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ARITHMETIQUE POLITIQUE.

Quelques remarques sur les élections , les assemblees
deélibérantes et le systéme représentalif ;

Par M. GERGONNE.

s s s s s s s s s

JE faisais partie en 1791 de la garde nationale de Nancy , laquelle
3 cette époque se trouvait composée de 32 compagnies de 80 hommes
chacune , formant quatre bataillons; en tout 2560 individus. .

Cette institution, comme tant d’autres de la méme date , était,
comme l'on sait , extrémement démocratique ; tous les chefs, depuis
le caporal jusqu'au colonel , étaient élus par ceux~lad méme qui
devaient ensuite devenir leur subordonnés, et pour une année seule-
ment , sauf réélection. Etait-ce un mal ? était-ce un bien ? c’est l1a
une question tout i fait étrangére & mon sujet.

Le grade de colonel ne pouvait étre postulé par beaucoup de
gens; il exigeait quelques talens militaires , de l'aisance , du loisip
et une sorte de credit et de considération dans le public. Les suffrages

Tom. VI, n.°1, 1.°% juillet 1815.
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ne roulaient donc gudre, % chaque élection , que sur deux individus,’
entre lesquels les votans prenaient parti, souvert assez chaudement,
se traitant réciproquement de mauvais citoyens , et se donnant méme
quelquefois des épithétes moins honnétes encore , comme cela se
pratique en pareil . cas.

Le colonel en charge cette année-l1a ayant donné sa dem\ssmn,
les compagnies furent convoquées , chez leurs capitaines respectifs,
pour procéder i son remplacement. J'obtins, non sans quelque peine,
que le procés-verbal des opérations de la compagnie dont je faisais
partie , demeurerait chargé de la totalité des votes émis, et dont
la plupart étaient réputés voix perdues, par la majorité des votans.

Mais on n’avait pas pris la méme précaution partout; et, lorque
les 32 procés-verbaux des compagnies furent entre les mains du con-
seil d’administration , qui devait en fare le récensement, on s’apergut
que la plupart se{bornaient A énoncer le nom du candidat qux avait
réuni en sa faveur le veeu + e la majorité,

Quelques membres du conseil , en fort petit nombre au surplus;
proposérent de faire recommencer les opérations ; mais on était pressé
d’en finir ; et il fut conséqucmment décidé que, dans ehaque proces-
verbal , on réputerait candidat élu par la compagnie celui qui aurait
réuni le plus de voix en sa faveur; et que, sans égard aux suf-
frages tombés sur d’autres , celui qui aurait été dédsigné par la
majarité absolue des compagnies serait définitivement élu.

On supposa donc tacitement ,.et on crut bonnement en effet,
que la majorité absolue- des suffrages de la majorité absolue des
compagnies devait former la majorité absolue des suffrages des
votans. Cependant , pendant qu’on procédait au récensement des
procés-verbaux, je fis en moi-méme le petit calcul que voici :

La majorité absolue des suffrages dans une compagnie étant 41
et la majorité absolue des compagnies étant 17, il Sensuit que la
majorité absolue des suffrages de la majorité absolue des compagmes
me séleve qud 41<X17=697 suffrages ; et I'édlu peut, en toute
rigueur, n'en avoir, pas obtenu davantage.
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Mais, ajoutai-je , s’il n’y a que deux concurrens; comme il est
trés-possible et méme trés-probable , le compétiteur rejeté peut avoir
eu en sa faveur d’abord 3g suffrages dans 17 compagnies et ensuite
la totalité dans les 15 autres, ce qui fait d’une part 663 et de
Vautre 1200; en tout 1863.

Ainsi, dans cette hypothése , un candidat , avec 697 suffrages
seulement, est admis; et un autre , avec 1863 siffrages, c’est-2
dire, prés du sriple, est rejeté. Je rédigeai , sur ce sujet , une
courte note que je remis au conseil d’administration ; les yeux [urent
aussitot désillés, et il fut décidé qu’a Pavenir on procéderait d’une
maniére un peu plus réguliere.

Je sens qu’on aurait pu m’objecter que je supposais les choses
dans une limite extréme asscz peu probable ; mais jaurais pu
répondre & mon tour que du nombre de 697 suffrages que je
supposais & I'édlu au nombre de 1281 qui lui aurait été nécessaire
pour l'étre régulierement , il y avait une latitude assez raisonnable ;
et que , quand bien méme tout ne se serait pas exactement passé
comme je le supposais , toujours demeurait-il extrémement possible
que Iélu elt eu moins de voix que son adversaire.

