface et celle du
vase se coupent & angle droit. Ainsi, dans les formules du nu-

méro précédent la fonction arbitraire fr devra éire telle que lon
d.fr

ait — =o pour r=a.
dr P

N. B. Dans un mémoire déposé au secrétariat de I'Institnt, M,
Corancez s’est occnpé, avant moi, des oscillations de I'eau contenue
dans un vase cylindrique ou prismatique. J'ai cru cependant pou-
voir publier la solution précédemte du cas ou le vase est un cy-
lindre , parce qu’elle m’a paru plus simple et plus compléte que
celle de M. Corancez qui wa pas détermivé les  quantités arbi-
traires que contiennent les intégrales, d’aprés un état quelconque
du fluide A lorigine du mouvewment,



RECTIFICATION D'UN THEOREME. 24t

GEOMETRIE DE SITUATION.

Note sur le nombre des conditions nécessaires
pour que quatre droites appartiennent a une
méme surface du second ordre ;

Par M. GERGONNE.
ANWVIWAAANWRINARRAANWYVWA

A la pag. 335 da précédent volume, M. Bobillier a démontré
que, si deux tétraldres sont lun inscrit et Pautre circonscrit @
une méme surface du second ordre, detelle sorte que les sommets
de l'inscrit sotent les points de contact des faces du circonscrit ;
les faces respectivement opposées , dans les deux tétraidres se cou-
pent suivant qualre drottes qui appartiennent @ une méme surface
du second ordre ; proposition & laquelle, au surplus , M. Stewer
était aussi parvenu de son coté,

Faute d’avoir remarqué qu’assajettir une surface courbe & tou-
cher un plan donné en un point donné, c'était réellement I'assu-
jettir & frors conditions, et non pas & deux, je signalais ce théo-
réme comme présentant quelque chose de paradoxal. Je supposais
en effet , denx tétraédres inscrit et circonscrit I'un & lautre, d’une
maniére tout & fait arbitraire , de maniére & ne point satisfaire &
la condition énoncée ; et je croyais qu'on pourrail toujours couce-
voir une iofinité de surfaces du second ordre & la fois circonscri-
tes & 'un et iuscrites & Pautre ; attendu, disais-je, que c’est les as-
sujeltir & /Aurtz conditions seulement, et qu'il en faut nexs pour
déterminer complétement une surface du second ordre.

Tom., XIX 33
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“MXM. Bobillier et Chasles n’ont pas tardé de me faire apercevoir
de mon inadvertance, et dés lors j’ai vu clairement que deux té-
traédres étant inscrit et circonscrit 'un & l'autre , assujettir une sur-
face du second ordre & étre & la fois circonscrite & 'un et inscrite
A l'autre , c’était réellement l'assujettir & douze conditions, au lien
de zeuf qui sont unécessaires pour déterminer une telle surface ; que
conséquemment le probléme n’était résoluble qu’autant que les deux
tétraedres étaient choisis d’'une maniére convenable, et qu'il n’était
pas surprenant , d’aprés cela, qu'ils dussent satisfaire 4 la condition
énoncée daans le théoréme de MM. Steiner et Bobillier.

Mais regardant, mal a propos, cette condition comme unique
( pag. 35 du présent volume ); aprés avoir d’abord reproché au
théoréme de dire trop, je lui reprochai ensuite de ne dire point
assez. Pen aprés, M Chasles ayant démontré ( pag. 67 ) que Jes
droites qui joignent les sommels respectivement opposés, daas les
deux 1étraédres , appartiennent aussi @ une méme surface du se-
cond ordre , jai cru, dans ma fausse préoccupation , pouvoir signa-
ler ce nouvean théoréme comme le complément que javais désiré
poar le premier.

Mais, par une lettre en date du 5 novembre 1828, M. le doc-
teur Placker me fait observer, avec beaucoup de raison, que ce
dernier théoréeme n’est qu’une cbnséquence inévitable du premier
qui, & son tour, peut réciproquement cn étre déduit, de telle sorte
que, si deux tétraédres o inscrit et circonscrit 'un a lautre , sont
tels que les droites suivant lesquelles se coupent les plans de leurs
Jaces respectivement opposées appartiennent toutes quaire & une
méme surface du second ordre , les droites qui joindront leurs som-
mels respectivement opposés apparticndront aussi toutes quaire & une
méme surface du second ordre, et réciproguement ; attendu que
ces deux théorémes sont polaires réciproques I'un de l'autre; et M.
Bobillier m"a fait postérienrement la méme remarque.

MM. Plucker et Bobillier me font observer, en outre, que cha-
cun de ces deux théorémes, pris isolément, est complet, c’est-a-
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dire , qu’il ne dit i trop ni trop peu; attendu qu’assujeltir quatre
droites & appartenir & une méme surface du second ordre, c'est
réellement les assujettir a trois conditions.

~En effet, on peut, & l'aide des équations de trois de ces droi-
tes , trouver I'équation de la surface da second ordre qu’elles dé-
terminent ; et, si on suppose que les équaiions de la quatrieme
sont

r=mz+g , y=nz+h ,

il faudra que les valeurs qu’elles donnent pour x et y, substituées
daus l'équation de cette surface , conduisent & une équation qui
laisse z indéterminé ; mais , cette équation ¢tant du second degré,
il faudra que le coefficient de z*, celui de z et le terme sans z
soient séparément nuls, ce qui donnera bien trois conditions dis—
tinctes.

Au surplus, comme snivant la maxime des écoles : A4b actu ad
posse valet consecutio , la manitre la plus lumiveuse de prouver
quassujetiir quatre droites & appartenir 4 une méme surface du se-
cond ordre c’est les assujettir & trois cenditions distinctes, c’est in—
contestablement de produire ces trois conditions. Le calcul en se-
rait assez compliqué si Pon supposait les axes des ordonnées si-
tués d’'une maniére quelconque, par rapport & ces quatre droites ;
mais, en les choisissant d’une maniére convenable , on peut par-
venir au but par un calcul tréssimple et trés-symétrique.

Soient, en eflet, quatre droites indéfinies , que nous supposons
n’étre assujetties qu’a la seule condition d’appartenir & une surface
da sccond ordre. Prenons lorigine en un point quelconque de F'une
d’elles et les axes respectivement paralléles aux trois autres; ces
trois dernicres déterminent une certaine surface du second ordre,
et il s’agit d’exprimer que la quatriéme est tout enticre dans celte
surface.

Ces choses ainsi entendues, considérons I’équation
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(#=a)(y=d)(z—o)=(a—a")(y=b')z—c) , (1)

elle n’est évidemment que du second degré , et exprime conséquem=
ment une surface da second ordre; or, on y satisfait par ces trois

systémes d’équations

y=b, z=c¢ , r=a ,
(2)

z=c"; r=a’ ; y=¥;

lesquelles expriment “des droites respectivement paralléles aux trois
axes, qu’on peut toujours supposer étre trois de nos droites; d’ott
il snit que I'équation (1) est celle de la surface du second ordre
déterminde par ces trois droites. En la développant, elle devient

(a—a")yz—(be—b'c)x
~+-(6—b")zz—(ca—c'd’)y—(abe—a'b/cy=o0 .  (3)
F(e—c)zy —(ab—a’t’)z

Présentement , la quatriéme droite , passant par l'origine , doiy
avoir des équations de la forme

& y z
=y = O
d’otr l'on tire
a’ )/
X—= —2zZ , y=—2z;

e

valeurs qui, substituées dans I’équation (3), la changent en celle-ci,
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{5//c//(a_a/)+c~a/f(5—5/§+a//b//(c—c/)}z*
—c{a"(bemmblc!) b (ca—c'a’)4-c'(ab—albl) } 2 5)
| —c/(abe—a'blc’y=o0 ;

afin donc que la droite (4) soit entiérement dans la surface déter-
minée par les trois droites (2), il faut que I'équation (5) laisse z
absolument indétermiude ; ce qui exige qu’on ait a la fois

b'c"(@a—a")tfc"a"(b—b")+a''b/ (¢—c')=0 .
a''(be—=b'c )" (ca—c'a’)4-c""(all —a'b) =0 , (6)
abe—a'lt’c’=o0 ;

telles sont donc les trois équations qni expriment que les quatre droi-
tes (2) et (4) appartiennent & une méme surface du second ordre.

GEOMETRIE DES COURBES.
Note sur la quadrature des sections coniques ;

Par M. Bary , professeur suppléant de physique au Collége
royal de Charlemagne, ancien éleve de I'Ecole poly-
technique.

AVINVWNAWAVVIVIA

ON peut parvenir assez rapidement & la quadrature des trois
sections coniques, 1.° en considérant lellipse comme la projection
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d’un cercle; 2.° en considérant la parabole comme une ellipse dont
le grand axe est infini ; 3.* enfin, en considérant I'hyperbole comme
une ellipse dont le petit axe est imaginaire. C’est ce que nous nous
proposons de faire voir dans ce qui va suivre.

I. En considérant lellipse comme la projection orthogonale d’un
cercle , et se rappelant que l'aire de la projection d’une figure plane
sur un plan quelconque est le produit de l'aire de cette figure par
le cosinus tabulaire de I'angle des deux plans, on prouve facilement
que laire d’une ellipse est équivalente a celle d’'un cercle dont le
rayon serait moyen proportionnel entre ses deux demi-axes.

La méme considération prouve aussi que les coordonnées per-
pendiculaires & 'un des axes d’une ellipse ne sont autre chose que
les ordonnées du cercle décrit sur cet axe comme diamétre, ang—
mentées ou diminuédes dans le rapport des deux axes de lellipse;
et on conclut aisément de 13 que, si un cercle et une ellipse ont
un axe commun , les segmens des deux courbes répondant @ une
méme abscisse seront aussi entre eux dans le rapport des deux
azes.

Rien n’est plus facile d’aprés cela que d’obtenir l'expression de
I'aire d’'un demi-segment elliptique , borné par une perpendiculaire
4 son grand axe. Soient @ et 5 les demi-axes de lellipse ; soit y
la perpendiculaire qui termine le segment , et x labscisse corres-
poudante. Soit décrit un cercle sur le diamétre 24, l'ordonnée y
prolongée déterminera un demi-segment circulaire, et nous aurons

Demi-ség. ellipt, —_.——;i demi-ség. circul.

Le demi-segment circulaire est I'excés d’un secteur sur un trian-
gle; et comme, en désignant par y/ l'ordonnée du cercle corres—

pondant & lordonnée y de l;ellipse, on a y’:—zy,il s’ensnit que
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7
le sinus de I'angle du demi-sectenr qui est 2 pourra aussi &ire
a

exprimé par %; l'aire de ce demi-secteur sera donc 5 a*Arc.

(Sin.:%). Pour en conclure celle du segment il faudra en re-

trancher l'aire d’un triangle rectangle dont les deux c6tés de I'an-
. a . g .

gle droit sont a—z et y/= A c’est-a-dire, qu’il faudra en re-

a(a—x)y . . . .
trancher - ( b ) ; laire du demi-secteur circulaire sera donc

X . Yy (a—x)y
Sa {aArc(Sm.= 3 >'--————— E 5

b -

- a .
en la multipliant par le rapport 5 s on en conclura pour laire

du demi-secteur elliptique,

sabArc (Sin.: %)——';(a—x)y 3 (1)

si 'on veut compter les abscisses du centre, on pourra écrire
' gbArc (Tang.—= Z\ —1z
z 5= y e

On sait que

.Y \_Y 1.3 1 2.5 1.3.5.97 ,
Arc(Sm._ 3 )-- -b—+ = T TG E -+ 2607 rirenne

en substituant cette valeur dans la formule (1) et remplagant 4
a ) . . ’ .

par Ll , p 6tant le paramétre , il viendra , en réduisant, pour l'ex-
2

Pression du demi-segment elliptique
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zy oyl 1.3 ¢f 1.3.5 "
;+ 23 p +3. 245 pwa +4- 2467 plar 'Y

Si l'on suppose @ infini, on passe & la parabole, et cette ex-
pression se réduit A

¥y} _ay  pxy _ ®Y | ®Y
S tg=7tg =7+%=

x -
2 6p 2 6p ¥

wip

cest-d-dire , que laire du demi-segment parabolique est les deux
tiers de celle du rectangle des deux coordonnées,

On-sait que
Arc(,Tan = N\N=2* _ 7_3. 4L Ii_.!. __’ 4.0
. \ g'— x - 7’ 3 s re x oo

substituant dans la formule (2), nous aurons pour l’expression du
demi-segment elliptique

v gy 9 A
705(-—-7—-{-,;?—; —x—-]—.... —lzy :

Si, dans cette expression, on change y en v/, on passera au
demi-segment hyperbolique pour lequel on trouvera ainsi

—_ y I ‘,r.’ ¥ 75 7
z‘/—1§< p +3 poct +< ——+7£;7-+.-‘....)——xy }

“5

ou bien
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ro=h =
2 ‘/ I{ x_y x.y

Pour conclure de 13 I'aire du demi-segment réel , il fandra d’abord
supprimer le facteur /=y et changer ensuite les sigues A raison

du changement de sitnation, ce qui donnera

x-y
z—y

rry—3L

.

Oc, ;xy est l'aire dn triangle construit sur les coordonnées, d'ot

. . x4~ , - . .
il sait que 1. "7 est laire dn demi-secteur hyperbolique,
x=y

GLOMETRIE.

Note sur deux théorémes de géométrie démon-
trés dans le X/ I111.™° volume du présent

recuell ;

Par M. BoBILLIER,

s Sa Vio Vlo Vi Yha Vo Via T e

IL a été démontré, & la pag. 368 du XVIIL™¢ volume des An-
nales, 1.° que, dans toute ligne da second ordre qui a un cen-
tre, la somme des carrds des inverses de deax diamétres perpen -
diculaires 'nn & lantre est une quantité constante ; 2.° que, daus
toute surface du second ordre qui a un centre, la somme des car-

Tom. XIX, 34
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rés des inverses de trois diamétres dout chacun est perpendiculaire
aux deux autres, est également une quantité constante.

La livraison des Annales qui renferme la démonstration de ces
deux théorémes n’avait point encore paru lorsque j'adressai a M.
Quetelet un mémoire publié dans la Correspondance de Bruxelles
( tom. IV, 4™¢ livraison , pag. 216 ), dauslequel ces deux théo-
ré:mes se trouvaient aussi incidemment démontrés. J'ai reconnu pos-
téricurewent qu’i's pouvaient étre démontrés sans calcul , ainsi qu’on
va le voir,

I. Soient 4, B les deux demi-axes d’'une conique , et 2,4 deux
demi-diamétres rectangulaires quelconques. Si I'on prend pour di-
rectrice un cercle de méme centre,, dont r soit le rayoa, les demi-

r2

. ) . B} r2
axes de la polaire réciproque de la conique seront VRETE les tan-

gentes, polaires des_extrémités des demi-diamétres @, & seront rec-
tangulaires et distantes du centre des quamités —r-a: , ’-; ; le carré
de la distance de leur poilnt d’intersection au centre sera donc
-5 +£~. Mais on sait dailleurs que ce point, sommet d’un an-
gle droit circonscrit & la courbe polaire réciproque de la proposée,

. rr , T4 ré
est sur une circonf{érence dont le carré du rayon est — 4 — ;
A Ba

on doit donc avoir

ré , r4 ré ré
@ Vg T 4 U B

c’est-a-dire simplement

1 T I T

e " TR

ce qni est précisément le premier des deus thdorémes.
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II. Soient A4, B, C les demi-axes d’une surface du second or—
dre, et @, b, ¢ trois demi-diamétres d’une telle surface dont cha-
cun soit perpéndiculaire aux deux autres, St l'on prend pour di-
rectrice une sphére de méme centre, dont r soit le rayon, les
demi-axes de la polaire réciproque de la surface proposée scront
r: r: r:
':1' ’ 'E ’ "(‘: H
diamdtres @, &, ¢ seront rectangulaires, et distans du centre des

les plans tangeus polaires des extrémitcs des demi-

r2? ra r:

quantités — T T le carré de la distance de leur point d'in-
a c
. r r4 ré . . . e
tersection au centre sera donc — 4 — - — ., Mais on sait d'ail-
a? b2 c?

leurs gue ce point, sommet d'un angle tri¢dre tri-rectangle , cir-
couscrit & la surface polaire réciproque de la proposde, est sur

r4 ré ré .
. he " L L —_— —_— —
une sphére dont le carré du rayon est Aa+ = + o oon doit
donc avoir
rt ré ré ré ré ré
ateta=atato:s

c'est-d-dire simplement

I

1 1 I I 1
atpta=gm+vepta

ce qui est précisément le second des deux thlorémes.
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QUESTIONS RISOLUES.

Solution du probléeme de géométrie énoncé a

lapag. 9b du présent volume ;

Par M. VaLrks, éltve ingénieur des ponts et chaussées.

VWAV YRR VRV VRVRWY

SOIENT inscrits & un angle donné 2a deux cercles se touchant
extérieurement. Soient 7, 7/ les rayons de ces cercles , et 4, & les
distances de leurs centres au sommet de I'angle; en supposant

r>r/, et par suite d>d’, on aura évidemment
r=dSina, r'=dSna, ridr'=d-d ;

e 7 et d ., . .

eiiminant et enlre ces trois equalions , on en urera

r 14-Sin.«

Loy

r 1—Sin.«

{(*) On peut écrire

I+ 1==Cos.2
r +S‘“ o ___( V 1+ Coady/ T—=Cas )‘ |+<H¢F¢:

r x——S‘u % . V/ i-Cos.a — V —Cos.e

x+T1n_<; e

T
l—fdng e

\? ( Tang, L w+Tang. 1
/ =

1—Tang. ;#'Tang. L
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c’est-d-dire que le rapport entre les rayons de ces deux cercles est
indépendant de leur grandeur. De 1 résulte ce théoréme:

8¢ lon inscrit @ un méme angle une suit¢ de cercles se tou-
chant consécutivement , les rayons de ces cercles , et Im}r suile
leurs circonférences et leurs surfaces , formeront une progression

par quotiens.
Concevons que l'on fasse tourner la moitié de 'angle donuné 2a,

autour de la droite qui le divise en deux parties égales; cette moi-
tié engendrera un céne de révolution dont l'angle générateur scra
«; et les demi-cercles engendreront des sphéres iuscrites a ce céne
lesquelles se toucheront consécutivement; on a donc cet autre théo-
réme :

§i lon inscrit & un céne droit une suite de sphéres qui se
touckent consécutivement ; les rayons de ces sphéres , et par suite
les circonférences et les surfaces de leurs grands cercles , leurs
surfuces et leurs volumes formeront une progression par diffé-
rences.

A un angle triedre donné soit inscrite une suite de sphéres
qui se touchent consécutivement ; ces sphéres seront aussi inscri-
tes 4 la surfice conique inscrite a cet angle tricdre; on a donc ce
toisicme théoréme qui est précisément celui qu'il s’agissait d’établir :

8/, & un angle tricdre donné , on inscrit une suite de sphéres
qui se touchent consécutivement , les rayons de ces sphéres , et par

c'est sous cette forme que —r7 a été donnée par M. L. P. E. R., qui aaussi
r

résolu le probléme,
Sin.f24Sin.e __ Tang.(iz4 L«)

Sin.f z—Sin.e Tang.(la—1a)’ for-

oo, , s - r
On pourrait encore écrire — ==
r
mule qui rentre dans la premiére, en ohservant qu’en général Tang.( a2,
Tang.(3 #—x)==1 ; mais qui a Pinconvénient d'exiger Pemploi de deux lo-

garithmes,
J. D. G.
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suite les circonférences et les surfaces de leurs grands cercles ,
leurs surfaces et leurs volumes jformeront une progression par quo-
tiens.

Un cercle d’un rayon r élant inscrit & ’angle plan 20, on pourra,
en marchant vers son sommet, lui inscrire une infinité d’autres.cer-
cles, de plus en plus petits. Les rayons de ces cercles formeront
une progression décroissante par quotiens, dont la raison sera ,

1-4-Sin.e

comme nous l’avons vu ci-dessus, S 5 on aura donc pour la

I—311.0

r(14-Sin.«)
ZSin.u

A , .‘ wr(14-Sin.x)

ces mémes cercles sera d’aprés cela —

. La somme des circonférences de

somme de ces rayons

k . Quantileunrs sur-
11} «

faces , elles formeront une progression décroissante par quotiens

. . 14Sin.x \2 .
dont le premier terme sera wr® et la raison (-———S, ) ; en
I=—=3in.o

conséquence , on trouvera pour la somme des aites de ces cercles.

wr’(_(+Sin.u)3

451n.«

De méme, une sphére d’un rayon r étant inscrite & un cdne
droit dont 'angle générateur est «, on pourra, en marchant versson -
sommet, lui iuscrire une infinité d’autres spheres, de plus en plus
petites. On trouvera , pour la somme des rayous de ces spheres

r(t+Sin.« . , .
) ; pour la sowrme des circonférences de leurs grands cer-

2Sin.«
ar(1-4-Sin «) .
cl s. S ; pour la somme des aires de ces grands cercles-
mn.e
ar2(14-Sin.z)? ) wr(1-4Sin «)2
( ; pour la somme des surfices-des sphéres ( i .
4Sin.« Sin.e

Eufin, les volumes de ces sphéres formeront une progression dé-
croissante par quotiens, dont le premier terme sera $'wr’, et la:

3

. 14-Sin & .
ratson( u-S;m-az) ; cequi donnera, pour la summe de ces volumes,
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2ari(14-8in.«)3
3(34Sin.2)Sin.«

Y
ot
wr

On sait ( Arnales, tom. XV, pag. 298 ) que, si a, 5, ¢ sont
les trois angles plans d'un angle triédre, et que a soit I'angle gé-

mérateur du cone inscrit, en posant, pour abréger,
at-b+4c=as ,
p*=Sin.sSin.(s—a)Sin.(s—2)Sin.(s—¢) ,

on a’

P
Tang.a= oo
d’odt
. p -
no== ——————=
Sina Vp*+4Sin.zs ’
et

14-Sin « — ZF—{-—Sin.’s—!—p . (\/p3+SiU.‘S+p):

PO A

1=3iu.4 \/p——’—}-——b‘in.’_s'*‘-[l — Sin.’s

e

ot telle sera conséquemment la raison de la progression par quo-
tiens que formeront les rayons et les circonférences des grands cer-
cles des sphéres inscrites ; les surfaces de ges grands cercles et cel-
les des sphéres formeront une progression dont la raison sera le
carré de cette quantité, et les volumes de ces sphéres formeront une

progression dont la raison en sera le cube (*). -

(*) Cest préeisément 4 ce résultat que parvient M. Steiner; et qui nous
a -aussi été adressé postérieurement par M. Bobillier et par M. Martinelli ,

cadet au corps royal des pionniers, a Modéne.

J. D. G,
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QUESTIONS PROPOSEES.

Théorémes darithmétique.

I. TOUT nombre entier est divisear d’un nombre exprimé | - une
- suite de g suivis de plusieurs zéros.

II. Tous les nombres et les seuls nombres premiers su ' ieurs
d’une unité & des puissances de dewx , lesquels sont aussi, \,;.»mme
I'on sait, les nombres de divisions qu'on peut exécuter g aétri-
quement dans la circonférence d’un cercle, sont ceux de " suite

2 2

2 2 2

2 2 2

241, 241, 241, 241, 231, .

Probléeme d’ar;'thmétz'c].ue.

Quel ‘est le plus petit des déneminateurs qui donn: [ 1 des pério-
des décimales de onze ckiffres ; ou, en d’autres termes e nombre
rrrvanictin a-t-il quelque facteur différent de lui ¢ . e lunité ?
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OPTIQUE.

Du mouvement de la lumiére dans un milieu
transparent , dont la densité varie dans tous
les sens , suivant une loi mathématique quel-
conque ;
Par M. GERGONNE.

AT VUTIWVIANWVVVINAAN.

pLU‘SIEUHS anndes avant que M. Biot eiit fait paraitre son ouvrage
sur les Réfractions extraordinaires qui ont lieu prés de l'horizon ,
et & l'occasion d’une pitoyable explication du phénoméne du M-
rage , que javais rencontrée dans la Décade philosopligue , je m’é-
wis d¢jd occupd de la recherche des lois du mouvement de la lo-
micre et de la vision , dans un milieu transparent de densité va~
rizble. Bien qu’alors le phénoméne du mirage fit connu et observd
depuis long-temps , dans diverses contrées de I'Europe, personne
ndanmolns n'avait- songé & en déduire Pexplication mathématique
des lois connues de loptique. La route dans laquelle je m’enga-
geais n’était done point encore f{rayée. Je n'avais jamais en Voe-
casion d’observer le phénoméne que j'entreprenais de souwmcitre a
Panalyse ; il ne m’était inémne connu ue par la courte description
qu’en avait donné M. Biot , dans ses Elémens d’astronomie ; cepen-
dant je fus assez heureux pour parvenir & des résultats que 'observa-
tion directe, elle-méme , n’avait fait apercevoir qu’assez tardive-
ment & M. Monge , durant son séjour en Egypte, comme on en
peut juger par le post-scriptamn de son Mcémoire sur le mirage,
Tom, XIX,n® g, 1.°* mars 182q. 35
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inséré d’abord dans la Décade égyptienne, et reproduit postérieu-
rement par M. Hachette , dans son Programme d'un cours de phy-
sique. Le mémoire de Monge parait, au surplus, beauconp moins
écrit pour les géométres que pour les hommes, en trés-grand nom-
bre, qui aspirent uniquement & prendre une teinture superficielle
des causes des phénoménes variés que le spectacle de la nature
peut offrir & notre observation ; ce mémoire ne m’aurait donc pu
étre d’aucun secours pour mon travail, qui était terminé depuis
plus d'un an, lorsqu'il me tomba pour la premieére fois sous la
main,

Je m’étais horné alors , parce qu’en effet cela suffisait & mon but,
a considérg’r le mouvement de la lumiére et la vision, dans un
milien transparent, composé de couches planes paralléles, d'une
densité constante dans chaque couches, et variant seunlement, d’une
couche 3 lautre, suivant une -loi mathématique donnée quelcon-
que, et un extrait de mon mémoire parut dans le volume des
Travaux delAcadémie du Gard, pour 1808 ; mais je w’étais bien
promis dés lors de revenir de nouvean sur ce sujet, pour l'envi-
sager sous ua point de vue un peu plus large, en supposant que
la densité du milieu varie d’un point & lautre, d’une maniére
quelconqgue , dans toutes sortes de directions. Ce n’est que trés-
récemment que j’ai pu jouir, sans de continuelles distractions, des
quelques loisirs qui m’étaient nécessaires pour mettre ce dessein &
exécution. Je ne m’occuperai , dans le présent mémoire, que des lois
du mouvement de la lumiére , en renvoyaut & un autre mémoire
ce qui concerne les lois de la vision.

