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ANNALES
DE MATHÉMATIQUES

ET

GEOMETRIE DE SITUATION.

Démonstration de quelques théorèmes ;

Par M. J. STEINER,

§. I.

Ï . I L est généralement connu que s i , par un quelconque P âeê

points du plan d'un triangle ABC et par ses sommets s on mène

trois droites AP , B P , CP , rencontrant respectivement en A ' , B ' ,

C4
 7 les directions des côtés BC^ CA t AB de ce triangle, on aura

l'équation

ÀB'.BC'.CÀ>=BÀ/.CB'.ACy ;

et q u e , réciproquement, si trois points A / , B / , CA, sont teïïemen!
situés sur les directions des côtés d ïm triangle ABC y que cette
équation ait l ieu , les droites A A7

 ? BB ;
 9 CC / concourront en im

même point P , pourvu toutefois {Annales, loin, XVII9 pag. i 4 l )
Tom. XIX9 n.° I > i.er juillet 1828. 1
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que ceux de ces points qui seront situés sur les côtés même du
triangle , et non sur leurs proîongemens ? soient en nombre impair.
On sait que , dans le cas contraire, les trois points A', B ' , CX
appartiendraient à une même droite*

2. Par les trois points Af ,W, C' soit décrit un cercle coupant
de nouveau en A" , Bx / , C ; / , les directions des côtés BC» CA , AB ;
par la propriété des cordes ou des sécantes , issues d'un même
point, on aura

ÀB'.ÀB"C=AC'.AC" #

BC/.BC"<=BA'.BÀ" f

CA'.CA"=CBXB" -9

équations qui, multipliées membre à membre , donneront ? en ré-
duisant, au moyen de la précédente (i) $

AB".BC//.CA//=BA//.CB7.AG/' ;

ce qui prouve (i) que les droites AA ; /, BB//f, CC/; concourent
aussi en un même point P / .

3» Parce que cette propriété est de nature projective , elle aura
lieu également lorsqu'on substituera au cercle une ligue quelcon-
que du second ordre. En invoquant ensuite la théorie des puiai-
res réciproques , on obtiendra les deux théorèmes que voici :

THÉORÈME. Les trois sorn- THÉORÈME. Les trois côtés
mets d'un triangle étant A , B , d'un triangle étant A § B, C , et
C, et P étant un point qaelcon- P étant une droite tracée arbi-
que de son plan ; si A' , W * C' trairement sur son plan ; si h!\
sont les, points où les directions B/, O sont les droites qui /oi-
des côtés BC 9 CÂ ; ÀB , sont res- gnent respectivement les sommets
peclivement rencontrées par les BC 5 CA , AB , aux points AP ,
droites AP, BP , CP, et que, par BP ? CP , et quon décrive une
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ces trois points À ; , B ; , G' on ligne quelconque du second or->
fasssc passer une ligne queleon- dre, touchant les trois droites
que du second ordre , coupant de À / , B /

) C ' ; en menant à cette
nouveau les mêmes côtés respec- courbe,par les mêmes sommets, les
fixement en A", B / ; , G" , les droi- tangentes A;/\ B " , C " , les points
tes A A " , BR" , CCS* ~ concour- A A " , B B " 9 CC" appartiendront
ront aussi toutes trois en un même aussi tous trois à une même droite
point P ' (*). P ' .

Et réciproquement , deux Et réciproquement 5 dkz/ar
points P , P ' étant pris arbitrai- droites P 5 P ; ^ / 2 / tracées arbi-
rement sur le plan d'un trian- trairement sur le plan d'un trian™
gle dont les sommets sont A , gle dont les côtés sont A, B , C ;
B , C ; si Von mène les droites si Von joint respectivement les
AP et A P ' , BP et B P ' , CP et points AP et A F , BP et BP' ,
CP^, rencontrant respectivement CP5 tf*CP' aux sommets BC , G A ,
/^j directions des côtés BC , CÂ ? AB /?^r J ^ droites ÈJ et hu

 9 B
/

AB <?« A' et A ' ' , B' <?/ B ^ , C ; ^/ B " , C7 ^/ C^ , ces six droites
et Cf/ , r^5 /̂̂ r points appartien- seront tangentes à une même ligna
droni à ime même ligne du se- du second ordre*
cond ordre*

4. On sait que , lorsqu'une ligne du second ordre touche les
trois cotés d'un triangle , les droites qui joignent les poiots de con-
tact aux sommets respectivement opposés se coupent toutes trois au
même point ; et que ? réciproquement , trois droites menées par les
sommets d'un triangle, de manière à se couper au même point ,
rencontrent îes côtés respectivement opposés eu des points ou ils
peuvent être touchés par une même ligne du second ordre, De là
(3) % et par la théorie des polaires réciproques ? on pourra con-
clure ces deux théorèmes.

(r; En remplaçant la ligne du second ordre par le système de deux droi-
tes , ou obtiendrait quelques porismes déjà connus.
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THÉORÈME. Les points de THÉORÈME. Les tangentes

contact des trois côtés dun trian- menées , par les trois sommets
gle avec deux lignes quelconques d'un triangle 7 à deux lignes quel-
du second ordre qui lui sont ins- conques du second ordre qui lui
orites ̂  appartiennent tous six à sont circonscrites , touchent tou~~
une troisième ligne du second or- tes six une troisième ligne du se-
dre. cond ordre*

s- w.
5. Des précédens théorèmes on en déduit aisément d'autres ana-

logues, relatifs aux surfaces du second ordre comparées au tétraèdre.
Soit ÀBCD un tétraèdre quelconque. Par un point quelconque

P de l'espace et par chacune de ses arêtes concevons des plans
coupant les arêtes respectivement opposées. Soient a , h , c les points
où les arêtes BG , CA ? AB, sont respectivement coupées par les
plans APD , BPD , CPD , et soient a , |3, y ceux où les arêtes op-
posées AD 7 BD , CD , sont respectivement coupées par les plans
BPC , CPÀ , APB, nos six plans se couperont deux à deux sui-
vant les trois droites aa , b$ ? cy \ il est visible ? en outre P

que les droites

By, Cj3, Ha

Ca? Ay, Dû

A|3, Ba, De

Aa 9 B^ ? Ce

se couperont en un même point
B'

C

D'

et qne les droites AA' , BB' , CC, DD ; se couperont toutes qua-
tre au point P.

Il est aisé de voir que , réciproquement, six points a , b$c^
a , &, y étant pris respectivement sur les arêtes BC, CÀ , AB ? AD ?

BD, CD d'un tétraèdre ABCD , de telle sorte
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Cjue les droites se coupent en un même point

les droites AA', BB', C C , DD' se couperont aussi toutes quatre
en un même point P par lequel passeront aussi les trois droites
a* ; b$, cy.

Ainsi 5 lorsque six points sont tellement situés sur les directions
des arêtes d'un tétraèdre , que les droites menées dans chaque face
par les points qui y sont situés et par les somnaets de cette face
qui leur sont respectivement opposés se coupent toutes trois en un
même point, les droites qui joignent deux à deux les points si-
tués sur les directions des arêtes respectivement opposées se cou-
pent aussi toutes trois en un même point et réciproquement.

Il est à remarquer que les six points # , b 5 €, a, (3, y sont tellement
liés entre eux , que trois quelconques de ces six points, choisis de
manière à ne pas appartenir à une même face? déterminent le point
P et par suite les trois autres ? ainsi que les droites a%, 1$ 5 cy*

6. Par les six points a, b , c , oc, |3 ; y concevons une surface
quelconque du second ordre, coupant de nouveau les mêmes arê-
tes du tétraèdre en a1

9 b''-, c', et! } fi' ? y' ; les intersections de cette
surface avec les plans des faces du tétraèdre seront des lignes du
second ordre coupant les côtés de ces faces en trois points tels que
les droites qui les joindront aux sommets respectivement opposés
se couperont en un même point ; donc (2) les droites qui join-*
dront dans la même face les trois autres intersections aux mêmes
sommets se couperont aussi en un même point ; et par conséquent
(5) les points a , V , c' , a , fJ\ y1 jouiront des propriétés que nous
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venons de voir appartenir aux points a %b , c , a , (5 , y ; de sorte
que les droites afa! , ê/fr, ^'y' concourront toutes trois en un même
point P / ; de l à , et par la théorie des polaires réciproques , on con-
clura ces deux théorèmes :

THÉORÈME. Si une surface THÉORÈME. Si une surface
quelconque du second ordre est quelconque du second ordre est
tellement située ? par rapport à tellement située 5 par rapport à
un tétraèdre , quelle coupe ses un tétraèdre, que six plans tan-
arêtes en six point a , b , c » a 5 gens a , b , c , a , ( 5 , ^ cette sur-
|S, v > tels que les droites aa , bj3, face 5 conduits par les arêtes du
ey qui joignent les points dinter- tétraèdre % soient tels que les in-
section qui répondent aux arêtes terseciions aa , bjS , ey des plans
respectivement opposées concou- tangens issus des arêtes respec-
rent toutes trois en un même point tiçement opposées soient toutes
P , elle coupera de nouveau ces trois dans un même plan P > les
mêmes arêtes en six autres points six autres plans tangens a', b ;

 ?

a7 3 b / , d ? oLf, (V, y/ tels que les c ; , a;
 ? J5' 9 •/ ? menés à cette sur-

droites SL/QL/ , h1^ , c^ ' ^^/ foin* face par ces mêmes arêtes^ seront
dront les points d'intersection si- tels que les intersections a V , b^J' >
tués sur les arêtes respectivement c/<y/ des plans tangens issus des-
opposées concourront aussi fou- arêtes respectivement opposées
tes trois en un même point P ;(*). seront aussi toutes trois situées

dans un même plan P ; .
Et réciproqiiementj un point Et réciproquement, un plan P

P étant situé d'une manière quel- étant situé d'une manière quel*
conque dans V espace ; si F on con- conque dans l'espace ; si } par
duit 9 par ce point et par les are- chacune- des are le s d'un tèiraè-
ies d un tétraèdre , des plans cou- dre et par le point où ce plan

(*) En remplaçant la surface au second ordre par le système de deux
, on obtiendra des porisaies analogues à ceux t£iie nous avons signalés
ia précédente soie.
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pant respectivement leurs oppo-~ coupe son opposée, on conduit un
sèes, on obtiendra ainsi\ sur ces plan ? on obtiendra ainsi six
arêtes , six points a, b , c , « , plans a j b , c 5 o ( , ^ ^ /^/> <^£
j3 , V > *£& f&£ / ^ droites aoc, bj3, / ^ droites aa? bS5 cy, suivant les-
cy y&/ joindront les points situés quelles se couperont ceux qui pas-
sur les arêtes opposées concoure seront par les arêtes opposées ?

ront toutes trois au point P ; et seront toutes irais situées dans
si, pour un autre point P ; , éga- le plan P ; et si , /?o&r un au-
lenient quelconque , on détermine ? //v? planVf , également (juclcou-
sur les mêmes arêtes, six nou- que y on conduit ^ par les mêmes
veaux points a;

 ? b
; , c / , a;

les droites aV,
arêtes f six noweaux plans a' ,
b / , c ; ,

ce même Vf, / ^ douze plans
a , b , c , a % fi , y , a / , b y

 > c y , oc / ,
fi/, y; seront tous tangens à 'une

b , c , a y , fi'
cyy/ yz// /oindront les points si- droites aV , hffi;

 t cV ? suivant les-
tués sur les arêtes opposées con- quelles se couperont ceux qui se-
courent aussi toutes trois en ce ront issus des arêtes opposées ,
même point V f les douze points soient aussi situées toutes trois
a , b , c , a , fi, y, a ' , b ^ , c ' , a ' ,

$[, y7 seront tous situés sur une
même surface du second ordre.

même surface du second ordre.
7. SI Ton conçoit une surface quelconque du second ordre ? qui

louche les six arêtes d'un tétraèdre donné, ses intersections, avec
les plans des faces dé ce tétraèdre seront des lignes du second or-
dre louchant les trois côtés de ces faces ; et si 9 dans ces mêmes
faces, ou mène des droites des trois sommets aux points de con-
tact des côtés respectivement opposés , ces dioites (4) se couperont
en un même point; d'où il sait (5) que les droites qui joitidiont
deux à deux les points de contact situés sur les arêtes opposées
Se couperont toutes trois en un même point.

Il est aiié de voir que , réciproquement , six points étant pris
respective aient sur les arêtes d'un tétraèdre, de telle sorte que les
droites qui joindront deux à deux ceux qui seront situés sur les
arêtes opposées concourent toutes trois en un même point, 00 pourra
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toujours concevoir une surface da second ordre qui touche les arêtes
du tétraèdre en ces six points.

De là et ensuite , par la théorie des polaires réciproques , on
pourra conclure (5) et (6) , les deux théorèmes suivans :

THÉORÈME. Si deux sur- THÉORÈME. Si deux surf a-
faces du second ordre touchent ces du second ordre touchent l'une
l'une et l'autre les six arêtes d'un
tétraèdre ? les douze points de
contact, situés deux à deux sur
ces arêtes, appartiendront à une
troisième surface du second or-
dre (*)*

et Vautre les six arêtes d'un té-
traèdre , les douze plans tangens
à ces surfaces > conduits deux à
deux par ces arêtes , toucheront
une troisième surface du second
ordre (*).

(*) Voici deux autres théorèmes qui * s'ils sont vrais t corame ils parais-*
sent l'être , formeront un complément fort naturel, de cette théorie ; nous.
en abandonnons l'examen à la sagacité de M. Steiner.

THÉORÈME. Si trois surfaces du THÉORÈME. SI trois mrface* da
second ordre sont inscrites à un même:' second ordre sont circonscrites à un.
tétraèdre t les douze points ou elles tou- même tétraèdre, leurs douze plans tan-^
clveront ses. faces appartiendront à une gens, par ses sommets toucheront une>j

quatrième surface du second ordre. quatrième surface du second ordre»
Ges sortes de théorèmes présentent beaucoup d'intérêt, comme pouvant,

acheminer à découvrir , soifc la relation entre dix points d'une surface du
second ordre, soit la relation entre dis. plans tangens à, une telle surface f
problème dont la solution ne pourrait que faire beaucoup ^honneur au
mètre à qui la science en serait redevable»

J . D. G..



BAROMÈTRE ET HYGROMÈTRE.

f f

Résumé des observations barométriques , hy-
grométriques et thermométriques 7 faites à
Montpellier en 1827;

Par M. GERGONNE*

§. I.

Observations haromèlriquesl

V_JES observations ont été faites avec le baromètre à niveau cons-
tant de Fortin 9 déjà décrit à la pag. 167 du précédent volume ; l'ex-
trémité de la pointe d'ivoire qui donne le niveau étant toujours
estimée à 39™,25 au-dessus des eaux moyennes de la mer; elles
ont été corrigées des 26 centièmes de millimètre dont le zéro de
ce baromètre se trouve plus bas que celui du baromètre de l'ob-
servatoire royal de Paris. Elles ont été ramenées ensuite à la tem-
pérature de la glace fondante , au moyen de la table de M. Bou-
vard, qui corrige à la fois la dilatation du mercure et celle de l'é-
chelle. D'après un examen attentif de la situation de la pointe d'i-
voire , j'ai pensé que la correction de capillarité était trop légère
pour mériter d'être tentée.

Les physiciens qui ont écrit sur les observations barométriques
ont indiqué des époques plus favorables que d'autres pour ces sor-
tes d'observations , et ces époques ont été adoptées par le bureau

Tom. XIX. a
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des longitudes. Mais lorsqu'on est seul à observer et qu'on a des
devoirs obligés hors de chez soi , on ne peut s'astreindre à ces
époques ; et il vaut mieux encore en choisir d'autres moins favo-
rables, que de confier les observations à autrui.

Fort heureusement à l'époque de midi , regardée comme la
plus importante de toutes , je suis toujours à peu près sûr d'être
chez moi ; j'ai donc pu prendre cette époque pour celle de départ.
J'en ai choisi trois autres, en ayant soin de faire ensorte i.° de
pouvoir observer moi-même à ces époques ; 2.0 de rendre les di-
verses époques équidistantes. C'est d'après cette double considé-
ration que je me suis fixé aux époques de 7 heures du matin ,
midi, 5 heures et 10 heures du soir, temps vrai de Montpellier.
Mais , soit que je rentrasse quelquefois un peu trop tard , soit que
je me trouvasse obligé de sortir, soit enfin par toute autre cause
de distraction , il ne m'a pas toujours été possible d'observer r i -
goureusement à l'époque choisie. Du moins est-il vrai de dire que",
dans ces circonstances , assez rares d'ailleurs , l'observation n'a ja-
mais guère été devancée ou retardée d'un quart d'heure ; j'ai d'ail-
leurs tout lieu de croire qu'elle n'a guère été ni plus ni moins
souvent devancée que retardée , de sorte qu'il y a beaucoup de
probabilités en faveur des compensations d'erreurs,

Oo voit, d'après cela , que, si l'on partage l'intervalle de temps
compris depuis quatre heures et demie du matin d'un jour jusqu'à
minuit et demi du jour suivant en quatre parties égales, mes ob-
servations se trouveront placées aux milieux de ces quatre parties.
On pourra donc regarder la moyenne des quatre observations de
chaque jour comme la moyenne barométrique qui répond à cet in-
tervalle de vingt heures. Je me suis permis de la regarder comme
la moyenne des 24 heures, qui pourrait être réellement un peu plus
petite à raison du minimum qui a lieu vers les 'quatre heures du
matin.
. Je dois dire encore qu'il ne nTa pas toujours été possible d'ob-

server. Mais, afin qu'on puisse juger de mon assiduité, voici le
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tableau du nombre des observations par mois , pour les différen-
tes heures du jour?

MOIS.

Janvier.

Février.

Mars.

Avril.

Mai.

Juin.

Juillet.

Août.

Septembre.

Octobre.

Novembre.

Décembre.

Sommes.

HEURES.

2 7

26

3i

3o

3i

3o

29

3o

29

28

3o

3i

352

MIDI.

27

24

3o

29

29

27

3o

25

29

28

3o

3i

33 9

5 HEURES

2 9

27

3o

23

3o

29

3t

28

28

28

29

3i

349

ï O HEURES.

3o

27

3i

3o

3i

29

3i

3i

28

3i

3o

3i

36o

J'ai pris les moyennes des observations faites , sans tenir au-
cun compte des observations omises j M. GambarL,à Marseille, sap-
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plée à celles-ci par des interpolations; c'est peut-être mieux. Il est
possible que j'en use ainsi pour 1828.

I. Tableau des Moyennes Barométriques*

1827.

Janvier.

Février.

Mars.

Avril.

Mai.

Jtim.

Juillet.

Août.

Septembre.

Octobre.

Novembre

Décembre.

Moyennes.

7 HEURES.

7 5 7 ? I O

757>24

7%85

759>io

756,31

757,13

760,91

758,8/5

708,87

755,47

769,56

762,35

758,55

MIDI.

757, îg

75755o

709,21

7% l3

755,79

756,78

760,39

758,58

7%27

755,4g

759>47

762,13

758,4i

5 HEURES.

757,22

757,33

758;g2

758,54

755,43

736^26

759,5e

757,78

758,75

755,25

7^8,47

76«574

757>94

IO HEURES

758,07

756,g4

759,88

758,75

756,12

7 5 7 J 2 3

760,56

758,6i

759,22

755,95

759>89

762,50

758,65

MOYENNE.

767,39

7 5 7 , I 2

759,47

758,88

755,94

756,85

760,36

708,45

759,03

755,54

759,35

762,18

758,39

Ce tableau montre que la moyenne du jour diffère peu de la
moyenne de midi.
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II résulte donc de ce tableau que la moyenne barométrique à

Montpellier, pour l'année 1827, a éié 758,3g.

IL Tableau des ftlouvemens Barométriques.

1827.

Janvier.

Février.

Mars*

Avril.*

Mai.

Juin.

Juillet.

Août.

Septembre.

Octobre.

Novembre.

Décembre.

Maximum.

Moyenne.

Minimum.

Oscillations

MAXIMUM.

768,81

769,57

767,86

765si6

762,43

76o;55

764,43

763,15

765.45

763,36

770,27

771,11

771,11

766,01

76o,55

MOYENNE.

757»39

757,12

759-47

758,88

755,94

756,85

760,36

758,45

759,03

755,54

759,35

762,13

762,13

758,39

755,54

10.56 | 6,5c)

MINIMUM.

737>95

746,o3

74558i

742.92

758,08

752,15

7 56,83

752,88

747>20

747>C3

749.98

744,90

758,08

748,58

737>95

20.69

OSCILLATIONS.

3o,86

23,54

22,00

22^4

4,35

8?4o

7?6o

10,27

18,25

i5?73

2Oj2Q

2652Ï .

3o;86

1 7?48

4,35

26,51
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Ce tableau donne, pour le plus grand maximum, 77*»11

Et pour le plus petit minimum ,

Différence 33,16

Le sommet de la colonne de mercure a donc parcouru dans le
tube, en 1827 f une longueur de 33,i6.

S- I L

Observations hygrométriques.

Ces observations ont été faites avec un hygromètre à cheveu , de
Saussure, construit par Pixii ? à Paris. La crainte de rompre le che-
veu m?a détourné de l'envie de le vérifier, de sorte que, dès son
arrivée ici, il a été mis en place tel que je l'avais reçu.

Cet hygromètre est placé dans une chambre assez grande où,
durant l'hiver , il y a du feu une partie de la journée ; mais il
est à plus de deux mètres du tuyau de la cheminée , près de la
fenêtre, contre un mur de refend , à la distance de deux pouces
du mur de face. J'avais d'abord craint que l'absorption des eaux
pluviales par ce mur qui fait face au nord ne nuisit à la mar-
che de l'instrument; mais des variations brusques et étendues, dans
le cours d'une même journée , même après plusieurs jours de for-
tes pluies 9 m'ont prouvé que mes craintes étaient peu fondées.

Les observations hygrométriques ont été^faites aux mêmes heu-
res du jour que celles du baromètre ; elles sont donc en même nom-
bre que ces dernières , et il y a les mêmes choses à dire sur les
unes et sur les autres. En voici les résultats :
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I. Moyennes hygrométriques.

1827,

Janvier.

Février*

Mars,

Avril.

Mai.

Juin.

Juillet.

Août

Septembre.

Octobre.

Novembre.

Décembre»

Moyennes.

7 HEURES.

70,0

765I

74,6

7 i } 5

75?3

68?5

5758

5 9 ? 7

67,1

85,8

80,7

83,3

72,5

MIDI,

69,1

75,3

77.5

74.9

64,5

55,4

56,5

66,5

84,8

8o,i

82,7

71,6

68,8

75,6

73,8

7°»7

74.3

63,8

55,3

56,4

66so

88;3

79^7

82,4

7 1 , 3

I O HEURES

70,0

76,2

74,i

7 1 , 5

74>9

6452

56,2

56;g

6 7 ,5

884

8O>5

83,i

72,0

MOYENNES

69,0

75,8

70,0

71,1

74,8

65;a

564

574

66,8

86,8

80,2

82,9

7 1 , 8

On voit donc qu'à Montpellier 5 la moyenne hygrométrique pour
l'année 1S27 est 71,8 ; on voit aussi que la moyenne des jours dif-
fère peu de celle de midi.
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IL Tableau des Mouvemens Hygrométriques.

1827. MAXIMUM. MOYENNE. MINIMUM. OSCILLATIONS.

Janvier.

Février.

Mars.

Avril.

Mai,

Juin.

Juillet.

Août.

Septembre.

Octobre.

Novembre.

Décembre.

Maximum

Moyenne.

Minimum

Oscillation?

84,0

85,5

79»°

83,0

76,0

75,0

70,0-

85,o

93,0

87,0

91,5

90,0

82,2

70,0

69,5

75,8

75>°

71,1

743

65?2

56,4

57,4

6658

86,8

80,2

82,9

86,S

7«,8

56,4

23 O

56.o

70,0

59,5

6o,5

62,5

44,5

42,5

43,o

54,0

81,0

7i,5

72,0

59,8

22,0

i4,o

26,0

i8,5

*955

3i,5

32,5

27,0

31,0

12,0

i5,o

19,0

22,4

125O
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Ce tableau donne, pour le plus grand maximum *

Et pour le plus petit minimum ,

9 Différence 5o,5

Ainsi, à Montpellier, pendant Tannée 1827, l'aiguille de l'h y-
gromètre a parcouru> sur le cadran, 5o divisions et demie.

§. III.

Observations Thermomélriques*

Je n'ai différé jusqu'ici la publication des précédentes obser-
vations que pour pouvoir y joindre celles du thermomètre que
je n'avais pu commencer qu'en avril 1827, faute d'un thermomètre
qui pût m/inspirer une entière confiance. Celui dont j'ai fait us^ge
est un thermomètre à chemise de verre 9 de Fortin 9 qui marche as-
sez d'accord avec un grand thermomètre étalon du même artiste ,
que j'ai reçu en même temps que celui-là , et qui a été confronté
par M. Mathieu, avant son départ de Paris , avec ceux de l'ob-
se vatoire royal. Le thermomètre tout en verre est placé en de-
hors d'une fenêtre de mon cabinet, au second étage d'une maison
faisant face au nord nord-est, de manière cependant à ne pas tou-
cher les carreaux de vitre , et là je puis l'observer en transparent.
Les observations se font d'ailleurs aux heures déjà indiquées pour
les autres instrumens. Comme la rue est un peu étroite, on sent
que , dans l'hiver , la température doit y être constamment moins
basse que dans la campagne. Il y a même Tété, de dix heures
du matin à deux heures de l'après midi , une réverbération assez
forte que j'ai tâché de combattre de mon mieux , en fermant
en paitie les contrevents, J'ai remarqué au surplus qu'il commence
à geler dans la campagne dès que mon thermomètre est descendu
à 3° au-dessus de zéro.

Tom. XIX. 3
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I, Moyennes Thermométriques.

1827 ET 1828

Avril 1827.

Mai.

Juin.

Juillet.

Août.

Septembre.

Octobre.

Novembre.

Décembre.

I Janvier 1828

Février.

Mars.

Moyennes.

7 HEURES

12,48

16,21

2O$3l

24,98

2 i ,24

17,33

I4 ,3 Ï

6,93

7.98

65g8

6,86

8,28

i3,66

MIDI.

I 7 5 I 2

19,98

23;83

29,01

25,84

225l6

I7?72

I I532

11,54

io,65

10,90

i3,75

17,82

5 HEURES

i5,gi

23,06

29,08

25,53

20,76

16,88

9,86

io,3o

9,48

10,22

12,67

16,91

0 HEURES

12,82

i5,98

Ï9.47

24,83

2i,46

i8,o3

i5,o3

8soi

8,52

6,75

73,5

14,02

1OYENNES

i4,58

17,83

21,67

26,98

23,52

*9>57

i5,98

9,o3

9,58

8,47

8,88

11,14

i5,6o

Ce tableau donne, comme l'on voit, la température moyenne de
l'aimée 9 un peu plus faible que la température moyenne d'octobre.
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IL Tableau des Blouvemens Thermomëtriques.

1827 ET 1828

Avril 1827,

Mai.

Juin.

Juillet.

Août.

Septembre.

Octobre.

Novembre.

Décembre.

Janvier 1828

Février.

Mars.

MAXIMUM,

23,70

27,70

3;,85

3153o

25;35

20,70

15,70

i6,5o

MOYENNE.

i4,58

17,83

21,67

26,98

23,52

19,57

9,o3

9,58

8,47

8,88

11,14

MINIMUM.

i2,35

15,55

i3,8o

7,60

— o,o5

2,85

3,i5

—^o,5o

i,8o

3SCILLAÏMNS

I I . 9 5

11,35

11,55

I3 , ÎO

i5,75

i4,65

n'5S

17,00

19,20

Maxiniuin.

Moyenne.

Minimum.

3i,85

22,20

14,70

26,98

1 5,6o

8,47

20,40

8,35

— o55o

19,20

i3?85

n,35

Oscillations. 20,90 7,85
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Ce dernier tableau donne, pour le plus grand maximum , 3i°,85

Et pour le plus petit minimum , — o,5o

DifFérence 3a°35

De sorte que, du i.er.avril 1827 au i .€ r avril 18285 le sommet
de la colonne de mercure a parcouru à Montpellier , dans le

du thermomètre , un espace de 32°535.

PHILOSOPHIE MATHÉMATIQUE,

Note sur la propriété fondamentale du triangle
rectiligne ;

Par M. B. D. C.

JL/ANs la deuxième note de ses Eîémens de géométrie , M. Le-
gendre a donné, de l'égalité de la somme des angles de tout trian-
gle rectiligne à deux angles droits , une démonstration contre la-
quelle on a élevé des objections de plus d'un genre , tant en France
que dans l'étranger (*). En réfléchissant sur ce sujet , il nous a
paru qu'on pouvait ôter à ces objections une grande partie de leur
force , en présentant cette démonstration sous la forme suivante.

Soient a ? b , c trois nombres abstraits représentant les côtés d'un

(*) Voy. en particulier tona. X , pag. 161 et tom. X V I , pag. aSg du
présent recueil»

J. D. G.
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triangle rectilîgne , mesurés avec une longueur quelconque prise
pour unité; soient A9Bf C trois nombres abstraits représentant les
angles respectivement opposés , mesurés avec un même angle quel-
conque pris également pour unité ; les six nombre a , b , c , A
B, C varieront avec l'unité de mesure des longueurs et avec l'unité
, , , . , a b c A B

ae mesure des angles ; mais les rapports -*- , —, — , — , — f
b c a M C

C
— en seront tout à fait indépendans.

Cela posé, comme un triangle est1 complètement déterminé par
ses trois côtés, chacun des angles A , B , C doit être une fonction
déterminée des trois longueurs a , b , c ; en outre , cette fonction
doit être de telle forme qu'elle demeure la même si, sans chan-
ger l'unité de mesure des angles , on fait varier l'unité de mesure
des côtés ; ce qui exige évidemment qu'elle ne se compose que des
rapports des côtés entre eux; et, comme ces rapports sont tou-
jours traduisibles en rapports de deux d'entre eux au troisième 9

a

, « c

puisque, par exemple, --^^"x? nous pourrons poser

Or, on peut, en premier lieu, concevoir qu'entre ces trois équa-
a b

lions on élimine les deux rapports — , — , ce qui conduira à
c c

une équation en A 9 B, C seulement ; il y a donc ; entre h$ trois
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angles de tout triangle rectiligne , une relation indépendante des
longueurs de ses cotes ; ce qui revient encore à dire que , si deux
angles d'un triangle sont respectiçement égaux à deux angles d'un
autre triangle , le troisième angle sera égal de part et d'autre.
On voit enfin qu'un triangle rectiligne rfest point déterminé par
ses seuls angles , puisque donner les trois angles revient à n'en
donher que deux seulement.

Deux des trois équations ( Ï ) suffisent pour déterminer les deux

rapports —, — ; cela revient à dire que, lorsque deux des an~

gles d'un triangle rectiligne sont donnés % les rapports entre les
trois cotés de ce triangle , pris tour à tour, deux à deux , sont
complètement déterminés ; ce qui signifie, en d'autres termes, que
deux triangles reciilignes qui ont deux angles égaux -, chacun à
chacun , ont leurs côtés homologues proportionnels.

Conservons les mêmes notations , mais supposons qu'il soit ques-
tion d'un triangle sphérique, alors le triangle ne sera pas déter-
ïniné par ses trois côtés ; car si , sur deux sphères inégales, on
construit deux triangles sphériques dont les côtés saient égaux cha-
cun à chacun, ces triangles ne seront point égaux, Afin donc qu'un
triangle sphérique soit complètement déterminé, il ne suffit pas de
donner les longueurs a , h , c de ses trois côtés , il faut donner em
outre la longueur r du rayon de la sphère à laquelle il appartient,
longueur que nous supposerons d'ailleurs rapportée à la même unité
linéaire.

Chacun des trois angles À >i?, C du triangle devra donc être
une fonction déterminée de ces quatre longueurs ; de plus , cette
fonction devra être de telle forme qu'elle demeure la même si , sans
changer l'unité de mesure des angles, ou fait YaFier l'unité de me-
sure des longueurs ; ce qui exige évidemment que ces fonctions
ne renferment que les rapports entre ces quatre longueurs prises
deux à deux, ou, ce qui revient au même, les rapports de l'un®

aux trois autres; on devra donc avoir
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.5 =
fa b c

> 7 -

équations en nombre insuffisant pour éliminer les trois rapports

~ 5 — > — y roais qui e n donneront les valeurs en fonction de

A^B'9 C et donneront conséquemment les longueurs des côtés 5 lorsque
le rayon de la sphère sera connu. Ainsi 5 dans un triangle sphèrique 9

il ri existe point de relation entre les angles ? indépendante des cô~
tes, et un tel triangle est tout aussi complètement déterminé par
ses trois angles que par ses trois cotés.

Retournons présentement au triangle rectiligne ; il est deux au-
tres cas où un tel triangle est complètement déterminé par trois
de ses parties , savoir :

i,° Lorsqu'on donne deui angles et le côté compris;
2.° Lorsqu'on donne deux côtés et l'angle compris ; et ces deux

cars ont cela de remarquable qu'ils se traduisent l'un dans l'autre
par la simple permutation des mots angle et côté entre eux. M,
Legendre étant parti du premier, comme principe, pour établir qu'il
existe entre les angles de tout triangle une relation indépendante
de ses côtés, on a conclu , de la relation entre les deux cas , cn'en
admettant le second à son tour comme principe ? et permutant sim-
plement entre eux les mots angle et côté, dans la démonstration
de M. Legendre , on établirait, par un raisonnement tout aussi ri-

4 goureux que le sien , qu'il existe ? entre les trois côtés de tout trian-
gle , une relation indépendante de ses angles ; conclusion absurde
qui infirme complètement la validité du raisonnement qui y con-
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duît, et semble devoir infirmer également le raisonnement de M*
Legendre qui paraît n'en différer aucunement.

Mais on doit remarquer qu'il n'en est ainsi qu'autant qu'on fait
abstraction de tout principe subsidiaire de nature à rompre l'appa-
rente analogie entre les deux cas ; et voilà précisément pourquoi
nous n'avons pas cru devoir débuter comme l'a fait M. Legendre,
Mais présentement que nous avons déjà démontré qu'il existe , en-
tre les trois angles de tout triangle, une relation indépendante de
ses côtés ; comme il est d'ailleurs manifeste, à priori , qu'il ne
saurait existerx au contraire, en|re les trois côtés une relation in-
dépendante des angks , attendu que deux côtés d'un triangle étant
donnés, on peut prendre le troisième d'une infinité de manières dif-
férentes , toute parité qu'on prétendrait établir entre les deux ca&
s'évanouit ainsi complètement.

Considérons en effet les deux équations

on n'est nullement fondé à dire que C ne saurait figurer dans îe
second membre de la première, car, à cause de la relation que
Ton sait exister entre les trois angles de tout triangle , on conçoit
la possibilité de remplacer C dans ce second membre par une fong?»
lion équivalente de A et B, qui pourrait fort bien alors n'y figu-
rer que par leur rapport, de sorte qu'on aurait ainsi

équation qui n'offre plus rien d'absurde (*)„

(*) W nous paraît que, pour qu'on put remplacer C par une fonctioa

équivalente du rapport — y il faudrait que l'équation èe relation

les trois angles de tout triangle fui réductible à cette forme
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Au contraire, comme il n'existe aucune relation obligée entre les

trois côtés d'un triangle , on n'a pas la même ressource pour sau-
ver l'absurdité de la seconde équation, aussi long-temps qu'on lais-
sera subsister c dans son second membre ; cette longueur ne sau-
rait donc y entrer, et Ton doit avoir simplement

ce qui rentre complètement dans ce-que nous avons démontré dès
le début.

Au surplus, quand bien même tous les géomètres s'accorderaient
à regarder comme tout â fait rigoureuse, soit la démonstration de
M. Legendre ? soit celle que nous venons de tenter de lui substi-
tuer, soit enfin tout autre démonstration d'une forme analogue , on
ne saurait se dissimuler que ces sortes de démonstrations seraient
tout à fait déplacées dans le texte d'un traité élémentaire de géo-
métrie , à raison de leur peu d'analogie avec le ton général de ces
sortes d'ouvrages , pour lesquels conséquemment il resterait toujours
à désirer quelque équivalent.

/n—"jp f J_.

or, à mains qu'on admette, arec plusieurs géomètres, que tout angle est ira
nombre abstrait, cette équation nous parait inadmissible , puisqu'en variant
Punité de mesure des angles, son premier membre varie, tandis que le se-
cond ne change pas de valeur. On trouvera, au surplus* dans l'article du
tom. X, déjà cité, de plus amples réflexions sur ce sujet.

J. D. G.

Tom. XIX 4
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GEOMETRIE BE SITUATION.

Additions et corrections au mémoire sur les
propriétés des systèmes de coniques, inséré
à la pag. 277 du précédent volume ;

Par M, CHASLES , ancien élève de l'Ecole polytechnique»

JLjES circonstances dans lesquelles nous avons écrit le mémoire in-
séré à la pag, 277 du précédent volume ne nous ayant pas laissé
toute la liberté d'esprit que nous aurions désiré , il en est résulté
diverses sortes d'omissions plus ou moins graves et quelques inexac-
titudes de rédaction; Nous destinons cette note à les signaler ,
ainsi que quelques incorrections qui se sont glissées dans l'impres-
sion»

47. Nous avons dit (20) : M. Poncelet a discuté très-clairement
l'existence des centres d'homologie et des axes de symptose ; il faut
lire : cordes communes réelles ou idéales au lieu de : axes de symp-
tose , parce qu'il a y une distinction à faire entre les six cordes com-
munes à deux coniques qui se coupent en quatre points ; il est pos-
sible , en effet, qu'elles ne soient pas toutes des axes de symptose.
C'est ce que nous allons faire voir , en reprenant la discussion des
axes de symptose et des centres d'homologie de deux coniques ;
et en examinant un cas qui n'est pas énoncé dans Fart. 20 : ce-
lui où les deux coniques se coupent en quatre points , sans avoir
de tangentes communes. Cela nous justifiera pleinement d'avoir eu
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recours à une expression nouvelle : celle d'axe de syrnptose $ en
prouvant qu'elle était indispensable.

48. Les théorèmes (17) ou (ig) constituent la propriété fonda-
mentale des axes de symptose et des centres d'homologie de deux
coniques situées dans un même plan.

D'après les théorèmes de la première colonne on voit que , pour
que le point de concours de deux tangentes communes à deux co-
niques soit un de leurs centres d'homologie, il faut que toute droite
qui, menée par ce point , rencontre l'une des coniques, rencontre
également l'autre, Cette; condition exige que les deux coniques soient
dans un même angle de ces deux tangentes, ou partie dans un
angle et partie dans son opposé au sommet.

Cela fait voir que, quand deux coniques sont extérieures l'une
à l'autre , elles nont que deux centres d'homologie , et, par suite ,
deux axes de symptose , bien qu9il y ait six points de concours
de leurs quatre tangentes communes»

Pour quatre de ces points de concours , une droite menée par
l'un d'eux ne pourrait à la fois rencontrer les deux coniques ; la
construction des théorèmes (17) et (19) ( i. re colonne), n'aurait
donc plus lieu ; ces quatre points ? par conséquent, ne sont pas des
centres dliornologie.

La méthode > par laquelle nous avons déduit les propriétés de
deux coniques quelconques de celles de deux coniques homothéti-
tiques f confirme ( ainsi que le fait voir l'art. 14 ) la distinction
que nous venons d'établir entre les six points de concours des qua-
tre tangentes communes à deux coniques extérieures Tune à l'autre.

5o. Quand les deux coniques ont quatre tangentes communes eî
se coupent en quatre points, chacun des six pointé de concours,,
deux à deux de leurs quatre tangentes communes , est un centre
d'homologie, parce qu'une droite menée par chacun de ces points
peut à la fois rencontrer les deux courbes ; de sorte que la cons-
truction des numéros 1 7 et 19 ( i.re colonne ) est toujours possible.

Cela est évident pour deus ellipses qui se coupent eu quatre
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points , parce que deux quelconques de leurs quatre tangentes com* -
munes comprennent toujours ces deux courbes dans un même angb»

Mais deux coniques quelconques qui se coupent en quatre points
et qui ont quatre tangentes communes peuvent être considérées
comme les polaires réciproques de deux ellipses ; car il suffit de
prendre , pour centre de la conique directrice ? un point compris dans
les deux coniques. Or , ces deux ellipses se couperont en quatre
points et auront quatre tangentes communes ; elles auront donc six
centres d homologie et six axes de symptose ; et par suite les deux
coniques proposées auront également six axes de symptose et six
centres d'homologie. v

Dune , deux coniques quelconques qui se coupent en quatre
points et ont quatre tangentes communes , ont toujours six centres
d'homologie et six axes de symptose.

5i. Considérons maintenant deux coniques se coupant en quatre
points et n'ayant aucune tangente commune ; leurs polaires récipro-
ques auront quatre tangentes communes et seront extérieures Tune
à l'autre; elles n'auront donc (48) que deux axes de symptose et
deux centres d'homologie ; d'où il suit que les deux coniques pro-
posées n'auront aussi que deux centres d'homologie et deux axes
de symptose, bien qu'elles aient six cordes communes.

Donc , deux coniques qui se coupent en quatre points et n'ont
pas de tangentes communes, n'ont que deux axes de symptose et
deux centres d'homologie.

L'une de ces deux coniques sera toujours une hyperbole ; car
nous venons de voir qu'elles sont les polaires réciproques 4e deux
coniques extérieures l'une à l'autre ; le centre de la conique direc-
trice sera toujours au-dehors d'une au moins de ces deux courbes ;
l'autre conique pourra être indistinctement une hyperbole , une el-
lipse ou une parabole*

II est facile de distinguer celles des six cordes communes aux
deux coniques qui seront les axes de symptose ; ce sont celles qui
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atrront des points au-dehors de deux coniques ; les quatre autres
Seront entièrement comprises dans ces courbes.

Si, par exemple, on a une hyperbole et une ellipse qui la ren-
contrent en quatre points dont deux sur une branche et deux sur
l'autre , les axes de syraptose seront les deux cordes qui joindront
les points d'une même branche , parce que les prolongemens de
ces cordes seront au-dehors des deux coniques. Chacune des qua-*
tre autres cordes, au contraire, joindra un point d'une branche à
un point de l'autre branche , et aura tous ses points compris dans
l'une ou dans l'autre courbe*

On voit clairement que les deux coniques n'ont aucune tangente
commune ; car toute tangente à l'hyperbole passe entre ses deux bran-
ches et rencontre par conséquent l'ellipse qui est aussi comprise
entre les deux branches , puisqu'elle les rencontre Tune et l'autre.

53. La distinction que nous venons d'établir entre les six cor-
das communes aux deux coniques, correspond à celle que nous
avons faite (4$ entre les six points de concours des quatre tan-
gentes communes à deux coniques extérieures Tune à l'autre.

Elle est également une conséquence des deux théorèmes (17)01
(19) ( 2*me colonne ) , d'après lesquels il faut, pour qu'une corde
commune à deux coniques soit un axe de symptose, qu'on puisse
mener , par des points de sa direction, des tangentes à l'une et à
l'autre courbe.

54. Quand deux coniques ne se coupent qu'en deux pointe, elles
n'ont qu'un système de deux axes de symptose.

Car f si elles avaient deux autres axes de syinptose , ils passeraient
par les deux points d'intersection des deux coniques et les cou-
peraient en deux autres points ; les ''deux coniques auraient donc
quatre points communs, ce qui est contre l'hypothèse.

55. Quand deux coniques noni ni points communs ni tangentes
communes 9 elles ont un système d'axes de symptose et n'en ont
qu'un seul.

Nous avons déjà dit (20) que les deux coniques ont toujours
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un système de deux axes de symptose, parce qu'il en existe gé-
néralement trois dont la recherche donne lieu à une équation du
troisième degré qui doit avoir au moins une racine réelle.

Dans le cas énoncé où deux coniques n'ont aucun point com-
mun , il ne saurait exister un deuxième système de deux axes de
symptose; car ces deux axes couperaient les deux premiers en qua-
tre points réels qui appartiendraient à la fois aux deux coniques,
ce qui est contre l'hypothèse.

56. Nous venons de passer en revue les différens cas que peut
offrir le système de deux coniques, et notre discussion nous a con-
duit au résumé que voici :

Deux coniques situées dans un même plan ont six axes de syrnp-
iose et six centres d'homologie quand elles se coupent en quatre
points et qu elles ont quatre tangentes communes*

Dans tous les autres cas, même dans celui où elles se coupent
en quatre points , sans avoir de tangentes communes v elles noni
que deux axes de symptose et deux centres d'koniotogie.

57. La discussion précédente fait voir qu'il était indispensable de
donner un nom particulier à celles des cordes communes à deux
coniques que nous avons appelées axes de symptose , et que la dé-
nomination simple de cordes communes est insuffisante, puisqu'il
peut arriver que , six cordes étant réelles , il n'y en ait pourtant
que deux qui jouissent des propriétés qui constituent les axes de
symptose.

C'est par une raison toute semblable que Ton n'aurait pu dé-
signer simplement les centres d'homologie comme les points de con-
cours des tangentes communes aux deux coniques, puisqu'il peut
arrive* que deux seulement de ces six points jouissent des proprié-
tés qui constituent les centres d'homologîe.

58» Malgré la différence qui peut exister (5i) entre les six cor-
des communes à deux coniques, il est une propriété générale qui
leur appartient à toutes iodistitictement , et que nous n'avons démon-
trée que pour les axes de symptose; elle consiste en ce que les polaires
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dun point quelconque d'une corde commune à deux coniques , pri-
ses par rapport à ces deux couries, se coupent sur la corde même.

Cela résulte de la troisième partie du théorème de l'art. 3g ( 2.010

colonne ) , parce que deux cordes communes peuvent être regar-
dées comme une conique qui passe par les quatre points d'inter-
seetion des deux proposées.

5<). Pareillement , les six points de concours des quatre tangen-
tes communes à deux coniques, jouissent tous d'une propriété gé~
nérale que nous avons démontrée (21) pour les centres d'homolo-
gie; elle consiste en ce que toute droite menée par un quelconque
des six points df* concours des quatre tangentes communes à deux
coniques a ses pôles, relatifs aux deux courbes , en ligne droite
avec ce point de concours.

Ce théorème se déduit du précédent par la théorie des polaw
res réciproques,

60. Les axes de symptose et les centres diiomologie jouissent
de propriétés plus générales que celles énoncées par les théorèmes
(17) et (19); nous les donnerons après avoir exposé les propriétés
analogues des coniques homothétiques.

6t* Les deux triangles dont il est question à l'art. 3o ( pag*
290 ) n'en font évidemment qu'un seul; car on sait, d'après les
élémens de la théorie des transversales, que, quand un quadrila-
tère est inscrit dans deu& coniques, le point de concours de deux
côtés opposés est, par rapport à Tune et à l'autre courbes , le pôle
de la droite qui joint le point de concours des deux autres côtés
au point de concours des deux diagonales.

Nous reviendrons sur cette question qui fait partie essentielle
des propriétés du système de deux coniques, mais que nous avons
dû ajourner jusqu'à ce que nous ayons fait connaître certaines pro-
priétés des coniques homothétiques, parce que la considération des
$xes de symptose est insuffisante pour la traiter complètement. Car
il existe en général trois points dont chacun a pour polaire , par
rapport à deux coniques données, la droite qui joint les deux au-
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très, et ces trois points peuvent être réels , bien que les deux co-
niques n'aient qu'un seul système d'axes de symptose.

Nous verrons, en effet, que ces trois points sont réels toutes les
fois que les deus coniques se coupent en quatre points ou ne se
coupent pas du tout % et que deux sont imaginaires et le troisième
toujours réel % quand les deux coniques ne se coupent qufen deux
points.

Nous verrons aussi que deux des trois points en question, divi-
sent harmoniquement les segmens formés sur la droite qui les joint
i.® par les deux axes de symptose qui passent par le troisième point ;
Zs° par les deux centres d'homologie qui leur correspondent ; 3.° par
chacune des deux coniques proposées ; et y en général, par toute
conique qui passerait par les quatre points d'intersection réels ou
imaginaires de ces deux courbes (*).

GÉOMÉTRIE DE SITUATION.

Note sur une inadvertance grave , commise à
la pag. 336 du précédent volume ;

Par M. GERGONNE.

\5QYT qu'on assujettisse une courbe plane à passer par un poïni
donné ou qu'on exige qu'elle touche une droite donnée 9 i\ n'en ré-
sulte jamais qu'une condition unique, propre seulement à déter-
miner un des eoefficiens de son équation ; et si Ton assujettit à la

(*) Les corrections moins importantes sont indiquées dans Terrata du pré-
cédent volume*

J. D. G,
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fols cette courbe à passer par un point donné et à toucher une
droite donnée , cela ne devra compter que pour deux conditions
seulement, propres à déterminer deux des coefficiens de son équa-
tion ; il importe peu d'ailleurs que le point donrïé soit hors de la
droite donnée ou qu'il soit situé sur cette droite.

Si , en effet , dans le dernier cas 9 (a , b ) est le point donné ,
l'équation de la droite donnée sera de la forme

y—l-=zrn{x—a) ;

il faudra d'abord exprimer que le point ( a, l ) satisfait à l'équa-
tion de la combe , ce qui donnera une première équation de con-
dition ; il faudra ensuite exprimer que la tangente à la courbe ea
ce point 9 dont l'équation sera de la forme

y—b=M(x—a) >

coïncide avec la droite donnée, ce qui donnera 7 pour seconde équa-
tion de condition , M=rn.

On voit, en particulier ? que , si deux triangles sont inscrit et cir-
conscrit l'un à l'autre, assujettir une courbe à être à la fois cir-
conscrite à l'un et inscrite à l'autre ? c'est l'assujettir à six condi-
tions distinctes ; si dorac il s'agit d'une ligne du second ordre , dont
la détermination n'exige, comme l'on sait 9 que cinq conditions
seulement, le problème sera plus que déterminé ; il ne sera donc
possible que sous certaine condition; aussi a-t-on vu ( tom* XYIîï,
pag. 3s3 ) qu'il fallait pour cela que les points de concours des
directions des côtés opposés dans les deux triangles , appartinssent
tous trois à une même droite* On a vu aussi qu'il fallait que les
droites 5 qui joignaient les sommets opposés des deux triangles 5 con-
courussent toutes trois en un même point ; mais ce n'est point là une
seconde condition, car on a vu ( tom. XVI, pag. 219) que ces
deux conditions se comportent réciproquement»

Tom. XIX 5
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Soit qu'on assujettisse une surface courbe à passer par un point

donné ou qu'on exige qu'elle touche un plan donné ^ il n'en ré-
sulte jamais qu'uue condition unique, propre seulement à détermi-
ner un des coefîîciens de son équation. Si on l'assujettit à la fois
à passer par un point donné et à toucher un plan donné 9 il y
aura à faire une distinction qui n'a pas lieu dans la géométrie
plane* Ou bien le point donné sera situé hors du plan donné, au-
quel cas cela ne devra compter que pour deux conditions pro-
pres seulement à déterminer deux des coefficiens de l'équation de
cette surface , ou bien le point donné sera situé dans le plan donné,
et alots les deux conditions devront compter pour trois 9 propres
à déterminer un nombre égal de coefficiens.

Si , en effet, dans le dernier cas ( a, b } c ) est le point donné,
l'équation du plan donné sera de la forme

z—ci=ip{x—a)-\-ç(y— l) ;

il faudra d'abord exprimer que le point {a, $9 c ) satisfait à l'é-
quation de la surface proposée , ce qui donnera une première équa-
tion de condition ; il faudra ensuite exprimer que le plan tangent
à la surface en ce point, dont l'équation sera de la forme

coïncide avec le plan donné, ce qui donnera les deux autres équa-
tions de condition Pz=:p , .Q=zym

On voit, en particulier , que , si deux tétraèdres sont inscrit et
circonscrit l'un à l'autre , assujettir une surface courbe à être à la
fois circonscrite à l'un et inscrite à l'autre, c'est l'assujettir h douze
conditions distinctes , et non pas à huit , comme nous l'avions dit
par une inadvertance tout à fait impardonnable , et justement re-
levée par M. Bobilher dans la note de la page 336 du précédent
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Volume; note qui , consoquemment, doit être réputée non avenue.
Si donc la surface est du second ordre seulement, comme neuf
conditions suffisent pour déterminer une telle surface , le problème
sera plus que déterminé et ne sera possible que sous certaines con-
ditions ; aussi MM. Steiner et Bobiiiier ont-ils reconnu l'un et l'au-
tre qu'alors les droites, suivant lesquelles se coupent les plans des
faces opposées des deux tétraèdres, doivent appartenir toutes quatre
à une même surface gauche du second ordre 5 et que les droites
qui joignent les sommets opposés de ces tétraèdres doivent aussi
appartenir à une même surface gauche de cet ordre (*).

Mais voiià qu'après avoir accusé ces deux élégans théorèmes de
pécher par excès , nous sommes présentement obligés de les accu-
ser de pécher par défaut , c'est-à-dire , d'être incomplets. En ad-
mettant, en effet, qu'ils ne se comportent pas l'un et l'autre, comme
leurs analogues 5 dans la géométrie plane , ce qui est tout au moins
très-douteux 9 ils ne constitueraient encore que deux conditions dis-
tinctes, tandis qu'ici le nombre des conditions imposées excède de
trois unités le nombre de celles qui sont nécessaires pour la dé-
termination complète de la surface dont il s'agit. Voilà donc un
sujet de recherche dont le défaut de loisir ne nous permet mal-
heureusement pas de nous occuper dans ce moment, mais auquel
les deux estimables géomètres^ auteurs de l'un et de l'autre théo-
rèmes , voudront peut-être bien donner quelque attention.

(*) Au moment où nous corrigeons l'épreuve de cette feuille, nous re-
cevons une lettre de M. Chasles qui signale également l'inconcevable er»
reur dont nous faisons ici l'humble aveu.
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Problème de situation;

Par M- J* S T E I N E R , de Berlin.

/v\v\m\\/vv\/\f\/vv\'vv\/v\

JLJE nombre des faces d'un polyèdre étant donné, on peut deman-
der de quelle nature peuvent être ces faces. On trouve , pour les
cas lus plus simples, les résultats que voici:
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Quelle est la loi générale ?
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Développement d^une série de théorèmes relatifs
aux sections coniques ;

Par M. J. STEINER.

, de l'un quelconque P des points du plan d'un triangle ABC
( fig. 1 ) , on abaisse, sur les directions de ses côtés BC, CA,ÂB,
respectivement ? les perpendiculaires P.V, PB7, PCX, et qu'on joigne
le niêine point à ses sommets par des droites P on aura

—CP2
 ?

CB'2—AB>2=:GPa—ÂP2 ,

Jo2—E&2=ÂP2—1P3 ;

dfoù , en ajoutant, réduisant et transposant ,

7 ; C)

(*) Pour un triangle sphérique , on aurait

B'. Cos.BC. COJ .CA '=COJ .BA ' . COJ.CB ; . CosAO ;

*oi\ on déduirait des conséquences analogues*

Tom. XIX, n.° II9 i.er août 1828. 6
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telle est donc la condition nécessaire et suffisante pour que des
perpendiculaires élevées aux trois côtés BC ? CA , ÀB d'un triangle
ABC ? par des points A', B ' , C de leurs directions respectives,
concourent toutes trois en un même poiat P.

Il en résulte immédiatement i.° que les perpendiculaires éle-
vées aux côtés d'un triangle 5 par leurs milieux , concourent toutes
trois en un même point ; 2.0 que les perpendiculaires abaissées sur
les directions de ces mêmes côtés, des sommets respectivement op-
posés ? concourent aussi toutes trois en un même point.

Par les pieds A' , B' , C ; des trois perpendiculaires, concevons
un cercle dont O soit le centre 5 lequel coupera de nouveau les
mêmes côtés du triangle aux points ku , Wf, C ; /. Par les points
P et O soit conduite nue droite , et soit prolongée cette droite au-
delà du point O d'une quantité OP/ = OP. Parce que les perpen-
diculaires qu'on abaisserait du point O sur les directions des trois
côtés du triangle tomberaient sur les milieux des cordes intercep-
tées A'Ay/, B'B^ , CyC//y; il s'ensuit que les perpendiculaires éle-
vées à ces mêmes côtés, par les points Af/, B", G'7, doivent con-
courir toutes trois au point P'. On a donc ce théorème:

« Si 9 de l'un quelconque P des points du plan d'un triangle
» ABC, on abaisse, sur les directions respectives des côtés BC v

» CA 5 AB de ce triangle , les perpendiculaires PA ; , PB7, PC /
5 et

» si ? par les pieds A / , W, C/ de ces perpendiculaires ? on fait
» passer une circonférence dont O soit le centre et qui coupe

>>> de nouveau les directions de ces mêmes côtés en A", B ; / , C"9

\» les perpendiculaires élevées respectivement à ces mêmes côtés , par
» ces trois derniers points 9 se couperont toutes trois en un même
» point P7 tel que le point O sera le milieu de la droite PPX ».
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3.

Soient menées les droites B'C;
5 C'A', A'B; ainsi que B;/C". Les

angles AB'C' et AG^B77 qui ayant leurs sommets à la circonfé-
rence s'appuient sur le même arc B^C, sont égaux; mais à cause
des quadrilatères B'PC'A , C ' P ^ ' A inscriptibles au cercle ? ces an-
gles sont respectivement égaux aux angles APC'', AP'B'7 ; donc ces
derniers sont aussi égaux entre eux. D'un autre côté, les angles
B'PC', B^P'C'7 ; supplémens d'un même angle A, sont égaux en-
tre eux ; donc 3 par soustraction , les angles ÀPB/ et AB/C// sont
aussi égaux ; et il en doit être de même de leurs complémens PAB;

et P/AG// ; mais à cause du quadrilatère inscrîptible au cercle,
à PAB' on peut substituer son égal PC'B'; donc ce dernier est égal
à P7AC"; puis donc que les côtés C;P et A G77 de ces deux angles
sont perpendiculaires l'un à l'autre, leurs côtés C7B7 et AP7 seront
aussi perpendiculaires l'on à l'autre ; et il devra en être de même
des droites C'A', A'B'., comparées respectivement aux droites PyB,
P'C.

Soit a le milieu de la corde B /C / , la droite Qa devra être per-
pendiculaire a B /C / , et, par suite, parallèle à P'A« Pour les mêmes
raisons si b et c sont les milieux respectifs de C'A' et A/B/

 ? les
droites O£ et O^ seront respectivement perpendiculaires à celles-là.

On a doue ce théorème :
« Si, de l'un quelconque P des points du plan d'un triangle ABC ,

» on abaisse, sur les directions de ses côtés BA , CA , AB, les per-
» pendiculaires PA ; , PB7 , PG;

5 et si 5 des sommets du triangle ,
» on abaisse , respectivement sur les directions des côtés B^^ , C'A7,
t> A/B/ du triangle A^'G7, d'autres perpendiculaires , ces trois der-
» nières concourront en un même point P' (*). En outre , si l'on

(*) Ce théorème n'est qu'un cas particulier d'un autre que nous avons pro-
posé de démontrer, sous le n.° 54 ? dans le II,e volume du Journal de M.
Crelle ( pag. 287 ) où 011 trouvera aussi ses analogues , sous les n.as 55 et 56»
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» abaisse de ce dernier point , sur les directions des mêmes côtes
» du triangle ABC , des perpendiculaires P'A", P'B", P'C" , les six
» points A', B', C , A" , !^ ' , C/x appartiendront à une même cir-
» conférence ayant son centre O au milieu de la droite PP' »•

De là on déduira facilement la solution de ce problème :
« Des droites PA 5 PB,PC étant menées de l'un quelconque P

» des points du plan d'un triangle A.BG à ses trois sommets ; ins-
» crire à ce triangle un autre triangle A'B'C, dont les trois eô-
» tés B 'C , C'A', À'B' soient respectivement perpendiculaires à ces
*> droites ? »

4-
Nous venons de faire voir que les angles PAC et P'AE sont

égaux ; or, comme les circonstances sont les mêmes relativement
aux trois sommets du triangle ABC , on doit avoir

Ang.PAC=Àng.P'AB ,

Ang.PBA=:Ang P/BC ,

^ Ang.PCB—Ang P'CA ;

d'où résulte ce théorème : *
« Par Tun quelconque P , des points du plan d'un triangle ABC ,

» soient menées à ses sommets des droites PA ? PB, PC ; si 9 par
» les mêmes sommets , on mène trois nouvelles droites faisant
» respectivement, avec les côtés AB , BC ? CA ,. des angles égaux aux
» angles PAC f PBA , PCB 5 ces trois dernières droites concourront
» en un même point Px ; et si , des points P , P7 on abaisse sur
» les directions des côtés BC 5 CA , BA du triangle les perpendicu-
» laires PA / , PB^, PC7 P-'A^ , P'B" , P^C^ , leurs pieds A / , B̂  ,
» Cx , A/V

 ? B# / , G;/ appartiendront tous six à une même circon-
» férence ayant son centre O au milieu de la droite PP' ».
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5.

Soit prolongée la perpendiculaire PA' > au-deià de A', d'une
quantité A /Q=A /P, et soient menées QP% coupant BC en M , OA7,
qui sera parallèle à P'Q et d'une longueur moitié moindre , et en-
fin PM ; d'après cette construction on auraMP = MQ , et5 par suite,
MP+MP'=P 'Q=2OA' ; en outre les angles P'MB , PMA , tous
deux égaux à l'angle QMC , seront conséqueinment égaux entre eux»
11 résulte de tout cela que.les points P 5 P' sont les deux foyers
d'une ellipse tangente en M au côté BC , laquelle a son centre
en O et son grand axe égal au diamètre du cercle dont le point
O est le centre; d'où il résulte qu'elle touche .ce cercle aux deux
extrémités de son grand axe ; et , comme ce que nous venons de
prouver, relativement au côté BC du triangle, se prouverait éga-
lement des deux autres, on a le théorème suivant:

« i.° Chacun des points de l'intérieur d'un triangle peut être con-
» sidéré comme l'un des foyers d'une ellipse inscrite à ce trian-
» gte ;

» 2.0 Les pieds des perpendiculaires abaissées des deux foyers
» d'une ellipse sur ses tangentes sont tous situés sur une même
» circonférence , ayant le grand axe de cette ellipse pour diamètre ;

» 3.° Un angle étant arbitrairement circonscrit à une ellipse ,
* les -droites menées de ses deux foyers au sommet de cet angle
» font des angles respectivement égaux avec ses deux côtés »•

En conséquence de cette dernière propriété et de l'égalité des
angles B ^ C ^ i î^PC", les triangles rectangles P'C"A, P'B"A sont
respectivement semblables aux triangles rectangles PB;A? PC;À P ce
qui donne

P'B^PC'rÀP'.-AP ,

et , par suite ,
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c'est-à-dire ,
« 4,0 Le rectangle des perpendiculaires abaissées des deux foyers

* d'une ellipse sur une quelconque de ses tangentes est constant ,
» et conséquemment égal au carré du demi-petit axe de l'ellipse »•

Entre divers cas particuliers nous signalerons seulement le sui-
vant :

Supposons que le point P ( fi g. 2 ) soit le centre du cercle cir-
conscrit au triangle ABC; les pieds A /

5 B /
? C / des perpendiculai-

res PA' , PB' 5 P C 5 abaissées de ce point sur les directions des cô-
tés BC , CA , AB ? en seront respectivement les milieux ; et, par con-
séquent, les droites WQf 9C

/A/
 $ A

/B/ seront respectivement parallè-
les aux côtés BC , CA , AB ; et comme, par exemple, la droite
AP' est (3) perpendiculaire à B'C7, elle sera aussi perpendiculaire
à BC , et 5 par conséquent, le point P7 sera le point de concours
des perpendiculaires abaissées des sommets du triangle ABC sur les
directions des côtés respectivement opposés. On a donc ce théorème :

« Les milieux A', B ' , C des côtés d'un triangle ABC 5 et les pieds
» A//f, B/y , C/x des perpendiculaires abaissées de ses sommets sur les
» directions de ces mêmes côtés r sont six points situés sur la cir-
» conférence d'un même cercle dont le centre O est au milieu
» de la droite PPX qui joint le centre P du cercle circonscrit au
» triangle ABC avec le point P ; de concours des perpendiculaires
» abaissées de ses sommets sur les directions des côtés opposés. Ces
» deux points P,.P / sont les foyers d'une ellipse inscrite au trian-
» gle ABC ; laquelle est concentrique avec le cercle circonscrit au
» triangle À'B'C' et a son grand axe égal au diamètre de ce cer-
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» cîe ? ou , ce qui revient au môme ( puisque les cotés du trian-
y> g!e A/B/C/ sont moitié de ceux du triangle ABC ) , égal au rayon
» du cercle circonscrit au triangle ABC En outre, les trois rayons
» PA , PB, PC seront respectivement perpendiculaires aux côtés
» B"C", C'A", A"B" du triangle 'A"B"C" ; enfin ces rayons se-
» ront tellement dirigés que les angles PAB , PBG , PGA , sont res-
pectivement égaux aux angles A"AC ,P/XAB , BVJBA , C/'CB ».

Sur la droite PP / il existe un quatrième point G ( Carnot ) ,
intersection des droites A A / , B B / , C(7 qui joignent les sommets
du triangle ABC aux milieux des côtés respectivement opposés,
et les quatre points P , G, O , P' sont situés harmoniquement, c'est-
à-dire % de telle sorte qu'on a GO : GP : :P'O :P'P , ce qui revient
à i ; 2 : : 3 : 6. En outre , les points P'? G sont les centres de simi-
litude des deux cercles qui ont leurs centres en O et P ; donc le
cercle qui a son centre en O passe par les milieux des droites P'A,
P'B , P'C ; et les points A" , B" 9 C" 9 sont les milieux respectifs
des droites P'A'", P 'B ' " , P-'CW , prolongemens des droites P'A" ,
P 'B" , P 'C" , jusqu'à la rencontre de la circonférence qui a son cen-
tre en P (*}.