On aurait pu m’objecter aussi que je supposais tous les suffrages
partagés entre deux concurrens seulement, ce qui pouvait fort bien
n’étre point rigourcusement vrai; mais, outre que, eomme je l'ai
déja observé , cette supposition ne devait guére s’écarter de la vérité ;
le cas de plus de deux candidats pouvait offrir un inconvénient
beaucoup plus grave encore : celui de présenter comme candidat
ayant obtenu la majorité absolue des suffrages d’'une compagnie , un
individu réellement repoussé par cette majorité.

Pour faire , tout d'un coup, bien ressortir cet inconvénient , pous-
sons les choses & l'extréme ; supposons que les suffrages d’une
compagnie, au premier tour de scrutin, se soient répartis entre 78
candidats dont 76 aient obtenu une seule voix chacun et les deux
restans chacun 2. Quand bien méme ces deux derniers auraient été
abhorrés par les 76 votans qui ne leur auraient pas accordé leurs
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suffrages, ils ne se seraient pas moins trouvé obligés de les faire
porter sur eux seuls 4 un second tour de scrutin , et quel qu’ait
€té le vainqueur dans la lutte, il n’en eut pas moins eu réellement
76 suffrages contre lui; et cependant il eut dd étre présenté comime
ayant la majorité absolue des suffrages en sa favear.

Faisons une seconde hypothése, moins éloignée du train ordinaire
des choses ; supposons seulement trois candidats A, B, C, dont,
A un premier tour de scrutin, le premier ait obtenu 27 suffrages,
ie second 27 aussi et le troisitme 26 seulement ; supposons en cutre
que le candidat C agrée aux volans qui se sont prononcés en faveur
de A et B, mais un peu moins pourtant que ees deux derniers ;
supposons qu’au contraire tous ceux qui n’ont pas voté pour A ou
pour B aient une extréme répugnance a les voir élus; il n’en faudra
pas moins choisir entre ces denx candidats seulement &4 un nouveau
tour de scratin; et 'un d’eux sera alors réputé avoir obtenu la
majorité absolue des suffrazes: la vérité sera pourtant qu’il n’en
aura eu réellement que 27 et que le candidat C qui était préfévé
par 26 votans, et vu sans répugnance par les 54 autres, aura été
écarté dés le premier tour de scrutin.

On voit donc que le cas de plus de deux candidats , loin d'atténuer
les vices du systéme que je viens de combattre, n’est propre le
plus souvent, au contraire, qu'd en rendre les conséquences plus
dangereuses. Je pourrai donc, dans <ce qui va suivre, continuer i
supposer qu’il n’y a que deux candidats seulement (¥).

(* Le peu qui préctde est propre en méme temps A faire entrevoir combien

Part des scrutins est difficile ; et clest pourtant sur cet art que reposent les

destindes des &tats libres. Les géometres ont bien trouvé des méthodes parfaites

en théarie ; mais ces méthodes portent sur une hypothése malheureusement inad-
missible ; celle de votans tous éclairés et de bonne foi, C’est sans doute dans
1a vue de belancer en partie les inconvéniens que je viens de signaler en passant,
guwon a inventé, & diverses époques , les scrulins de liste , les listes de rejet,

etc.; mais ces palliatifls ne sont pas euz-mémes- sans quelque danger , et veulent



REPRESENTATIF 5

Pour mieux faire sentir encore le vice de la substitution des
votes par corporation aux votes par individus; supposens toute la
garde nationale d’un département distribuée en 12 régimens com-
posés chacun comme I'était en 1791 la garde nationale de Nancy;
et supposons en outre quc, pour l'élection d’'un commandant en
chef de ces 12 régimens, on veuille suivre un mode analogue &
celui que jai dit avoir été suivi pour ’élection du colonel de la
garde nationale dec Nancy ; les suffrages de 8 régimens suffiront
3 I'dlu; or, nous avons vu ci-dessus que le suffrage de I'un d’eux
pouvait, a la rigueur, ne représenter que 697 votes seulement ;
d'ou il suit que les suffrages de ces 8 régimens pourront n’en
représenter que 697><8=>5576. Mais, d’un autre cété, le nombre
total des votans est 2560 12=30720; il sensuit donc que, dans
le cas de deux concurrens seulement , le concurrent rejeté peut
avoir en sa faveur un nombre de suffrages égal & 30720—5576=25144,
c’est-a~dire , prés des cing-siziémes des voix.