Dans tout ce qui va suivre, jadmettrai , comme je l'avais déji
fait, dans mon premier mémoire, I’hypothése newtonienne sur la
nature de la lumiére, non toutefois que je la regarde, plus que
celles des ondulations, conforme & la vérité, mais seulement parce
qu'elle se préte plus aisément que cette derniére a l’analyse ma-
thématique , et que d'aifleurs, pour l'objet particulier que j'ai en
vue, rien n’est plus facile, comme on le verra, que de passer des
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résnltats relatifs & I'une des hypothéses & ceux quon déduirait de
Vaatre. Afin que le lectenr n’ait besoin de recourir & aucun au-
tre écrit, qu'il pourrait fort bien n’avoir pas sous la main, j'ana-.
lyserai d'abord briévement l'action des milieux sur la lumicre qai

les traverse,

Tout ce que l'observation peut nous apprendre sur la nature de
la lumiere, c’est 1,° qu’elle semble une substance d’une nature parti-
euli¢re, dont les molécules s’échappent, dans toutes sortes de di-
rections, de chacan des points des corps lumineux ou éclairés ;
2.° que, quaelle que soit la direction initiale d’une molécule lu-
mineuse, tant qu’elle se meut dans le vide ou dans un milieu phy-
siquement et chimiquement howogéne, c’est~-a-dire, dans un mi-
hea dont la nature et la densité sont partout les mémes, elle suit
aue direction exactewent rectiligne; de telle sorte que la pesan-
teur terrestre ne parait exercer sur elle aucane action appréciable (*) ;

(" La preuve expérimentale qu'on apporte de cette propriété de la lu-
miire, dans la plupart des traités de physique, m’a toujours paru une vé-
ritahle pétition de principe. On nous dit, par egemple, qu’un rayon so-
liire , regu dans une chambre obscure, par un trou fait au volet , enfile
exactement un long tube reetiiigne,‘ quelque petit d'ailleurs qu’en soit le
diamétre intérieur; mais on ne nous explique pas comment on peut s’as-
surer, au préalable, que ce tube est rectiligne. Ce ne sera siirement’ pas
au coup d’ceil qu'on en jugera ;. car si, par aventure, le mouvement de la
lumiére était curviligne , il faudrait que la direction de l'axe du tabe le
fat également pour qu'on pht, en placant Peeil & une de ses extrémités ,
apercevoir les objets situés dans le prolongement de cet axe; c’est méme la
ce qui arriverait inévitablement, & raison des réfractions atmosphériques ,
si le tube était excessivement long et non vertical. Il ne sufiit donc pas
que fe rayon enfile le tobe, pour que la direction de la lumiére soit re-
connue rectiligne ; il faut, en outre, qu'il ne cesse pas de Ienfiler, lors-
gu’on fera tourner ce tube dans deux colliers fixes , situés & ses extrémités;
car il 0’y a que la ligne droite dont la situation soit unique entre dens dcs
points de sa direction.
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3.9 qu’alors son mouvement est non seulement rectiligne mais en-
core uniforme; de sorte qu'elle ne parait éprouver aucune résis—
tauce sensible de la p'lrt des wmilieux qu’elle traverse; 4.° qu’en-
fin, lorsque la lumiere pénétre du vide dans un milieu ou d’un
milien davs le vide, ce milieu parait exercer sur elle une action,
tantét attractive et tantdt répulsive, tout a fait analogue aunx ac-
tions chimiques , dent le caractére le plus saillant est d’éire tout
A fait tnsensible & la moiudre distance apprdciable du contact.

Adoptons donc cette hypothése qui n'est, aprés tout, que l'ex-
pression exacte des faits, et examinons soigneusement quelles doi-
vent en étre les conséquences mathématiques.

Soit d'ubord une molécule lumineuse mue verticalement , de
hant en bas, dans le vide, et s'approchant ainsi d’un milien in-
d¢fini, physiquement et chimiquement homogéne , séparé de ce.
vide par an plan horizontal , également indéfini, et dont I'action
sur cette molécule soit attractive. Soit que la molécule soit encore
hors du milieu , ou soit qu’an contraire elle y ait déjd pénétré
tout se trouvant exactement dans les mémes circonstances tout au-
tour de la verticale que cette molécule parcourt, elle continuera
constamment & la parcourir; de sorte qu’il est seulement question
de ddécouvrir suivant quelle loi sa vitesse pourra varier.

Considérons d’abord la molécule hors du milieu ; soit 2 'inter-
valle qui I'en sépare & I'époque 7; la force accélératrice sera, pour
d2x
des
nelle & la densité du milieu ; puisque , par exemple, un milicu 7 fois

la méme époque, ; et cette force sera visiblement proportion-

plus dense que celui-1a, pouvant étre considéré comme le systéme
de » milieux d'une densité pareille 4 la sienne, qui se seraient
pénétrés, et chacun d’eux agissant comme s'il était seul, leur ac-
tion totale doit étre n fois plus grande que celle de chacun d’enx
en particulier. Il n’est pas moins évident que -cette force accéléra-
trice doit étre une certaine fonction de la distauce z de la mo-
Ié¢cole au plan horizontal indéfini qui termine le milieu; de sorte
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qu'en représentant par z sa densité constante , on doit avojr

d2x
o =—uF (),

la fonction T étant indépendante de z. Nous donnons ici le signe
— au second membre, parce que l'action du milien tend 4 di-
minuer la distance =z.

De cette premiére équation on conclut

( %—f )2=A—2u‘fF(x)dx ,

A étant une constante arbitraire ; de sorte qu'en posant, pour abré-
ger,

JFRz)do=1(2) ,

en a simplement
7 dx \?

Pour faire disparaitre la constante A4, désignons par w la vitesse
uniforme de la molécule dans le vide, avant qu’elle soit assez voi-
sine du milien pour éprouver de sa _part une action appréciable ;
ce sera aussi sa vitesse pour x=oo, Soit de plus 7 la vitesse de
cette molécule an contact .oft #=o0 ; nous aurons ainsi

= A—auf(x) ,
Vi=A—2uf(0) ;
d’olr, en retranchant,
Vi—wr=2u{f(w )—f(0)} <

Or, f(o)—f(0) est une quantité constante qui ne dépend que
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de la forme de la fonction f, ¢est-4-dire, du mode d’action in-
connu des milienx sur la lumiére ; mais que nous pouvons, une
fois pour toute, représenter par 4* (*); nous aurons donc ainsi

Vi—wr=2k’u ;

c’est-d-dire qu’d l'entrée de la molécule dans le milien, le carré
de sa vitesse se trouve déjd augmenté d’une quantité proportion-
nelle & la densité de ce milieu.

Considérons maiatenant ce qui se passe lorsque la molécule a
déja pénétré dans le milieu. A quelque profondeur z qu'elle y soit
déjd parvenue, si, 4 la méme distance x, au-dessous d’elle, on
congoit un plan horizontal, la portion du miliea située au-dessus
de ce plan n’exercera évidemment aucune aclion sor cette molé-
_cule, puisqu'elle s’y trouvera symétriquement située ; la molécule
sera donc sollicitée par ‘le surplus du milien comme elle F'était par
le milieu entier, lorsqu’elle n’était encore qu’d la distance x au-
dessus de sa surface ; et, comme il en ira toujours de méme , quelle
que soit la valeur de x, qui, dans ce cas-ci, va croissant, l'action
da milieu sur elle, qui aura atteint son maximum au contact , dé-
croitra continuellement ; de telle sorte qu’elle aura été exactenient la
méme aux mémes distances au-dessus et au-dessous du plan ho-
rizontal indéfini qui termine ce milien. En un mot, laction totale
du milien sur cette molécule aura éié finalement la méme que si,
celle-ci restant fixe, le milien s’était peu & peu élévé jusqu’a elle,
pour s’en éloigner ensuite, par un mouvement rétrograde , exacte-
ment inverse du premier. La molécule en pénétrant dans le mi-
lieu, jusqu’d une profondeur ot son mouvement sera devenu de

(* Ce k: est la méme chose que le & employé par Laplace dans le X.me
livre de la Mécanique céleste. Je¢ mets k* au lien de k, pour la commo-
dité des applications.
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nouveau sensiblement uniforme, comme il Pétait dans le vide,
aura donc encore accru le carré de sa vitesse de la méme quan-
tité dont il s’était déja accru en allant du vide & la surface de ce
miliea , de sorte qu’en représentant par ¢ la nouvelle vitesse uni-

forme de cette molécule, on anra
P —V'=2k*u
puis donc que nous avons déja trouvé
Vi—w'—2ku ,
nous aurons, par addition ,

e a— 4/{2u .

Ainsi , lorsqu’une molécule lumineuse passe du vide dans un
milien homogéne indéfini-qui l'attire, et qui est séparé de ce vide
par un plan indéfini, perpendiculaire & la direction du mouvement
de la molécule, le carré de la vitesse uniforme de cette molécule
dans le milieu est égal au carré de sa vitesse uniforme dans le
vide , augmenté d’une quantité proportionnelle & la densité de ce
milien, et la force accélératrice est exactement la méme & des dis-
tances égales de part et d’autre du plan qui termine le milieu.
Mais , &4 cause de l'excessive petitesse du rayon d’activité du mi-
lieu , tout se passe sensiblement comme si la vitesse, constamment
égale & w, jusqu’au contact, se changeait brusquement en ¢ au-
deld de ce point.

Supposons présentement que la molécule , an lieu de pénétrer
du vide dans un milieu homogéne, pénétre d’un milieu homo-
géne indéfini dans un autre milieu également homogéne et indé-
fini, d’'une densité supérieure a la sienne; les deux milieux étant
séparés l'un de l'autre par un plan indéfini, et la direction de la
molécule étant perpendiculaire & ce plan. Soient # et u/ les den-
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sités des deux milieux, ¢ et # les vitesses constantes de la [u-
miére dans Uun et dans Dautre. En considérant Ia densité »/ dn
second milien comme composde de deux autres z et w/'—u, la
premiére ,” qui lui sera commune avec celle du premier, n’aura au-
cune action pour modifier la vitesse ¢ ; la molécule lumineunse se
trouvera donc dans le méme cas que si elle pénéirait du vide, otv
elle aurait la vitesse ¢, dans un milien dont la densité serait u/—u ,
et ol elle acquerrait la vitesse ¢'; on aura douc , parce qui pré-
céde,

/o= (' —u) ..

Ainsi, si deux milieux transparens, homogén\es et indéfinis , d’une-
densité différente, sont séparés 'un de l'antre par un plan égale-
ment indéfini, et qu’une molécule lumineuse passe du moins dense:
dans celui qui est le plus, en suivant une perpendiculaire & leur
plan séparateur; par leffet de l'excés de I'action du second mi-
lieu sur celle du premier , le carré de la vitesse de la molécule
se trouvera augmenté d’une quantité proportionnelle & I'excés de la
densité de ce second milieu sur celle du premier; et il est clair
qu'on pourra encore admettre ict, sans erreur sensible, que cette
augmentation dans le carré de la vitesse a lieu brusquement , dans.
le passage du premier milieu au secound.

Supposons actuellement que la molécule traverse Ie premier mi=
lieua dans one direction oblique au plan séparateur ; si, par cette di-
rection , on concoit un plan perpendiculaire & celui-ld , tout éiant égal
de part et d’autre de ce second plan, la molécule n'en sortira pas,
méme apres avoir pénétré dans le second milien. Par fe- powtdiu-
cidence soit conduite une perpendiculaire an plan séparateur ; soient
0 et 6/ les angles que font les rayons incidens et réfractés avec
cette perpendiculaice ; ce seront 14 aussi, respectivement, les angles-
d’incidence et de réfraction, Soient tonjours ¢ et ¢/ les vitesses cons-
tantes de la molécule dans les deux milieux ; les composantes: de
ces vitesses seront savoir :
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¢ Sin0 ,
dans le sens du plan séparateur
¢/ Sin.0/ ;

¢ Cos0 ,
dans le sens de la perpendiculaire
o/ Cos.b/ -3

or, comme l'action totale des milieux s’exerce perpendiculairement
au plan séparateur, les vitesses, dans le sens de ce plan, ne sau-
raient différer I'une de l'autre ; de sorte qu’on doit avoir

¢Sin.0—=¢/Sin.0/ .

En second lieu, les carrés des vitesses perpendiculaires au plan sé-
parateur devant, d’aprés ce qui préccde , différer 'un. de l'autre de
la quantité 4%4*(u—uw’), on aura aussi

9°C08.70"—p*C0s.20=4k*('—u) ;.

éliminant ¢/ entre ces deux équations, et transformanl les- cosinus
en-sinus dans 1'équation résultante , on aura

Sin.o- T =)
— = 4l (Ul =u).
Sin.¥ _V L

or, pour les deux mémes milieux et pour une méme vitesse cons-
tante ¢, dans le premier , le second membre de cette équation cst
indépendant de @, cest-d-dire, de la direction de la molécule dans
le premier miliea; donc, son premier membre en doit étre égale-
ment indépendant ; donc , pour les deux mémes milieux et pour
la méme vitesse absolue dans le premier , 7/ existe un rapport
constant entre le sinus d'incidence et le sinus de réfraction.

On sait que la constance de ce rapport est comp_létemcm con-
Tom. XIX 36
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firmée par l'expérience; d’olt il suit qu'elle est indépendante de
toute hypothése sur la nature de la lumicre; en la représentant

par 7, nous aurons
ne= V kﬁ(u’—-—u)
, ni—1
U —~~U""T (

si donc en veut adopter tout autre hypothése que la ndtre , il ne

ni—1

d’ott on tire

I
s'agira que de remplacer par

( > ce que nous avons tP"

pelé la diflérence de densité des deux milieux.
Si, entre les deux mémes équations , on élimine 6 , 6/ disparaitra de
lni~-méme , et il viendra '

o —p? = 4B (u/—u) ;

ainsi, la différence des carréds des vitesses absolues de la molécule
dans les deux milieux est indépendante de la direction initiale de
son mouvement,

Soient présentement u, u, , u, , Uy, ww ¥, les densités d’une suite
de milieux transparens, howmogénes et indéfinis, séparés les uns
des autres par des plans également indéfinis , paralléles ou non pas
ralléles ; une molécule lamineuse qui les parcourra successivement
décrira sensiblement un polygone rectiligne ouvert, plan ou gau-
che , ayant ses sommels sur les divers plans séparateurs , et les
plans de ses angles respectivement perpendiculaires aux plans sé-
parateurs qui en contiendront les sommets. An passage de chaque mi~
lieu dans le suivant, la composante de la vitesse absolue, dans le
sens du plan séparateur, ne saubira aucune modification ; mais, si
Ion représente par v ,¢,, #., 3, seee #,, les vitesses absolues dans
les différens milieux, on aura, par ce qui précéde,
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) —r'=4k(u,—u) ,
v —v =4k (ui—u,) ,
P, =4 R ()
e ety
P = a4 (U=l ps) 3
d’'ott, en ajoutant et réduisant,
02— = 4l (U y—u) 3
et par suite
P2 = 4h (e a—u)

c¢’est-a-dire que la vitesse absolue de la molécule, dans le dernier
wilieu , sera exactement la méme que si elle y était immédiate--
ment parvenue du premier; de sorte que l'existence des milieux
wtermédioires n'aura eu, an plus, d’autre effet que de changer la
direction finale de cette molécule, et de lui faire acquérir, par de~
grés, une vitesse qu’elle aurait prise tout & coup sans leur présence.

Si les milieux , tonjours homogénes et indéfinis , sont séparés les
uns des autres par des surfaces courbes quelconques , la molécule
en les traversant décrira encore sensiblement un polygone recti-
ligne ouvert, plan ou gauche, ayant ses sommets sur ces diverses
surfaces, En imaginaut, par les sommets du polygone, des plans
respectivement tangens aux surfaces courbes séparatrices sur lesquel-
les ces sommets se trouvent situés; ces plans tangens pourront éire
pris pour les surfaces séparatrices elles-mémes ; de sorte que les plans
des angles du polygone seront respectivement perpendiculaires a ces.
plans tangens; que les composantes des vitesses absolues , dans le
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sens de ces plans tangens, ne subiront aucune variation dans le
passage d’un milieu & celui qui lui sera cousécutif , et qu’enfin la
vitesse absolue de la molécule, dans I'un quelconque de ces mi-
lieux , sera la méme que si cette molécule y avait directement pé-
nétré,

Tout se passera évidemmment de la méme maniére, quelque pen
diflérentes de figure et de situation dans l'espace que soient deux
surfaces courbes séparatrices coasécutives el quelque petite que soit
la différence de densité des deux milieux séparés par chacune d’el-
les; il en ira donc encore de méme lorsque la molécule parcourra
un milieu , chimiquement homogéne, dont la densité variera, d'une
maniére insensible, d’un point au suivant, dans toutes les direc—
tions, suivant une loi mathématiqne quelconque. Il arrivera seule-
ment alors que le polygone rectiligne , plan ou gauche, que dé-
crivait d’abord la molécule, deviendra une courbe plane ou a dou-
ble courbure; et 'on voit, 1.° que le plan osculateur de cette courbe,
en l'un quelconque de ses points, sera normal & la surface courbe,
licu de tous les points du milieu qui auront méme densité que ce-
lui-la; 2.° que la composante, suivant le plan tangent & cette sur-
face, en ce méme point, de la vitesse absolue de la molécule , de-
vra étre constante on , en d’autres termes, que sa différentielle devra
étre nulle; 3.° quenfin cette vitesse absolue devra éire la méme
que si, sans intermédiaire, la molécule était parvenne du vide en
ce point. Or, il n’en faut pas davantage pour parvenir aux éqna-
tions da mouvement de la lumiére , dans un milieu transparent,
chimiquement homogtue, dont la densité varie d’un point d 'au~
tre , dans toutes les directions et d’'une maniére insensible , suivant
une loi mathématique dounnée, ainsi qu’on le verra tout & I'heure.

Au lieu de supposer que le milien, chimiquement homogéne ,
varie seulement de densité , il reviendrait aa méme de supposer
que c’est, au contraire, sa natare chimique qui varie, par degrés
inscnsibles, tandis que sa densité demeunre constante; on pourrait
méme supposer que L'uue et 'antre varient & la fois. Pour éviter tout
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-embarras , on peut appeler densizé optigue d’'un milien , en chacun
‘de ses points , la densité que devrait avoir un fluide connu, pris
pour terme de comparaison , l'air atmosphérique , par exemple, pour
exercer sur la lumiére une action pareille a celle que ce milien
exerce sur elle, en ce méme point, et c'est ainsi qu’il sera permis
d’entendre le mot densizé dans tout ce qui va suivre.

Soit présentement unc moiéeule lumineuse , en mouvement dans
un milien iransparent, d'une densité variable. Supposons que cette
molécule ne s’y meuve qu’en vertu d’vne vitesse antérieurement ac-
-quise, combinée avec l'action du milieu sur elle; rapportons-la a
trois axes rectangulaires , et soit («, ¥,z ) le point du milien
ot elle se trouve & I’époque #. Si nous représentons par z la den-
sité de ce milien en ce point, z sera une foncuon de z,¥y, z,
sans 7, donnée par une.équation.de la forme

u=(Z,y,5) » (1)

qui déterminera le densité de ce milieu, en chacun de ses points,
€L qui en sera conséquemment la définition compléte.

En méme temps que cette équation donnera la densité de cha-
cun des points du milieu , elle fera aussi connaitre les points de
ce milien qui auront une -densité donnée; et I'on voit que tous
les points d’'une méme densité quelconque seront , en général , ceux
d’une certaine svrface plane ou courbe ; de sorte que, généralement
parlant, tout milieu de densité variable peut étre considéré, ainsi
que nous le faisions tout & I'heure, comme composé de couches
de densité constante, Un milieu ne saurait différer d’un autre que
par la figure et la situation de ces couches, et par la maniére dont
la deusité varie d’une couche & lautre (*).

*) C’est la théorie générale de- ces sortes de milieux que nous appellions
de nos veeux dans une note de la pag. 87 de.notre XIV.¢ yolume ; mote
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En posant, pour abréger,

du du du
(2)=r: (§)=0 (£)=2, O
on aufa

de=Plzx4Qdy4-Rdz . “(3)

Or, poser du=—o c’est exprimer que la variation de densité est nulle
ou que la densité est constante; donc; P'équation résultante

‘de—l—Qdy-{—de =0 4 (4)

est I’équation différentielle des couches de densité constante; c’est-
a-dire que c’est l'équation différentielle de la couche dans teute
Pétendue de laqielle la densité z est la méme qu'au point ( =z,
Y2

En désignant donc par X, ¥, Z les coordonndes courantes dans
Pespace , les équations du plan tangeut et de la normale de cette

surface , en ce point (z,y, z ), seront

P(X—)+Q(¥—y) +R(Z—2)=0 ,  (5)

Xe—x ¥—y Z—z .
= = . (6)
P Q R
Présentement, en considérant x , y, z comme des fonctions de
t, choisi pour variable indépendante, Péquation du plan osculateur
de la trajectoire, au point ( ¥,y ,z ), sera, comme l'on sait,

sur laquelle le Bulletin universel ( juillet 1828, pag. 10 ) ' rappelé de noua
veau lattention des gdéométres, & l’oceasion ’un trés-curieux mémoire de
M. Gauss, On classerait alors les milieux comme on classe aujourd’hui les
ligunes et les surfaces courbes. '
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dy diz  dz dw\
(¥ &—7F &)

dz dox dx d2z
+\ T 3;;‘";;;5;;)(1’—)”) b==0 ; (7)

de d2y  dy dix
+(F T—F @)@ |

et il faudra d’abord que ce plan soit perpendiculaire , en (#,¥,
z ), au plan tangent (5) au méme point; ce qui doanera, pour
premiére équation du mouvement de la molécule

p( Yy &z d= dy Q(‘Iz ff_iﬁfii>+3<ﬁi’2’_i’.'d_'i“ —
\ T dev | dt des dta dt des dt da = de dm /O

ou bien

dzy diz N dy i d2y dax \ dz
<Qdu—‘ )dt ( dza.— der §+\Pdt= _QEF :l—t—_o' (8)

Les vitesses de la molécule, parallélement aux axes des z, des

y et des z, élant respectivement

dx dy dz
a de de

’

les équations de la tangente & la trajectoire, au point (#,y,z ),

seront
X—x Y =y Zm—z
= =T )
de de dt

de sorte que, si l'on représente par 6 l'angle que fait cette tan-
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gente avec la normale (6) an méme point, c'est-a-dire, 'angle d’in-
cidence, on aura

Sin 9=

J Poumy ( )+(d’ (a;)}

Mais , si I'on représente par ¢ la vitesse absolue de la molécule au:

point (x,y,2), ce qui donnera

’_<dt/+((z) ( ) » (r1)

la vitesse, dans le sens du plan tangent en (x,y,z ) & la sur—
face (4) de densité constante, sera ¢Sin.0; en substitnant done, dans.

son expression ,. pour ¢ et Sin.0 leurs valeurs, cette vitesse deviendra

P leg—ri)+(n5 —ray+(rz-e5)

VPt Or i

et il fandra que la différentielle de cette composante, en y trai-

tant P, (Q, B comme ‘constans, puisqu'on reste daus le plan tan-

gent, soit nulle ; ce qui donnera, pour deuxiéme équation du. mou--

vement de la molécule,

(Q"g‘; )(Q'd:: —r

daz

d>x
+<B——-P —>< S Y l=o. (12)

dy dx dzy dix .
+HrE—eg)(r T —0q) )

Plog—ngj+(rg—rg)+(ra—es)

(10)
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Enfin , la vitesse absolue ¢ de la molécule, en ( z,¥,2 ),
ou la densité du milieu est z-devant éire la méme que si cette
molécule y élait parvenune du vide, sans ancun intermédiaire; en
désignant toujours par w la vitesse connue de la lumidre dans le
vide , on devra avoir encore, d’aprés ce qui a été dit ci-dessus,

=’ =4ku

ce qui donnera, pour la troisiéme équation du mouvement de la
molécule

:—f)z-{-( )—{—k )_w A-4ku (13)

mais nous allons voir que ces trois équations peuvent étre rempla-
edes par trois autres, incomparablement plas simples.

On satisfait: d’abord visiblement aux deux équations (8) et (12),
quel que soit A, en posant

d2x d2y daz
-(E--—.AP, :i;_dAQ ) -dt—z=)\H, (14)

mais, en différentiant I'équnation (13) , on obtient

dx d2x dy day dz diz (

—_— —— ok P — ) 15

de  de2 + 3 det dex ta de  der dc ( )

qui, en y sabstituant les valeurs (14), se réduit & A=2/"; de sorte

que les équations (14), cest-d-dire , les équations du mouvemeunt

de la molécule sont simplement
dx

dzy .
= =2k —Z =k’
dea =2kP dea ¢

d2z

— =2/’R ; 6

o =2 (16)

équations qui comportent d’ailleurs I'équation (13), et qui seront,
Tom. XIX. . 37



274 DU MOUVEMENT

a raison de leur extréme simplicité et de leur parfaite symétries
d’un emploi trés-commode , surtout lorsque P, @, B seront respec-
tivement des fonctions de x, ¥, z seulement.

Ces équations (16) pourront également servir, soit & détermi-
ner les circonstances du mouvement, lorsque la nature du milien
sera donnée, soit au contraire & déterminer la nature du milieu,
lorsque les circonstances du mouvement seront connues.