Le cercle qui a son centre en O jouit , en particulier , de celte
propriété bien digne de remarque : ce il touche chacun des cjua-

(*) De là , en particulier, on conclura facilement ce théorème:
« Si , sur la circonférence du cercle qui a son centre en P ? on prend ar-

v bitrairement quatre points À , B , C, D j ces quatre points seront, trois
» à trois , les sommets de quatre triangles inscrits auxquels correspondront
» quatre points P ' , quatre points O et quatre points G, Or , les quatre
» points de chaque sorte appartiendront à une même circonférence dont
».le rayon sera , pour les quatre points P ; , égal à celui du cercle donné;
>> moitié de ce rayon , pour les quatre points O, et son tiers seulement pour
» les quatre points G, En outre , les centres de ces trois nouveaux cercles
» seront , avec le point P harmonîquement situe's sur une même droite,
Ï> comme le sont les quatre points P ; , O, G» P ; de sorte que le centre P
i> sera le centre de similitude commua. 4e ces trois nouveaux cercles ».
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i> tre cercles iuscrifs et ex-inscrits au triangle ARC ; c'est-à-dire >
y> chacun des quatre cercles qui peuvent toucher a la fois les trois
» côtés de ce triangle ».

7-

Comme les propriétés de l'ellipse démontrées ci-dessus (5) ont
lieu d'une manière analogue pour toutes les autres coniques , ce
qui se prouve par de semblables considérations , on peut établir
ce théorème pins général:

« Chaque point pris à volonté dans le plan d'un triangle donné ,
» est le foyer d'une conique inscrite ou ex-inscrite à ce triangle ;
» conique de laquelle on peut, par une construction facile , dé-
» terminer l'autre foyer, le centre et le premier axe ».

Proposons-nous d'abord de découvrir quelle relation il peut y
avoir entre la nature de la conique et la situation , par rapport au
triangle , du point pris arbitrairement pour foyer.

8.

Soit ABC ( fîg. 3 ) le triangle donné , et soit P un point pris
arbitrairement sur son plan pour foyer «d'une conique touchant à
la fois les trois côtés de ce triangle.

De ce point P soient menées les droites PA , PB aux deux som-
mets A, B de ce triangle. Pour déterminer l'autre foyer V/ de la
courbe , il faudra (5) conduire par les points A r B deux droites
AP', BP; formant , respectivement avec CA , CB ou leurs prolonge-
xnens, des angles égaux à PAB , PBÂ ; et le point P ; de concours
de ces deux droites sera le second foyer cherché. Afin donc que
la courbe soit une parabole , il faudra que ce second foyer soit
infiniment distant du premier, ou, ce qui revient au même, il
faudra que les deux droites AP; ,BP ; soient parallèles; et récipro-
quemment, toutes les fois que ces deux droites seront parallèles ̂
la courbe sera une parabole.
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Si alors on conçoit par le sommet C une parallèle à ces deux

droites, cotte parallèle divisera l'angle ÀCB en deux parties res-
pectiveinfii égnios aux angles que forment AP et BP avec les
p^ol.vi^emejis de C \ et CB ; doue la somme de ces deu^
derniers angles , est égale à L'angle C ; doue aussi la somme des
deux angles PÀB et PBA , respectivement égaux à ces deux-là ,
doit aussi être égile à l'angle ACB ; mais l'angle APB est supplé-
ment de la soiiune des deux angles PÀB et PBA, donc il doit
être aussi supplément de l'angle ACB ; d'où il suit que les qua-
tre points A , B , G, P appartiennent à une même circonférence ;
on a donc ce théorème :

« Toutes les paraboles, touchant à la fois les trois côtés d'un
» même îiiangle , ont leurs foyers sur la circonférence du cercle
» circonscrit, e t , réciproquement, tout point de la circonférence du
» cercle circonscrit à un triangle est le foyer d'une parabole tou-
» chée à la fois par les trois côtés de ce triangle ».

D'après ce qui a été démontré ci-dessus ( 5 , 2 ° ) , les pieds des
perpendiculaires abaissées du foyer d'une parabole sur ses tangen-
tes sont tous situés sur la tangente au sommet de la courbe , et con-
séquemment en ligue droite ; en combinant donc cette proposition
avec celle qui vient d'être démontrée, on parviendra à ce théorème
connu (*) :

a Les pieds des perpendiculaires abaissées sur les directions des
» trois côtés d'un triangle , de l'un quelconque des points de la
» circonférence du cercle circonscrit, appartiennent tous trois à une
» même droite ».

Il ne sera pas difficile de parvenir par les mêmes considérations
à ce théorème plus général :

<* Si , de l'un quelconque des points de la circonférence du cer-

(*) Voy. Annales , tom. IV, pag. a5i.
J. D. G.

Tom. XIX 7
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» de circonscrit à un triangle, on conduit, sur les directions <!e se&
» cotés , des obliquas faisant, dans le même sens , avec ces osé-
» mes côtés, des angles égaux quelconques, les pieds de ces obli-
* ques appartiendront tous trois à une même droite* En outre ,
» toutes les droites qu'on obtiendra , en variant l'angle des oblî -
» ques , envelopperont une parabole qui aura pour foyer le point
» de départ 4e ces obliques ».

Revenons au problème que nous nous étions proposé (7), Ob-
servons d'abord que le plan de la figure se trouve partagé tant
par les trois côtés du triangle ABC , considérés comme des droi-
tes indéfinies , que par la circonférence du cercle , en dix régions
dont quatre finies et six indéfinies. Les quatre finies sont le trian-
gle lui-même que nous désignerons par T , et les trois segmens
que nous désignerons respectivement par Sa, S*, St, Les six in-
définies sont les opposées au sommet des trois angles du triangle
que nous désignerons respectivement par A' , B /

î G ? et trois au-
tres régions terminées chacune par un arc de cercle et par les pro-
longemens de deux côtés du triangle. Nous désignerons ces der-
nières par Ta, T, , Tc.

En supposant les deux droites AP'j BP/ parallèles, nous avions
l'angle AGB égal à la somme des deux angles PAB et PB A ; mais ,
si la somme de ces deux angles croît de manière à devenir plus
grande que l'angle ACB, les droites AP / , BP; convergeront en un
point P ; , situé dans la région T c , et le point P passera aussi dans
cette même région \ de sorte que la conique ne pourra être cjuunô
ellipse.

Si au contraire la somme des angles PAB et PBA diminue , le
point P passera dans la région ou segment Sc > tandis que le point
V1 passera dans la région G7 ; d'où il est aisé de conclure que îm
conique ne pourra être qu'une hyperbole»



G E O M E T R I Q U E S - 47
Donc (8) on a le théorème suivant :
« Tout point P , pris arbitrairement dans le plan tYnn triangle

» ABC , est le foyer d'une conique touchant à la fois les trois cô-
» tés de ce triangle; or, i.° cette conique sera une parabole si
» le point P est sur la circonférence du cercle circonscrit au trian-
» gle ; 2.0 ce sera une ellipse si le point P est intérieur au trian-
» gle , ou bien si, étant extérieur au cercle , il se trouve situé dans
» l'espace terminé par un quelconque des côtés de ce triangle , et
» les prolongemens des deux autres ; 3.° enfin la courbe sera une
» hyperbole si le point P est à la fois intérieur au cercle et ex-
P teneur au triangle f ou bien s'il se trouve situé dans l'opposé au
s» sommet de l'un des angles de ce triangle (*) ».,

Et réciproquement,
« Une conique touchant à la fois les trois côtés d'un triangle

» ABC; i,° si cette conique est une parabole, son foyer sera si-
» tué sur la circonférence du cercle circonscrit; 2.° si cette coni-
» que est une ellipse , ou bien elle aura ses deux foyers intérieurs
» au triangle, ou bien ils seront tous deux extérieurs au cercle et
» situés dans l'espace circonscrit par l'un des côtés de ce triangle 9

» elles prolongemens des deux autres; 3,° enfin, si cette conique
» est une hyperbole, un de ses foyers sera compris dans Fun des
» trois segmens du cercle circonscrit extérieur au triangle , tandis
a que l'autre se trouvera situé dans l'opposé au sommet de l'an—
» gle respectivement opposé de ce triangle »*

Ce que nous avons dit ci-dessus ( 5 ?3° ) permet de préciser
mieux encore la situation relative des deux foyers dans le cas de
l'ellipse et dans celui de l'hyperbole; il en résulte, en effet , que
deux tangentes étant menées d'un même point à la courbe, et étant
menées les deux droites qui divisent en deux parties égales les qua-

(*) C'est le théorème 3a que nous avions proposç à démontrer a la pag*
du ILHI« volume du Journal de M. Crelle.
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tre angles formés par ces deux tangentes , les deux foyers se trou-
veront toujours situés d'un même côté de Tune de ces droites et
de differens côtés de l'autre.

1 0

Nous avons déjà remarqué ( pag. 3 ) que si, par un point P
pris arbitrairement dans le plan d'un triangle ABC , et par cha-
cun de ses sommets , on mène trois droites AP , BP , CP , ren-
contrant les directions des côtés respectivement opposés en À / ,B / ,
G' , il existe toujours une conique qui touche les trois côtéb du
triangle en ces trois points. Examinons présentement quelle doit
être la situation du point P sur le plan du triangle, pour que
la courbe soit une parabole , une ellipse ou une hyperbole. Com-
mençons par le cas de la parabole dont la discussion n'offre au-
cune difficulté.

Soit P ( fig. 4 ) le foyer d'une parabole , et soit AB une tan-
gente quelconque à la courbe, dont le point de contact soit en G'.
Sur la droite PC7 soit pris un point C quelconque par lequel soit
menée la droite CDP', parallèle à Taxe de la parabole, coupant
la tangente AB en D ; alors les droites CC'P et CDP/ couperont
la tangente AB sous le même angle ; de telle sorte que le triangle
DCC' sera isocèle.

Par le point G soient menées à la courbe deux nouvelles tan-
gentes C A , G B , lesquelles (8j formeront respectivement des an-
gles égaux avec les droites CP, CP' ; d'où on conclura que le trian-
ACB est isocèle. Donc

« Si une parabole touche les trois côtés d'un triangle isocèle ,
» la droite menée par le sommet de ce triangle et par le point de
» contact de sa base passera constamment par le foyer de la courbe ».

De ce théorème on conclut, sur-le-champ, le suivant:
« Si une parabole touche les trois cotés d'un triangle équilalé-

» rai, les droites qui joindront les points de contact des côtés du
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» triangle avec les sommets respectivement opposés concourront tou-
9 tes trois au fojer de la courbe » ; et, par conséquent (8) ,

* Si une parabole touche les trois côtés d'un triangle équilaté-
» rai, les droites menées par les sommets et par les points de con-
» tact des côtés respectivement opposés se coupent toutes trois en
* un même point, et le lieu de ce point est la circonférence du
9 cercle circonscrit ».

Soit donc ABC ( fig. 4 ) un triangle équilatéral, et soient me-
nées par ses sommets et par un quelconque P des points delà cir-
conférence du cercle circonscrit, les droites A P , B P , CP rencon-
trant en A ^ B ' , C; les directions des côtés respectivement oppo-
sés ; la conique qui touchera les trois côtés du triangle en A', W ,
C sera donc une parabole dont le point P sera le foyer ; et les
droites A \ / / , B B / / , CC' ' , menées par les sommets du triangle et
parles milieux A", B" , C" des cordes de contact B'C , C'A/, A'B',
que Ton sait être parallèles à Taxe , seront ainsi parallèles entre
cites.

Supposons présentement que le point P se déplace sur la droite
CP , et que , par exemple 5 il passe en p dans l'intérieur du cer-
cle ; les points de contact A', B' passeront respectivement en a1 ,
h* ; les cordes de contact C'A7, C'B' deviendront C'a /

9 Q'b' dont
les milieux seront en bu et an'; et les droites Aa" 9 l&bfr se ren-
contreront nécessairement dans l'angle A'CB' ? ce qui s'aperçoit ai-
sément si Ton considère le parallélisme de AA/; et BB" de AV'
et Wbf et de B''£" et K'a ; et le point de concours k de ces deux
droites sera le centre de la conique ; d'où il est aisé de voir que
celte courbe ne saurait être alors qu'une ellipse* Si ? au contraire f

on suppose que le point P sort du cercle , les deux mêmes droi-
tes katf , B37/ iront concourir dans l'opposé au sommet de l'angle
À'CP' ; d'où on conclura qu'alors la courbe ne saurait être qu'une
hyperbole. Donc

« Si 9 par un quelconque P des points du plan d'un triangle équila-
» téral ABC, et par ses sommets , on mène les droites AP, liP , CP ,
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» rencontrant tes directions des cotes respectivement opposes en À' f
» B^,CX, la conique touchant les côtés du triangle en ces trois
* points sera une ellipse, une hyperbole ou une parabole, suivant
» que le point P sera intérieur au cercle circonscrit, extérieur à
» ce cercle ou sur sa circonférence, et vice versa ».

Ge théorème est susceptible de généralisation et d'application;
4iverses qui vont présentement aous occuper.

ir.

Par une projection parallèle sur un plan quelconque , la figure
dont les propriétés viennent de nous occuper se modifie cornnie il
suit :

i.° Ee triangle équilatéral ABC devient un triangle d'espèce
quelconque ;

J2,° Le cercle circonscrit devient la plus petite ellipse circonscrite
au nouveau triangle , c'est-â-dire , celle dont le centre covncide avec
ton centre de gravité, point de concours des droites qui joignent -
ses sommets aux milieux des côtés respectivement opposés ;

3.° Les coniques touchant les trois côtés du triangle changent
de forme, mais conservent leur caractère, c'est-à-dire, qu'elles de-
meurent ellipses, hyperboles ou paraboles , comme dans la figure
projetée.

Réciproquement, tout triangle donné quelconque peut être con-
sidéré comme une projection parallèle d'un certain triangle équi-
latéral. En conséquence le théorème démontré (10) pourra être gé-
néralisé comme il suit :

« Si , par un quelconque P des points du plan d'un triangle
» quelconque ABC et par ses sommets , on mène des droites AP,
» BP ? GP, rencontrant les directions dès côtés respectivement op-
» posés en A', B% C7, la conique qui touchera les trois côtés du
» triangle en ces trois points sera une ellipse , une hyperbole ou
i parabole ? suivant que le point P sera intérieur à la plus petite
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i ellipse circonscrite au triangle ABC , extérieur à cette ellipse ou
n sur son périm-èure même, et vice rers-â »»

De ce théorème on en déduit un autre encore plus général ;
Par une projection centrale ou perspective, sur un plan quel-

conque , la figure dont il vient d'être question se modifie coinoie
il suit :

i.° Le triangle donné devient un triangle quelconque ABC
( iîg. 5 ) ; la plus petite ellipse circonscrite devient une conique
quelconque S circonscrite au nouveau triangle; les tangentes à l*el«
îipse , par les sommets du triangle, lesquelles sont parallèles aux
côtés respectivement opposés , deviennent des tangentes à la coni-
que S par les sommets du nouveau triangle s lesquelles rencon-
trent les directions des côtés respectivement opposés de ce trian-
gle en trois points A', B ; , C/, appartenant à une même droite >
laquelle forme , avec les côtés du triangle ABC, un quadrilatère com-
plet dont ces trois tangentes sont les diagonales.

2.0 Toutes les paraboles touchant les trois côtés du triangle donné
deviennent des coniques inscrites â ce quadrilatère complet;

3.° Les droites Aa, Bè , Ce joignant les sommets A, B, C du
triangle inscrit aux sommets respectivement opposés a, b , c du
triangle circonscrit ? formé par les tangentes aux sommets du pre-
mier f diagonales du quadrilatère complet, se coupent toutes trois
en un même point S , pôle de la droite A /B /G /, relativement à la
conique circonscrite au triangle ABC ; enfin les polaires de ce point
S 9 relatives aux coniques inscrites au quadrilatère complet 9 envelop-
pent celte même conique circonscrite au triangle ABC. Donc

« i.° Etant donné un quadrilatère complet, ses côtés pris trois
» à trois forment quatre triangles; et on peut inscrire à ce qua-
3* drilatère une infinité de coniques différentes ; 2.° les droites Aœ,
» B$, Cj menées par les points de contact de Tune de ces coni-
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» ques avec les côtés de lua ABC de ces quatre triangles , et par
* les sommets respectivement opposés se coupent toutes trois en un
n iaême point D ; et le lieu de ce point D est une certaine conique
« circonscrite à ce triangle ^ABC, et en môme temps inscrite au îrian-
» abc formé par les trois diagonales du quadrilatère complet, de
» telle sorte qu'elle touche les côtés de ce dernier triangle aux som-
» mets du premier ABC; 3.° les droites ha , B£, Ce qui joignent
y* les sommets respectivement opposés de ces deux triangles se cou-
» pent tontes trois en un même point S, pôle du quatrième côté
* A/B/G/ du quadrilatère complet; et les polaires de ce point, re-
» latives aux coniques inscrites au quadrilatère complet, envelop-
» pent la conique circonscrite au triangle ABC ; en outre , les trois
» points a ' , ^ , 7 ' , où se coupent les côtés eorrespondans des deux
» triangles ABC, on^y, appartiennent à une même droite, la-
*> quelle passe constamment par le point S ; 4«° enfin les coniques
» à la fois circonscrites aux quatre triangles formés par les côiés
» du quadrilatère complet , pris trois à trois , et insentes au trian-

* gle formé par ses diagonales , se touchent deux à deux aux six
» sommets A , B, C ,.A/ 9 B ' , G de ce quadrilatère complet, et el-
» les sont touchées en ces mêmes points de contact par ses trois
» diagonales ».

Et réciproquement,
* S i , à un triangle donné quelconque ABC , on circonscrit une

» conique quelconque, et qu'ensuite par un point D 5 pris arbi-
ï> traiœment sur le périmètre de cette conique et par chacun des
» sommets du triangle, on mène trois droites A D , B D , C D ren-
y> contrait les côtés respectivement opposés en trois points a , ( 5 ?

» y où ces côtés sont touchés par une deuxième conique , cette
» conique et toutes les autres „ déterminées par une semblable cons-
•$> truction , seront touchées par une même droite À 'B 'C, déter-
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» minée pat* les intersections respectives des directions des côtés du
» triangle ABC avec les tangentes menées à la première conique
y> par ses sommets respectivement opposés *

Supposons que le triangle ABC, le point D et la conique ins-
crite , touchant ses côtés en a , (3, y restant fixe, la conique pas-
sant par les quatre points À , B , G, D , varie de toutes les ma-
nières possibles , la droite A/B/G/ roulera alors (i3) sur la conique
invariable , d'où résulte le théorème suivant :

y> i.° Etant donné un quadrilatère quelconque ABCD , on peut
» lui circonscrire une infinité d<* coniques différentes, lesquelles
» seront aussi inscrites à chacun des quatre triangles formés par
r> les côtés du quadrilatère pris trois à trois; 2.0 les tangentes AA/,
» BB', CC' , menées à une quelconque de ces coniques par les
» sommets de l'un quelconque ABC des quatre triangles, ont leurs
» intersections A ; , B /

? G', avec les directions des côtés respective-
» ment opposés de ce même triangle situées sur une même droite;
y> et l'enveloppe de cette droite est une certaine conique passant
» par les trois points a5j3? y d'intersection des truis systèmes de
» deux droites joignant deux à deux les quatre sommets du qua-
» drilatère ABCD ? et touchant ? en ces trois points, les côtés du
» triangle ABC ; 3.° les points a;

 5 j3' 5 y
/ d'intersection des côtés

» correspondais des deux triangles ABC , a&y appartiennent tous
» trois à une même droite a'fty' , polaire du quatrième sommet
» D , relativement à la conique circonscrite au quadrilatère ; en
» outre, les pôles de cette droite , relativement à toutes les coni-
» ques qui peuvent être circonscrites à ce même quadrilatère, sont
» sur le périmètre de la conique enVeloppe de la droite A/B/C/ 5
» 4'° enfin 5 ^es caniques à la fois inscrites aux quatre triangles foi mes
» par les sommets du quadrilatère ABCD , pris trois à trois 5 et cir-
» consentes au triangle cx|3y ? se touchent deux à deux aux trois poinis

Tom. XIX " 8
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» a, (3, y; de telle sorte que chacun de ces points est le point de
» contact de deux différentes paires de coniques ; et en même temps
» ces coniques sont touchées deux à deux,à leur point de contact,
<x par les six droites qui joignent deux à deux les quatre sommets
s> du quadrilatère donné ABCD ».

Par la théorie des polaires réciproques on aurait pu déduire
ce théorème de celui que nous avons précédemment démontré (12).

Î 5 .

Du théorème précédemment démontré (6) on peut, par la con-
sidération des projections , en déduire un grand nombre d'autres.
En remarquant , par exemple , que les perpendiculaires , abaissées
d'un point quelconque de la circonférence du cercle circonscrit au
triangle ABC ( fig. 2 ) sur lesdirecUons des côtés de ce triangle , sont
respectivement parallèles aux trois hauteurs AA/7, BB" , CC", ainsi
qu'aux trois perpendiculaires PA / , PB7, P C , abaissées du centie
de ce cercle sur ces mêmes côtés , on en conclura que

« I. Une conique quelconque étant circonscrite à un triangle
^ donné ABC , et étant menée par son centre P et par les mi-
» lieux A' 5 B ' , C des côtés du triangle , les droites PA', PB/ ,
» P C ' , les droites AA", BB", CC/; menées par les sommets du
« même triangle, parallèlement à celles-là , se couperont tontes trois
» en un même point P ' ; les six points A', B', C , A^; B " , C;/

» appartiendront à une seconde conique semblable à la première
» et semblablement située ( homothèiique ) ; le point Px

 p les deu^
» centres P , O et le centre de gravité G du triangle donné ap-
» partiendront à une même droite, et seront situés harmoniquement,'
» de telle sorte qu'on aura OG : GP : OP': PP' : : 1 : 2: 3 : 6 ; en
» outre (8) ? si de l'un quelconque D des points de la conique
» circonscrite au triangle ABC on abaisse ,~sur les directions de
* ses côtés 3 des obliques respectivement parallèles aux droites PA',
» PB/

 ? PC / , leurs pieds seront situés sur une même droite »\
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Et réciproquement ,
« II. Si , par l'un quelconque P ' des points du plan d'un trian-

» gle donné ABC et par ses sommets , on mène les droites AP' ,
>J BP ; , CP 7 , il j aura une infinité de points D tels qu'en m e -
» riant, de l'un de ces points sur les côtés du'triangle , des obli-
y> qaes respectivement parallèles à ces droites , leurs pieds appar-
» tiendront tous trois à une même droite ; et tous ces points D
» seront situés sur une même conique circooscrite au triangle donné;
» le centre P de cette conique sera le point de concours des droi-
» tes conduites par les milieux À', B ;

3 C' des côtés du triangle ,
y> parallèlement aux droites AP' , B P ' , GP' ; etc.

Comme le point P' de concours des trois hauteurs du triangle
ABC peut être situé ou dans l'intérieur de ce triangle , ou dans
l'une des trois régions a , / î s y , il s'ensuit que

« 111. Les deux coniques semblables et semblablement situées
» dont les centres sont P et O sont i,° des ellipses, si le point
» P / est situé dans l'iutérieiH du triangle ABC , ou dans Tune des
» trois régions a ? j3 ,y ; 2.° des hjpeiboies, si ce point P ' est si-
» tué dans l'une des trois régions a', £ ' , • / ; 3.° des paraboles, si
» ce point est infiniment distant du triangle ABC. En outre les
a points P et P7 sont des points homologues des deux triangles
» ABC et A ' B C ».

Dans le cas de la parabole où le point Pv est à l'infini , les
droites A \ " , BB / ; , CC" sont -parallèles , d'où il suit que

« IV. Si , par les sommets d'un triangle donné ABC , on
» mène, dans une direction arbitraire, trois parallèles À A" , BB/;

 f

» CC" rencontrant les directions des côtés opposés en A/7
 v B v , C/;>

» ces points et les milieux A ; , B ; > C / des mêmes côtés appartien-
» âront tous six à une même parabole »• Et réciproquement « s i ,
» par les milieux A / , B / , G / des côtés d'un triangle donné ABC ,
» on fait passer une parabole quelconque , coupant de nouveau
» ces mêmes oôtés en A " , B " , C " , les droites AA/X

3 BB^
» seront nécessairement parallèles ». v
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A l'aide de la projection centrale, des précédens théorèmes (i5)?

on déduira les suivans :
« L Une conique quelconque étant circonscrite à un triangle donné

» ABC ( fig. 6 ) > et étant menées par un point G quelconque et
» par les sommets du triangle des droites A G , B G , CG, coupant
» les directions des côtés opposés en A7, IV, G', et étant menées
y> de plus les droites B'C'oc, C'A'{3, A'B'y , coupant les directions
» des côtés correspondans du îriangle donné en a , j3, y 5 situés sur
» une même droite a|3y ; enfin P étant le pôle de cette droite 9 et
» étant menées les droites PÀ /a /, PB'ft, PGY coupant respective-
» ment la droite aj3y en oc', (3;

 ? y7 ; les droites AA"a' 5 BB"^ 9

» GC'y', coupant les côtés du triangle donné en KN
 9 B

; / , C / ;,,
» concourront toutes trois en un même point P ; ; les six points A ; ,
» W , O, A / ; , B " , G/; appartiendront à une seconde conique ; la
» droite oc(3y sera une sécante commune à cette seconde conique
» et à la première; les pôles P ? O de cette droite , par rapport
» aux deux coniques 5 et les deux points G et P7 appartiendront à
» une même droite PGOP7 sur laquelle ils seront harmonique-
?> ment situés; en outre, si , par l'un quelconque D des points du
y> périmètre de la conique circonscrite au triangle donné et par
» chacun des points a'5 jS7, yf

 y on mène des droites, leurs points
» d'intersection avec les côtés correspondans du triangle donné ap-
» partiendront tous trois à une même droite ».

Et réciproquement ?
« IL Par un quelconque G des points du pian d'un triangle

s> donné ABC et par chacun de ses sommets , soient menées les
» droites AGA', BGB /, CGC7 coupant respectivement en À^B '^
» Cf les directions des côlés opposés ; et soient ensuite menées les
» droites B'G7oc, C/A^ , A'S'y , coupant les directions d^ ces mêmes
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$ côtes en a, j3, y ? points qui appartiendront tous trois à une
» même droite a/3y ; si, par un autre point quelconque P 5 on mène
» les droite PA'oc' 5 PB //î / , PC'y' , lesquelles coupent la druite a|3y
» en *', {& , y' 9 les droites A a' , Bj3; , C / concourront en un même
» point P'. O r , si des points oc /

? |3
/,y / on abaisse des obliques sur

» les directions des côtés opposés du t; 'angle donné, de manière
» qu'elles se coupent en un même point D , et que leurs pieds ap-
» partiennent à une même droite , le lieu de ce point D sera une
» certaine conique circonscrite au triangle donné; le point P sera
» le pôle de la droite ocj3y relativement à cette conique, etc. »,
Ou » en d'autres termes : « S i , par un quelconque P' des points
» du plan d'un triungle donné ABC et par ses sommets ? ou mène
» des droites ÂP7> BP ' , CP / , et qu'ensuite on mène arbitrairement
» une droite a'fi'y' coupant respectivement celles-là en a ' , fi'9 / , il
» y aura alors une infinité de points D tels que les droites Da ; ,
» Dj3' 5 Dy/ coupent les côtés correspondans du triangle donné en
» trois points appartenant à une même droite ; et le lieu de ces
» points D sera une une certaine conique circonscrite au triangle
» donné , etc. »

« IIL Les deux points P , P / ( î ) sont des points homologues par
a rapport aux triangles ABC ? À

/B /C / ; quand l'un d'eux tombe sur
» la droite cx]3y, l'autre coïncide avec lui , et alors la conique qui
» passe par les six points A', B /

 9 CX, A ; / , B /x
 ? C

v touche cette droite
» <x^y en ce point P ou Px ». Et réciproquement, « si une conl-
» que passe par trois points donnés A' , B ; , C et touche une droite
» donnée a,3y , en un certain point Q , elle coupera les directions
» des côtés du triangle ABC , déterminé par les droites A ;a, Wfi,
» C;v , en trois points A" , Bv

 9 C
;/ lesquels seront situés sur les droi-

» tes A Q j B Q , CQ ? et vice versa, etc. ».

C'est là une propriété commune à toutes les coniques qui passent
par les trois mêmes points donnés A% W P C / et touchent la radine
droite donnée ap-y,



58 DEYELOPPEMENS

Les précédons théorèmes ont leurs polaires réciproques ; tel est,
par exemple , le suivant :

« Soit merise une droite quelconque 7 coupant les côtes d'un
* triangle donné ABC en a * (5 , y ; et, par un quelconque D des
» points du plan de ce triangle, soient menées les droites Da, I)|3 ,
» Dy , alors on peut abaisser, des sommets du triangle donné, sur
» les droites respectivement opposées, des obliques Aa^BjJ7, fy>
» telles qu'elles se coupent en un même point, E , et que leurs
» pieds <xf , fit, y*, appartiennent à une même dro«te ; cette droite
» enveloppera une certaine conique inscrite au triangle donné; etc. »

Etc., etc.
18

Soit circonscrite une conique quelconque à un triangle donné
ABC fig. 7 ), Par les sommets de ce triangle, et par un quelconque
P ; des points de son plan , soient menées tes droites AP//A//a ,
BP/B//^ , C P 7 ^ ^ , coupant respectivement les directions des côtés
opposés du triangle en A" , B7/

 5 C
7/^ et la courbe en a:9 fi , y. Si,

par un quelconque D des ppinis du périmètre de cette conique,
on mène^ les droites Da, DjS, Dy , coupant les côtés opposés du
triangle donné en a!, fif*fyf , ces trois points seront toujours situés
sur une même droite a/fi/yf, passant par le point P / ; car, à cause
de l'hexagone inscrit DfËBCAocD, par exemple ( Pascal ) , les trois
points a/ ̂  fit % P7 appartiendront à une même droite.

Lorsque le point D se meut sur le périmètre de la courbe, la
droite a^V tourne sur son point P /

? et vice cet sa.

Supposons que la conique soit un cercle , et que les droites Aoc;
B|3 5 Cy soient respectivement perpendiculaires aux côtés du
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gle donné , alors le point D sera le foyer d'une parabole inscrite
à œ triangle ? et Ton aura (6)

P'À"=A"a , P'B"=B"P , P'C"=C"v .

Soit menée la droite DE , parallèle à yP' ; elle sera perpendi-
culaire à la tangente x\B ; et f en supposant qu'elle coupe a ^ y en
E et A B e n F , on aura DF=FE , car yC"=C"P' ; d'où il suit
que le point E est situé sur la directrice de la parabole , et que
par conséquent la droite <*'£'/ est elle-même cette directrice ; donc

« Les directrices de toutes les paraboles inscrites à un même
» triangle donné ABC se coupent toutes en un même point P /

y> intersection des trois hauteurs de ce triangle; et
» Les intersections des trois hauteurs de tous les triangles circons-

» crits à une même parabole sont toutes situées sur la directrice
» de cette courbe (*) ».

"En remarquant que quatre droites données sur un plan peuvent
être touchées par une même parabole 9 on conclura de là la dé-
monstration du 4-e théorème de la pag. 3oa du précédent volume ,
savoir :

« Dans les quatre triangles que forment trois à trois quatre droi-
3» tes tracées sur un même plan , les points de concours des trois
s> hauteurs appartiennent tous quatre à une même droite (**) »•

20.

En observant que les pieds F...* des perpendiculaires abaissées
du foyer D sur les directions des côtés du triangle ABC appar-

(*) C'est îe théorème 29, proposé à démontrer à la pag. igi du II .m c vo-
lume du Journal de M. Crelle.

(**) C'est le théorème 8 de l'endroit cité du Journal de M. Crelle.
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tiennent à une même droite parallèle à la directrice oc^Sy, cette
circonstance fournit un moyen très-simple de résoudre, par pro-
jection, le problème suivant :

« Une conique quelconque étant circonscrite à un triangle donné
» ABC ; si de l'un quelconque I) des points du périmètre de la
* courbe on abaisse, sur les côtés du triangle, des obliques respec-
» tivement parallèles aviix diaûiètres qui passent par les milieux de
» ces côtés, leurs pieds F appartiendront à une même droite.
» Cela posé, quelle doit être la situation du point D sur la courbe P

r> pour que cette droite soit parallèle à une droite donnée » ?
Si t en effet, on mène les droites ha , B(3 , Cy respectivement

parallèles aux diamètres dont il s'agit , et qu'ensuite , par le point
de concours P' de ces trois droites , on mène la droite a/3'y' , pa-
rallèle à la droite donnée ? les droites oca', (3^, yy' se couperont au
point cherché D,

De ce qui précède il suit encore, comme cas particulier, que
« Les centres de tous les triangles équilatéraux circonscrits à une

» même parabole sont situés sur la directrice de cette parabole » , et
« Les directrices de toutes les paraboles inscrites à un même

» triangle équilatéral donné passent toutes par le centre de ce
» triangle ».

De là on conclura ( 5 et 11 ) , parla projection parallèle, que
« Un triangle quelconque ABC étant circonscrit à une parabole

» donnée, et Q étant le point de concours des droites qui joignent
» ses sommets aux points de contact des côtés respectivement op~
» posés ; si Ton imagine tous les triangles pour lesquels ce point
» Q est le même, les centres de gravite de tous ces triangles ap-
D partiendront à une même droite , polaire du point Q } les plus
» petites ellipses circonscrites à ces mêmes triangles seront sembla-
» blés et semblablement situées > et se couperont toutes en ce même
» point Q D.
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Et réciproquement,
* A chaque parabole inscrite à un même triangle donne ABC

» correspond un point Q de concours des droites menées des som-
» mets aux points de contact des côtés opposés; et les polaires
» de tous les points Q % relatives anx paraboles correspondantes
» se coupent toutes en un même point G ; centre de gravité de
® ce triangle »•

22.

Si, par les points A", B ; / , C" , milieux respectifs des droites
P'a, P'jS , P'-y ( fig. 7 ) , on mène des droites respectivement pa-
rallèles à Doc , D(£ , Dy , elles passeront par les milieux respectifs
des droites P V , P ' $ , PV > e t concourront en un même point D/

situé sur la conique qui passerait par les six points A;, B ' , G' , A'',
B ; / , C;/ (6) ; de sorte que les trois points D , D% P ; seront en ligne
droite. De là résulte ce théorème dû à M. Lamé.

« Quatre points A, B , C , P' donnés sur un même plan dé-
» terminent trois systèmes de deux droites AP/ et BPA , BP7 et
» AC , CP7 et AB, qui se coupent respectivement en K/f , B^ ,
» C/;. Si l'on coupe ces systèmes par une droite quelconque a f y P 1 ,
» conduite par P' 9 et si , par les points A'4', B / ; , G" ? et par les mi-
» lieux des segmens de cette droite, on mène des droites À / /U /

?

» B / /D / , G / /D / , ces droites concourront en un même point D' , et
» le lieu de ce point sera une conique passant par les points A\
» B" , C" 5 et par les milieux des droites BC , CA , AB, AP', BP^
9 CP ; , etc. ».

23.

Revenons de nouveau au cas où la conique circonscrite au trian-
gle donné ABC est un cercle. Dans ce cas , le point U est le foyer
et la droite a//3/y/P/ la directrice d'une parabole inscrite au trian-
gle ; et conséquemment la polaire du point P ' ; relative à la para-

Torn. XIX. 9
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bole > passe par le point D, et est perpendiculaire à la droite P'D;
cette polaire enveloppera donc une certaine conique dont P / sera
le foyer, et dont Taxe principal coïncidera (5) avec le diamètre PP'
du cercle circonscrit au triangle. Donc

« Les polaires du point de concours P' , des trois hauteurs d'un
» triangle donné ABC , relatives à toutes les paraboles inscrites à
» ce triangle , enveloppent une certaine conique dont le point P /

» est le foyer , dont l'axe principal passe par le centre du cercle cir-
» conscrit au triangle donné, et qui est inscrite au triangle formé
» par les parallèles menées aux côtés du triangle donné par les
» sommets de ce triangle ».

Ou plus généralement , par les projections,
« Les polaires de l'un quelconque P; des points du plan d'un

» triangle donné ABC , relatives à tontes les paraboles inscrites à
» ce triangle, enveloppent une conique inscrite au triangle formé
» par des parallèles aux trois côtés du triangle donné> conduites
$ par les sommets de ce triangle »•

24-

Il résulte encore de l à , par la projection centrale (12) ,
« Les polaires de l'un quelconque des points du plan d'un qua-

is» drilatère complet, relatives à toutes les coniques inscrites à ce
» quadrilatère, enveloppent une nouvelle conique touchant les
» trois diagonales du même quadrilatère ».

Lorsque le point P ; passe à l'infini ? ses polaires deviennent des
diamètres dont les conjugués, concourant en ce Point P7 , sont
alors parallèles, e t , comme les premiers sont tangens à une cer-
taine conique (24) , ils seront parallèles deux à deux ; d'où Ton
conclut que

« Entre les coniques inscrites à un même quadrilatère donné,*
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» on n'en saurait trouver trois ayant un système de diamètres con-
* jugués parallèles; mais , si Ton trace arbitrairement, pour Tune
» de ces coniques , un système de diamètres conjugués, il existera
x> une autre conique inscrite dont deux diamètres conjugués seront
» parallèles à ceux-là ». Donc

« SI Ton propose d'inscrire à un quadrilatère une conique dont
» deux diamètres conjugués soient parallèles à deux droites don-
& nées P le problème n'aura que deux solutions au plus ».

26,

On sait que les centres de toutes les coniques C , C;, C", ... ins-
crites à un même quadrilatère complet donné 9 sont situés sur la
droite D qui joint les milieux de ses trois diagonales. Les conju-
gués A 9 A

/ , A'' 9 de ce diamètre commun D touchent une
certaine conique S (25) , d'où il suit qu'en général, entre les dia-
mètres A , A' , A" , il doit y en avoir deux parallèles à une
droite arbitraire L. Et réciproquement , entre les conjugués des dia-
mètres parallèles h une droite donnée L f il s'en trouve générale-
ment deux qui coïncident avec la droite D ; d'où l'on conclut que
cette droite ;ouche la conique S. Donc

« Daùs les coniques inscrites à un même quadrilatère donné, les
-Ù conjugués des diamètres parallèles à une même droite envelop-
» peut une même conique , et toutes les coniques enveloppées qui
9 résultent des diverses directions de cette droite, sont inscrites au
» quadrilatère complet formé par le lieu des centres des coniques de
J> la première série et par les trois diagonales du quadrilatère com-
» pi et donné ».

27.

Les diamètres parallèles se coupent en un même point à l'in-
fini 5 et lorsqu'on varie leur direction commune , tous les points
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de concours appartiennent à une même droite également à l'in-
fini. Les pôles de cette droite, par rapport aux mêmes coniques f

en sont les centres situés sur la droite qui joint les milieux des
trois diagonales du quadrilatère complet donné. De là , par les pro-
jections centrales , on conclura les théorèmes suivans :

« i.° Les pôles d'une droite quelconque ? relatifs à toutes les
» coniques inscrites à un même quadrilatère, complet donné , sont
» situés sur une même droite ; 2.0 les polaires de l'un quelcon-
à que des points de cette droite enyeloppent une certaine conique,
» et toutes les coniques enveloppées qu'on obtient, en cariant la
» situation de ce point sur cette droite , sont inscrites au qua~
9 drilatère dont les cotés seront cette même droite et les trois dia~
3» gonales du quadrilatère complet donné ; 3.e si la polaire tourne
» sur l'un des points de sa direction ? la droite des pôles enve-
» loppera une nouvelle conique ? etc. »

Ces divers théorèmes ont leurs polaires réciproques ; tel est? par
exemple , le suivant :

« i.° Les polaires d'un point quelconque , relatives à toutes les
» coniques circonscrites à un même quadrilatère donné , concourent
» toutes en un même point ; 2.e les pôles d'une droite quelcon-
» que passant par ce point sont situés sur une certaine conique ?

» et toutes les coniques de cette sorte que l'on obtient, en variant
» la direction de la droite conduite par ce point 9 sont circonscrites
» au quadrilatère dont les sommets sont ce même point, et les trois
» points où concourent les systèmes de droites qui joignent deux
» à deux les quatre sommets du quadrilatère donné ; 3.° si le pôle
» décrit une droite , le point de concours des polaires décrira une
» nouvelle conique, etc. »
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Démonstration de quelques propriétés du trian-
gle , de Vangle trièdre et du tétraèdre, con-
sidérés par rapport aux lignes et surfaces
du second ordre ;

Par M. CHASLES , ancien élève de l'Ecole polytechnique.

iWVVYVWt \ \ VWWVINV*

JL/E5 théorèmes sur les hexagones inscrit et circonscrit aux lignes
du second ordre , on déduit immédiatement comme corollaires les
deux propositions suivantes :

j , Deux triangles étant inscrits et circonscrits à une ligne du
second ordre , de telle sorte que les sommets de l'inscrit soient
les points de contact des côtés du circonscrit 9

Les points de concours des di- Les droites qui joignent les
reciions des côtés respectivement sommets respectivement opposés
opposés des deux triangles ap<- des deux triangles concourent
partiennent tous trois aune même toutes trois en un même point*
droite.

Cette droite et ce point sont polaire et pôle % l'un de l'autre $
par rapport à la courbe dont il s'agit.

De cette double proposition résulte immédiatement la suivante:
i* Deux angles tnèdres de même sommet étant inscrits et cir-

conscrits à une surface conique du second ordre ? de telle sorte

Tom. XIX, ' n.° III, i.Cr septembre 1828. 10
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que les arêtes de Vinscrit soient les lignes de contact des faces
du circonscrit,

Les intersections des plans des Les plans déterminés par les
faces respectivement opposées dét arêtes respectivement opposées des
deux tétraèdres sont situées tou~ deux tétraèdres se coupent tous
tes trois dans un même plan. trois suivant une même droite*

Ce plan et cette droite sont polaire et pôle , Y un de Vautre , pat
rapport à la surface conique dont il s'agit.

Soit inscrite à la surface conique une autre surface quelconque
du second ordre, cette nouvelle surface se trouvera aussi inscrite
à l'angle trièdre circonscrit à la première , et ses points de con-
tact avec les faces de cet angle trièdre se trouveront sur les arêtes
de l'inscrit. De là résulte cet autre théorème :

3. Un triangle et un angle trièdre étant inscrits et circonscrits
à une même surface quelconque du second ordre , de telle sorte
que les sommets du triangle soient les points de contact des fa-
ees du tétraèdre , ^

Les points oà les directions Les plans déterminés par les
des côtés du triangle sont cou- sommets du triangle et par les
pées par les plans des faces res~ arêtes respectivement opposées de
pectivement opposées de l'angle l'angle trièdre se coupent tous
trièdre appartiennent tous trois trois suivant une même droite.
à une mêtne droite.

Ces deux droites sont polaires conjuguées Tune de Vautre , par
rapport à la surface du second ordre dont il s'agit.

Il est clair que, réciproquement, quand trois points seront pris
respectivement sur les faces d'un angle trièdre , de telle sorte que l'une
des lieux parties du théorème ait lieu, l'autre aura lieu également,
et alors une infinité de surfaces du second ordre pourront toucher
les faces de l'angle trièdre en ces trois points; toutes ces surfa-
ces se couperont suivant une même ligne du second ordre , circons-
crite au triangle qui a ses sommets en ces trois points, et inscrite
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à celui suivant lequel l'angle trièdre est coupe par le plan de ce-
lui-là.

4. THÉORÈME. Deux tétraèdres étant Tun inscrit et Vautre
circonscrit à une même surface quelconque du second ordre , de
telle sorte que les sommets de l'inscrit soient les points de con-
tact du circonscrit*

Les droites qui joignent les Les droites suivant lesquelles
sommets respectivement opposés se coupent les plans des faces
dans les deux tétraèdres sont qua- respectivement opposées dans les
tre génératrices d'un même mode deux tétraèdres sont quatre gé-
de génération d'une même sur- nèratrices d'un même mode de
face du second ordre. génération d'une même surface

du second ordre*
Et les quatre droites, suivant Et les quatre droites que dé-

lesquelles se coupent trois 4 trois terminent trois à trois les douze
les douze plans conduits par les points suivant lesquels les arêtes
arêtes du circonscrit et par les de l'inscrit sont coupées par les
sommets de l'inscrit non situés plans des faces du circonscrit
dans les faces du circonscrit qui qui ne contiennent pas les extré-*
déterminent ces arêtes , sont qua- mités de ces arêtes 9 sont quatre
tre génératrices du deuxième mode génératrices du deuxième mode
de génération de cette même sur- de génération de cette même sur-*

face du second ordre (*)• face du second ordre (*)•

(*) Voî̂ a le complément que ncms avions désiré à la pag. 35 du présent
roluine pour cet élégant théorème. Ce complément peut aussi se déduire
assez simplement de l'analyse de M. Bobillier.

On a vu f en effet, k la page 3^8 du précédent volume, que les faces d*un
tétraèdre étant données par les équations linéaires en x , y , z, A = o , B=^o %

C = o , D=o , u»e surface quelconque d«* second ordre, circonscrite à ce té*
traèdre, était donnée par l'équation
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• Et, non seulement ces deux surfaces sont polaires réciproques
lune de l'autre, par rapport à la surface du second ordre dont
il s9agit y mais leufs huit génératrices sont , chacune à chacune^
polaires conjuguées ou réciproques ? par rapport à cette mêmç sur-
face.

et qu'alors les équations des faces du tétraèdre circonscrit dont les point»
de contact étaient les sommets de l'inscrit étaient

On a vu , de plus, que les plans des faces respectivement opposées des
deux tétraèdres se coupaient suivant quatre droites appartenant à une même
surface du second ordre donnée par l'équation

et que les droites joignant les sommets respectivement opposés appartenaient
toutes quatre à une autre surface du second ordre ayant pour équation

or , la première de ces deux équations est également satisfaite par chacun
des quatre systèmes dJéquations
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Démonstration. Chacune des deux parties du théorème est facile

à démontrer directement; mais, attendu qu'elles se déduisent l'une
de l'autre par la théorie des polaires réciproques j nous nous bor-
nerons à donner la démonstration de la première ; démonstration
susceptible d'ailleurs d'une traduction pareille à celle de l'énoncé.

B

D

— | 4-. — o ^ = 0 ,
# y b

A B D „

équations que l'on reconnaîtra facilement pour être celles des quatre gé-
nératrices du deuxième mode de génération delà seconde partie du théorème.

On s'assurera de même que l'autre équation du second degré est satisfaite
par chacun des quatre, systèmes d'équations

—•^C)=o f {yc—&a)B+b(yC—*A)=o , (^—

—0C).,

lesquelles sont celles des douze plans qui se coupent trois à trois suivant
les quatre génératrices du deuxième mode de génération de la première partie
du théorème»

'" - J. D. G.
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Les droites qui vont de trois sommets du tétraèdre circonscrit

à leurs opposés respectifs dans l'inscrit sont dans trois plans qui
se coupent-(3)-suivant une même droite, passant par \$ quatrième
sommet; la droite qui va de ce sommet à son opposé dans l'ins-
crit rencontre aussi cette droite; donc les quatre droites qui joignent
les sommets respectivement opposés dans les deux tétraèdres s'ap-
puyent sur quatre autres droites partant de ces mêmes sommets ;
ce qui prouve qu'elles appartiennent à une surface du second or-
dre y donc ces quatre autres droites sont des génératrices du deuxième
mode de génération.

Les quatre droites qui joignent Les quatre droites suivant les-
les sommets respectivement oppo- quelles se coupent les plans des fa-
ses, dans les deux tétraèdres, étant ces opposées, dans les deux tétraè-
des génératrices d'un même mode dres, étant des génératrices dïi»
de génération d'une surface an même mode de génération d'une
second ordre , on en peut dé- surface du second ordre , on en
duire les conséquences suivantes : peut déduire les conséquences sui-

Tantes:
5. Si deux de ces quatre droi- 5. Si deux de ces quatre droi-

tes concourent en un même point, tes sont situées dans un même
les deux autres devront concou- plantes deux autres devront aussi
rir en un autre point ; et, si trois être situées dans un autre plan ;
df entre elles concourent en un même et t si trois d'entre elles sont dans
point, la quatrième devra aussi un même plan, la quatrième dé-
passer par ce point. vra aussi être dans ce plan.

Ces dispositions sont en effet les seules qui puissent permettre
alors de mener , par chacun des points de Tune quelconque des qua-
tre droites, une droite qui s'appuye à la fois sur les trois autres.
Dans ces circonstances particulières, la surface du second ordre t

lieu de ces quatre droites, se trouve remplacée par deux plans ou
par un plan unique. On doit aussi remarquer que, qu^td les qua-
tre dernières droites sont dans un même plan , les quatre premiè-
res concourent ea ua mêiae point, pôle de ce plan.
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Les théorèmes ci-dessus (4) ont leurs réciproques qui peuvent

êlre énoncés comme il suit :
6. Si, par les sommets d'un tè- 6. Si , dans Us plans des faces

îraèdre 9 on mène quatre droites d'un tétraèdre $ on trace quatre
4jui soient des génératrices d'un droites qui soient des génératri-
znéme mode de génération d'une ces d'un même mode de généra-
surface du second ordre , ces droi~ tion dune surface du second or-
ies pèseront les plans des faces dre , ces droites \ avec les som-
respectivement apposées en qua- mets respectivement opposés} dè~
ire points par lesquels on pour ru termineront quatre plans que
faire passer une surface du se- pourra toucher une surface du
cond ordre inscrite au tétraèdre second ordre -circonscrite au té-
dont il s'<agit* traèdre dont il sagû.

Ces deux théorèmes pouvant être déduits l'un de l'autre par la
théorie des polaires réciproques , il nous suffira de démontrer le
premier*

Soient A , B, C, D les quatre sommets du tétraèdre ; puisque les
droites menées par les trois premiers A, B , C, appartiennent à une
surface du second ordre dont une génératrice du même mode de
génération passe par le quatrième sommet D, on pourra, par ce
dernier sommet, mener une génératrice du deuxième mode de gé-
nération , laquelle s'appuyera sur les trois droites conduites par Jes

sommets A, B , C ; donc, par les points où ces trois droites per-
ceront les plans des faces opposées , on pourra (3) faire passer une
infinité de surfaces du second ordre touchant ces plan& en ces trois
points ; Tune de ces surfaces pourra donc être choisie de manière
à toucher aussi la quatrième face du tétraèdre ; et la droite qui
joindra le point de contact au sommet D , qui lui est opposé, ap-
partiendra (4) à la surface du second ordre déterminée par les trois
premières droites; ce sera donc précisément la quatrième droite j
le théorème est donc démontré.

Les propriétés des angles trièdres et des tétraèdres inscrits et
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circonscrits aux surfaces du second ordre, que nous venons, comme
on le voit , de déduire d'une manière fort simple des propriétés
analogues et bien connues des triangles inscrits et circonscrits aux
coniques , ne sont que des cas très particuliers de théorèmes géné*
raux, relatifs à l'angle trièdre et au tétraèdre , placés d'une manière
quelconque, par rapport à une surface du second ordre.

7* THÉORÈME* Si, par rapport à une même surface fixe
quelconque du second ordre , on prend

Les pèles des trois faces d'un Les polaires des trois arêtes
angle trièdre , les plans conduits d'un angle trièdre , les polaires
par ses arêtes et par les pôles relatives à chacune des arêtes
des faces respectivement opposées perceront les plans des faces rcs~
se couperont tous trois suivant une peciivement opposées en trois
même droite. points qui appartiendront à une

même droite.
Les deux droites seront polaires l'une de Vautre, par rapport

à la surface du second ordre dont il s'agit.

Démonstration* Chacune des deux parties de ce théorème résilia
tant de l'autre , par la théorie des polaires réciproques , il nous
suffira de démontrer la première.

Pour y parvenir, prenons les trois arêtes de l'angle trièdre dont
il s agit pour les axes des coordonnées, et supposons qu'alors l'é-
quation de la surface du second ordre soit

les plans conduits par les arêtes et par les pôles des faces respecti-
vement opposées auront respectivement pour équations

^CF)} z— [ DG>—(FK+EH) G+AHK+L(EF-AD) } *r=o
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or, ii est manifeste que chacune de ces trois équations est comportée
par les deux autres ; donc les plans qu'elles expriment se coupent
tous trois suivant une même droite dont la double équation est

{ DG2—(E-I

={FK*— (DG+EH)K+CGH-{-L(DE—CF) }z ;

ce qui démontre le théorème.
Si le sommet de l'angle trièdre est au centre de la surface di-

rectrice 5 le théorème devient celui-ci :
8. Si un angle trièdre a son sommet au centre d'une surface

du second ordre?

Les plans conduits par ses are- Les plans diamétraux conju-
tes et par 113 diamètres conjugués gués aux trois arêtes coupent les
aux plans des faces respective- plan? des faces respectivement op-
ment opposées se coupent tous posées suivant trois droites qui
trois suivant une même droite* sont situées dans un même plan.

Ce plan est le diamétral conjugué de la droite dont il s'agit.

Si la surface du second ordre est une sphère, on a alors ce
théorème :

Les plans conduits par les are- Les plans conduits par le som-
tes d'un angle trièdre , perpen- met d'un angle trièdre, perpen-
diculairement à ceux des faces diculairement à ses arêtes f cou-
respectivement opposées , se cou- pent les plans des faces respec-
pent tous trois suivant une même tivement opposées suivant trois
droite. droites situées dans un même

plan.
Le plan et la droite dont il s'agit sont perpendiculaires F un à

Vautre.
En d'autres termes :

Tom. XIX ti
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Deux angles trièdres SUPPLÉMENTAIRES Vun de Vautre ayant

même sommet,
Les plans qui contiennent leurs Les droites suivant lesquelles

arêtes correspondantes se cou- se coupent les plans des faces cor-
penî tous trois suivant une même respondantes sont toutes trois
droite. dans un même plan.

Et ce plan et cette droite sont perpendiculaires l'un à Vautre.

Supposons que , dans le théorème (7), la surface du second or-
dre soit une surface conique ? de même sommet que l'angle trié—
dre ? et soit mené un plan transversal quelconque ; ce plan coupera
la surface conique suivant une ligne du second ordre et l'angle
trièdre suivant un triangle ; il coupera en outre les droites conju-
guées afux trois faces de l'angle trièdre en trois points qui seront,
par rapport à la courbe , les pôles des trois côtés du triangle ; il cou-
pera enfin les plans conjugués aux arêtes suivant trois droites qui
seront, par rapport à la même courbe , les polaires des sommets
du triangle ; on aura donc ce théorème de géométrie plane :

g. Un triangle et une ligne du second ordre étant situés dans\-
un même plan,

Les droites qui joignent les Les points de concours des di-
sommets du triangle aux pèles rections des côtés du triangle et
des côtés respectivement opposés des polaires des sommets respec-
se coupent toutes trois au même iivement opposés appartiennent
point* tous trois à une même droite*

Et cette droite et ce point sont polaires Vun de Vautre*
Ce théorème donne naissance à plusieurs autres.
Si , par exemple , le triangle est inscrit ou circonscrit à la courbe f

on retombe sur le théorème (1) qui n'est ainsi qu'un cas par-
ticulier de celui-ci.

Si l'un des sommets du triangle est au centre de la courbe , ou
obtient ce théorème :

io« Les droites menées par les sommets d'un triangle 3 parai—
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îèlement aux conjugues des diamètres dune conique parallèles à
ses côtés , concourent toutes trois en un même point.

Et , si cette conique est remplacée par deux droites perpendicu-
laires Tune à l'autre ? le théorème se changera en celui-ci :

11. Si , par les sommets d'un triangle, on mène des droites fai~
sant, avec une droite quelconque , des angles supplémentaires res-
pectifs de ceux que font les côtés opposés avec cette même droite ,
ces trois droites concourront en un même point.

Si dans le théorème (9» la conique devient infiniment petite,
en restant homothétique avec une autre conique donnée, on aura
ce théorème :

12, Si f par les sommets d'un triangle on mène des diamètres
à une conique tracée sur son plan > les conjugués de ces diamè-
tres couperont les directions des cèiés respectivement opposés en
trois points qui appartiendront à une même droite.

Si l'on remplace Ja conique par deux droites perpendiculaires
Tune à l'autre, le théorème se changera en celui-ci:

\———
r3. 5/ Ion mène des droites aux trois sommets d'un triangle 5 de

l'un quelconque des points de son plan ? les perpendiculaires menées
à ces droites 7 par ce même point, rencontreront les directions des
côtés respectivement opposés en trois points qui appartiendront à
une même droite*

Considérons une conique tracée sur une surface du second or-
dre et un triangle dans son plan ; les plans polaires des sommets
du triangle, pris par rapport à la surface courbe, passeront par
les polaires de ces mêmes sommets 5 prises dans la conique ; et
les polaires des côtés du triangle , prises par rapport à la surface
courbe , passeront par les pôles de ces mêmes côtés ? pris dans la
conique; or, ces trois polaires doivent concourir en un même
point, pôle du plan du triangle, par rapport à la surface courbe;
d'où il suit que le théorème (9) peut prendre cet énoncé plus
général :
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i^. Un triangle et une surface quelconque du second ordre exis-*

tant ensemble dans l'espace,
Les plans déterminés par les Les points oh les plans polai-

sommets du triangle ei par les res des sommets du triangle cou-
polaires des côtés respectivement pent les directions des côtés res-*
opposés se coupent tous trois pui- pectivement opposés appartiennent
vant une même droite. tous trois à une même droite*

Et ces deux droites sont polaires réciproques par rapport à la
surface du second ordre dont il s'agit*

Nous pourrions démontrer ce théorème d'une autre manière qui
consisterait à le déduire 5 par une transformation polaire 5 du théo-
rème (7) ; nous en conclurions alors le théorème (9) de géométrie
plane.

En supposant que la surface du second ordre devient infiniment
petite ? en restant hornotliétique avec une surface donnée , on obtient
une nouvelle démonstration du théorème (8) ; et, en supposant que
le plan de la conique soit tangent à la surface du second ordre,
on obtient une nouvelle démonstration du théorème (12).

On pourrait ajouter à ce qui précède plusieurs autres théorèmes
Telaûfs au système d'une conique et d'un triangle tracés dans son
plan ; mais nous préférons passer de suite à une proposition plus
importante.

i5. THÉORÈME. Une surface quelconque du second ordre et
un tétraèdre quelconque étant situés d'une manière quelconque dans
l espace,

Les droites qui joignent les som- Les droites > suivant lesquelles
mets du tétraèdre aux pôles des les plans des faces du tétraèdre
faces respectivement opposées sont sont coupés par les plans polai-
quatre génératrices d'un même res des sommets respectivement
mode de génération d'une autre opposés, sont quatre génératrices
surface du second ordre. d'un même mode de génération

d'une autre surface du second
ordre.
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Et, non seulement , ces deux nouvelles surfaces du second or-

dre sont polaires réciproques l'une de l'autre , par rapport à la
surface du second ordre proposée , mais en outre les quatre gé-
nératrices de l'une sont polaires réciproques des quatre génératri-
ces de l'autre f chacune à chacune.

Démonstration, Les deux parties de ce théorème résultant Tune
de l'autre } par la théorie des polaires réciproques , il doit nous
suffire de démontrer la première.

Par la première partie du théorème (7), les droites qui joignent
trois sommets du tétraèdre aux pôles des faces respectivement op-
posées sont comprises dans trois plans se coupant suivant une même
droite qui passe par le quatrième sommet ; d'où il suit que cette
dernière s'appuye à la fois sur les trois autres. Or, la droite qui
joint le quatrième sommet au pôle de la face opposée a aussi ce
sommet pour point commun avec cette quatrième droite ; d'où il
suit que celle-ci s'appuye à la fois sur les droites qui joignent les
quatre sommets aux pôles des faces respectivement opposées. On
peut donc mener , par chaque sommet du tétraèdre , une droite
qui s'appuye à la fois sur les quatre droites dont il s'agit ; ces
quatre droites sont donc , en effet, quatre génératrices d'un même
mode de génération d'une même surface du second ordre.

Les quatre droites qui , menées par les sommets du tétraèdre ,
s'appuyent ainsi, à la fois, sur les quatre autresf sont, comme nous
en avons déjà fait la remarque (4) ? quatre génératrices du deuxième
mode de génération de la surface du second ordre déterminée par
les quatre premières.

Ce théorème est d'une grande généralité, et conduit à une mul-
titude de propriétés nouvelles du tétraèdre.

Et, d'abord, si une ou plusieurs faces du tétraèdre dont il s'agît,
sont tangentes à la surface du second ordre , ces faces auront pour
pôles leurs points de contact avec elles ; comme à l'inverse , si uu
ou plusieurs de ses sommets sont sur cette surface, leurs plans po-
laires seront les plans tangens à ces sommets, d'où l'on voit déjà
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que ce théorème comprend , comme cas particulier ? celui queNnouf
avons démontré directement ci-dessus (4).

Si Ton suppose un des sommets placé au centre de la surface,
la première partie de ce théorème (i5) donne celui-ci:

16, Les parallèles menées, par les sommets d'un tétraèdre > aux
conjugués des plans diamétraux dune surface quelconque du se-
cond ordre , respectivement parallèles à ses faces , sont quatre gé-
nératrices d'un même mode de génération d'une autre surface du
second ordre.

Nous pouvons donc ajouter , d'après le théorème (6) que,

Par les points où ces quatre droites sont respectivement cou-
pées par les plans des faces opposées 7 on peut faire passer une
surface du second ordre tangente à ces quatre faces.

Si la surface du second ordre est supposée sphéiique , on aura
ce théorème :

Les perpendiculaires abaissées des sommets d'un tétraèdre sur
les plans des faces respectivement opposées , sont quatre généra-
trices d'un même mode ^e génération d'une même surface du se-
cond ordre.

Si y dans le théorème ( i5) , la surface du second ordre devient
infiniment petite, en restant hornothétiqtie avec une surface donnée
du m^me ordre , on en conclura celui-ci :

17« Les plans diamétraux d'une surface du second ordre , con-
jugués aux diamètres de cette surface dont les directions passent
par les sommets d'un tétraèdre, coupent les plans des faces res-
pectivement opposées de ce tétraèdre suivant quatre génératrices
d'un même mode de génération dune autre surface du second ordre*

Si la surface du second ordre est sphérique, ce théorème se mo-
difiera comme il suit :

Les plans conduits par un même point quelconque de l'espace ±
perpendiculairement aux droites menées de ce point aux sommets
dun tétraèdre ? coupent les plans des faces respectivement
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êèes de ce tétraèdre suivant quatre génératrices d'un même mode
de génération d'une surface du second ordre.

Si les six arêtes du tétraèdre sont tangentes à ta surface du se-
cond ordre ? le théorème (i5) devient celui-ci:

18. Une surface du second ordre touchant à la fois les six arê-
tes d'un tétraèdre,

Dans Thexaèdre octogone cir- Dans T octaèdre hexagone ins-
conscrit, dont les faces seront les crit, qui aura ses sommets aux
plans tangens aux six points de six points de contact, les droi-
contact , les diagonales joignant tes suivant lesquelles se couperont
les sommets respectivement oppo- les plans des faces respectivement
ses seront quatre génératrices opposés seront quatre génératri~
d'un même mode de génération ces d'un même mode de généra-*
d'une autre surface du second tion d'une autre surface du se-
ordre» cond ordre.

Et ces deux surfaces seront polaires réciproques Vune de tau~
fre , relativement à la surface proposée*

Les pôles des faces d'un tétraèdre sont les sommets d'un deuxième
tétraèdre dont les faces ont respectivement pour pôles les sommets
du premier» Si les arêtes de celui-ci sont tangentes à la surface
directrice du second ordre , les arêtes correspondantes de l'autre
en seront les tangentes conjuguées, et le précédent théorème pourra
s'énoncer ainsi :

19. Si les six arêtes d'un tétraèdre sont toutes tangentes à une
même surface du second ordre ? les conjuguées de ces tangentes
sont les six arêtes d'un nouveau tétraèdre qui pourra être dit
conjugué au premier»

Les droites qui joindront les Les intersections des plans des
sommets respectivement opposés, faces respectivement opposées 9

dans les deux tétraèdres ? seront dans les deux tétraèdres , seront
quatre génératrices d'un même quatre génératrices d'un même
mode de génération d'une autre mode de génération d'une autre
§urface du second ordre* surface du second ordre,
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Et ces deux surfaces seront polaires réciproques Tune de Tau~

ire , relativement à celle que touchent les douze arêtes des deux
tétraèdres.

Si Ton suppose , dans le théorème (i5) , que la surface ditôetece*
se réduit à une conique, on en conclura celui-ci :

20. Une conique et un tétraèdre existant ensemble dans Tes—
, pace 9 les droites qui joignent les sommets du tétraèdre avec les
pèles des droites suivant lesquelles le plan de cette conique coupe
les plans des faces respectivement opposées 9 sont quatre généra-
trices d'un même mode de génération d'une même surface du se~>
cond ordre.

Si l'un des axes de la conique devient nul , elle se réduit à
une ^droite d'une longueur limitée , et le théorème se change dans
celui qui suit :

21. Une transversale perçant les plans des quatre faces d'un té-
traèdre j et deux points fixes étant pris arbitrairement sur cette
transversale ; si Von joint par une droite chaque sommet du tétraè-
dre avec le point de cette transversale , quatrième harmonique, aux
deux points fixes et à celui où elle perce le plan de la face op-
posée , on obtiendra ainsi quatre génératrices d'un même mode de
génération dune surface du second ordre*

Si l'un des points fixes était à l'infini ? on aurait une autre pro-
position que nous nous dispenserons d'énoncer.

Si la surface directrice du théorème (i5) est une surface coni-
que , on obtiendra le théorème suivant :

% a. Les plans diamétraux dune surface conique du second or-
dre } conjugués aux droites qui joignent son sommet aux quatre
sommets d'un tétraèdre , coupent les plans des faces respective-
ment opposées suivant quatre génératrices d'un même mode de gê->-
nèraiion dune surface du second ordre*

Ce théorème aurait pu être déduit de celui qui le précède (20),
au moyen d'une transformation polaire. II n'est, au surplus ; qu'uu
cas particulier du théorème (17)»
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On petit supposer que la surface conique devient le système de

deux plans, que ces plans se coupent à angles droits, qu'ils sont
paiallèles, que l'un d'eux passe à l'infini ; ce qui offrira tout au-

j tanf^de théorèmes différens.
Les théorèmes (20) et (22) donnent lieu à deux autres théo-

rèmes plus généraux , susceptibles de diverses conséquences.
S i , en effet, par la conique, on conçoit une surface quelcon-

que du second ordre , la polaire , par rapport à cette surface du
second ordre, d'une droite située dans le plan de la conique, per-
cera ce plan en un point qui sera précisément le pôle de cette
droite , par rapport à cette même conique ; et si f dans la surface
conique , on inscrit une surface quelconque du second ordre, la

. polaire, par rapport à cette dernière surface, d'une droite menée
par le sommet du cône , sera comprise dans le plan diamétral de
ce même cône conjugué à la droite dont il s'agit \ nos deux théo-
rèmes prendront donc la forme suivante :

20» Une surface du second ordre et un tétraèdre existant en~
semble dans Vespace ,

Les droites menées des som- Les droites suivant lesquelles
mets du tétraèdre aux points où les plans des faces du tétraèdre
vn plan fixe quelconque est percé sont coupés par les plans con-
par les polaires de ses intersec- duits par un point fixe quelcon*
tions , avec les plans des faces que , et par les polaires des droi-
respectivement opposées 7 sont qua- tes qui joignent ce point fixe aux
ire génératrices d'un même mode sommets respectivement opposés ,
de génération d'une autre sur- sont quatre génératrices d'un
face du second ordre* même mode de génération d'une

autre surface du second ordre.
Si le plan et le point fixe sont polaires réciproques l'un de Vau-

tre , il en sera de même des deux nouvelles surfaces du second
ordre*

Si , dans la première partie du théorème , le plan transversal
passe à l'infini, on retombe de nouveau sur le théorème (16) 7

Tom. XIX n
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et si , dans la seconde , on suppose que le point fixe coïncide avec
le centre de la surface, on retrouve le théorème (17).