Poussons plus loin encore , et supposons que , voulant élire un
geénéralissime de toutes les gardes nationales de France, on désire
en faire un choix conforme au veeu de la majorité absolue des
départemens. Nous en comptons 87 ; il faudra donc que Iélu
en rdunisse 44 en sa faveur; mais nous venons de faire voir que
dans chacun d'eux 5576 suffrages seulement pouvaient former une
majorité apparente : I’édlu n’aura donc, A la rigueur , besoin que
de 5576<44=245344 suffrages. Or, le nombre total des votans
est iei 30720%x87=2572640; d’ou il suit que, dans le cas de deux
concurrens seulement , son adversaire aura pu étre rejeté avec

2692640—245344=222296 suffrages, c’est-a-dire , ayec pres des

diz-onziémes des voix.

étre employés avec ménagement. 1l serait tout A fait digne, soit des gouverne-
mens soit des sociélés savantes, de proposer lintéressant sujet du meilleur mode

de scrutin pratique A I'émulation de ceux pour qui les recherches de cette nature
peuvent avoir quelque attrait.
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Il en serait 3 peu pres de méme si, les compagnies n’ayant que
la faculté d’élire leurs capitaines , I'assemblée des eapitaines élisait
le colonel, celle des colonels le général, ct celle des généraux le
généralissime ; et ceci, en supposant méme que chaque eapitaine
devint le fid¢le interpréte du veeu de sa eompagnie, chaque colonel
celui du veeu des capitaines, et chaque général celui du veeu des
eolonels. Encore ici l'opinion d’un peu plus d’un 11.® des citoyens
composant la garde nationale pourrait emporter sur eelle des dix
autres 11°%. Si, au contraire, la plupart des mandataires s'écartaient
plus ou moins du voen de leurs commettans, cela pourrait tantét
ajouter encore aux inconvéniens du systéme mis en usage, et tantot
en atténuer linfluence.

On voit donc qu'en général les votes recueillis par corporation
ou par représentans peuvent étre fort différens des votes recueillis
par individus. Ainsi, par exemple, le peuple romain qui murmurait
de la tenue des comices par centuries , araison de leur composition
hétérogéne , aurait pu aussi, a bon droit, réclamer contre la tenue
des eomices par Zribus et méme par curies ; mais les vices de ces
deux derniers modes de recueillir les suffrages n’étaient sans doute
pas assez apparens pour offusquer le peuple-roi. Les suffrages re-
cueillis par cantons, en Suisse, présentent le méme inconvénient.

Faisons encore une autre supposition. Nous comptons actuellement
en France 87 départemens. Au taux moyen , chacun d’gux a 3 arron-
dissemens. , chaque arrondissement 13 eantons , chaque canton g
communcs , ct cnfin chaque commune 159 votans ; ce qui porte le
nombre total des citoyens frangais ayant droit de voter , 2 159XgX13
XK 3x87=4855383.

Supposons ensuite qu’il soit statué qu'il y aura des assem-
blées primaires , des colléges électoraux de cantons , d’arron-
dissement et de département , subordonnés les uns aux autres, ct
ume chambre de députés élus uniquement par ces derniers ; lesquels,
A leur tour, seront nommés par les colléges d’arrondissemens , ceux-
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ci par les colléges de cantons et ces derniers par les assemblées
primaires.

La majorité absolue sera , savoir :

Pour les communes. ... ... .. 8o votans,

Pour les cantons. . « v+ . .. .... 5 communes,

Pour les arrondissemens. . . . . . . 7 cantons,

Pour les départemens. .. .. ... 2 arrondissemens,

Pour la chambre des députés. . . . 44 départemens ;
D’ot il suit, en raisonnant comme ci-dessus , qu’'en supposant méme
que les mandataires de chaque ordre remplissent fidélement le
veeu de leurs commettans , une délibération prise ou une élection
faite dans la chambre des représentans, & la majorité absolue des
suffrages , pourra & la rigueur ne représenter que l'opinion d’'un
nombre des citoyens exprigx% par