Pour donner un exemple du premier de ces deux cas , suppo-
sons que les couches de densité constante soient des couches ellip-
soidales concentriques , semblables et semblablement disposées, ayant
le point (@, b, c) pour centre commun, et leurs axes proportion-
nels & trois quantités p, ¢, 7. Supposons, en outre, que la den-
sité de ces couches croisse du dedans au dehors, proportionnelle-
ment aux carrés de leurs dimensions, en prenant les axes des coor—
données respectivement paralléles aux diamétres principaux de ces
surfaces, on aura

2
: ) : (17)

= (5

On trouvera conséquemment

P () (5, 0= (2)=(E). a=(2)= ()

au moyen de quoi les équations (16) deviendront

a ) d=y ( dﬁz Zec
> dee W T ( )

et donneront, en intégrant

dx
dez




d

x
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A, B, C éant trois constantes arbitraires,

e (52 (=i (5 Yo ()= (5

275

)+C;U@

Pour les déterminer, supposons que la molécule soit partie de
lorigine,, avec la vitesse 77, dans une direction faisant avec les
axes des x,y,z des angles respectivement égaux & «, 3,7 ; nous

aurons ainsi

V’Cos.’a=41f§—: +A, VCosp=4k’ z_ +B,

V*Cos.y=4k* = +C;

rz

en retranchant ces équations des précédentes , il viendra, en trans-

posant ,

d 2 — 2 2
() :4/&( = 4P Cosram g 2

P

( %)’:4@( l:_”.)-;- V*Cos. p—ijh’ I;— ;

(5= (5 oo £
d’oli on tirera
dr— : dx
| 3 = )+ Cos ol
di= Y R
Vuf ( 1-?- )3+ P Cos B—ih* —
d=— dz ;

l/w( sl )2+V‘Cos.’y-—4/r‘
r

S

r3

\

(v9)

(20)
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ce qui donnera, en intégrant,

x—a \? R , @°
( > )+VCOS.G—4I[ FE'

4D = 2% Log.g 2k

tE= -—Log {12

2 2 (;2
-7—4k 'r_;i H] J

—_C +V2&"< z

D , E, F étant trois nouvelles constantes arbitraires.

Pour les déterminer , fixons l'origine des temps au passage de
la molécule par l'origine des coordonnées; alors z, %, z devront
éure nuls en méme temps que 7; ce qui donnera

D= Z—k Log.(-nzlf -;— +VCos.a) ,

r z
1 F=— = Log. { 2k

— 7 2
E— o Log.( 2k p +I/’Cos.ﬁ> ,
F=_L ES4rC ;
= 0g. (—-2 - -4~ ms.v) 3

- /
d’olt, en retranchant,

B +]/:/f Cosramilr 2 )
= -p—kLog. L - r ,
2 VCOS.a—z:Ii -
Y2 ) 4 7*Cos. p— 4&*—:
q
I= ———L g ?
2k VCmﬁ—ak——
Z==Cc \? - 2 c?
) 2#(—7—)+J%bsw-ﬁ=;
iI= —kLog, 5

= PCosy—ak —
r ]

+V4kz qb )’-{-—V’Cos.zﬁ—ﬂf ;—% s > @av)

(22)
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équations entre lesquelles éliminant 7z, on aura d'abord , pour la
double équation de la trajectoire décrite

2

(x:a lY-}—VZCOS.Za——[;/fz ;:

VCos.a—2k 2 \
P

4

—b =7 v ) ) g
20 L2 BT ) 152 Cosp—il® —
=9 +V2 \ ¢ )+ osp—4 g \ (23)
VCos.ﬁ——zlf%

2
Cos *y— 44" 672

I VCos.v—-z/r-E—

Les mémes équations (22) peuvent étre écrites comme il suit :

2kz

(VCos.oc—zlt ’a—, )87—2]1‘ x:a =V4]{=< x:a )2_‘_;/2(:05.2“_4/{, _:_

—) )
VCos fp—2k —)c —-°7fy -—]/ e 72 *Cos B/ o
( 4 ( - >+VCos.ﬁ 4k p

t

2

2%
” ._]f_)T___ z=c __ WS 2 .
e e e A E

carrant alors les denx membres , réduisant et divisant respective-

a b c .

ment par VCos.oz—-zlz; » FCosfp—2k — , VCosy—2k— , il
q r

viendra, en transposant ,
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2kt 2kt \

=ao+ ﬁ—%(VCos.a—zlt % ) e — (VCOS-d+2/f %) e } )

2ke
——

gt 2l (Oopmai ) T (FOopbat Y. T, )

2kt

e .
z=c4 fl-‘—g(VCos.y—nl: ;—) e '—<VCos‘y+2lf$> e ; H )

et telles seront finalement les équations du mouvement de la mo-
lécule.

Si P'on suppose ¢ et Cosy nuls, c’est-a-dire, si l'une des sec-
tions principales communes a toutes les couches de densité cons—
tante est dans le plan des xy, et que la direction de la molécule
A son passage par 'origine , soit aussi dansce plan, on aura z=o,
quel que soit 2 ; c'est-a-dire que, pendant toute la durée du mou-
vement , la molécule ne sortira pas de ce plan, ce qui est d’ailleurs
évident , puisqu’alors tout se trouvera de part et d’autre dans les
mémes circonstances.

Si les couches de densité constante sont sphériques, on aura
p=¢g=r, et par suite

3kt wa— TRE

s=o+ {(rVCos.a——zlfa)e " —(rPCosat2ka)e 2 ,

2k
— 2kt

y=i+ 73{- % (r¥Cos ﬁ—z/lb)e—;-— (r¥Cos.p4-2kb)e

2kt 2kt

Z=¢4- III: g (r¥Cos.y—ake)e T—(rVCos.v—F:zlw)e . 2 .
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On tirera de 1A

ake 2kt

rv - Iy

cy—bz= i Gl )(cCos.ﬁo—bCos.y) R
2kt 2kt
) A

0z—Cx= m e —e )(aCos.y-—.cCos.a) >
o, —k

br—ay— G "—e ) (6Cos.c—aCos ) ;

et par suite

(cy—bz)Cos,a~+ (az—cx)Cos.f+(by —ay)Cosy=o ,

ou bien
(6Cos.y—cCos.B)x-4(cCos.a—aCos.y)y4-(aCos f—0Cos.x) =0 ;

la trajectoire est donc plane, dans ce cas, comme on pouvait bien
le prévoir. Son plan passe évidemment par l'origine et par le cen-
tre commun des couches de densité constante.

Si , dans les équations (24), on suppose a, b, Cos.x, Cos.3
nuls, cest-a-dire , si I'on suppose que I'un des diamétres principaux
commun & toutes les couches de densité constante est dans l'axe
des z, et qud son passage a lorigine , la molécule est dirigée sui~
vant cet axe, on aura x et y nuls, quel que soit Z; clest-d-dire
que, pendant toute la durée du mouvement, la molécule ne sortira
pas de cet axe des z; ce qui dailleurs est évident, puisqu'alors ,
d’aprés ce qui a été dit ci-dessus, elle ne doit sortir ni du plan
des «z ni de celui des yz.

Pour donner un exemple du second cas , c’est-d-dire, de celui ott
des circonstances du mouvement il faut conclure la nature du mi-
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lien ; supposons que les équations du mouvement de la molécule
soient

T =g V(a—ViCOS.Oﬁ)z—L’}k‘»(%)zz’ ’
y=b— V(b;rzcos.,@)z—4lf* ( L )zz”
z=¢— V(a—-VtCos.v)z-—ﬂfz(-:-)zf ’

et proposons-nous d’en conclure la valeur de #, en z,y, 2z, On
voit d’abord qu’d lorigine des temps la molécule se trouvera
'origine des coordonudées. '

Par une premiére différentiation, on déduit de 1a

du aVCOSa—(VchS a4 k? ——)

|
V(:z—VtCos.a)2—4l[’ < - ) I

4 BVCosp— (V=cos.=p,_4k= g- )z

“ V(b"VICOS.@)g_—[iy( g_)ftz

dz
dz c¥VCos.y— (V’Cos y—A4k? —-)

e
V(c-——VLCos y)‘—4k2( c—-) 2

d’oli Pon voiut que la vitesse initiale de la molécule est 77, et que

sa direction initiale fait, avec les axes des #, ¥, 2z, des angles res-
pectivement égaux a «,f3, ¥
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En différentiant de nouveau, il vient :

d'x 4k’p‘ _ 4k’p’
der 3((1—-Vt(,os.oc) —4!:’( ) £ (x==a)’

—d.:l 4“"]’ — 4k’q’
dee S(b—VtCosﬁ) —4 (4 ) §r %

d2z . 4kere 3 Yo
dee {(C-Vtcos.y)‘—-4]f ( _:;, )‘12 g% (z=c)3

on aura donc aussi (16)

41";7’

I;.’zP:—- . 2 T —
2 —y * =Gy

c’est-d-dire ,

—_ __2_9_’__ . _ ar2
( ) =P== x—a)i ( ) (r—b)3 ( ) =i=—=

d’olt

2p*dx 2¢dy ar2dz

du=— (z—a)  (y—b)3  (z=c)}

et, par suite, en intégrant,

L)+ E)+(E)

telle est donc la définition du milieu dont il s’agit. Nous n’ajou-
tons point de constante, attendu qu’en augmentant ou en dimi-
nuant , d’'une méme quantité, la densité de tous les points du mi-

Uu—=

lieu , on ne change rien aux circonstances du phénoméne.

Tom. X1X 38
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Lorsque le milien est symétrique par rapport & un plan et que
la direction initiale de la molécule est comprise dans ce plan, c’est-
a-dire, lorsque les surfaces courbes de densité constante ont tou-
tes une section principale commune dont le plan coutient la direc-
tion de la molécule lumineuse, pour un instant quelconque, cette
molécale ne sort pas de ce plan et décrit conséquemment une
courbe plane. En prenant donc le plan de sa trajectoire pour le

plan des zy, sera nal; de sorte qu’on n'aura & considérer que

dz
dz
les deux équations

dx 2 d2y .
—d—t;=2kp s (‘E;=2kQ . (25)

C’est, par exemple, le cas ol les couches de densité constante
étant des surfaces cylindriques , ayant toutes leurs élémens recti-
lignes paralléles & une méme droite fixe, la molécule serait mue
dans un plan perpendiculaire & cette droite.

Si donc les couches de densité constante se trouvaient symétri-
ques par rapport & tous les plans conduils par un méme point
fixe, la trajectoire décrite par la mulécule serait contenue dans un
plan passant par ce point fixe , quelle que pit éure dailleurs la
direction initiale de son mouvement. Tel serait, par exemple, le
cas ot les couches de densité constante seraient sphériques et con-
centriques ; et tel serait aussi le cas ol elles seraient planes et pa-
ralleles ; des plans paralléles pouvant étre considérés comme des por-
tions de sphéres conceniriques , dont le rayon est infini.

Si le milien était syméirique par rapport i deux ou & un plus
grand nombre de plans, se coupant suivant la méme droite, et
que la direction initiale de la molécule coincidét avec cette droite,
il est clair qu’elle n’en sortirait pas dans tout le mouvement ; de
sorte que la trajectoire serait rectiligne. En prenant donc cette droite
pour axe des # , on n’aurait & considérer que la seule équation
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d2ax .
d =2k'P . (26)

C’est, par exemple, le cas ol les couches de densité constante se~
raient des surfaces de révolation ayant un axe commun avec leqﬁel
coinciderait , & un .instant quelconque , la direction du mouvement
de la molécule , et c’est encore le cas o les couches de densité
constante étant des plaus paralléles, la molécule serait dirigée per-
pendiculairement & ces plans; enfin ce serait aussi le cas d’'un mi-
lieu homogéne, quelle que piit éwre d’ailleurs la direction initiale
de la molécule ; puisqu’alors cette direction serait toujours perpen—
diculaire & des couches planes paralléles de densité constante ; mais
dans ce dernier cas, le mouvement serait non seulement rectiligne,

mais encore uniforme.

Lorsqu’on n’a aucun intérét a connaitre le lien de la molécnle
lumineuse d chaque instant de son mouvement et qu’on veut seu-
lement savoir qu’elle est la trajectoire décrite , ce qui est le casle
plus ordinaire, il faut, pour obtenir les équations générales du pro-
bléme, éliminer 7 entre les trois équations (16) ; ce qui exige qu’on
change d’abord d’hypothése relativement a la variable indépendante.
En prenant x pour cette variable

/ det
dx®

dzx
CTt: - & e
(&)

dy e dy d

dzy . . dez dr dx dx:
i » deviendront respectivement ¢ s )
\ —
(&)
d2z dt dz de
dee des do dx daxs

* BE)
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an moyen de quoi les équations (16) se changent dans les sui-

vantes :
— = %P( )

dy d&t  dy do —aQ de \?
dx» dr  dx der dz) ’

.fﬁ de dz de¢ lt”B(it-)s.
da

——— — 2
dx? dwx de  dx?
r.e . d¢ . ‘"
Eliminant i des deux derniéres , au moyen de la premiere,
™ H

. .. d¢
elles deviennent, en divisant par o

G )
:;f=2"‘ R—P a;)(a)z;

mais , dans,l’hypothése acluelle, I'équation (13) devient
d dt
( y ——) ~(W’+4/f’u)< )

’ye . t 2 ’
éliminant donc<T> des deux précédentes, au moyen de cette
azx /f

derniere , on obtiendra, pour les deux équations différenticlles de
la trajectoire décrite,

vira =k (oor D)+ (274 (21
(w’+41£2u)—§;=21£2(3—-l’§:>$ +de +("Z)’€. k

moais ‘il sera communément plus simple de recourir aux équa-
tions (16).

Dans un prochain article , nous nous occuperons proprement du
phénoméne da mirage.
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G—— — —— —}

DYNAMIQUE.

Solution d'un probléme de dynamique ;

Par M. LE BARBIER.

[a Vi VT, O L VL S0 % Vi P

P ROBLEME. Un tube cylindrigue rectiligne , d'une longueur in-
définie , est lié d'une maniére invariable aé un axe horizontal fize ,
auquel il est perpendiculaire, de telle sorte que laxe de rotation
passe par Laxe du tube qui se trouve ainsi contraint de se mou-
voir , comme une lunette méridienne , dans un plan vertical fixe.

On introduit dans l'intérieur de ce tube une sphire pesante, d'un
diaméire égal au sien, dont le centre de gravité coincide avec son
centre de figure , qui, de la sorte, se trouve constamment dans l'axe
du tube.

On suppose que ce tube est contraint a tourner d'un mouvement
uniforme sur Paxe horizontal fize qui le supporte , et l'on demande
de déterminer les circonstances du mouvement du centre de la splire
dans le plan vertical , en faisant dailleurs absiraction de la ré-
sistance de l'air et du frotiement ?

Solution. Rien n’élant plus aisé que de combiner le mouvement
de rotation uniforme de l'axe du tube avec le mouvement varié
du centre de la sphére, le long de cet axe supposé fixe, occupous-
nous d’abord uniquement de ce dernier.

Par le centre du mouvement, et & droite de ce centre, soit me-
née , dans le plan vertical fixe que doit parcourir 'axe da tube,
une horizontale indéfinie ; la position initiale de cet axe sera dé-
terminée par I'angle que fera alors sa direction avec I’horizontale;

Tom. XIX ,n° 10, 1.°% awril 182q. 39
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angle que nous désignerons par « et que nous mesurerons constam-
ment au-dessus de cette horizontale, et de droite & gauche. Nous
n'aurons jamais besoin d’ailleurs de le supposer plus grand que
deux angles droits, puisque, si cela arrivait, nous pourrions lui
substituer l'angle que formerait, avec I'horizontale , le prolongement
de l'axe du tube aun-deld du centre du mouvement.

Supposons qu’a l'origine des temps, le centre de la sphére mobile
soit & une distance 2 du centre du mouvement et qu’on lui ait
imprimé , suivant I'axe du tube, une vitessse #7, positive ou né-
gative , suivant que sa projection sur l'horizontale sera elle~-méme
positive ou négative. Soit enfin T' la durée d’une révolution du
tube sur son axe. .

Daraunt l'intervalle de temps 7, 'axe du tube décrira dans le plan
. t .
vertical fixe un angle 2= r de sorte que si l'on suppose, pour
fiser les idées, que son. mouvement tende & faire croitre l'angle «
’’ '
cet angle sera, a I’époque 2, oz+2m-—1-1 .

Soit g la gravité, seule force accélératrice du systéme ; si l'on
décompose cette force en deux autres , I'une perpendiculaire 3 I’axe
da tube et 'autre dans le sens de cet axe, le mouvement de ro-
tation du tube étant tout a fait déterminé, indépendamment de la
pesanteur, la premiére de ces deux composantes sera détruite, et
la seconde aura seule son plein effet; or, cette derniére a évidem-

. . t ..
ment pour expression 2Sin.{ ad-2e — 3 en désignant donc ar
P g T o

r la distance variable du centre de la sphére mobile au centre du
mouvement , on aura

der . t
E::—gsln. (a+2‘w ?)- (l)

Nous donnons ici le signe moins au second membre , attendu
que , dans le cas /=0, la graviié tend A diminuer la distance r.
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On voit donc que la force accélératrice, suivant I'axe du tube,

est & la fois variable et périodique ; elle sera nulle , quel que soit
le nombre entier z, toutes les fois qu'on aura

T(.nw-a)

23

t '
at2w 7 =0, d'ot 1=

-

elle atteindra sa plus grande valeur négative, toutes les fois qu’on
aura

@ . T Ty m——2 0L
a2t - E— Yntr)e Tot  g= Llnknym—an}

2 b= ?

et cette valeur positive sera —g ; elle atteindra enfin sa plus grande
valeur lorsqu’on aura

o205 -;—-;: Unt3a , dou 1= T{Unt3)a—2e}

2 oz

et cette valeur- sera --g.’

Si l'on intégre une premiére fois I'équation (1), en se rappelant
que 7 est la vitesse initiale du centre de la sphére mobile , et

qu'on représente par ¢ la vitesse de ce centre, suivant l'axe du
tube & I'époque #, on aura

p= %:( V— %:—Cos.a>+ i-—:-' Cos.(a—l—-am‘ -%) .
Ainsi la vitesse du centre de la sphére mobile, suivant I'axe dun
tube , tout comme la force accélératrice, sera a la fois variable et
périodique, :
Pour que cette vitesse soit nulle, il faudra qu’on ait-

e ———Cos. )+ 5T Cos. (a+m )—o 5 ()

ce qui donnera-
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= %{ Arc, [Cos.: (Cos.cx—- %’f - ;)] — z :

Ces époques seront aussi évidemment celles des' maxima et minima
de la distance r; wmais , pour que ces époques soient réelles, en-
core faudra-t-il que

2o V

Cos.0t— —« —

T g
soit compris entre -1 et —1, ou, ce qui revient an méme, que
¥ soit compris entre les deux limites

T
+& x
T (1£Cos.a) .

Quant aux époques des maxima et des minima de la vitesse ¢ , elles
dzr
dzz
c’est-d-dire, comme nous l'avons vu ci-dessus , celles ol on aura

de
seront les mémes que celles pour lesquelles on aura — = =o0;

t
aﬂ-}—zwﬁ =no ;
ce qui donnera (2)
T 8T
—( V- 8- COS.OC) '+" y—+ 2=
p - V+ (1+Cos a)
On voit par la que, si ¥ est positif , il y aura toujours des épo-

ques ol le centre de la sphére mobile ira en s'¢loignant du cen-
tre du mouvement dans le sens de /7, et il en sera méme tou<

juars ainsi, si l'on a

7> £ (14-Cosa)
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Si, au contrairel, 7~ est négatif , il y aura toujours des époques oi
le centre de la sphére mobile s’éloignera du centre du mouvement,
dans le sens de 77, et il en sera méme toujours ainsi, duns ce

cas, si l'on a
T
7> £ (1—Cos.) §
2%
Si 7 étant positif, on avait

=& (x+Cos )

-

ou bien si, V étant négatif, on avait
T
V=£_ (1—Cos.0) ,
29

le minimum de vitesse dans le sens de #” se réduirait & une vi-
tesse nulle.

En intégrant de nouveau I'équation (2), et se rappelant qu'a z=o0
doit répondre r—R, on trouvera

r= ( R-—-—— Sm.cx)—-}—(V— 2— Cos. o:)t+ —Sm <x-|—:za- ;) 5

d’'otr Pon voit que la valeur de 7 se compose de trois parties, sa-
voir: une parlie constante , une autre qui croit indéfiniment avec
fe temps,et enfin une troisiéme qui est périodique. Il suit de I
quen général on pourra toujours assigner une époque i laquelle
le centre de la sphére mobile sera aussi éloigné qu’on le voudra
du centre du mouvement,
Nous disons en général , car, si 'on avait
V= gCos.a ,

2%
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ce qui ne peut arriver lorsqu’il n’y a point de vitesse initiale J
quautant que le tube part de la direction verticale; la valeur de
7 se réduisant alors simplement &

r— (R-— -E—;; Sin.oz)-[— f—g Sin.<§x+2ﬂ' -Et,) 3 %)

et étant conséquemment périodique , elle se trouverait ainsi com-
prise entre les deux limites

T . T T,
r= (B— £ Sina)+ 8- =R+ £ (1FSina)
) 423: ] — 4w’ - Lw2

d’olt I'on voit que le centre de la sphere mobile demeurerait alors
constamment d’un méme c6té du centre du mouvement, si B étant
posiuf on avait

T2 .
B> %—? (14-Sin.a) ,
@
ou bien si, B étant négatif , on avait
T .
B> i—;(x——Sm.a) .

Si, dans la méme hypothése , on voulait connaitre les époques
ol le centre de la sphére mobile passera par le centre du mou-
vement, il ne s’agirait que de poser r=o0 dans I'équation (5) , et
de la résondre ensuite par rapport & #; ce qui donnerait

T . . 2 R \T1
= ——g Arc.[Sm.: (Sm.o:—-'éf— - — J—-—a § 5
2% I g
mais encore faudrait-il, pour que ces époques fussent réelles , que

. 4= R
Sin,ot-— =T

g
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fiit compri$ entre les limites -1 et —1, ou, ce qui revient au
méme , que R fit compris entre ces deux-ci:

T2
i%(,iSina) ;

ce qui concorde exactement avec ce qui vient d’étre dit ci-dessus,

Si, pour le cas général , on se demandait les époques ot le cen-
tre de la sphére mobile passera par le centre du mouvement, il
faudrait, dans I'équation (4), poser r=o0, et la résoudre ensuite
par rapport & #; et l'on voit qu'on aurait ainsi & résoudre un pro-
bléme du méme genre que le probléme de Képler, puisque z en-
tre & la fois, dans cette équation, algébriquement et sous le signe
sinus.

11 sera plus aisé, dans le cas général , de connaitre les mazima
et minima de la distance r; il suffira en effet, pour cela, d'in-

troduire dans la formule (4) la valeur de }— f—z donnée par

I'équation (5); ce qui donnera

:—.:(B-—- % Sin ) — iSzCOS.(a—sz =)= =Sin, <a+m %)2 :

2z a 2z

Si I'on prend pour poéle le centre du mouvement, et que I'on
représente par 6 langle que fait le rayon vecteur avec I’horizon-
. \
tale menée dans le plan vertical fixe, par le centre du mouvement,

on aura
T(0—u)

t .
—o-~27 — dou 2= H
+2e —

substiiuant donc cette valeur dans l’équation (4), on obtiendra
pour I'équation polaire de la trajectoire décrite par le centre de la
sphére mobile dans le plan vertical fize,
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T(o—

2w

r= (R—- £Sin,cx —]—-(V—-—- g_TCos.cx> “ + £T" Sinf 3
4= 2% 4=2

équation quli servira & construire la courbe par points , et de laquelle
on conclurait aisément I'équation en coordonnées rectangulaires.

Ces résultats deviennent plus simples lorsqu’on suppose que le
tube part de la direction verticale et que la sphére mobile n’a
recu aucune impulsion ; on a alors ¥ =o0, a= o, dou Sina=r
et Cos.x==0; en conséquence on trouve, d’abord pour la force ac-
célératrice ,

der 2wt

o =—gSin. T

cette force accélératrice sera nulle , et conséquemment la vitesse
du centre de la sphére mobile aura atteint son maximum ou son

.. nT . .
micimum, lorsqu’on aura 7= —, c’est-d-dire & chaque demi-révo-
2

lution ; on trouvera ensuite , pour la vitesse du mobile, & I'époque 7,

gT 2%
— =— Cos. — ;
é 2% T ’

cette vitesse sera nulle, et conséquemument le rayon vecteur r attein-
(zndn)T
4 2

“cest-d-dire , toutes les fois que le tube pacviendra & la sitnation ho-

dra son maximum ou son minimum , lorsqu’on aura 7=

. . . nT

rizontale. Si, dans cette valeur de ¢, on fait 7= — , on aura pour
2

le maximum et le minimum de vitesse, répondant i la situation

verticale du tube ,

gT

2%

p=1

On trouvera enfin, dans la méme hypothése ,
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- gT> Sin.2=t
ha—3 R-"‘ I'—z' ] T » (6)

on conclura de I3 les plus grandes et les moindres valeurs de r

(2n41)T

en y mettant pour # la valeur qui répond aux maxima

et minima, ce qui donnera
Ta
re=R— & (1+1)
7

c’est-a-dire ,

Ta
r=nR, r—R— & ’
2z%
de sorte que le centre de la sphére mobile passera ou ne passera pas

. T
par le centre du mouvement, suivant que -5;2- sera plus grand ou
2@

plus petit que RB. Quant aux époques de ces passages, on les trou-
vera en résolvant 'équation (6) par rapport & 7, aprés y avoir fait
r=o0, ce qui donnera

= %EArc. [Sin.:(t-{— 4;;1} >]§ .

Ajoutons que, daus le cas actuel , équation polaire de la tra-
jectoire se réduira simplement &

2 T2
r=R— O (1—Sinf)=R— £ Cos(tmt10).

Il est entendu que, dans tout ce qui précéde, on doit supposer
le diameire de la sphére mobile assez petit , pour quon puisse se
dispenser d’avoir égard aux momens d’inertie,

Tom. XIX 40
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ANALYSE ALGEBRIQUE.