Si 9 dans ce qui précède, les faces da tétraèdre avaient ponr
pôles , relativement à la surface du second ordre , les sommets
repectivement opposés, ce qui > pour une même surface fixe du
second ordre , peut avoir lieu dans une infinité de tétraèdre ; cha-
que arête aurait pour polaire l'arête opposée > et alors les théorè-
mes ci-dessus n'auraient plus d'application. Mais, en considérant
ces tétraèdres relativement à une deuxième surface fixe du second
ordre, ils se trouveront jouir de diverses propriétés bien remar-
quables, dont l'examen, fera partie d'un autre travail. Nous nous
bornerons , pour le présent, à en extraire, sans les démontrer, les
propositions suivantes :

24. Deux surfaces du second ordre étant données dans l* espace f

si Von conçoit un angle iriedre mobile et variable autour de son
sommet fixe , tel que les polaires de ses arêtes , relatives à la
première de ces deux surfaces, soient constamment dans les plans
des faces respectivement opposées ;

i.° Les points où les arêtes i.° Les plans tangens menés
de Fangle trièdre variable per- à la deuxième surface par les
ceront la deuxième surface se- polaires des arêtes de t angle trie-
ront les sommets d'un octaèdre dre variable seront les faces d'un
hexagone variable, inscrit à cette hexaèdre octogone variable ? cir—
deuxième surface > lequel sera conscrit à cette deuxième surface ,
constamment circonscrit à une lequel sera constamment inscrit
troisième surface fixe du second à une troisième surface fixe du.
ordre. second ordre*

2 ° Les surfaces coniques cir-* 2.0 Les surfaces coniques cir~
conscrit es à la deuxième surface, conscrit es à la deuxième surface f

suivant ses intersections avec les dont les sommets seront les pô-
trois faces de Vangle iriedre va- les des faces de Vangle trièdre
riablo f envelopperont consîam- variable 9 se couperont constant'
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ment une quatrième surface fixe ment sur une quatrième surface
du second ordre* fxe du second ordre.

Si le sommet fixe de l'angle trièdre variable est le centre même
de la première surface fixe du second ordre , ses_ ai êtes seront évi-
demment trois diamètres conjugues de cette surface, et il en ré-
sultera les propositions suivantes ;

i.° Si , par un point fixe ? on conduit trois droites mobiles ,
constamment parallèles à trois diamètres conjugués d'une sur-

face Jixe du second ordre , ces droites perceront une deuxième sur-
face fixe du second ordre aux sommets d'un octaèdre hexagone
variable inscrit , lequel sera constamment circonscrit à une troi-
sième surJace fixe du même ordre*

2.° Si t par un point fixe, on conduit trois plans mobiles , cons-
tamment parallèles à trois plans diamétraux conjugués d'une sur-
fa^e fixe du second ordre f les surfaces coniques circonscrites à
vue deuxième surface fixe du second ordre, suivant ses inter sec-
tions avec ses plans mobiles, envelopperont constamment une troi-
sième surface fixe dii même ordre.

3.° Si , six plans mobiles dans l'espace et parallèles deux à deux
sont constamment parallèles à trois plans diamétraux conjugués d'une
première surface Jixe du second ordre 9 et tangens à une deuxième
surface fixe de cet ordre 9 ces plans formeront un parallèlipipède
variable circonscrit , lequel sera constamment inscrit à une troi-
sième sur j ace fixe du même ordre.

4«* Le lieu des points de T espace par lesquels on peut mener ,
à une surface fixe du second ordre 5 trois tangentes respectivement
parallèles à trois diamètres conjugués d'une deuxième surface fixe
de cet ordre } est une troisième surface fixe du même ordre.

Ces théorèmes sont susceptibles de nombreuses conséquences que
nous nous réservons de développer dans un autre article où nous
ferons connaître diverses autres propriétés de l'angle dièdre , de
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l'angle trièdre et du tétraèdre, considérés par rapport à une
face du second ordre (*).

P. 5. Nous nous apercevons, en terminant, d'une inadvertance que août
devons nous empresser de réparer.

Immédiatement avant le n.° i3 , il faut lire ce qui suit •

12 bis. Si des rayons incidens , partant des trois sommets d*um
triangle , pont concourir en un même point d'une droite réfléchis-
sante 9 située d'une manière quelconque dans son plan, les rayons
réfléchis rencontreront les directions des côtés respectivement op~
posés en trois points qui appartiendront à une même droite.

Si l'on remplace la conique par un cercle, on obtiendra cet autre
théorème ? déjà énoncé par M. Bobillier {Annales, tom, XVIII, pag. 185).

ï3. Si y de Tun quelconque des points du plan d'un triangle, ou
mène des droites à ses sommets 9 etc. % etc.

Les théorèmes (12 bis) et (i3) $ ont leurs analogues dans l'espace, qui t t

(*) M. Chasles désire que, dés aujourd'hui , nous fassions savoir à nos lec-
teurs, i.° qu'il nous a adressé , sous la date du 8 juillet dernier, un mé-
moire sur les projections stéréo graphiques 9 dont le contenu renferme quel-
ques propositions déjà publiées par M. Bobillier dans la Correspondance de
3V1, Quetelet ( tom. IV, pag. i53 ) ; 2.0 que, par une lettre de Nice, en
date du i5 janvier dernier, il nous avait déjà annoncé être depuis long-
temps en possession de ces propositions et d'autres analogues. Nous nous
empressons de faire cette déclaration pour conserver les droits de M. Chas*
les , dans le cas où l'abondance des matières nous contraindrait de différer
la publication de son travail.

M. Chasles désire également qu9on sache qu'il est en état de remplacer par
de la géométrie pure les quelques lignes de calcul que renferme le présent
mémoire.»

J. D. G,
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déduisent du théorème (22) , comme ceux-là se déduisent du théorème (12) ;
les voici :

5/ des plans , conduits par les quatre sommets d'un tétraèdre , se
coupent suivant une même droite tracée dans un plan fixe quelconque
les plans conduits par cette droite 5 de manière à faire , dans un
tmire sens ? les mêmes angles avec le plan fia;e > couperont les plans
des faces respectivement opposées du tétraèdre , suivant quatre géné-
ratrices d'un même mode de génération d'une surface du second ordre*

Si > de Vun quelconque des points de lespace } on mène des droites
aux quatre sommets d'un tétraèdre , les plans conduits par le même
point 9 perpendiculairement à ces droites , couperont les plans des
faces respectivement opposées , suivant quatre génératrices d'un
même mode de génération d'une surface du second ordre.

GEOMETRIE ELEMENTAIRE.

Recherche des relations entre les rayons des
cercles qui touchent trois droites données sur
un plan et entre les rayons des sphères qui
touchent quatre plans donnés dans Vespace ;

Par M. J. STEÎKER.

^VVVVVVVVVVX/YA'VVl/VVl

I. OOIENT a , h 9 c les trois côtés d'an triangle ; ces côtes , consi-
sidérés comme des droites indéfinies , divisent le plan du triangle
en sept régions, dont une seule finie qui est le triangle lui-même.
Trois des six autres sont terminées chacune par un côté du trian-
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gle et les prolongemens des deux autres au-delà des extrémités de
celui là. Quant aux trois dernières ce sont des angles respective-
ment, opposes à ceux du triangle.

Comme trois conditions sont nécessaires pour déterminer un cer-
cle, ce n'est que dans les quatre premières régions que l'on peut
se proposer d'inscrire des cercles. L'un de ces cercles sera intérieur
au triangle ; c'est proprement le cercle inscrit, dont nous désigne-
rous le rr<yon par r ; les trois autres seront ce que M. Lhuilier a
appelé les cercles ex-inscrits ; nous désignerons respectivement leurs
rijons par a, (S, 7, suivant les côtés du trîàngle sur lesquels ils
s'appuyeront. On démontre aisément que ces quatre cercles sont
touchés à la fois par celui que l'on fkit passer par les milieux des
côtés du hiaugle.

Soit T l'aire du triangle; en considérant les uiangles qui ayant
pour bases les trois côtés ay b9 c du triangle donné et pour sona*
mets les centres des quatre cercles ? on a

2Tr=<£+o-a) ,
(0

En prenant la somme des produits respectifs de ces équations pan
* +V.Jtr* +*£ r# il vient, en divisant 2T ?

ou biea

-
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c'est-à-dire, Vinverse du rayon du cercle inscrit à un triangle est
égal à la somme des inverses des rayons des trois cercles ex-ins—
crûs au même triangle (*).

Ou, en d'autres termes, le parallélépipède rectangle, construit
sur les rayons des trois cercles ex-inscrits, est équivalent à la
somme des trois parallèlipipedes rectangles construits sur ces mê-
mes rayons pris deux à deux et sur le rayon du cercle inscrit.

Au moyen de la relation (a) îe rayon de chacun des quatre cer-
cles se trouve déterminé par les rayons des trois autres.

Si le triangle est équilatéral, on a

h étant la hauteur da triangle,

II. En observant que

le produit des équations (1) donne, en réduisant

T*=afor , (3)
d'où

cfest-à-dire , Taire d\un triangle est égal h la racine carrée du
du produit des rayons des quatre cercles qui touchent à la fois ses
trois côtés. Théorème publié pour la première fois par Mahieu, et

(*) 11 y a plusieurs mois que ce théorème nous a été adressé, avec plu-
sieurs autres, par M* Eobiîlier, dans une noie que le défaut d'espace BOUS a
empêché jusqu'ici de publier,

J. D. G»
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postérieurement par M, Lhuilier. ( Annales, tom. I , pag, i5o ) (*).

Pour le triangle sphérique, on aurait

Si de l'équation (3) on élimine tour à tour les quatre rayons, au
moyen de la relation (2), on trouvera

• (4 )

Des équations (r) on tire (3)

# 5 =

(5)

d'oi

0 0

&—r y—r r (6)

et par suite (3)

(*} Ce théorème fait aussi partie de la note de M. Bobillier.
J. D. G.
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Soit R le rayon du cercle circonscrit ; on sait cjue

_ abc

donc (y)

En éllir ;'.nact r cle cette valeur, au moyen de la relation (2) > on
trouvera

( M . y ) ( H . . ) ( -H)

(") D'aéré les équations (5) on peut écrire

en lien t en développant et ordonnant,

• £ y J r* \ $y y» «,

Au moyen de la relation (2) , les deux premiers ternies de ce déreloppe-
I^CVLÙ disparaissent , et l'on a simplement

Tom. XIX. i3
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Si, de la même valeur, on élimine successivement « ,
de la même relation, on trouvera

(y—r)(«—.

y, au moyen

.(lu)
—*r—/3r)

III. Si le triangle est supposé rectangle, en désignant par c Phy-
pothénuse, on aura zT^ah, au moyen de quoi les équations ( i )
deviendront

ffi——»

V =
ah

a+b

ou bien (3)

d'où enfin

c'est-à-dire , le rayon au cercle circonscrit à un triangle est le quart ai Pextèt
de la somme de* rayons des trois cercles ex-inscrits à ce triangle sur le rayon
du cercle inscrit. Cet élégant théorème appartient à M. Bobilier. v
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En divisant chacune des trois premières par la dernière $ il vien-
dra , en chassant les dénominateurs ,

d'où on tirera aisément

Ainsi ( Ï I ) ? si les trois côtes du triangle rectangle sont commen-
su râbles, les rayons des quatre cercles le seront aussi, et récipro
quement (12).

Si , par exemple , il s'agit du triangle de Pythagore È pour le
quel on a a—39 b^4 > £ = 5 , ou aura

Lféqnaticii a*-f-P~û2 donne zah — iaA-Vf- ~c% ou bien

ais le? ceux dernières équations (11) do

cior^c
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v;— -̂— s T •

équation qui ? comparée à l'équation (3) , donne

c'est-à-dire, dans tout triangle rectangle, le rectangle des rayons
des cercles ex-inscrits , qui répondent aux deux côtés de ïangle
droit y est équivalent au rectangle des rayons du cercle inscrit et
du cercle ex-inscrit qui répond à Vhypothènuse, et F un et l'autre
sont èquivalens à l'aire du triangle.

IV. Soient a, h, c ? d les quatre faces d'un tétraèdre dans leur
ordre de grandeur , de la plus grande à la plus petite ; ces faces>
considérées comme des plans indéfinis , diviseront l'espace en quinze
régions , dont une seule finie qui sera le tétraèdre lui-même. Qua-
tre des quatorze restantes seront terminées chacune par une des
faces du tétraèdre et par les prolongemens des plans des trois au-
tres au-delà de celle-là. Il y en aura six dont chacune sera terminée
par les prolongemens des plans des quatre faces au-delà d'une même
arête. Enfin, les quatre dernières seront des angles trièdres opposés
à ceux du tétraèdre.

Comme quatre conditions sont nécessaires pour déterminer une
sphère , ce n'est que dans les onze premières régions qu'on peut
se préposer d'inscrire des sphères. Mais il esl aisé voir qu'il ne
saurait y en exister à la fois dans les six régions sur les arêtes >
opposées deux à deux, et que Te^istence d'une sphère, dans Tune
d'elles , entraîne 1 impossibilité d'en inscrire une dans la région qui
lui est opposée.
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II ne saurait donc y avoir plus de huit sphères, une inscrite et

sept ex-inscrites qui touchent à la fois les quatre faces d'un tétraè-
dre , considérées comme des plans indéfinis -f et ces dernières se di-
visent en deux classes, savoir: quatre sphères ex-inscrites aux fa-
ces , et les trois autres ex-inscrites aux arêtes.

Soit r le rayon de la sphère inscrite; soient a? (ï > y 9 S les rayons
des quatre sphères respectiyement es-inscrites sur les faces a , b ,
c , d ; soient af, (V 9 y

/ les rayons des sphères ex-inscrites respec-
tivement sur les arêtes ad ou hc 9 bd ou ca ? cd ou ab ; soit en-
fin T le volume du tétraèdre.

En considérant les tétraèdres ayant leur sommet commun aux
centres de ces différentes sphères et pour bases les faces du tétraè-
dre T, on trouvera aisément

3T=(l(c+d-{-a—h) , (3)

c) , (4)

d) f (5)

a—d) , (6)

t-d) 9 (7)

r—€T) ; (S)
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les signes des seconds membres des trois dernières équations de-
vant être pris de manière que ces seconds membres soient positifs.

Des équations ( 2 , 3 , 4 > 5 ) on tire aisément

4

3T

O'

J

\ (9)

substituant ces valeurs dans l'équation ( i ) il viendra

(.0)

c'est-à-dire , la somme des inverses des rayons des sphères ex-ins-
crites sur les faces d'un tétraèdre , est double de Vinverse du rayon
de la sphère qui lui est inscrite.

Les mêmes valeurs (9) substituées dans les équations ( 6 s 7,
8 ) donnent
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T

y

c'est-à-dîre , /# somme des inverses des rayons des sphères ex-
inscrites sur deux des faces d'un tétraèdre f moins la somme des
inverses des rayons des sphères ex-inscrites sur ses deux autres
faces, est double de l'inverse du rayon de la sphère ex-inscrite
sur l'arête des deux premières ou sur rareté des deux dernières
faces.

On voit donc que les rayons de nos huit sphères sont liés lé«
uns aux autres par quatre relations au moyen desquelles quatre d'e*K
tre eux sont déterminés par les quatre autres.

En ajoutant et retranchant tour à tour chacune des équations
( I I ) à l'équation (io) on aura

î I t I I

* *~ $ r '— a!

Tt r — ff 7+7-

1

r
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c'est-à-dire , la somme des inverses des rayons des sphères ex~
inscrites sur deux faces d'un tétraèdre 3 est égale à la somme ou à
la différence des in perses des rayons de la sphère inscrite et de
la sphère ex-inscrite sur ïarête de ces deux jaces ou sur son op-
posée»

Si le tétraèdre est régulier f on a a=r(î:==y=r &=2.r, on1 ~$'=y'z=z oo ;
d'où résulte ce théorème :

Si 9 à un angle irièdre régulier àont les trois angles plans sont
les deux tiers d*un angle droit % on inscrit une suite de sphères, de
manière que chacune d'elles touche celle qui la précède immédia-
tement , les rayons de ces sphères formeront une progression géo-
métrique dont la raison sera deux.

QUESTIONS PROPOSÉES

Problème de géométrie.

, à un angle Irièdre donné quelconque 9 on inscrit une suite
de sphères 9 de telle sorte que chacune d'elles touche celb qui la
précède immédiatement, quelle loi suivront les rajons des sphèfes
ainsi inscrites ?
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Recherches sur les courbes algébriques de tous
les degrés ;

Par M. le docteur PLUCKER, professeur à l'Université de
Bonn.

• J E me propose, dans l'essai que l'on va lire, de donner cjuelques
exemples dîme méthode à {'aide de laquelle on peut déduire, im-
médiatement et sans aucune sorte de calcul, un grand nombre de
propriétés générales des courbes de tous les degrés, de la simple
considération de la constitution algébrique des équations qui les re-
présentent, Dans un autre essai, qui suivra de près celui-ci, j ' é -
tendrai ces considérations aux surfaces courbes»

On sait que cinq points sont nécessaires sur un plan pour dé-
terminer complètement une courbe du second degré 5 et que, géné-
ralement parlant, il n'en saurait passer qu'une seule par cinq points
donnés ; d'où, il suit qu'on en peut faire passer une infinité par quatre
points donnés ; il n'est donc pas étonnant , d'après cela , que
deux courbes de ce degré se coupent en quatre points.

Mais on sait aussi que neuf points suffisent sur un plan pour déter-
miner complètement une courbe du troisième degré , et, qu'en gé-
néral , il n'en sautait passer plus d'une par neuf points donnes; ou

Torn. XIX, n.° IV, i . e r octobre 1828. lA
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doit donc , d'après cela, éprouver quelque surprise de voir deux
courbes de ce degré se couper en neuf points.

Pareillement , quatorze points suffisant sur un plan pour déter-
miner complètement une courbe du quatrième degré ; et une courbe
unique de ce degré pouvant en général être conduite par ces qua-
torze points ; on ne saurait voir sans surprise deux courbes de ce
degré se couper en seize points.

En général, le nombre des points nécessaires , sur un plan5 pour
déterminer complètement une courbe du nultmt degré est > comme
i . • rti + i m~\~2. " " " . . , . i j> * i
l'on sait, — r , et il n en saurait passer plus dune de

I 2

ce degré par un tel nombre de points. D'un antre côté, deux cour-
bes de ce degré , tracées sur un même plan , peuvent se couper
en m% points. Si donc on choisit le nombre entier m , de telle sorte

a , i x m+l m + 2

que m soit au inouïs égal a — - ——.— i y ce qui arrivera pour
toutes les valeurs de m>z ; on aura un exemple de deux courbes
du même degré se coupant en autant de points au moins qu'en
exigerait la détermination complète de Tune d'elles.

Cramer, dans son Introduction à Y analyse des courbes aîgébri-
çues9 est le premier ? je crois, qui ait signalé cette espèce de pa-
radoxe qui s'explique aisément eu remarquant que , lorsqu'il est
question du nombre des points nécessaires et suffisans sur un plan,
pour déterminer complètement une courbe d'un degré déterminé 5

on sous-entend toujours que ces points sont pris au hasard , et ne
sont liés entre eux par aucune relation particulière. Je Savais ren-
contré moi-même en discutant la théorie de l'osculation des lignes
courbes; en cherchant, h l/interpréter géométriquement, j'ai été con-
duit à quelques théorèmes assez singuliers au premier aspect, mais
très-féconds en beaux corollaires ; ils ont déjà paru autre part, mais
je crois devoir les reproduire ici avec plus de développemens. J'in-
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cliquerai ensuite brièvement quelques-unes des applications dont ils
sont susceptibles.

§. H.

Bien qu'en général , passé m=:2 ,- le nombre m2 des points d'in-
tersections de deux courbes du mieme degré soit plus grand que le

771+1 m+3. . . , .

nombre x des points nécessaires pour deterimiier 1 une
d'elles, on peut néanmoins faire passer par cĉ s m7 points, non seulement
les deux combes dont ils sont les intersections , mais encore une in-
finité d'autres courbes du m.l€me degré , de sorte qu'il faut se don-
ner 11 ti point de plus pour déterminer complètement une d'entre
elles. S i , en effet, on représente par

M=o , M'—o ,

îes équations de ces deux courbes ? l'équation du même degré

dans laquelle [x est supposé un coefficient constant indéterminé, ex-
primera une infinité d'autres courbes du m.l*me degré , passant par
les m2 points d'interjection des deux premières; mais si Ton se
donne arbitrairement un nouveau point de Tune d'elles, outre ceux-là
il en résultera une équation linéaire pour la détermination de p. ;
de sorte qu'alors la courbe sera complètement déterminée.

Cela pose ? soient — _ * _ 2 points donnes sur un plan;

concevons qu'on ait décrit tontes les courbes , en nombre infini 5
qui peuvent passer par ces points , et considérons deux d'entre
elles en particulier ; elles auront m* points d'intersection ,

, 772-4-1 m-\-% , . , f 77?-4~I T77 + 2 \

savoir : les A 2 points donnes, et /» —I • •* • --—a)

nouveaux points; or, d'après ce qui précède , par ces m3 points,
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on pourra faire passer une infinité d'autres courbes du mumt de-
gré 5 lesquelles seront les autres courbes de la série dont il s'agit f

7724-1 rn+2.
puisqu elles passeront par les •—2 points donnés; donc

t 2 V

points restans ; en invoquant donc le principe de dualité on aéra
ces deux théorèmes :

toutes ces courbes passent aussi par les m —f

THÉORÈME L Toutes les
courbes du m.iema degré qui passent

par les — ~ — ^ — —2 mêmes

points fixes , se coupent en outre

aux m2—_~~ «-—— -f-2 ? autres outre les ma—

mêmes points fixes.

THÉORÈME I. Toutes
les courbes de m-iem* classe qui

m+2.
2touchent tes

ï S

mêmes droites fixes, touchent en

Ainsi, par exemple, toutes les
courbes du troisième degré qui
passent par les huit tnomes points
fixes , se coupent en outre en un
neuvième même point fixe, De
même encore ? tontes les courbes
du quatrième degré qui passent
parles treize mêmes points fixes,
se coupent toutes en outre en trois
antres mêmes points fixes ? et ainsi
du reste.

autres mêmes droites fixes.

Ainsi , par exemple ? toutes les
courbes de troisième classe qui
touchent les huit mômes droites
fixes , touchent en outre une neu-
vième même droite fixe. De même
encore, toutes les courbes de qua-
trième classe qui touchent les treize
mêmes droites fixes , touchent en
outre les trois autres mêmes droites
fixes , et ainsi du reste.

Rien n'empêche d'admettre, da^s le théorème qui précède, que
tons ou partie des points fixes donnés se confondent par groupes
plus ou moins nombreux en un point unique , auquel cas les cour-
bes dont il s'agit auront en ces points des contacts d'ordres plus,ou
moins élevés»
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Ainsi, par exemple, au lieu de considérer toutes les courbes du

troisième degré qui passent par les huit mêmes points fixes, on peut
considérer toutes celles qui , passant par les deux mêmes points fixes ,
ont entre elles ? en chacun de ces points ? un contact de quatre
points on du troisième ordre ; et Ton verra, en vertu du théorème,
qu'elles doivent se couper toutes en un troisième point.

Nous n'avons comparé , dans ce qui précède , que des courbes
exprimées par des équations complètes dans lesquelles tous les
coeflîciens étaient supposés indéterminés ; mais en assujétissant ces
courbes à certaines conditions, nous pourrons rabaisser, à volonté,
le nombre des constantes arbitraires de leur équation commune,
Nous pourrons , par exemple ; regarder comme donnés , un certain
nombre de ces coefficiens pour toutes les courbes que nous compa-
rons , ou bien supposer qu'il existe entre tous ou partie d'entre eux
on certain nombre d'équations de condition. Ces considérations con-
duisent au théorème suivant plus général que celui que nous avions
d'abord établi ;

THÉORÈME IL Etant donnés n coefficiens de Véquation géné-
rale du m.Ieme degré à deux indéterminées , ou encore étant don-
nées n èfjuaîions linéaires entre tous ou partie de ces coefficiens ;
toutes les courbes représentées par ïéquation générale 7 ainsi mo-

dijiee et passant par les — — - —— —(n~f-2j mêmes points jixes

donnes , se couperont en outre aux m - •—— +( n T 2 ) au~

tres mêmes points fixes.
Il est évident que, dans l'application de ce théorème, on ne

doit pas supposer » > ——=- »r.

§. m-

Notre théorème, sous sa première forme, ne saurait s'appliquer qu'aux
courbes des degrés supérieurs au second ; mais , sous la seconde,
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il s'applique fort bien auK courbes du second degré. Il prend alors
la forme particulière que voici :

Etant donnés n coejficiens de Téquation générale du second de-
gré à deux indéterminées , ou encore ? étant données n équations
linéaires entre tous'ou partie de ces eoejjïciens ; toutes les cour-
bes représentées par l'équation générale ainsi, modifiée et passant
par les 4—•» mêmes points fixes donnés , se coupent en outre'aux
n autres mêmes points fixes m

Ainsi l'équation générale du second degré à deux indéterminées
étant

Jx2~\-Bf+2Cxy~h2Dx+2Ey+F™o, ( i)

dans laquelle il est permis de supposer F connu; si l'on donne
i.° un des cinq autres coeCiciens et trois points ; 2.0 deux d'entre
eux et deux points ; 3,° trois d'entre eux et un point ; 4*° enfin
quatre d'entre eux , il y aura , dans tous les cas , un nombre infini
de courbes représentées par l'équation (1) ? et toutes ces courbes
passeront par les quatre mêmes points. Il en sera de même si , au
lieu de se donner un certain nombre de ces coefficiens , on se donne
un égal nombre d'équations entre tous ou partie d'entre eux. On
va voir , par quelques exemples pris au hasard , avec quelle faci-
lité on déduit de là la plupart des propriétés des courbes du second
degré.

On sait que , dans l'hypothèse des coordonnées rectangulaires , l 'é-
quation (1) représente des hyperboles équilatères lorsqu'on a
A~\-B-=io ; donc

Toutes les hyperboles équilatères qui passent par les trois mê-
mes\poinis donnés 9 se coupent en outre en un quatrième point fxe*

Le système de deux droites perpendiculaires l'une à l'autre peut,
comme Ton sait, être considéré comme une hyperbole équilatère ;
en conséquence, les trois systèmes de bases et de hauteurs,, d'un
même triangle, peuvent être considérés comme trois hyperboles équi-
latères ayant trois points communs ; qui sont les sommets du trian*



DE T O I T S L E S D E G R E S . ro3
gîe ; elles doivent donc avoir un quatrième point commun ; et ainsi
se trouve démontré que. les trois hauteurs de tout triangle con-
courent en un même point.

G C
Etant donné l'un des deux rapporta — ou -— , on connaît deux

diamètres conjugués de la courbe, dont un est parallèle à l'un des
axes des coordonnées; donc

Toutes les coniques qui ont deux diamètres conjugués parallè-
les à deux droites fixes y et qui passent^par trois points fixes , se
coupent en outre en un quatrième point fixe.

La construction de ce quatrième point étant très-facile,, on pourra
trouver tant de points qu'on voudra, i.° d'une conique dont on con-
naîtra quatre points, avec les directions de deux diamètres con-
jugués ; 2.* d'une conique dont on connaîtra trois points v avec les
directions de deux systèmes de diamètres conjugués.

Et de là encore cet autre théorème :
Toutes les coniques qui passent par les quatre mêmes points fixes

ont un système de diamètres conjugués parallèles à deux droites
fixes.

On sait que l'équation

j?/+ Cx+E—o

est celle du diamètre de la courbe ( i^ dont le conjugué est parallèle
E

à l'axe des x ; d'où il suit que, — étant donnée, on connaîtra le
H

point d'intersection de ce diamètre avec Taxe des y ; c'est-à-dire,
si cet axe rencontre la courbe, le point milieu de la corde inter-
ceptée. Etant donné un quelconque ( a , b ) des points de la di^
rection de ce diamètre, on aura

c'est-à-dire, une équation linéaire entre les trois coefficiens 2?, C,
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E. En connaissant de plus l'un quelconque ( a1

1 hf ) des points de
la direction du diamètre dont le conjugué est parallèle à Taxe des
y P on aura semblabiement

c/est-à-dire , une équation linéaire entre les trois coefficiens A P C ,
D. Enfin, une droite quelconque étant donnée par l'équation

Féquation du diamètre dont le conjugué lui est parallèle sera

équation linéaire par rapport à A 9 B , C , D , E On pourra se don-
ner une ? deux, trois ou quatre équations de la même forme. Dans
ce dernier cas, en supposant un de ces coefficiens donné, ce qui
est permis pourvu qu'on rende au dernier terme F son indéter-
mination , ils seront tous complètement^déterminés excepté celui-là.
De ces considérations se déduisent, sur-le-champ 5 les théorèmes sui-

Toutes les coniques qui passent par trois points donnes 5 et dans
lesquelles les conjugués des diamètres parallèles à une même droite
fixe vont concourir en un même point fixe ? se coupent en outre en
vn quatrième point*

Si tant de coniques qu'on coudra passent toutes par les quatre
mêmes points 7 les conjugués de leurs diamètres parallèles à une
même droite fixe concourront tous en un même point Jîxe*

Ce dernier théorème , dû à 11. Lamé ( Annales , lom. VII, pag#

22Q ) , peut être complété de la manière suivante :
Si la droite , à laquelle les diamètres sont parallèles , tourne sur

ïun quelconque des points de sa direction , le point de concours
êes conjugués de ces diamètres décrira une conique P lieu géométri-
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çues des centres de toutes les coniques passant par les quatre points
donnés (*).

Si deux coniques sont telles quelles interceptent, sur une même
droite donnée 9 des cordes dont les milieux coïncident ; la même
chose aura lieu pour toutes les coniques qui, passant par les qua-
tre points d'intersection de ces deux là , couperont la droite donnée*

Généralement, toutes lasiéioniquespassant par 4—n points don-
nés , et assujèties en outre à la condition que les conjugués de
n de leurs diamètres , parallèles à n droites données , passent par
n points fixes , se coupent en outre en n points.

Si /2 = 4 ? ïes coniques seront semblables et concentriques , de ma-
nière que les points d'intersection passeront à l'infini*

Pour dernier exemple , supposons deux points ( #, l ) , ( a1 ̂  P )
tels que l'un d'eux soit situé sur la polaire de l'autre relativement
à la courbe (i) ; cette circonstance sera exprimée par l'équation

ou

équation dont la symétrie prouve qu'alors réciproquement l'autre
point se trouve situé sur la polaire du premier. Or , ĉ est là une
équation linéaire entre les coefficiens de l'équation (i) , et chaque
système de deux pareils points en fournirait une semblable; donc

Toutes les coniques passant par Toutes les coniques touchant
4—n points donnés , et assujèties 4-—n droites données, et assujèties
à la condition que ? par rapport à la condition que 5 par rapport
à elles 9 les polaires de n points à elles , les pôles de n droites
donnés quelconques passent res- données quelconques soient situés
pectivement par autant de points respectivement sur autant de droi—

(*) C'est précisément ce qui a été démontré à la pag. 106 du précédent
volume.

J, D. G.
Tom. XIX. i5
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également donnés , se coupent tes également données, touchent
toutes aux quatre mêmes autres toutes les cjuaîre mêmes autres
points. - - droites fixes.

On volt de suite que ce dernier théorème conduit à ceux qui
ont été démontrés auparavant, lorsqu'on suppose que les n pôles
passent à l'infini.

Boom, 8 juin 1828,

'Recherches sur les lois générales qui régissent
les courbes algébriques ;

Par M. BOBILLÏER , professeur à l'Ecole des arts et métiers
de Châlons-sur-Marne •

S nous proposons, dans ce qui va suivre , tde revenir de "nou-
veau sur des propositions déjà démontrées , pour les établir d'une
manière à la fois plus simple, plus directe et plus générale.

Soit une courbe quelconque du mJem* degré, rapportée à deux axes
quelconques et exprimée par l'équation

M=o , (1)

en x et y. L'équation de la tangente à cette courbe, en l'un quel-
conque (x'^y' ) de ses points, sera ? comme Ton sait,

les coordonnées xf ^y' du point *de contact étant liées par Féqua*
tioa de relatioa
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W=o . (3)

Si , laissant $' et yf indéterminés , on veut profiter de leur indé-
termination pour assnjétir la tangente à passer par un point ( # , b\
donné sur le plan de la courbe 5 il faudra exprimer que l'équation
(2) est satisfaite en y faisant simultanément oc-=za et y—b 7 ce qui
la changera en celle-ci

ou , ce qui revient au même ,

de sorte que les points de contact des tangentes à la courbe ( i ) ,
issues du point! ( a,'&)9 seront donnés par le système des deux
équations (3) et (4) > ou , ce qui revient au même 7 par la corn-*
binaison de l'équation (1) avec l'équation

ces points seront donc ceux 011 la courbe proposée sera coupée par
celle qu'exprime l'équation (5).

L'équation (5) n'étant, comme l'équation ( i ) , q u e du rn"m9 de-
gré seulement > il s'ensuit que le nombre des points de contact s

ni conséquemment le nombre des tangentes issues du point ( a, h )
ne saurait être supérieur à m2 (*) ; mais nous allons voir que le

(•) C'est sans doute par de semblables considérations que Warîng,

ses Misceîlanea Analityca que nous n'avons pas présentement sous la main r

fixe km* limite du nombre des tangentes qu'on peut mener aune courbe

du mJ*m* degré , de l'ua quelconque des points de son plan.

j . D. G;
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nombre de ces tangentes est réellement inférieur à cette limite.

Lorsque des points sont donnés sur un plan par le système de

deux équations en x et y, ils le sont également par le système

de Tune d'elles et d'une combinaison quelconque de Tune et de

l'autre. En conséquence , puisque les points de contact des tangen-

tes issues du point (a9fr) sont donnés par le système des deux

équations (i) et (5) , ils le seront aussi par la première de ces

deux là, combinée avec l'équation

laquelle sera ainsi ? comme l'équation (5) , celle d'une courbe cou-

pant la proposée aux points de contact cherchés. Or , en vertu du

théorème connu sur les fonctions homogènes , tous les termes de

m dimensions en ce et y disparaissent de cel le-ci qui ne s'élève

Gonséquemment qu'au (m -~iy*me degré ; en la combinant donc avec

l'équation (i) elle ne donnera au plus que mtjn-^-i) 5 systèmes de va-

leurs pour les coordonnées des points de contact ; d'où il suit que

le nombre des tangentes menées à la proposée par le point ( # , £ )

ne pourra s'élever au-dessus de cette limite (*)»

(*) De même que, par suite du théorème des fonctions homogènes , la
liante m3 fixée par Warîng se trouve trop élevée , il se pourrait qu'en vertu .
de quelque autre théorème, inaperçu jusqu'ici , la limite 77/(m —i) le
fût trop aussi; car il faut bien remarquer que des deux équations (i) et
( 6 ) , la première seule est quelconque, tandis que l'autre en est déduite
d'une manière tout à fait particulière. Or , s'il était vrai qu'on ne pût pas
mener à une courbe du m.ieme degré w(m—i) tangentes d'un même point,
il serait faux que la polaire réciproque d'une courbe du mt

teme degré dut
s'élever au [rw(m-f-i)]/i;ine degré. MM. les commissaires de l'Académie royale
des -sciences ont donc été fondés à dire ( Bulletin des sciences mathématiques ,
avril 1828, pag. 227 ) que cette dernière proposition était encore à démon*
trer-, M. Poncelet nous a lui-inêoie offert des exemples de courbes du troU
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L'équation (6) étant ainsi celle d'une courbe qui coupe la pro-

posée en ses points de contact avec les tangentes qui lui sont me-

nées du point quelconque (a, b) de son plan , et cette équation

n'étant que du (m—i)/emt degré seulement; en invoquant le prin-

cipe des polaires réciproques on sera conduit à établir ces deux

théorèmes :

THÉORÈME I. Les points THÉORÈME I. Les tangen-

te contact des tangentes menées tes menées à une courbe du m.leut*

à une courbe du m.ieœe degré, de degré , par ses intersections avec

ïun quelconque des points de son une transversale rectiligne quel-

plan , sont tous situés sur une conque ̂  touchent toutes une courbe

courbe du (m—i)ieme degré au du (m—i)ieœe degré au plus (*).

plus (*)•

sième degré, auxquelles on ne pouvait mener que trois tangentes par un
quelconque des points de leur plan ; mais iL ne nous en a point indiqué
de ce degré , pour lesquelles ces tangentes soient au nombre de six,. Il ne
nous a pas même montré , ce qui aurait pu suffire, une courbe continue tra-
cée arbitrairement à la main , de laquelle on vît clairement i.° qu'aucune
droite ne peut la couper en plus de trois points; 2.0 que, néanmoins d'un
certain point , on peut lui mener sis. tangentes.

(*) M. Poncelet observe , avec beaucoup de raison ( Bulletin des sciences
mathématiques , mai 1828, pag. 3oi ) , que c'est par erreur que M. Bobiîlier
et nous , avons attribué ce théorème à M. Vallès , attendu qu'il se trouve
clairement indiqué à la pag. 2.15 de notre VIIÏ.e volume. Du reste , l'er-
reur de ÎVÎ. Bobiîlier sur ce point est fort excusable , car il ne connaît pas
Botre VIILe volume qui ne se trouve plus aujourd'hui dans la librairie ;
et quant à nous f si M. Poncelet veut bien prendre la peine d'ouvrir no-
tre XVLe volume , à la page i32, il y verra proposé à démontrer, comme
nouveau , un théorème que nous avions nous-inême démontré à la page
282 de notre IX.« volume , et il ne saurait raisonnablement exiger de nous
que nous ayons plus de mémoire de ses œuvres que des nôtres. Puisse-t-il
Tivre assez long-temps pour apprendre , par sa propre expérience , qu'avec
Tige la mémoire se perd tout aussi bien que les cheveux.

J, D. G.
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Cette courbe est ce que nous

avons appelé ( Annales , tom»
XVIII, pag, ^53 ) la courbe po-
laire de la droite dont il s'agit,
par rapport à la courbe directrice
proposée,

des tangentes est mobile sur un

Cette courbe est ce que nous
avons appelé ( Annales, tom.
XVIÏI, pag. 253 ) la courbe po-
laire du point dont il s'agit, par
rapport à la courbe directrice pro-
posée.

Si le point de départ ( a, b)
droite ayant pour équation f=<x:
changera l'équation (6) en celle

âM

*~d7

Si 5 dans cette équation , on considère a comme un paramètre
variable , celte équation ne pourra être satisfaite que par les sys-
tèmes de valeurs qui satisferont à la fois aux deux suivantes ;

on devra avoir b^ p ce qui
-ci

àM
00

àM
r dy

lesquelles expriment deux courbes du (z?2~~i)ieme degré, qui se cou-
pent en (/72—i)2 points seulement; or, comme l'origine est quel-
conque , la droite donnée par l'équation y=zocs est une droite quel-
conque ; de sorte qu'en invoquant la théorie des polaires récipro-
ques on aura ces deux théorèmes :

THÉORÈME IL les courbes THÉORÈME IL Les courbes
polaires de tous les points d'une polaires de toutes les droites qui
droite indéfinie , relatives à une passent par un même point fixe r

directrice quelconque du m.ieme de- relatives à une directrice quel-
gré ? se coupent toutes aux (m—a)a conque de ti\*me classe y touchent
mêmes points fixes. toutes les (m—i)a mêmes droi-

tes fixes.
Ces points sont, ce que nous Ces droites sont, ce que nous

a?ans appelé ( Annales 9 tonx. a?ons appelé ( Annales ,
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XVIII, pag a54 ) les points po- XVIII, pag. 254) 'es droites po-
laires de îa droite dont i! s'agit, /aires du point dont il s'agit 5 re-
relativement à la courbe direc- laiivement à la courbe directrice
trice proposée. proposée.

Si , dans les équations (8) , on suppose a variable, les points d'in-
tersection des deux courbes varieront aussi ; mais ces points seront
toujours situés sur la première des deux courbes , dans l'équation
de laquelle a n'entre pas; or, faire varier a c'est faire tourner la
droite y~a& autour de l'origine, qui est quelconque sur le plan de
la courbe (1); et comme d'un autre côté, la première des équa-
tions (8) n'est autre chose que l'équation de la courbe polaire de
l'origine, on a encore ces deux théorèmes :

THÉORÈME III. Si une droite THÉORÈME IIL Si un point
tourne, d&ns le plan d'une courbe parcourt une droite, dans le plan
directrice f autour de l'un des d'une courbe directrice , les droi-
points de sa direction , les points tes polaires de ce point envelop-*
polaires de cette droite parcour- peront la courbe polaire de cette
ront la courbe polaire de ce point droite fixe,
fixe.

Soit p. une constante indéterminée, et soient deux courbes du
mleme degré données par les équations M/=o , M'^o; l'équation
générale des courbes de ce degré passant par leurs intersections sera >
comme l'on sait,

=o ; (9)

posant donc

il viendra 9 en difîérentiant ,

àm» âl\îdM?
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substituant ensuite dans (6) , en y faisant a et b nuls, on obtien-
dra , pour la courbe polaire de l'origine , relativement à la di-
rectrice (9) ,

dW àM'f \ / dM' dM"

ou bien

dM> dM>

do? * J ày
-\-p ( 3o —— +Y —7— ~-mMf/ i = o . (10)

l \ dx J ày J v y

O r , quelle que soit la valeur attribuée à la constante arbitraire^,
cette courbe polaire passe évidemment par les (#2-—i}2 points fixes
donnés par les deux équations

dM' , dW r/tr dM» _ dM>?
x -7— + r -7— =mM ; a —— + r - ;

d* ' ^ d/ d« ^ dj

on a donc ces deux théorèmes :
THÉORÈME IF. Si tant de 9 THÉORÈME IV. Si tant de

courbes dum.leme degré quart vou- courbes de m.1*™6 classe quon vou-
dra passant toutes par les m2 mê- dra ont toutes les m* mêmes tan-
mes points Jîxes , les courbes po- génies Jixes , les courbes polaires
laires d'un point quelconque , re- diune droite quelconque> relatives
laiires à toutes celles-là , passe- à toutes ces courbes , auront tou~
ront toutes par les (m— \ f me- tes les (m—1)* mêmes tangentes
mes points également fixes. également fixes.

C'est là f comme l'on voit, la première partie des deux théo-
rèmes de la page 256 du. précédent volume , et les deux autres
seraient tout aussi faciles à établir.

Si Féquation M"-=o est homogène en x et y, elle exprimera le
système de m droites réelles ou idéales, passant par l'origine; et
ccmséquemmeat les courbes comprises dans l'équation (9) auront
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m sécantes communes, issues d'un même point ; or, à cause de
l'homogénéité de M" 9 on a identiquement

x < + v —mM" :
clac J ày

au moyen de quoi l'équation (10) de la courbe polaire de l'ori-
gine 9 se réduit simplement à

oc
dM'

de sorte que cette polaire est alors indépendante de îa constante
arbitraire ^ ; on a donc ces deux théorèmes :

THÉORÈME F. Si tant de THÉORÈME F. Si tant de
courbes du ïîi*ieme degré qu'on vou- courbes de m.leme classe qu'on vou-
dra ont toutes les m2 mêmes dra ont toutes les m2 mêmes tan-
points communs , distribués m à gentes communes 9 concourant m
ni sur m droites, concourant en à in en m points , appartenant
un même point 5 ce point n'aura à une même droite^ cette droits
qu'une courbe polaire unique par n'aura qu'une courbe polétire uni-
rapport à toutes les courbes pro- que par rapport à toutes les
posées ; cette polaire contiendra courbes proposées ; cette polaire
consècjuemrneni les points de con~ sera consêquemment enveloppée
tact de toutes les tangentes me- par les tangentes menées à tou-
nées à ces courbes par le même tes ces courbes aux points où el-
point. les sont coupées par cette droite.

En supposant, en particulier, 772 = 2 , on déduira de là ces deux
propositions connues :

Les points de contact des tan- Les tangentes menées à ton-*
génies menées à toutes les lignes tes les lignes du second ordre
du second ordre circonscrites à inscrites à un ?nême quadrila-
un même quadrilatère, par le ûre par leurs points d'intersec-
point de concours de deux côtés tion 9 avec la droite qui joint chus

Tom. XIX 10
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opposés de ce quadrilatère , ap* sommets opposes de ce
partlennent tous à une seule et tère , concourent toutes en un
même droite , polaire commune seul et même point 3 pèle corn-*
de ce point, relativement à tou- mun de cette droite , relativement
tes ces courtes* à toutes ces courbes.

GEOMETRIE DE SITUATION*
Double théorème de géométrie à trois dimen-

sions ;

Par M. G E R c o H H E.

a vu , à la page 149 dix précédent volume , que nous étions
redevables à la sévère critique de M. Poncelet de la double clas-
sification des lignes et surfaces courbes que nous avons adoptée de-
puis lors; double classification tout à fait indispensable (*) à rai-
son de sa liaison intime avec le principe de dualité (**) 5 et qu'il
serait très-peu philosophique de vouloir repousser sous le prétexte

(*) Nous disons indispensable , dans l'hypothèse du moins où le degré de
la polaire réciproque d'une courbe serait plus clevë que le sien ; ce qui peut
être vrai , mais que des juges très-compétens, du choix de M. Poaceiet lui-
même , ne regardent pas comme suffisamment démontré.

(**) Nous ayons long-temps hésité à employer cette expression, tant U
cause du mauvais accueil que reçoivent d'ordinaire du public les locutions
nouvelles % que parce que le mot dualité est un des ternies d'une philosophie
dont nous faisons assez peu de cas8 M, Poncelet t en l'adoptant , en
tant môme le mot trialité 9 nous a beaucoup enhardis à eu faire usage.
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qu'elle est inusitée en géométrie , puisqu'alors il faudrait aussi re-
jeter , du Traité des propriétés projectiles 5 et de beaucoup d'autres
ouvrages modernes , d'excellentes choses qu'on ne rencontre ni dans
Àppollonius ni dans les autres auteurs de la même époque.

Nous devons aussi à cette attention scrupuleuse avec laquelle M*
Poncelet veut bien scruter tout ce que nous publions dans notre recueil,
de réparer IUIQ omission que nous avions commise à la pag, 3^6
de notre Xî,e volume. Nous avions essayé de démontrer, en cet en
droit , par les principes de la statique, un curieux théorème de géo-
métrie plane de M* Coriolis ,• ainsi qu'un autre théorème que le
principe de dualité nous en avait fait déduire. Parvenus à la fia de
notre tâche , nous nous aperçûmes que la démonstration que nous
avions donnée du premier de ces deux théorèmes n'exigeait pas
nécessairement que îes points qu'on y considérait fussent situés dans
un même pian; niais, tout en faisant cette remarque, nous dûmes
ajouter qu'il n'en était pas de même des droites dont il était ques-
tion dans le second, altendu que1, tandis que deux poids peuvent
toujours se composer .en un seul, deux forces, au contraire, ne
peuvent se composer en une seule, qu'autant que ces forces sont si-
tuées dans un même plan.

KL Poncelet observe présentement/ avec beaucoup de raison , que
le théorème de ML Coriolis, étendu, comme nous lavons fait, aux
tiois dimensions de l'espace, n'en a pas moins un corrélatif qui
s'en déduit en y remplaçant les points par des plans. C'est, en ef-
fet, une remarque qui nous avait échappé, niais dont nous n'au-
rions pu faire d'ailleurs aucun usage en l'endroit cité , quand bien
même elle se'serait alors offerte à notre esprit, attendu crue , d'une
part, nos moyens de démonstration n'auraient pu atteindre à ce nou-
veau théorème , et que , d'une autre, les idées de dualité n'étaient pas
assez répandues à cette époque pour qu'if pût nous être permis de
conclure ce théorème de l'autre, comme un simple corollaire,

Aujourd'hui s au contraire, qu'il doit être bien connu que lotis
les théorèmes de situation marchent par couples, il nous sufiha
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d'avoir démontré l'un d'eux, à l'endroit cité., pour que l'autre soit
admis sans contestation. Ils peuvent d'ailleurs être démontrés, cha-
cun en particulier et même sans aucune sorte de calcul, comme
il arrive pour tous les théorèmes de ce genre, en suivant une mar-
che analogue à celle qui a été indiquée à la pag# 69 de notre XII.*
Volume ; et c'est une chose à laquelle nous regrettons de n'avoir
pas songé en publiant notre article de la pag. 209 de notre XVI.*
volume , article dont la démonstration de ces deux théorèmes au-
rait fait un supplément très-convenable. Nous nous bornerons ici à
présenter les deux énoncés dans une rédaction unique.

THÉORÈME. Soient, dans l'espace, n \ p ° m s ( q l i eiconqUes
r ( plans } A *

numérotés arbitrairement ainsi qu'il suit

( 0 , W , (3), (n) . (1.» Série).

^1 1 ( P°ints ) . . . - , . ,
Chacun de ces < _ >. avec celui qui portera le numéro imme-

( plans \
diatement supérieur, déterminera une droite; de telle sorte qu'on
aura ainsi n—1 droites , que Ton pourra désigner respectivement

par l'ensemble des indices des deux < ) qui déterminent char
* | plans j l

cuae d'elles, en cette manière

C points pris )
Soient n—il > respectivement, et d'une manière

( plans conduits 3

out à fait arbitraire l \ ces «—*i droites ; et soient désignés ces
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< p o m s > par l'ensemble des numéros de la droite < S ? laquelle
( plans 3 * ( par ) u

( s î t u ë )
chacun d eux est { 1 . } en cette manière :

( conduit )

( 1 , 2) , (2 , 3) , (3,4) , (*—-i, n) . ( 2.me Série )

En prenant deux à deux, de toutes les manières possibles, les

} > des deux séries , dont les indices comprennent ensemble
| pians \
trois nombres consécutifs de la suite naturelle , sans répétition ni

lacune > ces couples de \ ) détermineront une nouvelle série
I plans ^

de 2{?i—^2) droites dont chacune pourra encore être désignée par

l'ensemble des indices des deux \ ( qui auront concouru à
I plans v

sa détermination P en cette manière ;

(0(2, 3) i (2;(3, 4) , (3J(4, 5), (»

Or % il arrivera que les droites portant les mêmes nombres à leurs
indices , lesquelles sont, comme Ton voit > les droites correspon-

. 1 ( concourront ) ( point \
dantes dans les deux lignes { . \ en un même 1 . 5 •

0 ^ seront situées ) | plan j
( points )

et donneront ainsi naissance a n—2 noifveaux \ >quelon pourra
( plans ) x y

également désigner respectivement par l'ensemble des indices des
deux droites qui auront concouru à déterminer chacun d'eux, en
cette manière ;
( i , 3 } 3 ) , ( 2 , 3 , 4 ) , ( 3 , 4 , 5 ) , .....(»—2, n—i,n); (3™Série)
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Ej3 prenant de nouveau deux à deux, de toutes les manières
-* % "i k points? . . , . . _ . ,.

possibles, ceux des < ? des trois séries dont les indices portent
* £ plans ^ x

ensemble quatre nombres consécutifs de la suite naturelle , sans ré-

pétition*.-ni lacune, ces couples, de < t > détermineront-denou-
x (plans }

Veîles droites , au nombre de 3(/2—'3) % dont chacune pourra , de
la même manière, être désignée par l'ensemble des indices des
, C points) . - % t r
deux < , ) qiiK auront concouru a sa détermination , en cette

^ plans i x

manière :•

, (2,3)(4,5)f (3,4}(5,6), ...... ( « - 3 , / Z - B ) ^ -

f (^3,4)(5) , (3?45),6), ^M . ( t e -3 , / î—2, / Ï—

O r > il arrivera que les systèmes de trois droites portaot les Blê-

mes nombres à leurs ind ices , Fesquelles sont ? comme ion voit -,

. { concourront J
ccUps qui soai inscrites dans une même colonne < . >
s * . (seront situées'}

( point A . . . , oen un même l , , et donneront ainsi naissance a n—o non-
( plaix J

Ç plans } a .
veaux< . > que Ion pourra continuer a designer respectivement
par l'ensemble des indices des droites qui auront concouru à leur,
détermination y en cette manière ,•

,a,3,4), 0>,3,4>5), (3,4,5,6),. . .(»-3,«~a,»«i, n) . (4:

Eu poursuivant continuellement le même procédé 3 on obtiendra
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, , / \ j • i concourant }

successivement 4(/2~4) droites < i t é \ quatre à quatre <m

Ç points ^ . . C concourant )
fl4l 5 ' PU1S 5(/2~"5) dr0UeS | situées \ CU1<Î à C U l l ï e nplans 5 ' PU1S 5 ( / 2~"5 ) d r 0 U e S | situées

points i

>, et ainsi de suite ; de sorte qu

lement à #—-Î droites désignées respectivement par

£ points i
n—B î >, et ainsi de suite ; de sorte que Ton parviendra fina-

(1,2,3, .... n—a)(/2—1, ^)

concourant; ? C point }
. , > toutes en un î . > unique désigné pat

sitaées ) f plan I l or*

B—2 ; B-^I f 12)



RECTIFICATIONS

GEOMÉTHIE DE SITUATION.

Rectifications de diverses propositions énoncées
dans les Annales ;

Par 3VL GERGONHE*

N annonçant ( Bulletin universel, mai 1828, pag. 3oat ) que les rectifi-
cations que nous avions indiquées ( Annales, tom. XVIII, pag- i49 ) pour
notre Mémoire sur les lois générales qui régissent les lignes et surfaces cour-»
les ( tom. XVII, pag, 214 ) étaient loin de suffire , M. Poncelet nous avait
tellement effrayés que nous n'avions pas eu le courage de relire ce mé-
moire , dans la crainte à*y trouver trop à réformer. M. Ghasles a bien voulu
prendre cette peioe et y joindre obligeamment celle de nous indiquer les
propositions qu'il avait trouvé défectueuses ou inexactement déduites. Nous
avons été agréablement surpris en apprenant que tout portait uniquement
sur quelques corollaires très-accessoires , et qui n'intéressent en aucune
sorte le fond de notre travail ni de nos doctrines^ II ne s'agit , en
effet, que des corollaires VI de la pag. a4° e* ^ e s corollaires II de la pag0

a44î qu'on pourra supprimer si l'on veut, ou bien que Ton conservera
en y substituant, an'contact simple qui s'y trouve mentionné, un contact du
second ordre , et en modifiant d'une manière convenable les considérations
qui amènent les corollaires VII de la pag. ^4°*

La nécessité de ces rectifications tient , comme l'observe très-bien M.
Ckasles f à ce que , pour que deus, surfaces du second degré qui se tou-
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ehant en un point se coupent en outre suivant une courbe plane , il ne
suffit pas qu'elles aient en ce point un simple contact , mais qu'il faut qua
le contact qui existe entre elles soit un contact du second ordre.

Comme ceci n'intéresse que nous, nous y attachons assez peu d'impor-
tance; mais il est d'autres rectifications qui nous tiennent beaucoup plus
au cœur, parce qu'elles intéressent M. Chasles, à qui nous avons fait dire,
en divers endroits ? des clioses qu'il n'avait pas dites et qui ne sont point
parfaitement exactes.

D'abord , dans le XYIII.e volume, pag. 3ÎJ , ce qui suit le 4«° doit être
lu ainsi :

À ces principes on pourra joindre encore les suivans qui , au
surplus 9 ne soot point nécessaires pour la première solution du pro-
blème eî dont ia seconde n'exige que l'application du dernier ;

i.° Le pôle d'une droite , par rapport à un point directeur ,
est ce point lui-même.

2.0 La polaire d"un point, par rapport à un point directeur
considéré comme conique infiniment petite, est le conjugué du dia-
mètre qui contient Vautre point.

3 ° La polaire d'un point, par rapport à une droite directrice,
est une parallèle à cette droite située du côté opposé, à la même
distance où en est le point*

4*° Le pôle d'une parallèle à une droite directrice est un quel-
conque des points d'une parallèle à cette même directrice située
à la même distance du côté opposé*

Dans le même mémoire, pag» ^19, ligne iG , il faut remplacer la con-
jonction et par le pronom relatif qui.

Dans le dernier mémoire du XIX,C volume, pag* 66, le rerbe couperont
doit être remplacé par le verbe toucheront.

Le n.° 24 j pag» 82 y doit être lu comme ii * suit ;

24. Une surface directrice du second ordre et une autre sur~*
face du même ordre étant données dans l'espace ; , \

Si ïon conçoit un angle trie- Si Von conçoit un triangle va~
Tom. XIX. 17
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dre variable et mobile autour de riable et mobile dans son plan,
son sommet y supposé fixe , tel supposé fixe , tel que la polaire
que la polaire de chacune de ses de chacun de ses côtés passe cons-
arêies soit constamment dans le tamment par le sommet opposé *•
plan de la face opposée ;

!•* Les points d'intersection Î*° Les plans tangens menés à
des arêtes de Y angle trièdre , par la seconde surface 9 par les côtés
la seconde surface , seront les du triangle, seront les faces d'un
sommets d'un octaèdre hexagone hexaèdre octogone variable cir—
variable inscrit, lequel sera cons- conscrit, lequel sera constamment
tamment circonscrit à une troi- inscrit à une troisième surface
sième surface fixe du second or- fixe du second ordre*
dre.

a.0 Les plans mobiles tangens 2.ê Les points mobiles d'inter-
à la fois aux courbes suivant section des surfaces coniques cir-
lesquelles la seconde surface sera conscrites à la seconde surface
coupée par les trois faces de Van- dont les sommets seront ceuc$ du
gle trièdre 9 seront les faces d'un triangle} seront les sommets d'un
autre octaèdre hexagone variable 9 hexaèdre octogone variable 9 cons-*
constamment circonscrit à une tamment inscrit à une quatrième
quatrième surface fixe du second surface fixe du second ordre*
ordre.

Et ? si le triangle et Y angle trièdre sont polaires réciproques
Y un de l'autre 9 les deux octaèdres hexagones et les deux hexaè-
dres octogones seront aussi polaires réciproques les uns des au~*
très , chacun à chacun.

Le 2,° de la page 83 doit être lu de la manière suivante ;

2.0 Si, par un point fixe 5 on conduit trois plans mobiles 9 cons*
tamment parallèles à trois points diamétraux conjugués d'une sur**
face fixe du second ordre , les plans tangens à la fois aux cour-
bes suivant lesquelles ces trois plans couperont une deuxième

face fixe du second ordre ? seront les facds d'un octaèdre
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gone variable constamment circonscrit à une troisième surface fixe
du second ordre.

Enfin nous observerons que le dernier théorème du mémoire ( pag. 85 )
n'est autre que le théorème du n.° 17 ( pag. 78 ) reproduit sous une
autre forme (*).

(*) Nous saisissons avec empressement cette occasion pour témoigner no-
tre regret de ce que quelques personnes aient semblé prendre le change
sur le sens de la note qui se trouve pîace'e au bas de la pag. 3o^ de notre
XVIII.0 volume. 11 est certes bien loin de notre pensée de vouloir dispu-
ter à M. Chasles la propriété de son beau théorème sur les projections
stéréographiques , théorème dont il est ea possession depuis plus de qua-
torze ans. Notre but était uniquement, en écrivant cette note, d'informer
ceux de nos lecteurs qui pouvaient l'ignorer, que ce théorème est aujour-
d'hui bien connu et journellement appliqué par les géomètres allemands ,
soit que quelqu'un d'entre eux y soit aussi parvenu de son coté, soit, plus
probablement, qu'ils en aient pris connaissance dans la Correspondance sur
t Ecole polytechnique et dans le Traité des surfaces du second degré , de M.
Hachette; ouvrages qu'ils citent assez fréquemment.

Nous n'avons entendu parler , au surplus , que de la première partie du
théorème, et non de la seconde , comme pourrait le faire croire la ma-
nière dont il a été rendu compte du mémoire dans le Bulletin universel
{juillet 182$, pag, iS )>
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Note sur un symptôme d'existence de racines
imaginaires} dans les équations algébriques y A

Par M. GERGOHNE*

J,L a été démontré, dans le XVI.e voîarne du présent recueil ( pag,
385 ) , qu'autant on rencontre } dans une ècjiiaiicn algébrique , de
séries de trois termes consécutifs formant une proportion continue
par quoiiens, autant Véquation a de couples de racines imaginai*
res au moins*

Bans une lettre qu'il nous a fait l'honneur de nous- adresser «
il y a déjà un peu de temps, M. Dupre , élève distingué de l'Ecole
normale du collège royal de Louis-le-Graod 9 et qui, comme on Fa vu
( loin, XVIII, pag. 68 ) , s'est aussi occupé des symptômes d'existence
des racines imaginaires dans les équations , objecte contre cette propo-
sition qu'il s'ensuivrait qu'une équation complète du troisième degré,
dont les quatre termes formeraient. une progression par quotiens>

devrait avoir quatre racines imaginaires,
Mais il résulte clairement de la démonstration même , donnée à

l'endroit cité , que , dans le cas de plusieurs séries de trois termes
consécutifs formant une proportion continue par quoîiens , la pro-
position ne saurait être vraie qu'autant que les plus voisines d§
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ces séries de trois termes consécutifs n'auraient au plus qu'un
terme commun, ce qui ne saurait avoir lieu dans le troisième de«
gré. L'équation du degré le moins élevé 5 dans laquelle on pourra
rencontrer deux séries disjointes de trois pareils termes, sera donc
une équation du quatrième degré. Elle sera de la forme

qui revient à

et qui a, en effet, ses quatre racines imaginaires.
M. Dupré , qui s'occupe aussi de recherches d'un ordre plus

élevé ? observe 9 dans la même lettre , qu'au lieu de réduire les
fondions elliptiques , comme on le fait ordinairement aux trois
formes

/"if! , f-Jf— , fît

oh R=z %,'A+Bx2~{-Cx^ ? on pourrait les réduire seulement aux deux
dernières formes , attendu que la première n'est qu'un cas particulier
d^ la seconde. On a. eu eflet, coin me le prouve la difFérenliation ,
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qui donnera / — , lorsqu'on saura intégrer

qui rentre dans »«.

Rectification approchée de la circonférence ;;

Par M* SPEGHT , étudiant eu philosophie, à Berlin,

O N a

mais on sait

ilà donc une expression finie du nombre *sr qui n*est pas fautive
d'un millionième d'unité.

Or » cette expression peut être mise sous la forme
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€t alors elle sera facile à construire graphiquement p ainsi que Faire
approchée d'un cercle dont ie rayon sera donné (¥)«

Extrait du Journal de M* Crclïe ? tom. lïï > pag. 83

(*) Quelque approchée que soit cette expression, -elte Fest moles toutefois
que la formule

^ _ 5 O Ï + 8 O \ / Î S _ ^ w / . c .

que nous ayons fait conuaUre dans le yiIL e volume du prëseBt recueil
i pag. aSâ ).

J. D. G,
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Théorèmes de géométrie proposés à démontrer ;

Par M. J* S T E I N E R , de Berlin.

, sur un même plan , six
points dont trois sur une droite
et trois sur une autre. Si Ton
joint, deux à deux 5 les points d'une
série à ceux de l'autre série par
neuf droites , ces droites se cou*
peront ? deux à deux , en dix-
huit nouveaux points distribués,
trois à trois , sur six droites qui
concourrout elles-niêoies , trois à
trois ? en deux nouveaux points*

NT ? sur un même plan , six
droites dont trois concourant en
un "point et trois en un autre, Les
droites d'une série auront , avec
celles de l'autre série , neuf f omis
d'intersection ; ces points déter-
mineront j deux à deux, dix-huit
nouvelles droites concourant, trois
à trois 3 en six points qui seront

r eux-mêmes, trois à trois, sur deux
nouvelles droites*
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GÉOMÉTRIE ANALYTIQUE.

Recherches sur les surfaces algébriques de tous
les degrés ;

Par* M. le docteur PLUCKER, professeur à l'Université de
Bonn.

S. i-

N sait que neuf points sont nécessaires dans l'espace , pour dé-
terminer complètement une surface du second degré, et que, géné-
ralement parlant, on n'eu saurait faire passer qu'une seule par neuf
points donnés : d'où il suit qu'une infinité de surfaces de ce degré
peuvent passer par les huit mêmes points. On ne saurait donc être
surpris ; d'après cela, de voir trois surfaces du second degré se
couper en huit points.

Mais on sait aussi que dix-neuf points sont nécessaires pour dé-
terminer complètement une surface du troisième degré ? et s qu'en
général, il n'en saurait passer plus d'une par dix-neuf points don-
nés ; et on doit , en conséquence 5 éprouver quelque surprise en
considérant que trois surfaces du troisième degré se coupent en
vingt-sept points.

Pareillement , trente-quatre points de l'espace déterminent com-
plètement une surface conique du quatrième degré; et néanmoins
trois surfaces de ce degré peuvent avoir entre elles soiocante-(]ua~«
ire points communs»

En général, le nombre des points de l'espace nécessaires pour
Tojn.XIX, n.Q V, i.er novembre 1828, 18
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la détermination complète d'une surface du m.'"" degré est

— i , et ces points n'en déterminent qu'une seule. D'un

autre côté , trois surfaces de ce degré peuvent se couper en m*
points de l'espace. Si donc on choisit le nombre entier m 9 de telle

, . , m+i m+2 m+3
sorte que mr soit plus grand que —— ——- — i , ce qui

arrivera toujours pour /?z>2, on aura un exemple de trois sur-
faces du même degré, assujéties à passer par plus de points qu'il
n'en faudrait pour la détermination complète d'une seule d'entre
elles.