80537 X 2 4==246400 ;

c’est-a-dire , 'opinion d’environ ur vingtiéme des citoyens exercant
leurs droits politiques ; tandis que les dix-neuf autres vingtiemes
pourraient étre unanimes dans lopinion diamétralement opposée &
celle-14, et conséquemment rejetde.
- Voild donc un vice assez grave absolument inhérent au systme
représentatif. On a quelquefois objecté contre ce systtme que les
mandataires pouvaient s'écarter plus ou moins du mandat formel
ou tacite qu’ils avaient regu ; mais il avait été peu remarqué jusqu’ici
que , méme en demeurant scrupuleusement fidéles a ce mandat,
leurs déterminations pouvaient trés-bien étre en opposition avec ce
qu'on doit appeler I'opinion publique; je veux dire avec l'opinion
de la majorité des citoyens admis & voter dans les assemblées
du peuple.

Soient, en général, 2n-1 le nombre des votans dans les asssemblées
primaires , 2n/~-1 le nombre de celles de ces assemblées qui doivent
nommer les électewrs d’une méme assemblée du second ordre,



8 SYSTEME

2n’4-1 le nombre des assemblées du second ordre qui doivent
" concourir A D'élection d’une méme assemblée du troisiéme, et ainsi
de suite, jusqud lassemmblée centrale qui seule est supposée avoir

le droit de prendre des déterminations obligatoires pour tous les
votans ; le nombre total de ces votans sera

(21 (2n/1)(2n/1).u. 5

et une décision prise 4 la majorité absolue des suffrages dans
Yassemblée centrale pourra, & la rigueur, ne représenter que le
veu d’'un nombre de citoyens esprimé par

(a1 (/A1) D 5

c’est-a-dire ; le veeu d’une fraction du nombre des citoyens ayant
droit de suffrage exprimée par

n}1 n'd1  nlderx .
anpr  amgr " ami T

Sin, n/, ', i.... sont de trés-grands nombres , on pourra,
sans erreur sensible, négliger l'unité vis-a-vis de chacun d'eux, et,
3 plus forte raison, vis-d-vis de leurs doubles; en sorte que, m
exprimant le nombre des assemblées successives, subordonnédes les
unes aux autres, la fraction ci-dessus deviendra sensiblement

b4

’
™

fraction d’autant plus petite que m sera plus grand. Ainsi, le
veeu manifesté par la puissance législative pourra étre opposé a eelui
d’une majoriré d’autant plus grande des citoyens ayant droit de
cencourir médiatement & la formation de la loi, qu’on aura employé
un plus grand nombre d'intermédiaires dans I'élection des fonctionnaires
qui composent cette puissance. si

i
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Si I'état est trés-étendu, on ne pourra guére se dispenser, méme
en prenant pour 2, n/, n’/,..... de trés-grands nombres , de prendre
aussi m assez grand. Ainsi , l'inconvénient que je signale ici, comme
¢tant inévitablement attaché au systéme représentatif , pourra devenir
de plus en plus sensible, & mesure que I’état sera plus étendu.
Le nombre total des citoyens ayant dreit de voter demcurant le
méme , plus les nombres n, n/, n//,..... seront petits et plus aussi
m devra étre grand; m sera donc le plus grand possible lorsqu’on
prendra pour n, n/, n/,...... les plus petits nombres possibles ;
¢’est-a-dire , lorsque chacun de ces nombres sera I'unité. 3™ exprimera
alors le nombre total des votans; et le veeu de 'assemblée 1égis—
lative pourra ne répondre qu’a celui d’une fraction du nombre des

citoyens exprimée par
2 m
(50"

En France, par exemple, le nombre des citoyens exergant des
droits politiques ne s’éloigne guére de 4782969=23'% On a donc
m=14; au moyen de quoi la fraction ci-dessus devient