Démonstration d'un théoréme sur les ﬁ'czctz'ons
continues périodiques ;

Par M. Evariste Gavois, éleve au Collége de Louis-le-
Grand.

[a Via Sl Vi Vo Vo Vo Vi Vi Vi Vo VE Slo Vo ¥

ON sait que si, par la méthode de Lagrange, on développe en
fraction continue une des racines d’une équation du second degré,
cette fraction coutinue sera périodique , et qu’il en sera encore de
méme de l'une des racines d’une équation de degré quelconque,
si cette racine est racine d’un facteur rationnel du second degré du
premicr membre de la proposée, auquel cas cette équation aura,
tout au moins, une autre racine qui sera également périodique.
Dans l'un et dans l'autre cas, la fraction continue pourra d’ailleurs
éure immédiatement périodique ou ne l'étre pas immédiatement,
mais , lorsque cette derniére circonstance aura lieu, il y aura du
moins une des transformées dont une des racines sera immédiate~-
ment périodique.

Or, lorsqu’une équation a deux racines périodiques, répondant
a un méme facteur rationnel du second degré, et que l'une d’elies
est immédiatement périodique, il existe entre ces deux racines une
relation assez singnli¢re qui parait n’avoir pas encore ¢té remar-
quée, et qui peut étre exprimée par le théoréme suivant :

THEOREME. Si une des racines d'une équation de degré quel-
conque est une fraction coniinue imnédiatement périodique , cetie
équation qura nécessairement une aulre racine également périodique
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gue l'on obtiendra en divisant l'unité négative par cette méme frac-
tion continue périodique, écrite dans un ordre inverse.

Démonsiration. Pour fixer les idées , ne prenons que des pério~
des de quatre termes; car la marche uniforme du calcul prouve
qu’il en serait de méme si nous en admettions un plus grand nom-
bre. Seit une des racines d’une équation de degré quelconque ex-
primée comme il suit:

¢ E +uuuu ;

‘Péquation du second degré, & laquelle appartiendra cette racine et
qui contiendra conséque mment sa corrélative , sera

or, on tire de [d successivement

T ¥
£ o [ T e X ———— :—(5—!—_ ¥
b+ - I % c4 =4 F
C+E‘+£_ , d“l"x ’
1 I r
b-i— (A0 =—:+%+i N Z-+a__‘c (C—I—'—_‘_i ’
X
! I = . 1 b T d+1
C+ ;‘+ —— —_—d—-l—-; , c+_b_ . __.—..( )
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L . r
e S R By
e+ 74 ® 7T+

]
i m
+
|

c’est-a-dire ,

x=—i ¢
- d+c—+%+ 1

G2 ?
c’est donc toujours 1 I'équation du second degré qui donne les
deux racines dont il s’agit; mais en mettant continuellement pour

« , dans son second membre, ce méme second membre qui en
est en eflfet la valeur, elle donne

c'est donc 1 'autre valeur de x , donnée par cette équation ; valeur
qui , comme l'on voit, est égale & —u divisé par la premiére.

Dans ce qui précéde nous avons supposé que la racine propos
sée était plus grande que l'unité; mais, si Pon avait

a== 1
a+7+l+l x
c d+;+_{_ 1
SRR P

. . 4
on en conclurait, pour une des valeurs de — ,
»
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+
N -
+
hlu

-+

N

..,..

’l\'pq

X

d i s
X . . ’

Pautre valeur de — serait donc, par ce qui précéde,
x

B
g —

ol -

I
— I

¢ +c+"‘ t

bt—4 T

.+

a4+~ !

ety X

g e

d’ott on conclurait, pour l'autre valeur de «,

x:—(d"l""t'_‘_% r
at- I .
PR
e aa I
bt —
«+

seegtne

ou

T orm— —
I o
d-t—, 1

.
ctI4L
a

ce qui rentre exactement dans notre théoréme,

Soit A4 une fraction continue, immédiatement périodique quel-
conque , et soit B la fraction continue qu’on en déduit en ren-
versant la période ; on voit que, si I'une des racines d’une éaua-
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b

tion est #=2A , elle aura nécessairement une autre racine <=—-— 5

or, si A est un nombre positif plus grand que l'unité, — 5 sera

négaltif et compris entre o et —1 ; et, a l'inverse, si A est un nom-

. . 1 ~ .
bre négatif compris entre o et —1, — 5 sera un nombre posi-

uf plus grand que I'unité. Ainsi, lorsque I'une des racines d'une
équation du second degré est une fraction continue immédiatement
périodique , plus grande que I'unité, lantre est nécessairement
comprise entre o et —1 , et réciprequement si 1'une d’elles est com-
prise entre o et —r, l'autre sera nécessairement positive et plus
grande que l'unité.

On peut prouver que, réciproquement , si 'une des deux raci-
nes d’une équation du second degré est positive, est pluns grande
que l'unité, et que l'antre soit comprise entre o et —1, ces ra-
cines seront exprimables en fractions continunes immédiatement pé-
riodiques. En effet, soit toujours 4 une fraction continue immé-
diatement périodique quelconque , positive et plus grande que uniié,
et B la fraction continue immédiatement périodique qu’on en dé
doit, en renversant la période, laquelle sera aussi, comme elle,
positive et plus grande que l'unité. La premicre des racines de la

3
proposée ne pourra étre de la forme x=p+—;1 , car alors , en

. 1
vertu de notre théoréme, la seconde devrait étre z—=a+ — =a—20 ;

1

—B
or, ¢—B ne saurait étre compris entre o et —i1 qu'autant que
la partie entiére de B serait dgale & p; auquel cas, la premiére
valeur serait immédiatement périodique. On ne pourrail avoir davan-

.oy I
tage , pour la premilre valeur de =z, r=p4— 1, ar alors
a4
’ . I
P'autre serait x=p 4 ou F¥—p---—— ; OF , pour que cette

B=—gq
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. . . 1
valeur fii comprise entre o et —r1, il faudrait d’abord que 5=

fiit égal 4 p plus une fraction ; il faudrait donc que B—yg fit plus
petit que lunité, ee qui exigerait que B fiat égal &4 ¢, plus une
fraction ; d’'olt Ion voit que ¢ et p devraient &tre respectivement
égaux aux deux premiers termes de la période qui répond & B
ou aux deux derniers de la période qui répond & A ; de sorte que,

contrairement & I’hypotheése, la valeur x=lu+-l—+ I serait 1m-

T4
médiatement périodique. On prouverait, par un raisonnement ana-
logue , que les périodes ne sauraient étre précédées d'un plus grand
nombre de termes n’en faisant pas partie.

Lors doac qu’on traitera une équation numérique par la méthode
de Lagrange , on sera sir qu’il n’y a point de racines périodiques
a espérer tant qu’on ne rencoutrera pas une transformée ayant au
moians une racine positive plas grande que Punité, et une autre coms
prise entre o et —1 ; et si, en eflet, la raciue que l'on poursuit
doit étre périodique, ce scra tout au plus & cette transformée que
les périodes commenceront,

Si P'une des racines d'une équation du second degré est non seu-
lement immédiatement périodique mais encore symétrique , c’est-&-
dire, si les termes de la période sont égaux A égale distance des
extrémes , on aura B=2A; de sorte que ces deux racines seront

1 i .
A et —= I'équation sera donc
Ax*—(A*—1)x—A4=—o0 .
Réciproquement , toute équation du second degré de la forme
ax’—bg—a==0 ,

aura ses racines & la fois immédiatement périodiques et symétri-
ques, En effet, en mettant tour a tour pour x l'infini et —1, on
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obtient des résultats positifs , tandis qu’en faisant z=1 et =0
on obtient des résultats négatifs ; d’ott I'on voit d’abord que cette
équation a une racine positive plus grande que l'unité et une ra~
cine négalive comprise entre 0 et —1 , et qu’ainsi ces racines sont
immédiatement périodiques ; de plus, cette éguation ne change pas

1 . . . .
en y changeant # en — — ; d’ou il suit que si 4 est une de ses

4

. I . .
racines l'autre sera — = e qu’ainsi, dans ce cas, B=A.

Appliquons ces généralités & 1'équation du second degré
32 wm162418=0 ;

on lui trouve d’abord une racine positive comprise entre 3 et 4;
en posant

I
r=3x-4 — ;
+50
on obtient la transformée
3y*em2y—3==0 ,
dont la forme nous apprend que les valeurs de y sont & la fois

immédiatement périodiques et syméiriques ; en effet, en posant,
tour & tour,

.’}"—:I‘l"i' ’ Z=2+:— ’ i-‘::l+';- )
on obtient les transformées
2z*—4z~—3==0 ,
312 —ft—2="0 ,

Sur—2u~3 =0 ,
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lidentité entre les équations en u et en y prouve que la valeur
positive de y est

T — — 4
Vs 2 + ;"+ :_ Y
e i L
I +n-::
sa valeur négative sera donc
! I
Y=E—T41 1
2 -_— r
' 1 - x
PRI

1 +u:n:

les deux wvaleurs de « seront donc

" — I

o 1 —
* - ! * 1 +'; _+._T .
I +u.o 1 +¢.hu

dont la derniére , en vertu de la formule connue

1 T
x=3+ — 1 x=3--.__-_-: I
1 1 — T

P_" —-p-—1+ L -

q'—‘l
devient
x"“‘l+ n + L 1
1 : 1 + . 1
.+._.. 1
I' I + ;“’,.*.. _I_. s t

T4l x

> =

1 +.nn=c (*)

(*) On trouve diverses recherches sur le méme sujet, dans le présent re-

cueil , tom, 1X, pag. 261, tom. XIV, pag. 324 et 337.
J. D. G.

Tom. XIX 41
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GROMETRIE DE SITUATION.

Théorémes sur les polaires successives ;

Par M. BosiLLier , professeur & T'dcole des arts et métiers de
Chéalons-sur-Marne.

ATV TV VARV VBV IVIA

SOIENT

M=o, M, =0, M, =0, .u. M,,—0, euis. M, —o0

les équations d’une soite de courbes. des m. ™, (m—1)""", (m—1*". ..
(m=—n)™, oo ni™ degrés, dont la premiere seule soit arbitraire,
et dont chacune soit, par rapport & celle qui la précéde immédia-
tement , considérée comwme directrice , la courde polaire d'un point
donné (a7/,y’); ces courbes sont ce que nous appelerons les po-
laires successives de ce point, par rapport a cette directrice, et

nous les désignerons sous les dénominations de 1.* , 2./, 3.°"

9 cesee
(72=—=n)"" , cneree R polaires du point (27, y/).
D’aprés un théoréme précédemment démontré ( pag. 106 ), nous
aurons
dM am
Ml':_“ mﬂf—-—ﬁ (x—x’)——d}— (:}/‘-—y’) ’

am, am,
M, =(m—1)M,— - (#—2')— —E}—— (r—y) »

N dnm, , dm,
My=(m—2)M,— = (z—2")— ar (y—y") »

¢ e & o @ P ee 5 e e s e 0+ o 0 8 s e * e
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dM,.. dM,.,
o @)= (r—y) -

M, =(m—n+1))M,,~— Ew

" A laide de cette suite d’équations , il nous sera facile, par des
diférentiations et substitutions snccessives d’obtenir tour a tour les
valeurs de M,, My, ... M,, en fonction de M, en égalant la der-
nitre & zéro, et posant , pour abréger,

102]3.0..10\u&=k !

nous trouverons, pour I'équation de la 2.“™ polaire du point (¢', y'),
par rapport a la directrice M=o,

4 m!

n!

e e

(m==)! ( dM  (2—2x") AdM’ (r—y"
(n=1)! ¢ dx 1 + dy H

o= {4 M (—an: | EM @2 G=y) , &M =y}
(n—2)! Z da2 1.2 dxdy I 1 dy= 1.2 )

a Com
—
® s & 3 a ¢ e 8 0 s 8 0 & ° 9 & O & & 3 0 8 ® & 0 % &+ 8 0O & e 6 @ a & » v @ s ©

IM (r=y")

- 1 { dee? n! Ex’“dy (n—1)! 1 +°""+ dy n! S

L 4+ (n=—m) ! d"BL (x—xh)" d*™M (xm—x!)mt (y—y)

Supposons que le point (27/,y/) étant indéterminé, on venille
le déterwminer de telle sorte que cette polaire passe par un point
donné (!, 7y, il fandra pour cela exprimer que ’équation ci-
dessus est satisfuite en changeant simultanément « et y en %/ et y//.
Changeant ensuile respectivement z/ et y/ en # et y, on trouvera
pour I'équstion du lieu du point (2, y/)
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™!
n!

(me==1)! { A (am—=x!’)
(n—n)! z da’ 1

-+

dmr (y..yu)}
dy’ 1

(m_g)! S d=M/ (x—x”)z dzn (x—2x"") 4(}’-']”) daM (y_.yll)a
(n~=2)! Z du// 1.2 dady? 1 1 dyua 1.2
+ . e - o o L] . ¢ 9 - o ® @ ® & o e 8 o & & @ . . : e & o : e o+ 0 0 o
(m—n)! 5 dnngr (x-x//)" dnpgr (x=x/ryr-s (7’—)’”) dn s
I { dxitn n! da/m-xdyt -(_n-—x)l 1 el gy

Si, présentement, on représente généralement par z, une fonction
homogeéne du £ degré en x et y, loute courbe du m. ™ de-
gré aura une équation de la forme

Zl°+u,+u,+.........+lln—|—..-.-....--—]—llm =0 .

Si T'on cherche les polaires successives de l'origine, par rapport &
cette courbe prise pour directrice, au moyen des considérations
exposées & la pag. 89 du précédent volume, on trouvera faci-
lement, pour 'équation de la (7—n)“" polaire ,

m! (m—1)! (m=—2) ! (m—n)!
i U0+ —(—’;:;‘)—"' ll,+ ’z;'::;)—' ll2+uuuu:+"—"-_l U, =0 .

En conséquence, pour obtenir I’équation de la (mz——n)* polaire
d’un point (2, y) , relativement & la directrice M=o, il faudra
d’abord transporter I'origine en ce point, en changeant respective-
ment dans M, z et y en x+a/ et y+y/, el développer ; puis
dans le développement multiplier respectivement les termes de 0,
1, 2. 2 dimensions par

%

()’") Il)n

n!

()
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(m=-1)! (m=—2)! (me=—p) |

’ (n—z)! 1

(ne=—i)!
et supprimer tous ceux de dimensions plus élevées; aprés quoi, il
faudra remplacer respectivement z et ¥ par x-=a"/ et y~—y//, afin
de retourner & lorigine primitive, Or, il est visible que I'équation
résultante ne sera autre chose que I'équation (P) ci-dessus. En in=
voquant donc le principe de dualité, on obtiendra les deux théo-

rémes que voici :

THEOREME I, i, par rap-
port a une méme directrice du
(p+q)™ degré, on détermine la
p ™ polaire d'un point P et la
q.“" polaire d'un point Q, et
gue l'un quelconque de ces deux
points ail été choisi sur la po-
laire de lautre , ce dernier point
se trouvera réciproquement sur
la polaire du premier (*).

THEOREME I. Si, par rap-
port & une méme directrice de
(p4q)™ classe, on détermine
la pie™ polaire d'une droitc P
et la q.™ polaire d'une droite
Q, et que lune quelconque de
ces deux droites ait été choisie
tangente a la polaire de l'autre ,
celte derniére droite se trouvera
réciproquement tangente & la po-

laire de la premiere.

Si on fait p—=m—1 et ¢g=1, on retombe sur le théoréme de
la pag. 157 du précédent volume, qui n’est ainsi qu’an cas trés-

partieulier de celui-ci.

Au moyen de ces deux théorémes, on pourra résoudre les denx

problémes que voici :
PROBLEME I, Trouver, sur

le plan d'une direcirice donnée

du w™ degré , un point dont la

PROBLEME I. Trouver , sur
le plan d'une dircctrice donnée
classe , une droite dont

ieme

de m,

(*) M. Plucker nous a adressé postérieurement , sans démonstration, un

théoreme tout a fait analegue.

J. D. G,
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n ™ polaire, relative & cette di-
rectrice , passe par deux points
donnés ?

Si, en effet, on détermine ,
par rapport & la directrice pro-
posée , les (m—n)“"* polaires des
deux points donnés, il résulte de
notre théoréme que les 2. po-
laires de leurs intersections, re-
latives a la méme directrice, pas-
seront par les deux points don~
nés. Et, comme les (m—n)em
polaices des deux points donnés
seront une et 'autre du 2. de-
gré, le probléme aura 2* solu-
tious.

POLAIRES

la n™ polaire , relative & cette
directrice , touche deux droites
données ?

Si, en effet , on détermine, pa#
rapport & la directrice proposée ,
les (m—n)*"~ polaires des deux
droites données , il résulte de 'no-
tre théoréme que les 2" polai-
res de leurs tangentes communes ,
relatives & la méme directrice,
toucheront les deux droites don-
nées. Et, comme les (m— n)*
polaires des deux droites données
seront l'une et lautre de n».*™
classe, le pro'bléme aura n* sg-
lutions,

En appliquant aux fonctions de trois. variables z, ¥, z les con-
sidérations. qui nous ont guidés dans ce qui- précéde, on parvien=
dra, sans antre peine que celle d’écrire des développemens, 4 dta~
blic les deux théorémes que voici :.

THEOREME 11. 8i, par rap-
port duneméme surface directrice
du (p+q)™ degré, on détermine
la p.™ polaire d'un pointP et la
q.*™ polaire d'un pornt Q , et que
lun quelconqgue de ces deux points
ait été choisi sur la polaire de
lTautre, ce dernier point se trou-
vera réciproquement sur la po-
laire du premier.

THEOREME II. i, par rap-
port & une méme surface direc~
trice de (pq)*™ classe , on dé-
termine la p.™* polaire d'un plan
P et la q* polaire d'un plan
Q, et que l'un quelconque de ces
deux pluns ait ¢ié chotsi tangent
& la polaire de lautre, ce der-
nier plan se trouvera récz'proz,we-;
ment tangent a la polaire du pre-
mier,
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Si Uon fait p=m—1 et g=1, on retombe sur le théoréme de
la pag. 164 du préeédent volume, qui n’est ainsi qu'un cas trés-

particulier de celui-ci.

Au moyen de ces deux théorémes, on pourra résoudre les deux

probléemes que voici :

PROBLEME II. Une surface
“directrice du w ™ degré étant
donnée, trouver , dans lespace ,
un point dont la n.=™ polaire ,
relative @ cette surface , passe par
irois points donnés?

Si, en effet, on détermine, par
. rapport & la surface directrice pro-
posée, les (m—n)*"* polaires des
trois points donunés, il résulte de
notre théoréme que les 2™ po-
laires de leurs intersections , re—
latives 4 la méme directrice, pas-
seront par les trois points donnds.
Et, comme les (m—r)“" polai-
res des trois points doanés seront
toutes trois du 2. degré, le pro-
bléme aura n° solutions,

PROBLEME II. Une surface
de w)™ classe étant donnée
trouver , dans l'espace, un plan
dont la nl*™ poluire , relative &
cetle surface, touche trots plans
donnés ? ‘

Si, en effet, on détermine , par
rapportd la surface directrice pro-
posée, les (m—n)“" polaires des
trois plans donnés, il résulte de
notre théoréme que les n.*" po-
laires de leurs plans tangens com-
muns , relatives & la méme direc-
trice , toucheront les trois plans
donnés. Et, comme les (m—n)m
polaires des trois plans donnés se-
rout toutes trois de n.™ classe ,
le probléme aura #* solutions,

Chilons, le 30 avril 1828,
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METEOROLOGIE.

Résumé des observations barométrigues , hygro-
métriques , thermométriques et magnétiques
faites & Montpellier , en 1828;

Par M. GErRcoNNE.

LES observations météorologiques que je publie ici peuvent étre con-
sidérées comme faisant suite & celles que j’ai publides & la pag. g du
présent volume ; elles ont, en effet, éié faites aux mémes heures,
avec les mémesinstrumens placés de la méwme manicre ; les observations
barométriques ont subi les mémes réductions, et les tableanx ont
exactement la méme forme : seulement, j’ai été assez heurenx pour
pouvoir mettre un peu plus d’assiduité dans celles-ci que dans les
précédentes ; tellement que , sur les 1464 observations de l'annéde,
je n'en ai omis que 34 seulement; savoir: c/ug de sept heures da
matin, guinze de midi, douze de cing heures du soir et deux
de dix. Les époques des observations omises sont d’ailleurs assez
distantes entre elles pour qu'il n’en résulte aucune erreur sensible
sur la moyenne de chacun des douze mois de l'anndée..
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§. I. BAROMETRE.

1.* Tableau des moyennes barométrigques.

1828, 7 Heures. Midi. 5 Heures. | 10 Heures. | Moyennes.

Janvier. 763,41 763,73 | 763,62 | 763,75 763,62
IFévrier. 756,88 | 755,66 | 755,40 | 755,98 | 755,98

Mars. 758,10 | 758,01 | 757,52 | 758,51 758,03
Avril, 757,54 | 736,50 | 756,57 | 757,07 756,97
Mai., 756,60 | 756,25 | 755,55 | 756,48 »56,22
Juin, 759,81 | 750,18 | 758,40 | 759,40 759,20
Juillet. ~56,3 756,30 | 754,97 | 756,24 755,96
Aotit, 798,43 | 757,89 | ~56,- 757,88 757,75

7
Septembre.] 759,55 | 759,63 | 758,88 | 75063 75¢,42
Octobre. 761,46 | 761,27 | 760,80 | 761,44 ~061,24

1

Novembre,| 7!

0,93 | 760,12 | 759,60 | 760,24 | 759.97
Décembre. | 703,88 | 763,49 | 763,47 | 763,56 | 763,60

8,46 | 759,18

ot

., = 1o} -
Moyennes. | 759,33 759,02 .

La moyenue barométrique & Montpellier , pour 'annde 1828, est
douc 758,10, au lien de 758,39 qu’elle avait été pour 1827.
Tom., X1X 42
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2.2 Tableau des mouvemens baroméiriques.

1828, Maxima. Moyennes. Minima. Oscillations, M
Janvier. =15,59 763,62 750,93 24,66
Février, n69,53 755,08 734,93 35,00
Mars, 66,28 =58,03 749,90 16,38
Avril, 766,63 256,97 744,54 22,09
Mai. 762,27 756,22 747,38 14,89
Juin, 763,05 759,20 753,31 9:74
Juillet. 262,49 755,06 749,43 13,06
Aout. 763,39 757,75 749.94 13,45
Septembre. 763,13 759,42 752,81 12,32
Octobre, 68,89 761,24 753,36 15,53
Novembre. 767,91 756,97 748,69 19,22
Décembre. 771,64 763,60 749,22 22,42
Maximum, 775,59 763,62 753,36 35,00
Moyenne. 266 9o =58, 10 n48,67 18,23
Minimuam, 762,27 255,66 n34,93 9,74

| Oscillations. 13,32 7,66 18,83 25,26
!
Ce tableau donue, pour le plus grand mazimum, 771,64
Et pour le plus petit minimum , 734,53

Dillérence ,

37,1k
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Te sommet de la colonne de mercure a donc parcouru dans le
tube une longueur de 37,11.

§. 1I. HYGROMETRE.

1.° Tabieau des moyennes hygrométriques.

1828, 7 Heures. Midi. 5 Heures, | 10 Heures. | Moyennes. |
Janvier, 83,7 83.5 83,4 83,9 83,6
Février. 79,5 78,9 79,0 79,0 70,1
Mars. 72,5 71,5 71,7 71,8 71,6
Avril, 76, 1 ~5,7 75,8 6,3 76,0

1 Mat, 74,0 73,3 n3,1 73,7 73,5
Juin, 60,7 Go,t 58,5 59,9 59,8

i Juillet. 67,1 65,2 65,3 66,4 66,0
f Aolt. 63,6 62,7 65,8 63,0 63,8
: Septembre | 80,2 79,3 8o,1 80,6 8o,
2 Qctobre. 82,8 82,6 82,3 82,7 82,6

il Novewbre.| 88,8 88,5 88,9 89,2 85,8 ﬂ

Décembre. | 85,9 85,3 85,4 85,7 85,6
4
Moyennes 76,2 75,6 25,8 76,0 79,9

On voit dounc qu’d Moutpeilier la moyenne hygrométrique, pour
Iannée 1828, a été 75,9, au lien de 71,8 qu’elie avait ¢ié en 1827.
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2.° Tableau des mouvemens hygrométrigues.

1828. Maxima, Moyennes. Minima. Oscillations.
Janvier. 88,5 83.6 7440 14,5
Février. 87,0 79.1 67,5 19.5
Mars, 82,5 71,6 56,5 26,0
Avril, 83, 76,0 65,0 18,5
Mai. 83,0 73,5 62,5 20,5
Juin, 73,0 59,8 46,0 27,0
Juillet, 79,5 66,0 50,0 29 5
Aotit. 74,0 63,8 50,0 24.0
Septembre. 90,0 8o,1 62,5 27,5
Qctobre, 89,0 82,6 71,0 18,0 I
Novembre. 97,0 88,8 70,0 18,0
Décembre. 94,5 85,6 80,5 14,0
Maximum, 7,0 88,8 80,5 29,5
Moyeunune. 85,1 73,9 63,7 21,4
Minimawn. 73,0 63,8 46,0 14,0
QOscillations, 24,0 25,0 34,5 15,5
Ce wbleau doune, poar ie p.uus grand maximuam , 97,0

Et pour le plus petit minimam , © 46 o
Difi€rence 51,0

Aivsi & Montpellier, pendant Pannée 1828, I'aiguille de I'hygro~

metre a parcouru , sur la graduation , 51 divisions.
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§. 1II. THERMOMETRE.

1.° Tableau des moyennes thermométrigues.