Voilà donc un paradoxe apparent tout à fait analogue à celui
qui nous a déjà occupé, relativement aux fignes courbes, dans un
précédent article , et qui s'explique , comme celui-là , en considé-
rant que, lorsqu'on parle du nombre des points de l'espace né-
cessaires et suffisans pour la détermination complète d'une surface ,
on sous-entend toujours qu'il s'agit de points pris au hasard dans
l'espace, n'étant liés entre eux par aucune relation; et que tels ne
sont point > en général , les m1 points d'intersection de trois sur-
faces du m.ieme degré.

Ce paradoxe donne naissance à des théorèmes analogues à ceux
que nous avons déduits , à la pag. 97 du présent volume} du sem-
blable paradoxe relatif aux lignes courbes ; théorèmes non moins
féconds que ceux-là en conséquences curieuses, et dont la rechei>
che va présentement nous occuper.

s. 11.

Deux surfaces du m.Ume degré se coupent, comme Ton sait, sui-
vant une courbe à double courbure, dont la projection sur un plan
quelconque est, en général, une courbe du (m2)i9me degré; et trois
pareilles surfaces se coupent, comme nous venons de l'observer 9

ça m1 points au plus.
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Soient donc

les équations de ces trois surfaces ; l'équation

dans laquelle p et \t/ sont supposées des constantes indéterminées ,
sera celle de toutes les surfaces du m!eme degré, passant par les m1

points d'intersection des trois premières ; de sorte que, bien que
ces points soient, en général, en plus grand nombre qu'il n'est
nécessaire pour déterminer complètement une de ces surfaces, ils
les laisseront toutes néanmoins indéterminées. Mais si Ton se donne
seulement deux points de plus , ces derniers 5 joints aux m1 autres,
détermineront complètement une de ces surfaces i car ils donneront
naissance à deux équations de conditions linéaires en p. et fjt;, qui
suffiront pour déterminer ces deux coefficiens, e t , par suite , pour
particulariser la surface cherchée.

Remarquons, en outre , que les équations

représentent respectivement toutes les surfaces du m}emc degré pas-
sant par les courbes à double courbure , intersections deux à
deux des surfaces proposées. Une surface du mitmt degré n'est donc
pas déterminée par la seule condition de passer par les courbes à
double courbure , intersections de deux autres surfaces de ce degré.
Mais ici un seul point de l'espace par lequel une de ces surfaces,
en nombre infini, sera assujétie a passer, suffira pour la déter-
miner complètement; car il en résultera une équation linéaire, soit

en fx, soit en a', soit en — , suffisante pour fixer h valeur de

ce coefficient,
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On voit par là que toutes les surfaces du m.itme degré qui pas-

sent par les m1 points d'intersection de trois autres surfaces de ce
degré, et en outre par un point donné, ont la même courbe d in-
tersection.

Concevons présentement que , sur la courbe d'intersection de deux

surfaces du mjemc degré, on prenne arbitrairement •

~ 2 points; si Ton y ajoute un nouveau point quelconque

de l'espace , une troisième surface, assujétie à passer par tous ces
points , sera complètement déterminée ; mais nous venons de voir
qu'elle le serait aussi, si on Tassujétissait à passer par ce même
point et par la courbe d'intersection des deux premières ; en in-
voquant donc le principe de dualité , on aura ces deux théorèmes;

THÉORÈME I. Toutes les sur- THÉORÈME I. Toutes les sur-
faces du m.leme degré qui passent faces de m.}*™ classe qui touchent

m-J-i m-J-a m-{-3 Â
 r n + I m-f-2 m+3

par les « * —-—• ~~2.me* les — •—2 mêmes

' N t a o - 1 2. 6

mes points, se coupent, en gêné" plans , sont, en général, circons*
rai, suivant une même courbe à crites à une même surface de*
double courbure. veloppable.

Donc , en particulier ,
Corollaire. Toutes les surfaces Corollaire. Toutes les surfaces

du second ordre qui passent par du second ordre qui touchent les
les huit mêmes points, se cou- huit mêmes plans, sont inscrites'
pent suivant une même courbe à à une même surface développa-
double courbure, ble.

De même , trois surfaces du mîtmt degré se coupant en m1 points ;
si Ton prend ••« T ^—3 de ces points, et qu'on y joigne

deux points quelconques de l'espace , une quatrième surface de ce
degré sera tout aussi complètement déterminée, par ce système de
points , qu'elle le serait par les deux dernières et par la totalité dea
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Ynl points d'intersection des trois premières ; en invoquant donc
encore ici le principe de dualité, on aura ces deux théorèmes:

THÉORÈME IL Toutes les THÉORÈME IL Toutes les
sur/aces du muleffie degré assujèiies surfaces dem.ieme classe assujèties
. m-fi m-f2 m+3 m+i m+* m+3 _
apasserpar — —-o a toucher • —————3

' ' 1 2 6 1 2 3
points donnés , passent en outre plans donnés, touchent en outre

m+i m+2. m+3 m+i nj+a m+3
par les m*—• + 0 /*?j m5-— ——•- ——<-—-—-.^3
^ i a 3 â 1 a â l

mêmes points fixes* mêmes plans fixes*

Donc , en particulier ,

Corollaire. Toutes les surfaces Corollaire. Toutes les surfaces

du second ordre qui passent par du second ordre qui touchent sept
sept points donnes , ont en ou- plans donnés , ont en outre un
Ire un huitième point commun (*). huitième plan tangent commun (*)»

Ç*) Dans le troisième volume du Journal de M. CREIXE ( pag. 20© et
on recontre ces deux théorèmes fort analogues à ceux-là#

THÉORÈME. Toutes les surfaces du THÊOBÈME. Toutes les surfaces au
second ordre qui passent par sept des second ordre qui louchent sept des huit
huit sommets d'un hexaèdre octogone , faces d'un octaèdre hexagone, touchent
passent aussi par le huitième et lui sont aussi la huitième et lui sont conséquent-
consèquemment circonscrites* ment inscrites.

Un anonyme démontre le premier de ces théorèmes , par un calcul direct
qui n'est pas dépourvu d'une certaine élégance ; M. Steiner en déduit Pau-
tre par la théorie des polaires réciproques.

Le premier de ces théorèmes, le seul qu'il soit nécessaire de démontrer,
»ous parait pouvoir être assez simplement établi comme il suit :

Soient

Mz=zo , M ; =o , JM"=o , . ( Ï )

trois équations du second degré en x^y^z, dont chacune exprime deux
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Ici encore , comme nous l'avons déjà remarqué pour les lignes

courbes 9 on pourra admettre que tous ou partie des points fixes
donnés se confondent par groupes plus ou moins nombreux en
un point unique , auquel cas les surfaces dont il s'agit auront, eu
ces points, des contacts d'ordres plus ou moins élevés.

On peut également ici , comme alors , remplacer chaque point
donné de la surface cherchée, soit par l'un cies coefficiens de son
équation, soit par une équation linéaire entre tous ou partie de ces
coefficiens. Nos deux théorèmes ses changeront ainsi dans les deux
théorèmes plus généraux que voici :

THÉORÈME III. Etant donnés n coefficiens de Véquation gé-
nérale du m,ieme degrés à trois indéterminées , ou encore ? étant
données n équations linéaires entre tous ou partie de ces coeffi-
ciens , toutes les surfaces représentées par Téquation générale ainsi

modi/iée , et passant par les < « — (n+s) me-

plans ,• elles seront satisfaites toutes trois par les coordonnées des sommets de
l'hexaèdre octogone cjui aura ces couples de plans pour les plans de leurs
faces opposées \ or t tout point qui satisfera à ces trois équations satisfera
aussi à l'équation du second degré

(2) '

dans laquelle p et p* sont deux constantes indéterminées/ donc , cette,
dernière est l'équation commune à tontes les surfaces du second ordre cir-
conscrites à l'hexaèdre octogone dont il s'agit \ et 9 comme d'ailleurs , cet
hexaèdre se trouve visiblement déterminé par sept de ses huit sommets , il
s'ensuit que , pourvu qu'une surface du second ordre passe par ces sept
sommets , elle devra nécessairement passer par le huitième.

Au surplus , ce théorème se trouve aussi compris dans le théorème V d$
la pag, 346 de notre XVIL« vol.

J. D. G.
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mes points fixes , se couperont suivant une seule et même courbe
à double courbure.

Donc, en particulier,

Corollaire. Etant donnés n coefficiens de l'équation générale du
second degré, à trois indéterminées, ou encore ; étant données n
équations linéaires , eatre tous ou partie de ces coefficiens ; toutes
les surfaces représentées par l'équation générale ainsi modifiée, et
passant par les 8—n mêmes points fixes , se couperont suivant ane
seule et même courbe à double courbure.

THÉORÈME IF. Etant donnés n coefficiens de Véquation gé-
nérale du m.lem* degré, à trois indéterminées , ou encore , étant
données n équations linéaires entre tous ou partie de ces coejfi-
ciens , toutes les surjaces représentées par Véquation générale ainsi

TP, , m + i m~f-2 m-f-3 , _ A

modifiée , et passant par les « •-* >- —— —(n~r3) mê-

mes points fixes donnés , se couperont, en outre , aux m3-— —— •

—-—-{-(nHh3) , autres mêmes points jixes»
Donc , en particulier,
Corollaire* Etant donnés n coefficiens de l'équation générale du

du second degré, à trois indéterminées, ou encore, étant données
n équations linéaires, entre tous ou partie de ces coefficiens, tou-
tes les surfaces représentées par l'équation générale ainsi modi-
fiée, et passant par les 7-—n mêmes points fixes donnés, se cou-
peront, en outre, aux n-\-i , autres mêmes points fixes.

Il est essentiel d'observer que , dans tout ceci, on suppose
que l'un des termes de l'équation générale est privé de son coeffi-
cient ; ou, ce qui revient au même, que le coefficient de l'un de
ses termes est une quantité donnée*

On fera, de ces diverses propositions, un usage pareil à celui que
BOUS avons fait, pag. 102 , de leurs analogues relatives aux lignes
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courbes*. On en déduira, par exemple, sans aucune sorte de cal*
cul, les propositions suivantes :

h Toutes les surfaces du second ordre passant par six points
donnés 5 et assujéties, en outre, à cette condition que les plans dia-
métraux , conjugués à des diamètres- parallèles à une droite fixe, se
coupent tous en un point donné, passeront çp outre par deux nou-
veaux points fixes.

IL Toutes les suifaces du second ordre passant par cinq points
donnés, et assujëties en outre à une des conditions suivantes : i° que
les plans diamétraux conjugués à des diamètres parallèles à une
droite fixe, se coupent tous suivant une même droite ou soient pa-
rallèles à un même plan; 2* que les diamètres conjugués à des
plans diamétraux parallèles concourent en un point donné ou soient
parallèles à une droite donnée, passeront en outre par trois nou-
veaux points fixes.

IIL Toutes les surfaces du se- III. Toutes les surfaces du se-
cond ordre passant par six points cond ordre touchant six plans
donnés, et assujëties en outre à cette donnés, et assujëties en outre à
condition que les plans polaires cette condition que les pôles d'un
d'un même point donné se cou- même plan donné soient tous
pent tous en un autre point donné, dans un autre plan donné, tou-
passeront par deux: nouveaux cheront deux nouveaux plans
points fixes. fixes.

IV. Toutes les surfaces du se- IV. Toutes les surfaces du se-
cond ordre passant par cinq points cond ordre touchant cinq plans
donnés, et assujéties en outre à donnés, et assujéties en outre à
cette condition que les plans po- cette condition que les pôles d'un
laires d'un même point se cou- même plan soient tous situés sur
pent tous suivant la même droite, une même droite , toucheront en
passeront en outre par trois nou- outre trois nouveaux plans fixes,
veaux points fixes.

y . Dans toutes les surfaces du V. Dans toutes les surfaces du
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fécond ordre passant par sept second ordre touchant sept plans
points donnés , les plans polai- donnés , les pôles d'un plan quel*
res d'un poiut quelconque se cou- conque sont tous situés dans un
pent tous en un autre point fixe, autre plan fixe.

VI. Dans toutes les surfaces du VI. Dans toutes les surfaces du
second ordre passant par huit second ordre touchant huit plans
points donnés, les plans polaires donnés , les pôles d'un plan quel-
d'un point quelconque se coupent conque sont tous situés sur une
tous suivant une même droite même droite fixe,
fixe.

VIL Dans toutes les surfaces du second ordre passant par sept
points donnés, les plans diamétraux conjugués aux diamètres pa-
rallèles à une même droite fixe, se coupent en un même point fixe.

VIII. Dans toutes les surfaces du second ordre passant par huit
points donnés, les plans diamétraux conjugués aux diamètres pa-
rallèles à une même droite fixe, se coupent tous suivant une au-
tre droite &xe»

IX. Toutes les surfaces du se- IX. Toutes les surfaces du se-
cond ordre, assujéties à la condi- cond ordre , assujéties à la con-
tion que les plans polaires de dition que les pôles de quatre
quatre points donnés passent res- plans donnés soient situés respec-
pectivement par quatre droites tivement sur quatre droites don-
données , ont la même courbe nées, sont inscrites à une même
d'intersection, surface déveîoppable.

Etc. ? etc., ete#

Bonn ; 8 juin

Ton*. XIX. 19



r38 SURFACES

GÉOMÉTRIE DE SITUATION.

Recherches sur les lois générales qui régissent
les surfaces algébriques ;

Par M* BOBILLIERY professeur à TEcoIe des arts et mé-
tiers de Châlops-sur-Maroe,

JNous nous proposons, dans ce qui va suivre , de revenir de nou*
veau sur des propositions déjà démontrées, pour les établir d'une
manière à la fois plus simple, plus directe et plus générale.

Soit une surface quelconque du mUme degré} rapportée à trois
axes quelconques et exprimée par l'équation

M=o , (i)

en x, y et z. L'équation du plan tangent à cette surface, en l'un
quelconque (^x'^y^z1 ) de ses points, sera, comme l'on sait,

&M ' AU' •

~ (*-*o+ jp iy~y>Jr) ^ r (z-z')=o , (2)
les coordonnées xf, y/, z* du point de contact étant liées par Vér*
quation de relation

M'=o . (3)

Si, laissant ^ > y', zr indéterminés , on veut profiter de leur
mdétero\iaation_pour assujétir le plan tangent à passer par un point
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{ a, î>, e), donné dans l'espace, il faudra exprimer que l'équa-
tion (2) est satisfaite en y faisant simultanément x—a, &
ce qui la changera en celle-ci .-

AW àM' âM>( ' ) + < * 0 +
ou , ce qui revient au même ,

TET (*-")+• ^7 0*-*)+ ^ r <*'-<)=° J (4)

de sorte que les points de contact des plans tangens à la surface
( 1 ) , issus du point ( à, b^ c ) , seront donnés par le système des
deux équations (3) et (4) , ou , ce qu i revient au m ê m e , par la
combinaison de l 'équat ion (1) avec l 'équation

ces points seront donc ceux où la surface proposée sera coupée par
celle qu'exprime l'équation (5) ; c'est-à-dire , qu'ils seront ceux d'une
certaine courbe à double courbure. Mais ? d'un autre côlé , il est
visible que , si une surface conique ayant son sommet au point
( ay b* c) , est circonscrite à la surface ( i ) ? tout plan tangent à
cette surface conique le sera aussi à la surface (1) et passera par
le point ( a v b, c ) ; donc la courbe* de contact de la surface (1) ,
avec la surface conique circonscrite , ayant son sommet en ( a , b ,
c ) est le lieu des points de contact de cette surface (i)avec tons
ses plaus tangens issus du point ( a f &, c ) ; donc enfin la ligne
de contact de cette surface ( ï ) ? a v e c l a surface conique circonscrite
qui a son sommet en (a,b,c), est donnée par le système des
équations (1) et (5 ) ; d'où Ton voit que cette courbe de contact
est située dans la surface exprimée par l'équation (5) ; elle appar-
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tient donc au plus à une surface du m.Ume degré , comme la pro-
posée ; mais nous allons voir qu'elle appartient réellement à un^
surface d'un degré moindre. ;

Lorsqu'une courbe à double courbure est donnée dans l'espace
par le système de deux équations en x9f9 z$ elle Test également
par le système de Tune d'elles et d'une combinaison quelconque
de Tune et de l'autre. En conséquence , puisque la ligne de con-
tact du cône circonscrit ? qui a son sommet en (a, b%c ) , est don-
née par le système des équations (i) et (5), elle le sera aussi par
1 a première de ces équations combinée avec l'équation

#

__ <*-*,)+ — ( r -*)+ — (z-c) = mM ; (6)

laquelle sera ainsi, comme l'équation (5) , celle d'une surface cou-
pant la proposée suivant la courbe de contact cherchée. Or , en
vertu du théorème connu sur les fonctions homogènes, tous les
termes de m dimensions en x,y, z disparaissent de cette équa**
tion qui ne s'élève conséqueinnient qu'au (m—i)ieme degré; dune
la courbe de contact se trouve sur une surface qui ne saurait
excéder ce degré ; de sorte qu'en recourant au principe des polai-
res réciproques on a ces deux théorèmes ;

THÉORÈME L La courbe de THÉORÈME L La surface
contact d'une surface du m.leme de* dèveloppable circonscrite à une
gré avec une surface conique cir- surface de m,leme classe 7 suivant
conscrite, appartient à une au- son intersection avec un plan ,
tre surface du (m—i)ieme degré touche une autre surface de
au plus (*). (m—i)ieme classe au plus..

(*) M. Poncelet observe , avec beaucoup de raison ( Bulletin âes sciences
mathématiquesf mai 1828, pag. 3oi ) f <jue c'est par erreur ^ue M. Bobillier
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Cette surface du (/ra—i)ieme de- Cette surface de (m—\)iémê classe

gré est ce que nous avons appelé est ce que nous avons appelé
(Annales, tom, XVIII ? pag 258) ( ^/z/2zz/^,tom.XVUI,pag,258 )
la surface polaire du sommet du la surface polaire du plan cou-
cône, par rapport à la surface à pant , par rapport à la surface
laquelle il est circonscrit, consi- coupée par ce plan , considérée
dérée comme directrice, comme directrice.

Si le sommet ( a, b ? c ) de la surface conique circonscrite
est mobile sur une droite donnée par les équations a?=az , y=zfiz9

on devra avoir a=:<zc } b^fic 9 ce qui changera l'équation (6) en
celle-ci

f àM dM dm \ ( àM § _ êM dM\

far—- +y — +z mM ) ~-c a — +J3 h T )=o;(7)
^ d* J dy àz / \ dx x dy dz J w /

laquelle sera satisfaite , quel que soit c , en posant séparément

dM dM dM dM

+ + M
dy ' ~ dz ~ " * ~ " " dx h r dy C dz ~° * ^

Or 5 en faisant ainsi courir le sommet de la surface conique cir-
conscrite le long d'une droite, les plans tangens à la surface ( i ) ,
conduits par cette droite 5 ne cesseront pas d'être tangens à cette
surface conique et auront conséquemment, avec la surface ( i ) , les
mêmes points de contact qu'elle; donc on obtiendra ces points de
contact en combinant l'équation ( i ) avec les deux équations(8);
donc les équations (8) expriment une courbe à double courbure

et nous, ayons attribué ce théorème à M. Vallès, attendu qu'il se trouve
formellement énoncé , bien que sans démonstration , dans VApplication de
Vanalyse à la géométrie de MONGE ( édit. de 1807 , pag. i5 ). Cela prouve que
aous ne devons, ni l'un ni l'autre ? lutter de mémoire avec M. Poncelet.

J. D. G.
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qui perce la surface (i) à ses points de contact avec les plans fan-
gens issus de la droite donnée par les équations r̂ = a z , ^ = j S r ;
e t , attendu que ses équations sont Tune et l'autre du (ra— i)'em*
degré seulement ? le nombre des points de contact, et par suite ce-
lui des plans langeas y ne pourra être supérieur à m(m>—b*)2; on â
donc ces deux théorèmes :

THÉORÈME IL Par une THÉORÈME IL Une même
même droite on ne saurait con- droite ne saurait percer une sur-
duire à une surface du m,iemç jace de ,m.leme classe en plus" de
degré plus de m(m«—i)2 plans in(m—i)a points. Les plans tan-
tangens. Leurs points de contact gens par ces points touchent tous
avec elles sont tous situés sur une une même surface dèveloppable y
courbe à double courbure, /»- cifconscriie à deux surfaces de
ter section de deux surfaces du fin-—i)iem9 classe (*).
( m — i ) ^ degré.

Cette courbe à double cour- Cette surface déveïoppabîe est
bure est ce que nous avons ap- ce que nous avons appelé ( dn-
pelé (. Annales•;, tom, XVIII , nales , loin. XVI1Ï , pag* s58 )
pag. ^58 ) la courbe polaire de la surface déveïoppable polaire
la droite par laquelle les plans de la droite qui perce la surface
tangens sont conduits, par rap- proposée , par rapport à cette sur-
port à la surface qu'ils touchent, face considérée comme direc-
considérée comme directrice. trice*

Si > dans les équations (8) p on suppose a et 0 variables, ce qui

(*) Cela ne veut pas dire que la surface px>la?re d'une surface du m.ieme de*
gré soit jamais une surface du [m(m—i)2]fCmc degré ; mais uniquement qu'elle
ne saurait janiâis être d'un degré plus élevé. Ainsi le théorème de M. Pon-
celet sur le degré de la surface polaire d'une surface propose'e, théorème
qui pourrait fort bien d'ailleurs être vrai , est encore à démontrer , comme
l'ont fort bien remarqué MM. les Commissaires de l'Académie royale des

( Bulletin des sciences mathématiques f avril 1828, pag. 227 )•
" J- D. G.
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revient à faire tourner notre droite autour de l'origine, d'une ma-
nière tout à fait arbitraire ; sa courbe polaire variera sans cesse de
situation , mais elle ne quittera pas la surface exprimée par la pre-
mière de ces deux équaiions, puisque cette équation est indépen-
dante de oc et j3 ; or, cette surface n'est autre (6) que la surface
polaire de l'origine ; on a donc ces deux théorèmes:

THÉORÈME III. Si une THÉORÈME III. Si une
droite tourne dans l'espace au- droite se meut dans F espace sur
tour de l'un quelconque des points un plan fixe , sa surface dévelop-
de sa direction , sa courbe po— pable polaire , relative à une sur-
laire, relative à une surface quel* face quelconque de m.iemc classe f

conque du m.ieme degré 3 décrira sera constamment tangente à la
la surface polaire de ce point. surface polaire de ce plan»

Si Ton pose j3-r£a, ce qui revient à supposer que notre droite,
située dans le plan des xy 9 a pour équation y=zkx f la dernière
des équations (8) deviendra

àM àM
dx * dy * dz

équation qui sera satisfaite, quel que soit £> en posant â la fois

dx dz dy

Ces équations , avec la première des équations (8), déterminant
(772—i)3 points fixes, il en résultera ces deux théorèmes:

THÉORÈME IF. Si une THÉORÈME IF. Si une
droite tourne autour de Fun des droite se meut dans un plan de
points de sa direction dans un manière à passer constamment
plan quelconque passant par ce par un même point de ce plan;
point ? sa courbe polaire, relative sa surface dèveloppable polaire $

â une surface quelconque du relative à une surface quelconque
Hat

leIfce degré, variable avec elle , de m.lemeclasse> variable avec elle9
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passera constamment par (in—i)3 touchera constamment ( m ~ i)*
points fixes, £/?a& ^z/r la surface plans fixes , tangens à la surface
polaire de ce point* polaire de ce plan.

Ces points sont ce que nous Ces plans sont ce que nous
avons appelé ( Annales, tom. avons appelé ( Annales , tom.
XVIII, pag. s58 ) les points po- XVIII, pag. 208 ) les plans po-
laires de ce plan, par rapport à laires de ce point , par rapport
la surface proposée , considérée à la surface proposée, considérée
comme directrice, comme directrice.

Soit A une constante indéterminée, et soient deux surfaces du

mum« degré données par les équations M'—o, Mf/=^o ; l'équation
générale des courbes de ce degré , passant par leur commune sec-
tion > sera comme Ton sait,

(9)

posant donc

il viendra , en. difFérentiant,

àM _ dM>
da? da? àx *-

àM àWV àM"

àM
àz

àW àM"

1T

substituant ensuite dans (6 ) , en y faisant a^b } c nuls ^ on ob-
tiendra , pour la surface polaire de l 'origine, relativement à \%

directrice (9) ,
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aw

ou bien

17
dM"

Or 5 quelle que soit la valeur attribuée à la constante arbitraire Àf

cette surface polaire passe évidemment par la courbe à double cour*
bure donnée par les deux équations

dW dM' dM'
dz

àMlf

00
dx

àM . dM

" dy * àz

dM"
àz

lesquelles ne sont Tune et l'autre que du (m—iy*me degré seule-
ment; on a donc ces deux théorèmes :

THÉORÈME V. Si tant de THÉORÈME V. Si tant de
surfaces du ni.lcme degré quon surfaces de m/eme classe quon
voudra se coupent toutes sui- coudra sont toutes inscrites à une
çant la même courhe à double même surface dèveloppahle ; les
courbure ; les sur j aces polaires surfaces polaires d'un plan quel-
d'un point quelconque de T espace f conque, relatives à toutes celles-
relatives à toutes celles-là , se là, seront toutes aussi inscrites
couperont toutes aussi suivant à une même surface développa-
une même courhe à double cour- ble 7 circonscrite à deux surf a-
bure 9 intersection de deux sur- ces de (m—jj1^* classe seule-
faces du (m*—>î leme degré s eu— ment,
lement.

C'est là , comme Ton voit, la première partie des deox théorè-
mes de la pag. 262 du précédent volume, et les quatre autres se-
raient tout aussi faciles à établir.

Si l'équation M^rzzo est homogène en x^y^z^ elle exprimera le
Tom. XIX ' 20
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système de m plans passant par l'origine; et conséquemment les
surfaces comprises dans l'équation (9) auront m plans cordes com-
muns , issus d'un même point ; or , à cause de l'homogénéité de Mlf

 %

on a identiquement

dM" r dM" . dM» _ ,
dx ' y dy d.zr '

au moyen de quoi l'équation (ro), de la surface polaire de l'ori-
gine , se réduit simplement à

dW t âlW

dx J dy l dz

de sorte que cette surface polaire est alors indépendante de la cons-
tante arbitraire A ; on a donc ces deux théorèmes :

THÉORÈME VL Si tant de THÉORÈME FI. Si tant de
surfaces du m.ieme degré qu'on surfaces de m.16"1* classe quon
poudra se coupent toutes suivant poudra sont toutes inscrites aux
les m mêmes coitrhes planes du m mêmes surfaces coniques de
m.1*"1* degré, dont les plans pas- nuieme classe, ayant leurs som-~
sent tous par un même point ; mets dans un même plan ; ce
ce point n'aura qu'une surface plan rïaura qu'une surface po-
polaire unique par rapport à tou- laire unique , par rapport à tou-
tes les surfaces proposées ; la- tes les surfaces proposées ; la-
quelle surface polaire contiendra quelle surface polaire sera cbn-
consèquemment les courbes de sèquemment inscrite à toutes les
contact de toutes les surfaces co- surfaces développâmes circonscris
niques circonscrites , ayant leur tes à ces surfaces, suivant leurs
sommet en ce même point. intersections avec ce même plan.

En supposant, en particulier, #2 = 2, on déduira de là ces deux
propositions connues : *

Tant de surfaces du second Tant de surfaces du second
. ordre qu'on coudra se coupant ordre qu'on voudra étant inscri-
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Suivant les deux mêmes coniques ; tes aux deux mêmes canes ; un
un point quelconque de la corn*- plan quelconque f passant par les
rnune section des plans des deux sommets de ces deux cènes , aura
courbes aura le même plan po- le même pôle relatif à toutes ces
laire relatif à toutes ces surf a- surfaces ; et toutes les surfaces
ces ; lequel contiendra leurs lignes coniques circonscrites % suivant
de contact avec les surfaces co- les intersections de ces surfaces
niques circonscrites qui auront par ce plan , auront leurs som~
leur sommet en ce point* mets en ce même point.

Soieut présentement A et JJL deux constantes indéterminées , et soient
trois surfaces du m%

l$me degré, données par les équations M'—o ,
M;/=zo, M/;/Z=:Q ; l'équation générale des surfaces de ce degré pas-
sant par les m* intersections de celles-là sera , comme l'on sait,

=*Q ; ( n )

posant donc

il viendra ; en diflerentiant,

àM dxW , , dM" . dM'"—- = — -f A —- +p ——
dx dx cto? dx

àM dM' dM"

dM _ dM/ dM" àM>»

substituant ensuite dans (6) , en y faisant a , b } c nuls , on ob-
tiendra 9 pour la surface polaire de l'origine , relativement à la sur-
face directrice (11)
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<3AP dM'
ày àz

dM'»

= o ;

or, quelles que soient les valeurs attribuées aux deux constantes
arbitraires À et p , cette surface polaire passe évidemment par les
(/7i—-i)3 points donnés par les. trois équations

dM'
+r

dM' dM'

dM"

clo;

dx

—
d/

,

on a donc ces deux théorèmes :
THÉORÈME VIL Si tant de

surfaces du m.wm# degré qu'on
poudra passent toutes par les
m* mêmes points fixes ; les sur-

faces polaires d'un point quel-
conque de l'espace > relatives à
toutes celles-là , passeront tou-
tes par le (m—*i)3 mêmes points ,
également fixes*

C'est là , comme Ton voit f la

. THÉORÈME FIL Si tant de
surfaces de mJ*m* classe qu'on
voudra touchent toutes les m3

mêmes plans fixes ; les surfaces
polaires d'un plan quelconque 9

relatives à toutes celles-là , tou-
cheront toutes les (m—i)3 mê-
mes plans, également fixes*

première partie des deux
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fèmes de la pag, 267 du précèdent volume , et les quatre, autres
seraient tout aussi faciles à établir.

Si les deux équations MJ/—o , Afwr=o sont homogènes en x ,
y, z , chacune d'elles exprimera m plans passant par l'origine; de
sorte que leur ensemble exprimera m2 droites distribuées m h m
sur m plans passant par un même poyit, et dont chacune percera
en m points la surface donnée par l'équation M/=o ; alors donc
l'équation (11) exprimera toutes les surfaces de mJ$me degré pas-
sant par les m1 mêmes points, distribués m h. m sur m* droites,
situées elles-mêmes m h m dans m plans se coupant en un même
point ; or 9 à cause de l'homogénéité de M" et MNt, on a identi-
quement

jy fz
dx •* dy dz

dx J dy dz

au moyen de quoi l'équation (12) de la surface polaire de l'ori-
gine ? se réduit simplement à

dW dWV , dW

dx J dy ' dz

de sorte que cette polaire est alors indépendante des constantes ar-
bitraires A et p ; on a donc ces deux théorèmes :

THÉORÈME FUI. Si tant de THÉORÈME VIIL Si tant de
surfaces du in/eme degré qiïon surfaces de m>icm€ classe quon
coudra ont toutes les m5 mêmes coudra ont toutes les m3 mêmes
points communs y distribués m à plans tangens communs, se cou-
m sur m2 droites , situées elles- pant m à m suivant m3 droites
fnêmes m à m dans m plans 9 se concourant elles-mêmes m à m
coupant en un même point; ce en va points, situés dans un même
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point naura qu'une surface po- plan ; ce plan n'aura qu'une sur-
laire unique , par rapport à tou- face polaire unique , par rapport
tes les surfaces proposées* Cette à toutes les surfaces proposées,
surface polaire contiendra con- Cette surface polaire sera con~
sèquernment les courbes de con~ sèquemment inscrite à toutes les
tact de toutes les surfaces coÊi- surfaces dèveloppables circonscris
ques circonscrites , ayant leur tes aux surfaces dont il s'agit,
sommet en ce même point. suivant leurs intersections avec

ce même plan.
En supposant, en particulier , m = 2 , on déduira de là les deux

propositions suivantes :
Soit un hexaèdre octogone dans Soit un octaèdre hexagone dans

lequel les douze arêtes concourent lequel les douze arêtes soient qua-
quatre à quatre en trois points ; ire à quatre dans trois plans ;
et soient tant de surfaces du et soient tant de surfaces du se-
second ordre qu'on poudra cir- cond ordre qu'on voudra inscri-
conscrites à cet hexaèdre : l'un tes à cet octaèdre : Vun quelcon-
quelconque des trois points de que des trois plans qui contien-
concours des arêtes aura , jMr dront les arêtes aura ? par rap~
rapport à toutes ces surfaces , port à toutes ces surfaces , le
le même plan polaire 9 lequel même pèle, lequel sera consé-
contiendra consèquemment tou- quemment le sommet commun de
tes les coniques suivant lesquel- toutes les surfaces coniques cir*
les elles seront touchées par les conscrites suivant les intersec-
surfaces coniques circonscrites tions de ces surfaces par c§
qui auront leur sommet commun plan,
en ce points
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GÉOMÉTRIE ÉLÉMENTAIRE*
Mesure du volume du tétraèdre;

Par M. GERGONNE.

S O I T un triangle isocèle ÀCB dont la base AB soit quelconque
et la hauteur égale à une longueur donnée H. Soit construite
une suite indéfinie d'autres triangles isocèles A ^ i B , , AaCJB2# A%

C3B3,.^.. tels que les sommées du premier soient les milieux des
côtés du triangle ACB, et que les sommets de chacun des autres
soient les milieux des côtés de celui qui le précède immédiatement.
Il a déjà été remarqué ( Annales > tom. XVII, pag, x5i ) , et il
est d'ailleurs facile de voir que ces triangles, tous semblables
et continuellement décroissans, tendront sans cesse à se réduire
à un point unique P ê tellement situé sur CCI ou H qu'on aura

CP-££.*-.?
Dans la série des longueurs

chaque longueur sera moitié de celle qui la précède immédiate-
ment, et , comme la première est égale à H, on aura

GjC,= -- , C,C3 s= — , C5C4=: ~ r C4C5= —,... . . . . ,

on aura donc, d'après cela,
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H

donc, en subtituant

ti H. flf H" H tî

Cela posé , soit T un tétraèdre quelconque dont la base soit
B et la hauteur H-, on sait ( voy* Euclide ou M. Legendre )
qu'il peut être décomposé en deux prismes triangulaires équivalens
et en deux tétraèdres égaux ; que chacun de ces prismes triangu-

iaires a pour mesure — x — = —— ? de sorte que le volume to-
4 % o

tal des deux est £X — . Si donc on représente par Tt chacun

des tétraèdres qui 9 avec eux, forment le tétraèdre donné > on aura
TT

4

Si Ton désigne respectivement par Bk et H1 la base et la hauteur
de chacun des tétraèdres JT, t et qu'on les décompose de la même
manière f en désignant par T chacun des deux tétraèdres qui ré-
sultent de la décomposition de chacun d'eux t on aura de même

et ainsi de suite ; de sorte qu'on pourra écrire indéfiniment
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T = B x

4

En prenant la somme des produits respectifs de ces équations par
i , 2 , 4 9 8 , ...... et réduisant, il viendra

y +2Bxx —

ou bien

= 5 x | +42?.X

mais on a

donc

H _j_ H t _i_ H * _ !_ H' _j_ ff- -i . >^H- —+ _ + — + - + J .
et comme on a d'aillears

H U H

il viendra, en substituant,

c'est-à-dire (i)
Tarn. XIX*
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on obtiendra donc le volunip àSin tétraèdre en multipliant Taira
de sa base par le tiers* de sn hauteur.

De la même manière qu'au, mojeti du triangle nous Tenons
de démontrer que

ou démontrera, à l'aide du tétraèdre, que

7 — 9 ^ 8i * 7̂ 9 +

II a été démontré , à la pag. a5o du précédent volume, que /<?
çolume d'un tétraèdre est le sixième ~%du produit de deux arêtes
opposées , du sinus tabulaire de ï%angle qu'elles forment entre
elles et de leur perpendiculaire commune.

M. Martineili, cadet au corps-royal des Pontonniers à Modène,
qui ne connaît pas saas douté la démonstration que nous rappe-
lons ici , nous en a récemment adressé une qui , pour le fond 9

revient à celle-là; mais il nous en a en même temps communiqué
une autre qui lui a été suggérée par M. le professeur Tramontini ,
et qui , à raison de son élégante simplicité 9 nous a paru ne de-*-
yoir pas être passée sous silence* La voici :

On sait que.deux arêtes opposées d'un tétraèdre sont toujours
comprises dans deux plans parallèles, dont la distance est égale à la
perpendiculaire commune entre ces deux droites»

Soit donc ABGD le tétraèdre dont il s'agit. Par les arêtes op-
posées AB et CD conduisons deus plans parallèles, et supposons que le
premier de ces plans soit le plan même de la figure. Soit CD' la pro-»
jectioii de CD sur ce plan f si PQ est la perpendiculaire commune
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A, F / tZ U_B

aux arêtes opposées ABet CD, ses deux extrémités se projetèrent
en. P à l'intersection de AB et CD' .

Par AB et PQ sait conduit un plan ; ce plan , perpendiculaire à
celui de la figure, coupera le tétraèdre suivant un triangle AQB5 que
L'on pourra considérer comme base commune de.deux autres tétraè-
dres, CÀQB et BAQB, dont celui-là sera la somme. Leurs hauteurs
CE et DF se projéîeront suivant C'E'^CE et D'F—DF, toutes deux
perpendiculaires à AB. L'aire de leur base commune AQB aura
pour expression -ABxPQ ; de sorte ^ju'en représentant par T le
volume du tétraèdre, on aura

T= \ AExPQX jO&+ {ABxPQX fD'Ffc t

Biais on a

donc , en substituant

II pourrait arriver que le point P , au lieu de se trouver sur
, se trouvât sur son prolongement, Pour plier la démonstra-

tion à ce cas, il ne s'agirait que de remplacer les sommes par des
différeoees^
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QUESTIONS PROPOSEES.

Théorèmes de géométrie proposés à démontrer

Par M. BOBILLÏER.

un tétraèdre et une surface
conique du second ordre existent
ensemble dans l'espace ; les sec-
tions de la surface conique par
les plans des quatre faces du té-
traèdre détermineront , deux à
deux ; six nouvelles surfaces co-
niques du second ordre , dont
les sommets, situés dans un même
plan, seront trois à trois aux in-
tersections de quatre droites, tra-
cées dans ce plan.

Le plan des sommets des six
nouvelles surfaces coniques sera
le plan polaire du sommet de la
première, relativement à la sur-
face du second ordre inscrite à
cette même surface conique et
touchant à la fois les plans des
cjuatre faces du tétraèdre.

un tétraèdre et une ligne dix
second ordre existent ensemble
dans l'espace ; les surfaces coni-
ques qui auront pour base com-
mune cette ligne du second or-
dre et leurs sommets aux quatre
sommets du tétraèdre détermine-
ront , deux à deux , six nou-
velles lignes du second ordre,
dont les plans , concourant en un
même point , se couperont trois
à trois , suivant quatre droites 9

passant par ce point,
Le point de concours des plans

des six- nouvelles lignes du se-
cond ordre sera le pôle du plan
de la première , relativement à
la surface du second ordre cir-
conscrite à cette même ligne du
second ordreet passantàla fois par
les quatre sommets du tétraèdre^
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GEOMETRIE DE SITUATION.

Recherches sur les projections stéréographiques,
et sur diverses propriétés générales des sur-

faces du second ordre ;

Par M. CHASLES 7 ancien élève de l'Ecole polytechnique.

XTL LA pag. i53 du IV.me volume de la Correspondance mathé-
matique de M. Queteict , M. Bobillier a donné , sur les projections
stéréographiques, quelques théorèmes que j'avais déjà rencontrés de
mon côté et que j'annonçais même à M. le Rédacteur des Annales,
par une lettre de Nice , en date du i5 janvier dernier , n'être que
des cas particuliers de théorèmes plus généraux sur le même su-
jet. J'aurais même publié, dès cette époque, les résultats auxquels
j'étais parvenu ; mais, pour être intelligible 9 sans avoir besoin d'en-
trer dans des détails de définitions, il était nécessaire que j'expli-
quasse d'abord ce que j'entendais par axes de symptôse et par cen-
tres d'homologie des coniques ? et c'est là ce qui m'a déterminé
à publier d'abord ce qu'on a vu sur ce sujet dans les Annales. Je
vais présentement exposer les résultats que j'avais antérieurement ob*
tenus sur les projections stéréographiques,

s. i.

i. Les deux parties du théorème que j'ai déjà publié sur les
projections stéréographiques ( Traité des surfaces du second ordre ?

Torn. XIX 9 n.° 6 ; i.et décembre i8^8* 22
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par M. Hachette, 181 7 ; Annales de mathématiques , tom. XVIII,
pag. 307 ) peuvent être généralisées comme il suit :

Plusieurs surfaces du second ordre étant inscrites à une même
surface de cet ordre, F œil étant placé en un quelconque des points
de cette dernière , et le plan du tableau étant parallèle à son plan
tangent en ce point ;

i.° Tous les contours apparens des surfaces inscrites seront, en
perspective , des coniques homothètiques ;

2.0 Les centres de ces coniques seront les projections des pôles
des plans des lignes de contact de ces surfaces avec celle à laquelle
elles sont inscrites 9 pris par rapport à cette surface, ou respect
tivement par rapport à chacune des autres.

Soit en effet s^s\sn une suite de surfaces du second ordre
inscrites à une surface S du même ordre; le cône C qui déter-
mine Le contour apparent (Je s et la surface S sont deux surfaces
du second ordre circonscrites à cette surface s , et qui, par con-
séquent , se coupent suivant deux courbes planes, dont les plans
passent tous deux par la droite d'intersection des plans des cour-
bes suivant lesquelles elles touchent cette surface s ( Correspon-
dance sur lEcole polytechnique , \QU\. l î l , pag. 33g ), Mais le
cône C ayant son sommet sur la surface S , une de ses intersec-
tions avec cette surface se réduit à un point, et le plan de cette
intersection n'est autre que Je plan tangent à S par son sommet ;
ce cône C coupera donc la surface S suivant une deuxième courbe
plane, dont le plan , ainsi que le plan tangent, passera par la droite
suivant laquelle se coupent les plans des âeu% lignes de çontacç
de s avec les surfaces S et C.

Le cône C coupant la surface S suivant une courbe plane, sa
section par le plan du tableau sera , suivant le théorème cité ( An-
nales y tom, XVIII, pag. 307 ) , une conique homothétique à la
section de la surface S par ce même plan ; mais cette section sera
évidemment la perspective du contour apparent de la surface s ;
donc la perspective du contour apparent <}e la surface s , et par
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suite les perspectives des contours apparens des surfaces s, s', s",....
seront toutes homothétiques avec la section de la surface S par le
plan du tableau ; elles seront donc aussi homothétiques entre elles ;
la première partie du théorème se trouve donc ainsi démontrée.

Le plan de l'intersection du cône C avec la surface 5,1e jUan
de la ligne de contact des deux surfaces S et s et le plan tan-
gent à S conduit par l'oeil, se coupent tous trois , comme on vient
de le voir , suivant la même droite , d'où il suit que les pôles des
deux premiers, relatifs à la surface S , seront sur une droite pas-
sant par l'œil; or, le centre de la section du cône C par le plan
du tableau est ( deuxième partie du théorème cité ) sur la droite
qui va de l'œil au pôle du premier de ces plans ; nous pouvons
donc dire également qu'il est sur la droite qui va de l'œil au pôle
du deuxième plan ; c'est-à-dire ? au pôle du plan de la ligne de
contact des deux surfaces S et s , lequel pôle est évidemment le
même, soit qu'on le prenne par rapport à la surface S ou qu'on,
lé prenne par rapport à la surface* s. La seconde partie du théo-
rème se trouve donc également démontrée.

Remarquons que la surface s pourrait n'avoir qu'un contact ima-
ginaire avec la surface S ; mais le .théorème et sa démonstration
auraient toujours lieu , parce que le plan de la ligne de contact
serait toujours réel*

Cette ligne de contact pourrait se réduire à un point, auquel
cas les deux surfaces auraient un contact du troisième ordre en ce
point.

Les surfaces s > s'^s", «...•• peuvent se réduire à des courbes pla-
nes tracées sur la surface S ; alors on retombe sur le théorème
ordinaire des projections stéréographiques.

Si la surface s se réduit à une ligne droite, le milieu de sa
perspective se trouvera sur la perspective de sa polaire réciproque,
par rapport à la surface S. On peut énoncer ainsi la proposition
à laquelle donne naissance la considération de ce cas particulier :

«a. Deux droites, polaires réciproques l'une, de l'autre, par rap~
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port à une surface du second ordre, ont pour perspectives , par
rapport à un œil situé en un point de cette surface , et à un ta-
bleau parallèle au plan tangent en ce point, des parallèles à deux
diamètres conjugués de la section de la surface du second ordre
par le plan du tableau.

Ces deux droites se coupent à leurs milieux.

Si la surface .S est un ellipsoïde ou un hyperboloïde à deux
nappes , il n'j a qu'une de ces droites qui ait ses deux extrémités
réelles , et les extrémités de l'autre sont imaginaires. Mais si la
surface S est un hjperboloïde à uue nappe, les deux droites ont,
Tune et l'autre, leurs extrémités réelles ; de sorte qu'elles sont alorâ
les deux diagonales d'un parallélogramme.

En effet, deux droites D , D ' , polaires réciproques Tune de l'au-
tre , par rapport à une telle surface, rencontrent son plan tangent,
conduit par l'œil , en deux points tels que , si Ton considère ces
points comme les sommets de deux cônes circonscrits à cette sur-
face , les plans des lignes de contact passeront par ces deux droi-
tes D' et D , respectivement, et couperont conséquemment le plan
tangent suivant deux droites qui passeront respectivement par les
sommets des deux cônes, et seront deux tangentes conjuguées ; ces
deux droites seront donc parallèles à deux diamètres conjugue'̂
de la section faite dans rhjperboloïde par un plan parallèle au plan
tangent. Or, les plans qui détermineront les perspectives des deux
droites D , LK passeront par ces deux tangentes conjuguées, et cou-
peront le plan du tableau suivant deux droites qui leur seront res-
pectivement parallèles; ces deux droites , perspectives de D et D7 ,
seront donc parallèles à deux diamètres conjugués de» la section de
rhjperboloïde par le plan du tableau.

Il résulte d'ailleurs de la deuxième partie du théorème géné-
ral (i) , et en considérant la corde comme surface insctite , que
le point d'intersection de ces deux droites en sera le milieu com-
mun.
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Le théorème suivant est compris dans la démonslration précé-

dente :
3. Le plan tangent mené à une surface du second ordre par

Tune des extrémités de Vun des deux diamètres, lieux des centres
des sections circulaires de cette surface, est percé par deux droi-
tes pot air es réciproques Vunç de Vautre en deux points , tels que
les droites menées du point de contact du plan tangent à ces deux-
là sont perpendiculaires l'une à Vautre,

On peut généraliser davantage les théorèmes ci-dessus en fai-
sant la perspective sur un plan quelconque qui ne soit pas paral-
lèle au plan tangent conduit par l'œil,

On a alors le théorème suivant:
4* Si plusieurs surfaces du second ordre sont inscrites à une

même surface de cet ordre 7 et qu'on en fasse la perspective sur
nn plan quelconque pour un œil situé en un quelconque des points
de la surface enveloppante ;

i.° Les perspectives des contours apparens des surfaces envelop-
pées seront des coniques qui auront toutes un même axe de symp*
iose , intersection du plan du tableau avec le plan tangent con-
duit par l'œil à la surface enveloppante*

2.° Les pôles de cet axe de symptose, par rapport à ces coni-
ques , seront les perspectives des pôles relatifs à la surface en-
veloppante , des plans de ses lignes de contact respectives avec les
surfaces enveloppées.

3.° Deux droites polaires réciproques Vune de Vautre , par rap~
port à la surface enveloppante , auront pour perspectives deux au-*
ires droites qui couperont la commune section du plan du tableau
avec le plan tangent par Vœil f en deux points tels que ld plan po-
laire de chacun, relatif à la surjace enveloppante , passera par
Vautre ; et -chacune de ces droites sera divisée harmoniquement aux
deux points où elle rencontrera Vautre et Vintersection des deux
plans*

On pourrait démontrer directement ce théorème, mais on le dé-
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doit du précédent par la seule observation qne deux coniques Tia-
moihétiques , situées dans un même plan, ont pour perspective sur
un plan quelconque deux coniques dont un des axes de symptose
est l'intersection du plan du tableatt avec le plan conduit par l'oeil r

parallèlement à celui des deux coniques homothétiques ; et en ob-
seryant 5 en outre , que quatre points en ligne droite , et en propor-
tion harmonique , ont pour perspective ( CARNOT; Théorie des trans*
versâtes , pag. 8a ) quatre points également en proportion harmo-
nique. Ces considérations suffisent pour conclure le théorème (4)
du théorème (i) .

Si les surfaces inscrites se réduisent à des courbes planes , otf
obtiendra ce théorème qu'il nous sera utile d'énoncer :

5. Pour un tableau plan quelconque, et pour une situation quel"
conque de l œil, sur une surface du second ordre ;

i,° Les perspectives des sections planes de cette surface ont un
axe de symptose commun , intersection du plan du tableau avec h

plan tangent conduit par VœiL
z.° Les pôles de cet axe 9 par rapport à ces coniques , sont les

perspectives des sommets des cônes circonscrits à la surface du se-*
cond ordre , suivant les sections planes respectives.

Nous pouvons dire , d'après ce qui précède , que , réciproquement,
6. 5/ plusieurs coniques ont un axe de symptose commun, elles

pourront être considérées comme la perspective dautant de sections
planes , faites dans une surface du second ordre.

Ce principe conduit immédiatement aux propriétés générales de
deux coniques quelconques ; et à celles de trois coniques qui ont
un même axe de syjmptose, avec autant de facilité et de prompîi-
tude qne le théorème analogue sur les coniques homothétiques nous
a conduit aux propriétés de ces courbes ( Annales , tom. XVIII ,
pag. 3o5 j . Ce moyen ne nécessite pas l'emploi des transforma-
tions polaires 5 mais si nous avons préféré a ce moyen , et à plusieurs
autres que nous aurions pu également employer, la marche que nous
avons suivie ( Annales P tom. XYIII, pag, 277 ) pour la recher-
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elle des propriétés générales des systèmes de coniques ; c'est que
certaines questions relatives à ces courbes présenteraient des diffi-
cultés si on voulait déduire leur solution de la solution des questions
analogues relalives aux sections planes d'une surface du second or-
dre , tandis que d'autres procédés appliqués aux coniques homothé-
tiques, l'analyse algébrique, par exemple , leurs conviennent par-
faitement, On pourra donc traiter ces questions, relativement aux
coniques homothétiques , par les moyens les plus faciles , et on les
appliquera ensuite , par les transformations polaires , aux coniques
quelconques.

Si , dans le théorème (5) , on suppose que les courbes tracées
sur la surface du second ordre sont dans des plans passant par une
même droite, la perspective de cette droite sera un axe de symp-
tose commun aux coniques perspectives de ces courbes, Donc,

8. Les perspectives 9 pour un tableau quelconque et un œil si-
tué d'une manière quelconque sur une surface du second ordre , de
tant de sections planes qu'on voudra faites dans cette surface . par
des plans se coupant suivant une même droite } sont des coniques
qui ont deux axes de symptose communs.

Ainsi dans la construction des cartes de géographie, si la pro-
jection se faisait sur un plan non parallèle au plan tangent â la
sphère , conduit par l'œil , les projections des cercles de la sphère
ne seraient plus des cercles , mais des coniques ayant toutes un
même axe de symptose , et les projections des méridiens ou des
parallèles seraient des coniques ayant leurs centres sur une même
conique ? et jouissant de toutes les autres propriétés d'une série de
coniques circonscrites à un même quadrilatère.

Il est facile de voir que ? quand deux surfaces du second or-
dre se coupent suivant deux courbes planes, on peut leur inscrire
une infinité d'autres surfaces du même ordre; le théorème (4) donne
donc celui-ci, plus général que le précédent :

9. Si tant de surfaces du second ordre qu'on voudra , sont ins-
crites à la fois à deux autres surfaces de cet ordre , et que Von
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considère un quelconque des points de t intersection de ces deux-
ci comme le sommet commun dune série de cônes circonscrits ayx
premières , les sections de ces cènes , par un plan transversal quel*
conque , seront des coniques ayant pour axes de sympiose communs
les droites suivant lesquelles ce plan sera coupé par les plans tan-
gens aux deux surfaces enveloppantes, conduits par le sommet
commun de tous ces cônes.

S. n.

Par une transformation polaire , l'un ou l'autre des théorèmes
(i) et (4) donne le suivant :

ÏO. Plusieurs surjaces du second ordre étant circonscrites à une
même surface de cet ordre , et un plan tangent étant mené à cette
dernière 9 par un quelconque de ses points ;

i,° Ce point sera un centre d'homologie de toutes les coniques f

prises deux à deux, suivant lesquelles les surfaces enveloppantes
seront coupées par le plan tangent ;

2.0 Les polaires respectives de ce point, par rapport à ces co~
niques, seront les droites suivant lesquelles ce même plan sera
coupé par les plans des lignes de contact de la surface envelop*
pèe avec ses enveloppantes*

II est bien entendu , d'après ce que nous avons dit (i) f que les
contacts des enveloppantes avec l'enveloppée peuvent être imaginai»
res t et que ces contacts, supposés réels, peuvent n'avoir lieu qu'en
un point pour chaque surface circonscrite qui a alors un contacl
du troisième ordre , en ce point , avec la surface enveloppée.

En supposant que les surfaces circonscrites sont des cônes, on ob-
tiendra le théorème suivant ;

11. Plusieurs cônes étant circonscrits à une même surface du se-
cond ordre, et un plan tangent étant mené à cette surface par
vn quelconque de ses points ;
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i.e Ce point sera un centre dhomologie des intersections 9 pri-

ses deux à deux , des cônes avec le plan tangent ;
2.® Les polaires respectives de ce point 5 par rapport à ces mê-

mes intersections ? seront les intersections de ce même plan avec
les plans des lignes de contact.

Il est clair que , réciproquement,
12» Si plusieurs coniques , prises deux à deux, ont un centre

commun d'homologie, on pourra les considérer comme les sections
d'autant de cènes circonscrits à une même surface du second or-
dre , tangente au plan des coniques à leur centre commun d'ho-
mologie*

Considérons deux cônes circonscrits à une même surface du se-
cond ordre , le plan tangent à cette surface, en l'un quelconque de ses
points , les coupera suivant deux coniques qui auront le point de
contact pour un de leurs centres d'homologie , d'après ce qui précède,
II est aisé de voir qu'un deuxième centre d'bomologie de ces
deux coniques sera celui où le plan tangent sera percé par la droite
qui joindra les sommets des deux cônes; car , par cette droite , on
peut mener deux plans tangens communs à ces deux cônes ; d'où
il suit que, par le point où elle perce le plan des deux coniques ,
on pourra leur mener des tangentes communes; ce qui prouve que
ce point est un centre d'homologie.

On conclut de là ce théorème assez remarquable :
i3 . Si l'on circonscrit à une même surjace du second ordre plu-

sieurs cônes dont les sommets soient situés sur une même droite
quelconque , tout plan tangent à cette surface coupera ces cônes sui-
vant des coniques qui auront deux centres d'homologie communs,
et qui jouiront consèquemment de toutes les propriétés d'une sé-
rie de coniques inscrites à un même quadrilatère.

i4» Ce qui précède offre un nouveau moyen de démontrer les
propriétés générales de deux coniques quelconques , et celles de
trois coniques qui ont un même centre d'homologie. Par exemple,
on voit ; sur-le-champ, que ces trois coniques ? prises deux à deux,

Tom. XIX. 23
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ont leurs trois centres d'homologie conjugués à celui-là, situés eï>
ligne droite.

Car, si Ton considère ces coniques comme les sections faites dans
trois cônes circonscrits à une surface du second orclre , par un plan
tangent à cette surface f leur centre d'homologîe commun sera le
point de contact de ce plan tangent , et leurs trois centres d'ho-
mologie conjugués à celui-là seront les points où ce même plan
sera percé par les droites qui joindront deux à deux les sommets
des trois cônes; or , ces droites sont toutes trois dans le plan que
déterminent les sommets des trois cônes ; donc ces trois centres se-

« ront dans l'intersection de ce dernier plan avec le plan tangent,
c'est-à-dire qu'ils appartiendront à une même droite.

Cette méthode n'exige pas l'application de la théorie des polai-
res réciproques ; mais alors il faut démontrer directement les pré-
cédens théorèmes , ce qui n'est pas difficile , et non pas les dé-
duire, comme nous l'avons fait, de ceux que nous avons établis
sur la projection stéréographique.

i5. Si tant de surfaces du second ordre qu'on voudra sont circons*
crues à la fois à deux surfaces données de cet ordre , tout plan tan-
gent ^commun à ces deux dernières ̂ coupera les surfaces enveloppantes
suivant des coniques qui auront pour centres d'homologie communs les
points de contact de ce plan avec les deux surfaces enveloppées.

Toutes ces coniques auront conséquemment leurs centres en ligne
droite , et jouiront de toutes les propriétés connues d'une série de
coniques inscrites à un même quadrilatère.

Tout cela résulte du théorème (10).
Dans le cas particulier où le plan tangent à la surface envelop-

pée du théorème (io) la touche en l'une des quatre extrémités
des deux diamètres, lieux des centres de ses sections circulaires ,
un cône circonscrit, dont le sommet se trouvera situé sur la di-
rection de ce diamètre, sera coupé par le plan tangent suivant un
cercle dont le centre sera le point de contact du plan tangent; ce
point sera, d'après le théorème (10), le centre d'homologie dec§
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cercle et de la section faite par ce même plan langent dans toute
autre surface quelconque du second ordre circonscrite à la*surface
proposée ; ce centre sera donc le foyer de celte* section ( POMCELET,

Propriétés projectiles , pag, 261 ) ; mais la polaire du foyer d'une
conique est la directrice relative à ce foyer ; donc ,

16. Quand plusieurs surfaces du second ordre sont circonscrites
à Une surface unique de cet ordre n le plan tangent à cette der-
nière , à l'une des extrémités d'un des diamètres, lieux des centres
des sections circulaires ? coupe toutes les autres suivant des coni-
ques qui ont pour foyer commun le point de contact du plan tan-
gent , et dont les directrices respectives sont les droites suivant les-*
quelles ce plan tangent est coupé par les plans des lignes de con-
tact de la surface enveloppée avec les surfaces enveloppantes.

En remarquant que les sections planes parallèles faites dans un
cône ont leurs foyers sur deux droites passant par son sommet, on
pourra, du théorème qui vient d'être démontré, conclure le sui-
vant :

17. Si y du sommet d'un cène circonscrit à une surface du se-
cond ordre ? on mène des droites aux deux extrémités de ïun des
diamètres de cette surface 9 lieux des centres de ses sections cir-
culaires ; tout plan parallèle au plan diamétral conjugué de ce dia-
mètre coupera le cône suivant une conique dont les foyers seront
les points où ce même plan sera percé par ces deux droites*

II résulte de là que :
18. Si plusieurs cônes ont leurs sommets sur une droite passant

par une des extrémités de l'un des diamètres 9 lieux des centres
des sections circulaires d'une surface du second ordre ; le plan tan*
gent à cette surface , à Vautre extrémité du même diamètre , cou-
pera tous ces cônes suivant des coniques ayant leurs deux foyers
communs 7 et qui 9 par conséquent, formeront deux séries d'ellipses
et d'hyperboles telles que les courbes de chaque série couperont
orihogonalement les courbes de l'autre série*

Le théorème (17) fait voir que ,
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i g. Si , du sommet d'un cône circonscrit à une sphère , on mené

des dreites aux deux extrémités de l'un quelconque de ses dia-
mètres , tout plan perpendiculaire à ce diamètre coupera le cène
suivant une conique dont les foyers seront les points où le plan
coupant sera percé par ces deux droites*

Le théorème (16) comprend celui-ci :
2o« Si 9 à une même surface de révolution du second ordre , on

inscrit deux sphères , tout plan tangent commun à cef deux sphè-
res coupera la surface enveloppante suivant une conique dont les
foyers seront en ses points de contact avec les deux sphères.

Ce dernier théorème avait déjà été démontré pour le cône , par
M. Quetelet, et pour l'hyperboloïde à une nappe, par M, Daa-
delin. { Yo/. Annales 9 tom, XV 9 pag. 387 )*

a i . La propriété la plus importante des cônes circonscrits à une
même surface du second ordre est, sans contredit, celle que MONGE

a donnée dans sa Géométrie descriptive , car elle est la base de
la théorie des pôles , dont on n'a cessé de s'occuper depuis lors 9

et qui a déjà rendu les plus grands services à la géométrie.
Les cônes circonscrits à une surface du second ordre, et qui

ont leurs sommets en ligne droite, jouissent de quelques autres
propriétés dont il ne paraît pas qu'on ait songé encore à s'oc-
cuper; elles sont, il est vrai, d'une bien moindre importance que
celle que nous venons de rappeler, mais elles ne sont pas néan-
moins dépourvues d'un certain intérêt,

Nous avons déjà démontré (11) le théorème suivant que nous
rappelons , parce qu'il fait partie des propriétés générales des cônes
circonscrits à une même surface du second ordre.

22. Si plusieurs cônes , circonscrits à une même surface du se-
cond ordre , ont leurs sommets sur. une même droite y tout plan
tangent à cette surface coupera les cônes circonscrits suivant des
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coniques qui auront deux centres d'homologie communs; savoir :
le point de contact de ce plan tangent et le point où il sera percé
par la droite sur laquelle les sommets de ces cônes seront situés.

Si la droite , lieu des sommets des cônes, perce la surface du
second ordre en deux points, les plans tangens en ces deux points
couperont le plan des coniques suivant des droites qui feront par-
tie de cette série de courbes.

a3. Si plusieurs cènes , circonscrits à une même surface du se-
cond ordre , ont leurs sommets sur une même droite 9 les plans po-
laires d'un point quelconque de P espace, relatifs à tous ces cônes 9

envelopperont un nouveau cône dont le sommet sera le pôle 5 pris
par rapport à la surface donnée du second ordre, du plan con-
duit par le point donné et par la droite, lieu des sommets des cènes.

Soient en effet p le point donné, s le sommet .de l'un des cô-
nes circonscrits à la surface donnée du second ordre et P le plan
de la ligne de contact dé cette surface avec le cône dont le point
s est le sommet.

La droite ps perce le plan P en un point dont les plans polai-
res , par rapport à la surface du second ordre et an côrve circons-
crit, passent par la polaire de ce point, prise par rapport à la ligne
de contact, située dans le plan P. Or, cette droite est la polaire
de la droite ps, par rapport à la surface du second ordre; elle
passe donc par le pôle de tout plan conduit par la droite/?.?; d'où
il suit qu'elle passe par le pôle du plan conduit par le point/? et
par la droite lieu des soiranets des cônes. Or , le plan polaire, par
rapport au cône ? est le même que le plan polaire de tout autre
point de la droite pç ; donc , le plan polaire du point p passe par
un point fixe qui est le pôle du pian conduit par le point p et
par la droite , lieu" des sommets des cônes ; d'où il suit que ce plan
roule sur un cône.

Par le point p menons un plan tangent à la surface du second
ordre; ce plan coupera le cône suivant une conique et le plan po-
laire suivant une droite qui sera la polaire du point p3 par rap-
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porta cette conique; or, ce plan tangent coupe tous les cônes sui-
vant des coniques qui ont deux centres d'homologie communs r

toutes les polaires du point p, relatives à ces coniques envelop-
pent donc une autre conique ( Annales, tom. XVIII, pag. 296) i
d'où il suit que la surface conique enveloppée par les plans po-
laires de ce point , relatifs aux cônes circonscrits, est une surface co-
nique de second ordre , comme nous l'avions annoncé.

24* Si des cônes circonscrits à une surface du second ordre on*
leurs sommets sur une même droite ^ les polaires d'une transver*
sale quelconque , relatives à ces cônes 7 forment un hyperboloïde
qui passe par la polaire de cette transversale prise par rapport
à la surface du second ordre.

En effet, la polaire d'une droite,, par rapport à un cône, n'est
autre chose qu§ la droite diamétrale conjuguée au plan mené par
cette droite et par le sommet du cône , et passe aussi par ce som-
met. Mais si , par la droite donnée, on conduit un plan tangent
à la surface du second ordre, il coupera tous les cônes suivant des
coniques qui auront deux centres d'homologie communs (22) ; les
pôles de cette droite , par rapport à ces coniques, seront donc sur
une même droite D ( Annales , tom. XVIII, pag, 296 , 3.° ) ; or,
ces pôles appartiennent évidemment aux polaires de la droite, par
rapport aux cônes respectivement ; d'où il suit que ces plans s'ap-
puyent sur la droite D.

Si , par la droite donnée , on conduit un deuxième plan tangent
à la surface du second ordre , on obtiendra une deuxième droite
sur laquelle s'appuyeront également les polaires ; or, elles passent
aussi par la droite, lieu des sommets des cônes ; elles s'appuyent
donc sur trois droites fixes, ce qui prouve qu'elles appartiennent à
un hyperboloïde à une nappe.

Il est facile de voir que les polaires d'une droite , par rapport
à deux surfaces du second ordre circonscrites Tune à l'autre, se
rencontrent en un point du plan de la ligne de contact de ces sur-
faces ; donc les polaires de la transversale , par rapport aux cônes,



S T E R E O G R A P H I Q U E S . 171
rencontrent toutes sa polaire par rapport à la surface du second or-
dre , laquelle se trouve ainsi sur l'hyperboloïde.

Le théorème est donc complètement démontré.
Si , par la transversale, on mène un plan quelconque , il cou-

pera les cônes suivant des coniques ; et il est clair que les pôles
de la transversale, par rapport à ces coniques, seront sur lliyper-
boloïde , lieu des polaires de la droite ; ils seront par conséquent
sur une conique ; et , si le plan mené par la transversale tourne
sut cette droite, la conique engendrera Ihyperboloïde*

2 5. Si des cônes circonscrits à une surface du second ordre ont
leurs sommets sur une même droite , les plans diamétraux conju-
gués à une même droite , relatifs à tous ces cônes , envelopperont un
nouveau cône9

En effet', le plan diamétral conjugué à une droite , par rapport
à un cône , est le plan diamétral conjugué à la parallèle à cette
droite conduite par ïe sommet du cône ; le théorème énoncé résulte
donc du théorème (23J dans lequel on supposerait que le point
donné passe à l'infini.