<2 )14-— 16384 o tron ——
3 ——4782969 > OU enviro 300 °

Supposons donc que , la France ayant & élire un chef, il soit
réglé que, pour procéder 4 son élection, les citoyens se réuniront
3 par 3, pour élire un d’entre eux, comme dlecteur du premier
degré; que les électeurs du premier degré se réuniront également
3 par 3 ‘imur nommer des électeurs du second degré, et ainsi
progressivement , jusqu’a ce que toute la France se trouve repré-
sentée par une assemblée unique de trois individus , laquelle nommera
enfin I'un d’entre eux pour chef de I’état. Beaucoup de gens, j'en
suis sar, seraient tentés de regarder cette opération comme fort
réguliere ; et pourtant ce qui vient d'étre dit prouve évidemment

t9o9

que I’élu pourrait avoir , 4 la rigueur , les 122 de la nation contre lui,
Tom. VI- 2
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Tout ce que j'ai dit ci-dessus peut, entre autres choses, con-
courir 3 expliquer comment il est souveat arrivé, dans la chambre
des députés de 1814, que Popinion du rapporteur de la commis-
sion centrale sc trouvait en opposition avec celle de la majorité de
cette chambre. Supposons , en effet, une chambre de 369 membres
divisée , comme celle-14 , en g bureaux ; chaque bureau sera composé
de 41 mecmbres, dont la majorité absolue sera 21. Pourvu done

que , dans 5 bureauxs 21 membres soient d’un méme avis, 5

membres de la commission centrale , formant la majoritd de cette
commission , et conséquemment le rapporteur nommé par elle, par-
tageront aussi cet avis ; l'avis du rapporteur pourra donc ne repré-
senter que celui de 5X2r=105 membres , lequel pourra étre
absolument opposé & celui des 264 membres restans , et formant
par conséquent la trés-grande majorité de la chambre,

Il est pourtant bien loin de ma pensée que la division d’une
assemblée delibérante en bureaux , formés par la voie du sort,
et périodiquement renouvelés soit vicieuse ; je la regarde méme
comme toat a fait indispensable , sur-tout lorsque Vassemblée est
nombreuse. Elle régularise les econciliabules qui se formeraient
inévitablement, mais qui, composés d'individus attachés aux mémes
idées , loin de s’éclairer par le choc des opinions , ne feraient au
contraire que s’obstiner davantage en faveur de celles qu’ils auraient
d’abord embrassées. D’ailleurs, la division en bureaux, en ébauchant
les discussions , leur donne a la fois plus de décence et de maturité
elle peut mettre des hommes, d’abord peu au courant des matiéres
auxquelles ces discussions sont relatives, micux en état d’y prendre part;
elle permet de mettre a profit les lumiéres de beaucoup d’hommes
recormmandables qui, & des connaissances trés - étendues ct & un
esprit droit , ne joignent pas un talent oratoire trés-prononcé ; enfin
elle ncutrzlise les efforts que ceux qui ont ce talent en partage
pourraient tenter, dans la vue de maitriser ceux de leurs collégues
* qui la tactique de la tribune est peu familiere. L’espéce d'oppo-
sition qui peut exister quelquefois cntre lavis de la commission
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centrale et celui de la majorité de la chambre est d’ailleurs sans
aucune sorte d’inconvénient, puisqu’en définitif c’est l'avis de cette
majorité et non celui de la commission qui est adopté.

Ceci nous montre en méme temps le reméde naturel i 'incon-
vénient que j’ai montré étre inhérent au systéme représentatif. Nous
voyons que, s'il est a la fois absurde et impraticable d’appeler di-
rectement le peuple 4 discuter et & delibérer sur une multitude
de matieres tout 4 fait hors de la portée moyenne de son intelli-
gence , c’est pourtant son opinion qu’il faut en venir & consulter,
lorsqu’il s’agit d’objets majeurs et simples & la fois, sur lesquels
il peut s’expliquer par oui et non ; ct la puissance législative
ne doit plus alors se considérer a son égard que eomme une
simple commission centrale. C’est en particulier ce qu’on devroit tou=
jours faire a l’égard des lois fondamentales de Détat.

15 juin 1815,

GEOMETRIE ANALITIQUE.
Solution de quelques problémes ;

Par M. Bretr, professeur de mathématiques a la faculté
des sciences de l'académie de Grenoble.

[ e o Slg Vi, VL WL VL V]

J’AI déjh insisté plusieurs fois dans ce recueil sur I'avantage qu’il
peut souvent y avoir a représenter par deux équations une ligne
droite sur un plan, et par trois équations une ligne droite ou un
plan dans l'espace. Je vais confirmer eneore ce que j'ai dit alors,
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en traitant par cette voie quelques problémes indéterminds, relatifs
a la génération des lignes et des surfaces , et dont la solution, par
les procédés ordinaires, exige des calculs assez compliqués.