1828. | 7 Heures. Midi, 5 Heures. | 10 Heures.| Moyennes.
| !
Janvier. 6,98 10,65 9,48 6,75 8,46
Février, 6,86 10,90 10,22 7,93 3,88
Mars., 8,28 13,75 12,67 9,87 11,14
Avril. 11,97 16,94 16,05 12,72 14,42
Mal, 17,46 21,09 20,43 17,03 19,00
Juin, 21,21 25,91 25,23 21,12 23,37
Juillet, 22,05 26,60 25,82 22,36 24,36
Aotit. 20,97 25,55 24,35 21,53 23,22

Septembre,] 18,65 22,78 26,59 19,42 21,86

Octobre. 13,64 17,81 16,82 14,78 15,76

Novembre.; 10,77 14,40 13,55 11,91 12,66
Décembre. 6,50 10,43 9,17 7,14 8,34

Moycnnes, 13,84 18,07, 17,57 14,43 15,96

Ainsi, & Montpellier, la température moyenne de 'année 1828,

été 157,96, un peu supéricure a la moyenne d'octobre.
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2.° Tableau des mouvemens thermoméiriques.
1828. Maxima, Moyennes. Minima, | Oscillations.
Janvier, 14,70 8,46 3,15 11,05
Février. 16,50 8,88 —0,50 17,00
Mars. 21,00 11,14 1,80 19,20
Avril. 24,05 14,42 7,25 16,80
Mali. 26,55 19,00 12,00 14,55
Juin, 28,75 23,37 17,20 11,55
Juillet. 31,30 24,36 16,40 14,90
Aofit 28.90 23,22 17,85 11,05
Septembre. 25,50 21,85 14,35 10,65
Octobre. 22,19 15,-6 4,75 17,40
Novembre. | 17,75 12,66 4,80 12,95
Décembre. 14,00 8,54 1,80 12,20
Maximum, 31,30 24,36 17,85 19,20
Moyenne. 22,60 15,96 8,45 14,13
Minimum, 14,00 8,34 —0,50 10,65
Oscillations. 17,30 16,02 18,35 8,55

Ce deinier tableau donue, pour le pius graud-maximuwm, 31,30

Et pour le plus petit minimam , —0,50

Difiérence 31,80
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De sorte qu'a Montpellier, dans Pannde 1828 , le sommet de la

colonne de mercure a parcouru, dans le tube du thermométre,
un espace de 31°80.

§. 1V. INCLINAISON MAGNETIQUE.

Le 8 octobre 1828, jai observé l'inclinaison de I'aiguille ai-
manide, au moyen d'un appaceil construit par les fréres Jecker,
4 Paris ; en notant les inclinaisons , dans tous les azimuths, de dix
en dix degrés, lisant l'arc aux deux extrémités de laiguille, re-
tournant enstite cette aiguille, pour recommencer les mémes ob-
servations relativement i son autre face, et employant enfin la for-
male connue Tang *z=Tang.’x+4Tang.?8, j’ai obtenu ainsi dix-hait
moyennes , desquelles j’ai conclu que l'inclinaison de l'aiguille, pour
ce jour-la & Montpellier, était comprise entre 64°.21/ et 64°.26".

Jespére avoir, pour 1829, un instrument propre A mesurer la

déclinaison.

QUESTIONS PROPOSEES.
Théoréeme de géométrie.

LA perpendiculaire abaissée de I'an des sommets d’un paralléli-
pipéde quelconque, sur un plan quelcongne conduit par le sommet
opposé , est égale & la somme des perpendiculaires abaissées sur le
méme plan des trois sommets qui environnent ce deruiec; elle est
la moiiié seulement de la somme des perpendiculaires abaisséessur
ce plan des trois sommets restans , respeclivement opposés a ces
trois-la, -



3.6 QUESTIONS PROPOSKEES,

Probléme d’hydrostatique.

On suppose qu’il n’existe rien autre chose, dans P'univers, qu'une-
masse de fluide élastique dont les molécules s'attirent en raison
composde de la directe de la’ masse de la molécule attirante et de
I'inverse da carré de sa distance & la molécule atiirée ;on suppose
en outre que ce fluide se comprime proportionnellement aux pressions
qu'il éprouve; on suppose enfin que ses couches de densité uni-
forme sont sphériques et concentriques, et l'on demande suivant
quelle fonction de leur rayon doit varier la densité de ces couches
pour que toute la masse fluide soit en équilibre?

Probleme de dynamique.

Tout étant comme dans le probléme de la page 285, sice n’est
que le tube est exactement équilibré sur son axe et n’est sollicité &
se mouvoir que par le poids de la sphére introduite dans son in-
terieur; on demande de déterminer les circonstances du mouvement
tant de la sphére que de ce tube.
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GEOMETRIE ANALYTIQUE.

Démonstration de deux théorémes surleslignes
et surfaces du second ordre ;

Par M. BosiLLiER, professeur & I'Ecole des arts et métiers
de Chéilons-sur-Marne.

Vi M5 20 e YA Sl Via Mg Vg Vi Vo Sio V]

NOUS nous proposons de faire voir, dans ce qui va suivre , que
quatre théorémes déja_connus, dont deux relatifs aux lignes et les
deux autres aux surfaces du second ordre , ne sont que des cas par-

ticuliers de deux autres théorémes plus généraux qui paraissent
n'avoir point encore élé remarqués.

I. Soient deux ellipses concentriques dont les diamétres princi-
paux coincident , et supposons que leurs équations relatives a ces
deux droites soient

Azx*+By’=1 , Az’ +-Bly*=1 .

Soit un angle droit mobile, sur le plan de ces courbes, dont les
cOtés les touchent respectivement ; en désignant par («,), («/,f')
les points de contact variables, nous aurons d’abord

A+ B =1 , Ao *-BBr=1 . (1)

Les équations des deux c6tés de cet angle seront respeetivement
Tom. XIX ,n° 11, 1.°% mai 182q. 43
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Axr-Bpy=1, Atz By=1; (2)
et, parce que l'angle est droit, nous aurons en outre
AA'ax!+BB/Bf—=o0 ; @3)

et 'on voit que I'équation en z et y, résultant de I'élimination de
«, B,a’, ' entre ces cinq derniéres éguations, serait celle de la
courbe décrite par le sommet de 'angle mobile.

. Sotent posés

Aa=a , Bp=b, Alodd=a! , BP'=b , (4)
a*+b=r* , o' =r" ; (5)

les équations (1), (2), (3) deviendront ainsi

a? b2 T oa b2 '
atE=ts =t ©)
artly=1,  detby=r, ()

aa’+bb/—o . : ()

Les équations (5) et (8) pourront alors étre écrites comme 1l suit:

a\* b\ a \? b\ a) a’\ /b> b')

—_ ). —_ -1 — — =1 —_— — ~( — )=o0:
<r>‘l—<r) ’ ("(>+(T’/ ? (r (r’/+Kr (r/ ’(9)
or, il est connu qu’a trois pareilles relations, entre quatre quantités,

on peut, comme équivalentes, substituer les trois suivantes (*):

(*) Soient, en effet, deux systémes de coordonnées rectangulaires, de méme

origime, el sorent (x,y), (¢,u) un méme point considéré, tour & tour, dans
e s PV cvaets Q arre M 2 ot A

les deus systémes. Le carré de sa distance a Vorigine devant étre le méme
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a\' . /ay AN aN/ b aN VN
(F)+(E)= GY+(E)= ()E)H(E)(E)=e- 0o
Cela posé , les équations (7) peuvent étre écrites ainsi:
a b 1 o b 1
FErLyts s Trhoy=g

r

pour les deus systémes, on devra avoir, quel que soit ce point,
xiy2=tifur . M

Présentement les coordonnées x et y devant &tre des fonctions linéaires

det et u qui doivent s’évanouir en méme temps que ces derniéres, on
peut écrire

x=pttp'u , y=qt+q'u ; (2)
ce qui donnera, en substituant dans (1), transposant et développant,
(pr4g2—1)2+ (p'* g2 —1)ur+a(pp' g9 tu=0 ;
équation qui, par ce qu'elle doit étre identique, donne
pg=t,  pdgi=1,  pplqy'=o . @)

D'un autre c6té,si 'on prend, tour & tour, la somme des produits des

équations (2), d'abord par p et ¢, puis par p/ et ¢/, en ayant égard aux
relations (3), il viendra

t=pxtqy , u=p'xtgly ; )

substituant dans (1), transposant et développant, on aura
(pz+p/z_,)xz+(9z+qu_,)7»24_2(,,9_}_,,/,])_.”7_—_0 ;
équation qui, devant aussi étre identique , donne

prpr=1,  g4g=1t, pgtpg=o; ()

relations qui, conséquemment, doivent étre équivalentes aux relations (3),
Nous nous somwes déja appuyés sur cette équivalence a la pag. 15¢ du NIL®
volume du présent recueil.

J. D. G.
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prenant alors la somme de leurs carrés , ayant égard aux rela-
tions (10), il viendra simplement ’

1

R ;';+ (i1)

ria * ’ _

Supposons présentement que les deux ellipses aient les mémes
foyers , et conséquemment la méme excentricité , on aura ainsi

. ' . I . 1 T b ¢
—— — e— — ., ou bien —2-,:5—"5:(‘3)

A B~ 4 B 2

At~

et, par suite,

a’* brs a’? b2 1 1 I x a2 b2 1 1

—_— ———— — — —— ’? — —— /3 ___ _— — — /a .

AI+BI”‘A+B+(.¢/ A)a+<B/ 3)5“4+B+(B' B)7
c'est-a-dire (6) ,

Iz

al: 1 1 ‘lz
teE=+(5—5)";

ou bien encore
1 a’ \2 1 bl 2 1 r 1
GG ) =5+ (5-5)
mais on a aussi (6) .
1/ a2 1 b \? 1
z\7>.+ﬁ<7)=; ;

ajoutant ces deux équations membre & membre , et ayant égard aux
relations (10), il viendra

] 1 T T 1 T
——t e — —_ — —_—

A B r2 ria B B 5

vy 1 A .
cest-d-dire,, en réduisant et ayant égard A la relation (12),
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b ¢ I I I 1 I
rtm=zty=3+s>
au moyen de quoi I'dquation (11) deviendra

1 1 I 4
2 3 —_— = — .
aty=gtgz=5t3

ce qui permet d’écrire, pour plus de symétrie,

r=i{(5+5)+(T+s) o

équation d’un cercle qui a son centre a l'origine,

Si, au lieu de deux ellipses, on avait deux hyperboles, on
bien une ellipse et une hyperbole , il n’y aurait rien de changé
que les signes de B et de B/, ou de l'un d’eux seulement, ce
qui pourrait quelquefois réduire le cercle & un point, ou méme le
rendre imaginaire. On a donc ce théoréme: ‘

THEOREME 1. S un angle droit se meut sur un plan , de
telle sorte que les cotés touchent respectivement deux coniques bi-.
confocales , son sommet décrira la circonférence qui leur sera
concentrique. '

Le carré du rayon de ce cercle sera égal & la demi-somme des
carrés des cordes qui , dans les dewx coniques, joindront deux sowr-
mets conséculifs.

Soit e P'excentricité commune aux deux courbes, et soient res—
pectivement f et f’ les distances de leurs sommets & un méme
foyer, nous aurons

I I ) 4 a
.__..=g‘, ———— =g

A B ’
=R, =EH )

dolt nous conclurons

N
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1 vd
3 =fet)) = =f(2e4f") i

Si nous substituons ces valeurs dans les équations des deux cour-
bes, en y changeant x en z—e¢ pour transporter l'origine au foyer
commun négatif, elles deviendront

(x==e)?

(e+/)"

(x=—2e)2

r .
+ = e +f’(ze+f) =3

SCetf)

ou, en chassant les dénominateurs , développant, ordonnant et di-
visant par ¢

L (AL oot Lo (ot Y (4

i
(ot Y (4 Dot (42 Ymor2)
Avec les mémes données I'équation (13) du cercle décrit par le

sommet de l'angle deviendra

x:+ya fz+fl

—_—nr=

+2(/+S) .

e

Si I'on suppose ensuite que e devient infini, les éqnations des deux
courbes deviennent celles de deux paraboles donuées par les équa-
tions

y'=4f(z+f) , Y =4/"(z4S") ;
et celle du cercle devient ‘
z=—(f+S") ;

c’est-d-dire , celle d’'une perpendiculaire & I'axe commun des deux
courbes. -
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D’un autre cété, en égalant entre elles les valeurs de y*, l'é-
quation résaltante

4f (=+f)=4/(=+S") »

qui doit étre celle de la corde commune on de I'axe de symptose
des deux courbes, donne aussi la méme valeur pour z ; on a donc
ce théoreme : ‘

THEOREME II. Si un angle droit se meut sur un plan , de
telle sorte que ses c1és touchent respectivement deux paraboles de
méme axe et de méme foyer, son sommet décrira l'axze de symp-
tose des deux courbes.

Le théoréme I peut encore étre énoncé comme il suit :

THEOREME I, S deux coniques bi-conforales se meuvent ,
dans le plan d'un angle droit , de maniére & toucher respective—
_ment ses deux cbtés , leur centre commun décrira une circonférence
gui aura pour centre le sommet de cet angle.

On peut supposer , tour a tour, dans le théoréme I, 1.° que
les deux coniques se confondent en une seule ; 2.° que , sans qu’elles
se confondent, leurs foyers communs se confondent en un seul ;
on obtient ainsi ces deux théorémes connus, qui ne sont, comme
on le voit, que des cas particuliers de celui-1a ;

8¢ un angle droit se meut , sur un plan , de maniére & étre cons-
tarnment circonscril @ une méme conique , ou de maniére que ses
cotés touchent respectivement deux cercles concentrigues ; son som-—
‘met décrira une circonférence qui aura pour centre le centre de la
conigue ou le centre commun des deux cercles directeurs.

Son sommet décrira donc une ligne droite si la courbe est une
parabole.

Il est encore facile de conclure des tZéorémes I et II qu'une el-
lipse et une hyperbole de mémes jfoyers, ou bien deux paraboles
de méme axe et de méme Jfoyer , se coupent toujours orthogonale-
ment.
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I1. Soiens trois ellipsoides concentriques, dont les diamétres prin-
cipaux coincident ; et supposons que leurs équations, relatives &
ces trois droites , soient

Az’ 4By’ 4 Cz'=1, A2’ +By*4Cz=1, A"2’+By" 1 ("z*=1.

Soit un angle triddre tri-rectangle , mobile dans Pespace, dont les
faces touchent respectivement ces trois ellipsoides ; en désignant par

(a,8,9) , (& ,B,9") , (a,B"”,¥") les trois points de contact variables,
M \ : P
nous aurons d’abord

Aa*4Bpr4-Cypr=1, A’uf=+B',S”+C’oy’2=x , Al/,_r/3+BI/13ﬂz+CHy/lz-_—_-x . (D

Les équations des trois faces de cet angle triédre seront respecti-
Yement

Asx4Boy4Cyz=1 , A'#'x}BpytClylz=1 , AVa’x4B/!Blly4CloMz=1; (2}
et, parce que I'angle tricdre est tri-rectangle , nous aurons, en oulre,

ArAe wl B/Bu(s/@//_i_C/Cl/.ylyu_—_—_o s A'Aux4-B"Bgl B84 CHCoylly=0 ,

AA'aa’ +BB/ g4 CClyy/=0 , (3)
or, bien que ces équations me soient qu’au nombre de neuf seu-
lement, on peut néanmoins éhiminer eutre elles les neufs coordon-
nées des trois points de contact, et I'équation résultante, en z,y,

z, sera celle de la surface décrite dans l'espace par le sommet
de l'angle triédre mobile,
Soient posés

Ae—a , Bf=b, Co=—c, A'w/=a't, B'p'=}p , Cloyy=c', Alalt=q¥, Brpn=p?, Clyll=cli , 4
@b’ cr=rt, @bt =r" , @b =iy (5)

les équations (1), (2), (3) deviendront ainsi
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al’s 3ia o2

a? ba c? al? bl c/a
< +tg5+tec=r, ptrzteg=r. St o=

Al B o ?
az-by-fcz=1 , dat-bytez=1 , datbytfz=1, (7)

da"+bb +c"=0 , d'atb'b+c"c=0 , aa’4-bl/4-cc’'=0 ; (8)

les équations (5) et (8) pourront alars étre écrites comme il suit :

EV+E ()= (DE)+(E)+(E)(E )=,
J+( )= G +GEEHEI(E )=

(F)+(5)

(

()4 (E) =0 (DE)+EE+E(E) =

or, il est connu qu’d six pareilles relations entre neuf quantités,
on peut, comme équivalentes, substituer les suivantes (*):

(* Soient, en effet, deux systemes de coordonnées rectangulaires de méme
origine, et soient (®,y, z), (f,u, ) un méme point considéré, tour a
tour, dans. les deux systémes. Le carré dé sa distance a lorigine devant

étre le méme pour ces deux systémes, on devra avoir , quel que soit ce
point ,

ayrfzr=iadudfpr {1)
Présentement, les coordonnées x, y, z devant. étre des fonctions linéai-

res de f,u,¢ qui doivent s'évanounir en méme temps que ces dernicres, or
peut écrire

a=pttplutp'v , y=gtq'utq’v , z=rttrudriv ; (2)

¢e qui donnera en substituant dans (1), transposant et développant

Tom. XIX 44

b

J

(9)



(e )+(E)= 0 (BUHEAEHE)
(L+(Eye(E)= (GUE)+HEE(E)
()+(2)+(E)=. (D)) ()

7

/'\ 7N
R

\/‘ ~—r 7
I

r

(p* +q:+r:_—x)t!+g(plp'l+qlqll+r/rﬂjuv
F (g =D aQ p gyt =0
+ (p//: + ql/.‘+r'la._. 1 )91+2(ppl+qql+rﬂ)tu

.é.:quation qui, parce qu’elle doit dtre identiéuc, donne
prgdri=1 , pp4qlg"frirt=o0 , l
pla+qh+r/:=! , p”p+(]”9+r”f‘=0 ’

€
pritgtrt=1,  pp'qq'trr=o . S

- D’un autre cbié, si Pon prend, tour a tour, la_somme des produits res-
pectifs des équalions (2), d’abord par p,g, r, ensuite par p/, g/ s7, puis
enfin par p”, ¢/, r", en ayant égard aux relations (3), il viendra
t=px--qy4rz , u=p'x-{-q'y4r'z , v=p'x4-q"y¥r"z ; (4)
substituant dans (1), transposant et développant, on aura
(p’+p’*+p”’—!)¥’+2(7r+q’r’+q”f”)yz l
(949" g —=1)y2d2(rpt-rp'+ripMzx s ==o
+(r2+r12+r//:_.,)z:+3(pq+plq_l_+p//qu)xy ; "

€quation qui, devant aussi étre identigue, donne

(10)
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Cela posé, les éqnations (7) peuvent étre écrites ainsi:

a b c 1 a’ 2z c! 1 a” W ¢! 1
— e —yt - 2= — — L P — = — —_ Zm—
r + r y+ r r? r -+ ! r r? ,-// i oy TR

prenant alors la somme de leurs carrés , en ayant eoard aux relations
(10), il viendra simplement

x+y+z-~——+r“ prrli . (1)

Sapposons présentement que deux des sections principales des trois

ellipsoides aient les mémes foyers , €t, par suite, méme excentricité,
on aura all]Sl

— v w—

TR OB W

Ol -

pl+pl:+pll:__l » qr+qri+qllr1/=o ’
P +gi =1,  rprp'ripi=o, 5y

riridri=1 ,  pgp/q'tpTg’=0;

relations qui , conséquemment , doivent étre équivalentes avec les relations (3).
Nous nous somwmes déja appuyés ( Annales, tom. XII, pag. 163 ) sur cette
équivalence signalée, pour la premiére fois, par Lagrange dans sa Dlécani-
gue analytique , et dont M. Poisson a donné postériearement une démons-
tration fort élégante dans la Correspondence de M. Hachette ( tom. I, pag,
237 ).

J. D. G
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c'est-i-dire, que les troisi¢mes sections principales auront aussi la
méme excentricité, et, par suite, les mémes foyers. On tirera de la

1 1 I ) 4 1 1 1 . I 1 . 3 1 . (12)
7 A4 F BTcCc ¢’ a4 4 B B ¢ C'
au moyen de quoi on aura ,
al? b2 c’2 bz cl: b 4 b 1 ( ) ¢ 2
~ e s o . e _________ /3 —— ’z —_——— 0’
Z+Bf+u“ + +o+\ 7 +(B’ ) + c/”
a'l* b2

o> a2

b2 c/lz l:
TrEt =T+t H(F—2)"

=3 e G—g)es
c’est-a-dire (5), (6), (12),

a'z bz cl'a 't

— 4 — — =I P B r’?
alla b2 c/’? I 1

- —_—1 — ———— 7! .
gt e=+(g=g )

ou bien encore

A(r’>+ (r’)+ ( ) +(§ B
() (a5 )= +(4

Cc/ ?

r/(

mais on a aussi (6)

S5+ (L)) =

ajoutant ces trois équations membre & membre, en ayant égard aux
relations (10), il viendra
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x 1 } ¢ I I .
Z+E+E +ru+r/la+ + B ?

B/ cr

c’est-a-dire , en réduisant et ayant égard aux relations (12),

1
_+,-u ;/T___'I- +C’/_§’+B’/+_—:‘F/+ +

au moyen de quoi I'équation (11) deviendra

4

x’—]—y’-}-zz:;l B’+U——+B”+_ A/’+ +(;/’

ce qui permet d'écrire , pour plus de symétrie,

il (Gri )+ s+ e) (G g )

équation d’nne sphére qui a son centre & l'origine.
~Si, au lien de trois ellipsoides ¢ avait trois hyperboloides ,
ou bien deux ellipsoides avec une hyperboloide, ou encore deux
hyperboloides avec un ellipsoide , il n’en résulterait que de simples
changemens de sigunes dans quelqu'un des neuf coefficiens 4, B,
c, 4, B, C', A7, B”, C; le liea cherché serait donc tou-
jours une sphére, qui pourrait seulement se réduire quelquefois &
un point , ou méme devenir imaginaire. On a done ce théoréme :
THEOREME I. Si un angle triédre tri-rectangle se meut dans
lespace, de maniére que ses faces louchent respectivement trois sur-
Jaces du second ordre dont les sections principales soient bi-con-
Jocales , son sommet décrira une sphére qui leur sera concentrigue.

De 1d on conclura facilement cet autre théoréme :

THEOREME 11. Si un angle triddre tri-rectangle se meut dans

l'espace , de maniére que ses jfaces touchent respectivement trois
surjaces du second ordre dépourvues de centres, dont les sections

(13)
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paraboligues principales aient méme axe et méme foyer , son som-
met décrira un plan perpendiculaire ¢ leur axe commun.

Le théoréme I peut encore étre énoncé comme il suit:

THEOREME [II. Si irois surfaces du second ordre, invaria-
blement lices entre elles, et ayant leurs sections principales bi-
confocales , se meuvent dans [lespace , de maniére & toucher res-
peciivement les trois jfaces dun angle triédre tri-rectangle fixe ,
leur centre commun décrira une sphére ayant son centre au som-
met de lanrgle tricdre.

Si, dans les zhéorémes I et II, on suppose que deux des sur-
faces du second ordre se confondent, on obtiendra ces deus-ci:

THEOREME 1V. Si deux surfaces du second ordre ont leurs
sections principales bi-confocales, et qu'un angle triédre tri-rec-
tangle se meuve dans lespace, de telle sorte que deux de ses fa—
ces touchent constamment une de ées surfaces , tandis que la troi-
siéme touche constamment l'autre, le sommet de cet angle triédre
décrira une sphére concentrigue avee ces deux surfaces.

THEQREME V. Si deux surfaces du second ordre dépourvues
de ccentre ont méme axe et méme foyer, el qu'un angle triedre se
meuve dans Lespace , de telle sorte qae' deux de ses faces touchent
constamment une de ces surfaces , tandis que la troisiéme touche
eonstamment l’aulre ,» le sommet de cet angle triedre décrira un
plan perpendiculaire a laxe commun de ces deux surfaces.

On peut supposer,-tour & tour, dans le-théoréme I, 1.° que
les trois surfaces se confondent en une seule ; 2.° que , sans qu’el-
les se confondent ; les foyers communs de leurs -sections principa-
les se confondent en un seul, on obuem aimsi ce double théoréme
démontré par M. Poisson, dans la correspondance de M. Hachette
( tom, I, pag. 237), et qui n'est, comme on le voit, qu'un cas
particulier de notre théoréme général :

Si un angle triedre tri-rectangle se meut , dans lespace , de ma~
niére & étre constamment circonserit & une méme surface du se-
tond ordre, ou de maniére que ses faces touchent respectivement
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trois sphéres concentrigues , son sommet dicrira une sphére qui
aura pour centre lg centrc de la surface du second ordre ou le
centre commun des lrois sphéres directrices (*).

Son sommet décrira donc un plan, si la surface du second or-
dre est dépourvue de centre.

H est encore facile de conclure, de notre theorcme général , que
trois surfaces du second ordre a’(mt les sections principales sont
bi-confocales , se coupent deux & deux & angles droits.

{*) Dans le dernier numéro de la Correspondence de Bruxelles (‘tom, V',
Pog.
géomeétres , et denx d’entré eux .ount observé avec raison que,
ce cas pouvait ¢tre démounleé frés-simplement

32 ), le cas de trois-sphéres concentriques a €16 considéré par divers
sans faire
aucune dépeuse de calcul ,
par des considérations purement géométriques ; mais on peut dire plus en-
core, et il nous parait que c’est mdcounaitre tout a fait la nature du cercle
et celle de la sphiére, que de ne point admettre , sans démonstration , et
comme conséquences immédiates de leurs definitions , les propositions plia

Btuérales gue voici ;

L. 8¢ une droite d’une longueur inva.
rigble se meut syr un plan , de’ maniére
que ses deux exirémités soient constame
ment sur les circonférenoes de deux cer-
cles concentrigues , celte droile envelop~
pera, dans son mouvement , une troi-
sieme circonférence concentrigue qux
deux premigres.

1. 8¢ un Iriangie équilatéral se meut

dans I'espace , de maniére que ses som-

mets soient constamment sur trois sphé-
res conceniriques , ou de maniére que
ses cOtés touchent constamment ces trois
sphéres, le plan de ce triangle envelop-
pera , dans son mouvement , une qua-
trieme sphére concentrique aux trois au-
ires.

1. Si un.angle d'une grandeur inva-
riable se meut sur un plan , de ma-
nitre que ses deux cltés soient cons-
tamment tangens 4 deux cercles con-
centriques’y son sommet décrira , duns
son mouvement , la circonférence d’un
troisiéme cercle concentrique aux deurm
premiéres.