26. Si des côn&s~ circonscrits à une surface du second ordre ont
leurs sommets sur une même droite, i.° tous les diamètres con-
jugués à un même plan , relatifs à ces cônes , appartiendront à un
hyperboloïde passant par la droite diamétrale de la surface du
second ordre , conjuguée à ce plan ; 2..0 les centres des coniques
suivant lesquelles ce plan transversal coupera les cônes circonscrits
seront sur une autre conique.

Pour obtenir la démonstration de ce théorème, il suffit de sup-
poser , dans le théorème (24) > que la transversale passe à l'infini.

Si le plan transversal est parallèle à la droite qui contient les
sommets des cônes circonscrits} lliyperboloïde se réduira à un plan ;
car, dans ce cas, les deux plans tangens à la surface du second
ordre, parallèles à celui-là , couperont les cônes suivant des coni-
ques dont les centres seront sur deux droites parallèles au lieu des
sommets des cônes.
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s. iv-

27. Des courbes planes, tracées sur une surface du second or-
dre 5 correspondent, au moyen de la doctrine des polaires récipro-
ques 5 à des cônes circonscrits à une autre surface du même ordre ;
d'oii il suit que leurs propriétés générales correspondent aux pro-
priétés générales de ces cônes» Ainsi les théorèmes du précédent
paragraphe donnent naissance à de nouveaux théorèmes qu'il doit nous
suffire d'énoncer. Au surplus , leur démonstration directe ne présen-
terait aucune difficulté , on la déduirait des principes exposés dans
le §. I , comme nous avons déduit celle des théorèmes relatifs aux
cônes circonscrits des principes exposés dans le §. IL

Rappelons d'abord le théorème (8) qui peut être énoncé ainsi :
28* Si des courbes planes , tracées sur une surface du* second

ordre , sont dans des plans passant par une même droite, les cô-
nes qui auront ces courbes pour bases et pour sommet commun un
quelconque des points de la surface du second ordre 9 seront cou-
pés par tout plan transversal suivant des coniques qui ? prises deux
à deux , auront mêmes axes de symptose.

Ces coniques jouiront, conséquemment, de toutes les propriétés
d'une série de coniques circonscrites à un même quadrilatère.

Si , par la droite suivant laquelle se coupent les plans des cour-
bes tracées sur la surface du second ordre , on peut conduire deux
plans tangens à cette surface; aux deux points de contact, consi-
dérés comme deux courbes infiniment petites, correspondront, sur
le plan transversal , deux points qui feront partie de la série de
coniques ; ou bien , si chaque plan tangent touche la surface du se-
cond ordre suivant deux droites, à ces droites correspondront, sur
le plan transversal, deux systèmes de droites faisant partie de la
série de coniques.

Par les polaires réciproques , le théorème (23) donne le suivant :
29. Si les plans de plusieurs courbes planes P tracées sur une sur-
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face du second ordre, se coupent suivant une même droite , tout
plan transversal coupera ceux de ces courbes suivant des droites
dont les pôles respectifs , relatifs à ces mêmes courbes 9 seront sur
une conique, contenue dans le plan polûire du point où Je plan
transversal coupera la droite , section commune des plans de ces
courbes.

Au théorème (a4) correspond pareillement celui-ci :
3o« Si les plans de plusieurs coniques, tracées sur une surface

du second ordre , se coupent suivant une même droite ; toute droite
transversale percera ces plans en des points dont les polaires res-
pectives , relatives à ces coniques, appartiendront à un hyperbo-
loïde qui contiendra la polaire de la transversale, prise par rap-
port à la surface du second ordre.

Si, par les coniques, on fait passer des cônes ayant pour sommet
commun un quelconque des points de la transversale, il est clair
que les plans diamétraux respectifs de ces cônes, conjugués à la
transversale f passeront par les polaires des points où cette droite
percera les plans des coniques ; ces polaires étant prises respecti-
vement par rapport à ces mên*es coniques. Ces plans seront donc
tangens à l'hyperboloïde, lieu de ces polaires, et envelopperont con-
séquemment un cône; de sorte qu'on a ce théorème :

3 t. Si les plans de tant de coniques qu'on voudra , tracées sur
une surface du second ordre, se coupent tous suivant une même
droite , et si des cônes , ayan t leur sommet commun en un quelcon-
que des points de l'espace, ont ces coniques pour bases, les plans
polaires respectifs d'un autre point quelconque de Vespace, rela-~
tifs à ces cônes, envelopperont un nouveau cône.

Et, si le sommet commun de tous ces cônes se meut sur une
droite passant par ce point, le cône, enveloppe des plans polaires
de ce même point 5 enveloppera iui-même un hyperboloïde.

Si , dans le théorème (29), on suppose le plan transversal situé
à l'infini , on aura ce théorème :

32. Si les plans de tant de coniques quon voudra 9 tracées sur
Tom. XIX 24
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une surface du secondv ordre, se coupent tous suivant Une même
droite, les centres de ces coniques seront tous sur une nouvelle co-
nique ^ contenue dans le plan diamétral de la surface du second
ordre conjuguée à cette droite*

Le théorème (3o), quand la droite passe à l'infini, devient ce-
lui -ci :

33, Si les plans de tant de coniques quon voudra , tracées sur
une surface du second ordre 5 se coupent tous suivant une même
droite, les diamètres de ces coniques conjugués aux droites sui-
vant lesquelles leurs plans seront coupés par un plan transversal
quelconque, appartiendront à un hyperholoïde qui passera par le
diamètre de la surface du second ordre conjugué à ce plan.

34* Les théorèmes des §. III et IV donnent, comme cas parti-
culiers , plusieurs propriétés des cordes d'une conique issues d'un
même point, ainsi que des angles circonscrits ayant leurs sommets
sur une même droite. Comme nous nous proposons de les repro-
duire dans une autre occasion , nous nous dispenserons de les énon-
cer ici.

On peut faire d'autres applications des precédens théorèmes: par
exemple , on s'en sert utilement pour démontrer les deux partifes de
celui-ci :

Par des coniques tracées sur une surface du second ordre, de
telle sorte que les plans de ces coniques se coupent tous suivant
une même droite, soient décrites d'autres surfaces du second or-
dre È toutes inscrites ou circonscrites à celle-là;

i.° Une infinité de ces surfaces pourront toucher un même plan
donné , et le lieu géométrique de leurs points de contact avec lui
sera une conique ;

2.0 Une infinité de ces surfaces pourront passer par un point
donné , et leurs plans tangens en ce point envelopperont un cène.

Si , dans le premier cas , le plan donné passe par la commune
section des plans des coniques, la conique, lieu des points de con-
tact , se réduira à un point*
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Si, dans le second cas , le point donné est sur la droite, lieu des

pôles des plans des coniques, toutes les surfaces du second ordre
circonscrites auront un même plan tangent en ce point.

La surface du second ordre à laquelle sont inscrites les autres sur-
faces pourrait être un cône.

Les théorèmes des deux §. III et IV ne sont eux-mêmes que
des cas particuliers des propriétés générales des systèmes de sur-
faces du second ordre inscrites ou circonscrites à la fois à deux au-
tres surfaces du même ordre ; propriétés dont la recherche fera le
sujet d'un autre article.

QUESTIONS ME8OLUES.

Solution de deux des six problèmes de géomé-
trie énoncés à la pag. ihb du précédent
çolume ,

Par un A B O N N É .

JL ROBLÈME L Sur le plan d'un triangle donné décrire tin cer-
cle qui intercepte, sur les directions des trois côtés de es triangle ,
des cordes égales à trois droites données ?

Solution* Comme il faut trois conditions pour déterminer un cer-
cle sur un plan , on voit d'abord que le problème est déterminé,
c'est-à-dire qu'il ne peut être résolu que par un nombre de cercles
limité.

Si Ton exigeait seulement que les cordes interceptées par le cer-
cle cherché, sur les directions des deux côtés d5un même angle du
triangle donné ? fussent égales à deux droites données ? le problème
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deviendrait Indéterminé, c'est-à-dire qu'il pourrait être résolu par
une infinité de cercles se succédant les uns aux autres sans in-
terruption ; les centres de tous ces cercles seraient donc sur une cer-
taine courbe. À chaque sommet du triangle répondrait une sembla-
ble courbe, et les courbes, répondant aux trois sommets, se coupe-
raient aux centres des cercles qui résoudraient le problème. Voyons
donc quelle est la nature de ces courbes.

Soient a , b deux des côtés du triangle donné et y l'angle com-
pris ; prenons ces deux côtés pour axes des x et des y , et cher-
chons sur quelle courbe se trouvent situés les centres de tous les
cercles qui interceptent, sur ces mêmes côtés, des longueurs données
za' et zb'.

Soit ( / , w ) l'un de ces centres; les perpendiculaires abaissées
de ce point sur les deux côtés a, b seront respectivement aSin.y
et /Sin.y; leurs pieds tomberont sur les milieux des cordes 2a' et
zb'; de sorte qu'en ajoutant respectivement #'a et bf2 aux carrés
des longueurs de ces perpendiculaires, on &ura deux expressions
du carré du rayon du cercle qu'on pourra égaler entre elles ; ce qui
donnera

c'est-a-dire ,

telle est donc l'équation du lieu des ^entrfcs d̂ e tous les cerdes qui
interceptent sur les deux côtés a , b de l%ngle y du triangle donné ,
des longueurs respectivement égales à zaf et zb\

On reconnaît celte équation pour celle d'une hyperbole dont les
asymptotes divisent en deux parties égales les quatre angles que for-
ment les directions des t:ôtés a et b ; ces asymptotes sont donc rec-
tangulaires, et conséquemBàent l'hyperbole est équilatère; elle passe
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d'ailleurs par les quatre points donnés par les deux doubles équa-
tions

dont les distances aux deux côtés a et b sont respectivement +tf r

et ^rbf ; la solution du problème proposé est donc renfermée dans le
théorème suivant :

THÉORÈME I. Aux trois côtés a , b , e d'un triangle donne
soient menées , départ et d'autre 9 des parallèles qui en soient res-
pectivement distantes des quantités données a', b / , c/ ; ces trois
couples de parallèles formeront, par leur rencontre , trois paral-
lélogrammes ayant leurs centres aux trois sommets du triangle.
A chacun de ces parallélogrammes soit circonscrite une hyperbole
équiïatère, ayant pour asymptotes les deux droites, perpendiculai-
res l'une à l'autre y divisant en deux parties égales, tant l angle
du triangle donné qui a son sommet au centre du parallélogramme ,
que le supplément de cet angle. Les trois hyperboles ainsi décri-
tes se couperont en quatre points, centres d'autant de cercles qui
intercepteront, sur les directions des trois cétés a , b , c du trian-
gle donnée des longueurs respectivement égales à 2a', zh', 2&.

Les centres des cercles cherchés ainsi déterminés , rien ne sera
plus aisé que d'en trouver les rayons respectifs ; car , pour chacun
d'eux 9 en abaissant de son centre des perpendiculaires sur les di-
rections des trois côtés a , b , c, et prenant, sur ces mêmes direc-
tions , de part et d'autre , des pieds de ces perpendiculaires, des
longueurs respectivement égales à af >bf

 ê *
f, on obtiendra six points

de la circonférence à décrire.
Si deux des trois longueurs données a! ̂ V >c/ étaient égales en-

tre elles , l'iifte des trois hyperboles se réduirait à ses asymptotes,
et il serait facile de ramener les intersections de chacune de ces
asymptotes, avec Tune des deux autres hyperboles, à celle de cette
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même asymptote avec un cercle ; de sorte qu'alors le problème se-
rait rigoureusement résoluble avec la règle et le compas.

Si les longueurs données ai ^ b*, cl étaient toutes trois égales en-
tre elles, les hyperboles se réduiraient toutes trois à leurs asymp-
totes , et les centres des quatre cercles cherchés ne seraient autres
alors que les centres des cercles inscrits et ex-inscrits au triangle
proposé ; ce qui est d'ailleurs évident.

PROBLEME IL Sur le plan d'un triangle donné décrire un
cercle tel que les angles circonscrits qui auront mêmes sommets que
ce triangle soient égaux à trois angles donnés ?

Solution. Comme il faut trois conditions pour déterminer un cer-
cle sur un plan , on voit d'abord que le problème est déterminé ,
c'est-à-dire qu'il ne peut être résolu que par un nombre de cer-
cles limité.

Si Ton exigeait seulement que les angles circonscrits au cercle
cherché , ayant pour sommets deux des sommets du triangle donné ,
fussent égaux à deux angles donnés , le problème deviendrait indé-
terminé, c'est-à-dire qu'il pourrait être résolu par une infinité de
cercles, se succédant les uns aux autres sans interruption ; les cen-
tres de tous ces cercles seraient donc sur une certaine courbe. À
chaque côté du triangle répondrait une semblable courbe, et les
courbes répondant aux trois côtés se couperaient aux centres des
cercles qui résoudraient le problème. Voyons donc quelle est la na-
ture de ces courbes.

Soient c un des côtés du triangle donné et a, (3 les deux angles
adjacens j prenons ce côté pour axe des oc , le sommet de l'angle a
pour origine et la direction de l'autre côté de cet angle pour axe
des y, et cherchons sur quelle courbe se trouvent situés les cen-
tres de tous les cercles tels que les angles circonscrits qui ont mê-
mes sommets que les deux angles a et (3 soient égaux à deux an-
gles donnés 2af et 2$\

Soit (t,u) le centre de l'un de ces cercles ; les droites qui
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le joindront aux deux sommets de a et fi auront respectivement
pour longueurs

\/ U*-\>%ll{t*~£)COS.*.}-(* c

lesquelles muhipliées respectivement par Sin.a' et Sin.|3' donneront
deux expressions du rayon du cercle cherché que l'on pourra éga-
ler entre elles ; on aura donc en quarrant

telle est donc l'équation du lieu des centres de tous les cercles
tels que les angles circonscrits qui ont mêmes sommets que les an-
gles a et fi 5 adjacens au côté c du triangle donné , sont respecti-
vement égaux aux angles donnés 2.af et 2fi'.

On reconnaît aisément que cette équation est celle d'un cercle
qui a son centre sur l'axe des ce , c'est-à-dire ? sur la direction du
côté c du triangle donné; de sorte qu'il suffira , pour pouvoir le
décrire, de connaître les deux extrémités de celui de ses diamè-
tres qui est dirigé suivant cette droite ; c'est ce à quoi on parvien-
dra en faisant dans cette équation u=:o, et en déterminant les
deux valeurs de / qui en résultent. On obtient ainsi

d'où

et par conséquent
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On reconnaît aisément que ces valeurs répondent à deux points,

l'un sur îe côté c lui-même et l'autre sur son prolongement, dont
les distances à ses deux extrémités sont en raison inverse des si-
nus des angles a/ et $' qui leur correspondent ou en raion directe
de leurs cosécantes ; de sorte que la solution du problème proposé
est renfermé dans le théorème suivante

THÉORÈME IL Des sommets des trois angles a , p , y d'un
triangle donné, pris tour à tour pour centres 7 soient décrits trois
cercles dont les rayons 9 d'ailleurs de grandeur arbitraire f soient
respectivement proportionnels aux cosécantes de trois angles don-
nés a/ , (î7, yf, et soient déterminés les centres d'homologie ou dp
similitude de ces trois cercles , pris successivement deux à deux^
Si, sur les distances entre les deux centres d'homologie relatifs à
chaque couple de cercles, prises tour à tour pour diamètres, on
décrit trois nouveaux cercles i ces derniers passeront tous trois par
deux points , centres de deux cercles tels que les angles circons~
crits qui auront mêmes sommets que les trois angles a, (3 , y du
triangle donné seront respectivement égaux à aa ' , 2/3/, 2 / (*).

(*) C'est exactement à cela que revient, pour le fond , une solution qui
nous a été adressée par M. Pagliani y cadet au corps royal des Pionniers à
Modène ; mais l'auteur se borne à démontrer une construction que sa saga-
cité lui a suggérée, tandis qu'ici l'analyse fait découvrir cette construction.

On sait que tous les points du plan de deus cercles, desquels ces cercles
sont vus sous des angles égaux sont ceux de la circonférence décrite sur la
distance entre leurs centres d'homologie # prise pour diamètre ; d'où il suit
que les deux points du plan de trois cercles d'où ces cercles sont vus sous
des angles égaux sont ceux où se coupent les trois cercles décrits de la même
manière, par rapport à ces trois-ià, pris tour à tour deux à deux. D'après
cette remarque le théorème pourra être très-brièvement énoncé comme il
suit:

Le centre du cercle qui est vu des sommets d'un triangle donné sous trois
angles donnés, est le point* d7ou Von verrait f sous des angles égaux , trois



R E S O L U E S . 181
Les centres des deux cercles qui résolvent le problème ainsi dé-

terminés, rien ne sera plus facile que d'en trouver les rayons res-
pectifs; car, pour chacun 9 en joignant son centre aux sommets des
trois angles a , {3, y par des droites, et menant, par les mêmes
sommets, de nouvelles droites faisant respectivement avec celles-là
des angles a ' , (V, yff ; les perpendiculaires abaissées du centre sur
ces dernières seront des rayons du cercle à décrire.
" Si deux des trois angles donnés a/, (V, y/ étaient égaux entre eux ,
l'un des cercles , lieux des centres des cercles cherchés 5 se réduirait
à une perpendiculaire sur le milieu de l'un des côtés du triangle
donné, axe de syrnptose ou axe radical des deux autres ; et, si ces
trois angles étaient égaux , les trois cercles se réduisant tous alors à
des perpendiculaires sur les milieux des côtés du triangle donné,
le centre du cercle cherché ne serait donc autre que le centre du
cercle circonscrit à ce triangle ; ce qui est d'ailleurs évident,

A cause de la parfaite analogie qui existe entre ces deux problè-
mes , on était fondé à soupçonner que 5 puisque le premier se ré-
sout par des intersections d'hyperboles éqnilatères , l'autre se résou-
drait par des intersections de cercles.

Les quatre autres problèmes de l'endroit cité ne seraient pas plus
difficiles à traiter que ces deux-là, si les formules de la géométrie
analytique à trois dimensions, relatives aux axes de coordonnées
obliques ? nous étaient plus familières.

Lyon, le 28 juillet 1828,

cercles qui auraient pour centres les sommets du triangle , et dont les rayons
seraient respectivement proportionnels aux cosècantes des moitiés des trois an-
gles donnés,

J. D. G.

Torn. XIX 2 5
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QUESTIONS PHOFOSEES.

Théorèmes de géométrie proposés à démontrer ;

Par M. F. SÀBRUS.

I. JLJES milieux des cordes interceptées par une conique , sur des
droites issues d'un même point , sont sur une autre conique qui
lui est homothétique et qui passe par le point dont il s'agit,

II. Les milieux des cordes interceptées par une surface du se-
cond ordre , sur des droites issues d'un même point de l'espace ,
sont sur une autre surface du second ordre qui lui est homothé-
tique et qui passe par le point dont il s'agit.

Problèmes à résoudre.

L Quel est le lieu des droites qui divisent en deux parties éga-
les les angles suivant lesquels une surface conique du second or-
dre est coupée par les plans conduits par une même droite menée
par son sommet ?

IL Quel est le lieu des centres de toutes les sections faites dans
une surface du second ordre par des plans qui se coupent sui-
vant une même droite ?

III. A quelle courbe sont tangentes les droites qui divisent eu
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deux parties égales les angles circonscrits à une conique , qui ont
leurs sommets sur une même droite ?

IV. A quelle surface sont tangens les plans qui divisent en deux
parties égales les angles dièdres circonscrits à une même surface
conique du second ordre , qui ont leurs arêtes sur un même plan
conduit par son sommet ?

V. Les diamètres principaux des surfaces coniques circonscrites
à une même surface du second ordre, qui ont leurs sommets sur
une même droite, sont-ils tangens à une même courbe, et quelle
est cette courbe ?

VI. A quelle surface sont tangens les plans qui divisent en deux
parties égales les angles dièdres circonscrits à une même surface
du second ordre, qui ont leurs arêtes dans un même plan?

VU. A quelle surface sont tangens les plans qui divisent en deux
parties égales les angle dièdres circonscrits à une même surface du
second ordre, dont les arêtes passent par un même point.?

VIII. À quelle surface sont tangens les diamètres principaux des
surfaces coniques circonscrites à une surface du second ordre, qui
ont leurs sommets dans un même plan ?

Problème proposé par M. W. H. T.

Quelles doivent être les dimensions d'un cylindre droit, inscrit
à une sphère , pour que sa surface ou son volume soit un maxi-
mum ?

Problèmes proposés par M. L. P. E. R.

I. Lorsqu'on donne les trois côtés d'un triangle , le triangle est
donné P et ? par suife, sont aussi donnés les rayons des quatre cer-
cles inscrits et ex-inscrits ? entre lesquels il doit conséquemnient
exister une certaine relation. ( Annales P toin. XIX , pag. 86 ).
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Mais , parce que la ligne droite n'est qu'un cas particulier dti

cercle 9 un triangle n'est qu'un cas particulier du système de trois
cercles auxquels huit autres cercles peuvent être tangens.

Or, trois cercles sont déterminés sur un plan par six élémens;
savoir : leurs rayons et les distances entre leurs centres ; d'où l'on
voit que les rayons des huit cercles qui les touchent tous trois
sont des fonctions de ces six élémens , et qu'en conséquence il doit
exister deux relations distinctes entre ces huit rayons.

On propose d'assigner ces deux relations ?
Iï. Des considérations analogues prouvent qu'il doit aussi exister

deux relations distinctes entre les angles générateurs des huit cô-
nes de révolution qui touchent, à la fois, trois cônes donnés de
révolution de même sommet.

On propose également d'assigner ces deux relations ?
III. Des considérations analogues prouvent encore que , de même

qu'il existe deux relations distinctes ( Annales , foni. XIX , pag«
94 ) entre les rayons des huit sphères qui touchent à la fois les
quatre faces d'un tétraèdre donné , ïl en doit exister six entre les
rayons des seize sphères qui touchent, à la fois, quatre sphères
données»

On propose aussi d'assigner ces six relations?



OSCILLATIONS DES CORPS FLOTTAKS. i85

Mémoire siw les oscillations des corpsjlottans ;

Par M. F. SARRUS , docteur agrégé es sciences , professeur
cle mathématiques et de physique à Perpignan.

WV VY/Y V\\ VW WY W \ V\\ W \ VW

JLiE problème qni fait le sujet de cet essai , traité avec toute la
généralité dont iî est susceptible , consisterait à déterminer les di-
vers mouvecnens d'oscillation que peut prendre un corps solide li-
bre , pesant 5 plongé en tout ou en partie dans un fluide égale-
ment soumis à l'action de la pesanteur, mais qui peut être indif-
féremment compressible ou incompressible , homogène ou composé
de couches de nature différente.

Dans l'état actuel de la science, la solution rigoureuse de ce
problème est , pour ainsi dire, impossible ; aussi les divers géomè-
tres qui ont essayé d'en résoudre quelques cas particuliers , n'out-
ils pu y parvenir qu'au moyen des hypothèses suivantes , savoir :

i.° Que la pression qu'éprouve ch.-.eun des points du corps flot-
tant peut être calculée comme si le fluide n'avait aucun mouve-
ment ;

2.° Que les divers mouvemens du corps flottant sont assez pe-
tits pour qu'il soit permis de négliger , sans erreur sensible > les
quantités de Tordre des carrés ou produits de ces mouvemens;

3 ° Que les dimensions du corps flotiaut sont assez petites pour
qu'on puisse regarder la pesanteur comme une force de grandeur
constante, agissant suivant des directions parallèles.

Tom* XIX. n.° 7 , i.e* janvier 182g. p.6
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Comme dans les cas réellement utiles, ices diverses suppositions

ne s'écartent que Lien peu de la vérité , lés résultats auxquels elles
conduisent peuvent être considérés comme suffisamment appro-
chés ; nous les adopterons donc dans ce qui va suivre ; mais , à
cela près , nous présenterons une solution purement analytique dtt
problème général, tel que nous l'avons posé ci-dessus.

Représentons, suivant l'usage, par g la gravité, la niasse d'une
molécule quelconque du corps flottant par Dm , la pression normal^
qu'éprouve chaque point d'un élément co de la surface de ce corps
par / ? , la normale correspondante, mesurée depuis un point de
cette droite pris dans l'intérieur du corps , par r , prenant l'axe des
z vertical et dirigé de haut en bas f et observant que la pression
p tend à diminuer la longueur r de la normale, nous aurons ,
déterminer le mouvement du corps flottant, 1'équatiorç

( d^*+d;^-M^ ) D ^ ^ & I W

dans laquelle les intégrales indiquées par la caractéristique S sont
relatives à la molécule Dm % et doivent s'étendre à toute la masse
du corps flottant, tandis que l'intégrale indiquée par la caracté-
ristique/est relative à l'élément oo, et doit s'étendre seulement à
toute la partie de la surface de ce même corps qui est baignée par
le fluide. On doit observer, en outre , que les variations Sx, èf, èz
ne sont pas entièrement arbitraires, parce qu'elles doivent satis-
faire à la condition d'invariabilité de distance entre deux molécu-
les quelconques. Cette condition va nous conduire à la forme la
plus générale de ces variations.

En désignant par & 9y 9 z 9' X9 Y^Z les coordonnées de deux
molécules quelconques du corps flottant, le carré de leur distance

exprimé par
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la variation doit être identiquement nulle; ce qui donne

laquelle doit être satisfaite , quelles que soient les valeurs particu-
lières des coordonnées x 9y9 z, X, Y9 Z.

En prenant successivement pour ( X^ Y, Z ) trois points fixés
invariablement avec la masse du corps flottant, l'on arriverait à
trois équations semblables à la précédente , et au moyen desquels
les on parviendrait à déterminer Sx, ëy > Sz , en fonction de x,
y, z t des coordonnées des trois points auxiliaires et des variations
de ces coordonnées ; c'est-à-dire en fonction de x, y, z et d'au-
tres quantités qui ont ta même valeur pour toute autre molé-
cule. Cela posé, si Ton différence l'équation ci-dessus, successive^
ment par rapport à xfyrzy et que Ton observe que X9 Y, Z
doivent être traités comme des constantes , Ton trouvera

En difFérentiant cellps-ci, à leur tour % successîv,ement par rapport
à XyY}Zf et observant que, dans ce cas, ces quantités et leurs
variations sont les seules que Ton doive traiter comme variables ,
on trouvera
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d£X dïx dïY d$x à$Z
+ + +

dty dSX âfy d»Y _ dty dïZ
+ O = + o 7 + F

à$z dèX d$z diY dïz àSZ+ + +
Comme les differens termes qui entrent dans ces équations sont in-
dépendans les uns des ac , y, z et les autres de X> Y, Z , on
en conclura sans peine qu'ils sont tous indépendans tant de ^9y>

z que de X, Y, Z^ et que, par conséquent ; on doit avoir iden-
tiquement

dix
dx

dèy

dx

dfe
dx

diX
dX 7

ùiY

dX '

àïz
dX '

dix
dy

dty

ôiz
dy

. dàX
dr '

dïY
à Y ?

àiz
dY ?

dix
dz

dây

dz

dèz

dz

dix
dZ

d$Y

dZ

dfe
dZ

dont la comparaison avec celles qui précédent nous conduit à faire

_ Hz
dx ""^w ' \dz dy

dty dèz dix
dy ? dar do?

dix
= n .

dz
— ° * "X7" —"""* TT" —v '
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en désignant par A , jx, v des quantités quelconques indépendantes
de xfy,z9 et qui doivent conserver leurs valeurs pour toutes les
molécules. '

Présentement les différentielles totales de Sx, Sy ^ Sz t prises en
regardant le temps comme constant, donnent identiquement

dix
- • —

dx
dix
-7—
dy

dix
ûz

dïz

dx

diz diz
~— dv + —- àz ;
dy J dz

lesquelles , au moyen des résultats que nois venons d'obtenir, se
^réduiront à

=f^d^^—\ày ;

qu i , par leur intégration , nous donneront pour Sx, Sy 9 Sz les va-
leurs suivantes:

dans lesquelles a ,j3, y sont des quantités indépendantes de #
z , mais d'ailleurs arbitraires.

Avant de substituer ces valeurs de Sx, $y, Sz dans Téquation
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il convient de mettre le terme JpœSr de cette équation sous une
forme qui se prête plus facilement aux calculs que nous aurons
à effectuer par la suite.

Lorsque le corps flottant est entièrement plongé dans le fluide *
cette intégrale fp&hr doit être prise dans toute l'étendue de la
surface de ce corps» Or, on pourra toujours admettre qu'il en est
ainsi, pourvu qu'on regarde, s'il le faut, la densité du fluide comme
étant nulle dans une étendue plus ou moins considérable. Au moyen
de ce petit artifice, nous n'aurons plus besoin de distinguer le cas
où le corps flottant est entièrement plongé dans le fluide de celui
où il ne Test qu'en partie seulement.

Gela posé, soient at b9 c les coordonnées de l'origine de i§
normale ; nous aurons

et par suite

r r J
 r

d'où on conclura

Présentement nous observerons que l'expression est celle dit

cosinus de l'angle que ferait celte normale avec une parallèle me-
née par son pied -f à Taxe des x ; et que , par suite , cette expressions
est aussi celle du cosinus de l'inclinaison de l'élément o> sur le plan
des yz ; de sorte que la projection de cet élément sur le plan des

yz est, abstraction faite de son signe, égale à co, «Appelant

donc dydz cette projection, nous aurons
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a—x
eo.

r

le signe ~f- ou — devant être convenablement détermine. Pour re-
connaître quel ê t celui de ces deux signes qu'il faut prendre, dans
cliaque cas particulier, considérons «ne droiie indéfinie parallèle à
Taxe des x\ les valeurs de y et de z , relatives aux différens points
de celte droite, seront toujours les mêmes; il n'y aura que celle de
$c qui changera. Nommant donc x\ y xi9 x3 , ....... les valeurs de x
qui sont relatives aux points où la droite perce la surface du corps
flottant, et supposant ces valeurs rangées dans un ordre tel que
Ton ait

ce qui est toujours possible , on verra sans peine que les différens
points de cette droite, pour lesquels x se trouve compris entrer ,
et x% , x% et x4, xt et x^y ••,„..,.•„ sont situés dans l'intérieur du
corps flouant, et les autres , c*est-à-dïre , ceux pour lesquels x se
trouve compris entre xm et x^, x4 et xs, en dehors de ce
corps ; ce qui exige que les points d'intersection de la droite avec
la surface du corps flottant soient en nombre pair, e t , de plus,
que, par cela seul que la normale r doit être tout entière dans
l'intérieur du corps flottant, on ait

Jtt * Û* > #3 9 • • représentant les valeurs de o qui correspondent

aux normales r , , r%, r3,..«,. relatives à xï9xa,x$ , Si donc on
représente par co,, wM, o>5, les élémens de la surface du corps
flottant qui se trouvent situés aux différens points où cette surface
est percée par la parallèle à Taxe des x dont il vient d'être ques-
tion, nous pourrons faire



O S C I L L A T I O N S

<*>,

==—ûyûz

En observant que ces élémens peuvent toujours être pris de telle
grandeur que leurs projections soient égales entre elles , nous con-
clurons de là

en désignant par /?, , /?2, p% , ...,. les valeurs de /? qui sont relati-
ves aux élétnens co, , o>s, o)$ ,

Maintenant nous observerons que les valeurs de èxt , 5̂ r2 >&&"3, ....
doivent être données par la première des équations (2), et que,
par conséquent, elles ne sont fonctions que des coordonnées^^,
lesquelles conservent leurs valeurs dans toute l'étendue de la trans-
versale ? et qu'ainsi Ton a

ce qui change le résultat obtenu ci-dessus en celui qui suit
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Présentement, si Ton regarde/? comme une fonction purement

analytique dont l'existence a lieu dans tous les points de l'espace,
on pourra faire

pourvu seulement que Ton ne prenne l'intégrale du second mem-
bre que pour les points situés dans l'intérieur du corps flottant ;
par suite nous aurons

L ^ f a . ——— 5 r f .«..=-"dydz&r / -7- dar

Pour obtenir l'intégrale Jpoo. Sa; 9 nous n'aurons qu'à pren-

dre la somme de toutes les expressions analogues à celle qui forme

le second membre de cette équation , ce qui nous donnera

on aura semblablement

. ^ èr=-///dsdydz.

et par suite

ou enfin

iintégrale du second membre devant être prise dan r̂ toute Téten

Tom. XIX 27
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due de l'espace occupé par le corps flottant. En substituant cette
valeur dans l'équation (i) elle deviendra

. (3)

II nous reste à mettre dans cette équation la valeur de $p f va-
leur que nous ne pouvons trouver qu'en supposant l'équilibre du
fluide ; ce qui donne , comme Ton sait f

9p=gA*z , (4)

en désignant par A la densité de ce fluide. Au moyen de cette
valeur, l'équation (3) deviendra

; (5)

dans laquelle il faudra substituer les valeurs de Sx, §y, Sz 9 don-
nées par les équations (2) ; mais il convient auparavant de lui
faire subir encore une transformation.

Désignons par X, Y, Z les coordonnées du centre de gravité
du corps flottant, et faisant

nous aurons identiquement

mais d'un autre côté, par la propriété du centre de gravité, on
doit avoir
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mX—SxDm , mYzzSyDm , mZ=zSzDm ;

d'où on conclura

Au moj'en de ces valeurs, le premier membre de réqiialîon (5)
deviendra

Maintenant les valeurs de X, Y, Z étant les mêmes pour tou-
tes les molécules Dm , ces quantités et leurs différentielles pour-
ront se mettre hors du signe S , ce qui nous donnera

/ à*XÏX+d*YÏY+d*Z£Z \ _. / d*
( — j \jm-=ztn (

S l!£ èx>Dm= ~ Sia/Dm ,
dt* dt* 9

dtz J dt* J 7

S — §z>Vmz= ^ SSz'Dm ,
di* dt*

7=azS - ^ - D/72 ;

S IL. *rDm=iYS -f Dm ,
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<32Z ; à*zf

d d*

Au moyen de ces valeurs, le premier membre de l'équation (5)
deviendra

/ dX$X+dYèY+dZÏZ \ a / Axhc+dyh+à*** \T>

m ̂  _ J + S ̂  _ J D.»
tandis que le second sera

pu encore

gmSZ—gèZff/Aàx'ày'àz'—gfffîz'&àx'èy'àz' ,

en observant que S5z'D/^ = o. Cette équation (5) pourra donc se
mettre sous la forme

/ d*X£X+d*Y£Y+d*Z$Z \ t _,
f ^ 1 -J-S

Lorsque le corps flottant est entièrement libre , les valeurs de
, SY, SZ sont arbitraires et indépendantes de cb7, §y', âz7 ; d'où

il résulte que leurs coefîîciens doivent être identiquement égaux
dans les deux membres de cette équation, ce qui donne les équa-
tions

d*X d*Y d*Z rrrK , , , , • , , v

dîT ==0 » — = o ? OT# l iT ~Sm-8fff^* àïdz > (7)

lesquelles serviront à déterminer le mouvement du centre de gra
vité du corps flottant et réduiront l'équation (6) à la suivante;
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g^^ (8)

Présentement, les équations (2) nous donneront, comme cas par-
ticulier ,

lesquelles retranchées des équations (2) donnent

z—z)—v(*~-<x)=$r-

ou , ce qui revient au même ,

dfaprès les valeurs x=X-\-x'9y=Y-Jt~f', z^Z+z', posées ci-dessus,
Au moyen de ces valeurs, l'équation (8) deviendra, en mettant

A, p , v hors du signe d'intégration ;
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laquelle devant avoir lieu quelles que soient les valeurs de
donnera identiquement

di»
(9)

équations qui serviront à déterminer le inouvement du corps flot-
tant autour de son centre de gravité.

Pour déduire les conditions d'équilibre du corps flottant de cel-
les qui précèdent, il suffit évidemment de supposer les vitesses

àX àY
Ht *

àZ
*d7 9 17 dT

âz'

constantes et nulles ; ce qui réduit les équations (7) et (9) aux
suivantes

(10)

dont la première indique que 9 dans Tétat d'équilibre , la masse da
corps flottant doit être égale à celle du fluide qu'il déplace, tan-
dis que les deux autres indiquent que les centres de gravité de
ces deux masses doirent être situés dans une même verticale. Tel-
les sont en effet les conditions nécessaires et suffisantes pour assu-
rer l'équilibre. Nous nous occuperons plus loin de la recherche de
celles qui peuvent en garantir la stabilité»
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Présentement 5 concevons, par le centre de gravité du corps flot-

tant , trois axes rectangulaires fixes par rapport à ce corps , mais
mobiles avec lui dans l'espace. Si Pou représente par a, b, c les
coordonnées d'un point quelconque relatives à ces axes , nous au-
rons

puisque les deux membres de cette équation représentent également
le volume Dm d'une molécule quelconque du corps flottant. Par
suite , on aura , en général

JffPdx>dy>dz'=ifPdadldc • (n)

On parviendrait au surplus à la même conclusion par l'application
des procédés connus pour la transformation des intégrales. C'est
ainsi que nous transformerons les seconds membres des équations
(7) « (9).

Ce qui précède aura toujours lieu , quelles que soient les direc-
tions des axes a , b 5 c ; de sorte que rien ne nous empêche de sup-
poser que , si le corps flottant était en équilibre, ont eût xlz=.a 9

y'zzb, z'=c. Si Ton fait, dans ce cas,

, *'=*+*" ;
les quantités xfi, y" , zn seront très-petites et de même ordre que
les vitesses que peuvent prendre les molécules Dm; on pourra donc,
sans erreur sensible, négliger les quantités de Tordre de leurs car-
rés et produits. De plus, les quantités x", yf\ z" devront être
telles que la distance de deux molécules ne soit pas altérée par leur
présence et conserve la même valeur que si ces quantités étaient
absolument nulles. On peut donc employer ? pour les déterminer ,
les considérations qui nous ont conduit aux équations (2) , et
poser par conséquent
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va

ou A , n, v sont des fonctions inconnues , autres que celles des équa-
tions (2) , du temps et de constantes indépendantes de a , b9 c 9

qu'il s'agit de déterminer , et où nous supprimons les constantes
a, j3 , y , attendu que xu, yu , zff doivent être nuls en même temps
que a , b , c. Nous aurons ainsi

— \b 9

et par suite, en négligeant les carrés et produits de

-7— — c a -\ bc —
fa% fa* d

multipliant les deux membres de ces équations par T)m , i
par rapport à la caractéristique S et posant, pour abréger,

c2)Dm~J , SbcDrn-G ,

-a2)Vm — B , ScaDm=H ,

on trouvera
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d > a
^ d^ df» d** *

valeurs qu'il convient de mettre à la place des premiers membres
des équations (9) , et c'est ce que nous ferons dès que nous au-
rons mis en évidence les quantités A, p , v, Z qui doivent en-
trer dans leurs seconds membres.

L'équation (4)5 relative à l'équilibre du fluide, ne peut avoir
lieu qu'autant que la densité A est fonction de z seulement; mais
nous avons fait

par suite A doit être supposé fonction de cette quantité c-\-pa—\
et d'autres quantités constantes , mais indépendantes de a , b , c.
Supposant donc que l'origine des coordonnées primitives œ^y^z
ait été prise de telle sorte q u e , dans l'état d'équilibre, l'on eût
Z=o , ce qui est toujours possible , nous pourrons regarder Z comme
étant de même ordre que A,j*,v, et par conséquent négliger son
carré et les autres termes de même ordre > ce qui nous permettra
de faire

A = Ao+ii0 Qut-Xt+Z),

en désignant par Ao la valeur de A qui aurait lieu dans le cas
d'équilibre. Nous trouverons ainsi , en négligeant toujours les quan-
tités de l'ordre des carrés et produits de À , p , v, Z ,

-\ab 4£ +a - ^ +Z ,
Tom. XIX. 28
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Au moyen de ces valeurs , nous trouverons, en employant la trans-
formation indiquée par l'équation ( n ) ,

JJ/Adx'dy'dz'-fffAdadbdc =/ffAodadbdc±Zfff ~

ra ~ dadbdc-lfffb ?p- dadbdc ;
de '•" de

fffAv>dx'dyidz'=JffAx'dadbdc=fJfaAadadbdc+Zfffa —^ dadbde

dadbdc—Xf//ab ~ dadbdc ;

~ - daàbdc

—^/ffaAAadbdc^-ïf/KcA^—F

Maintenant on doit observer que a, b , c, Ao sont les valeurs
de &', y1, z', A qui auraient lieu dans le cas d'équilibre , et que,
conséquemment, on doit avoir identiquement (10)

ff/A^adbdc^m ,

fffaAadadbdc=-o ,
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ayant donc égard à ces conditions et posant, pour abréger,"

JjJ ^-àaàbàc=//(A"—A')àaàb=L ,
de

fjja ^-àaàbàc =//{&»—A')aàato=M ,

fffl ^p- àaàbàc—fJf(A"~Ai)bàaàb=N ,
QC

fffa* ~

f/JP ^ àaàbàc~fjf(A<'--A')b*àaàb=Q ,
de

JJjal ÈpL àaàbàc—/f(A"—A')abàaùb=H ,

fJJcAodadhàc=MF ;

nous trouverons

JffAx'àx'ày'àz'^MZ—^mF-P)—\R ,

équations dans lesquelles Z, M, Ny P, Q,R, V expriment des
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constantes qui dépendent de la nature du fluide, de celle du corps
flottant et de la figure de ce corps.

En comparant ces résultats et ceux que donnent les équations
(12) avec les équations (7) et (9), nous trouverons enfin

a*Y _

m £r

C ——.G ttt —H — =0
d*> àt* dt*

et telles sont les équations finales qu'il nous reste à intégrer pour
avoir résolu le problème que nous nous étions proposé*

l'V*

Les deux premières donnent, par une première intégration, —

et — constantes, et conséquemment nulles lorsque le corps flot-
tant est parti du repos , ou même , lorsqu'ayant reçu une impul-
sion primitive , les composantes transversales sont nulles. Dans ce
cas , les valeurs de X et Y sont constantes et par conséquent si,
à torigine des petites oscillations, le centre de gravité du corps

Jlottant se meut sur une verticale, il ne sortira pas de cette droite
pendant toute leur durée.

Pour intégrer les quatre équations restantes, nous les réduirons
d'abord à trois, en éliminant v entre elles ; les équations à intégrer
seront ainsi
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{CK+GH) ^^AC-H^ +Cg{NZ-(mr-Q)+Bp}SSo ;

auxquelles nous appliquerons le procédé indiqué dans la section YI
de la Mécanique analytique. Nous poserons donc

et chacune de ces équations 'prendra la forme

± f o ; (.5)

p9ç,r désignant des constantes qui doivent satisfaire aux équa-
tions de condition que Ton trouvera en mettant ces valeurs dans
les équations (^4) > équations de condition qui seront

Cg{M—{mV~P)q~Rp}=r{(JBC— G*)q~

et qui serviront à déterminer ces constantes. En effet, les deux
dernières , résolues par rapport à p et q9 donnent

_ _ _ M[(CK+GH)r—gCR*}—ZVT[(flC—G»)r p ^ v w , M JS

(,6)
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Mettant ces valeurs dans la première, nous trouverons, en chas-
sant le dénominateur,

-*G*y->gC(mV*- P)]}

équation du troisième degré qui fera connaître toutes les valeurs
de r , d'où on conclura ensuite celles de p et q au moyen des
formules (16); de sorte qu'en général il y aura trois systèmes de
valeurs pour les constantes p , q} r, correspondant aux trois raci-
nes de Téquation (17).

Maintenant en intégrant l'équation (i5) on trouve

T et U étant deux constantes j il en résulte

cette solution n'est que particulière , mais en même temps elle est tri-
ple, puisqu'il y a trois systèmes de valeurs de/?, q , r ; donc, d'après la
théorie de l'intégration des équations linéaires à coefficiens constans 9

on aura l'intégrale complète en prenant la somme des trois inté-
grales particulières qui répondent à ces systèmes ; de sorte qu'en
désignant par r', r" 9 r

m les trois racines de l'équation (17), et par
p', p", p1", q , q" 9 q

m les valeurs de p et q qui leur correspon-
dent respectivement, on aura

et ensuite
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Ul/T'+U'SinJ)/'?)

• (»9)

en désignant par T ' , 2T", 5P"', Uf', 17^, C/"w six constantes tout
â fait arbitraires , dont les valeurs ne dépendent que de l'état ini-
tial du corps flottant.

Maintenant l'équation

d»v d> d'A
1/ -T" "—"• T - — / l -r— = O ,

df* àt% àl*

qui fait partie des équations (i3^ donne, en intégrant,

(20)

dans laquelle O et Of sont deux nouvelles constantes qu'il faudra
déterminer d'après l'état initial du fluide.

Cette équation servant à déterminer v , en fonction de A et jut
déjà donnes par les équations (19) , la solution générale du pro-
blème que nous nous étions proposé se trouve ainsi tout à fait com-
plète , du moins dans le cas oii l'équation (17) a ses trois raci-
nes inégales. Dans le cas contraire, les expressions (18) et (19) ne
sont plus complètes f la précédente solution est alors en défaut,
et il en serait de même si une des racines de l'équation (17) était
nulle ; mais il est heureusement facile d'obtenir , dans ces cas mêmes,
la solution générale du problème.

Supposons, en effet, que Ton ait [/P={/7f-jrî9 iétant une quan-
tité très-petite , nous aurons

— l—
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^+-—Cos.ifi/r'—— Sin./t/r'
i r i.a

et par suite

T"Cos.

de sorte que si l'on fait, pour abréger,

V"- ~ , T " = ^ ,

les équations (18) et (19) deviendront

+2wCos./ / ~pt +• £7"/Sin. \/ 7^+ — A ,

7+'
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î . a

A , F , ET désignant , par abréviation , tout ce que nous n'avons pas
écrit. Or t lorsqu'on aura r / = r / / ou z — o , ces équations se rédui-
ront simplement à

XU2-^-iTl)Smj^r7'+p'"(T^Cos,i\/?^-^U/"Sia.tV
/?Jr) , (ai)

l
l)SinJS/rf+f(r"Cos.t\/?m+V'"Sin.ts/?^) .

Il faudrait agir à peu près de même si les trois racines étaient éga-
les entre elles ou encore si Tune d'elles était nulle. Soit, par exem-
ple , dans ce dernier cas , rN la racine nulle ; alors le terme
Tf/CosJs/r(f se réduira à T/f

 ? et le terme U//Sin.t\/r" que l'on

peut mettre sons la forme Un\/ r". — — — , ou encore sous celle-

S\nJ\JiT!

cl ?/,. -—fT/~" * devra être remplacé par la limite de cette expres-

sion qui est égale à tUx*

Telles sont les modiûcatîons que doivent subir les formules (18)
et (19) dans les cas particuliers, pour qu'elles ptïissent donner la
solution complète du problème.

Nous pouvons maintenant connaître quelles sont les conditions
nécessaires et suffisantes pour assurer la stabilité de l'équilibre du
corps flottant.

i»° Si les trois racines de l'équation (17) sont réelles, inégales,

Tom. XIX 29
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positives et différentes de zéro , les expressions (18) et (19) se-
ront entièrement périodiques, et alors le corps flottant se trouvera
dans une situation d'équilibre stable.

2.0 Si Tune des trois racines de cette équation est nulle, les
deux autres étant réelles, positives et inégales, les formules (18)
et (ig) , outre les termes périodiques , contiendront un terme
de la forme /£/, ; mais ce terme sera identiquement nul lorsque
le corps flottant n'aura point reçu d'impulsion primitive; c'est le
cas d'équilibre indifférent.

3.* Si l'équation '47) n'avait point de racines positives, chacun
des termes des formules (18) et (19) contiendrait des exponentiels,
et l'équilibre serait complètement instable.

Dans tous les autres cas, les formules (18), (rg) ou (21) con-
tiendront des termes périodiques et des termes croissant indéfini-
ment avec le temps. On conçoit que ces derniers peuvent alors être
rendus nuls par une impulsion primitive, et c'est dans ce cas qu'on
dit du corps flottant que son équilibre est de nature mixte.

Dans un autre article nous ferons quelques applications de la théo-
rie que nous venons d'exposer, et nous considérerons en outre, sous
un autre aspect , les conditions de stabilité des corps flottans.
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i7.aiMF.TRT1?.

Sur les quatre cercles qui touchent les trois
côtés (Tun même triangle, et sur les huit
sphères qui touchent les quatre faces d'un
même tétraèdre ;

Par M. L> P. F. IL

SM\I\f\!MY!M\\(\IM\!\M\\I\\

JNous nous proposons ? dans ce qui va suivre , d'ajouter quelques
résultats nouveaux à ceux qui ont été donnés par MM. Steiner et
Bobillier 3 à la pag, 85 du présent volume , en conservant leurs
notations pour la commodité du lecteur.

En désignant par a*\ P, cf les perpendiculaires abaissées sur les
directions des côtés a,b%c du triangle T, des sommets respecti-
vement opposés, on a cette triple équation

de laquelle tirant les valeurs de a, l > c pour les substituer dans
les formules ( i) 9 il viendra, en divisant par aT,
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a1

i

b1

04)

c'est-à-dire , Vînverse du rayon du cercle inscrit à vn triangle est
égal à la somme des inverses des trois hauteurs de ce triangle;

L'inverse du rayon de Vun quelconque des trois cercles ex-ins-
crit , est égal à la samme des inverses des hauteurs qui répondent
aux deux autres , moins Vinverse de la hauteur qui répond à celui-là.

En rapprochant la pre^mière des équations (14) de l'équation (2) ,
on peut dire encore que la somme des inverses des rayons des
trois cercles ex-inscrits 7 est égale à la somme des inverses des trois
hauteurs du triangle m

Les équations (5) donnent

«(&—r)(y

r

r

- r )

d'où , en ajoutant,

hc*\-ca\-ab =

mais l'équation (2) donne
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en substituant donc , on aura

(16)

c'est-à-dire , la somme des produits, deux à deux , des rayons des
quatre cercles qui touchent à la fois les trois côtés d'un triangle,
est égale à la somme des produits, deux à deux , de ces trois côtés.

Les mêmes équations (5) donnent

T ;

, en vertu des équations (3) et (i5)

€t par conséquent

c'est-à-dîre , la somme des produits, /ro/j ^ /r<9/V , des rayons des
quatre cercles qui touchent les trois côtés d'un triangle 7 est égale
à Vaire du triangle, multipliée par son périmètre*

L'équation (8) donne , en développant,

/ £ =

ou, en réduisant, au moyen de l'équation ( i 5 ) ,

c'est l'élégant théorème de M. Bobillier.
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Si Ton pose a~{-b+c~2s, en quarrant les équations (i) et ayant

égard à l'équation (3) y on aura

au, en vertu de Te\uation (i5) t

(s—a)*^y—r

au moyen de quoi les équations (4) deviennent

r =r- -• —r
s—b

Si, au moyen de la première des équations (19), on élimine
des trois autres, elles deviendront

d'où on tirera

, >?— £=

1=

yct,
S—C—

ou, en y mettant pour s sa valeur donnée par la première des équa-
tions (20),

A? «MV

formules q;ui feront connaître les trois GÔtés d'un triangle lorsque
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l'on connaîtra les rayons des trois cercles qui lui sont ex-inscrits ;
ou en tire

(23)

Si le triangle est rectangle et que c en soit l'hypothénuse, on
aura a*+l>*=c2, c'est-à-dire (22),

ou bien, en développant et réduisant

y2 , (04)

cquation qui, comparée à (i5) , donne, comme Ta trouvé M. Sleiner^

mettant cette valeur pour a]3 dans (24) et divisant par y, on aura
encore

r4~oc+(3 = v . (26)

A J'aide de ces deux dernières équations on peut faire dispa-
raître des divers résultats obtenus deux des quatre rayons; on trouve
ainsi, pour le triangle rectangle 7

= £ oc

=a-H3=y—r ,
(a 7)
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Soient D,., D« , I)p, Dy les distances du centre du cercle circons-

crit aux centres des cercles inscrits et es-inscrits, on aura, comme
l'on sait ( Annales , tom. XIV , pag. 56 ) ,

En prenant la somme de ces quatre équations, et ayant é'gard à l'équa-
tion (18), il viendra

c'est-à-dire , ta somme des carrés des distances du centre du cer-
cle circonscrit à un triangle aux centres des cercles inscrit et ex-
inscrit à ce triangle, est égale à douze fois le carré du rayon de
ce cercle circonscrit.

Des mêmes éqnations (28) on tire encore

mais, si le triangle est rectangle 7 l'équatom (a6)

V—r

donc alors

(3a)

c'est-à-dire, la somme des carrés dés distances du centre du cer-
cle circonscrit à un triangle rectangle aux centres des cercles ex-
inscrits qui répondent aux deux côtés de l'angle droite est égale à
la somme des carrés des distances de ce même centre, au centre
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eu cerle ex-inscrit qui répond à Ihypoihènuse et au centre du
cercle inscrit.

Tous ces divers résultats doivent avoir leurs analogues relatifs
aux huits sphères qui touchent h la fois les quatre faces d'un té-
traèdre ; bornons-nous au cas le plus simple, ^

Soient af
 9 b

f , c!, df les perpendiculaires abaissées sur les plans
des faces at b, c9 d du tétraèdre T des sommets respectivement
opposés ; ou aura cette quadruple éq'iation

de laquelle , tirant les valeurs de a y b , c , d pour les substituer dans
les huit équations de la pag, g3 , il viendra , en divisant par ZTp

(30

= _ ._L-~4— — —
ht ' cJ * df aJ

I

7 c' ' df

l f '

A-i-'rr

±L=s - + i -L—I

— /3' c'

ï

7bw. Z/X

(3a)

(33)

3o
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c'est-à-dire , i ° Tinverse du rayon de la sphère inscrite à un
tétraèdre , est égale à la somme des inverses de ses quatre hau-
teurs ;

a.Q L'inverse du rayon de la sphère ex-inscrite sur une des
faces d'un tétraèdre , est égale à la somme des inverses des hau-
teurs qui répondent aux trois autres faces 5 moins l'inverse de la
hauteur qui répond à celle-là ;

3.° Enfin , l'inverse du rayon de la sphère ex-inscrite sur Tune
ou Vautre de deux arêtes opposées d'un tétraèdre , est égale à la
différence entre la somme des inverses des hauteurs qui répondent
aux deux faces qui se coupent suivant F une de ces deux arêtes
et la somme des inverses des hauteurs qui répondent aux deux fa-
ces qui se coupent suivant son opposée.

GEOMETHÎE DE SITUATION.

Sur le degré de la polaire réciproque d'une
courbe proposée.

Par M. G E R G O N K E ,

VVVVVVliVMVWWW/WVWVWVWJ

J ' A I remarqué, à la pag« 108 du présent volume, que M. Ponce-
let avait fort bien prouvé que la polaire réciproque d'une courbe
du m.teme degré ne pouvait être d'un degré supérieur au \jn(m—i)]ime,
mais non qu'elle pouvait s'élever jusqu'à ce degré ; et que ? loin
de nous avoir donné des exemples de courbes du troisième degréf

dont les polaires réciproques s'élevassent jusqu'au sixième degré ,
il nous avait précisément donné des exemples du contraire*
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Pour suppléer , à cet égard , au silence de M. Poncelet , sans

m'engager dans des calculs trop prolixes , j'ai choi&i la courbe du
troisième degré donnée par réquation fort simple.

at, en prenant pour directrice la circonférence donnée par réquation

j'ai trouvé pour l'équation de sa polaire réciproque

équation qui est bien en effet du sixième degré ; ce qui donne
quelqiie probabilité au théorème général de M. Poncelet, sans toute-
fois en constituer une démonstration.

J'avais dit aussi, en l'endroit cité, que M. Poncelet aurait pn ,
tout au moins, nous montrer une courbe de laquelle on vit à la
fois clairement, i.° qu'une même droite ne saurait la couper en plus
de trois points; 2.0 que néanmoins on peut lui mener six tangen-
tes de certains points de son plan, M. le docteur Plucker m'indi-
que deux exemples de ces sortes de courbes ; le premier est celui
de la courbe donnée par l'équation

xy*=(x—à)(x—h)(pc—c}

( Newton Opusc., torn. I , pag. i85, plan. IV, fig* 22 ) ; le se-
cond est la courbe de la figure 44 5 dans XIntroduction au calcul
dijsrentiel d'EtJLER ( tom. II, chap. X , n.a 241 ).

On pourrait objecter au théorème de M. Poncelet que, si la po-
laire réciproque d'une courbe du m!eme degré est, en général, une
courbe du \_m(m—*)~\ieme degré, la polaire réciproque de celle-ci,
prise par rapport à la même directrice , devrait être P par la même
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raison, du {[ni(m — i))[m(m— i)—i]}isme degré 9 tandis qu'an con-
traire cette polaire réciproque , n'étant autre chose que la propo-
sée elle-même 5 ne doit être que du mJeme degré seulement ; mais
on doit remarquer que la polaire réciproque d'une courbe propo-
sée n'est par la courbe la plus générale de son degré ? et qu'elle
est de la classe de celles dont les polaires réciproques n'atteignent
pas le maximum du degré auquel pourraient s'élever, en général*
les polaires réciproques des courbes d'un degré pareil au sien.

GEOMETRIE ANALYTIQUE.

Note sur un article de la Revue encyclopédique;

Par M. GERGONNE,

JL/ANS te numéro de juillet 1828 de la Repue encyclopédique, pag#
233 , M. Ferry , l'un des rédacteurs de cet intéressant recueil , a
bien voulu ramener l'attention de ses lecteurs sur les Annales, de
Mathématiques y en rendant compte du numéro de mai 1828 de
cette collection. Mais la manière dont s'explique M. Ferrj sur un
mémoire de M. Bobiliier, contenu dans cette livraison , mémoire
qu'il signale d'ailleurs comme fort remarquable , nous semble prou-
ver que les idées mêmes les plus saines et les plus lumineuses ont
besoin d'être souvent reproduites avant d'obtenir l'accueil auquel
elles ont droit.

D'après les conventions admises dans la géométrie analytique %

une équation de la forme
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exprime tous les points d'un plan dont les coordonnées peuvent la
résoudre ; et on sait que , généralement parlant , ces points sont
ceux d'une certaine ligne continue , droite ou courbe. De là il
résulte évidemment que le système de deux équations 5 telles que

exprime des points isolés les uns des autres, lesquels sont ceux où
se coupent les lignes que représentent ces deux équations prises sé-
parément* Ces points sont en eflet les seuls dont les coordonnées
puissent satisfaire à ces deux équations à la fois.

Présentement, qu'exprimera l'équation

Évidemment elle exprimera la totalité des points du plan des axes
dont les coordonnées réduiront son premier membre à zéro; or ,
comme ce premier membre est un produit de facteurs , il pourra
devenir nul d'autant de manières qu'il a de facteurs; de sorte que
les points dont il s'agit seront ceux des courbes données par les
équations

Si ces principes doivent être admis, et nous ne voyons pas trop
par quel côté ils pourraient être vulnérables ? il faudra nécessaire-
ment admettre que l'équation

(ax+by+c)(a'a?+b'y+c') - o ( i )

fcjprime le système dç deux droites, tout comme l'équation
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z==.o (2)

exprime le système de trois droites.
Or j comme un angle est complètement déterminé par ses deux

cotes, et un triangle par les trois droites qui îe lerunucnt, il s'en-
suit que Ton pourra fort Lien dire que l'équation (1) exprime un
angle et l'équation (2) un triangle 7 tout comme on dit que l'équa-
tion

exprime un cercle, bien qu'elle n'en exprime que la circonférence»,
Si présentement on pose , pour abréger ^

on pourra dire alors que l'équation A=o exprime une droite, que
F équation AA'~o exprime un angle et qu'enfin l'équation ̂ AAfA"~or-
exprime un triangle.

Or , il ressort manifestement de la contexture du mémoire crté
de M. Bebillier que c'est là tout ce qu il a prétendu dire , et nous
ne pouvons comprendre comment M. Ferry a pu se demander si
la métaphysique de l'auteur ne pourrait pas être contestée, et dice
que l'eoirée de la, nouvelle route que s'est frayée M. Bobiliier aurait
besoin d'être plus éclairée.

Sans doute , la combinaison des équations de trois droites ne
donne pas et î e saurait donner tous les points , m même aucun
des points de l'intérieur du triangle qu'elles terminent , pas plus
que 1 équation d'un cercle ne donne des points de l'intérieur de
ce cercle; mais tout prouve, dans l'écrit de M\ Bobiliier, que ce
n'est point non plus de la sorte qu'il Ta entendu. Ce n?est pas f

au surplas, que l'analyse se refuse à exprimer des espaces lknitéi»
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mais c'est alors à des inégalités qu'elle a recours ? et c'est ainsi,
par exemple ; que l'inégalité

exprime tous les points et les seuls points de l'intérieur d'un cer-
cle dotit le centre est en (a,b) et dont le rayon est r; et c'est
même là le fondement de cette nouvelle branche d'analyse que RL
Fourier a désignée sous le nom de Calcul des inégalités.

Si M. Ferry est curieux de ces sortes de spéculations , il pourra
consulter un article de la pag. i34 de notre XYlI,m* volume , qui
le renverra à plusieurs autres où on prouve que toute ligne, toute
surface ou tout volume d'une étendue limitée peut être exprimée
par un plus ou moins grand nombre d'équations et d'inégalités ,
dont l'ensemble exprime non seulement les limites de ces lignes v

de ces surfaces et de ces volumes, mais encore tous les points et les
seuls points compris entre eiles , et cela sar*s qu'on soit le moins
du monde fondé à en prendre texte pour dire que la métaphysi-
que, que nous n'aimons pas plus d'ailleurs que M. Ferry, porte
son obscurité jusque dans les mathématiques , où il semble quelle
ait entrepris d'éteindre le flambeau de l'évidence, lors même qu'elle
ri égare pas. Mais , encore un coup , ce n'est point du tout de cela
qu'il est question dans le mémoire de M. Bobillier,
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QUESTIONS

; Problèmes de géométrie.

I. J\ quelle courbe sont tangentes les droites sur lesquelles abais-
sant des perpendiculaires des sommets d'im polygone , la somme
algébrique de ces perpendiculaires est égale à une longueur donnée ?

IL A quelle surface sont tangens les plans sur lesquels abaissant
des perpendiculaires des sommets d'un polyèdre, la somme algébri-
que de ces perpendiculaires est égale à une longueur donnée 2

Autre»

Si , dans l'équation d'une courbe, on change respectivement x et f

en — et — 5 ou si , dans l'équation d'une surface, on change res-
OC J X ' °

pectivement #,f, z en —• , — , — , on obtiendra l'équation d'une

nouvelle courbe ou d'une nouvelle surface , qui pourra être dite
la réciproque de la première , attendu qu'on pourra repasser de celle-
ci u l'autre par la même transformation qui aura servi à passer de
l'autre à celle-ci.

Cela posé, on propose d'examiner quelles sont les relations gé-
nérales les plus remarquables entre deux courbes ou deux sarfe^
ces réciproques l'une de l'autre 2
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HYDRODYNAMIQUE.
Mémoire sur les petites oscillations de Veau

contenue dans un cylindre ;

Par M. P O I S S O N .

( Lu à l'Académie des sciences, le 27 octobre 1828 ).

JWlfW\fY/WY/\/VVV\(\/V\

( t ) OOIENT #,y,z, les coordonnées rectangulaires d*un point quel-
conque du fluide , au bout du temps / , compté de l'origine du
mouvement. Les vitesses du même point, suivant les axes des coor-
données , seront exprimées ? comme on sait , par les différences par-
tielles , relatives à oo^y^z, d'une fonction de ces trois variables et
de / j e t , si Ton représente cette fonction par cp P ït faudra qu'on
ait

Prenons pour le plan des x % y 9 celui du niveau du fluide dans
l'état d'équilibre, Taxe des z étant vertical et dirigé dans le sens
de la pesanteur. Représentons cette force par g» Au bout du temps
/ , soit z* l'ordonnée d'un point quelconque de la surface du fluide ;
nous aurons

équation dans laquelle on fera z = o. Afin que les mêmes points
restent constamment à cette surface , il faudra qu'on ait aussi

Tom. XIXPn.° 8, 1.*' février 1829. 3i



226 P E T I T E S OSCILLATIONS

pour z = o . Si Ton supposB que le fond du vase soit un plan ho-
rizontal , et si Ton désigne par h la profondeur de l'eau, on aura
encore

potrr z~h; ce qui exprime que les mêmes, molécules xlu fluide res-
tent constamment en contact avec le fond du vase.

(a) L'eau étant contenue dans un cylindre vertical, il conviendra
de transformer les coordonnées horizontales x et y, en deux au-
tres plus appropriées à la question. Plaçons leur origine sur Taxe
de ce cylindre ; soit r la perpendiculaire abaissée du point qui leur
correspond sur cet axe , et ty l'angle compris entre le plan de ces
deux droites et celui des x 7 y ; on aura

et Téquation ( t ) deviendra

La vitesse, suivant le prolongement de r , sera exprimée par

— ; si donc on appelle a le rayon du cylindre , il faudra qu'on

ait

A0

-£=*> (6)
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pouf r = # ; condition nécessaire pour que les mêmes molécules res-
tent constamment adjacentes à la surface latérale du cylindre, et
analogues aux équations (3) et (4) relatives à la surface du fluide
et au fond du vase. On doit observer que, si les conditions expri-
mées par ces trois équations n'étaient pas constamment remplies 9

pi ridant le mouvement du fluide, ce mouvement serait très-coni-
piiqué et peu susceptible d'être déterminé par le calcul. C'est pour
cela que Lagrange a mis ces équations , dans la Mécanique ana-
lytique , au nombre de celles qui doivent concourir à la détermi-
nation du mouvement.

Cela posé , la question que nous aurons à résoudre se divisera
*en deux parties : la première consistera à satisfaire , par la valeur
la plus générale de <p, aux équations (3) , (4) , (5) , (6) ; dans la
seconde, il s'agira de déterminer 7 d'après l'état initial du fluide,
les quantités arbitraires que cette valeur générale pourra renfer-
mer.

(3) Les valeurs de <p et de ses différences partielles sont égales
pour $=0 et ^ — ̂ -cr, puisqu'elles appartiennent à un même point
du fluide, tar étant le rapport de la circonférence au diamètre,
Ctla étant, quelle que soit cette fonction <p , on pourra la repré-
senter par la formule connue

et les différences partielles de <p , ou les vitesses du fluide, seront
aussi exprimées par les différences partielles de cette môme for-
mule dans laquelle ^ est ce que devient <p quand on y met 4»/

à la place de § ; n représente un nombre entier et positif, et la
somme S s'étend à toutes les valeurs de n P depuis nzzi jusqu'à
7lz=zCO .