PROBLEME 1. Une droite se meut parallélement , & elle-méme ,
sur le plan de deux droites fixes. Dans chaque position de la
droite mobile , on prend sur elle un point tel que la’ somme ou
la di ference des quarrés des distances de ce point aux intersections
de cette droite avec les deux droites fixes soit égale a un quarré
donné et constant ; on demande d quelle ligne appartient l’ensemble
des points ainsi déterminés ?

Solution. Soient prises les droites fixes pour axes des coordonnées ;
soit y langle qu'elles forment, et soit ¢* le quarré constant donné.

Soient X', ¥ les coordonnées courantes sur le plan, et z, ¥

celles du point décrivant ; léquation du systéme des deux droites
fixes sera

XY =o

e

(1)
en prenant donc pour les équations de la droite mobile

X=z~ar , Y=y+ir, (2)

ce qui donne

a*+b*~42abCos.y=1 ;
nous aurons, en substituant (2) dans (1),

(w+ar)(y+t)=o . @)

Si nous représentons par 7, r/ les deux racines de cette €quation,
nous aurons
x

Yy
re=e——, 7 = ———

a . b ;

ei, par la condition du probléme, n
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2

- =q*; ()

|‘~<

+ 2 +
T

o«

équation d’une ligne du second ordre qui a son centre 3 lorigine,
¢’est-a-dire , -4 l’intersection des deux droites fixes.

- En désignant par 4 , B les moitiés des diaméetres conjugués aux-
quels la courbe se trouve rapportée , nous aurons

A . B
_—, ]=—-; 6
a=—, b= (6)

ce qui donnera , en substituant dans (3),
q’=A’+Bz+2ABCOS.A/ 5

g est donc la diagonale du parallélogramme construit sur les gran~
deurs et directions de nos deux demi-diamdtres conjugués. Les
équations de la droite mobile sont d’ailleurs (2) et (6)

X=x+i:;-r , Y=y4+ ?r .

PROBLEME II. Une droite qui se meut dans Pespace , parallé=
lement & elle-méme , perce perpétuellement trois plans fizes; dans
chacune de ses situations , on prend sur elle un point tel que la
somme ou la différence des quarrés de ses distances auz points
ou elle perce les plans fizes est égale & un quarré donné et constant;
on demande & quelle surface appartient Uensemble des points ainsi
déterminés ?

Solution. Soient pris les trois plans fixes pour plans coordonnés;
soient « , g, 5 les angles que forment les axes, et soit ¢* le
quarré constant donné.

Soient X, ¥, Z les coordonnées courantes dans l'espace , et

%, ¥, z celles du point décrivant ; I'équation du systéme des trois
plans fixes sera
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XYZ=o0 , (1)

en prenant donc pour les équations de la droite mobile

X=x~tar ,
Y=y~+br , ) (2)
=ztcr ;
ce qui donne
a*+-b*4-c*~42bcCos.at-2caCos.p42abCos.y =1 ; 3)

nous aurons, en substituant (2) dans (1)
(war)(y4br)eFer)=o . (4)

Si nous représentons par r, 7/, 7/ les trois racines de cette équa-
tion , nous aurons '

-

7 e — 7! == —

a

Y, ==
b ¢

~s

et, par la condition du probléme, |

x2 yz z?
F et e — =g
+TeL =g ®)

équation d’'une surface du second ordre qui a son centre & l'origine

des coordonndes, c’est-a-dire, i l'intersection des trois plans fixes.
En désignant par 4, B, C les moiti¢s des diamétres conjugués

auxquels la surface se trouve rapportée, nous aurons '

A B C
Q== b=—, =—, (6)
q q 9

e¢e qui donnera, en substituant dans (3),
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¢*=A*4B*4-C*+4-2BCCos.a+2CaCos.p+24BCos.y

g est donc la diagonale du paralldlipiptde construit sur les gran-
deurs et directions de nos trois demi-diametres conjugués. Les
équations de la droite mobile sent d’ailleurs (2) et (6)

’ c
X=x+—;—1-r, Y:y—l—-—?r, Z=z+;~r.

PROBLEME 111. Quelle courbe décrit un quelconque des points
d’une droite mobile , dont devx autres points sont assujettis a étre
perpétuellement sur deux droites fizes tracées sur un méme plan ?

Solution. En conservant les mémes notations et conventions que

dans le Probléme I, nous aurons comme alors
(a—-ar)(ybry=o ;

mais ici les racines doivent étre deux constantes ; en les représen—
sentant donc par g et %, nous aurons

?