11. Si un angle triédre équilatéral se
meut dans Lespace, de maniére que ses
faces solent constamment tangentes a
trois sphéres concentrigues , ou de ma-
nig¢re gue ses aréles touchent constams
ment ces trois sphéres, le sommet de
cet angle tritdre décrira , dans son
mouvement , une quatriéme sphére con-
centrique qux trois aulres.

J. D, G,
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IIl. De ces divers théorémes on peut aisément, par la théorie
des polaires réciproques, conclure les suivans :

THEOREME I. Si un angle droit, mobile sur le plan de deux .
cercles qui se touchent , a constamment son sommet & lewr point
d'intersection , ld droite mobile qui joindra les points de contact res-
pectifs des deux cotés de cet angle avec les deux cercles, passera
constamment par leur autre centre de similitude ou d'homologie. -

THEOREME 11. Si un angle triédre tri-rectangle , mobile dans
Pespase, a constamment son sommel au point de contact de trois
sphéres, le plan mobile qui passera par les points ot les irots
arétes de cet angle triédre percent respectivement ces sphéres, pas-
sera constamment par un méme point fixe de la droite qui joint
beurs centres.

THEOREME III. Si un angle droit , mobile sur le plan de
deux coniques fixes, a son sommel en un point fize de ceplan ,
et que ce point soit tellement situé que, dans quatre des situa-
tions de langle mobile, les droites qui joindront les points d'in-
tersection respectifs de ses cités avec les deux coniques se confon-
dent avec leurs quatre tangentes communes , cette droite , dans tou-
tes ses positions , cetie droite mobile enveloppera une troisiéme co--
nigue ayant pour foyer le sommet. de l'angle mobile.

THEOREME IV. 8i un angle iriédre tri-rectangle, mobile dans
Pespace , a son sommet en un point fixze, et que,dans huit- de
ses positions , en conduisant des plans par les trois points ou ses.
arétes percent respectivement irois surfaces fixes du second ordre |
ces plans coincident avec les huit plans tangens communs & ces
trois surfaces , dans toutes les autres situations de langle triédre ,
le plan mobile enveloppera une surface de révolution du second
ordre , ayant pour foyer le sommet fixe de cet angle triddre.

Ou peat consulter, sur la démonstration de ces divers théoré-
mes , un article inséré a la pag, 185 du précédent volume des
Annales.

Nous terminerons par un théoréme assez remarquable sur les co-
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coniques bi-confocales; ce théoréme consiste en ce que trois coni-
ques bi-confocales étant données , si un iriangle mobile et varia-
ble de forme est constamment circonscrit a lune delles , de telle
sorte que deux de ses sommets décrivent les deux autres, son troi-
siéme sommel décrira une quatriéme conique bi-conjfocale avec les
trois premiéres.

Ce théoréme résulte de ce que 1.° en placant le centre du cer-
cle directenr & I'un des foyers , les trois premieéres coniques se trans-
forment en trois cercles ayant un axe de symptose commun; 2.° trois
cercles tracds sur un méme plan, ayant un axe de symptose com-
mun, si I'on inscrit & 'un d’eux un triangle mobile et variable
de forme, dont deux cbtés enveloppent respectivement les deux an-
tres , son troisiéme cOté enveloppera un quatriéme cercle ayant un
axe de sywptose commun avec les trois premiers ( PONCELrT, Pro-
priétés projectives , pag. 323 ).

Chélons-sur-Marne, le 10 novembre 1828.

GIOMETRIE DE SITUATION.
Sur le théoréme d Euler relatif aux polyédires ;

Par M. GErRc 0o N NE.

ARV VRV VIA WV

ON a vu dans le IIL™¢ volume du présent recueil ( pag. 169 )
que ce n’est quaprés des tentatives réitérées qu'Euler est parvenu &
établir , d'une maniére & la fois compléte et générale, son coricux
théoréme sur la relation constante entre le nombre des faces, ce--

lui des sommets et celui des arétes d’un polyédre quelcongue. On
Tom. XIX 45
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sait que, dans ces derniers temps, M. Cauchy a démontré, d’une
mani¢re beaucoup plus simple, un autre théoréme dont celui d’Eu-
ler w’est qu'un cas particalier.

En suivant une marche un peu différente, M. le docteur J. A.
Gruner , de Torgau, dans le IL™® volume du précieux recueil de
M. Crelle ( pag. 367), est parvenu & démontrer le théoréme d’Eu-
ler d’'une manié¢re plus simple encore, et, en suivant la marche
tracée par l'auteur, on peut obtenir une démonstration non moins
simple du théoréme de M. Cauchy, et ramener ainsi toute cette
théorie & étre racoutée, pour ainsi dire, dans une promenade, a
quelqu’on méme qui n'aurait aucune notion de géométrie, ainsi
que nous allons le faire voir.

Remarquons d’abord que, si s est le nombre des sommets d’un
polygone ouvert, s-1 sera le nombre de ses cotés; c’est-a-dire,
que le nombre des cbtés d'un polygone ouvert surpasse constam—
ment dune uniié le nombre des sommets de ce polygone.

Soit présentement un systéme non interrompu, on, en d’aulres ter-
mes , nn réseau de polygones contigus les uns aux autres et for-
mant, par leur ensemble, un polygone unique , convexe ou non.
Soient £ le nombre des figures partielles composant ce polygone
total , § le nombre des points qui leur servent de sommets et A
le nombre des droites qui leur servent de cités,

Concevons qu’on enléve un quelconque des polygones extérieurs
sans toucher ancunement anx autres; ceux-ci formeront un non-
veau réseau. Désignons par /7 le nombre des figures qui compo-
sent ce dernier, par §/ le nombre des points qui lui servent de
sommet et par 4’ le nombre des droites qui lui servent de cotés.

Il est évident que, pour passer da premier résean au second ,
ou n'aura eu autre chose & faire que de supprimer dans celui-la
un certain poiygone ouvert, et, qu'en représentant par s le nombre
de ses sommels, on aura

Fl=F—1 ,
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§'=8—s ,

= Sy . ;

d’olt on conclut sur-le-champ
P4 §S'—Al=F45—d ;

ainsi, en supprimant un des polygones extérieurs, le nombre des
polygones, augmenté du nombre des points servant de sommets et
diminué du nombre de droites servant de c61és, demeurera cons-
tant; il en sera donc de méme si l'on enléve un second poly-
gone extérieur , puis un .troisiéme, et ainsi de suite, jusqu’d ce
quon ait enfin amené le réseau 3 se réduire & un polygone uni-

que.
Mais, dans ce dernier cas, on aura évidemment

FdS—A=1 ;

donc , cette relation aura également lieu quel que puisse étre le
nombre des polygones qui composeront le résean, c’est-a-dire que,
dans un réseau de polygones contigus les uns aux aulres ,le nom-
bre des polygones , augmenté du nombre des sommets , surpasse cons-
tamment d'une unité le nombre des droites. Clest le premier des
deux théorémes de M. Cauchy.

La forme de la démonstration de ce théoréme prouve évidem-
ment qu’il est applicable aux polygones plans, carvilignes et mix-
tilignes, comme aux polygones plans rectilignes, pourvu que I'on
admette qu’aucun des premiers- n’a moins de trois cdtés, et il n’est
pas moins évident qu’il serait encore vrai, sous la méme restric-
tion , pour un réseau de polygones curvilignes tracés sur une sur-
face courbe quelconque.

Eufin, il sera vrai aussi pour un sysime de polygones recti-
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lignes tel que deux polygones consécutifs pourraient n’étre pas si-
taés dans un méme plan ; c’est-a-dire , en d'autres termes, pour
un polyédre ouvert; de sorte qu’en représentant par f le nombre
des faces, par s le nombre des sommets et par @ le nombre des
arétes dun tel polyédre, nous devrons avoir

JHs—a=1;

c’est-A-dire que, dans tout polyédre ouvert, le nombre des faces,
augmenté du nombre des sommets , surpasse constarnment d'une unité
le nomébre des arétes.

Remarquons que la méme relation subsisterait encore , lors méme
quon voudrait faire abstraction tant des sommets que des arétes
extérieares du polyédre ouvert, puisque les uns et les autres étanten
mémenombre, la valeur de /—2 n’en serait aucunement affectée; ainsi
dans tout polyidre ouvert, le nombre des faces, augmenté du nom-
bre des arétes intérieures , surpasse constamment d'une unité le nom-
bre des sommets intérieurs.

Si Ton enléve une quelconque des faces d’un polyédre fermé
quelconque, il deviendra un polyédre ouvert dans lequel le nom-
bre des faces sera moindre d’'une unité , tandis que le nombre des
sommets et celui des arétes demeurcra le méme si donc F, §,
A représentent respectivement le nombre des faces , celui des som-
mets et celui des arétes du polyédre fermé, nous devrons avoir (1)

(F—1)-}-S—d=1 ;
d’olt
FA-S—=A4-2 ;
cest-d-dire que , dans tout polyédre fermé , le nombre des faces,
augricnté du nombre des sommets, surpasse constamment de deux

unziés le nombre des arétes. C'est le théoreme d'Euler.
Seit présentewment un systémenon interrempu ,ou, en d’autres termes,
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un réseau de polyédres contigus les uns aux auotres et formant, par
leur ensemble, un polyédre unique , convexe ou non. Soient P le
nombre de ces polyeédres, F le nombre des plans leur servant de
Sfaces, § le nombre des points leur servant de sommers et enfin A
le nombre des droites leur servant d’arétes.

Concevons qu’on enléve un quelconque des polycdres extérieurs,
sans toucher aucunement anx aulres; ceux-ci formieront un nou-
vean réseau. Désignons par P’ le nombre des polyédres de ce der-
nier réscan, par £ le nombre des plans leur servant de faces, par
§/ le nombre des points leur servant de sommets et par A’ le nom-
bre des droites leur servant d'arétes.

H est évident que , pour passer du premier réseau au second ,
on n'aura autre chose A faire que de supprimer dans celui-la un
certain polyedre ouvert, et qu’en représentant par f le nombre de
ses faces, par s le nombre de ses sommets intérieurs et par a le
nombre de ses arétes intérieures , on aura, comme nous l'avons
prouvé plas haat,

JHs—a=1 ; (1)

7

mais on aura aussi, d'un autre cété,

P'=P—1 ,
F=F—f,

§'=S—s ,

A'=A—a ;
d'ott on counclura sur-le-champ , en ayant égard & la relation (1),
Fr 3-8 — A — P/ =F+48§—A—P ;

ainsi, en supprimant un des polyédres extérieurs, le nombre des
faces , plus le nombre des somimets moins le nombre des arétes,
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moins encore le nombre des polyédres, demeurera constant; il en
sera donc encore de méme si J'on enléve un second polyédre ex-
térieur , puis un troisiéme , et ainsi de suite, jusqu'a ce qu’on ait
enfin amené Je résean & se réduire i un polyédre unique.

Mais, comme alors, en vertu du théoréme d’Euler, on aura

F4S—A=2,
et comme d’ailleurs on aura P=1, on pourra écrire
F4-8—A—P—=1 ;
donc cette relation ou son équivalente
F4+S=A4+P+1 ,

aura également lien, quel que soit le nombre des polyédres dont
le réseau sera composé; c'est-a-dire que, dans un réscau de po-
lyedres contigus les uns aux autres , le nombre des faces , augmenté
du nombre des sommets, surpasse constamment d'une unité le nom-
bre des arétes augmenté du nombre des polyédres. Gest le second
théoréme de M. Cauchy, que M. Gruner n’avait pas démontré.

En rapprochant ce qui précéde des laborieuses recherches d Euler ,
surleméme sujet, on se trouve ramen¢,comme dans tant d’autres
cas, a cette réflexion, savoir: quil est bien rare qu’une théorie
sorte sous sa forme la plus simple des mains de son premier au-
tear. Nous pensons qu'on sert peut-étre plus encore la ccience en
simplifiant , de la sorte, des théories déja connues, qu'en l'enri-
chissant de ihdories nouvelles , et clest 13 un sujet auquel on ne
saurait s'appliquer avec trop de soin.

On peut voir & la pag. 157 da XV.m® yolume du présent re-
cueil, les nombreuses et piquantes conséquences qui résultent de
ce théoréme.
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Solution du probléme de statique énoncé a la

pag. 283 du XVIIL™® yolume des Annales

Par un AsonnE. (%)
Py ¥ Vi VA Vo Vo Y2 % A Vo Vi Vi Mo T 23

P BOBLIME. De guelle maniére doit éire posé wun  fil unifor-
mément pesant , dunz longueur donnée, parfaitement flexible et
inextensible , sur deux tringles fixes, rectilignes, horizontales et
paralléles , d'un diamétre infiniment petit , n'exer¢ant sur ce fil
aucnn frottement , pour s'y tenir en équilibre P Quelle est en outre
la moindre longueur de ce fil , qui puisse permetire ['équilibre.

1. Considirations préliminaires. Avant d'attaquer celte question
par le calcal, examinons d’abord ce que les notions les plus élé-
mentaires de la statique wous permettent de découvrir sur le nom-
bre et la nature des solations dout elle peut étre susceptible. Cette
attention préliminaire nous parait ici d’autant plus convenable que,
géndralemsent parlant, le probléme ne peat étre résolu algébrique-
ment que par les séries.

La premiére remarqne qui s'offre & Desprit, c’est que I'équilibre
ne pourra subsister quantant que le f{il, abandouné & lui-méme,
se trouvera conteau , en totalité, dans un plan vertical perpendi-
culaire & la direction commune des deux tringles, dont la résis-

(*) M. Timmermans s'est aussi occupé de ce probléme,
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tance se réduira ainsi 4 celle de deux points fixes ou de deux
anneanx infiniment petits, dans lesquels ce fil se trouverait engagé,

Ces points fixes diviseront la longueur totale du fil en trois par-
ties , dout U'intermddiwire affectera la courbure d’une chainette uni-
formément pesante , tandis que les deux extrémes, pendant vertica-
lement, feront équilibre par leurs poids, aux tensions qui s’exer-
ceront aux deux extrémités de l'antre partie.

Supposons , en premier lieu, que les longueurs des deux parties
extrémes soient, 'ane et l'antre, infivies; alors leurs poids et, par
suite , les teusions aux deux extrémités de la partie intermédiaire
étant également infinis, cette partie sera teudne en ligne droite;
elic aura la moindre longueur qu’elle puisse avoir.

Si les longueurs des deax parties extrémes , sans étre infinies ,
sont néanmoins trés-grande par rapport d celle de la partie inter-
mddiaire,, tout se passera encore ¢ peu prés de la méme maniére,
Il arrivera sealement que cette partie intermédiaire affectera une
faible courbure.

Si alors on tente de diminuer un peu cette courbure an pro-
fit des longueurs des parties extrémes, comme alors le poids de
ces parties ne sera pas augmenté eu proportion de laccroissemcnt
de tension aux deux extrémités de l'antre, cette tension deviendra
prépondérante, et laction qu’elle exercera sur les parties estrémes
ramenera bientét le sysieme dans U'état d’équilibre ol il se trou-
vait d’abord.

Que si, au contraire, on tente d’augmenter un peu la courbare
de la partie intermédinire , aux dipeus de celles des parties ex-
trémes , laction de celles-ci ne se tronvant pas diminuée en pro-
portion du décroissement de teasion aux deux extrémités de l'au-
tre, leur action sur celle-ci deviendra prépondérante et tendra a

A

son tour & ramener le systéme dans sa situation d’équilibre,

Cet équilibre du systéme sera donc tel que, dans quelgque sens
quon tente de l'en écarter un peu, il tendra constamment a y re-
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venir ; c’est-d-dire que ce sysiéme se trouvera dans une situation
d’équilibre stable.

Si I'on supposait, an contraire, les longuenrs des parties extré-
mes nulles, ou du moins trés-petites , par rapport a celle de la
partie intermédiaire , on congoit que l'équilibre ne pourrait avoir
lieu , et que laction prépondérante des tensions, aux extrémités de
cette partie, tendrait & faire glisser ces parties extrémes sur les points
fixes, et & faire enti¢rement tomber le fil.

Entre les deux états extrémes que nouns venons de considérer ,
on en concoit un ot le poids des parties extrémes v'aura esacte—
ment que laction strictensent nécessaire pour contre-balancer Ia fen-
ston aux deux extrémités de la partie iotermédiaire, et Pempecher
d'entraluer ces parties extrémes en les faisant glisser sur les appuis.

Si donc, dans cet-diat de choses, on tente d’angmeater un pea
la longueur de la partie intermidiaire , aux dépens de celles des
parties extrémes , laction de celles-ci cessaut dés lors de lutter efli-
cacement countre les teusions aux extrémités de l'autre, ces tensions
deviendront préponddrantes , et le fil sera entraiué de dessus les
appuis , comme nous le disions tont-a-l'heure.

Que si, aun contraire , on tente de diminuer un peu la longuneur
de la partie intermddiaire , au profit de cclles des deux autres, ce
sera l'action de celles-ci qui deviendra a son tonr prépondérante ,
et qui fera retourner le systeme vers la sitnation d'équilibre sta-
ble que nous avions considéré en premier lien, et dans laguclle
il finira par se fixer.

Voild donc un autre état d'équilibre dont lesystéme doit tendre
constamment & Pécarter davastage , dans quelque sens qu’on I'en
écarte un peun ; c’est donc une situation d'éguilibre insiable.

On congoit, au surplas, que wvoins le fil aura de longnear,
pourvu toutefois qu'il en ait suflisamment pour que I'égnilibre puisse
éure établi, et plus aussi ces deux sitnations d'équilibre stable et
instable devront étre voisines 'ane de lautre. 11 devra done y avoir
telle longnear de fil pour laquelle ces deux situations déquilibre

Tom. XIX 45



34a QUESTIONS

se confondront en une seule, et cette longneur sera évidemment
la moindre pour laquelle I'équilibre puisse étre établi. Cette sitna-
tion unique sera d’uilleurs telle que, si I'on tente de diminuer un
peu la longueur de la partie intermédiaire du fil, an profit de
celle des parties extrémes, le systtme tendra & revenir dans la
situation qu’on l’avait contraint d’abandonner ; tandis que si, au
contraire , on tente d’allonger cette partie, aux dépens des deux an-
tres, elle tendra & s'allonger davantage encore, jusqu’a ce que le
fil échappe entierement aux appuis. Ce sera donc la une situation
d'équilibre mixte.

Toutes ces diverses considérations peuvent, au surplus, étre lit-
téralement appliquées & une piéce d’étoffe homogéne, d’une lar-
geur constante, que l'on voudrait soutenir sur deux batons rectilignes,
fixés horizontalement dans des directions paralleles. On peut , en
eflet, considérer cette piéce d’étoffe comme une suite de chainet-
tes uniformément pesantes, posées les unes & cotés des autres, dans
des plans verticaux paralléles.

II. Equation de la chainette. Rapportons une chainette, uniformé-
mement pesante, & la tangente et a la normale en son point le plus
bas , prises respectivement pouar axes des x et des y. Soit pris pour
unité de poids ce que peserait une portion de cette chainette égale
en étendue & Vunité de longueur; si alors s exprime la longuear
de l'arc de courbe compris depuis 'origine jusqu’a un quelconque
(x,y) de ses points, cette lettre représentera aussi le poids de cet
arc; et si z et ¢ expriment respectivement les tensions qui ont liea
4 lorigine et an point (x, ¥ ), ces lettres exprimeront aussi les
longueurs des portions de la méme chaluette dont les poids pour-
raient faire équilibre & ces mémes tensions.

Or, on sait, par les premiers principes de la statique , que la
tension & chacune des extrémités d’une chainette , est a son poids
comme le sinus de langle que fait avec la verticale la tangente &
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son autre extrémité, est au sinus de I'angle des tangentes aux deux

extrémités, On a donc cette double équation
s z

dy dx =¥
ds ds

d'olt on conclut ces deux-ci,

d

d
z—d—:);: =s , (1) p=—z —

de ' (g)

En différentiant la premiére , il vient

dzy ds T Ay N
—_—— /4
AT V‘ l ( dx) ’

z <d”’ =dr ;
Vor(2)

d’ou, en intégrant,

d
Z[Joaza—-ﬁ—VI_l_( Y ;

ou bien

343

. . dy
nous n’ajoutons point de constante, parce que x et —— dowentétre

nuls en méme temps.
Cette intégrale revient &
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- . 4 K a
équation qui , rendue rationnelle et résolue par rapport o donne
x
dy z .z
—=e °~ —e ; 3
dx 4 ( )
donc
x x

2%:2y1+(%)3:32+3 ‘5 )

ce qui donne, en intégrant,

< &®

2s=z(a T 7 > . (5)

Ici encore mnous n’ajoutons point de constante, parce que z et s

doivent étre nuls en méme temps,
En substituant dans I'équation (2) la valeur de T,donne’epar
x

Iéquation (4), elle devient
x

e

2p—=z(e * e z) . (6)

L Y

En intégrant ensuite I'équation (3), il vient
x x

2(y+]f):z(e g de * ) ,

olt  estla constante arbitraire. Remarquant alors que # et y doi-
4
veul éire nuls en méme temps, on trouve =z, et, par suite,
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a(y+4z)==z (e e * ) . (7))

Au moyen des équations (5), (6), (7), un point (x,y ) étant
donné sur le plan des axes, on déterminera quelle longueur s doit
avoir la chainette tendue de l'origine & ce point , pour que sa
tangente , au premier de ces deux points , se confonde avec I'axe des
x, supposé horizontal , et on délerminera, en outre, ses tensions
z et ¢ en ces deux points, c’est-d-dire les longueurs qu’il fandrait
prendre sur un fil uniformément pesant de la méme nature, pour
que leurs poids fissent équilibre & ces mémes tensions.

Mais, par une combinaison convenable de ces trois équations, on
peut les remplacer par d’autres plus simples; et d’abord la com-
paraison des équations (6) et (7) donne sur-le-champ

b=ty . ®)

#n prenant, tour & tour, la demi-somme et la demi-différence
des équations (5) et (6), il vient

psmze 0)
&

Oy

LI

P § T2 2, 5

7 . rd . b ’
équations dont la seconde équivaut & la premiére, pourvu qu’on
admette que s change de sigue avec . En les multipliant mem-

bre a membre, il viendra

A —T (10)

Ca pourra donc remplacer les équations (5), (6), (7) par les équa-
ions (8),(9), (10), dont nne seule est transcendaate.
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Si I’on veut transporter l'origine au point quelconque (—¢, —u),
auquel cas ¢ et u seront les coordonnées du point le plus bas de
la courbe , il ne s’agira que de changer respectivement & et y en
t+x et utv, ce qui donnera

v=z+uty , (1)
e

vts=.ze * (12)

Pra—msi=2z* . (i3)

L. Solution du probléme. Soit présentement ac la longueur to-
tale du fil en équilibre sur les deux points fises (@, 5), (&',0")
que , pour fixer les idées, nous supposons situés I’un et l'antre du
coté positif du point le plus bas (#,z), Alors ¢, ¢/ étant les lon-
gueurs des deux parties extrémes, pendant verticalement, et s, s/ les
longueurs de la chainette comptées depuis le point (7, z) situé
sur son prolongement, jusqu’aux poiuts (@,4), (a’,4’), lalon-
gueur de la partie intermédiaire sera s—s/; de sorte qu’on aura

pot-p/4-(s—s)=2¢ (14)
On aura, en outre, en vertu des équations (11), (12) , (13),
y=z-4u-t+b , (15) v =z4u+tb , (18)
t4a t4a!
v+s=z.e—;—, (16) vts'=z.e * , (19)
prems’=2z2 (v7) plr—sit=2z" 3 (20)

équations au moyen desquelles on déterminera les sept inconnues #,
u,v,v,s,s ,z,lorsque les grandears @ ,4’', 4, &', ¢ seront don-
nées.

Comme les inconnues ¢ et z sont étrangéres au probléme qui
nous occupe, il convient de les éliminer d'abord. Il suffit pour cela
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de retrancher I'équation (18) de I'équation (15), et de diviser en--
suite 'équation (16) par I'équation (19g); il vient ainsi

p—b=p/—b' , (21)
a=~a'

pof-s _ z

e = . (22)

de sorie qu’oxn aura, pour déterminer », ¢, s, s/, z les cing équa-
tions (14), (17) , (20) 5 (21), (22).

L’écuation (21) montre que, dans le cas d’équilibre, les parties
extrémes du fil, pendant verticalement , doivent se terminer sur la
méme droite horizontale (*).

En égalant les valeurs de z’, données par les équations (17) et
(20), on en conclut :

P §% s (23)

dquation qui exprime ce théoréme : si I’on construit un triangle dont
la Lase soit égale a la longueur de la partie intermddiaire, cour-
bée en chainetie, du fil en équilibre, et dont les deux autres c6-
tés soient éganx en longueur aux parties extrémes de ce fil, pen-
dant verticalement; la perpendiculaire abaissée du sommet du trian-
gle, sur la direction de cette base, la divisera en deux segmens res-
pectivement égaux aux longueurs des deux segmens de la partie in-
termédiaire , comptés depuis son point le plus bas.

Pour sirzplifier I= probléme, supposons que les deux points fixes
scient situés sur la méme horizontale , & la distance 24 'uu de Vautre ;
en aura aingi &'=5 et e—a'=2d, on en conclura, par I'équation (21),

(*) On conclura facilement de la que, quel que puisse &tre le nombre des
points d’appui, et , par suite, le nombre des parlies intermddiaires ploydes
en chainettes, toujours les parties extrémes, pendant verticalement, devront ,
dans le cas d’équilibre , se terminer sur la méme horizontale.
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¢l=p, et par I'équation (22), s==~—s’; les équations (14), (17),
(20) et (22) se reduiront alors a :
f"+5=c ’ (24)
5= (p-5) (1—s5)=C(v—15)=2" , (25)
2d

e ¢ (26)

2
P —s

mettant dans cette derniére , pour ¢-4-s et v—s , leurs valeurs don-
nées par les deux précedentes, elle deviendra

hll
ll
it
N
v

d’olt, par l'extraction de la racine quarrée,

d

c=z.e % . (2 7)

Par le développement en fraction continue , ou par tout autre moyen
analogue , on tirera de cette derniére, dans chaque cas particulier,
la valeur de z, et on ea coaclura ensuite celles de ¢ et s, au
moyen des éqnations (24) et (25).