En intégrant par parties, on a
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f % Cosjitt-^W

aux deux limites 4> / = : o e l ^ / : = 2 t ; ï l ? ^es t e r m e s compris hors du
signe f ont la même valeur et disparaissent, en conséquence 9 dans
l'intégrale définie ; on aura donc simplement

f

D'après cela si l'on met ty et <p; au lieu de i et y dans l'é-
quation (5) , que Ton intègre tous les termes depuis ^ :=o jusqu'à

ty~2tar9 après les avoir multipliés par — Cos./2(4>—$rA¥ *l

Ton fasse, pour abréger ,

I f'2*

•• «y o

il en résultera

En même temps les équations (3), (4) 9 (6) donneront celles-ci:

dont la première aura lieu pour -z = o, la seconde pour z—b et
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la troisième pour r = # . En faisant usage de ces équations (9) et
(10) on n'aura plus à s'occuper de la variable \|>, qu'elles ne con-
tiennent pas explicitement.

(4) Dans un autre mémoire (*) j'ai donné, sous forme finie, l'in-
tégrale complète de l'équation (9) ; mais, pour résoudre le pro-
blème propose , il sera plus commode , ainsi que je l'ai fait dans
d'autres cas $ d'employer la valeur de > sous la forme équivalente

m étant une constante arbitraire, e la base des logarithmes népé-
riens, U et V des fonctions de r et / indépendantes de z , et 2
une somme qui s'étend à toutes les valeurs possibles, réelles ou ima-
ginaires de m , U et F.

Pour satisfaire à la seconde équation ( io ) , i l faudra prendre

U=Re~mh , F—Remh ,

R étant une nouvelle fonction de r et A On aura alors

et , si Ton substitue cette valeur de 9 dans l'équation (9) qui
doit avoir lieu pour toutes les valeurs de z , on en conclura

d»R 1 dJC n*R

On a vu , dans le mémoire que je viens de citer , qu'on satisfait à
cette équation différentielle du second ordre , en prenant

(*) Journal de VEcole polytechnique , X ï X . e ca}i ier, pag. 215 et 475
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et que son intégrale complète se réduit à cette valeur particulière
de R , multipliée par une constante arbitraire , lorsqu'on y sup-
prime la partie qui deviendrait infinie pour r=o , ce qui fait dis-
paraître la seconde constante arbitraire. En observant que celle qui
subsiste peut être une fonction de / , nous la représenterons par T.

La troisième équation (10) ayant aussi lieu pour toutes les va-
leurs de r, on en conclut

dR
•—z=O ,

pour r—a, ou, ce qui est la même chose,

/

' w
o ~ ^ 9

équation transcendante qui servira à déterminer m pour chaque
valeur du nombre n et pour /2 = o.

Comme la première équation (io) , relative à la surface ou à
> = o , doit subsister pour toutes les valeurs de r , en y mettant
pour v sa valeur, on en conclura

{e -e )T+(e +Sm{e -e )T+(e +e ) — =o 55

et , si l'on fait, pour abroger
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l'intégrale complète de cette équation sera

P et Q étant deux constantes arbitraires.
Maintenant la valeur de v , qui satisfait aux équations (9) et

(10), sera

(14)

la fonction R étant donnée par la. formule (12) , et la somme %
s'étendant à toutes les valeurs possibles de P et Q, mais seulement
aux valeurs de m tirées des équations ( i3j . Ses racines sont deux
à deux égales et de signes contraires ; mais on peut réunir en un
seul les deux termes de la somme 2 qui répondent à chaque cou-
ple de racines , et n'étendre ensuite cette somme qu\ux valeurs de
m dont les carrés sont difîerens.

(5) Pour déterminer les coeiîiciens P et Q en fonctions de m ,
d'après l'état initial du fluide , je ferai usage de la méthode que
j'ai déjà employée dans beaucoup d'autres cas, et dont cette dé-
termination fournira nn exemple digne de remarque.

Soit 77/ une racine quelconque de l'équation (3); multiplions
l'équation (9) par (em^lumZj-+e"m'^tJ)dz , puis intégrons tous ses ter-
mes , depuis z=o jusqu'à z—h; en faisant ppur abréger

nous aurons

/

h du n*u
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Ea intégrant par parties, on a

à la limite z~h , les termes compris hors du signe y disparaissent
en vertu de la seccrade équation (10) ; à lautre Haute z^=.o 9 il
se re'duisent à

rn'h — m'

en ayant ^gard à la troisième équation (10) , appelant kf ce que
devient k lorsqu'on change m en mf 9 et désignant par v* la va-̂
!eur de 9 qui répond à z=^o. Nous aurons donc

/

m'h ~t

et, par conséquent,

équations que nous pourrons écrire de cette -autre manière ;

05)
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Je désigne par R1 ce que devient R quand on y change m en

m;. Au moyen de l'intégration par parties , on aura

^ i r . ,

Les termes compris sous le signe f s'évanouissent avec r ; ils s'éva-
nouissent également pour r~a , à cause que l'on a , à celle se-
conde limite ?

au _ àW _
— —o 9 —p —o ̂

on aura donc

par conséquent ? si Ton niuliiplie Téquation (i5) par R^rdr , et
qu'on intègre ses deux membres depuis rzz^o jusqu'à r=a , il en
résultera

o L d'2 \ 4 > r*

A ^ A d/a ^ J o J

Mais ? d'après l'équation ( u ) , ou a- v

Tom. XIX 32
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ce qui fait disparaître le premier membre de l'équation précédente,

et la réduit à

j f
d/1 J o

L'intégrale complète de celle-ci est

't -, ' (r6)

P/ et Q; désignant deux constantes arbitraires, Pour les détermi-
ner , j'observe i.° qu'à l'origine du mouvement, ou quand / = o ,

la valeur de qui répond a £ = o } est donnée par l'équation (2)

d'après 4a figure initiale du fluide ; 2.0 que si Ton a exercé à la

surface une percussion quelconque, la valeur de cp est aussi don-

née , d'après l'expression de cette force , pour z=:o et / = o . Si

donc on fait /= o et £ = 0 , dans l'équation (8) et dans sa différen-

tielle relative à t , les valeurs initiales de vl et seront aussi
gdt

connues , et de la forme

os./4+FrSin.;4 , \

d^ f C17)
—— =;fr,Cos,/2^-l"f/r.Sin.724' ; j

Tr, FV ? £r , f r , étant quatre fonctions de la seule variable r , qui
seront données , dans chaque exemple particulier, depuis r = o jus-
qu'à r—a* Cela étant , je iais t-=o dans l'équation (16) et dans
sa différentielle relative à / ; il vient

P'—Cos.nl f a R'rFr.dr-frSiiLnï f " R'r&rAr -t
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gCos.nt p a gSinw* / * « « , - , i

Ç'= S-—— / i^rfr.dr-J- ?— / R'rfrAr ,
k c / ° %-/ o

pour les valeurs demandées de P ' et Ç/« II .ne reste plus qu'à dé-
terminer , d'après ces valeurs, celles des coefficiens P et Q, con-
tenus dans la formule (i4)-

En faisant z=o } dans cette formule , on en déduit

expression que je substitue dans le premier membre de IVqua-
tion (16). Comme son second membre ne contient que le cosinus
et le sinus de Wt, il faudra , pour qu'elle soit identique , que les
termes dépendans d'un autre angle kt disparaissent dans son pre-
mier membre ; ou , autrement dit , si m/2 difîère de m2 , et, par
Suite k/Z de k2

 ? il faudra qu'on ait

RR'ràrzzo. (18)

Bans le cas particulier de ml~m , et d'après les valeurs trouvées
pour P/ et Q;, on aura en même temps

P(emh+e~mh) f aR2rdr

= COS.J4 f * RrFrAr+Sin n$ j * RrFrAr ,

gCos n-^
/ RrïrAr~\- / RrvrAr ;

('9)
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ce •qui détermine les valeurs des coefficiens P et Q , relativement
à une racine quelconque m de l'équation ( i3 ) .

La formule (14) ne contenant plus maintenant que des quanti-
tés connues , il en sera de même à l'égard de la formule (7)5 qui
peut être écrite ainsi :

<p = 2? , (20)

la somme S s'étendant à toutes les valeurs de n , depuis /2=o jus-
qu'à /2 = co 5 pourvu que Ton ne prenne que.la moitié de son pre-
mier terme. Les diflérences partielles de cette expression de cp 9 r e -
latives h t y z9 r , 4* ? feront connaître , à un instant quelconque , la
figure de la surface du fluide , et les vitesses de la molécule qui
répond aux coordonnées zy r , \J>. En appelant p la pression , rap-
portée à l'uuiié de surface, qui a lieu an même point , on aura

la densité du fluide étant prise pour unité ^ et cette pression étant
supposée nulle à la surface. L'état du fluide est donc complètement
déterminé, et la solution complète du problème proposé est don-
née par la formule (20).

Cette expression $e cp dépendra, en général, de deux somma-
tions successives: Tune relative aux racines m de l'équation ( i 3 ) , et
l'autre relative au nombre «. Au moyen Ae l'équation (18)» on
prouvera^ue ces racines sont toutes réelles , quel que soit le nom-
bre n , qui entre dans l'équation ( i3) . Je crois inutile de répéter
ici cette démonstration qui se trouve déjà en plusieurs endroits de
mes autres mémoires (*). Il en résulte que tous les termes de l'ex-

(•) Voy. aussi le Bulletin de la société philomaiique, » octobre 1826, pag.
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pression de <p sont périodiques, ce qui devait être, en effet , puis-
que le fluide a été écarté d'un état d'équilibre stable. Mais, pour
qu^ tous les points reviennent ensemble au même état, et qu'il
exécute des oscillations isochrones, il faudra, à cause que les va-
leurs de h sont incommensurables, que tous les termes de la dou-
ble somrrie qui donne la valeur de cp , se réduisent à un seul , et
que tous les autres soient nuls , en vertu de l'état initial du fluide,

(7) Si le fluide n'a reçu , à l'origine , aucune percussion , et que
les molécules soient parties de l'état de repos , la valeur initiale de
<p sera nulle, et il en résultera F r = o , F'rrzzo et P = o . Supposons
de plus qu'à 1 origine du mouvement, on ait fait prendre à l'eau
la forme d'un solide de révolution , dont l'axe soit celui même du
vase qui la confient; il est évident qu'elle conservera constamment
une semblable forme , et que la fonction <p sera indépendante de l'an-
gle ^. En vertu de l'équation (8), la quantité P sera nulle pour tou-
tes les valeurs de n , excepté pour n~o\ les deux quantités 9 et
f ne différeront pas l'une de l'autre ; pour 72=1=0 ? on aura

(21)

et, si l'on supprime le coefficient P dans Ja formule (14) , elle
deviendra

Cos.(wrCos.a>)doA Siu.kt.

En y substituant pour Q sa valeur relative à 72=0 , et donnée par
la seconde équation (17) , on aura

9—8^ rn RXràr \ J oCos.(mrCos.<o)A<*}Z — — , (22)

où Ton a fait, pour abréger,
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et conservé la lettre R à la place de sa valeur donnée par l'équa-
tion (21 ).

L'expression de ep ne dépend , comme on voit f dans ce cas par-
ticulier , que d'une seule somme S , qui répond aux valeurs de m
tirées de l'équation (17)? et relatives à « = 0 , ce qui réduit cette
équation à

o
>,da>=ro , (28)

ou , ce qui est la même chose, à

(1.2.3.4.5)»

en développant son premier membre suivant les puissances de ma,
supprimant le facteur ma commun à tous ses termes , et faisant
rn2a2 — ^&.

Si l'on fait /2=o , dans la seconde équation (17) > on a

pour / = o ; et , comme vf est la valeur de v ou de cp qui répond
à z=:o ? il résulte de l'équation (2) que fr est la valeur de z' re-
lative à *=o. Ainsi, la fonction fr , donnée arbitrairement, que
renferme l'équation (22) , est l'ordonnée d'un point quelconque de
la surface de l'eau à l'origine de son mouvement. D'après cela ,
si Ton fait / = o et z = o t dans l'équation (32) diiférenciée par rap-
port à / , on en conclura
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'Rrîr.àr

f;Rtrdr

Cos.(mrCos.co

et cette expression en série sera propre k représenter la fonction
£r, pour toutes les valeurs de la variable, depuis r = o jusqu'à

L'une des racines de l'équation (2 3) est #2=0 ; pour cette va-
leur de m on a

Z=:i 9 jR=t5T , £=0 ,

et 5 par conséquent,

<p= 2 f 2tr / a rïr.dr ] ;

mais, à cause de Tincompressibilité du fluide, le volume que re-
présente o.TSff^rirAr doit être égal à zéro, le ternie de <p qui ré-
pond à rn=o est donc aussi nul ; et c'est pour cela que nous avons
fait abstraction de cette racine de l'équation (23) en développant
son premier membre.

(8) Observons, en terminant ce mémoire, que, si l'on différen-
cie l'équation (2) par rapport à r , et qu'on ait égard à l'équa-
tion (6) ; on en conclura

pour r — a. SI donc on coupe la surface du fluide par un plan
passant par l'axe du cylindre, les tangentes aux extrémités de la
courbe d'intersection 9 c'est-à-dire, aux points où cette courbe ren-
contre la surface du vase, demeureront constamment horizontales,
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pendant toute la durée du mouvement. Il faudra donc que cette
condition soit remplie par l'état initiai et arbitraire de la surface :
si elle ne Tétait pas, les mômes molécules du fluide ne resteraient
pas adjacentes à la surface latérale du vase , du moins pendant les
premiers instans du mouvement qui ne pourrait plus être déter-
miné par les formules précédentes. Cette restriction provient, comme
on voit» des équations différentielles du problème que nous avons
empruntées de la Mécanique analytique. Il en résulte que le cas ,
qui paraît le plus simple, où le fluide est terminé à l'origine du
mouvement > par un plan incliné, échappe cependant à l'analyse
fondée sur ces équations.

Lorsque la surface du fluide sera celle d'un solide de révolu-
tion , ses plans tangens extrêmes seront constamment horizontaux ,
et il faudra qu'à l'origine du mouvement cette surface et celle du
vase se coupent à angle droit. Ainsi, dans les formules du nu-
méro précédent la fonction arbitraire Ir devra être telle que l'oa

. d.fr
ait —— =so pour r=a*

Nt B. Dans un mémoire déposé au secrétariat de l'Institut, M.
Corancez s'est occupé t avant moi, des oscillations de l'eau contenue
dans un vase cylindrique ou prismatique. J?ai cru cependant pou-
voir publier la solution précédente du cas où le vase est un cy-
lindre , parce qu'elle m'a paru plus simple et plus complète que
celle de M, Corancez qui n"a pas déterminé les quantités arbi-
traires que contiennent les intégrales , d'après un état quelconque
du fluide à l'origine du mouvement.



RECTIFICATION D'UN THEOREME.

GEOMETRIE DE SITUATION.

Note sur le nombre des conditions nécessaires
pour que quatre droites appartiennent à une
même surface du second ordre ;

Par M. GERGONNE.

fVvvvvvxvi/vvvvvvvvvvtA

la pag* 335 du précédent volume , M. Bobillier a démontré
que , si deux tétraèdres sont l'un inscrit et Vautre circonscrit à
une même surface du second ordre ? de telle sorte que les sommets
de linscrit soient les points de contact des faces du circonscrit ;
les faces respectivement opposées 9 dans les deux tétraèdres se cou-
pent suivant quatre droites qui appartiennent à une même surface
du second ordre; proposition à laquelle > au surplus, M. Steiner
était aussi parvenu de son côté.

Faute d'avoir remarqué qu'assujettir une surface courbe à tou-
cher un plan donné en un point donné, c'était réellement l'assu-
jettir à trois conditions, et non pas à deux , je signalais ce théo-
rème comme présentant quelque chose de paradoxal. Je supposais
en effet, deux tétraèdres inscrit et circonscrit l'un à l'autre, d'une
manière tout à fait arbitraire , de manière à ne point satisfaire à
la condition énoncée ; et je croyais qu'on pourrait toujours conce-
voir une infinité de surfaces du second ordre à la fois circonscri-
tes à l'un et inscrites à l'autre ; attendu, disais-je , que c'est les as-
sujettir à huit conditions seulement ; et qu'il en fout neuf pour
déterminer complètement une surface du second ordre.

Tom. XIX 33
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MM. BobîHier et Chasles n'ont pas tardé de me faire apercevoir

de mon inadvertance, et dès lors j'ai vu clairement que deux té^
traèdres étant inscrit et circonscrit l'un à l'autre , assujettir une sur-
face du second ordre à être à la fois circonscrite à l'un et inscrite
à l'autre , c'était réellement l'assujettir à douze conditions, au lieu
de neuf qui sont nécessaires pour déterminer une telle surface; que
conséquemment le problème n'était résoluble qu'autant que les deux
tétraèdres étaient choisis d'une manière convenable, et qu'il n'était
pas surprenant , d'après cela, qu'ils dussent satisfaire à la condition
énoncée dans le théorème de MM. Steiner et Bobillier.

Mais regardant, mal à propos, cette condition comme unique
( Pag* ^5 du présent volume ) ; après avoir d'abord reproché au.
théorème de dire trop, je lui reprochai ensuite de ne dire point
assez. Peu après , M Chasles ayant démontré ( pag. 67 ) que les
droites qui joignent les sommets respectivement opposés, dans les
deux tétraèdres , appartiennent aussi ~a une même surface du se-
cond ordre , j'ai cru, dans ma fausse préoccupation , pouvoir signa-
ler ce nouveau théorème comme le complément que j'avais désiré
pour le premier.

Mais, par une lettre en date du 5 novembre 1828, M. le doc-
leur Plucker me fait observer , avec beaucoup de raison , que ce
dernier théorème n'est qu'une cènséquence inévitable du premier
qui, à son tour , peut réciproquement en être déduit, de telle sorte
que , si deux tétraèdres, inscrit et circonscrit l'un à l'autre , sont
tels que les droites suivant lesquelles se coupent les plans de leurs
faces respectivement opposées appartiennent toutes quatre à une
même surface du second ordre , les droites qui joindront leurs som-
mets respectivement opposés appartiendront aussi toutes quatre à une
même surface du second ordre, et réciproquement ; attendu que
ces deux théorèmes sont polaires réciproques l'un de l'autre; et M.
Bobillipr m'a fait postérieurement la même remarque.

MM. Plueker et Bobiilierme font observer, en outre, que cha-*
cun de ces deux théorèmes ; pris isolément, est complet, c'est-à-
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dire , qu'il ne dit m trop ni trop peu ; attendu qu'assujettir quatre
droites à appartenir à une même surface du second ordre , c'est
réellement les assujettir à trois conditions.

En effet, on peut, à l'aide des équations de trois de ces droi-
tes ? trouver l'équation de la surface du second ordre qu'elles dé-
terminent ; et , si l'on suppose que les équations de la quatrième
sont

x — mz^-g , yzsnz+h ,

il faudra que les valeurs qu'elles donnent pour x et y , substituées
dans l'équation de cette surface , conduisent à une équation qui
laisse z indéterminé; mais, cette équation étant du second degré,
il faudra que le coefficient de z7-, celui de z et le terme sans z
soient séparément nuls, ce qui donnera bien trois conditions dis-
tinctes.

Au surplus, comme suivant la maxime des écoles : Ab acLu ad
posse valet consecutio , la manière la plus lumineuse de prouver
qu'assujettir quatre droites à appartenir à une même surface du se-
cond ordre c'est les assujettir à trois conditions distinctes, c'est in-
contestablement de produire ces trois conditions. Le calcul en se-
rait assez compliqué si Ton supposait les axes des ordonnées si-
tués d'une manière quelconque , par rapport à ces quatre droites ;
mais, en les choisissant d'une manière convenable, on peut par~
venir au but par un calcul très-simple et très-symétrique.

Soient, en effet, quatre droites indéfinies, que nous supposons
n'être assujetties qu'à la seule condition d'appartenir à une surface
du second ordre. Prenons l'origine en un point quelconque de Tune
d'elles et les axes respectivement parallèles aux trois autres ; ces
trois dernières déterminent une certaine surface du second Ordre ,
et il s'agit d'exprimer que la quatrième est tout entière dans cette
surface.

Ces choses ainsi entendues, considérons l'équation
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(*—a)(y-h){z-c)-{x-a>){y-V)(z-c>) , (i)

elle n'est évidemment que du second degré , et exprime conséquent—
ment une surface du second ordre ; or, on y satisfait par ces trois
systèmes d'équations

<*>
x=a/ ;

lesquelles expriment des droites respectivement parallèles aux trois
axes, qu'on peut toujours supposer être trois de nos droites; d'où
il suit que l'équation (i) est celle de la surface du second ordre
déterminée par ces trois droites. En la développant, elle devient

+(b—ir)zx—(ca—c!al)y<—(alc~-a'btc')—o . ^ (3)

—c')xy—(ai—afb'}z

Présentement, la quatrième droite , passant par l'origine , doi|
avoir des équations de la forme

d'où l'on tire

- = - = - , (4)

valeurs qui, substituées dans l'équation (3), la changent en celle-ci,
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(5)

afin donc que la droite (4) soit entièrement dans la surface déter-
minée par les trois droites (2) , il faut que l'équation (5) laisse z
absolument indéterminée ; ce qui exige qu'on ait à la fois

b"c"{a-a')Jvc"a"{b—b') +a"b»(c—c')=o ,

(bc—b'c')+b"(ca—c>ai)->t-c»(ab'—a'b')=0 ,

abc—a'b'c'—o ;

(6)

telles sont donc les trois équations qui expriment que les quatre droi-
tes (2) et (4) appartiennent à une même surface du second ordre.

GEOMETRIE DES COURBES.

Note sur la quadrature des sections coniques ;

Par M. BARY , professeur suppléant de physique au Collège
royal de Charlemagne, ancien élève de l'Ecole poly-
technique.

/w\(W\rw\/vw/v/ww%

O N peut parvenir assez rapidement à la quadrature des trois
sections coniques, i.° eu considérant l'ellipse comme la projection
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d'un cercle ; 2.° en considérant la parabole comme «ne ellipse r}ont
le grand axe est infini ; 3,* enfin , en considérant l'hyperbole comme
une ellipse dont le petit axe est imaginaire. C'est ce que nous nous
proposons de faire voir dans ce qui va suivre.

I. En considérant l'ellipse comme la projection orthogonale d'un
cercle , et se rappelant que Taire de la projection d'une figure plane
sur un plan quelconque est le produit de Taire de cette figure par
le cosinus tabulaire de l'angle des deux plans , on prouve facilement
que Taire d'une ellipse est équivalente à celle d'un cercle dont le
rayon serait moyen proportionnel entre ses deux deni-axes.

La même considération prouve aussi que les coordonnées per-
pendiculaires à Tun des axes d'une ellipse ne sont autre chose que
les ordonnées du cercle décrit sur cet axe comme diamètre , aug-
mentées ou diminuées dans le rapport des deux axes deTellipse-
et on conclut aisément de là que , si un cercle et une ellipse ont
un axe commun , les segmens des deux courbes répondant à une
même abscisse seront aussi entre eux dans le rapport des deux
axes.

Rien n'est plus facile d'après cela que d'obtenir l'expression de
Taire d'un demi-segment elliptique , borné par une perpendiculaire
à son grand axe. Soient a et b les demi-axes de l'ellipse ; soit y
la perpendiculaire qui termine le segment , et x Tabscisse corres-
pondante. Soit décrit un cercle sur le diamètre za , l'ordonnée y
prolongée déterminera un demi-segment circulaire, et nous aurons

Demi-ség, ellipt. = — demi-ség. circul.

Le demi-segment circulaire est l'excès d'un secteur sur un trian-

gle ; et comme, en désignant par y1 l'ordonnée du cercle corres-

pondant à l'ordonnée y de Tellipse , on a y'~ — y> ^ s'ensuit que
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le sinus de l'angle du demi-secteur qui est - pourra aussi être

'Y

exprimé par - ; Taire de ce demi-secteur sera donc -arArc.

f Sin.= — Y Pour en conclure celle du segment il faudra en re-

trancher Taire d'un triangle rectangle dont les deux côtés de Tan-

gle droit sont a—x et y'-zn—y; c'est-à-dire, qu'il faudra en re-

. a(a—x)y 1 . . . .
trancher - ; 1 aire du demi-secteur circulaire sera donc

• ri

b

en la multipliant par le rapport — , on en conclura pour Taire

du demi-secteur elliptique.

L(a-x)y ; (i)

si l'on veut compter les abscisses du centre, on pourra écrire

On sait que

en substituant cette valeur dans la formule (i) et remplaçant F

par —- 9 p étant le paramètre , il viendra , en réduisant, pour Tex-

pression du demi-segment elliptique



QUADRA.TURE DES CONIQUES.

a. a 3 p • 2.4 5 p*o ^* 2.4.6.7

Si Ton suppose a infini, on passe à la parabole, et cette ex-
pression se réduit à

c'est-à-dire , que traire du demi-segment parabolique est les deuM
tiers de celle du rectangle des deux coordonnées^

On sait que

substituant dans la formule (2), nous aurons pour l'expression
demi-segment elliptique

i r1

Si , clans cette expression, on change y en r^/ZI?» on passera au
demi-segment hyperbolique pour lequel on trouvera ainsi

ou bien
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, , Y . x+y )

l

Pour conclure de là Taire du demi-segtnent réel , il faudra d'abord
supprimer le facteur j / H ? et changer ensuite les sigues à raison
du changement de situation , ce qui donnera

x—y

Or , \#Y e s l I'a^re du triangle construit sur les coordonnées , d'où

il suit que j l . est Taire du demi-secteur hyperbolique,
xmmmy

£ - — r

'Note sur deux théorèmes de géométrie démon-
trés dans le XKIlLme volume du présent
recueil ;

Par M È O B I L L I E R .

I L a été démontre, à la pag, 3G8 du XVIII.mf volume des An-
nales ^ i.° que, dans toute ligue du second ordre qui a un cen-
tre, la somme des carre's des inverses de deux diamètres perpen-
diculaires l'un à l'autre est une quantité constante ; 2.0 que , dans
toute surface du second ordre qui a un centre, la somme des car-

Tom. XIX. 34
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rés des inverses de trois diamètres dont chacun est perpendiculaire
aux deux antres , est également une quantité constante.

Lx livraison des Annales qui renferme la démonstration de ces
deux théorèmes n'avait point encore paru lorsque j'adressai à M.
Quetelet un mémoire publié dans la Correspondance de Bruxelles
( totn. IV, 4«me livraison , pag. 216 ) , dans lequel ces deux théo-
rèmes se trouvaient aussi incidemment démontrés. J'ai reconnu pos-
térieurement quTs pouvaient être démontrés sans calcul, ainsi qu'on
va le voir.

I. Soient A 9 B les deux demi-axes d'une conique , et a, b deux
demi-diamètres rectangulaires quelconques. Si l'on prend pour di-
rectrice un cercle de même centre , dont r soit le rayon , les detni-

axes de la polaire réciproque de la conique seront — , — ;lestan-
A 1S

gentes, polaires des extrémités des demi-diamètres ayb seront rec-
r2 r2

t a b u l a i r e s et distantes du centre des quantités — ; — ; le carré
a b

de la distance de leur point d'intersection au centre sera donc

— 4 — - . Mais on sait d'ailleurs que ce point, sommet d'un an-

gle droit circonscrit à la courbe polaire réciproque de la proposée,

est sur une circonférence dont le carré du rayon est -—-J ;

on doit donc avoir
r* r* r* r4

c'est-à-dire simplement

a» b* A* n r JB2 '

ce qui est précisément le premier des deux théorèmes.
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II. Soient À, B,C les demi-axes d'une surface du second or-

dre , et a^bj c trois demi diamètres d'une telle surface dont cha-
cun soit perpendiculaire aux deux autres. Si l'on prend pour d i -
rectrice une sphère de même centre, dont r soit le rayon, les
demi-axes de la polaire réciproque de la surface proposée seront

r2 r2 r2 .
— 5 — , — ; les plans tangeus polaires des extrémités des demi-

diamètres a, b, c seront rectangulaires, et distans du centre des
T>2 j*% j*2

quantités — , — , — ; le carré de la distance de leur point d'in-x a b c

tersection au centre sera donc 1 \-— . Mais on sait d'ail-
az bz c2

leurs que ce point, sommet d'un angle trièdre tri-rectangle, cir-
conscrit à la surface polaire réciproque de la proposée, est sur
une sphère dont le carré du rayon est — H ! : on doit

donc avoir

ri r* r4 ri . r4 r4— -J ^ J >— Jt j .
a* ' b* c* A**B* C* 9

crest-à-dire simplement

azif,*^ c* A* B* ~ C*

ce qui est précisément le second des deux théorèmes.
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QUESTIONS RÉSOLUES.

Solution du problème de géométrie énoncé à
lapa g. g6 du présent volume ;

Par M. VALLÈS , élève ingénieur des ponts et chaussées*

OOîENT inscrits à ua angle donné 20c deux cercles se touchant
extérieurement. Soient r 9 r' les rayons de ces cercles , et d, d; les
distances de leurs centres au sommet de l'angle ; en supposant

, et par suite d>dê, on aura évidemment

éliminant d et d! entre ces trois équations , on en tirera

r
r' i—Sin.«

(•; O« peut écrire

ï—Cos.

/- i+Taug.i«Y ( Tang.l»+Taiig.4- V ^ v , , ,

t ^ r " i = 1 •—TF~—"T-TT; r- ) =Tangr(4-**+ra
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c'est-à-dire que le rapport entre les rayons de ces deux cercles est
indépendant de leur grandeur. De là résulte ce théorème:

Si l'on inscrit à un même angle une suite de cercles se tou-
chant consécutivement 9 les rayons de ces cercles , et par suite
leurs circonférences et leurs surfaces , formeront une progression
par quotiens.

Concevons que Ton fasse tourner la moitié de l'angle donné 20c,
autour de la droite qui le divise en detix parties égales; cette moi-
tié engendrera un cône de révolution dont l'angle générateur sera
oc ; et les demi-cercles engendreront des sphères inscrites à ce cône ,
lesquelles se toucheront consécutivement ; on a donc cet autre théo-
rème :

Si Von inscrit à un cène droit une suite de sphères qui se
touchent consécutivement ; les rayons de ces sphères , et par suite
les circonférences et les surfaces de leurs grands cercles , leurs
surfaces et leurs volumes formeront une progression par diffé-
rences,

A un ongle trièdre donné soit inscrite une suite de sphères
qui se touchent consécutivement ; ces sphères seront aussi inscri-
tes à la surface conique inscrite à cet angle trièdre ; on a donc ce
ti-oisième théorème qui est précisément celui qu'il s'agissait d'établir :

Si, à un angle trièdre donné , on inscrit une suite de sphères
qui se touchent consécutivement, les rayons de ces sphères 9 et par

c'est sous cette forme que — a été donnée par M, L, P. E. R.> qui a aussi

résolu le problème.
~ * . , : r Sin.fw+Sîn.* Tan^.(|^r+f^)
On pourrait encore écrire — = — — ^— = ^—-—-J—f , for-

r' Sin.fsr—Sin.tf Tang.( is>— { a) '
mule qui rentre dans la première, en observant qu'en général Tang.(£
Tang.(~<5r—#)=i ; mais qui a l'inconvénient d'exiger l'emploi de deux, lo-
garithmes.

J. D. G.
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suite les circonférences et les surfaces de leurs grands cercles ,
leurs surfaces et leurs volumes formeront une progression par quo~
tiens.

Un cercle d'un rayon r étant inscrit à l'angle plan 2a, on pourra,
en marchant vers son sommet, lui inscrire une infinité d'autres cer-
cles, de plus en plus petits. Les rayons de ces cercles formeront
une progression décroissante par quotiens, dont la raison sera ,

comme nous lavons vu ci-dessus, —— ; on aura donc pour la
1—Sin.«&

r(i+Sin.«) , . c, ,
Somme de ces rayons • La somtne des circonférences de

ces mêmes cercles sera d'après cela —— . Quantàlenrssur-

faces f elles formeront une progression décroissante par quotiens

dont le premier terme sera ^xr2 et la raison f r ~ ) ; en

conséquence, on trouvera pour l'a somme des aites de ces cercles

De même, une sphère d'un rayon r étant inscrite à un cône
droit dont l'angle générateur est a , on pourra , en marchant verssun
sommet, lui inscrire une infinité d'autres sphères , déplus en plus
petites. On trouvera , pour la somme des rayons de ces sphères

— — ; pour la somme des circonférences de leurs grands cer-

cl.s- : ; pour la somme des aires de ces grands cercles
Sin.cù L °

-——— ; pour la somme des surface6<îes sphères —— : — .
4

Enfin 5 les Volumes de ces sphères formeront une progression dé-
croissante par quotiens, dont ie premier terme sera ±u?r%

 9 et la*
( i - 4 - S i n * v3

~~^— J \ ce qui donnera, pour la somme de ces volumes,
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3(3+Sin.*)Sin.* *

On sait ( Annales, tom. XV , pag. 298 ) que, si a, h, c sont
les trois angles plans d'un angle trièdre, et que a soit l'angle gé-
nérateur du cône inscrit, en posant, pour abréger,

on a

d'où

et

p'zzSin.

i+Sm* y

s§m.(s—a)$in.(s—b

p
^ Siii.i

S#i p

>2+Sin^+/> (\//

)Sm.(s-c) ;

ïm.*s+pV

êl telle sera conséquemment la raison de la progression par quo-
tiens que formeront les rayons et les circonférences des grands cer-
cles des sphères inscrites ; les surfaces de ces grands cercles et cel-
les des sphères formeront une progression dont la raison sera le
carré de celte quantité, et les volumes de ces sphères formeront une
progression dont la raison en sera le cube (*)•

(*) C'est précisément à ce résultat que parvient M. Steîner; et qui nous
a aussi été adressé postérieurement par M. Bobillier et par M. Martinelii t
cadet au corps royal des pionniers, à Modèue.

J. D. G.
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QUESTIONS PROPOSEES.

Théorèmes d'arithmétique.

I. JL OUT nombre entier est diviseur d'un nombre exprimé j une
suite de 9 suivis de plusieurs zéros,

II. Tous les nombres et les seuls nombres premiers su\ ieurs
d'une unité à des puissances de deux , lesquels sont aussi , /aime
Ton saif, les nombres de divisions qu'on peut exécuter g aétri-
tjueiuent dans la circonférence d'un cercle % sont ceux de 1 suite

2

2

2 21 2
2 +1 9 a +1 t 2

Problème d? arithmétique*

Quel est le plus petit des dénominateurs qui donn? ^ i des pério-
des décimales de onze chiffres ; ou, en d'autres termes ,-e nombre
11 m i l i t a i a-t-ii quelque facteur différent de lui ç . te l'unité f
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Du mouvement de la lumière dans un milieu
transparent 5 dont la densité varie dans tous
les sens , suivant une loi mathématique quel-
conque y

Par M. G E R G O N N E .

I LUSIEURS années avant que M, Riot eût fait paraître son ouvrage
mv les Réfractions extraordinaires qui ont lieu près de l'horizon ,
et à l'occasion d'une pitoyable explication du phénomène du Mi"
rage 9 que j'avais rencontrée dans la Décade philosophique , je nie-
rais déjà occupé de la recherche des lois du mouvement de la la-
mi ère et de la vision ? dans un milieu transparent de densité va-
riable. Bien qu'alors le phénomène du mirage fût connu et observe
depuis long-temps, dans diverses contrées de l'Europe, personne
néanmoins n'avait songé à en déduire l'explication mathématique
des lois connues de l'optique. La route dans laquelle je m'enga-
geais n'était donc point encore frayée» Je n'avais jamais eu l'oc-
casion d'observer le phénomène que j'entreprenais de soumettre h
l'analyse ; il ne m'était même connu que par la courte description
qu'en avait donné M. Biot , dans ses Elémens d'astronomie ; cepen-
dant je fus assez heureux pour parvenir à des résultats que l'observa-
tion directe , elle-même r n'avait fait apercevoir qu'assez tardive-
ment à M. Monge , durant sou séjour en Egypte, comme on en

juger par le post-scriptiun d'e son Mémoire sur le mirage %

Tom. XIX, n.° 9 , i .e r mars 182g. 35
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inséré d'abord dans la Décade égyptienne, et reproduit postérieu-
rement par M, Hachette , dans son Programme d'un cours de phy~
sique. Le mémoire de Monge paraît, au surplus, beaucoup moins
écrit pour les géomètres que pour les hommes , en très-grand nom-
bre , qui aspirent uniquement à prendre une teinture superficielle
des causes des phénomènes variés que le spectacle de la nature
peut offrir à notre observation ; ce mémoire ne m'aurait donc pu
être d'aucun secours pour mon travail, qui était terminé depuis
plus d'un an , lorsqu'il me tomba pour la première fois sous la
main.

Je m'étais horné alors , parce qu'en effet cela suffsait à mon but ,
à considérer le mouvement de la lumière et la vision , dans un
milieu transparent, composé de couches planes parallèles , d'une
densité constante dans chaque couches , et variant seulement,, d'une
couche à l'autre, suivant une loi mathématique donnée quelcon-
que, et un extrait de mon mémoire parut dans le volume des
Travaux de VAcadémie du Gard9 pour 1808; mais je m'étais bien
promis dès lors de revenir de nouveau sur ce sujet, pour l'envi-
sager sous un poiot de vue un peu plus large , en supposant que
la densité du milieu varie d'un point à l'autre , d'une manière
quelconque , dans toutes sortes de directions. Ce n'est que très-
récemment que j'ai pu jouir , sans de continuelles distractions , des
quelques loisirs qui m'étaient nécessaires pour mettre ce dessein à
exécution. Je ne m'occuperai, dans le présent mémoire, que des lois
du mouvement de la lumière , en renvoyaut à un autre mémoire
ce cjui concerne les lois de la vision^

Dans tout ce qui va suivre, j'admettrai , comme je l'avais déjà
fait, dans mon premier mémoire, l'hypothèse newtonienne sur la
nature de la lumière 9 non toutefois que je la regarde , plus que
celles des ondulations, conforme à la vérité, mais seulement parce
qu'elle se prête plus aisément que cette dernière à l'analyse ma-
thématique , et que d'ailleurs , pour l'objet particulier que j'ai en
vue, rien n'est plus facile, comme on le verra, que de passer des
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résultats relatifs à Tune des hypothèses à ceux qu'on déduirait de
l'autre. Afin qne le lecteur n'ait besoin de recourir à aucun au-
tre écrit 5 qu'il pourrait fort bien n'avoir pas sous la main 5 j'ana-
lyserai d'abord brièvement Faction des milieux sur la lumière qui
les traverse.

Tout ce que l'observation peut nous apprendre sur la nature de
la lumière, c'est i." qu'elle semble une substance d'une nature parti-
culière, dont les molécules s'échappent, dans toutes sortes de di-
rections, de chacun des points des corps lumineux ou éclairés ;
2.° que , quelle que soit la direction initiale d'une molécule lu-
mineuse, tant qu'elle se meut dans le vide ou dans un milieu phy-
siquement et chimiquement homogène , c'est-à-dire , dans un mi-
lieu dooî la nature et la densité sont partout les mêmes, elle suit
une direction exactement rectiligne ; de telle sorte que la pesan-
teur terrestre ne paraît exercer sur elle aucune action appréciable (*) ;

(*) La preuve expérimentale qu'on apporte de cette propriété de la lu-
mière, dans la plupart des traités de physique, m'a toujours paru une vé-
ritable pétition de principe. On nous d i t , pat exemple, qu'un rayon so-
ïaire , reçu dans uue chambre obscure,-par un trou fait au volet , enfile
exactement un long tube reetiligne, quelque petit d'ailleurs qu'en soit le
diamètre intérieur ; mais on ne nous explique pas comment on peut s'as-
surer , au préalable, que ce tube est rectiligne. Ce ne sera sûrement pas
au coup d'œîl qu'on en jugera 'r car si , par aventure , le mouvement de la
lumière était curviligne , il faudrait que la direction de Taxe du t.tbe le
fût également pour qu'on ^pût >. en plaçant l'œil à une de ses extrémités ,
apercevoir les objets situés dans le prolongement de cet axe; c'est même la
ce qui arriverait inévitablement, à raison des ré Fractions atmosphériques ,
sî le tube était excessivement long et non vertical. II ne suffit donc pas
que le rayon enfile le tu:be, pour que la direction de la lumière soit re-
connue rectiligne; il faut, en outre, qu'il ne cesse pas de l'enfiler , lors-
qu'on fera tourner ce tube dans deux colliers fixes r situés à ses extrémités;
car il n'y a que la ligne droite dont la situation soit unique entre deux des
points de sa direction.
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3.° qu'alors son mouvement est non seulement xecliligne mais en-
core uniforme; de sorte qu'elle ne paraît éprouver aucune résis-
tance sensible de la part des milieux qu'elle traverse; 4»° qu'en-
fin , lorsque la lumière pénètre du vide dans un milieu ou d'un
milieu dans le vide , ce milieu paraît exercer sur elle une action ,
tantôt attractive et tantôt répulsive, tout à fait analogue aux ac-
tions chimiques , dont le cajactère le pins saillant est d'être tout
à fait insensible à la moindre distance appréciable du contact.

Adoptons donc cette hypothèse qui n'est, après tout, que'l'ex-
pression exacte des faits , et examinons soigneusement quelles doi-
vent en être les conséquences mathématiques.

Soit d'abord une molécule lumineuse mue verticalement , de
liant en bas, dans le vide, et s'approchant ainsi d'un milieu in-
défini , physiquement jet chimiquement homogène , séparé de ce
vide par an plan horizontal , également indéfini , et dont l'action
sur cette molécule soit attractive. Soi* que la molécule soit encore
hors du milieu , ou soit qu'au contraire elle y ait déjà pénétré ,
tout se trouvant exactement dans le* mêmes circonstances tout au-
tour de la verticale que cette molécule parcourt ; elle continuera
constamment à la parcourir; de sorte qu'il est seulement question
de découvrir suivant quelle loi sa vitesse pourra varier*

Considérons d'abord la molécule hors du milieu ; soit x l'inter-
valle qui l'en sépare à l'époque / ; la force accélératrice sera 9 pour

la même époque, — ; et cette force sera visiblement proportion-
nelle à la densité du mi-lieu ; puisque , par exemple, un milieu n foiâ
plus dense que celui-là, pouvant être considéré comme le système
de n milieux d'une densité pareille à la sienne , qui se seraient
pénétrés, et chacun d'eux agissant comme s'il était seul, leur ac-
tion totale doit être n fois plus grande que celle de chacun d'eux
en particulier. Il n'est pas moins évident que cette force accéléra-
trice doit être une certaine fonction de la distance x de la mo-
lécule au plan horizontal indéfini qui termine le milieu; de sorte
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qu'en représentant par u sa densité constante , on doit avoir

la fonction F étant indépendante de zi. Nous donnons ici le signe
— au second membre, parce que l'action du milieu tend à di-
minuer la distance x.

De cette première équation on conclut

A étant une constante arbitraire ; de sorte quren posant, pour abré-

gé

en a simplement

Pour faire disparaître la constante A 9 désignons par w la vitesse
uniforme de la molécule dans le vide, avant qu'elle soit assez voi-
siue du milieu pour éprouver de sa .part une action apprf'ciable ;
ce sera aussi sa vitesse pour jr = oo. Soit de plus V la vitesse de
cette molécule au contact où # = o;.nous aurons ainsi

d'où , en retranchait ̂

F2—»>*=2u{î(cc)—f(o)} ;

Or, f(^o)—f(°) e s t une quantité constante qui ne dépend que
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de la forme de la fonction f , c'est-à-dire, du mode d'action in-
connu des milieux sur la lumière; mais que nous pouvons, une
fois pour toute, représenter par A4 (•) ; nous aurons donc ainsi

c'est-à-dire qu'à l'entrée de la molécule dans le milieu , te carre
de sa vitesse se trouve déjà augmenté d'une quantité proportion-
nelle à la densité de ce milieu.

Considérons maintenant ce qui se passe lorsque la molécule a
défà pénétré dans le milieu. A quelque profondeur x qu'elle y soit
déjà parvenue, si , â la même distance x7 au-dessous d'elle, on
conçoit un plan horizontal, la portion du milieu située au-dessus
de ce plan n'exercera évidemment aucune action snr cette molé-
cule , puisqu'elle s'y trouvera symétriquement située ; la molécule
sera donc sollicitée par le surplus du milieu comme elle Fêtait par
le milieu entier, lorsqu'elle n'était encore qu'à la distance x ait-
dessus de sa surface ; et, comme il en ira toujours de même, quelle
que soit la valeur de x, qui, dans ce cas-ci, va croissant, l'action
du milieu sur elle, qui aura atteint son maximum? au contact, dé-
croîtra continuellement ; de telle sorte qu'elle aura été exactement la
même aux mêmes distances au-dessus et au-dessous du plan ho**
montât indéfini qui termine ce milieu. En un mot y l'action totale
du milieu sur cette molécule aura été finalement la même que si 9

celle-ci restant fixe , le milieu s'était peu à peu élevé jusqu'à elle,
pour s'en éloigner ensuke, par un mouvement rétrograde , exacte-
ment inverse du premier» La molécule en pénétrant dans le mi-
lieu , jusqu'à une profondeur où son? mouvement sera devenu de

(*) Ce &s est la même chose que le k employé par Laplace dans le X.me
livre de la Mécanique céleste* Je mets k* au lieu de k , pour la commo-
dité des applications.
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nouveau sensiblement uniforme , comme il Tétait dans le vide ,
aura donc encore accru le carré de sa vitesse de la même quan-
tité dont il s'était déjà accru en allant du vide à la surface de ce
milieu , de sorte qu'en représentant par ç la nouvelle vitesse uni-
forme de cette molécule, on aura

puis donc que nous avons déjà trouvé

BOUS aurons, par addition ,

Ainsi , lorsqu'une molécule lumineuse passe du vide dans un
milieu homogène indéfini qui l'attire, et qui est séparé de ce vide
par un plan indéfini, perpendiculaire a la direction du mouvement
de la molécule, le carré de la vitesse uniforme de cette molécule
dans le milieu est égal au carré de sa vitesse uniforme dans le
vide , augmenté d'une quantité proportionnelle à la densité de ce
milieu , et la force accélératrice est exactement la même à des dis-
tances égales de part et d'autre du plan qui termine le milieu.
Mais , à cause de l'excessive petitesse du rayon d'activité du mi-
lieu , tout se passe sensiblement comme si la vitesse , constamment
égale à w, jusqu'au contact., se changeait brusquement en 9 au-
delà de ce point.

Supposons présentement que la molécule , au lieu de pénétrer
du vide dans un milieu homogène, pénètre d'un milieu homo-
gène indéfini dans un autre milieu également homogène et indé-
fini , d'une densité supérieure à la sienne ; les deux milieux étant
séparés Fun de l'autre par un plan indéfini , et la direction de la
molécule étant perpendiculaire à ce plan. Soient u et uf les den-
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sites des deux milieux, v et vf les vitesses constantes de la lu-
mière dans l'un et dans l'autre* En considérant la densité uf du
second^ milieu comme composée de deux autres u et ur—v , la
première , qui lui sera commune avec celle du premier, n'aura au-
cune action pour modifier la vitesse P ; la molécule lumineuse se
trouvera donc dans le même cas que si elle pénéïrait du vide, où
elle aurait la vitesse P , dans un milieu dont la densité serait uf—u t

et où elle acquerrait la vitesse v'. ; ou aura, donc , garce qui pré-
cède >

Ainsi, si deux milieux transparens, homogènes et indéfinis, d'une*
densité différente , sont séparés l'un de l'autre par un plan égale-
ment indéfini, et qu'une molécule lumineuse passe du moins dense
dans celui qui Test le plus , en suivant ime perpendiculaire à leur
plan séparateur ; par l'effet de l'excès de l'action eu second mi-
lieu sur celle du premier , le carré de la vitesse de la molécule
se trouvera augmenté d'une quantité proportionnelle à l'excès de la
densité de ce second milieu sur celle du premier ; et il est clair
qu'on pourra encore admettre icr, sans erreur sensible, que celte
augmentation dans le carré de la vitesse a lieu brusquement 5 dans
le passage du premier milieu au. second.

Supposons actuellement que la molécule traverse le premier mi-
Geu dans une direction oblique au pltm séparateur; si, par celte di-
rection 5 on conçoit un plan perpendiculaire à celui-là , tout étant egsl
de part et d'autre de ce second plan , la molécule n'en sortira pas,
même après avoir pénétré dans le second milieu. Par le point d in-
cidence soit conduite une perpendiculaire au plan séparateur ; soient
0 et 0' les angles que font les rayons incidens et réfractés avec
cette perpendiculaire; ce seront là aussi, respectivement, les angles"
d'incidence et de réfraction. Soient toujours v et p/ les vitesses cons-
tantes de la molécule dans les deux milieux , les composantes de
ces vitesses seront 9 savoir :
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dans le sens de la perpendiculaire

or, comme l'action totale des milieux s'exerce perpendiculairement
au plan séparateur , les vitesses , dans le sens de ce plan , ne sau-
raient différer Tune de l'autre \ dé sorte qu'on doit avoir

En second lieu, les carrés des vitesses perpendiculaires au plan sé-
parateur devant, d'après ce qui précède, différer l'un de L'autre de
la quantité {±k%{u~uf)i on aura aussi

^^Cos.2e/~^2Cos,2Ô=:4^î(^/— u) ;.

éliminant v* entre ces deux équations, et transformant les cosinus
en-sinus dans l'équation résultante , on aura

SÎn.êt

or 5 pour les deux mêmes milieux et pour une même vitesse cons-
tante v , dans le premier , le secand membre de cette équation est
indépendant de â, c'est-à-dire, de la direction de la molécule dans
le premier milieu ; donc , son premier membre en doit être égale-
ment indépendant ; donc , pour les deux mêmes milieux et pour
la même vitesse absolue dans le premier , H existe un rapport
constant entre le sinus d'incidence et le sinus de réfraction*

On sait que la constance de ce rapport est complètement con-
Tom. XIX 36
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firœee par l'expérience ; d'où il suit qu'elle est indépendante â§
toute hypothèse sur la nature de la lumière; en la représentant
par n

d'où on tire

4 V k ) '

si donc on veut adopter tout autre hypothèse que la nôtre , il ne

s'agira qne de remplacer par —-— f —• ) ce que nous avons î p -

pelé la différence de densité des deux milieux.
Si, entre les deux mêmes équations , on élimine 0 , 0/ disparaîtra de

lui-même , et il viendra

ainsi , la différence des carrés des vitesses absolues de la molécule
dans les deux milieux est indépendante de la direction initiale de
son mouvement.

Soient présentement u, u, , u% , z/59 ..... um les densités d'une suite
de milieux transparens , homogènes et indéfinis , séparés les uns
des autres par des plans également indéfinis , parallèles ou non pa^
rallèles ; une molécule lumineuse qui les parcourra successivement
décrira sensiblement un polygone rectiligne ouvert, plan ou gau-
che , ayant ses sommets sur les divers plans séparateurs > et le*
plans de ses angles respectivement perpendiculaires aux plans sé-
parateurs qui en contiendront les sommets. Au passage de chaque rai^
lieu dans le suivant, la composante de la vitesse absolue, dans le
sens du plan séparateur, ne subira aucune modification ; mais, si
Ton représente par ^ F , , ^ , f>3, • rm les vitesses absolues dans
les différens milieux ? on aura , par ce qui précède,
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d'où , en ajoutant et réduisant >

et par suite

e'est-à-dïre que la vitesse absolue de la molécule, dans le dernier
milieu , sera exactement la même que si elle y était immédiate-
ment parvenue du premier; de sorte que l'existence des milieux
intermédiaires n'aura eu, au plus, d'autre effet que de changer la
direction finale de cette molécule, et de lui faire acquérir, par de-
grés, une vitesse qu'elle aurait prise tout à coup sans leur présence.

Si les milieux , toujours homogènes et indéfinis , sont séparés les
tins des autres par des surfaces courbes quelconques , la molécule
en les traversant décrira encore sensiblement un polygone recli-
ligne ouvert, plan ou gauche, ayant ses sommets sur ces diverses
surfaces. En imaginant, par les sommets du polygone, des plans
respectivement tangens aux surfaces courbes séparatrices sur lesquel-
les ces sommets se trouvent situés; ces plans tangens pourront être
pris pour les surfaces séparatrices elles-mêmes ; de sorte que les plans
des angles du polygone seront respectivement perpendiculaires à ces
plans tangens ; que les composantes des vitesses absolues ? dans le
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sens de ces plans tangens, ne subiront aucune variation dans le
passage d'un milieu à celui qui lui sera consécutif , et qu'enfin la
vitesse absolue de la molécule, dans l'un quelconque de ces mi-
lieux , sera la même que si cette molécule y avait directement pé-
nétré.

Tout se passera évidemment de la même manière, quelque peu
différentes de figure et de situation dans l'espace que soient deux
surfaces courbes séparatrices consécutives et quelque petite que soit
la différence de densité des deux milieux séparés par chacune d'el-
les ; il en ira donc encore de même lorsque la molécule parcourra
un milieu ? chimiquement homogène, dont la densité variera, d'une
manière insensible, d'un point au suivant., dans toutes les direc-
tions, suivant une loi mathématique quelconque. Il arrivera seule-
ment alors que le polygone rectiligne , plan ou gauche., que dé-
crivait d'abord la molécule, deviendra une courbe plane ou a dou-
ble courbure ; et l'on voit, i.° que le plan osculateur de cette courbe,
en l'un quelconque de ses points, sera normal à la surface courbe,
lieu de tous les points du milieu qui auront même densité que ce-
lui-là ; 2.° que la composante, suivant le plan tangent à cette sur-
face , en ce même point, de la vitesse absolue de la molécule , de-
vra être constante ou 9 en d'autres termes, que sa différentielle devra
être nulle; 3<° qu'enfin cette vitesse absolue devra être la même
que si, sans intermédiaire, la molécule était parvenue du vide en
ce point, Qx, il n'en faut pas davantage pour parvenir aux équa-
tions du mouvement de la lumière , dans un milieu transparent ,
chioniqirement homogène, dont la densité varie d'un point à l'au-
tre , dans toutes les directions et d'une manière insensible , suivant
une loi .mathématique donnée , ainsi qu'on le verra tout à l'heure.

Au lieu de supposer que le milieu , chimiquement homogène ,
varie seulement de densité , il reviendrait au même de supposer
que c'est, au contraire, sa nature chimique qui varie , par degrés
iusensibles, tandis que sa densité demeure constante; on pourrait
même supposer que l'une et l'autre varient à la fois. Pour éviter tout
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embarras , on peut appeler densité optique d'un milieu , en chacun
de ses points , la densité que devrait avoir un fluide connu , pris
pour terme de comparaison , l'air atmosphérique , par exemple , pour
exercer sur la lumière une action pareille à celle que ce milieu
exerce sur elle ? en ce même point 9 et c'est ainsi qu'il sera permis
d'entendre le mot dsnsiiè dans tout ce qui va suivre.

Soit présentement um molécule lumineuse , en mouvement dans
un milieu transparent, d'une densité variable. Supposons que celte
molécule ne s'y meuve qu'en vertu d'une vitesse antérieurement ac-
quise, combinée avec l'action du milieu sur elle ; rapportons-la à
trois axes rectangulaires , et soit ( œ, y , ~z ) le point du milieu
où elle se trouve à l'époque t. Si nous représentons par u la den-
sité de ce milieu en ce point, u sera une fonction de x , y, z f

sans / , donnée par une équation de la forme

u=9(x,y,z) î5 (1)

qui déterminera le densité de ce milieu ? en chacun de ses points,
et qui en sera conséquemment la définition complète.

En même temps que cette équation donnera la densité de cha-
cun des points du milieu ? elle fera aussi connaître les points de
ce milieu qui auront une tîensité donnée; et Ton voit que tous
les points d'une même densité quelconque seront ? en général, ceux
d'une certaine surface plane ou courbe ; de sorte que ? généralement
parlant, tout milieu de densité variable peut être considéré, ainsi
que nous le faisions tout à Flieure , comme composé de couches
de densité constante. Un milieu ne saurait différer d'un antre que
par la figure .et la situation de ces couches , et par la manière dont
Ja densité varie d'une couche à l'autre (*).

C*) C'est la théorie générale de ces sortes de milieux que nous appelions
de nos vœux dans une note de la pag. 87 de-notre Xi¥.« ro-lume ; note
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En posant, pour abréger,

on aura

Or, poser d#=o e*est exprimer que la variation de densité est nulle
ou que la densité est constante j donc > l'équation résultante

Pàx+Qày+Rdz-o f {4)

est l'équation différentielle des couches de densité constante; c'est-
à-dire que c'est l'équation différentielle de la couche dans toute
l'étendue de laquelle la densité u est la même qu'au point ( DÛ r

y* z Y
En désignant donc par X, Y, Z les coordonnées courantes dans

l'espace + les équations du plan tangent et de la normale de cette
surface , en ce point ( oc 5 y 9 z ) , seront

*H-+ï=L-?=i /6>

Présentement, en considérant x, j 5 z comme des fonctions de
2 , choisi pour variable indépendante, l'équation du plan oscillateur
de la trajectoire, au point ( x,y fz ) y sera* comme Ton sait,

sur laquelle \&Bulletîn universel ( juillet 1828, pag. 10 ) d rappelé de nou-
veau l'attention des géomètres , à l'occasion d'un très-curieux mémoire de
M. Gauss, On classerait alors les milieux comme ©a classe aujourd'hui les

lignes et les surfaces courbes*
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ây à*z àz d*y V fi

dt àt* """" d7 d?*" / ^

dt àt2 dt dl* J
= o ; (7)

et il faudra d'abord que ce plan soit perpendiculaire , en ( ^ 5 y »
z ) , au plan rangent (5) au même point; ce qui donnera, pour
première équation du mouvement de la molécule

/
\ àt* ) "+"̂  \ ùt àt* àt ~ÙF) -*"" \ d7 â^ ~ It dï / =

ou bien

J dt dt

Les vitesses de la molécule, parallèlement aux axes des x, des
y et des z , étant respectivement

dx dy
Ht ' aF ' 17

les équations de la tangente à la trajectoire, au point

seront

dx

d*

(9)
dt dt

de sorte que, si Ton représente par Q l'angle que fait cette taa-
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gente avec la normale (6) au même point, c'est-â-dire, l'angle d'in-
cidence , on aura

(10)

Mais , si Ton représente par v la vitesse absolue de la molécule au;
point (& ,y 9* ) 9 ce qui donnera

là vitesse, dans le sens du plan tangent en ( oc ^ y > z ) à la sur-
face (4) de densité constante, sera ^Sin.ô ; en substituant donc , dans
son expression , pour r et Sin.9 leurs valeurs, cette vitesse deviendra

ar

et il faudra que la différentielle de cette composante, en y trai
tant P^Q%B comme constans, puisqu'on reste dans le plan tau
gent , soit nulle ; ce qui doniiera , pour deuxième équation du

de la molécule,

=O . ( l i);
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Enfin , la vitesse absolue ç de la molécule , en ( oc, y , z ) ,

où la densité du milieu est u devant être la même que si cette
molécule y était parvenue du vide, sans aucun intermédiaire; en
désignant toujours par w la vitesse connue de la lumière dans le

, ou devra avoir encore, d'après ce qui a été dit ci-dessus ,

ee qui donnera, pour la troisième équation du mouvement de la
molécule

mais nous allons voir que ces trois équations peuvent être rempla-
cées par trois autres, incomparablement pins simples,

On satisfait d'abord visiblement aux deux équations (8) et (12.),
quel que soit À, en posant

&X <!2v â*?

T^AP, ¥=XQ> • r f = ^ ^ 04)
dt* àt* x di» v '

mais, en difierentiant l'équation (i3) , on obtient

qui, en y substituant les valeurs (i4) > se réduit à \~zk2 ; de sorte
que les équations (i4)> c'est-à-dire, les équations du mouvement
de la molécule sont simplement

¥=*VP> ¥=**<l> ¥<=**'Ri (.6)
d£a d/* di* v /

équations qui comportent d'ailleurs l'équation ( i3 ) , et qui seront,
Tom. XIX. . 37
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à raison de leur extrême simplicité et de leur parfaite symétrie t
d'un emploi très-commode, surtout lorsque P, Q, R seront respec-
tivement des fonctions de x, y , z seulement.

Ces équations (16) pourront également servir, soit à détermi-
ner les circonstances du mouvement, lorsque la nature du milieu
sera donnée 5 soit au contraire à déterminer la nature du milieu ,
lorsque les circonstances du mouvement seront connues.

Pour donner un exemple du premier de ces deux cas , suppo-
sons que les couches de densité constante soient des couches ellip-
soïdales concentriques , semblables et semblablement disposées, ayant
le point ( a > b , c ) pour centre commun, et leurs axes proportion-
nels à trois quantités p , q , r. Supposons , en outre, que la den-
sité de ces couches croisse du dedans au dehors, proportionnelle-
ment aux carrés de leurs dimensions, en prenant les axes des coor-
données respectivement parallèles aux diamètres principaux de ces
surfaces, on aura

z—c

On trouvera conséquemment

au moyen de quoi les équations (16) deviendront

et donneront, en intégrant
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CihH=)+' T
J4, B, C étant trois constantes arbitraires.

Pour les déterminer, supposons que la molécule soit partie de
l'origine, avec la vitesse V% dans une direction faisant avec les
axes des x>y>z des angles respectivement égaux à a , {3 , y ; nous
aurons ainsi

^ ^

en retranchant ces équations des précédentes , il viendra, en trans-
posant ,

( dx \ 2 / a:—a \ *

* )=<*•(—)

(•9)

d'où on tirera

d/=

&z

(20)



276 DU MOUVEMENT
ce qui donnera , en intégrant,

Z. Log.j

r

1k r

P*

4
~

(a.)

D > E , F étant trois nouvelles constantes arbitraires.
Pour les déterminer ? fixons l'origine des temps au passage de

la molécule par l'origine des coordonnées; alors x}-y }z devront
être nuls en même temps que / ; ce qui donnera

D= L- Log/—2*

E= 1 Log, Ç—zk

d'où , en retranchant,

*= £-Log.

r

?

2ift- '

J Z~~C

r +y

ik*\ —— j -f-F^Cos^oc—4^2 —v p y p*

FCos.oc—o,h —

/ z—c "Sa c*
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équations entre lesquelles éliminant t , on aura d'abord , pour la
double équation de la trajectoire décrite

•2k t

FCos.8—2k b-
9

(23)

Les mêmes équations (22) peuvent être écrites comme ii suit

Xlt

carrant alors les deux membres , réduisant et divisant respective-

ment par FCos.<x—2£ - ,

Tiendra , en transposant 9

$—2k ~ 7 rCos.7—2k — ? il
7 r
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*=*+4*T'^0S'a~~2*~

— 1 e

c

4& ( \ r / \ r

et telles seront finalement les équations du mouvement de la mo-
lécule.

Si l'on suppose c et Cos y nuls , c'est-à-dire , si l'une des sec-
tions principales communes à toutes les couches de densité cons-
tante est dans le plan des xy , et que la direction de la molécule
à son passage par l'origine , soit aussi dans ce plan , on aura z = o,
quel que soit / ; c'est-à-dire que , pendant toute la durée du mou-
vement , la molécule ne sortira pas de ce plan , ce qui est d'ailleurs
évident, puisqu'alors tout se trouvera de part et d'autre dans les
mêmes circonstances.

Si les couches de densité constante sont sphériques, on aura
pzxqzzr, et par suite

r { * - T )
s=a+ —k UrFCos,tx—2?ca)e —(rVCos.<x+2.Jca)e j ,

— (rrCos.Ç>+zkb)e " ! ,
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On tirera de là

cy-bz= - \e -

cx 4/t \

bx-ay=~ (er-

et par suite

- )

—ÛCOS j3) ;

o u b i e n

C ^ ) + ( C C ) j ( C / 3 ^ C ) = 0 ;

la trajectoire est donc plane, dans ce cas, comme on pouvait bien
le prévoir. Son pian passe évidemment par l'origine et par le cen-
tre commun des couches de densité constante.

Si , dans les équations (^4), on suppose a,b9 Cos.a, Cos.(3
nuls, c'est-à-dire , si Ton suppose que l'un des diamètres principaux
commun à toutes les couches de densité constante est dans Taxe
des z, et qu'à son passage à l'origine , la molécule est dirigée sui-
vant cet axe , on aura x et y nuls , quel que soit / ; c'est-à-dire
que, pendant toute la durée du mouvement, la molécule ne sortira
pas de cet axe des z ; ce qui d'ailleurs est évident, puisqu'alors ,
d'après ce qui a été dit ci-dessus, elle ne doit sortir ni du plan
des xz ni de celui des yz.

Pour donner un exemple du second cas , c'est-à-dire, de celui où
des circonstances du mouvement il faut conclure la nature du mi-
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lieu ; supposons que les équations du mouvement de la molécule

soient

os.yy—4k2 ( ~ NV ,

et proposons-nous d'en conclure la valeur d e # , en x,y, z. On
voit d'abord qu'à l'origine des temps la molécule se trouvera
l'origine des coordonnées.

Par une preoiièie diffe'rentiation, on déduit de là

Ay bFCos (3~

J/ (c—VtCos.yy—4h>{ -U*

d'où l'on voit que la vitesse initiale de la molécule est f, et que
sa direction initiale fait, avec les axes des x , y , z , des angles res-
pectivement égaux à a , (3 , y.
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En difïérentiant de nouveau , il vient

-.4*1 ( | )V)

on aura donc aussi (16)

c'est-à-dire ,

^ (y—*)» '

d'où
. 2.p*àx 2çzdy zr^àz

~~ (z~a)$ (y—by {z—c)$ 7

et ; par suite, en intégrant,

\ a— a ) l \ f̂—y J l \ z—c J

telle est donc la définition du milieu dont il s'agit. Nous n'ajou
tons point de constante, attendu qu'en augmentant ou en dimi
nuant, d'une même quantité, la densité de tous les points du mi
lieu , on ne change rien aux circonstances du phénomène.

Tom. XIX 38
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Lorsque le milieu est symétrique par rapport à un plan et que

la direction initiale de la molécule est comprise dans ce plan 9 c'est-
à-dire, lorsque les surfaces courbes de densité constante ont tou-
tes une section principale commune dont le plan contient la direc-
tion de la molécule lumineuse , pour un instant quelconque , cette
molécule ne sort pas de ce plan et décrit conséquemment une
courbe plane. En prenant donc le plan de sa trajectoire pour le

plan des xy, — sera nui \ de sorte qu'on n'aura à considérer que

les deux équations

dt2 (25)

C'est , par exemple , le cas où les couches de densité constante
étant des surfaces cylindriques , ayant toutes leurs élémens recti-
lignes parallèles à une même droite fixe , la molécule serait mue
dans un plan perpendiculaire à cette droite.