—_Z =L

a
d’ol
x
a=—Z | p=—L
8 h

substituant donc dans
a*+b*+-2a0Cos.y=1 ,
nous aurons, pour I'équation de la ligne cherchée,

r? xy —_— .
7 —+2 g—h COS-Y'—' I

x?
o
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cette ligne est donc une ligne du second ordre quia som centre A
I'intersection des deux droites fixes.

PROBLEME 1V. Quelle surface décrit dans Pespace un point
guelconque d'une droite mobile, dont trois autres poinis sont
assujeltis & rester perpétuellement sur trois plans fizes ?

Solution. En conservant les mémes notations et conventions que
dans le Probléme II, nous aurons comme alors

(zt-ar)(y=+-0r)(z--er)=o0 ;
mais ici les racines doivent étre treis constantes ; en les représen—
tant donc par g, %, k, nous aurons

x y z
§ =—"; , h ry

d o

Substituant donc dans
@b 42bcCos.e~2caCos.p42a0Cos.y=1 ;

nous aurons , pour l'équation de la surface cherchée,
x2 ¥2 z2 ¥z zx xy
— - [— D . —— . 2 — S =1 ;
po + =+ p -+ o Cos.a~4-2 e Cos.s4 o Co r=1;

celte surface est donc unc surface du second ordre ayant son centre
\ EA . .
a l'intersection des trois plans fixes.

Cette génération des surfaces du second ordre a fixé particuliére~
ment l'attention de M. Dupin , dans ses excellens Développemens
de géométric , page 340.

QUESTION,S
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QUESTIONS RESOLUES.

Solution du premier des deux problémes de géomelrie
proposes a la page 299 du V.© volume de ce recueil ;

Par M. J. B. DurraNDE.

[o %0 Y S VB " Sl o 72

.p ROBILEME. Construire quatre sphres tclles que chacune d’elles
fouche les trois autres, et qui satisfussent de plus aurx condiiions
suivantes ; savoir : 1.° que les points de conlact des trois premiéres
avec la quatriéme soient trois poinis donnés ; 2.° que ces Irois sphéres
soient tangentes & un méme plan donné?

Solution. Soient A, B, G , D les centres des qnatre sphéres
cherchees, @, &, ¢ les points de contact donnés des trois prewiéres
avec la quatriéme , a/ , &’ , ¢/ les points de contact des mémes
sphéres avec le plan donné. Ces trois duerniers points sont inconnus
mais le plan qu’ils déterminent est connu. '

Les droites AB, @b, 4’l’, concourent, comme I'on sait, en
un méme point o du plan donné, lequel point n’est autre que le
sommet du céne circonscrit aux deux spheéres dont les centres sont
A et B. Pour les mémes raisons BC, éc, &/’ , concourront en
un méme point « et CA, ca, ¢’4’ en un méme point g du méme
plan; et il est encore connu que ces trois points «, &, ¥, appar=-
tiendront & une méme ligne droite, intersection du plan donné avec
celui du triangle donné adc; il est evident en outre que ces points
«, 8, ¥ seront assignables, comme intersection du plan donné avec

les droites denndes be, ca, abe
dom. FL 3>
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Si Pon fait de ces mémes points les centres de trois sphéres
ayant respectivement leurs rayons moyens propertionnels entre «b

et «c, Bc et pa, ya et b, ces sphéres seront aussi données; et

elles seront respectivement tangentes i celles dont les eentres sont

A, B, C (*). Chacune de ces derniéres sera donc déterminée 2
toucher deux des spheres dont les centres sont «, 8, %, 4 toucher
le plan donné et a passer par l'un des points donnés a2, b, ¢,
probléme qu'on sait résoudre (**). Ces trois spheres étant ainsi
construites , rien ne sera plus facile que de déterminer celle dont
le centre est D.

Nous n’indiquons ici que le procédé théorique ; les méthodes de

la géométrie descriptive feront connaitre la grandeur et la situation
des parties cherchées.

Solution du probléme d'analise proposé & la page 299
du V. volume de ce recueil ;

Par M. Servors, professeur aux écoles d'artillerie,

le Zo Y Via N, Vi W Sl Vi Y

P ROBLEME. Assigner lintégrale finie et complite de I'équation
différenticlle

Aypyre’F do= T EY 31

Xdx

dans laquelle X est supposé une fonction quelconque de x , dont

" Voyez la page 296 du V. volume de ce recueil.