Si Von veut savoir, pour ce cas particulier, quel est le fil le
plus court qui puisse résoudre le probléme, il fandra égaler i zéro
la différenticlle de la valeur de ¢, prise par rapport & z, ce qui
donnera

l
o=(z—d)e® ;

I'égalité & zéro du second facteur répondant au fil le plus long ;
nous aurons simplement z=d, d'olt c=e.d; les équations (24) et
€21 2t

d.

d, et s—
2e 2€

(25) doaneront ensuite p=

Lyon, le 18 avril 1828.
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GEGMETRIE DES COURBES.
Mémoire sur I'hyperbole équilatére (*);

Par M. BosiLLier, professeur & I'Ecole des arts et métiers
de Chalons-sur-Marne.

ANV RAN VNV

ON sait que deux diamétres conjugués quelconques d’une hyper-
bole équilatére font avec son axe transverse deux angles aigus com-
plément I'un de lautre , et que conséquemment les deux asymp-
totes divisent en deux parties égales les quatre angles formds par
ces deux diamétres; d’ol il suit encore que langle de deux quci-
conques des diamétres d’une telle hyperbole est le méme que ce-
lui de leurs conjugués.

Donc aussi, langle de deux drottes , tracées arbitrairement sur le
plan d'une lyperbole équilatére , est le méme que celui des denx
diamétres de la courbe qui en contiennent les péles respectifs. Aiusi
tout ce qui a été démontré pour le cas d’une directrice circulaire
peut se dire également du cas ou cette directrice est une hyper-
bole équilatére (**) ; on pourra dire, en particalier, gue la po-
laire d'un cercle, par rapport & une hvperbole équilatére, est une
conique qui a pour Joyer le centre de cette courbe et pour direc-
trice la polaire du centre du cercle; si donc ce cercle est concen-

(*) Voy., sur le méme sujet, la pag. 205 du XI,m® yolume du présent recueil.
(**) Voy. Annales , tom. XVIII, pag. 185.

' J. D. G.
Tom, XIX, n° 12, 1.°% juin 1820, 46
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trique avec I'hyperbole, sa polaire réciproque sera un autre cercle
qui lui sera concentrique ; et si, en outre, il a pour diamétres les
ases de I'hyperbole, il sera lui-méme sa polaire réciproque. II est
visible, en outre, que, réciproquemeat , la polaire réciprogne de
I'hyperbole, par rapport A ce cercle, sera une hyperbole qui aura
le méme centre, les mémes sommets et les mémes asymptotes, et
qui , par suite, se confondra avec elle.

Ou peut prouver, plus généralement, que sZ, sur les mémes dia-
métres conjugués , on décrit une ellipse et une hyperbole , chacune de
ces deux courbes sera & elle-méme sa polaire réciproque , par rapport
& lautre courbe prise pour directrice. En effet, les équations de
ces deux courbes seront comprises dans la formule

Az’ By!*=C ,
Péquation de la tangente A I'une d’elles, en ua point ( 2/, ¥/ ), sera
Ax’x+Byly=C ,

et I'équation de la polaire, relative & l'autre, d’un point quelcon-
que (x/,y”) sera

Az By!ly=C ;

or, si 'on veut que cette polaire coincide avec la tangente, il
faudra prendre /=2, y'=-—a', d'oll &=z’ ,y/*=y/*, Ainsi
I'équation de la polaire réciproque sera

Ax'”+ By’ =C

¢’est-d-dire, la méme que celle de la courbe proposée.

Il résulie évidemment de 14 que , s/ deux paraboles de méme
paramélre , et tournées en sens inverse, se touchent de telle sorte
que leurs axes soient paralléles , chacune d'elle sera a elle-méme
sa polaire réciproque , par rapport @ lautre , considérée comme di-
recirice.
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En rapportant les propriétés angulaires d’une hyperbole équila-
tére 3 cette courbe elle-méme, considérée comme sa propre polaire
réciproque , on parvient & un grand nombre de théorémes, parmi
lesquels nous nous bornerons & signaler les suivans :

La droite qui divise l'angle des rayons vecteurs d'un méme point
d'une byperbole équilatére en deux parties égales, lui est tan-
gente en ce point.

Le diamétre qui va au point de contact d'une tangente & une
hyperbole équilatére divise, en deux parties égales, deux des qua-
tre angles formés par les deux diaméires qui vont aux points
d'intersection de cette méme tangente avec les polaires des deuz
Joyers.

Les deux cdtés d'un angle circonscrit & une hyperbole équila—
tére, font respectivement des angles égaux avec les droiles qui
joignent le sommet de cet angle aux deux foyers.

Les diamétres qui vont aux deux exirémités d'une corde d'une
hyperbole équilatére, font respectivement des angles égaux avec ceux
qui vont aux intersections de cette méme corde avec les polaires
‘des deux foyers.

La demi-différence des angles , sous lesquels une méme corde d'une
hyperbole équilatére est vue de ses deux foyers, est supplément de
langle circonscrit suivant cette méme corde.

Le supplément de langle, sous lequel une corde d'une hyperbole
équilatére est vue de son centre, est égal o la demi-différence des
angles sous lesquels on voit du méme point les portions des po-

laires des deux foyers interceptées par langle circonscrit suivant
cette corde.

La portion d'une tangente quelconque & une hyperbole équila-
2ére , interceptée entre les tangentes & ses deux sommels , est vue sous
un angle droit de Pun et de l'autre foyers.

La portion de l'une ou de l'auire polaire des foyers d'une hy-
perbole équilatére interceplée entre deux cordes supplémentaires ,
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relatives @ l'axe iranscerse de la courbe, est vue de son centre
sous wn angle droit.

8¢ un angle droit se meut sur le plan d'une hyperbole équila-
tre , de maniére que lun de ses cotés soit constamment tangent &
la courbe et que lautre passe constamment par un de ses foyers,
son sommet décrira un cercle qui aura pour diamétre l'axe truns-
verse de la courbe.

La droite qui joint un des foyers dune hyperbole équilatire au
pble d'une corde qui passe par ce foyer , est perpendiculaire sur
cetle méme corde.

Langle sous leguel on voit, du centre dune hyperbole équilatére ,
la portion de la polaire de l'un de ses foyers, comprise entre Pun
quelcongue des points de la direction de cette polaire , ct la polaire
de ce point est un angle droit.

8¢, de l'un des foyers d'une hyperbole égquilatére, on méine des
droites, 1.° au sommel dun angle circonscrit el au point d'inter—
section de sa corde de contact avec la polaire de ce foyer ; 2.5 aux
denx extrémités de la corde de contact ; les deux premiéres droi-
tes seront rectangulaires et diviseront en deux partw.s‘ égales les
guatre angles formés par les deux derniéres.

87, du centre d'une hyperbole équilatére, on méne des diamétres
aqux quatre points d'intersection de la polaire de lun de ses foyers
1.° avec les devx cités de langle circonscrit; 2.° avec sa corde
de contact et avec la droite qui va du jfoyer & son somnet ; les
deuzx derniers diaméires seront rectangulaires et diviseront en deuz
parties égales les quatre angles formés par les devx premiers.

Pour parvenir & un antre principe gqni conduit & un grand nom-
bre de propriétés nouvelles de I'hyperbole équilatére , nous ferons
remarquer que, lorsqu’un angle droit tourne autour de son som-
met, fixé en un poist du périmétre d’une conique, les cordes de
tous les arcs interceptés par cet angle concourent en un point fixe
situé sur la normale de son sommet. Or, si la conique est une hy-
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perbole équilatére , on pourra disposer l'angle droit de maniére que
ses cOtés soient paralleles anx asymptotes. La corde de Iarc inter-
cepté sera alors située & l'infini; le point invariable de la normale
do sommet passera donc aussi & linfini; ce qui revient & dire que
les cordes des arcs interceptés par 'angle mobile serout constament
parall¢les aux normales du sommet, ou, sil'on aime mieux , perpen-
dicalaires aux tangentes en ce m2me sommet, Il est visible daillewrs,
daprés ce qui a é1é démontré au commencemant de cet articdle
que le diamétre non transverse qui coutient les pdles de ces cordes
est perpendiculaire & celul qui coatient le sommet, on a donc ce
théoréme:

Toutes les cordes d'une hyperbole éguilatire, perpendiculaires a une
méme tangente , sont vies du point de contact sous un angle droit;
en ouire , le diaméire non transverse qui contient le pole de l'une
de ces cordes est perpendiculaire au diamétre transverse qui va au
point de contact de la tangente.

A ce théoréme correspond celui-ci: Les angles circonscrits & une
hyperbole équilatire , dont les cordes de contact sont perpendiculai-
res a une méme tangente , interceplent , sur cetle langenie, des par-

ties qui sont vues du centre de la courbe sous des angles drotts.

Si, présentement , on rapporte Ihyperbole équilatére & nn ceicle
directeur, de rayon arbitraire , ayant son centre sur le périmete
de la courbe, sa polaire réciproque sera une parabele qui, dapres
ce quia éié démontré ci-dessus, sera telle gqne tous les angles droits
qui Ini seront circonscrits auront leur sommet sur la tangente me-
née & P'hyperbole par le centre du cercle directeur, et que leurs
cordes de contact passeront par le pole du diamétre non transverse,.
perpendiculaire & celui qui ira an centre de ce cercle. 1l s'ensuit
que la polaire réciprogue d'une hyperbole équilatére , par rapport
a tout cercle directeur dont le centre est siiué sur cette courbe, est
une parabole qui a pour directrice la tangente menée @ Iliyperbole
par le centre du cercle directeur, et pour juyer le pole du dia-
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métre non transverse de cette hyperbole perpendiculaire a celui qur
va au cenire de ce cercle.

Il est facile aussi de reconnaitre que I'axe de cette parabole sera
la polaire du point £, de concoars de la tangente au centre du
cercle et du diamétre non transverse dont il vient d’étre question;
que son sommet sera le pole de la seconde tangente que l'on pourra
mener & I'hyperbole par le point %, et quenfin le point de con-
tact de cette derniére sera sur la normale & I’hyperbole; de sorte
que le lieu des points £ sera la polaire réciproque de la dévelop-
pée de cette courbe, I'hyperbole étant prise pour courbe directrice ;
d’ou il suit que ce lien est du quatricme degré,

Voici présentement quelques applications.

Deunx arcs interceptés sur un cercle par denx paralléles, sont vus.
sous des angles supplémentaires ou égaux des différens points de
la circonférence, suivant que ces points sont entre ces parallélesou
hors d’elles. Si donc on prend un cercle directeur dont le centre
soit sur la circonférence du premier, on pourra conclure de la que,
dans tout quadrilatére circonscrit & une parabole , de telle sorte
gue l'une de ses diagonales contienne le foyer ; les angles dont les
sommets sont aux extrémités de l'autre diagonale sont égaux ou
supplémentaires.

Donc, deux cordes égales et paralléles d'une hyperbole équilatére
sont vues d'un point de cette courbe sous des angles égaux ou sup-
plémentaires , suivant que el est compris ou non compris enire
les deuz droites.

Ce théoréme, indiqué dans la Correspondance de Bruxelles, est dii &
M. Vauare. On pourrait le généraliser, en considérant daus le cercle deux
cordes non paraliéles ; mais cela exigerait trop de développemens,

Le supplément d’un angle circonscrit & la parabole est moitié de
Vangle sous lequel sa corde de contact est vue du foyer.

Done, langle sous lequel on voit unc corde de Uhyperbole équi=
latére , de l'un des points de son périméire, est double de celui
sous lequel est vue, du méme point, la portion du diamétre non
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transverse , perpendiculaire & celui qui passe par l'@il,interceptee
entre les tangentes aux exirémités de cetle corde.

La portion d’une tangente mobile & la parabole, comprise entre
deux tangentes fixes , est vue du foyer sous un angle counstant.

Donc, les angles inscrits & une lhyperbole équilatire qui s'ap-
puyent sur une corde fize , interceptent, sur un diameétre non trans-
verse fize, des portions qui sont vues sous des angles égaux de lune
des cxtrémiltés du diaméire perpendiculaire & celui-la.

Si un angle invariable se meut de manicre que I'an de ses cotés
passe constamment par le foyer d’une parabole et que l'antre lui
soit constamment tangent , son sommet décrira une tangente a la
courbe. Cette tangente sera celle du sommet si l'angle invariable
est droit.

Donc , st un angle de grandeur invariable tourne sur son sommet ,
fixé en un point du périmétre d'une hyperbole équilatire, la corde
mobile qui joindra le point o l'un de ses cdtés rencontra celte
courbe avec celui o Tautre coupe le diamétre non iransverse per-
pendiculaire @ celui qui va au sommet de l'angle, passera cons-
tamment par un méme point fixe situé sur la courbe. Ce point
Size sera celui ou la normale du sommet de langle coupe la courbe
st langle incariable est droit.

Ce théoréme offre un moyen facile de construire tant de points
qu'on voudra d'une hyperbole équilatére, lorsqu’on connaitra son
centre et denx de ses points. Soient O le centre et A, B les deux
points donnés; en prolongeant AO d’une quantité OC=O0A, le
point C sera un nouveau point de la courbe. Soit menée la corde
BC et soit D le point ot elle est coupée par la perpendiculaire me-
née & AC par le point O ; en menaut AD, nous pourrous considé-
rer l'angle CAD comme un angle mobile et invariable, ayant son
sommet A en un point de la courbe cherché, et alors BC sera la
corde mobile qui joindra le point C d’intersection de la courbe avec
Pun AC des coids de Pangle, an point D d’intersection de sou au-
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tre ¢6té AD avec le diamétre trausverse OD, perpendiculaire au dia-
métre AC de son sommet. En faisant donc varier la position de
I'angle autour de son sommet, le point D, ainsi que les deux droi-
tes AC et BD, varieront sans cesse, et ces deux droites donne—
ront, par leur intersection C , tant de points de la courbe qu’on
voudra,

On démontrera facilement que, pour déterminer les asymptotes ,
il fandra décrire sur AB an segwent capable de I'angle invariable
CAD; mener des droites du point B aux points ot ce segment est
coupé par OD, et enfin conduire par le centre O des paralleles a
ces deux droiles.

Parmi divers théorémes que l'on peut démontrer 3 laide des con-
sidérations qui précédent, le suivant mérite d'ére particulicrement
remarqué. On sait que toate circonférence circonscrite & un trian=-
gle dout les trois cdtés sont tangens a une parabole, contient le
foyer de cette courbe (*). Il en résulte que toute conique qui a
pour foyer un point d’une hyperbole équilatire qui touche les trois
cdtés d’un triangle inscrit , touche aussi le diamétre non trans-
verse perpendiculaire & celui de ce foyer. De 1a on peut conclure
que les pieds des quatre perpendiculaires abaissées de I'un des points
d’une hyperbole équilatére , sur les trois coids d’un triangle inscrit
et sur le diamétre non transverse perpendiculaire & celui de ce point,
se trouvent sur une méme circonférence ; or, le pied de cette der-
niére perpendiculaire n'est autre chose que le centre de la courbe.

Donc, si, de lun quelconque des points d'une Lyperbole équila=-
tére , on abaisse des perpendiculaires sur les trois ¢ités d'un trian-
gle inscrit , la circonférence qui passera par les preds de ce&ps-r-
pendiculaires contiendra aussi le centre de Phyperbole.

¢) Voy- la pag. 45 du présent volume.
J. D. G.
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Si l'on remarque présentement que, par quatre points dornés ,
on peut, en général, faire passer une hyperbole équilatére, on ob-
tiendra ce nouvean théoréme:

Quatre points élant donnés sur un plan 5 si, de chacun d'eux , on
abaisse des perpena’l'culaz';es sur les directions des trois cités du
triangle qui a ses sommels aux trois aulres points, les circonfé-
rences , qui passeront par les pieds des perpendiculaires relatives &
ces triangles , se couperont toutes quatre en un méme point, cen-
tre de l'hyperbole équilatére contenant les quaire points donnés.

Il est visible que, si les quatce’ points donnés appartiennent &
une méme circonférence , les quatre circonférences dont il sagit
se réduiront & quatre droites concourant en un méme point (*),

Yoild donc un procédé fort simple pour construire le centre d’une
hyperbole équilatére , assujétie & passer par quatre points donnés,
Une fois ce centre obtenu, on obtiendra tant d’autres points de la
courbe qu’on voudra, par le procédé indiqué plus haut.

L’hyperbole équilatére étant & elle-méme sa directrice, la polaire
réciproque de l'avant-dernier théoréme sera le suivant :

Si Pon circonscrit arbitrairement un triangle & une hyperbole équi-
latére et qu’on lui méne une tangeate également arbitraire , en cons—
truisant ensoite , sur les droites qui joignent le centre de la courbe
avx trois sommets du triangle , comme cétés de I'angle droit, trois
triangles rectangles dans lesquels Pautre cété de langle droit soit
dirigé de ce centre vers la tangente , et s’y termine, le cercle cire
conscrit an triangle formé par les hypothénuses de ces trois trian—
gles passera par le centre de I’hyperbole.

Concevons présentement que le triangle inscrit & hyperbole équi-
latére , dont il a été question ci-dessus , ait deux de ses cotés pa—
ralléeles aux asymplotes de la courbe, son troisiéme cOté passera i
I'infini, et nous aurons cet auntre théoréme:

(*) Voy. la pag. 45 du présent volume,
J. D. G.
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S/ un rectangle a ses cdtés respectivement paralléles aux asymp-
totes dune hyperbole équilatére , et deux sommelts opposés sur celte
courbe , la diugonale qui joindra les deux sommets restans passera
par le centre de I'hyperbole.

Ce théoréme, de nature projective, peat étre ensuite généralisé
comme il suit:

.8 un parallélogramme a ses cdtés respectivement paralléles aux
dewx asymptotes dune hyperbole quelconque , et deux sommets op~
posés sur la courbe , la diagonale, joignantles deux cétés restans,
contiendra le centre de lU'hyperbole.

De 1a résulte un procédé fort simple pour déterminer le centre
d'une hyperbole lorsqu’on en donne trois points et qu’on donne
en outre des paralleles & ses deux asymptotes.

Soit P le point ol se croisent les cordes d’une conique C vues
de I'un O de ses points sous un angle droit, et soit D la droite
polaire de ce point; en placant le centre du cercle directeur au point
O, et représentant par C’ la polaire réciproque de C, par P’ celle
du point P, et par D' le pole de D, il est visible que C/ sera
une parabole qui aura P’ pour directrice et D/ pour foyer; par un
raisonnement analogue & l'un des précédens , on pourra donc
prouver que les pieds des perpendiculaires abaissées du point O, sur
les trois cOtés d’'un triangle inscrit & C et sur la droite D, sont si-
tués sur la méme circonférence ; or, le dernier de ces points est
invariable ; ,

Donc, 1.° s, d'un point fize, prz's‘.s'ur une conique , on abaisse
des perpendiculaires sur les directions des cotés de tant de triangles
inscrits qu'on voudra, les circonférences déterminées par les pieds.
~des perpendiculaires relatives & ces différens triangles se couperont
toutes au méme point; 2.° la perpendiculaire élevée de ce point &
la droite qui le joint au point de départ des perpendiculaires , sera
la polaire du point ou se croisent toutes les cordes de la conique
sucs du premier de ces points sous un angle droit.
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Au lieu d’abaisser des perpendiculaires, on pourrait abaisser des
obliques faisant, dans le méme sens , des angles égaux quelconques.

Il est visible aussi que, si un angle mobile invariable tourne au-
tour de son sommet fixé en O, et si I'on joint par des droites les
points ol ses cOtés rencontrent respecliveme'nt la conique C et la
droite D ; la droite mobile, obtenue par cette construction, passera
constamment par un point fixe situé sur la conique C.

Si langle mobile est droit, le point fixe sera en outre sur la
normale du point O. .

De tout cela résultent deux nouveaux procédés pour décrire une
conique assujétie & passer par cinq points donnés ; mais ils sont plus
compliqués que les procédés coanus.

En imaginant que le triangle inscrit se change en une tangente
et une corde menée par le point de contact, on parvient aussi ai-
sément 4 déduire de ceci un procédé pour mener une tangente i
une conique,

Chélons , le 11 novembre 1828.

DYNAMIQUE.
Solution d'un probléme de dynamique;

Par M. LE BARBIER..

ANV

_P ROBLEME. Une roue circulaire porte ; & sa circonférence ,
un canal annulaire, dont toutes les sections , suivant des plans con-
duits par Uaxe de la roue, sont des cercles égaux ,ayant leurs cen-
tres sur une circonférence située dans le plan de cette roue et con-
cenirique avec elle.
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La roue est mobile dans lespace , mais de telle sorte que som
centre coincide constamment avec le sommet d'un cone droit fize,
dont l'axe est vertical ; quelle doit tourner uniformément autour
de ce cdne, avec une vitesse donnée , de maniére @ le toucher suc-
cessivement , suivant loutes ses générairices , et & n'avoir avec lui
gu'un frottemeni du second genre.

Dans lintérieur du canal, supporté par la roue, on a introduit
une splire pesante, de méme diamétre que ce canal , ayant son
centre de gravilé & son cenire de figure, et @ laquelle on a im-
primé une vilesse quelconque ; et I'on demande de déterminer les
lois du mouvement du centre de celte sphére, en faisant dailleurs
abstraction de la résistance de l'aire et du frottement , et en sup-
posant d'ailleurs la sphere assez petite pour qu'il soit permis de
regarder foute sa masse comme étant réunie a son centre ?

Solution. Rien n’étant plusvfacil‘e que de combiner le mouvement
de translation, donné et uniforme, du canal dans I'espace avec le
mouvement circulaire varié du centre de la-sphdére, dans I'intérieur
de ce canal supposé fixe, occupons-nous d’abord uniquemment de-
la recherche des lois de ce dernier mouvement, C'est déja de la
sorte que nous en avons usé récemment ( pag. 285 ), en traitant
un probléme analogue & celui-ci.

Les donuées du probléme sont ici :

1.° L’angle générateur du céne fixe qu’enveloppe constammeny
la roue dans sa révolution, angle que nouns représenterons par o

2.° La durée de ceute révolution, que nous désignerons par T';

3.° Enfin , la distance constante du centre de la sphére mobile
an sommet du céne, centre du mouvement du systéme; nous la
représenterons par r.

En conséquence , le développement du céne sera un angle plan,
.exprimé par 2@Sina; c’est cet angle que décrira la ligne de con-
tact, sur le plan de la roue, pendant la darée d’une révolution
entiere , puisqu’on suppose que le frottement est du second genre
seulement ; et, puisqu'on suppose que le mouvement de révolution
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est uniforme , le mouvement angulaire de la ligne de contact sur.