Si donc les couches de densité constante se trouvaient symétri-
ques par rapport à tous les plans conduits par un même point
fixe, la trajectoire décrite par la molécule serait contenue dans un
plan passant par ce point fixe , quelle que pût être d'ailleurs la
direction initiale de son mouvement. Tel serait ? par exemple , le
cas où les couches de densité constante seraient sphériques et con-
centriques ; et tel serait aussi le cas où elles seraient planes et pa-
rallèles ; des plans parallèles pouvant être considérés comme des por-
tions de sphères concentriques ; dont le rayon est infini.

Si le milieu était symétrique par rapport à deux ou à un plus
grand nombre de plans , se coupant suivant la même droite , et
que la direction initiale de la molécule coïncidât avec cette droite,
il est clair qu'elle n'en sortirait pas dans tout le mouvement ; de
sorte que la trajectoire serait rectiligne. En prenant donc cette droite
pour axe des x 9 on n'aurait à considérer que la seule équation
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C'est, par exemple, le cas où les couches de densité constante se-
raient des surfaces de révolution ayant un axe commun avec lequel
coïnciderait , à un instant quelconque, la direction du mouvement
de la molécule , et c'est encore le cas où les couches de densité
constante étant des plans parallèles, la molécule serait dirigée per-
pendiculairement à ces plans ; enfin ce serait aussi le cas d'un mi-
lieu homogène , quelle que pût être d'ailleurs la direction initiale
de la molécule ; puisqu'alors cette direction serait toujours perpen-
diculaire à des couches planes parallèles de densité constante ; mais
dans ce dernier cas , le mouvement serait non seulement rectiligne,
mais encore uniforme.

Lorsqu'on n'a aucun intérêt à connaître le lieu de la molécule
lumineuse à chaque instant de son mouvement et qu'on veut seu-
lement savoir qu'elle est la trajectoire décrite , ce qui est le cas le
plus ordinaire, il faut, pour obtenir les équations générales du pro-
blème , éliminer t entre les trois équations (16) ; ce qui exige qu'on
change d'abord d'hypothèse relativement à la variable indépendante.
En prenant x pour cette variable

/ dn

dy

à*

deviendront respectivement <

d2y dt dy dH
dx2 d.v dx dx2

dzz dt dz dH
dx2 dx dx dx*

dt V '
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au moyen de quoi les équations (16) se changent dans les sui-
vantes :

dx2 dx dx dx2

d*z dt dz dn r»n/ te \3
_ _ - _ - _ _ - _ =L2k R f — j .
dx2 dx dx dx* \ dx J

Éliminant —• des deux dernières , au moyen de la première

elles deviennent, en divisant par -— ,

dx* v dx yv dx
\2

mais , dans, l'hypothèse actuelle, l'équation (i3) devient

éliminant donc ( — ) des deux précédentes , au moyen de cette

dernière , on obtiendra, pdur les deux équations différentielles de
la trajectoire décrite ,

> (27)

mais il sera communément plus simple de recourir aux équa-
tions (16).

TDans un prochain article , nous nous occuperons proprement du
phénomène du mirage.
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DYNAMIQUE.

Solution d'un problème de dynamique ;

Par M. LE B A R B I E R .

JL ROBLÈME. Un tube cylindrique rectiligne, d'une longueur in-
définie , est lié dune manière invariable à un axe horizontal fixe ,
auquel il est perpendiculaire, de telle sorte que l'axe de rotation
passe par l'axe du tube qui se trouve ainsi contraint de se mou-
voir , comme une lunette méridienne 9 dans un plan vertical fixe.

On introduit dans Tintérieur de ce tube une sphère pesante, d'un
diamètre égal au sien, dont le centre de gravité coïncide avec son
centre défigure , qui\ de la sorte, se trouve constamment dans F axe
du tube*

On suppose que ce tube est contraint à tourner dun mouvement
uwforme sur Vaxe horizontal fixe qui le supporte , et Von demande
de déterminer les circonstances du mouvement du centre de la sphère
dans le plan vertical , en faisant dailleurs abstraction de la ré-
sistance de lair et du frottement ?

Solution* Rien n'étant plus aisé que de combiner le mouvement
de rotation uniforme de l'axe du tube avec le mouvement varié
du centre de la sphère, le long de cet axe supposé fixe, occupons-
ÎÎOUS d'abord uniquement de ce dernier.

Par le centre du mouvement, et à droite de ce centre, soit me-
née , dans le plan vertical fixe que doit parcourir Taxe du tube ,
une horizontale indéfinie ; la position initiale de cet axe sera dé-
terminée par l'angle que fera alors sa direction avec l'horizontale;

Tom. XIX, n.° 10, i.er avril 182g. 3Q
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angle que nous désignerons par a et que nous mesurerons constam-
ment au-dessus de cette horizontale, et de droite à gauche. Noua
n'aurons jamais besoin d'ailleurs de le supposer plus grand que
deux angles droits, puisque, si cela arrivait , nous pourrions lui
substituer l'angle que formerait, avec l'horizontale , le prolongement
de Taxe du tube au-delà du centre du mouvement.

Supposons qu'à l'origine des temps, le centre de la sphère mobile
soit à une distance R du centre du mouvement et qu'on lui ait
imprimé, suivant Taxe du tube, une vîtessse V7 positive ou né-
gative , suivant que sa projection sur l'horizontale sera elle-même
positive ou négative. Soit enfin T la durée d'une révolution du
tube sur son axe.

Durant l'intervalle de temps / , l'axe du tube décrira dans le plan

vertical fixe un angle zœ — ; de sorte que si Ton suppose, pour

fixer les idées, que son* mouvement tende à faire croître l'angle a ,

cet angle sera, à l'époque / , OC-J-̂ 'GT -— .

Soit g la gravité , seule force accélératrice du système ; si Ton
décompose cette force en deux autres , l'une perpendiculaire à l'axe
du tube et l'autre dans le sens de cet axe, le mouvement de ro-
tation du tube étant tout à fait déterminé, indépendamment de la
pesanteur, la première de ces deux composantes sera détruite, et
la seconde aura seule son plein effet ; or, cette dernière a évidem-
ment pour expression gSin.f a-J-2^ -— J; en désignant donc par

r la distance variable du centre de la sphère mobile au centre du
mouvement, on aura

d2r t \

2^ —y.

Nous donnons ici le signe moins au second membre , attendu
que f dans le cas / = o , la gravité tend à diminuer la distance r.
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On voit donc que la force accélératrice , suivant Taxe du tube,

est à la fois rariable et périodique ; elle sera nulle , quel que soit
le nombre entier n, toutes les fois qu'on aura

»
t y T(nzr—*)

— z=zM5T j d ou / = — — ;

elle atteindra sa plus grande valeur négative, toutes les fois qu'on
aura

« + a « r - = _ _ , dou / = - ;

et cette valeur positive sera -—g ; elle atteindra enfin sa plus grande
Taleur lorsqu'on aura

d o u ' =

et cette valeur sera
Si Ton intègre une première fois l'équation (1) , en se rappelant

que V est la vitesse initiale du centre de la sphère mobile , et*
qu'on représente par v la vitesse de ce centre, suivant Taxe du
tube à l'époque / , on aura

P= i l = ( V— ^ Co3.a) + g— Cos. ( «+2vr — '\ . (2)

Ainsi la vitesse du centre de Ist sphère mobile, suivant Taxe du
tube , tout comme la force accélératrice, sera à la fois variable et
périodique.

Pour que cette vitesse soit nulle, il faudra qu'on ait

F— ^CoS.oA + g— COS. (QC+2t* 4 ^ = 0 5 (3)

ce qui donnera
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*= ̂  [Ârc- [C o s = :
7

Ces époques seront aussi évidemment celles des1 maxima et minima
de la distance r ; mais , pour que ces époques soient réelles, en-
core faudra-t-il que

Cos.oc—-— * —T ë

soit compris entre -f-i et —i , ou, ce qui revient au même/ que
V soit compris entre les deux limites

Quant aux époques des maxima et des minima de la vîlesse v , elles

seront les mêmes que celles pour lesquelles on aura— 3= —- = 0 ;

c'est-à-dire , comme nous l'avons vu ci-dessus ; celles où on aura

—

ce qui donnera (2)

On voit par là que, si F est positif, il y aura toujours dès épo-
ques où le centre de la sphère mobile ira en s'éloignent du cen-
tre du mouvement dans le sens de F, et il en sera même tou-
jours ainsi, si Ton a

F> — ( i+Cos.a) .
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Si, au contraire], V est négatif, il y aura toujours des époques ou
le centre de la sphère mobile s'éloignera du centre du mouvement,
dans le sens de V, et il en sera même toujours ainsi, duns ce
cas, si Ton a

V> ^ ( r — Cos.a) î

Si F étant positif, on avait

ou bien si, V étant négatif, on avait

F=— (1— Cos.a) ,

le minimum de vitesse dans le sens de V se réduirait à une vi-
tesse nulle.
. En intégrant de nouveau l'équation (2), et se rappelant qu'à / = o
doit répondre r=R 9 on trouvera

I"—-

d'où Ton voit que la valeur de r se compose de trois parties, sa-
voir: une partie constante, une autre qui croît indéfiniment avec
le temps , et enfin une troisième qui est périodique. Il suit de là
qu'en général on pourra toujours assigner une époque à laquelle
le centre de la sphère moMle sera aussi éloigné qu'on le voudra
du centre du mouvement.

Kous disons en général, car, si Ton avait
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ce qui ne peut arriver lorsqu'il n'y a point de vitesse initiale J
qu'autant que le tube part de la direction verticale; la valeur de
r se réduisant alors simplement à

= (R- 0 S H + £ sin- 0
et étant conséquemment périodique , elle se trouverait ainsi com-
prise entre les deux limites

r= f/Z— Ç^ Situa) + f̂  =fl± f^ (i+Sin.a) ;

d'où Ton voit que le centre de la sphère mobile demeurerait alors
constamment d'un même côté du centre du mouvement, si R étant
positif on avait

ou bien s i , 72 étant négatif, on avait

( i— Sin.oc) .
4^ 2 v '

Si, dans la même hypothèse , on voulait connaître les époques
où le centre de la sphère mobile passera par le centre du mou-
vement , il ne s'agirait que de poser r = o dans l'équation (5) , et
de la résoudre ensuite par rapport à / ; ce qui donnerait

4^3 R

mais encore faudrait-il, pour que ces époques fussent réelles , que

Sui.oc ^
S
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fût compris entre les limites + 1 et — 1 , ou, ce qui revient au
même, que R fût compris entre ces deux-ci :

±

ce qui concorde exactement avec ce qui vient d'être dit ci-dessus.
Si , pour le cas général , on se demandait les époques où le cen-

tre de la sphère mobile passera par le centre du mouvement, il
faudrait, dans l'équation (4), poser r = o , et la résoudre ensuite
par rapport à / ; et Ton voit qu'on aurait ainsi à résoudre un pro-
blème du même genre que le problème de Kepler , puisque t en-
tre à la fois, dans cette équation , algébriquement et sous le signe
sinus.

Il sera plus aisé , dans le cas général , de connaître les înaxima
et minima de la distance r ; il sufiira en effet, pour cela , d'in-

troduire dans la formule (4) la valeur de f7— —>• donnée par

l'équation (5) ; ce qui donnera

= ( R— ^ Sm.<xS)~-Çl-\tCos.(a+2*r — ̂  — — Sin. fa-l^t* — ̂  \

Si Ton prend pour pôle le centre du mouvement, et que Ton
représente par 0 l'angle que fait le rayon vecteur avec l'horizon-
tale menée dans le plan vertical fixe , par le centre du mouvement,

on aura

substituant donc cette valeur dans l'équation (4) > on obtiendra
pour l'équation polaire de la trajectoire décrite par le centre de la
sphère mobile dans le plan vertical fixe,
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- ^ Cos..} ^=± + ilL Sin.9 ;
2ff / 3sr 4 w a

équation qui servira à construire la courbe par points , et de laquelle
on conclurait aisément l'équation en coordonnées rectangulaires.

Ces résultats deviennent plus simples lorsqu'on suppose que le
tube part de la direction verticale et que la sphère mobile n'a
reçu aucune impulsion ; on a alors F = o , «-*= ^m 9 d'où Sin.a=i
et Cos.<x=ro ; en conséquence on trouve, d'abord pour la force ac-
célératrice ,

d2r zirt
- = - * S m . -— ;

cette force accélératrice sera nulle , et conséquemment la vitesse
du centre de la sphère mobile aura atteint son maximum ou son

rp

minimum, lorsqu'on a u r a / = — , c'est-à-dire à chaque demi-révo-

lution ; on trouvera ensuite , pour la vitesse du mobile, à l'époque i9

—
T '

cette vitesse sera nulle ? et conséquemment le rayon vecteur r attein-
, . . . , (27I-fl)T
ura son maximum ou son minimum 5 Jorsqu on aura t=i -——— ,

4

c'est-à-dire, toutes les fois que le tube parviendra à la situation ho-

rizontale. Si , dans cette valeur de p; on fait /=. — , on aura pour
le maximum et le minimum de vitesse , répondant à la situation
verticale du tube ,

On trouvera enfin , dans la même hypothèse ,
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on conclura de là les plus grandes et les moindres valeurs de r

en y mettant pour t la valeur —~ * qui répond aux maxirna

et minima, ce qui donnera

c'est-à-dire,

de sorte que le centre de la sphère mobile passera ou ne passera pas

par le centre du mouvement, suivant que sera plus grand ou

plus petit que i?, Quant aux époques de ces passages, on les trou-
vera en résolvant l'équation (6) par rapport à / , après y avoir fait
rr=o , ce qui donnera

Ajoutons que $ dans le cas actuel , l'équation polaire de la tra-
jectoire se réduira simplement à

Il est entendu que , dans tout ce qui précède , on doit supposer
le diamètre de la sphère mobile assez petit , pour qu'on puisse se
dispenser d'avoir égard aux momens d'inertie.

Tom. XIX 4o
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ANALYSE ALGEBRIQUE.
Démonstration ctun théorème sur les fractions

continues périodiques ;

Par M. Evariste GALOIS , élève au Collège de Louis-le-
Grand.

N sait que si , par la méthode de Lagrange, on développe en
fraction continue une des racines d'une équation du second degré,
celte fraction continue sera périodique , et qu'il en sera encore de
même de l'une des racines d'une équation de degré quelconque,
si cette racine est racine d'un facteur rationnel du second degré du
premier membre de la proposée, auquel cas cette équation aura ,
tout au moins, une autre racine qui sera également périodique.
Dans l'un et dans l'autre cas, la fraction continue pourra d'ailleurs
être immédiatement périodique ou ne l'être pas immédiatement,
mais 9 lorsque cette dernière circonstance aura lieu, il y aura du
moins uue des transformées dont une des racines sera immédiate-
ment périodique.

Or , lorsqu'une équation a deux racines périodiques , répondant
à un même facteur rationnel du second degré, et que Tune d'elles
est immédiatement périodique , il existe entre ces deux racines une
relation assez singnlière qui paraît n'avoir pas encore été remar-
quée, et qui peut être exprimée par le théorème suivant :

THÉORÈME. Si une des racines dune équation de degré quel-
conque est une fraction continue immédiatement périodique , cette
équation aura nécessairement une autre racine également périodique
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que Von obtiendra en divisant Vunité négative par cette même frac-
tion continue périodique, écrite dans un ordre inverse*

Démonstration. Pour fixer les idées , ne prenons que des pério-
des de quatre termes ; car la marche uniforme du calcul prouve
qu'il en serait de même si nous en admettions un plus grand nom-
bre. Soit une des racines d'une équation de degré quelconque ex-
primée comme il suit :

1 , ,
c 1 4- ;

• l'équation du second degré, à laquelle appartiendra cette racine et
qui contiendra conséquemment sa corrélative? sera

or, on tire de îà successivement

7 + d+7 '
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T+^

c'est-à-dire ,

Û —

c'est donc toujours là l'équation du second degré qui donne les
deux racines dont il s'agit ; mais en mettant continuellement pour
œ, dans son second membre , ce même second membre qui en
est en effet la valeur» elle donna

«=-Ï + I
i

fc'est donc là l'autre valeur de x, donnée par cette équation ; valeur
qui , comme Ton voit, est égale à —\ divisé par la première.

Dans ce qui précède nous avons supposé que la racine propo*
sée était plus grande que l'unité; mais, si Ton avait

on en conclurait, pour une des valeurs de ~ ,
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Vautre valeur de - serait donc, par ce qui précède f

d'où on conclurait 9 pour l'autre valeur de x y

t

"T******

011

ce qui rentre exactement dans notre théorème.
Soit A une fraction continue, immédiatement périodique quel-

conque ? et soit B la fraction continue qu'on en déduit en ren-
versant la période ; on voit que > si Tune des racines d'une éaua-
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tion est x~A, elle aura nécessairement une autre racine ^r=?— — ;

or , si A est un nombre positif plus grand que l'unité, —— sera

négatif et compris entre o et — i ; et, à l'inverse, si A est un nom-

bre négatif compris entre o et — i , sera un nombre posi-

tif plus grand que l'unité. Ainsi, lorsque Tune des racines d'une

équation du second degré est une fraction continue immédiatement

périodique > plus grande que l'unité , l'autre est nécessairement

comprise entre o et —i , et réciproquement si l'une d'elles est com-

prise entre o et —i^, l'autre sera nécessairement positive et plus

grande que l'unité.
On peut prouver que , réciproquement , si Tune des deux raci-

nes d'une équation du second degré est positive , est plus grande
que l'unité, et que l'antre soit comprise entre o et —*i, ces ra-
cines seront exprimables en fractions continues immédiatement pé-
riodiques. En effet, soit toujours A une fraction continue immé-
diatement périodique quelconque , positive et plus grande que l'unité,
et B la fraction continue immédiatement périodique qu'on en dé*
duit, en renversant la période, laquelle sera aussi, comme elle,
positive et plus grande que l'unité. La première des racines de la

proposée ne pourra être de la forme #=/?-J--- , car alors , eu

vertu de notre théorème, la seconde devrait être x—aAr — =#—*B ;

— B
or 5 a—B ne saurait être compris entre o et —i qu'autant que
la partie entière de B serait égale à p ; auquel cas , la première
valeur serait immédiatement périodique. On ne pourrait avoir daTaii-

t

lage , pour la première valeur de x, xz=p -J ! _L ? c a r al°rs

l'autre serait x~pi——- ou x—p~ ; o r , pour que cette
q— B r B—q
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Taleur fût comprise entre o et —1 , il faudrait d'abord que —
h q

fût égal hp plus une fraction ; il faudrait donc que B—q fût plus
petit que l'unité, ce qui exigerait que B fût égal à ^ , plus une
fraction ; d'où l'on voit que q et p devraient être respectivement
égaux aux deux premiers termes de la période qui répond à B
ou aux deux derniers de la période qui répond à A ; de f>oate que,

contrairement à l'hypothèse, la valeur œ=p-] 1 2_ serait im-

médiatement périodique. On prouverait, par un raisonnement ana-

logue , que les périodes ne sauraient être précédées d'un plub grand

nombre de termes n'en faisant pas partie.
Lors donc qu'on traitera une équation numérique par la méthode

de Lagrange , on sera sûr qu'il n'y a point de racines périodiques
à espérer tant qu'on ne rencontrera pas une transformée ayant au
moins une racine positive plus grande que l'unité, et une autre corn*
prise entre o et —1 ; et si, en effet, la racine que Ton poursuit
doit être périodique, ce sera tout au plus à cette transformée que
les périodes commenceront.

Si Tune des racines d'une équation du second degré est non seu-
lement immédiatement périodique mais encore symétrique , c'est à-
dire , si les termes de la période sont égaux à égale distance des
extrêmes , on aura B^A ; de sorte que ces deux racines seront

A et ; l'équation sera do.nc

Ax2—(À*—i)x—Az=o .

Réciproquement ; toute équation du second degré de la forme

aura ses racines à la fois immédiatement périodiques et symétri-
ques* En effet, en mettant tour à tour pour x l'infini et —1 9 on
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obtient des résultats positifs , tandis qu'en faisant xan\ et # = ô J
ou obtient des résultats négatifs ; d'où l'on voit d'abord que cette
équation a une racine positive plus grande que l'unité et une ra-
cine négative comprise entre o et —i , et qu'ainsi ces racines sont
immédiatement périodiques ; de plus , cette équation ne change pas

en y changeant J en —• — ; d'où il suit que si A est une de ses
oc

racines l'autre sera — — ? et qu'ainsi, dans ce cas , B = À*

Appliquons ces généralités à l'équation du second degré

on lui trouve d'abord une racine positive comprise entre 3 et 4 h
en posant

on obtient la transformée

2~2J—3—o

dont la forme nous apprend que les valeurs de y sont à la fois
immédiatement périodiques et symétriques; en effets en posant,
tour à tour ?

on obtient les transformées

^—2—o ,
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l'identité entre les équations en u et en y prouve que la valeur
positive de y est

r+-

sa valeur négative sera donc

+
les deux valeurs de x seront donc

2 7+.... 2 +7+
dont la dernière , en vertu de la formule connue

devient

2 +7+ (*)

(•) On trouve diverses recherches sur le même sujet, dans le présent re-
cutii , tom. IX , pag. aôi > tom. XIY , pag. 324 e t 33y.

J. D. G.

Tom. XIX 4*
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GEOMETRIE DE SITUATION.
Théorèmes sur les polaires successives ;

Par M. BOBILLIER , professeur à l'école des arts et métiers de
Châlons-sur-Marne.

les équations d'une suite de courbes, des mlemf, (jn—i)16™*, (772—i)l<me,...
(772—/?)*"*", #.''"** degrés, dont la première seule soit arbitraire,
et dont chacune soit, par rapport à celle qui la précède immédia-
tement f considérée comme directrice, la courbe polaire d':un point
donné (.2?/,^0 > ces courbes sont ce qae nous appeierons les po-
laires successives de ce point, par rapport à cette directrice, et
nous les désignerons sous les dénominations de x.Ur* , 2*"me , o.iem%
{m—n)i?m% ..,...• njeme polaires du point ( ^ y 7 ) -

D'après un théorème précédemment démontré ( pag. 106 ) , nous
aurons

^ (*-*<)-~ (y-y') ,

~r

' ) - - ^ {y-y') .



SUCCESSIVES. 3o3

r À l'aide de cette suite d'équations , il nous sera facile, par des
différenciations et substitutions successives d'obtenir tour à tour les
valeurs de M%, M%> Mn, en fonction de Mt en égalant la der-
nière à zéro , et posant ? pour abréger ,

nous trouverons, pour l'équation de la ni*"" polaire du point (x\yf) ,
par rapport à la directrice M—o^

n l

(m—2)! ^ daiU

(/2—2) ! ) d&* î.a

î ( dx11 n\ àûùnlày {n—i) ! i -r»"#*T^ ^ n wj

Supposons que le point (x/'jy/y) étant indéterminé , on veuille
le déterminer de telle sorte que cette polaire passe par un point
donné (x'^y")? il fondra pour cela exprimer que l'équation ci-
dessus est satisfaite en changeant simultanément x et y en xn et y"*
Changeant ensuite respectivement x/ et y/ en x et y ? on trouvera
pour l'équation du lieu du point (x'9 yf)
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(P) o«

n !

+ (m—i) ! x») dM" (y—y") \

" • .rï.. lit. 1.2

(m—n) !
•+

Si, présentement, on représente généralement par uk une fonction
homogène du hjerne degré en x et j , toute courbe du /7/.ifm* de-
gré aura une équation de la forme

Si l'on cherche les polaires successives de l'origine , par rapport à
cette courbe prise pour directrice, au moyen des considérations
exposées à la pag, 89 du précédent volume, on trouvera faci-
lement, pour l'équation de la (m—n)ieme polaire,

m\ ( m — ï ) ! (772—.2 (m—n)l

En conséquence, pour obtenir l'équation de la (/7* n)iemc polaire
d'un point (x»9y")9 relativement à la directrice M=o , il faudra
d'abord transporter l'origine en ce point, en «changeant respective-
ment dans M , x et y en *+x" et y+y», et développer ; puis
dans le développemeni multiplier respectivement les termes de o ,
1 ; 2 , n dimensions par
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m\ (m—i)! (m—2)! (m—«n) !

•

et supprimer tous ceux de dimensions plus élevées ; après quoi, il
faudra remplacer respectivement x et y par #—xf/ et y—yft* afin
de retourner à l'origine primitive. Or, il est visible que l'équatioa
résultante ne sera autre chose que l'équation (P) ci-dessus. En in-
roquant donc le principe de dualité , on obtiendra les deux théo-
rèmes que voici :

THÉORÈME L Si,par rap- THÉORÈME I. Si 9 par rap-
port à une même directrice du port à une même directrice de
(p+q)leme degré, on détermine la (p+î) i eme classe* on détermine
pieme polaire d'un point P et la la p.icme polaire d'une droite P
q»ieme polaire d'un point Q , et et la q.ieme polaire d'une droite
que l'un quelconque de ces deux Q , et que l'une quelconque de
points ait été choisi sur la po~ ces deux droites ait été choisie
la ire de l'autre 5 ce dernier point tangente à la polaire de l'autre ,
se trouvera réciproquement sur cette dernière droite se trouvera
la polaire du premier (*)• réciproquement tangente à la pO'

laire de la première.
Si Ton fait pz=m—J et ^ = i 5 on retombe sur le théorème de

la pag. 157 du précédent volume, qui n'est ainsi qu'un cas très-*
particulier de celui-ci.

Au moyen de ces deux théorèmes, on pourra résoudre les deux
problèmes que voici :

PROBLÈME L Trouver, sur PROBLÈME I. Trouver, sur
le plan d'une directrice donnée le plan d'une directrice donnée
du ui.îeme degré , un point dont la de m/eme classe , une droite dont

(*} M. Plucker nous a adressé postérieurement , sans démonstration, ua
tout à fait analogue^

J. B. G.
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n.ieme polaire, relative à cette di- la n.ieme polaire , relative à cette
rectrice ," passe par deux points directrice , touche deux droites
donnés ? données ?

S i , en effet, on de'termine , S i , en effet ? on détermine, par
par rapport à la directrice pro- rapport à la directrice proposée ,
posée, les (m—-n)iemes polaires des les (m—n)ltmts polaires des deux
deux points donnés, il résulte de droites données, il résulte de no-
notFe théorème que les nJemef po- tre théorème que les nUmes popu-
laires de leurs intersections, r e - res de leurs tangentes communes ,
lalives à la même directrice, pas- relatives à la même directrice,
seront par les deux points don- toucheront les deux droites don-
nés. Et , comme les (m~n)ieme* nées* Et 9 comme les (m— n)

teme£

polaires des deux points donnés polaires des deux droites données
seront Tune et l'autre du n.ieme de- seront Tune et l'autre de n.unu

gré , le problème aura nx solu— classe, le problème aura n% so~
tions. lutions»

En appliquant aux fonctions de trois variables x*> y9 z les con-
sidérations qui nous ont guidés dans ce qui précède 9 on parvien-
dra , sans autre peine que celle d'écrire des dév-eloppemens , à éia^
blir les deux théorèmes que voici :.

THÉORÈME IL Si, par rap- THÉORÈME IL Si, par rap^
port à une même sur face directrice port à une même surface direc—
du (p-4-q)ieme degré, on détermine trice de ( p + q / e m e classe , on de-
là p.iemepolaire d'un point P et la termine la p,aemc polaire d'un plan
q*leme polaire d'un point Q , et que P et la q "œe polaire d'un plan
ïun quelconque de ces deuoc points Q , et que l'un quelconque de ces
ait été choisi sur la polaire de deux plans ait été choisi tangent
Tautre , ce dernier point se trou- à la polaire de tautre, ce der~
ver a réciproquement sur la po- nier plan se trouvera réciproque—
luire du premier. ment tangent à la polaire du pre-

mier.
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Si Ton fait p=m—i et ç~ i ? on retombe sur le théorème de

la pag. 164 du précédent volume , qui n'est ainsi qu'un cas très-
particulier de celui-ci.

Au moyen de ces deux théorèmes â on pourra résoudre les deux
problèmes que voici :

PROBLÈME IL Une surface PROBLÈME IL Une surface
directrice du m.ieme degré étant de nuieme classe étant donnée ,
donnée 9 trouver, dans Vespace > trouver > dans V espace y un plan
un point dont la n/eme polaire 9 dont la n.leme polaire , relative à
relative à cette surface, passe par cette surface ? touche trois plans
trois points donnés ? donnés ?

Si , en effet, on détermine, par Si? en effet, on détermine 5 par
rapport à la surface directrice pro- rapporta la surface directrice pro-
posée ? les (m—>nyeme'~ polaires des posée, les Cm—n)itmer polaires des
trois points donnés, il résulte de trois plans donnés , il résulte de
notre théorème que les njemes po- notre théorème que les n.iem€S po-
laires de leurs intersections, re- laires de leurs plans tangens com-
latives à la même directrice, pas- muns ? relatives à la même direc-
seront par les trois points donnés, trice , toucheront les trois plans
Et 5 comme les [m—n)iemes polai- donnés. E t , comme les (rn—nyemes

res des trois points donnés seront polaires des trois plans donnés se-
îoutes trois du n.ieme degré, le pro- ront toutes trois de n*ieme cksse ,
blême aura n5 solutions, le problème aura n% solutions.

ChjUons, le 20 avril 1838*
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METEOROLOGIE.

Résumé des observations barométriques 5 hygro-
métriques , thermométriques et magnétiques

faites à Montpellier 5 en 1828;

Par M. G E R G O N N E .

XJES observations météorologiques que je publie ici peuvent être con-
sidérées comme faisant suite à celles que j'ai publiées à la pag, 9 du
présent volume; elles ont, en effet, été faites aux mêmes heures,
avec les mêmes inslrumens placés de la mêçie manière ; les observations
barométriques ont subi les mêmes réductions , et les tableaux ont
exactement la même forme : seulement, j'ai été assez heureux pour
pouvoir mettre un peu plus d'assiduité dans celles-ci que dans les
précédentes; tellement que, sur les i/fô^ observations de l'année,
je n'en ai omis que 34 seulement ; savoir : cinq de sept heures du
malin, quinze de midi,, douze de cinq heures du soir et deux
de dix. Les époques des observations omises sont d'ailleurs assez
distantes entre elles pour qu'il n'en résulte aucune erreur sensible
sur la moyenne de chacun des douze mois de l'année».



METEOROLOGIQUES.

§. I. BAROMÈTRE.

i,* Tableau des moyennes barométriques.

3 09

1828.

Janvier,

Février.

Mars.

Avril.

Mai.

Juin,

I Juillet.
: j
! j

j Août.

Septembre*

Octobre.

Novembre.

Décembre.

Moyennes.

7 Heures.

763,41

756,88

708,10

707,54

756,6o

7%8i

756,33

758,43

7%55

761,46

759>93

763,88

709,33

Midi.

763,73

755,66

758,oi

756,70

756,25

759,18

756,3o

/57.89

7O9)63

761,27

760,12

763,49

759,02

5 Heures.

763,63

755,4o

757,52

756>57

755,55

708,40

754»97

756^79

758,88

760,80

759,60

763,47

708,46

10 Heures.

763,73

755,98

7o8,5i

757,07

7 56,48

709,40

756,24

757=88

759-63

761,44

760,24

763,06

709,18

Moyennes.

700,62

755,98

758,o3

756>97

756,22

759,20

755,96

707,75

759>42

761,24

759^97

763,60

;58, io

La moyenne barométrique à Montpellier, pour l'année 1828, est
donc 758,io, au lieu de 708539 qu'elle avait été pour 1827.

Ta m. XIX 42
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2.0 Tableau des mouvemens barométriques**

1828.

Janvier.

Février.

Mars.

Avril,

Mai.

Juin.

Juillet.

Août.

Septembre.

Octobre.

Novembre.

Décembre.

Maximum.

Moyenne.

Minimum.

Oscillations.

Maxima.

775>5g

769,53

766,28

766,63

762,27

763,05

762,49

763,3g

7655i3

768,89

767>9*
77»»64

775P9

766,90

762,27

i3,32

Moyennes.

763,62

755,98

758,o3

756,97

756,22

759,20

755,96

757,75

759'42

761,24

7^9,97

763,60

763562

75S,10

755,96

7>66

Miniina.

75o,g3

734,53

749,9°
744,54

747,38

753,31

749,43

749-94

752,81

753,36

748,69

749,23

753,36

748,67

734.53

i8,83

Oscillations.

24,66

35.OO

i6,3 8

22,09

14,89

9.74
i3,o6

i3,45

12,3a

i5,53

19,22

22,42

35.oo

18,23

9.74

a5,26

Ce tableau donne, pour le plus grand maximum, 771}

Et pour le plus petit minimum , 3̂4>

Différence ? 37,
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Le sommet de la colonne de mercure a donc parcouru dans le

tube une longueur de 37,11.

5. 11. HYGROMÈTRE.
i.° Tableau des moyennes hygrométriques.

1828.

Janvier.

Février,

Mars.

Avril.

i Mai.

1 ̂ u*n>

I Juillet.

i
j Août.

I Septembre

jj Octobre.
ifi
î ^Novembre.
1
| Décembre.

; Moyennes

j

7 Heures.

83, 7

79>5

72,5

76,1

74>o

60,7

67,1

63,6

80,2

82,8

88,8

85,9

76,2

Midi.

83,5

78,9

71,5

75>7

/ °i°

60,1

65,2

62,7

79»3

82,6

88,5

85,3

75,6

5 Heures.

83,4

79=°

7r>7

75,8

73,1

58,5

65,3

65,8

80,1

8a;3

88,9

85,4

75,8

10 Heures.

83,9

79; O

71,8

76,3

73>7

% 9

66,4

63,0

8o,6

82,7

89,2

85,7

76,0

Moyennes.

83,6

79'1

71,6

76,0

73,5

59,8

66,0

63,8

80, r

82,6

88,8 (

85,6 |

75>9

On voit donc qu'à Montpellier la moyenne hygrométrique, pour

l'année ï S a S ^ a é t é 70,9, au lieu de 71,6 qu'elle avait été en 18.27.
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z.° Tableau des mouvemens hygrométriques.

1828.

Janvier.

Février.

Mars»

Avril.

Mai.

Juin.

Juillet.

Août,

Septembre.

Octobre.

Novembre.

Décembre.

Maximum.

Moyenne.

Minimum.

Oscillations.

Maxima.

88,5

87,0

82,5

83,5

83,o

73,0

79.5

74.o

90,0

89,0

97>°
94.5

97.o

85,i

73,0

:>4,o

Moyennes.

83.6

79-1
7 ' » 6

76,0

7355

59,8

66,o

63,8

80,1

82,6

88,8

85,6

88,8

75,9
63,8

a5,o

Minitna.

74,O

67 s5

56;5

65>O

62,5

46,0

5o,o

5o,o

62,5

71,0

79,o
8o,5

8o,5

63,7

46:o

34,5

Oscillations.

19,5

26^0

l8,5

2O,5

27 ;o

29 5

z4<o

2-7,5

18,0

18,0

29,5

15,5

46 o

Ce tableau donne, pour le p.us grand maximum ,
Et pour le plus petit minimum , \

Différence 5 Ï 5 O

Ainsi à Montpellier, pendant Tannée 1828. l'aiguille de l'hygro-
mètre a parcouru , sur la graduation , 5i divisions.
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§. I I I . THERMOMÈTRE.

Tableau des moyennes ihermomètriqucs*

3x3

1
1828.

Janvier.

Février,

Mars,

Avril.

Mai.

Juin.

Juillet.

\ Août.

Septembre.

Octobre.

Novembre.

Décembre.

Moyennes.

7 Heures.
i

6,98

6,86

8,28

17,46

3 1 , 2 1

22,65

20,97

18,65

i3,64

10,77

6,60

t3,84

Midi.

1

io,65

io5go

i3,75

*6,g4

21,09

25,91

26560

a5,55

22,78

17,81

i4,4o

10,43

18,07,

5 Heures.

948

1O,22

12,67

i6,o5

2O?43

20,23

25,82

24,85

26,69

16,82

10,00

9 ' ' 7

* 7»57

10 Heures.

6,75

,7,53

9>87

1 2 , 7 2

17,03

3 1 , 1 2

22,36

21.53

19,42

14,78

11,91

14,43

f

Mo^eones.

11

8,46

8,88

I I ? T 4

ï4;42

I9,OO

23,37

24;36

a3,22

21,86

15,76

12,66

8,34

l5596

Ainsi , à Montpellier , la température moyenne de l'année 1828,
a été i5%g6 ; un peu supérieure à la moyenne d'octobre.
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2.° Tableau des mouvemens thermométriques.

11828.

Janvier,

Février.

Mars.

Avril.

Mai.

Juin,

Juillet.

Août

Septembre.

Octobre.

Novembre.

Décembre.

Maximum,

Moyenne.

Minimum.

Oscillations.

.-.,.,.

Maxiina.

i6f5o

3 [9O©

a4o5
26,55

28,7 5

3i >3o

28.90

2555o

22?l5

• *7>75

i4,oo

3i53o

22*60

i4>oo

i7?3o

Moyennes.

8,46

8,88

11,14.

i442
19,00

33,87

24,36

23,22

21,85

«5,76

12,66

8,34

24,36

15,96

8.34

16,02

Minhua.

3,i5

—o,5o

r,8o

7,25

12,00

17,20

16,40

i7,85

i4,85

475
4,8o

j,8o

17,85

8,45
—o,5o

i8?35

OsciLiations.

H.55

17,00

19,20

16,80

i4,55

11555

14,90

u,o5

io?65

17,40

12,95

12,2O

I9?2O

14,ÏO

io,65

8,55

Ce deiaier tableau donne, pour le plus grand "maximum , 3*,3o
El pour le plus peut minimum , —^0,00

Diflcrence 3r58o



QUESTIONS PROPOSÉES. 3*5
De sorte qu'à Montpellier, dans Tannée 1828 , le sommet de la

colonne de mercure a parcouru , dans le tube du thermomètre 9

un espace de 3i°,8o*

$. IV. INCLINAISON MAGNÉTIQUE.

Le 8 oclobre 1828 , j'ai observé l'inclinaison de l'aiguille ai-
mantée, au moyen d'un appareil construit par les frères Jecker,
à Paris ; en notant les inclinaisons, dans tous les aziinuths, de dix
en dix degrés, lisant l'arc aux deux extrémités de l'aiguille, re-
tournant ensuite cette aiguille, pour recommencer les mêmes ob-
servations relativement à son autre face f et employant enfin la for-
mule connue Tang ^z==Tang.fa-{-Tang.aj3, j'ai obtenu ainsi dix-huit
moyennes 9 desquelles j'ai conclu que l'inclinaison de l'aiguille, pour
ce jour-là à Montpellier, était comprise entre 64°.21/ et 64°«2(5'.

J'espère avoir, pour 1829, u n instrument propre à mesurer la.
déclinaison.

QUESTIONS PROPOSEES.

Théorème de géométrie.

perpendiculaire abaissée de l'on des sommets d'un parallélé-
pipède quelconque , sur un plan quelconque conduit par le sommet
opposé , est égale à la somme des perpendiculaires abaissées sur le
même plan des trois sommets qui environnent ce dernier; elle est
la moitié seulement de la somme des perpendiculaires abaissées sur
ce plan des trois sommets restans , respectivement opposés à ces
trois-là.
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Problème d'hydrostatique.

On suppose qu'il n'existe rien autre chose , dans l'univers, qu'une
masse de fluide élastique dont les molécules s'attirent en raison
composée de la directe de la masse de la molécule attirante et de
l'inverse du carré de sa distance à la molécule attirée ; on suppose
en outre que ce fluide se comprime proportionnellement aux pressions
qu'il éprouve ; on suppose enfin que ses couches de densité uni-
forme sont sphériques et concentriques, et l'on demande suivant
quelle fonction de leur rayon doit varier la densité de ces couches
pour que toute la masse fluide soit en équilibre ?

Problème de dynamique.

Tout étant comme dans le problème de la page 285 , si ce n'est
que le tube est exactement équilibré sur son axe et n'est sollicité à
se mouvoir que par le poids de la sphère introduite dans son in-
térieur; on demande de déterminer les circonstances du mouvement
tant de la sphère que de ce tube.
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GEOMÉTMIE ANALYTIQUE.

Démonstration de deux théorèmes sur les lignes
et surfaces du second ordre ;

Par M. BOBIXXIER , professeur à l'Ecole des arts et métiers
de Châlons-sur-Marne,

JNous nous proposons de faire voir, dans ce qui va suivre, que
quatre théorèmes déjà, connus > dont deux relatifs aux lignes et les
deux autres aux surfaces du second ordre , ne sont que des cas par-
ticuliers de deux autres théorèmes plus généraux qui paraissent
n'avoir point encore été remarqués,

I. Soient deux ellipses concentriques dont les diamètres princi-
paux coïncident , et supposons que leurs équations relatives à ces
deux droites soient

Soit un angle droit mobile, sur le plan de ces courbes , dont les
côtés les touchent respectivement ; en désignant par (<x,/3) , (a'^fi')'
les points de contact variables, nous aurons d'abord

jî**+BF=zi , A'*f+Bf*=i . ( 0

Les équations des deux côtés de cet angle seront respectivement

Tom. XJX5n.° n , i.er mai 1829. 43



3i8 T H E O R E M E S

J<xx+Bfy=i 9 A'a'x+B'pyssi ; (a)

et , parce que l'angle est droit, nous aurons en outre

JA'ataf+BB'ffî=o ; (3)

et Ton voit que l'équation en x et y, résultant de l'élimination de
a, fi , a! , fi' entre ces cinq dernières équations, serait celle de la
courbe décrite par le sommet de l'angle mobile.

L Soient posés

B'$'=:l' , (4)

= r / 2 ; (5)

les équations ( i) , (2) , (3) deviendront ainsi

— i = 1 , - — -=f = 1 » (6)
SL~ B ' A' B' 9 V '

ax+hy—i , a'x-\-b'y~\ , (7)

tfû/+W/=o . (8)

Les équations (5) et (8) pourront alors être écrites comme il suit:

or 5 il est connu qu'à trois pareilles relations, entre quatre quantités,
on peut, comme équivalentes, substituer les trois suivantes (*) :

(*) Soient, en eflFet, deux systèmes de coordonnées rectangulaires , de mêtne
origine, et soient (a:, y) , (t , w) un même point considéré, tour à tour, dans
les dtun systèmes. Le carré de sa distance à l'origine devant être le même
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Cela posé, les équations (7) peuvent être écrites ainsi:

pour les deux systèmes, on devra avoir, quel que soit ce point,

Présentement les coordonnées x et y devant être des fonctions linéaires
de t et u qui doivent s'évanouir en même temps que ce$ dernières t ©a
peut écrire

X=pt+p'u , y=qt-\.q*u ; (2)

ce qui donnera, en substituant dans (i)> transposant et développant,

équation qui, par ce qu'elle doit être identique, donne

p>+q2=l , p'*+q'*=i , ppf+qqr=:o . (3)

D'un autre càté,si l'on prend, tour à tour, la somme des produits des
équations (2) , d'abord par p et q , puis par pf et qf

 $ en ayant égard aux
relations (3) , il viendra

t=px+qy $ u—p'x+qtf ; (4)

substituant dans (1) , transposant et développant, on aura

équation qui , devant aussi être identique , donne

~o i (5)

relations qui , conséquemment, doivent être équivalentes aux. relations (3),
Kous nous sommés déjà appuyés sur cette équivalence à la pag. i5c) du XIi.e

volume du présent recueil.
J. D. G.
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prenant alors la somme de leurs carrés , ayant égard aux rela-
tions (10) , il viendra simplement

-H-/=^ + ̂  . • 00

Supposons présentement que les deux ellipses aient les mêmes
foyers , et conséquemment la même excentricité ? on aura ainsi

i i i i , . i i i i , v
= = — — , o u b i e n - —• — = — — — ; ( 1 2 )

A B 4* W ' A A1 B B' ' K '

et ? par suite ,

B> A^B^^A' A) \& B) A ^ B \B>

c'est-à-dire (6) ,

ou bien encore

>

A \ r< J B \ r' J r'* \ B B> } ?

mais on a aussi (6)

ajoutant ces deux équations membre à membre , et ayant c'garfl aux
relations ( io) , il viendra

A B r*~ r'* T . B B' *

c'est-a-dire, en réduisant et ayant égard à la relation (12 ) ,
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i . i i i i i

T** r** Â ' B '~ 3Ï' ' B '

au moyen de quoi l'équation ( n ) deviendra

I I i t I

A ' B" ~ ^"*" B

c« qui permet d'écrire, pour plus de symétrie ,

équation d'un cercle qui a son centre à l'origine.
Si , au lieu de deux ellipses , on avait deux hyperboles, ou

bien une ellipse et une hyperbole , il n'y aurait rien de changé
que les signes de B et de B/ , ou de l'un d'eux seulement, ce
qui pourrait quelquefois réduire le cercle à un point ; ou même le
rendre imaginaire. On a donc ce théorème:

THÉORÈME L Si un angle droit se meut sur un plan , de
telle sorte que les côtés touchent respectivement deux coniques li-
confocales , son sommet décrira la circonférence qui leur sera
concentrique.

Le carré du rayon de ce cercle sera égal à la demi-somme des
carrés des cordes qui , dans les deux coniques , /oindront deux som-
mets consécutifs.

Soit e l'excentricité commune aux deux courbes, et soient res-
pectivement f et ff les distances de leurs sommets à un même
foyer, nous aurons

A

dou nous conclurons
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Si nous substituons ces valeurs dans les équations des deux cour-
bes, en y changeant x en oc—e pour transporter l'origine au foyer
commun négatif, elles deviendront

ou , en chassant les dénominateurs , développant ; ordonnant et di-
visant par ez

Avec les mêmes données l'équation (i3) du cercle décrit par le
sommet de l'angle deviendra

Si Ton suppose ensuite que e devient infini , les équations des deux
courbes deviennent celles de deux paraboles données par les équa-
tions

et celle du cercle devient

c'est-à-dire , celle d'une perpendiculaire à Taxe commun des deux
courbes.
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D'un autre côté, en égalant entre elles les valeurs de f , Vé->

qaation résultante

qui doit être celle de la corde commune ou de Taxe de sym ptôse
des deux courbes, donne aussi la même valeur pour x ; on a donc
ce théorème :

THÉORÈME IL Si un angle droit se meut sur un plan 9 de
telle sorte que ses côtés touchent respectivement deux paraboles de
même axe et de même foyer, son sommet décrira Taxé de symp-
iose des deux courbes.

Le théorème I peut encore être énoncé comme il suit :

THEOREME III. Si deux coniques bi-confotales se meuvent ,
dans le plan d'un angle droit , de manière à toucher respective-
ment ses deux cotés > leur centre commun décrira une circonférence
qui aura pour centre le sommet de cet angle*

On peut supposer , tour à tour , dans le théorème I, i.° qu£
les deux coniques se confondent en une seule ; 2.0 que , sans qu'elles
se confondent, leurs foyers communs se confondent en un seul ;
on obtient ainsi ces deux théorèmes connus, qui ne sont, comme
on le voit, que des cas particuliers de celui-là;

Si un angle droit se meut , sur un plan , de manière à être cons-
tamment circonscrit à une même conique, ou de manière que ses
côtés touchent respectivement deux cercles concentriques ; son som-
met décrira une circonférence qui aura pour centre le centre de la
conique ou le centre commun des deux cercles directeurs.

Son sommet décrira donc une ligne droite si la courbe est une
parabole^

II est encore facile de conclure des théorèmes I et / / qu'une eU
lipse et une hyperbole de mêmes foyers, ou bien deux paraboles
de même axe et de même foyer 9 se coupent toujours orthogonale-
ment.
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H. Soient trois ellipsoïdes concentriques, dont les diamètres prin-

cipaux coïncident ; et supposons que leurs équations , relatives à
ces trois droites , soient

Soit un angle trièdre tri-rectangle , mobile dans l'espace, dont les
faces touchent respectivement ces trois ellipsoïdes ; en désignant par
(<x5$?7) , (a', {3',/) , {af* t$" 9i") les trois points de contact variables,
nous aurons d'abord

A«?+ Bp+Cy*=i , u&ufz-{-Btpz-\*Cf<y'*—i f AW+B"lP*+CW*=2ii * (r)

Les équations des trois faces de cet angle trièdre seront respecti-
vement

et, parce que l'angle trièdre est tri-rectangle , nous aurons , en outre

o r , bien que ces équations « e soient qu'au nombre de neuf seu-

lement , on peut néanmoins éliminer entre elles les neufs coordon-

nées des trois points de contact , et l'équation résultante, en x,f

z , sera celle de la snrface décrite dans l'espace par le sommet

de l'angle trièdre mobile.

Soient posés

sb't t QWzsc'1 , (4)

szr"* ; (5)

les équations (0> (2) • (3) deviendront ainsi
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a'1 b'* c" o"* ê"> c»*+ + ++
=i , a'x+b'y+c'z^i , a"x-\-b"y-!rc"z = i , (7)

=o , «"«+^"^+^=0 , flfl/+3i'+£c/=o ; (8)

les équations (5) et (8) pourront al»rs être écrites comme il suit :

or, il est connu qu'à six pareilles relations entre neuf quantités,
on peut, comme équivalentes , substituer les suivantes (*) :

(*) Soient, en effetr deux systèmes de coordonnées rectangulaires de même
origine, et soient (a? ,y ,z ) , (t , u , v ) un même point considéré, tour à
tour, dans les deux systèmes* Le carré dé sa distance à l'origine devant
être le même pour ces deux systèmes, on devra avoir , quel que soit ce
point,

x*+y*+z*=t*+u*+v* . (i)

Présentement, les coordonnées x % y , z devant être des fonctions linéai-
res de ty u , v qui doivent s'évanouir en même temps que ces dernières , oa
peut écrire

x=pt+pfu+p"? , y^qt-t-q'u+q'W , r=rJ4-r'tf+r/V ; (2)

ec qui donnera en substituant dans (1}» transposant et développant

Tom. XIX 44
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équation qui # parce qu'elle doit être identique, donne

^JD'un autre c.6iét si l'on prend, tour à t o u r , la.somme des produits res*
pectifs des équalïons ( a ) , d'abord par p ,q,r9 ensuite par pf, ^' ,7^ , puig
enfin peu* /?;/ , qfr, r'% en a ja» t e'gar4 aux relations (3) , il viendra

, vt=zp'fx*t-q"y+rr'z ; (4)

substituant dans (1 ) , transposant et développant, on aura

(10)

équation qui , devant aussi être identique, donne
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Cela posé, les équations (7) peuvent être écrites ainsi:

b'a y . c 1 af

— xA r-P - z = — , — x\
bff1 a b

== — , — x A
r"

prenant alors la somme de leurs carrés 9 en ayant égard aux relations
( to) , il viendra simplement

1 J rz r/2 r*À

Supposons présentement que deux des sections principales des trois
ellipsoïdes aient les mêmes foyers , et, par suite, même excentricité,
on aura ainsi

I

A
x

~A"
t

B

t

C

d'où , en retranchant 9

1

B

9a (5)

relations qui, conséquemment, doivent être équivalentes avec les relations (3).
Nous nous sommes déjà appuyés ( Annales, torrr. XII , pag* i63 ) sur cette
équivalence signalée , pour la première fais , par Lagrange dans sa Mécani-
que analytique , et dont M. Poisson a donné postérieurement une démons-
tration fort élégante daus la Correspondance de M. Hachette ( tom. I , pag,

J. D. G.
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c'est-à-dire, que les troisièmes sections principales auront aussi la
même excentricité , et, par suite , les mêmes foyers. On tirera de là

r ï i i i t i i i i i i .

~2' I? ~ Î 7 ~ ÏF ^ C7 C 9 1"~"~A ~B» W C ^ ~ Ï Ï ' ^ l2^

au moyen de quoi on aura

*'* i h'% , cfZ a'* è'* c» / 1 i \ f I I \ / I ï \ / 3

c'est-à-dire (5), (6), (12) ,

a/z llll c/!i / ! , S

\ C L" J '

ou bien encore

^ V r" J B \ r" J ~ C { r" ) ~~ r»> T \ C C» J '

mais on a aussi (6)

ajoutant ces trois équations membre à membre , en ëjant égard aux
relations ( io) ? il viendra



X

DE GEOMETRIE, 3r>9

A B ~ C r*~ r'* T"> ~ B ~ C B> C"

c'est-à-dire , en réduisant e t ayant égard aux relations ( 1 2 ) ,

r a T
 r / , ~ r//* , 4 ~ r # "• C " - 4 ' B " ~ C A » * B O

au moyen de quoi l'équation ( I I ) deviendra

ce qui permet d'écrire, pour plus de symétrie,

équation d'une sphère qui a son centre à l'origine.
Si , au lieu de trois ellipsoïdes en avait trois byperboloïdes,

Ou bien deux ellipsoïdes avec une hyperboloïde, ou encore deux
hyperboloîdes avec un ellipsoïde , il n'en résulterait que de simples
changemens de signes dans quelqu'un des neuf coefficiens A, B,
C, A'9 B', C , A", B», C" ; le lieu cherché serait donc tou-
jours une sphère , qui pourrait seulement se réduire quelquefois à
un point , ou même devenir imaginaire. On a donc ce théorème :

THÉORÈME L Si un angle trièdre tri-rectangle se meut dans
tespace ? de manière que ses faces touchent respectivement trois sur-
faces du second ordre dont les sections principales soient hi~con-
focales , son sommet décrira une sphère qui leur sera concentrique.

De là on conclura facilement cet autre théorème :

THÉORÈME IL Si un angle trièdre tri-rectangle se meut dans
T espace, de manière que ses faces touchent respectiçement trois
sur j aces du second ordre dépourvues de centres, dont les sections
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paraboliques principales aient même axe et même foyer 9 son som~
met décrira un plan perpendiculaire à leur axe commun.

Le théorème I peut encore être énoncé comme il suit :
THÉORÈME III. Si trais surfaces du second ordre 9 invaria-

blement liées entre elles, et ayant leurs sections principales li-
tonfocales , se meuvent dans l'espace, de manière à toucher res-
pectivement les trois faces dun angle trièdre tri-rectangle fixe ,
leur centre commun décrira une sphère ayant son centre au somr
met de l'angle trièdre.

Si, dans les théorèmes I et II, on suppose que deux des sur-
faces du second ordre se confondent , on obtiendra ces deux-ci r

THÉORÈME IV* Si deux surfaces du second ordre ont leurs,
s et t ion s principales bi-c on focales, et qu'un angle trièdre tri-rec-
tangle se meuve dans F espace > de telle sorte que deux de ses fa-
ces touchent constamment une de tes surfaces , tandis que la troi-
sième touche constamment Vautre + le sommet de cet angle trièdre
décrira une sphère concentrique avec ces deux surfaces*

THEOREME V. Si deux surfaces du second ordre dépourvues
de centre ont même axe et même foyer % et qu'un angle trièdre se
mauve dans Véspace , de telle sorte que deux de ses faces touchent
constamment une de ces surfaces , tandis que la troisième touche
constamment Vautre 9 le sommet de cet angle trièdre décrira un
plan perpendiculaire à taxe commun de ces deux surfaces»

On peut supposer , tour à tour, dans le ^théorème I > i.° que
les trois surfaces se confondent en une seule ; su° que , sans qu'el-
les se confondent, les foyers communs de leurs sections principa-
les se confondent en un seul, on obtient ain^i ce double théorème
démontré par M. Poisson , da»s la correspondance de M. Hachette
( lom, I , pag. 237 } , et qui n'est, comme an le voit, qu'un cas
particulier de notre théorème général :

$/ un angle trièdre tri-rectangle se meut, dans Vespace , de rna<-
nière à être constamment circonscrit à une même surface du se*
conâ ordrey ou de manière que ses Jaces touchent respectivement
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trois sphères concentriques , son sommet décrira une sphère qui
aura pour centre le centre de la surface du second ordre ou le
centre commun des trois sphères directrices (*).

Son sommet décrira donc un plan } si la surface du second or—
are est dépourvue de centre.

U est encore facile de conclure, de notre théorème général , que
trois surfaces du second ordre 7 dont les sections principales sont
bi'Confocales , se coupent deux à deux à angles droits.

•{*) Dans le dernier numéro de la Correspondance de Bruxelles ( tom, Vf

pag. 3a ) * le cas de trais sphères concentriques a été considéré par divers
géomètres , et deux d'entré eux. ont observé avec raison que , «ans taire
aucune dépense de calcul 9 ce cas pouvait ê*;re démontré très-simplement
par des considérations purement géométriques ; mais on peut dire plus en^
Core , et ii nous paraît que c'est méconnaître tout à fait la nature du ceixle
^t ceile d« la sphère, <jue de ne point admettre , sans démonstration , et
comme conséquences immédiates de leurs définitions , les propositions plûj
générales que voici ;

i . Si une droite 4'une longueur im>à~ I . Si un angle d'une grandeur inva-
riable se meut sur un plan % de manière riable se meut sur un plan , de m%~
que ses deux extrémités soient constant-* nîère que ses deux côtés soient cons-
ment sur les circonj'èrenoes de deux cer*> tamment tangens à deux cercles ro«-
cles cornentriques % cette droite envelop*» centriques^ son sommet décrira , dans
pera , dans son mouvement , une troi- son mouvement, la circonférence d'un
sitme circonférence concentrique aux troisième cercle concentrique aux deujç
deux pr ornière s- premières»

II, Si un triangle êquilatéral se meut II. Si un angle trièdre équilatèral se
dans Vespace , de manière que ses som- meut dans ^espace, de manière que ses
mets soient constamment sur trois sphè- faces soient constamment tangentes à
res concentriques, ou de manière que trois sphères concentriques , ou de ina\
ses côtes touchent constamment ces trois nière que ses arêtes touchent constamr
sphères, le plan de ce triangle envelop- m*nt ces trois sphèrest le sommet de
pera , dans son mouvement , une qua- cet angle trièdre décrira , dans son
frième sphère concentrique aux trois au- mouvement, une quatrième sphère con-
tres* centrique aux trois autres.

J. ft G.
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III. De ces divers théorèmes on peut aisément , par la théorie

des polaires réciproques , conclure les suivans :
THÉORÈME L Si un angle droit > mobile sur le plan de deux.

cercles qui se touchent > a constamment son sommet à leur point
d'intersection , Id droite mobile qui joindra les points de contact res*
pectifs des deux cotés de cet angle avec les deux cercles^ passera
constamment par leur autre centre de similitude ou d'homologie*

THÉORÈME IL Si un angle trièdre tri-rectangle » mobile dans
l'espace, a constamment son sommet au point de contact de trois
sphères , le plan mobile qui passera par les points où les trois
arêtes de cet angle trièdre percent respectivement ces sphères, pas-
sera constamment par un même point fixe de la droite qui joint
leurs centres*

THÉORÈME IIL Si un angle droit, mobile sur le plan de
deux coniques fixes y a son sommet en un point Jixe de ce plan y

et que ce point soit tellement situé que, dans quatre des situa-
tions de tangle mobile, les droites qui joindront les points d'in^
ter section respectifs de ses cotés avec les deux coniques se confon-
dent avec leurs quatre tangentes communes , cette droite , dans tou-
tes ses positions, cette droite mobile enveloppera une troisième co-
nique ayant pour foyer le sommet de l'angle mobile*

THÉORÈME IV. Si un angle trièdre tri-rectangle, mobih dans
Vespace , a son sommet en un point fixe f et que , dans- huit de
ses positions , en conduisant des plans par les trois points où ses>
arêtes percent respectivement trois surfaces fixes du second ordre
ces plans coïncident avec les huit plans tangens communs à c§s
trois surfaces , dans toutes les autres situations de l'angle trièdre,
le plan mobile enveloppera une surface de révolution du second
ordre , ayant pour foyer le sommet fixe de cet angle trièdre.

Ou peut consulter , sur la démonstration de ces divers théorè-
mes , un article inséré à la pag, 185 du précédent volume des
Annales.

Nous terminerons par un théorème assez remarquable sur les co
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coniques bi-confocales ; ce théorème consiste en ce que trois coni-
ques bi-confocales étant données , si un triangle mobile et varia-
ble de forme est constamment circonscrit à Vune d'elles , de telle
sorte que deux de ses sommets décrivent les deux autres , son troi-
sième sommet décrira une quatrième conique bi-confocale avec les
trois premières.

Ce théorème résulte de ce que i.° en plaçant le centre du cer-
cle directeur à Van des foyers , les trois premières coniques se trans-
forment en trois cercles ayant un axe de syrnptose commun ; 2,0 trois
cercles tracés sur un même plan , ayant un axe de symptose com-
mun ; si l'on inscrit à l'un d'eux un triangle mobile et variable
déforme, dont deux côtés enveloppent respectivement les deux au-
tres j son troisième côté enveloppera un quatrième cercle ayant un
axe de symptose commun avec ies trois premiers ( POKCELKT, Pro-
priétés projectiles , pag. 3s3 ).

Châlous-sur-Marne, le 10 novembre 1828.

Sur le théorème d'Euler relatif aux polyèdres ;

Par M. G E R G O N H E .

v/N a vu dans le III.me volume du présent recueil ( pag. 169 )
que ce n'est qu'après des tentatives réitérées qu'Euler est parvenu à
établir 9 d'une manière à la fois complète et générale, son curieux
théorème sur la relation constante entre le nombre des faces, ce-
lui des sommets et celui des arêtes d'un polyèdre quelconque. Ou

Tom. XIX £5
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sait que, dans ces derniers temps, M. Cauchy a démontré , d'une
manière beaucoup plus simple, un autre théorème dont celui d'Eu-
ier n'est qu'un cas particulier.

En suivant une marche un peu différente, M. le docteur J. A,
Grimer , de Torgau , dans le Il.me volume du précieux recueil de
M. Crelle ( pag. 367 ) , est parvenu à démontrer le théorème d'Eu-
1er d'une manière plus simple encore , et , en suivant la marche
tracée par l'auteur, on peut obtenir une démonstration non moins
simple du théorème de M. Cauchy, et ramener ainsi toute cette
théorie à être racontée, pour ainsi dire , dans une promenade, à
quelqu'un même qui n'aurait aucune notion de géométrie, ainsi
que nous allons le faire voir.

Remarquons d'abord que , si s est le nombre des sommets d'urî
polygone ouvert, s-{-i sera le nombre de ses côtés; c'est-à-dire,
que le nombre des côtés d un polygone ouvert surpasse constam-
ment d'une unité le nombre des sommets de ce polygone*

Soit présentement un système non interrompu, ou, en d'autres ter-
mes , un réseau de polygones contigus les uns aux autres et for-
mant, par leur ensemble, un polygone unique , convexe ou non.
Soient F le nombre des figures partielles composant ce polygone
total , S le nombre des points qui leur servent de sommets et A
Je nombre des droites qui leur servent de côtés.

Concevons qu'on enlève un quelconque des polygones extérieurs
sans toucher aucunement aux autres; ceux-ci formeront un nou-
veau réseau. Désignons par F/ le nombre des figures qui compo-
sent ce dernier, par $' le nombre des points qui lui servent de
sommet et par A1 le nombre des droites qui lui servent de côtés.

Il est évident que , pour passer du premier réseau au second ,
on n'aura eu autre chose à faire que de supprimer dans celui-là
un certain polygone ouvert, et, qu'en représentant par s le nombre
de ses sommets , ou aura
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£/ -S—s ,

d'où on conclut sur-le-champ

ainsi, en supprimant un des polygones extérieurs , le nombre des
polygones, augmenté du nombre des points servant de sommets et
diminué du nombre de droites servant de côtés, demeurera cons-
tant; il en sera donc de même si Ton enlève un second poly-
gone extérieur , puis un troisième , et ainsi de suite, jusqu'à ce
qu'on ait enfla amené le réseau à se réduire à un polygone uni-
que.

Mais, dans ce dernier cas, on aura évidemment

donc > cette relation aura également lieu quel que puisse être le
nombre des polygones qui composeront le réseau , c'est-à-dire que,
dans un réseau de polygones contigus les uns aux autres, le nom-
Ire des polygones , augmenté du nombre des sommets, surpasse cons-
tamment dune unité le nombre des droites» C'est le premier des
deux théorèmes de M, Cauehy.

La forme de la démonstration de ce théorème prouve évidem-
ment qu'il est applicable aux polygones plans, curvilignes et mix-
tilignes, comme aux polygones plans rectilignes, pourvu que l'on
admette qu'aucun des premiers n'a moins de trois cotés, et il n'est
pas moins évident qu'il serait encore vrai , sous la même restric-
tion , pour un réseau de polygones curvilignes tracés sur une sur-
face courbe quelconque.

Enfin, il sera vrai aussi pour un système de polygones recti-



336 P O L Y G O N E S
lignes tel que deux polygones consécutifs pourraient n'être pas si-
tués dans un même plan ; c'est-à-dire , en d'autres termes , pour
un poljèdre ouvert; de sorte qu'en représentant par f le nombre
des faces , par s le nombre des sommets et par a le nombre des
arêtes d'un tel poljèdre, nous devrons avoir

f+s~~a—\ ;

c'est-à-dire que, dans tout polyèdre ouvert, le nombre des faces,
augmenté du nombre des sommets> surpasse constamment d'une unité
le nombre des arêtes*

Remarquons que la même relation subsisterait encore , îors même
qu'on voudrait faire abstraction tant des sommets que des arêtes
extérieures du poljèdre ouvert, puisque les uns et les autres étant en
même nombre, la valeur de f>—a n'en serait aucunement affectée; ainsi
dans tout poljèdre ouvert, le nombre des faces , augmenté du nom—
bre des arêtes intérieures 7 surpasse constamment d'une unité le nom-
bre des sommets intérieurs*

Si Ton enlève une quelconque des faces d'un poljèdre fermé
quelconque 9 il deviendra un poljèdre ouvert dans lequel le nom-
bre des faces sera moindre d'une unité , tandis que le nombre des
sommets et celui des arêtes demeurera le même si donc F ^ S$

A représentent respectivement le nombre des faces , celui des som-
met et celui des arêtes du polj'èdre fermé 9 nous devrons avoir (i)

d'où

c'est-à-dire que , dans tout polyèdre fermé > le nombre des faces,
augmenté du nombre des sommets, surpasse constamment de deux
unités le nombre des arêtes* C'est le théorème d'Eu 1er.