: " 3atSin.«
le plan de la roue, déns le temps 7, sera "

La seule force accélératrice du systéme est la gravité que nous dé-
signerons , & Vordinaire, par g. Si, 4 I'époque #, on la décompose es
‘trois antres forces , la premiére dirigée suivant lerayon vecteur du cen-
‘tre de la sphére mobile , la seconde perpendiculaire au plan-de la
roue et la troisiéme suivant la tangente menée par le centre de cette
‘sphére, au cercle qu'elle tend & décrire ; les denx premiéres com=
posantes seront détruites par la résistance du canal, tandis que la
troisi¢me aura son plein eflet. La’ force accélératrice vraiment effi-
cace, & l'épogne ¢,. sera donc seulement le produit de la gravité
g piir le cosinus tabulaire de I'angle que fera alors la verticale me=
née par le centre de la sphire mobile avec la tangente menée par
le méwme point au cercle qu'elle tend & décrire, Cherchons douc
I'expression de ce cosinus. ,

Soit § le sommet du cbne, centre de la roue, et soient, sur cette
roue , SA le rayon qui était en contact avec le cone A I'origine des
temps, SB celui qui est en contact avec ee méme cone & 1'époque 7,

B

et enfin SC le rayon .vecteur du centre de la sphire & la méme
époque. Les rayons SB et SC varieront de situation , sur le plan
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de la roue, avec le temps 7z; mais le rayon SA, au contraire ;
emporté 4 la vérité daus l'espace, avec cette roue, sera fixe sur
elle, et, en conséquence, ce sera & sa direction que nous rappor-
terons, & chaque instant, celle du rayon vecteur du point mobile.
Supposons , pour fixer les idées, que le moavement de la roue
autour du cdne et celui de la sphére dans le canal s'exécutent de
maniére & faire croitre-les ‘deux angles ASB et ASC avec le temps
¢; posons Ang ASC=0¢, puisque ASB est I'angle décrit par laligne
de contact sur le plan dela roue durant le temps #, nous aurons,

, d'ou

2%1Sin.x

comme nous l'avons remarqué ci-dessus,, 4ng.ASB= T

2#tSin «

Ang.BSC=0— —F

; et si nous menons , dans le plan de la

roue , le rayon SD, perpendiculaire & SC, nous aurons

Cos.BSD=8:n BSC=S:n (0_ 2:&;'[;:'".4. ) ]

Considérons présentement I'angle triddre dont les trois arétes sont
SB, SD et l'aze du céne; cet angle triddre est rectarigle suivant
I'aréte SB; or, 'axe du cdne étant vertical, et le rayon SD étant
paralléle 4 la tangente menée par le centre de la sphére, au cer-
cle qu'elle tend & décrire , il s’ensuit que 'angle plan hypothénu-
sal, de cet angle triédre, est précisément égal & celui dont nous
cherchous le cosinus; or, les deux autres angles plans de cet an-
gle tri¢dre sont, d’une part, I'angle BSD, et de l'antre, l'angle «,
générateur du cone ; et, comme d’ailleurs, dans tout angle triédre
rectangle , le cosinus de l'angle plan hypothénusal est égal au pro-
duit des cosinus des deux autres, il s’ensuit que le cosinus cher=-
ché doit avoir pour expression

. a=tSin.
Cos.ocSm.( mT “> ’

et que , conséquemment , la force accélératrice eflicace , 3 I'époque 2,
sera :
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£Cos.aSin. <9— :fii;‘:—> ;

on aura donc pour I'équation différentielle du mouvement du cen-
tre de la sphére, dans le canal supposé immobile,

d=4 . 2%tSin.a
- =gCos.aSin, (0—- — )'i

équation qui, en posant, pour abréger

g=mr , (1)
deviendra

d=¢ . 25t8in « ‘]
P _mCos.aSm.(O— —r - (2)

En muoltipliant les deux membres de cette équation par

/_d: _ 2::5_;“.“ \ i 24tSin.« )
& ) o 2z T ’

elle deviendra

de 28Sin.z \ d2¢ 2atSin.e 2%#tSin.«
N7 )& =2mCos.a. (9 )S n. <0-—- —i——) 3

ou bien

de 2%Sin.« 2at5|n «

d¢

) =—2mCos,x.d.Cos.

d’'oti, en imégrant

~,

ds Si 1#tSin,
i ZTomne ) = A—amCos.aCos. (0—-— L‘——'- R

A étant la constante arbitraire.
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Pour la faire disparaitre, admettons qu'a 'origine des temps I'an-

gle 0 soit égal a (B, et qu’alors le ceatre de la sphére mobile ait
reca, dans ke sens du mouvement, une impulsion capable de lui
faire faire une révolution entiére dans le canal, durant le temps 7 ;

on devra alors avoir, ep méme temps,

ds \
t=0, O0=f, — =22

de

ce qui donne, en substituant,

Sin.a \2
4’6’1 ( %_. l;' =A—-2mCOS.OtCOS.@' »

d’olt, en retranchant de I'équation précédente

dé 2a@Sin.a \*

Si

nea \3 . s / 2%18in.«
T ) +-mC0>.alCos.@-Cos. \9—- i

) ¢
&= 4ot ( ——
K
Posons , pour abréger,
25tSin.a

— 2 = @

g4 22S5in do
a&a- r T a’

il viendra , en substituant dans. (3)

do 2 Sin.m \2
( 2 SR (1 Sne ) ~+2mCos.aCos p—2mCos.aCos.w

de J \ = T

d’onr

( ,

>
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d - L Sin a \2
T: _—_V 4o ( —— ) ~2mCos.xCos.ff—2mCos.aCos.0 . (5)

Posons encore

1 Sin.e

r= V41;;-= —— \)2+2mCOSAaC05.E)—-2mCos.aCosw; (6)

T

d'ott, en différentiant,

mCos.x.dw.Sin.&

- - Sin a \*
V46“\L_ '; )+:sz05.o:C05ﬁ—szos.ocCos.w

dx

multipliant cette équation par l'équation (5), on en conclura

dx .
— =mCos.aSin.w ; (7)

mais de I'équation (6) on tire, en quarrant et transposant ,

Sin.e \2
4o ( I _'_;__) +2mCos.aCos.f—z"
Coswo= 2mCos.«
d’olt
Sine \* z
V4IIIZCOS.201-—3 4o’ ( L l;“ ) ~+2mCos.aCos.f—z" $
Sin.w= T

2mCos.x ?

remarquant alors que la quantité sous le radical se décompose en
deux facteurs, et posant, pour abréger,

G=2m(14-Cos.f3) Cos.a-}4=* (—2—-—- Si;“ )n >

L ®
=2m(x—Cos.{5)Cos.oc—-4m-’(‘T-— I;;u) > ;

on aura

Tom. XIX. 48
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— V/ (G—x*)(H+x7) ; (9)

Sin.w
amCos.x

ce qui donnera, en substituant dans (7),

P adx
TV (G—x)(HAx?)

d (10)
telle est donc Iéquation qu'il faudrait intégrer pour obtenir la so-
lution la plus générale du probléme.

Afin de pouvoir poursuivre l'intégration , sans trop particulariser
la solution, posons H=—o, c’est~a-dire (1) et (8),

X Sin.e

2
2
2wg (| ———_ — )| =r(1=Cos f3)Cos a ; 11
5 ( - T > ( f’) 5 ( )
ce qui peut arriver de bien de manidres différentes, puisque nous
n’établissons ainsi qu'une relation unique entre les cinq donndées arbi-
traires et indépendantes 7, a, B, v, T; il en résuliera G=4mCos.z ;
de sorte que l'équation (10) deviendra

2dx
ds= =
Xy 4mCos.e—a?
dont l'intégrale sera
1 T8 o e “os
t4+B— e LOg- \/47:)(405.:: x? 2\/m(405.u ; ('2)
2y/ mCos.« V 4mCos.x—x22}/ mCos.a

B étant une nouvelle constante arbitraire.
Dans 'hypothése actuelle de H=o, I’équation (6) donne en quar-
rant

z’==2mCos.a.(1—Cos.w) ,

d'ott
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V4mCos.a—x3=‘/;mCOS.x(1+Cos.m)ZQCOS.%w\/mcos.a; H

en conséquence I'équation (12) deviendra

Cos,%(@.__ ﬁi‘_‘. )_1

a—!
2( +B)‘/m(.;0a a——LOg Costutr "‘Log zwt;ﬂ « ’
: Cos. ’;(O—— T : )—{-—x

Pour faire disparaitre la constante B rappelons-nous qu’on doit
avoir, en méme temps, z=o0 et =03, ce qui dounne, cn substi-
tuant ,

- Cos. ;
SB‘/mCOS.u = Log C—OS—_——'

retranchant celte équation de la précédente, on aura

. / 2%tSin.«
14Cos. 1 1—Cos. ?k

l——Cos.%ﬁ'. . . 25tSin.e ?
I +(405- T(Q-— ——11‘1—-— > §

21VmC05.m:Log.

ou bien

Tang *2 (0__ 2@tSin.e Tana.%@_ 221Sin.x )

T

22/ mCos.a=Log. )"2L°g

2

Tang 238 Tang. 2 8
c'est-a-dire,
2=iSin.e
Tang. L (9— 2 )
- 4 T
t\/mcuj.gg:LOg. -

Tang 38
ce qui donne

: 7y/ mCos.«
tSin.e .
Tang. (6— il 1‘;——— h —e

et, par suite,

.Tang. 38 ,

J
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) - thCos.¢
0— zw‘l;l . +4Arc. (Tang.—_—e .Tang.%ﬁ)- (13)

Au moyen de celte équation on pourra, pour chaque instant, dé-
terminer la situation du rayon vecteur da centre de la sphére mo-
bile, sur le plan de la roue ; mais on ne pourra, que par litonne-
ment, résondre la question inverse, c’est-a-dire déterminer & quel
instant ce rayon vecteur aura une situation donnée.

Cherchons présentement l'équation polaire de la surface conique
décrite dans l'espace par le rayon vecteur du centre de la sphére
mobile. Rapportons ce rayon vecteur au plan horizontal conduit par
le summet du céne et a la projection sur ce plan de la généra-
trice,, suivant laquelle ce cone est touché par le plan de laroue &
Porigine des temps. Soient ¢ l'angle que fait le rayon vecteur avec
ce plan a I'époque 7, et { l'angle que fait sa projection, sur ce plan,
avec la projection de la génératrice dont il vient d’étre question.

Considérons l'angle triédre dont les arétes sont I'axe du coéne,
le rayon vecteur dont il s’agit et la ligne de contact de ce céne
avec le plan de la roue & I'époque #; cet angle triédre est rectan-
gle suivant cette derniére droite; son angle plan hypo:hénusal est
évidemment le complément de I'angle ¢, et ses deux autres angles
2wtSin.e
—
pelé ci-dessus, qu'on doit avoir

planssont o et 0— ; d'ou il suit, en vertu du théoréme rap-

Sin.p=Cos.xCos. (6-- 2‘“;?2—) . (14)
Quant & I'angle ¢, il est manifeste qu’il est la mesure de 1'an-
gle ditdre compris entre deux plans verticaux conduits par l'axe du
cbne, l'un passant par le rayon vecteur mobile et I'autre par la gé-
nératrice saivant laquelle le céne était touché par la roue a lori-
giue des temps, Cet angle est partagé en deux autres par le plan
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vertical qui passe par la ligne de contact qui répond & I'époque ¢ ;

I'un de ces deux-ci est évidemment —2;t— , et quant A l'autre, c’est
un des angles diédres obliques de notre angle triédre rectangle ,
en le représentant par &, on aura
Cot.9Cos.E=Tang.z ,
d’'on
£=Arc(Cos.=Tang.«Tang.p) ,

et conséquemment

2ot

V=7 ~+Arc.(Cos.=Tang aTang.¢) ; (15)

. r . 27 b ’ L *
en joignant A ces équations I'équation (3), c'est-d-dire

de 25zSin.e \*

— o —

de T

S48 (é — Sl:'“ )’—i—szos.ag Cos p—Cos. (6-— ﬁ?—‘i %, 3)
et éliminant donc 7 et O entre elle, 'équation résultante en ¢ et
¢ sera I’équation polaire cherchée de la surface conique décrite par
le rayon vecteur de la sphére mobile.

En raisonnant uniquement dans I'hypothése H=o, déja admise
ci-dessus , I’équation (13) donue

0— 21810 1Y/ mCos.a § :

T =4Arc. 3 Tang.=e¢ Tang.+f

mais I'équation (14) donne

2thin.u

T

6——

. _ Sin.@ \ .
—Arec. (Cos._ Coon )
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égalant donc ces denx valeurs, afin d’éliminer 0, on aura

Sin.¢ leCOS.¢ .
Arc. (Cos.: e ) = 4Arc. (Tang.:e .Tang.2f ) 5

d’un autre cété, I'équation (15) donne
t= = ($—Arc(Cos.=Tang oT
= — —_— .= lang alang. 5
T ($—Are(Cos.=Tang oTang.5)} ;
substituant donc cette valeur de 7 dans la précédente, on obtiendra,
pour l'équation polaire de la surface conique décrite par le rayon

vecteur du centre de la sphére mobile,

Sine TymCos « 1y Arc(Cos.=Tang.aTang.¢)]
Arc (Cos.:: < : ) :=4Arcg Tang.=¢ = Tang.2 3 g .

0S.¢

Si l'on veut avoir I'équation de cette méme surface conique en
coordennées rectangulaires , en prenant pour axe des z, I'axe méme
du céne, et pour axe des x,la projection sur le plan horizontal
conduit par son sommet de la génératrice suivant laquelle il est
touché par le plande la roue & I'origine des temps; on remarquera

que l'on a ainsi

Sin p= ——r Tang o= ———
T Vatye RSV

Y= Arc (Tang = -3;’-) 5

d’ot, en substituant

z
Arc (COS._ \/x‘-}-yz-}-z’.COS.oc )

W[—Arc(Tang = i’—) —Arc <COS.’-=

2@

.

zTang.e \ 7
V ay2 )

=4Arc g Tang.=e¢ .Tang.; ; .
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Si I'on veut enfin avoir la courbe & double courbure d<crite dans

I'espace par le centre de la sphére mobile, cette courbe sera don-
née par cette derniére équation combinée avec I'équation

x2+y2+z3:r2

de la sphére sur laquelle ce point est constimment situé,
y q
On voit, par ce qui précede, que des problemes de dynami-
que , fort simples en apparence, peuvent souvent conduire a des
résultats d’une complication inattendue,

GEOMITRIE APPLIQUEE.
Note sur la théorie analytique du moiré ;

Par un ABonNNE.

ATV VANV VIAANANANNAN

SOIENT deux systémes de lignes droites ou courbes, non consécu-
tives, situdes dans chaque systéme sur une surface plane ou courbe
ot elles se succédent, non consécutivement, saivant une loi ma-
thématique quelconque,

Imaginons ces deux systémes de lignes placés , dans un sitnation
quelconque , entre l'ceil et un plan de projection , ils s’y projete-
ront suivant deux systémes de droites ou de courbes planes, se
succédant également les unes aux autres , non consécutivement , dans
chaque systéme, suivant une loi mathématique déterminde.

Les lignes de chaque systéme croiseront, en général, les lignes
de laatre systéme, et les points ou le croisement aura lieu ap-
partiendront & un troisi¢me systéme de courbes formant, ce qu'on
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appelle, un moiré, parce qu'on cherche & les imiter par la pres-
sion d’un cylindre, dans ’étoffe de soie appelée moire.

Or, les deux systémes étant donnés de nature et de situation
dans l'espace , ainsi que le plan de projection, on peut, pour une
situation donnée de I'ceil, demander quelles secout, sur ce plan,
les courbes du moiré.

Ne nous proposant ici que de dorner seulement une idée de la
maniére dout on peut attaquer ces sortes de problémes, nous sup-

poserons que les deux systémes sont composés de droites parallé-
les équidistantes, situées dans des plans non paralléles.

Par l'ceil , concevons trois droites , la premiére, que nous pren-
drons pour axe des z, paralléle dla commune section des plans des
deux systémes , et les deux autres que nous prendrons pour axes des
x et des y , respectivement paralléles aux droites de ces deux sys-
teémes. 1l est aisé de voir qu’alors les deux couples d’équations

r=a , y=b,
(1 (2)
z=d-}-mg , z=e~+nk ,

dans lesquels m et z sont supposés des nombres entiers variables,
positifs ou négatifs , pourront représenter respectivement les droi-
tes des deux systémes.

Pour des valeurs déterminées quelconques de m et n, ees équa-
tions ne représentent que deux droites seulement, que nous consi-
dérerons comme correspondantes dans les deux systémes; le rayon
visuel qui passera & la fois par ces deux droites, ira percer le plan
de projection au point ol se croiseront leurs projections sur ce

plan.

Soient prises pour les équations de ce rayon
a=Az , y=DBz ; 3)

A et B étant deux coefficiens qu'il s’agira de déterminer. Il fandra
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exprimer , pour cela, que les quatre équations (1) et (3), ainsi que
les quatre équations (2) et (3) ont lieu & la fois. Elminant donc
tour & tour &,y , z, d’abord entre les unes, puis entre les autres,
il viendra

A(d¥mg)=a , B(evnh)=b ; (4)

tirant de 14 les valeurs de A et B, pour les substituer dans les équa-
tions (3) , on aura, pour les équations générales du rayon visuel
qui passe par deux droites correspondantes des deux systtmes, et
va percer le plan de projection au point ou se croisent les pro-
jections de ces droites sur ce plan,

(@4-mg)r=az , (e+-nh)y=bz : )

On en déduirait les équations de tous les rayons visuels, passant
par les autres droites correspondantes des deux sysiémes, en y met=
taut successivement tous les nombres de la suite naturelle, posi-
tifs et négatifs, tant pour -7 que pour 2, de sorte que, pour cha=-
cun, on aurait toujours

m=n. (6)

Si donc des équations (5) on tire les valeurs de = et », pour
les substituer dans cette derniére , I’équation résultante en z, y, z
scra celle d’une surface conique, lieu de tous ces rayons. Or, les
équaiions {5) donnent

az—dx bz==ry

m= — , n=
g% hy

I'équation cherchée sera donc

az==dx bz—ey

g% hy

<

ou bien
Tom, XIX 49



374 TRIANGLE
hy(az—dz)=gz(bz—ey) ,

équation d'une surface conique du second ordre, passant par les
trois axes des coordonnées. ‘

Il est aisé de conclure de 14 que, dans le cas particulier qui
nous occupe, Zes courbes du moiré sont des sections coniques, pas-
sant toutes par les trois points ou leur plan est percé par les pa-
ralléles conduites par lail @ lintersection des plans des deux sys-
1émes de droites et & ces droiles elles-mémes.

Il ne faut pas perdre de vue que cette conclusion suppose es-
sentiellement que les lignes dont il s’agit sont rigoureusement droi-
tes, rigoureusement paralléles, rigoureuserent équidistantes, et que
les deux surfaces qui les contiennent sont rigoureusement planes et
immobiles. C’est parce qu'il est extrémement difficile, dansla pra-
tique , de satisfaire exactement & toutes ces conditions que, méme
dans les cas les plus simples, les courbes du moiré présentent une
si grande variété de formes.

o -

GEOMETRIE FELEMENTAIRE.

Démonstration de quelgues théorémes ;

Par M. P. R.

AV TV VIV WRRARAANN

T . .,
[.'N article in<éré dauns la Correspondunce de M. Quetelet ( tom.
IV, pag. 205 ) nous a fait naitre I'idée d’un petit supplément &
Varticle de la pag. 113 du XVIIL™¢ volume du présent recueil.
Le voict:

THEOREME 1. i, par un point pris arbitrairement dans l'in-
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térieur d'un iriangle, on méne des paralliles & ses trois cdiés,
ces droites diviseront ce triangle en six pariies, dont trois seront
des triangles tels que l'aire du iriangle proposé sera égale au quarré
de la somme des racines quarrées des aires de ces irois la.

Démonstration. Soit A le triangle proposé; soient 7', T/, 17/ les
trois triangles intérieurs et P, P/, P/ les trois parties qui sont des
parallélogrammes respectivement opposés; on aura

A=T+T4TV'4P4P/4-P/’ ;
mais on a ( tom. XVIII, pag. 114 )
P=ay/TT7 , P=2¢y/TT0, Pl=2/TT ;
donc .
A=TA4T4-T' oy Thit 2y TT+2y/ 7T ,
c’est-a-dire ,
A=(yT+y T4y T7)" ,

comme nous l’avions annoncé.

THEOREME II. 8¢, par un point pris arbitrairement dans I'in-
térieur d'un téiraédre , on conduit des plans paralléles & ses qua-
tre faces, ces plans diviseront le tétracdre en quatorze parties
dont quatre seront des iétraédres tels que le volume du tétraédre
proposé sera égal au cube de la somme des racines cubiques des
volumes de ceuz-ld.

Démonstration, Soit A le tétraedre proposé ; soient T, T/, TV
T7/ les quaire tétratdres intérieurs; les dix autres parties seront,
savoir : quatre parallélipipedes P, P', P”, P", respectivement op-
posés , et six troncs de prismes quadrangulaires zyant une aréte la-
térale nulle, et que nous désignerons: par (pp’) , (pp’), (p'p"),
(#'?") s (¥P")> (pp") 5 suivant les parallélipipddes entre lesquels
ils se trouveront situés.
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Cela posé, on aura

A =TT/ TV T/ 4 P~4P! 4P/ 4P/
+0pr) A pp AP ) PP ) (™)
mais on a trouvé ( Annales, tom. XVIII, pag. 122)

3 3 3 3 DS
P=6y TTi7" , P=6yTrTi, P'=6yT0T", P"=6/TTT.

3 3 3 3
(}7]7,):3 V—-———T'/" ,1,,,,_{..3 VAT TN (p”pw) =3 V e Tl+3 \/ Tz

3 3 3 3
(pp//) = 3 \/”’1_‘77'_1‘77'4'3\/ Tz (p’p”'):.g\/ 1 T’/+3‘/ TT2

3 3 3 3
(p'p", =3y T"T+3y TT= ,  (pp")=3y/ T=Ti4-3y T »

donc

3 3 3 3
A=TAT'4T4=T"4-3y T3y TT6-43y/ T 1743 VvV TT7

3 3

3 3 3
-3y 1" T//+3 V T’T’““’i“s ‘/_’TW“"‘S VvV TT43 v T

3 3 3 3
+3 V T T’//;"‘E—S ‘// Nz Tl/lﬂi_-?) ‘/ T2 +6"/ T

3 3 3
6y TT T 46/ TT'T7-6\/ DT
c’est-a-dire ,
, 3 _ 3 __ o 3
A=Y/ Ty Tty Trby T7)

commme nous l'avions annoncé.

Ces deux théorémes, dont le premier avait déji été remarqué en
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Vendroit cité, par M. Lobatto, peuvent au surplus étre directe~
ment établis, d’'une maniére fort simple , par les considérations sui-
vantes :

I. Les trois triangles 7', 77, T' sout semblables au triangle A,
et chaque c6té de ce dernier est évidemment la somme de ses ho-
mologues dauns les trois autres ; or, les cdtés homologues des trian-

gles semblables sont proportionnels aux racines quarrées de lears
aires; donc on doit avoir aussl

VE=y Ty Ty

-

et par suite
A= (/T T4y T .

1. Les quatre tétracdres 7", 17, 77/, 7"/ sont semblables au té-
tracdre A, et chaque aréte de ce dernier est évidemment la somme
de ses homologues dans les trois autres ; or, les arétes hiomologues
des téiraédres semblables sont proportionnelles aux racines cubiques
de leurs volumes ; donc on doit avoir aussi

3 3 3 3 3
VA=Y TV T Ay Ty T

el par suite
I R S
A:( T+ T/ TV +\/T’”)3 :

A Taide de ces considérations on reconnaitra immédiatement la
vérité des deux théorémes que voici, et dont le premier est celui
dont on s’occupe spécialement dans l'endroit cité de la correspon-
dance. Il est surprenant gqu’aucun des géometres qui out traité,
n’ait songé & le ramener & des considérations aussi simples.

THEOREME II1. 87, sur I'un des cétés d'un triangle , on prend
arbitreirement n points, et que, par chacun deux , cn méne
des paralléles & ses deux autres cotés, ces paralleles diviseront
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n{n--

. 1) , : .
le triangle en — parallélogrammes , et en n-{=1 triangles, tels

gue laire du triangle proposé sera égale au quarré de la somme
des racines quarrées des aires de ceux-la.

THEOREME IV. i, sur lune des arétes d'un tétraldre , On
prend arbitrairement n points, et que, par chacun d'eux, on con—
duise des plans paralléles aux deux faces qui déterminent l'aréte

n(n--r)
2

opposée , ces plans diviseront le tétraidre en , troncs de

pyramides quadrangulaires ,ct en n--1 téiracdres tels que le vo-
lume du tétracdre proposé sera égal au cube de la somme des ra-
cines cubiques des volumes de ceux-la.

QUESTIONS PROPOSKES.

Probleme de dynamique.

TOUT étant comme dans le probléme de la pag. 359, avec cette
différence seulement que la roue est exactement équilibrée autour de
son centre , sommet du céue fixe, n’est sollicitée & se mouvoir que
par le poids de la sphire introduite dans l'intérienr du canal ; on
demande de déterminer les circonstances du mouvement tant de cette
sphére que de la roue?

Problemes de géométrie.

I. A un triangle quelconque on en inscrit un aatre dont les
sommets sont les pieds des trois hautenrs du premier; & celui-ci
on en inscrit un troisiéme, sous les mémes conditions; au troi-
siéme, on en inscrit un quatriéme , de la méme maniére, et ainsi
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de suite indéfiniment. Sur quelle ligne sont situés les points ot se
coupent les trois hauteurs de cette suite de triangles?

II. A un triangle quelconque on inscrit un cercle, puis un trian-
gle qui a ses sommets aux points de contact; & ce second trian-
gle on inécrit également un cercle , puis un triangle qui a ses som-
mets aux points de contact, en continuant ainsi indéfiniment, Sur
quelle ligne sont situés les centres de tous ces cercles ?

III. On méne, dans un triangle quelconque , les droites qui di-
visent les angles en deux parties égales, et*l'on fait des points ot
ces droites rencontrent les c6tés opposés des sommets d’'un second
triangle ; on mcéne, dans celui-ci, les droites qui divisent les an-
gles en deux parties égales, et I'on fait des points ot ces droites
rencontrent les cOtés opposés, les sommets d’un troisiéme triangle,
et ainsi de suite indéfiniment. Sur quelle ligne sont situés les points
ou se coupent, dans chaque triangle, les trois droites qui divisent
les angles en deux parties égales.

Autre.

Y a-t-il , dans une ellipse , une corde mobile de grandeur cons-
tante, qui, dans son mouvement , enveloppe un cercle; et s'il y
existe une telle corde, quelle en est la longueur, et quel est le
rayon du cercle qu’elle enveloppe ?

Théorémes de géométrie.

Dans tout tétraédre les perpendiculaires abaissées des sommets
sur les plans des faces respectivement opposées , sont quatre géné-
ratrices d’'un méme mode de génération d'une méme surface réglée
du second ordre.
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Autre.

Il est impossible de décrire, d’'un seul trait de crayon, sans
quitter le papier, ni revenir sur des lignes déja tracées, un qua-
drilatére simple, avec ses denx diagonales.

FiN DU TOME DIX-NEUVIEME.
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Entre les questions proposées ez Jes questions résolues.

Towme XVII, pag. 155, Problémel, II, résolus, tome XIX, pages 175=18:
: pag. 283, Probléme I. 339—349
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ERRATA

Pour le dix-neuviéeme vclume des Annales,

[o % W, VB, Ul W W o Vg Vo V1o Vi Vo W1, V)

PAGE 65, ligne 4 du texle, == inscrits et circonscrits ; lisez: inscrit et tir«
conscrit.
_Deux derniéres lignes, — méme correction.

Pag. 66, ligne 14, méme correction.
Avant derniére ligne, = couperont j lisez : toucheront,

Pag. 67, lignes g et 10, = placez ces mots: dans les deux tétraddres ; entre
deux virgules.

Pag. 76, ligne 20, — tracés ; lisez: tracé.

Pag. 106, ligne 3, — supprimez fixes.

Pag. 133, ligne 6 de la note , — placez une virgule aprés le mot Auitiéme.

Pag. 135, ligne 7, en remontant , — supprimez la troisi¢éme virgule.

. 161, ligne 6, en remontant , — tangent ; lisez: tangent conduit.

Pag. 169, ligne 11, — cbne ; lisez: céne du second ordre.

Pag. 171, ligne 13, = méme correction.

Pag. 173, lignes 7 et 13, en remontant, — méme correction.

Pag. 174, ligne 4, en remontant, =~ méme correction.

Pag. 285, ligne 7, en remontant , — mouvement ; lisez: mouvement rectiligne,

Pag. 296 , ligne 6, — placez une virgule aprés le mot membre.

Pag. 316, ligne 4, en remontant, — méme correction aprés le mot axe.

Pag

321, ligne 14, — circonférence ; lisez ; circonférence d'un cercle.

Supplement & U'Errata du Tome XVI111m®

Pag. 103, ligne 15, — (u+ —EB ); lisez: (u-{-— ;%—)ﬂ .
2

Pag. 106, 4 1a note == ajoutez: voyez aussi nnales, tum. VII, pag. 323.
Pag. 371, ligne 2, = supprimez le mot trois,
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