Soit présentement un sjstèmenon interrompu ?ou 7 en d'autres termes,
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un roseau de polyèdres contigus les uns aux autres et formant , par
leur ensemble , un polyèdre unique ? convexe ou non. Soient P le
nombre de ces polyèdres , F le nombre des plans leur servant de
foc es , S le nombre des points leur servant de sommets et enfin À
le nombre des droites leur servant à'arêtes.

Concevons qu'on enlève un quelconque des polyèdres extérieurs ,
sans toucher aucunement aux autres ; ceux-ci formeront un nou-
veau reseau. Désignons par P/ le nombre des polyèdres de ce der-
nier réseau, par F/ le nombre des plans leur servant de faces, par
S/ le nombre des points leur servant de sommets et par Af le nom-
bre des droites leur servant d'arêtes.

Il est évident que , pour passer du premier réseau au second ,
on n'aura autre chose à faire que de supprimer dans celui-là un
certain polyèdre ouvert, et qu'en représentant par / l e nombre de
ses faces, par s le nombre de ses sommets intérieurs et par a le
nombre de ses arêtes intérieures , on aura, comme nous l'avons
prouvé plus haut ,

f+s—a-i ; (i)

mais on aura aussi ? d'un autre côté ,

A'-A—a ;

d'où on conclura sur-le-champ ? en ayant égard à la relation (i) ;

ainsi, en supprimant un des polyèdres extérieurs, le nombre des
faces , plus le nombre des sommets moins le nombre des arêtes ,
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moins encore le nombre des polyèdres, demeurera constant ; il en
sera donc encore de même si Ton enlève un second polyèdre ex-
térieur , puis un troisième, et ainsi de suite, jusqu'à ce qu'on ait
enfin amené le réseau à se réduire à un polyèdre unique.

Mais , comme alors , en vertu du théorème d'Euler , on aura

et comme d'ailleurs on aura P = i , on pourra écrire

donc cette relation ou son équivalente

aura également lieu , quel que soit le nombre des polyèdres dont
le réseau sera composé ; c'est-à-dire que , dans un réseau de po-
lyèdres contigus les uns aux autres , le nombre des faces , augmenté
du nombre des sommets, surpassa constamment d'une unité le nom-
bre des arêtes augmenté du nombre des polyèdres. C'est le second
théorème de M. Cauchy , que M. Grimer n'avait pas démontré.

En rapprochant ce qui précède des laborieuses reclierckes d'Euler ,
sur le même sujet, on se trouve ramené , comme dans tant d'autres
cas, à cette réflexion, savoir: qu il est bien rare qu'une théorie
sorte sous sa forme la plus simple des mains de sou premier au-
teur. Nous pensons qu'on sert peut-être pins encore la icience ea
simplifiant ; de la sorte , des théories déjà connues, qu'en l'enri-
chissant de ihéories nouvelles , et c'est là un sujet auquel ou ne
saurait s'appliquer avec trop de soin.

Ou peut voir à la pag. 167 du XV.m* volume du présent re-
cueil, les nombreuses et piquantes conséquences qui résultent de
ce théorème.
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QUESTIONS

Solution du problème de statique énoncé à la
pag. 283 du XFILm® volume des Annaies ;

Par un ABONNÉ» (*)

1 ROBLKME, Bf quelle manière doit être posé nn fil unifor-
mément pesant , d une longueur donnée 5 parfaitement flexible et
inextensible t sur deux tringles fixes , rectilignes , horizontales et
parallèles 9 d'un diamètre infiniment petit , n'exerçant sur ce fil
aucun frottement, pour s'y tenir en équilibre ? Quelle est en outre
la moindre longueur de ce fil, qui paisse permettre l équilibre.

I. Considérations préliminaires. Avant d'attaqaer cette question
par le calcul, examinons d'abord ce que les notions les plus élé-
mentaires de la statique nous permettent de découvrir sur le nom-
bre et la nature des solutions dont eîie peut être susceptible* Cette
attention préliminaire nous parait ici d'autant plus convenable que,
généralement parlant , le problème ne peut être résolu algébrique-
ment que par les séries.

La première remarque qui s'offre à l'esprit, c'est que l'équilibre
ne pourra subsister qu'autant que le fil, abandonné à lui-même,
se trouvera contenu, en totalité, dans un plan vertical perpendi-
culaire à la direction commune des deux tringles , dont la résis-

(*) M. Timmermuns s'est aussi occupé de ce problème.
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tance se réduira ainsi à celle de deux points fixes ou de deux
anneaux infiniment petits, dans lesquels ce fil se trouverait engagé.

Ces points fixes diviseront la longueur totale du fil en trois par-
ties , dont rinferaicdiu*re affectera la courbure d'une chaînette uni-
formément pesante , tandis que les deux extrêmes, pendant vertica-
lement, feront équilibre par leurs poids , aux tensions qui s'exer-
ceront aux deux extrémités de l'antre partie.

Supposons , en premier Heu , que les longueurs des deux parties
extrêmes soient, Tune et l'autre, infinies; alors leurs poids et , par
suite , les tensions aux deux extrémités de la partie intermédiaire
étant également infinis, cette panie sera tendue en ligne droite;
elie aura la moindre longueur qu'elle puisse avoir.

Si les longueurs des deux parties extrêmes , sans être infinies ,
sont néanmoins très-grande par rapport à celle de la partie inter-
médiaire, tout se passera encore à peu près de la même manière,
II arrivera seulement que cette partie intermédiaire affectera une
faible courbure.

Si alors on tente de diminuer un peu cette courbure au pro-
fit des longueurs des parties extrêmes, comme alors le poids de
ces parties ne sera pas augmenté eu proportion de l'accroissement
de tension aux deux extrémités de l'autte , cette tension deviendra
prépondérante, et l'action qu'elle exercera sur les parties extrêmes
ramènera bientôt le système dans l'état d'équilibre où il se trou-
vait d'abord.

Que si , au contraire , on tente d'augmenter un peu la courbure
de la partie intermédiaire , aux dépens de celles des parties ex-
trêmes , l'action de celles-ci ne se trouvant pas diminuée en pro-
portion du décroissement de tension aux deux extrémités de l'au-
tre, leur action sur celie-ci deviendra prépondérante et tendra à
son tour à ramener le système dans sa situation d'équilibre.

Cet équilibre du système sera donc tel que, dans quelque sens
qu'on tente de l'en écarter un peu, il tendra constamment à y re-
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venir ; c'est-à-dire que ce système se trouvera dans une situation
àïéquilihre stable.

Si Ton supposait, au contraire, les longueurs des parties extrê-
mes nulles , ou du moins très-petites , par rapport à celle de la
partie intermédiaire 9 on conçoit que l'équilibre ne pourrait avoir
lieu , et que l'action prépondérante des tensions, aux extrémités de
cette partie, tendrait à faire glisser ces parties extrêmes sur les points
fixes, et à faire entièrement tomber le fil.

Entre les deux états extrêmes que nous venons de considérer ,
on eu conçoit un où le poids des parties extrêmes n'aura e\arte-
metit que l'action strictement nécessaire pour cmitre-balducer la ten-
sion aux dijux extrémités de la partie intermédiaire « et lVinpcJcher
d'entraîner ces parties extrêmes en les faisant glisser sur les appuis.

Si donc, dans cet-état de choses , on tente «l'augmenter an peu
la longueur de la partie intermédiaire , aux dépens de celles des
parties extrêmes , l'action de celles-ci cessant dès lors de lutter effi-
cacement contre les tensions aux extrémités de l'autre, ces tensions
deviendront prépondérantes , et le fîl sera entraîné de dessus les
appuis ? comme nous le disions tant-à-l'heure.

Que si , au contraire , on tente de diminuer un peu la langueur
de la partie intermédiaire , au profit de celles des deux, autres , ce
sera l'action de celles-ci qui deviendra à son tour prépondérante ,
et qui fera retourner le système vers la situation d'équilibre sta-
ble que nous avions considéré en premier lieu , e£ dans laquelle
il finira par se fixer.

Voilà donc un autre état d'équilibre dont le'système doit tendre
constamment à l'écarter davantage , dans quelque sens qu'on l'eu
écarte un peu ; c'est donc une situation d'équilibre instable.

On conçoit , au surplus , que moins le fil aura de longueur ,
pourvu toutefois qu'il en ait suffisamment pour qne l'équilibre puisse
être établi , et plus aussi ces deux situations d'équilibre stable et
instable devront être voisines Tune de l'autre. Il devra donc y avoir
telle longueur de fil pour laquelle ces deux bituations d équilibre

Tom. XIX 45
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se confoftdroût en une seule , et cette longueur sera évidemment
la moindre pour laquelle l'équilibre puisse être établi. Cette situa-
tion unique sera d'ailleurs telle que , si Ton tente de diminuer un
peu la longueur de la partie intermédiaire du fil, au profit de
celle des parties extrêmes, le système tendra à revenir dans la
situation qu'on l'avait contraint d'abandonner ; tandis que si , au
contraire , on tente d'allonger cette partie, aux dépens des deux au~
très, elle tendra à s'allonger davantage encore, jusqu'à ce que la
fil échappe entièrement aux appuis. Ce sera donc là une situation
d'équilibre mixte.

Toutes ces diverses considérations peuvent, au surplus, être lit-
téralement appliquées à une pièce d'étoffe homogène, d'une lar-
geur constante , que l'on voudrait soutenir sur deux bâtons rectiligness

fixés horizontalement dans 4es directions parallèles. On peut , ea
effet, considérer cette pièce d'étoffe comme une suite de chaînet-
tes uniformément pesantes, posées les unes à côtés des autres, dans
des plans verticaux parallèles.

II. Equation de la chaînette. Rapportons une chaînette, unlformé-
mement pesante, à la tangente et à la normale en son point le plus
bas, prises respectivement pour axes des x et des y. Soit pris pour
unité de poids ce que pèserait une portion de cette chaînette égale
en étendue à l'unité de longueur ; si alors s exprime la longueur
de l'arc de courbe compris depuis l'origine jusqu'à un quelconque
(x,y) de ses points 9 cette lettre représentera aussi le poids de cet
arc ; et si z et ç expriment respectivement les tensions qui ont lieu
à l'origine et au point ( j , j ) , ces lettres exprimeront aussi les
longueurs des portions de la même chaîuette dont les poids pour-
raient faire équilibre à ces mêmes tensions.

Or, on sait, par les premiers principes de la statique 5 que la
tension à chacune des extrémités d'une chaînette , est à son poids
comme le sinus de l'angle que fait avec la verticale la tangente à
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son autre extrémité, est au sinus de l'angle des tangentes aux deux
extrémités* On a donc cette double équation

Z

éy dx
17

dfoù on conclut ces deux-ci,

(1) p=z — . (2)
^ dx K /

z =s , (1) p=z
dx ^ dx

En différentiant la première, il vient

j y ( dy y

ou bien

d'où , en intégrant ̂

dy
nous n'ajoutons point de constante 7 parce que x et — doivent être
nuls en même temps»

Cette inte'grale revient à

z
r
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nar rannnH héquation qui , rendue rationnelle et résolue par rapport à — ? donne

* ; (3)

donc

ce qui donne, en intégrant,

e eu

*} (5)

Ici encore noos n'ajoutons point de constante , parce que x et s
doivent être nuls en même temps.

En substituant dans l'équation (2) la Taleur de — 5 donnée par

l'équation (4), elle devient

x se
z%vz=:z [ e s -f"*

En intégrant ensuite l'équation (3), il vient

où k est la constante arbitraire. Remarquant alors cme x et y doi-
vent être nuls en même temps, on trouve k=.z , et ; par suite,
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te

Au moyen des équations (5) 5 (6) , (7)5 un point ( J T ? J ) étant
donné sur le plan des axes, on déterminera quelle longueur s doit
avoir la chaînette tendue de l'origine à ce point 9 pour que sa
tangente , an premier de ces deux points , se confonde avec l'axe des
&9 supposé horizontal, et on déterminera, en outre, ses tensions
z et v en ces deux points, c'est à-dire les longueurs qu'il faudrait
prendre sur un fil uniformément pesant de la même nature, pour
que leurs poids fissent équilibre à ces mêmes tensions.

Mais , par une combinaison convenable de ces trois équations, on
peut les remplacer par d'autres plus simples; et d'abord la com-
paraison des équations (6) et (7) donne sur-le-champ

pzzz+y . (S)

En prenant, tour à tour, la demi-somme et la demi-différence
des équations (5) et (6) , il vient

(9)

équations dont la seconde équivaut à la première, pourvu qu'on
admette que s change de signe avec x. En les multipliant mem-
bre à membre, il viendra

S—s*—z% . ( Ï O )

On pourra donc remplacer les équations (5), (6), (7) parles équa-
ions (8), (g) ? (10) , dont une seule est transcendante.
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Si l'on veut transporter l'origine au point quelconque (—/,—z/)f

auquel cas t et u seront les coordonnées du point le plus bas de
la courbe , il ne s'agira que de changer respectivement x et y en

et tf+j, ce qui donnera

-s=.ze z i C12)

III. Solution du problème. Soit présentement ic la longueur to-
tale du fil en équilibre sur les deux points fixes (a, b) , (a'7b

f)
que 9 pour fixer les idées , nous supposons situés l'un et l'autre du
côté positif du point le plus bas ( / ,«)*. Alors *>, ç/ étant les lon-
gueurs des deux parties extrêmes, pendant verticalement, et s, s'les
longueurs de la chaînette comptées depuis le point ( / , u ) situé
sur son prolongement, jusqu'aux points ( a, b ) , ( a*, bf ) , la lon-
gueur de la partie intermédiaire sera s—s/ ; de sorte qu'on aura

?+*'+(>—S')—2C . ( î4)

On aura, en outre, en vertu des équations ( n ) , (tz) , ( i 3 ) ,

, (18)

t>+s=z.e z , (16) ï+^z-e z , (19)

^a—-sz=>zx ; (17) P/2—s'*=z* ; (20)

équations au moyen desquelles on déterminera les sept inconnues / ,
v 9 ? > ^> s > s' 9 z , lorsque les grandeurs a , a', 3 , ^ , £ seront don-
nées.

Comme les inconnues t et u sont étrangères au problème qui
nous occupe y il convient de les éliminer d'abord. Il suffit pour cela
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de retrancher l'équation (18) de l'équation ( i 5 ) , et de diviseren-
fuite Téquation (16) par l'équation (19) ; il vient ainsi

$>—,£—y?—^ , (21)

û . (22)

fie :sor,ie qn*on aura, pour déterminer p9p
/
9s,s/

9z les cinq équa-
tions (14), (17) , (20) , (21), (22).

L'écuation (2s) montre que, dans le cas d'équilibre, les parties
extrêmes du fil, pendant verticalement, doivent se terminer sur la
même droite horizontale (*).

En égalant les valeurs de z* , données par les équations (17) et
(20) ; oa ea conclut

équation qui exprime ce théorème : si Ton construit un triangle dont
la base sok égale à la longueur de la partie intermédiaire, cour-
bée en chaînette, du fil en équilibre, et dont les deux autres cô-
tés soient égaus en longueur aux parties extrêmes de ce fil, pen-
dant verticaiecxient ; la perpendiculaire abaissée du sommet du trian-
gle, sur la direction de cette base, la divisera en deux segmens res-
pectivement égaux aux longueurs des deux segmens de la partie in-
termédiaire , comptés depuis son point le plus bas.

Pour simplifier le problème , supposons que les deux points fixes
soient situés sur la même horizontale , à la dislance 2.dW\n de l'autre ;
on aura aiu^i bf~h et a—a!z=zzd, on en conclura , par l'équation (21),

(•) Oa conclura facilement de là que, quel que puisse être le nombre des
points d'appui, e t , par suite , le nombre des parties intermédiaires ploydes
en chaînettes, toujours les parties extrêmes, pendant verticalement, devront f

4ans le cas d'équilibre , se terminer sur la même horizontale.
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r1^?, et pa r l ' équa t ion ( 2 2 ) ^ = 5 — s ' ; les é q u a t i o n s ( i 4 ) > (ll)

( 2 0 ) et ( 2 2 ) se r é d u i r o n t alors à

y ' " v / ' " ^ V J

mettant dans cette dernière , pour ç~\-s et v—s , leurs valeurs don
nées par les deux précédentes, elle deviendra

d'où , par l'extraction de la racine quarre'e,

d

c—z.e z . (27)

Par le développement en fraction continue , oit par tout autre moyen
analogue, on tirera de cette dernière, dans chaque cas particulier,
la valeur de r , et on eu conclura ensuite celles de p et s, au
moyen des équations (24) et (25),

Si Ton veut savoir , pour ce cas particulier , quel est le fîî le
plus court qui puisse résoudre le problème, il faudra égaler à zéro
la différentielle de la valeur de c , prise par rapport à z , ce qui
donnera

à

o = (z—d).e z ;

l'égalité à zéro du second facteur répondant au fil le plus long ;
nous aurons simplement zz=.d 9 d'où £r=^/ ; les équations (24) efc
• r\ j • a2+f . e~—1 ,(2D) donneront ensuite p n -—• a , et s=z~ -a »

2.e ie

Lyon, le 18 avril 1828.
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Mémoire sur Thyperbole équilatère (*) ;

Par M. BOBILLÏER , professeur à l'Ecole des arts et métiers
de Châlons-sur-Marne.

fVVXfVl/WWVVVV'VVWVl'VVlIVVI

N sait que deux diamètres conjugues quelconques d'une hyper-
bole équilatère font avec son axe transverse deux angles aigus com-
plément l'un de l'autre , et que conséquemment les deux asymp-
totes divisent en deux parties égales les quatre angles formés par
ces deux diamètres ; d'où il suit encore que l'angle de deux quel-
conques des diamètres d'une telle hyperbole est le même que ce-
lui de leurs conjugués.

Donc aussi, l'angle de deux droites 9 tracées arbitrairement sur le
plan d'une hyperbole équilatère , est le même que celui des deux
diamètres de la courbe qui en contiennent les pôles respectifs. Ainsi
tout ce qui a été démontré pour le cas d'une directrice circulaire
peut se dire également du cas où cette directrice est une hyper-
bole équilatère (**) ; on pourra dire, en particulier 5 que la po-
laire d'un cercle, par rapport à une hyperbole équilatère 9 est une
conique qui a pour foyer le centre de cette courbe et pour direc-
trice la polaire du centre du cercle ; si donc ce cercle est concen-

(*) Voy., sur le même sujet, la pag. ao5 du XI.«e volume du présent recueil*
{**) Voy. Annales t toxn. XVIII, pag. i85.

J. D. G.

Tom. XIX, n.° 12 , i . e r juin 1829. 46
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trique avec l'hyperbole, sa polaire réciproque sera un autre cercle
qui lui sera concentrique; et si, en outre, il a pour diamètres les
axes de l'hyperbole, il sera lui-même sa polaire réciproque. Il est
visible, en outre, que, réciproquement, la polaire réciproque de
l'hyperbole, par rapport à ce cercle , sera une hyperbole qui aura
le même centre , les mêmes sommets et les .mêmes asymptotes, et
qui , par suite , se confondra avec elle.

On peut prouver, plus généralement, que si, sur les mêmes dia-
mètres conjugués , on décrit une ellipse et une hyperbole , chacune de
ces deux courbes sera à elle-même sa polaire réciproque, par rapport
à ïautre courbe prise pour directrice. En effet, les équations de
ces deux courbes seront comprises dans la formula

^équation de la tangente à Tune d'elles, en ua point ( x', y/ ) , sera

Ax'x±By'y=C ,

et l'équation de la polaire, relative à l'autre, d'un point quelcon-
que ( xu , y/! ) sera

"y=C ;

or, si Ton veut que cette polaire coïncide avec la tangente, il
faudra prendre xN-^x , y^zz^—x1 , d'où x"2zzx/% , y / / 3 = j / a . Ainsi
l'équation de la polaire réciproque sera

ç'est-à-dire, la même que celle de la courbe proposée.
Il résulte évidemment de là que , si deux paraboles de mêma

paramètre , et tournées en sens inverse, se touchent de telle sotte
que leurs axes soient parallèles , chacune d'elle sera à elle-même
sa polaire réciproque, par rapport à Vautre , considérée comme di-
rectrice.
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En rapportant les propriétés angulaires d'une hyperbole équila-

tère à cette courbe elle-même , considérée comme sa propre polaire
réciproque, on parvient à un grand nombre de théorèmes, parmi
lesquels nous nous bornerons à signaler les suivans :

La droite qui divise Vangle des rayons vecteurs dun même point
dune hyperbole équilatère en deux parties égales y lui est tan-
gente en ce point.

Le diamètre gui ça au point de contact d'une tangente à une
hyperbole équilatère divise, en deux parties égales ? deux des qua-
tre angles formés par les deux diamètres qui vont aux points
d intersection de cette même tangente avec les polaires des deux
foyers.

Les deux côtés d'un angle circonscrit à une hyperbole èquila-
tère, font respectivement des angles égaux avec les droites qui
joignent le sommet de cet angle aux deux foyers.

Les diamètres qui vont aux deux extrémités d'une corde d'une
hyperbole équilatère, font respectivement des angles égaux avec ceux
qui vont aux intersections de cette même corde avec les polaires
des deux foyers.

La demi-différence des angles, sous lesquels une même corde d'une
hyperbole équilatère est vue de ses deux foyers , est supplément de
l angle circonscrit suivant cette même corde.

Le supplément de Vangle 9 sous lequel une corde dune hyperbole
équilatère est vue de son centre, est égal à la demi-différence des
angles sous lesquels on voit du même point les portions des po-
laires des deux foyers interceptées par l'angle circonscrit suivant
cette corde.

.La portion dune tangente quelconque à une hyperbole équila-
tère , interceptée entre les tangentes à ses deux sommets , est vue sous
un angle droit de Vun et de Vautre foyers.

La portion de Vune ou de Vautre polaire des foyer s d'une hy-
perbole équilatère interceptée entre deux cordes supplémentaires r
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relatives à Taxe transverse de la courbe, est pue de son centre
sous un angle droit.

Si un angle droit se meut sur le plan cFune hyperbole èquila-
îère , de manière que F un de ses côtés soit constamment tangent à
la courbe et que l autre passe constamment par un de ses foyers 9

son sommet décrira un cercle qui aura pour diamètre taxe trans-
verse de la courbe.

La droite qui joint un des foyers d'une hyperbole èquilaiere au
pôle d'une corde qui passe par ce foyer % est perpendiculaire sur
cette même corde.

L'angle sous lequel on voit, du centre d'une hyperbole èquilatère,
la portion de la polaire de Tun de ses foyers, comprise entre F un
quelconque des points de la direction de cette polaire ? ci la polaire
de ce point est un angle droit.

Si y de l'un des foyers d'une hyperbole èquilaiere, on mène des
droites, i,° au sommet dun angle circonscrit et au point dinter-
section de sa corde de contact avec la polaire de ce foyer ; 2s aux
deux extrémités de la corde de contact ; les deux premières droi-
tes seront rectangulaires et diviseront en deux parties égales les
quatre angles formés par les deux dernières.

Si, du centre d'une hyperbole èquilatère 5 on mène des diamètres
aux quatre points d'intersection de la polaire de F un de ses foyers 9

i.° avec les deux côtés de Tangle circonscrit ; 2.0 avec sa corde
de contact et avec la droite qui va du foyer à son sommet ; les
deux derniers diamètres seront rectangulaires et diviseront en deux
parties égales les quatre angles formés par les deux premiers.

Pour parvenir à un antre principe qui conduit à un grand nom-
bre de propriétés nouvelles de l'hyperbole èquilatère 5 nous ferons
remarquer que, lorsqu'un angle droit tourne autour de son som-
met , fixé en un point du périmètre d'une conique , les cordes de
tous les arcs interceptés par cet angle concourent en un point fixe
situé sur la normale de sou sommet* Or, si la conique est une hy-
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perbole t'qniîatère , on pourra disposer l'angle droit de manière que
ses côtés soient parallèles aux asymptotes. La corde de l'arc inter-
cepté sera alors située à l'infini; le point invariable de la normale
du sommet passera donc aussi à rinfini; ce qui revient à dire que
les cordes des arcs interceptés par l'angle mobile seront constamment
parallèles ans normales du sommet, ou, si l'on aime mieux , perpen-
diculaires aux tangenles en ce même sommet. Il est visible d'ailleurs,
d'après ce qui a été démontré au commencement de cet article ,
que le diamètre non transverse qui contient les pôles de ces cordes
est perpendiculaire à celui qui contient le sommet, on a donc ce
théorème :

Toutes les cordes d%une hyperbole èquilatere ̂  perpendiculaires à une
même tangente , sont vues du point de contact sous un angle droit;
en outre P le diamètre non transçerse qui contient le pôle de lune
de ces cordes est perpendiculaire au diamètre transverse qui va au
point de contact de la tangente

A ce théorème correspond celui-ci: Les angles circonscrits à une
hyperbole èquilatere 5 dont les cordes de contact sont perpendiculai-
res à une même tangente, interceptent , sur cette tangente > des par—

. tics qui sont vues du centre de la courbe sous des angles droits*

Si 5 présentement , on rapporte l'hyperbole èquilatere à un cerc'e
directeur, de rayon arbitraire, ayant son centre sur le périuiètie
de la courbe ? sa polaire réciproque sera une parabole qui, d'après
ce qui a éié démontré ci-dessus, sera telle que tons les angles droits
qui lui seront circonscrits auront leur sommet sur la tangente me-
née à l'hyperbole ptr le centre du cercle directeur , et que leurs
cordes de contact passeront par le pôle du diamètre non trausverse,.
perpendiculaire à celui qui ira au centre de ce cercle. Il s'ensuit
que la polaire réciproque d'une hyperbole èquilatere , par rapport
à tout cercle directeur dont le centre est situé sur cette cou? le, est
vne parabole qui a pour directrice la tangente menée à lliyperbule
par le centre du cercle directeur, et pour foyer le pôle du dia-



354 THEOREMES
mètre non iransverse de cette hyperbole perpendiculaire à celui
ni ou centre de ce cercle*

II est facile aussi de reconnaître que l'axe de cette parabole sera
la polaire du point k , de concours de la tangente au centre du
cercle et du diamètre non transverse dont il vient d'être question ;
que son sommet sera le pôle de la seconde tangente qne Ton pourra
mener à l'hyperbole par le point k9 et qu'enfin le point de con-
tact de cette dernière sera sur la normale à l'hyperbole ; de sorte
que le lieu des points k sera la polaire réciproque de la dévelop-
pée de cette courbe , l'hyperbole étant prise pour courbe directrice ;
d'où il suit que ce lieu est du quatrième degré.

Voici présentement quelques applications.
Deux arcs interceptés sur un cercle par deux parallèles, sont vus

sous des angles supplémentaires ou égaux des différens points de
la circonférence, suivant que ces points sont entre ces parallèles ou
hors d'elles. Si donc on prend un cercle directeur dont le centre
soit sur la circonférence du premier r on pourra conclure de là que,
dans tout quadrilatère circonscrit à une parabole , de telle sorte
que l'une de ses diagonales contienne le joyer ; les angles dont les
sommets sont aux extrémités de Vautre diagonale sont égaux ou
supp lèmentaires*

Donc 5 deux cordes égales et parallèles d'une hyperbole èquilatère
sont vues d'un point de cette courbe sous des angles égaux ou sup-
plémentaires 5 suivant que Vœil est compris ou non compris entre
les deux droites.

Ce théorème , indiqué dans la Correspondance de Bruxelles , est dû à
M. Yatire. On pourrait le généraliser, en considérant dans le cercle deux
cordes non parallèles ; mais cela exigerait trop de développemens.

Le supplément d'un angle circonscrit à la parabole est moitié de
l'angle sous lequel sa corde de contact est vue du foyer.

Donc, l'angle sous lequel on voit une corde de l'hyperbole èqui~
laière r de l'un des points de son périmètre , est double de celui
sous lequel est vue, du même point} la portion du diamètre non
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transvêrse , perpendiculaire à celui qui passe par lœil5 interceptez
entre les tangentes aux extrémités de cette corde.

La portion d'une tangente mobile à la parabole, comprise entre
lieux tangentes fixes , est rue du foyer sous un angle constant.

Donc, les angles inscrits à une hyperbole équilatère qui s'ap-
puyent sur une corde fixe , interceptent, sur un diamètre non trans-
verse fixe, des portions qui sont vues sous des angles égaux de lune
des extrémités du diamètre perpendiculaire à celui-là.

Si un angle invariable se meut de manière que l'un de ses côtes
passe constamment par le foyer d'une parabole et que l'autre lui
soit constamment tangent % son sommet décrira une tangente à la
courbe. Cette tangente sera celle du sommet si l'angle invariable
^st droit.

Donc , si un angle de grandeur invariable tourne sur son sommet,
fixé en un point du périmètre dune hyperbole équilatère , la corde
mobile qui joindra le point où Vun de ses côtés rencontra cette
courbe avec celui où î}autre coupe le diamètre non transverse per-
pendiculaire à celui qui va au sommet de Iangle, passera cons-
tamment par un même point fixe situé sur la courbe. Ce point

fixe sera celui où la normale du sommet de tangle coupe la courbe
si l angle invariable est droit*

Ce théorème offre un moyen facile de construire tant de points
qu'on voudra d'une hyperbole équilatère , lorsqu'on connaîtra son
centre et deux de ses points. Soient O le centre et A ? B les deux
points donnés ; en prolongeant AO d'une quantité QC=OA ? le
point C sera un nouveau point de la courbe. Soit menée la corde
BC et soit D le point où elle est coupée par la perpendiculaire me-
née à AC par le point O ; en menant AD, nous pourrons considé-
rer l'angle CAD comme un angle mobile et invariable , ayant son
sommet A en un point de la courbe cherché, et alors BC sera la
corde mobile qui joindra le point C d'intersection de la courbe avec
l'un AC des côtés de l'angle, au point D d'interjection de sou au-
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tre côté AD avec le diamètre transverse OD, perpendiculaire au dia-
mètre AC de sou sommet. En faisant donc varier la position de
l'angle autour de son sommet, le point D, ainsi que les deux droi-
tes AC et BI) , varieront sans cesse , et ces deux droites donne-
ront , par leur intersection C ? tant de points de la courbe qu'on
voudra,

On démontrera facilement que, pour déterminer les asymptotes,
il faudra décrire sur AB au segment capable de l'angle invariable
CAD ; mener des droites du point B aux points où ce segment est
coupé par OD , et enliu conduire par le centre O des parallèles à
ces deux droites.

Parmi divers théorèmes que Ton peut démontrer à l'aide des con-
sidérations qui précèdent, le suivant mérite d'être particulièrement
remarqué. On sait que toute circonférence circonscrite à ua trian-
gle dont les trois côtés sont laugens à une parabole, contient le
foyer de cette courbe (*)• ïl eu résulte que tonte conique qui a
pour foyer un point d'une hyperbole équilatère qui touche les trois
côtés d'un triangle inscrit , touche aussi le diamètre non trans-
verse perpendiculaire à celui de ce foyer. De là on peut conclure
que les pieds des quatre perpendiculaires abaissées de l'un des points
d'une hyperbole équilatère, sur les trois côtés d'un triangle inscrit
et sur le diamètre non transverse perpendiculaire à celui de ce point,
se trouvent sur une même circonférence ; or , le pied de cette der-
nière perpendiculaire n'est autre chose que le centre de la courbe.

Donc ? si, de î un quelconque des points d'une hyperbole équila-
iere } on abaisse des perpendiculaires sur les trois côtés d'un trian^
gh inscrit 5 la circonférence qui passera par les pieds de ces per-
pendiculaires contiendra aussi le centre de l'hyperbole*.

(*) Voj- la pag. 4^ du présent volume*
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Si Ton remarque présentement que , par quatre points donnés ,

on peut, en général, faire passer une hyperbole èquilatère, on ob-
tiendra ce nouveaa théorème:

Quatre points étant donnés sur un plan \ si, de chacun d'eux , on
abaisse des perpendiculaires sur les directions des trois côtés du
triangle qui a ses sommets aux trois autres points, les circonfé-
rences , qui passeront par les pieds des perpendiculaires relatives à
ces triangles, se couperont toutes quatre en un même point, cen-
tre de l'hyperbole èquilatère contenant les quatre points donnés*

II est visible que, si les quatre points donnés appartiennent à
une même circonférence , les quatre circonférences dont il s'agit
se réduiront à quatre droites concourant en un même point (*),

Voilà donc un procédé fort simple pour construire le centre d'une
hyperbole èquilatère , assujétie à passer par quatre points donnés.
Une fois ce centre obtenu, on obtiendra tant d'autres points delà
courbe qu'on voudra , par le procédé indiqué plu» haut.

L'hyperbole èquilatère étant à elle-même sa directrice, la polaire
réciproque de l'avant-dernier théorème sera le suivant :

Si Ton circonscrit arbitrairement un triangle à urîe hyperbole èqui-
latère et qu'on lui mène une tangente également arbitraire , en cons-
truisant ensuite, sur les droites qui joignent le centre de la courbe
aux trois sommets du triangle, comme côtés de l'angle droit, trois
triangles rectangles dans lesquels l'autre côté de l'angle droit soit
dirigé de ce centre vers la tangente , et s'y termine, le cercle cir«
conscrit au triangle formé par les hypothénuses de ces trois trian-
gles passera par le centre de l'hyperbole.

Concevons présentement que le triangle inscrit à l'hyperbole èqui-
latère , dont il a été question ci-dessus , ait deux de ses côtés pa-
Tallèles aux asymptotes de la courbe, son troisième côté passera à
l'infini, et nous aurons cet autre théorème :

(*) Voy. la pag. 45 da présent
J. D. G.

Tom. XIX
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Si un rectangle a ses côtés respectivement parallèles aux asymp-

totes dune hyperbole èquilatère , et deux sommets opposés sur cette
courbe , la diagonale oui joindra les deux sommets restons passera
par le centre de F hyperbole.

Ce théorème, de nature projective, peut être ensuite généralisé
comme il suit :

. Si un parallélogramme a ses côtés respectivement parallèles aux
deux asymptotes d'une hyperbole quelconque > et deux sommets op-
posés sur la courbe , la diagonale % joignant les deux côtés restons,
contiendra le centre de l'hyperbole»

De là résulte un procédé fort simple pour déterminer le centre
d'une hyperbole lorsqu'on en donne trois points et qu'on donne
en outre des parallèles à ses deux asymptotes.

Soit P le point où se croisent les cordes d'une conique C vues
de l'un O de ses points sous un angle droit, et soit D la droite
polaire de ce point ; en plaçant le centre du cercle directeur au point
O , et représentant par C la polaire réciproque de C , par P7 celle
du point P , et par D' le pôle de D , il est visible que C sera
une parabole qui aura P'pour directrice et D7 pour foyer; par un
raisonnement analogue à l'un des précédens , on pourra donc
prouver que les pieds des perpendiculaires abaissées du point O, sur
les trois côtés d'un triangle inscrit à C et sur la droite D, sont si-
tues sur la môme circonférence ; or, le dernier de ces points est
invariable ;

Donc, i,° si , d'un point fixe, pris sur une conique , on abaisse
des perpendiculaires sur les directions des côtés de tant de triangles
inscrits qu'on coudra, les circonférences déterminées par les pieds*
des perpendiculaires relatives à ces différeras triangles se couperont
toutes au même point ; 2,° la perpendiculaire élevée de ce point à
la droite qui le joint au point de départ des perpendiculaires , sera
la polaire du point où se croisent toutes les cordes de la conique
vues du premier de ces points sous un angle droit.
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Au lieu d'abaisser des perpendiculaires, on pourrait abaisser des

obliques faisant, dans le même sens , des angles égaux quelconques.
Il est visible aussi que, si un angle mobile invariable tourne au-

tour de son sommet fixé en O , et si Ton joint par des droites les
points où ses côtés rencontrent respectivement la conique G et la
droke D ; la droite mobile, obtenue par cette construction, passera
constamment par un point fixe situé sur la conique C.

Si l'angle mobile est droit, le point fixe sera en outre sur la
normale du point O.

De tout cela résultent deux nouveaux procédés pour décrire une
conique assujétieà passer par cinq points donne's ; mais ils sont plus
compliqués que les procédés connus.

En imaginant que le triangle inscrit se change en une tangente
et tme corde menée par le point de contact, on parvient aussi ai-
sément à déduire de ceci un procédé pour mener une tangente à
une conique.

Châlons , le u novembre 1828.

DYNAMIQUE.

Solution d'un problème de dynamique ;

Par M. LE BARBIER..

/W\fW\fWlfV/V\î\/\/\/VV\

JLROBLÊME. Une roue circulaire porte ; à sa circonférence ,
un canal annulaire, dont toutes les sections, suivant des plans con-
duits par Taxe de la roue , sont des cercles égaux , ayant leurs cen-
tres sur une circonférence située dans le plan de cette roue et
cmirique avec elle.
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La roue est mobile dans l'espace, mais de telle sorte (pie son,

centre coïncide constamment avec le sommet d%un cône droitfixe,
dont taxe est vertical ; quelle doit tourner uniformément autour
de ce cône , avec une vitesse donnée 9 de manière à le toucher suc-
jcessivement t suivant toutes ses génératrices, et à n'avoir avec lui
qu'un frottement du second genre.

Dans r intérieur du canal, supporté par la roue, ori a introduit
une sphère pesante, de même diamètre que ce canal , ayant son
centre de gravité à son centre de figure 5 et à laquelle on a im-
primé une vitesse quelconque ; et Von demande de déterminer les
lois du mouvement du centre de cette sphère, en faisant d'ailleurs
abstraction de la résistance de Faire et du frottement, et en svp~
posant d'ailleurs la sphère assez petite pour quil soit permis de
regarder toute sa masse comme étant réunie à son centre ?

Solution. Rien n'étant plus facile que de combiner le mouvement
de translation , donné et uniforme, du canal dans l'espace avec le
mouvement circulaire varié du centre de la sphère , dans l'intérieur
de ce canal supposé fixe, occupons-nous d'abord uniquemment de
la recherche des lois de ce dernier mouvement. C'est déjà de la
sorte que nous en avons usé récemment ( pag. ;>85 ) , en traitant
un problème analogue à celui-ci.

Les données du problème sont ici :
i.° L'angle générateur du cône fixe qu'enveloppe constamment

la roue dans sa révolution , angle que nous représenterons par a ;
2.0 La durée de cette révolution, que nous désignerons par T ;
3.° Enfin , la distance constante du centre de la sphère mobile

au sommet du cône, centre du mouvement du système; nous la
représenterons par r.

En conséquence, le développement du cône sçra un angle plan,
exprimé par 2t3-Sin.oc; c'est cet angle que décrira la ligne de con-
tact, sur le plan de la roue, pendant la durée d'une révolution
entière ; puisqu'on suppose que le frottement est du second genre
seulement; et, puisqu'on suppose que le mouvement de révolution
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est uniforme , le mouvement angulaire de la ligne de contact sur

te plan de la roue, dans le temps / , sera —-—-—.

La seule force accélératrice du système est la gravité que nous dé-
signerons, à l'ordinaire, par g. Si, à l'époque f 9 on la décompose ea
trois autres forces , la première dirigée suivant le rayon vecteur du ceo-
tre de la sphère Mobile, la seconde perpendiculaire au plan de la
roue et la troisième suivant la tangente menée par le centre de celte
sphère , au cercle qu'elle tend à décrire ; les deux premières com-
posantes seront détruites par la résistance du canal , tandis que la
troisième aura son plein effet. La'force accélératrice vraiment effi-
cace , à l'époque / , . sera donc seulement le produit de la gravité
g par le cosinus tabulaire de l'angle que fera alors la verticale me-
née par le centre de la sphère mobile avec la tangente menée par
le même point au cercle qu'elle tend à décrire, Cherchons donc
l'expression de ce cosinus.

Soit S le sommet du cône , centre de la roue, et soient , sur cette
roue , SA le rayon qui était en contact avec le cône à l'origine des
temps, SB celui qui est en contact avec «e même côûe à l'époque tT

B

D

&t enfin SC le rayon vecteur du centre de la sphère à la même
époque. Les rayons SB et SC varieront de situation , sur le pian
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de la roue , avec le temps / ; mais le rayon SA , au contraire *
emporté à la vérité dans l'espace , avec cette roue, sera fixe sur
elle, et , en conséquence, ce sera à sa direction que nous rappor-
terons, à chaque instant, celle du rayon vecteur du point mobile.

Supposons, pour fixer les idées , que le mouvement de la roue
autour du cône et celui de la sphère dans le canal s'exécutent de
manière à faire croître les deux angles ASB et ASC avec le temps
/ ; posons Ang*hSCr=0f, puisque ASB est l'angle décrit par la ligne
de contact sur le plan delà roue durant le temps / , nous aurons,

comme nous l'avons remarqué ci-dessus , -^«g.ASB=: ~ — , d'où.

Jtng.BSC=v ; et si nous menons , dans le plan de la

roue, le rayon SD, perpendiculaire à SC , nous aurons

Considérons présentement l'angle trièdre dont les trois arêtes sont
S B , S D et l'a^e du cône; cet angle trièdre est rectaiigle suivant
l'arête SB ; or , Taxe du cône étant vertical, et le rayon SB étant
parallèle à la tangente menée par le centre de la sphère , au cer-
cle qu'elle tend à décrire , il s'ensuit que l'angle plan hypolhénu-
sal, de cet angle trièdre, est précisément égal à celui dont nous
cherchons le cosinus ; or , les deux autres angles plans de cet an-
gle trièdre sont, d'une part , l'angle BSD, et de l'autre, l'angle oc9

générateur du cône; e t , comme d'ailleurs, dans tout angle trièdre
rectangle , le cosinus de l'angle plan hypothënusal est égal au pro-
duit des cosinus des deux autres, il s'ensuit que le cosinus cher-»
ché doit avoir pour expression

Cos.
ln.et \

T

et que 5 eonséquemment, la force accélératrice efficaoe , à l'époque t *
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g'Cos.aSin. l 9 .—~ J ;

on aura donc pour l'équation différentielle du mouvement du cen-
tre de la sphère, dans le canal supposé immobile,

équation qui, en posant, pour abréger

deviendra

à*ê / . 2*fSin* >j
— =/72Cos.aSin^9— — - — J . (

En multipliant les deux membres de cette équation par

/ de 2«rSi*U* \ <
2 U — T — ; ou 2d

elle deviendra

/ dd aaSin.as \ d2^ _ d. / . aw/Sin.* > ^. / . 223-fSin.̂  \
f — -—— J -r- =2mCos.a. — ( 9 ~ Sin, [ 9 J ;
\di T / àt* àt\ T J \ T / '

ou bien

(de 2*rSîn.* V

A dT T ~ J =
d'où, en intégrant

de 2*-Sin.« VT J = 2/72Cos.aCos. T9

étant la constante arbitraire.
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Pour la faire disparaître, admettons qu'à l'origine des temps l'an-

gle 0 soit égal à |3, -et qu'alors le centre de la sphère mobile ait
reçu , dans le sens du mouvement, une impulsion capable de lui
faire faire une révolution entière dans le canal, durant le temps T ;
on devra alors avoir , ep même temps >

,=„, «„». £ = ̂  ,
ce qui donne, en substituant,

4>UT* f J z=zA—2/72C0S.ÛÊCÔ5.^ *

d'où , en retranchant de l'équation précédente

d7 T )

^ ^ * )l (3)

Posons , pour abréger ,

e

d'où

il viendra , QUI substituant dans (3)

-^ j —4** f^ y - J 4-2/72Cos.aCos p—2wCos.aCos.co ;

d'où



DE D Y N A M I Q U E . 365

<J** Tf J? f * S in ce \*

Posons encore

ar= X ^ 4^* ( -* ) +2OTCos.aCos.̂ —37»Cos«aCos w ; (6)

d'où , en difïerentiant,

m/ 4^* { —-™"
T /

multipliant cette équation par l'équation (5) , on en conclura

z=zmCos.<xSin,(a ; (7)

mais de l'équation (6) on tire , en quarrant et transposant,

2mC0s.cc

à'oix

.aCoS.^^2 Ç

2/nCos.«

remarquant alors que la quantité sous le radical se décompose en
deux facteurs, et posant, pour abréger,

£=2/72(1 +Cos.(3)Cos.a4-4t^a ( -i — ) , /

s- • f (8)

on aura
Tom. XIX. 43
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Sin.corzr Y.

ce qui donnera, en substituant dans (7),

/(G

telle est donc l'équation qu'il faudrait intégrer pour obtenir la so-
lution la plus générale du problème.

Afin de pouvoir poursuivre l'intégration , sans trop particulariser
la solution, posons H=:o , c'est-à-dire (1) et (8),

ce qui peut arriver de bien de manières différentes , puisque nous
n'établissons ainsi qu'une relation unique entre les cinq données arbi-
traires et indépendantes r , a, (5 , r , T ; il en résultera £:=
de sorte que l'équation (10) deviendra

d/ =

dont l'intégrale sera

t+B= J=rh0g

S étant une nouvelle constante arbitraire.
Dans l'hypothèse actuelle de / f=o , Téquation (6) donne en quar-

raut

.(i—COS.OJ) ,

d'où
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en conséquence l'équation (12) deviendra

=Log.
COS-

. / A ù.-zrtS\nt» \

. -[e —

Pour faire disparaître la constante B rappelons-nous qu'on doit
avoir, en même temps, / = o et Ô=(3> ce qui donne ? en substi-
tuant ?

C O S . *-y

retranchant celle équation de la précédente, on aura

!—Cos.r/3 "

«-Cos. 1(6

ou bien

T

c'est-à-dire ?

ce qui donne

et, par suite,
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. ^ ) . (.3)

Au moyen de cette équation on pourra, pour chaque instant, dé-
terminer la situation du rayon vecteur da centre de la sphère mo-
bile , sur le plan de la roue ; mais on ne pourra, que par tâtonne-
ment , résoudre la question inverse , c'est-à-dire déterminer à quel
instant ce rayon vecteur aura une situation donnée.

Cherchons présentement l'équation polaire de la surface conique
décrite dans l'espace par le rayon vecteur du centre de la sphère
mobile. Rapportons ce rayon vecteur au plan horizontal conduit par
le sommet du cône et à la projection sur ce plan de la généra-
trice ? suivant laquelle ce cône est touché par le plan da la roue à
l'origine des temps. Soient <p l'angle que fait le rayon vecteur avec
ce plan à l'époque / , et ^ l'angle que fait sa projection , sur ce plan,
avec la projection de la génératrice dont il vient d'être question.

Considérons l'angle trièdre dont les arêtes sont l'axe du cône ,
le rayon vecteur dont il s'agit et la ligne de contact de ce cône
avec le plan de la roue à l'époque / ; cet angle trièdre est rectan-
gle suivant cette dernière droite; son angle plan hypo;hénusal est
évidemment le complément de l'angle <p , et ses deux autres angles

plans sont a et (/<—• —— ; clou il suit, en vertu du théorème rap-

pelé ci-dessus, qu'on doit avoir

Sin.cp=Cos.aCos. (9- — ^

Quant à l'angle $ , il est manifeste qu'il est la mesure de l'an-
gle dièdre compris entre deux plans verticaux conduits par l'axe du
cône, l'un passant par le rayon vecteur mobile et l'autre par la gé-
nératrice suivant laquelle le cône était touché par la roue à l'ori-
gine des temps, Cet angle est partagé en deux autres par le plan
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Yertical qui passe par la ligne de contact qui répond à l'époque / ;

l'un de ces deux-ci est évidemment -*-% et quant à l'autre, c'est

un des angles dièdres obliques de notre angle trièdre rectangle ,
en le représentant par £, on aura

Cot.<pCos.£=:Tang.a ,

d'où

#t conséquemment

^— ^+Arc. (Cos.=Tang ocTang.cp) ;

en joignant à ces équations l'équation (3) , c'est-à-dire

= 4 ^ ( - 1 — 5 ^ J+ai»Co9.«| Cos P-Cos. ( 9 - ^ ± ) ] , (3)

et éliminant donc / et 9 entre elle, l'équation résultante en ep et
$ sera l'équation polaire cherchée de la surface conique décrite par
le rayon vecteur de la sphère mobile.

En raisonnant uniquement dans l'hypothèse i?==o, déjà admise
ci-dessus, l'équation (i3) donne

0 =4Arc. j Tang.r:* ,Tang.^ j ;

mais l'équation (14) donne

z^tS\n * f Sin.0 \
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égalant donc ces deux valeurs, afin d'éliminer 0 , on aura

Arc. ( Gos.= 7T— }=4Arc. f Tang,=£ .Tang.~-/3 j l

d'un autre coté, l'équation (i5) donne

/ = _ {^—Arc(Cos.=TangaTang,<p)} ;

substituant donc cette valeur de / dans la précédente, on obtiendra^
pour l'équation polaire de la surface conique décrite par le rayou
vecteur du centre de la sphère mobile,

-E4'"-"Arc(Cos.=Tang*aTang.^)J
Arc (^Cos.== 1^1 . j = 4 Arc Tang.=^ 2Jr Tang.i ,3

Si Ton veut avoir l'équation de cette même surface conique en
coordonnées rectangulaires , en prenant pour axe des z, Taxe même
du cône , et pour axe des or, la projection sur le plan horizontal
conduit par son sommet de la génératrice suivant laquelle il est
touché par le plan de la roue à l'origine des temps ; on remarquera
que Ton a ainsi

Sin <p= . = , Tang y=s

d'où ; en substituant

Arc ( C o s . = , — .•• J
V y x2+y2-\~z*,Los.<x j
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Si Ton veut enfin avoir la courbe à double courbure décrite dans
l'espace par le centre de la sphère mobile, cette courbe sera don-
née par cette dernière équation combinée avec l'équation

de la sphère sur laquelle ce point est constamment situé.
On voit, par ce qui précède, que des problèmes de dynami-

que , fort simples en apparence , peuvent souvent conduire à des
résultats d'une complication inattendue.

'iwmÉTillE APPLIQUÉE.

Note sur la théorie analytique du moiré ;

Par un A B O N N É .

deux systèmes de lignes droites ou courbes, non consécu-
tives, situées dans chaque système sur une surface plane ou courbe
où elles se succèdent, non consécutivement, suivant une loi ma-
thématique quelconque.

Imaginons ces deux systèmes de lignes placés , dans un situation
quelconque , entre l'œil et un plan de projection , ils s'y projete-
ront suivant deux systèmes de droites ou de courbes planes , se
succédant également les unes aux autres , non consécutivement, dans
chaque système, suivant une loi mathématique déteniiuiée.

Les lignes de chaque système croiseront , en général , les lignes
de l'autre système , et les points où le croisement aura lieu ap-*
psrtiendront à un troisième système de courbes formant, ce qu'on
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appelle, un moiré, parce qu'on cherche à les imiter par la pres-
sion d'un cylindre, dans l'étoffe de soie appelée moire.

O r , les deux systèmes étant donnés de nature et de situation
dans l'espace , ainsi que le plan de projection f on peut , pour une
situation donnée de l 'œil, demander quelles seront, sur ce plan,
les courbes du moiré.

Ne nous proposant ici que de donner seulement une idée de la
manière dont on peut attaquer ces sortes de problèmes, nous sup-
poserons que les deux systèmes sont composés de droites parallè-
les équidistantes, situées dans des plans non parallèles.

Par l'oeil , concevons trois droites , la première, que nous pren-
drons pour axe des z 9 parallèle à la commune section des plans des
deux systèmes , et les deux autres que nous prendrons pour axes des
ce et des y , respectivement parallèles aux droites de ces deux sys-
tèmes. Il est aisé de voir qu'alors les deux couples d'équations

(0
x—a

(a )

dans lesquels 772 et n sont supposés des nombres entiers variables f

positifs ou négatifs , pourront représenter respectivement les droi-
tes d^s deux systèmes.

Pour des valeurs déterminées quelconques de m et 72, ces équa-
tions ne représentent que deux droites seulement , que nous consi-
dérerons comme correspondantes dans les deux systèmes; le rayon
visuel qui passera à la fois par ces deux droites, ira percer le plan
de projection au point on se croiseront leurs projections sur ce
pian.

Soient prises pour les équations de ce rayon

x=Az , y=Bz ; (3)

A et B étant deux coefficîens qu'il s'agira de déterminer. Il faudra
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exprimer, pour cela, que les quatre équations (i) et (3) 5 ainsi que
les quatre équations (2) et (3) ont lieu à la fois. Eliminant donc
tour à tour a r , y , z , d'abord entre les unes, puis entre les autres,
il viendra

tirant de là les valeurs de A et B , pour les substituer dans les équa-
tions (3) 3 on aura , pour les équations générales du rayon visuel
qui passe par deux droites correspondantes des deux systèmes , et
va percer le plan de projection au point où se croisent les pro-
jections de ces droites sur ce plan ,

{dJ^mg)xi=z.az > (e+n?i)y—hz ; (5)

On en déduirait les équations de tous les rayons visuels, passant
parles autres droites correspondantes des deux systèmes, en y met-
tant successivement tous les nombres de la suite naturelle 5 posi-
tifs et négatifs, tant pour m que pour n^ de sorte que, pour cha-
cun % on aurait toujours

m^n . (6)

Si donc des équations (5) on tire les valeurs de m et n, pour
les substituer dans cette dernière, l'équation résultante en ce ̂  y 7 z
sera celle d'une surface conique, lieu de tous ces rayons. Or, les
équaîions (5) donnent

az—âx hz-~-py

gx hj

l'équation cherchée sera donc

ou bien
Tom. XIX 49
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hy{az—ds)=gx(bz—ey) ,

équation d'une surface conique du second ordre , passant par les
trois axes des coordonnées.

Il est aisé de conclure de là que , dans le cas particulier qui
nous occupe, les courbes du moiré sont des sections coniques,pas-
sant toutes par les trois points où leur plan est percé par les pa-
rallèles conduites par l œil à l'intersection des plans des deux sys-
tèmes de droites et à ces droites elles-mêmes*

II ne faut pas perdre de vue que cette conclusion suppose es-
sentiellement que les lignes dont il s'agit sont rigoureusement droi-
tes , rigoureusement parallèles , rigoureusement équidistantes, et que
les deux surfaces qui les contiennent sont rigoureusement planes et
immobiles. C'est parce qu'il est extrêmement difficile, dans la pra-
tique , de satisfaire exactement à toutes ces conditions que, même
dans les cas les plus simples, les courbes du moiré présentent une
si grande variété de formes.

GEOMETRIE ELEMENTAIRE.

Démonstration de quelques théorèmes ;

Par M. P. R,

fjN article inséré dans la Correspondance de M. Quetelet ( tom.
IV, pag. 2o5 ) nous a fait naître l'idée d'un petit supplément à
l'article de la pag. n 3 du XVIII.me volume du présent recueil.
Le voici :

1I1E0REME L Si , par un point pris arbitrairement dans lin-
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ièrîeur d'un triangle, on mène des parallèles à ses trois côtés,
ces droites divise? ont ce triangle en six parties, dont trois seront
des triangles tels que Vaire du triangle proposé sera égale au quarré
de la somme des racines quarrèes des aires de ces trois là.

Démonstration* Soit A le triangle proposé; soient T9 T7, Tn les
trois triangles intérieurs et P , P/

 ; P" les trois parties qui sont des
parallélogrammes respectivement opposés; on aura

mais on a ( tom. XYIII, pag. n 4 )

donc

c'est-à-dire ,

comme nous l'avions annoncé.
THÉORÈME IL Si, par un point pris arbitrairement dans l in-

térieur d'un tétraèdre , on conduit des plans parallèles à ses qua-
tre faces, ces plans diviseront le tétraèdre en quatorze parties,
dont quatre seront des tétraèdres tels que le volume du tétraèdre
proposé sera égal au cube de la somme des racines cubiques des
volumes de ceux-là*

Démonstration, Soit A le tétraèdre proposé; soient T, T;, Tn

T'f/ les quatre tétraèdres intérieurs ; les dix autres parties seront ,
savoir: quatre parallélipipèdes P9 P\ P" 9 P

!n , respectivement op-
posés, et six troncs de prismes quadrangulaires ayant une arête la-
térale nulle, et que nous désignerons-par (pp;) , (pp/;) , (pfp") >
(p"p"r) » (PfPf/) 9 (ppw) 9 suivant les parallélipipèdes entre lesquels
ils se trouveront situés.
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Cela posé, on aura

A = T + T+ T"+ Tii-\-P-\-P<-\-P»JrP>n

mais on a trouvé (Annales, totn. X V I I I , p a g . 1 2 2 )

3 3 _ _ _ _ _ 3 3

'T'iT»' , P'=6\/TT"T'r' , P"=6\ZTVT"' , P'"—6\/TVT»

0/0=3/1^1^4-3y/ WT^ï , {P"p")-31/ _"T'+3/TT" ,

S 3 ^ 3 3

donc

v / ï ^

3

3

+3 {/

3 3 3

+ 6 v/ TT'T"-{-6\/ TTtfTff

7 T//2 Tw-p3 \ / T"T"2 4-6^/ TT'T»

c'est-à-dire ,

comme nous Tavions annoncé.

Ces deux théorèmes, dont le premier avait déjà été remarqué en
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l'endroit cité , par M. Lobatto, peuvent au surplus être directe-
ment établis , d'une manière fort simple , par les considérations sui-
vantes :

I. Les trois triangles T, T1
7 Tu sont semblables au triangle A ?

et chaque côté de ce dernier est évidemment la somme de ses ho-
mologues dans les trois autres ; or , les côtés homologues des trian-
gles semblables sont proportionnels aux racines quarrées de leurs
aires; doue on doit avoir aussi

et par suite

ÎL Les quatre tétraèdres T9 Tf, T/f, Tni sont semblables au tef-
traèdre A , et chaque arête de ce dernier est évidemment la somme
de ses homologues dans les trois autres ; ors les arêtes homologues
des tétraèdres semblables sont proportionnelles aux racines cubiques
de leurs volumes ; donc on doit avoir aussi

et par suite

À l'aide de ces considérations on reconnaîtra immédiatement la
vérité des deux théorèmes que voici, et dont le premier est celui
dont on s'occupe spécialement dans l'endroit cité de la correspon-
dance. Il est surprenant qu'aucun des géomètres qui Tout traité ?

n'ait songé à le ramener à des considérations aussi simples.
THÉORÈME III. Si , sur Vun des cotes d'un triangle , on prend

arbitrairement n points, et que ? par chacun d'eux 5 en mené
des parallèles à ses deux autres côtés ? ces parallèles diviseront
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le triangle en parallélogrammes, et en n-J-i triangles, tels

que taire du triangle propose sera égale au quarrè de la somme
des racines quarrêes des aires de ceux-là*

THÉORÈME IF. Si, sur l'une des arêtes d'un tétraèdre , on
prend arbitrairement n points, et que, par chacun d'eux, on con-
duise des plans parallèles aux deux faces qui déterminent l'arête

opposée 9 ces plans diviseront le tétraèdre en — > troncs de

pyramides quadrangulaires 5 et en n~f*i tétraèdres tels que le vo-
lume du tétraèdre proposé sera égal au cube de la somme des ra-
cines cubiques des volumes de ceux-là*

QUESTIONS PMOFOSEES.

Problème de dynamique.

l o u T étant comme dans le problème de la pag. 35g, avec cette
différence seulement que la roue est exactement équilibrée autour de
son centre, sommet du cône fixe , n'est sollicitée à se mouvoir que
par le poids de la sphère introduite dans rintérieur du canal; oa
demande de déterminer les circonstances du mouvement tant de cette
sphère que de la roue ?

Problèmes de géométrie.

ï, À un triangle quelconque on en inscrit un autre dont les
sommets sont les pieds des trois hauteurs du premier; à celui-ci
on en inscrit un troisième, sous les mêmes conditions ; au troi-
sième, on en inscrit un quatrième, de la même manière, et ainsi
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de suite indéfiniment. Sur quelle ligné sont situés les points où se
coupent les trois hauteurs de cette suite de triangles ?

ÏI. À un triangle quelconque on inscrit un cercle, puis un trian-
gle qui a ses sommets aux points de contact ; à ce second trian-
gle on inscrit également un cercle , puis un triangle qui a ses som-
mets aux points de contact , en continuant ainsi indéfiniment. Sur
quelle ligne sont situés les centres de tous ces cercles ?

III. On mène, dans un triangle quelconque ? les droites qui di-
visent les angles en deux parties égales, et* Ton fait des points où
ces droites rencontrent les côtés opposés des sommets d'un second
triangle ; on mène, dans celui-ci, les droites qui divisent les an-
gles en deux parties égales, et Ton fait des points où ces droites
rencontrent les côtés opposés, les sommets d'un troisième triangle 9

et ainsi de suite indéfiniment. Sur quelle ligne sont situés les points
où se coupent, dans chaque triangle , les trois droites qui divisent
les angles en deux parties égales.

Autre.

Y a-t-il , dans une ellipse , une corde mobile de grandeur cons-
tanîe , qui, dans son mouvement, enveloppe un cercle; et s'il y
existe une telle corde, quelle en est la longueur ; et quel est le
rayon du cercle qu'elle enveloppe ?

Théorèmes de géométrie.

Dans tout tétraèdre les perpendiculaires abaissées des sommets
sur les plans des faces respectivement opposées , sont quatre géné-
ratrices d'un même mode de génération d'une même surface réglée
du second ordre.



38o Q U E S T I O N S P R O P O S E E S .

Autre.

Il est impossible de décrire ? d'un seul trait de crayon , sans
quitter le papier, ni revenir sur des lignes déjà tracées, un qua-
drilatère simple ? avec ses deux diagonales.

FIN DU TOME DIX-NEUVIÈME»
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Mesure du volume du tétraèdre; par M. Gergonne. I5I«—i56
Sur les quatre cercles qui touchent les trois côtés d'un même triangle et

sur les huit sphères qui touchent les quatre faces d'un même tétraèdre ;
par M. L. P. F. R. 211—218

Solution d'un problème de géométrie, par M. Vallès. 252—256
Démonstration de quelques théorèmes ; par M. P . H. 3^4"*i*^7^

GÉOMÉTRIE PURE.

Développement d'une série de théorèmes relatifs aux sections coniques #
par M. Steiner. O"j—65

Note sur deux théorèmes de géométrie démontrés dans 1s précédent vo-
lume; par M. Bobillier. 249e""25â

GÉOMÉTRIE DE SITUATION.

Démonstration de quelques théorèmes ; par M. Steiner, ï*-"^
Additions et corrections à un mémoire sur les propriétés d'un système de

coniques, inséré dans le précédent volume; par M» Chasles. 2.&~™~'Ô2
JNote sur une inadvertance grave commise dans le précédent volume | par

M. Gergonne. 3.2—36
Recherches sur les lois générales qui régissent les courbes algébriques ;

par M, Bobillier' 106—*ii\
Double théorème de géométrie à trois dimensions ; par M, Gergonne. 11^12.0
Rectification de quelques propositions énoncées dans les Annales ; par M.

Gergonne* Iao—«124
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Recherches sur les lois générales qui régissent les surfaces algébriques ; par

M. Bobillier* i3ô-*i5i
Recherches sur les projections stéréographiques et sur les diverses pro-

priétés des surfaces du second ordre; par M. Chastes. i5y — IT5
Sur le degré de la polaire réciproque d'une courbe proposée ; par M.

Gergonne* « 218—220
Note sur les conditions nécessaires pour que quatre droites appartiennent

à une surface du second ordre; par M. Gergonne- 24*—24^
\ Théorèmes sur les polaires successives ; par M. Bobillier. 3o2—3o8

Sur le théorème d'Euler relatif aux polyèdres; par M. Gergonne* 333—309

HYDRODYNAMIQUE.

211Mémoire sur les oscillations des corps flottans ; par M. Sarrufï i85—-.
Mémoire sur les petites oscillations de l'eau contenue dans un cylindre •

par M. Poisson. 22$—*4*

MÉTÉOROLOGIE.

Résumé des observations météorologiques faites à Montpellier en 1817 ,*' par
M. Gergonne. . 9—20

Résumé des observations météorologiques faites à Montpellier en 1828 ;
par M. Gergonne* §08-—3iS

OPTIQUE.

Du mouvement de la lumière dans uu milieu transparent, dont la densité
\arie , dans tous les sens, suivant une loi mathématique quelconque % par M,
Gergonne. a

STATIQUE.

Solution d'un, problème de statique, par un abonné* 3
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C O R R E S P O N D A N C E

Entre les questions proposées et les questions résolues*

Tome XVII, pag. i 5 5 , ProblèmeI, If, résolus, tome XIX, pages 175—181
pag, ^83 , Problème I. 33g 3 ^

Tom, XVIII,pag, 184, Problèmes. ~ -J,
pag. 216 , Problème. M» •• .»
pag. aSa , Problèmes I , I I , ^^t-« —-̂  *- —
pag. 3o2 , Théorèmes. /^^K '- \ •- •
pag, 33g, Théorèmes. /..; > J \ . \ »•-
pag, 378 y Théorèmes. J ̂  / ' -..

Tom. X I X , pag. 36 , Problème. W \ J, ; 7 ' ' ' '
pag. 9 6 , Problème* V ^ v ^ 7 252—256
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ERRATA

Pour le dix-neuvième volume des Annales*

J r ÂGE 65 , ligne 4 àa texte » — inscrits et circonscrits ; lisez : inscrit et tir*
conscrit.
Deux dernières lignes, — même correction.

Pag. 66 , ligne 14, même correction.
Avant dernière ligne, — couperont; lisez ; toucheront.

Pag. 67, lignes 9 et 10, — placez ces mots: dans les deux tétraèdres ; entre
deux virgules.

Pag. 76 , ligne ao , — tracés ; lisez', tracé.
Pag. 10G 1 ligne 3 , — supprimez Jixes,
Pag. i33 , ligne 6 de la note , — placez une virgule après le mot huitième'
Pag, i35, ligne 7 , en remontant ,— supprimez la troisième virgule.
Pag. 161 7 ligne 6, en remontant, — tangent; lisez; tangent conduit.
Pag. 16g, ligne 11 , *— cône ; lisez; cône du second ordre*
Pag. 171 , ligne i 3 , — même correction.
Pag. 173 , lignes 7 et i 3 , en remontant,— même correction,
Pag. 174? ligne 4» e n remontant, •— môme correction.
Pag. 280, ligne 7 , en remontant , —mouvement ; lisez-, mouvement rectiligne
Pag. 296 , ligne 6 , —̂ placez une virgule après le mot membre.
Pag. 3 i6 , ligne 4> en remontant, — même correction après le mot axe.
Pag. 3a I , ligne 14, — circonférence ; lisez; circonférence d'un cercle*

Supplément à /'Errata du Tome XV111J**

u+ —B \ lisez: \^u

Pag. 106 , à la note •— ajoutez: voyez aussi Annales 9 tom. VII , pag.
Pag. 371 , ligne 2.} — supprimez le mot trois*



AVIS *

Sur le plaêemènt des Planches*
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