(**) Voyez le traité de Fermat : De tactionibus spharicis j voyez aussi les
pages 349 et 353 du IV.® volume de ce recueil,
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la différenticlle est X'dx, et ou e est la base des logarithmes
naturels ?

Solution. Soit posé

y=(X—se T ;
dod

dy= (Xdz—dr)e T _ x5 X x4,

. . —/Xdx
en snbstituant dans la proposée , et divisant par e /X » €lle de=
vient , toutes réductions faites ,

#*dr—t Xdor—dsi=o

5
mais, en rétablissant ce facteur, elle peut étre écrite” ainsi

e‘:/de do— tX P—fde dr— e_‘/de .dz
A

ee qui revient i

- | ——fXdx
e dex. dz-}-d. % =0,

et donne conséquemment

- —fXdx
f ‘/de. do = =4 ;

-
dol
e—_/de/
= —

Py fde. d ’

donc: enfin:
y - e—dex X e—‘/de' .
. _. A—fe*fde- dzy

4 étant la fonction: complémentaire de intégration.
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e ———

Autre solution du méme probléme;

_Par M, Tepssar, correspondant de linstitut, recteur de
Yacadémie de Nismes.

(o 5 S Via Vo Vi Vio Vi

SOIT Z une fonction de x dont la différentielle soit Z/dx, et la
différentielle seconde Z/dx* ; soit fait

._ .
y=¢e ‘/de. Z ? (1)

nous en conclurons

e X 2 —fXde
= e

—=¢ .« =

B2 Z 2w X T2
2o = . dx. 7 ;

yaleuré qui, étant substifuées dans la proposée

dy-—]—_y’e‘lxax, dz=—-Xd xe—“/X e ,
la réduiront } | ‘
Z'—XZ'—ZX'=0 ou d(ZI—XZ)=o0 ,
dont l'intégrale est
Z’—XZ =a

. . e, —Xdx . .
celle-ci , multiplide par ¢ 4 , revient 2

—fXd
d, 2 ~fXdx

dont l"mtégrzde est

—duafe T e
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Z e-‘,de =afe g_/de.d:v +2.
On tire de 13
P dex {

2= xe7*%

bbaf 4z},

bbrafe %z | ta

d’ot

e
7=
Z bepafe _fde
snbstituant enfin cette valeur dans la valeur (1) de y, et posant
b=—Aa, il viendra

—fXdx
p /X 3 PR }

A—fe I KT

Solution du probléme de combinaisons proposé & la
page 328 du V. volume de ce recueil ;

Par M. ArcannD.

[ e Via Sla Vs Ve Yo NI =

P BOBLEME. Avec m choses , toutes différentes les unes des
auires , de combien de maniéres peut-on faire n parts, avec la
Jaculté de faire des parts nulles ?

Solution 1. Désignens , en général , par (m, n) V'ensemble de
toutes les manié¢res de faire, avec m choses, 2 parts dont aucune
ne soit nulle; et par Z .,y le nombre de ces maniéres.

Soient ¢ le nombre des choses, p celui des parts, £ l'une de
ces choses 4 volonté , B l'ensemble des ¢—1 autres choses. On
pourra, dans I'ensemble (¢, p), distinguer deux espéces de répar-
titions ; savoir : des répartitions (I) dans lesquelles la chose £ formera
3 elle seule wune part , et des répartitions (lI) ou la chose %
se trouvera réunie, dans une méme part, avec une ou plu51eurs

des choses 2,
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2. Considérons d’abord les répartitions r, v/, 7/, ..... appartenant
3 l'espece (I). Si de chacune de ses répartitions on retranche la
part formée par k, il restera des répartitions ¢, ¢yt see.. de
¢—1 choses distribuées en p—1 parts, ou , suivant notre notation ,
des répartitions appartenant & Iensemble (¢—1, p—1). Réciproque-
ment si , & des répartitions p, ', ¢/ ,..... contenues dans ce dernier
ensemble, on ajoute une part formée d'une nouvelle chose £, on
obtiendra r, r/, r,..... de Ucspéce (I). Il est de plus évident
que, si r, 7/, r”,.... ne sont pas identiques, ¢, ¢, ¢/ ,.... ne
le seront pas non plus , et réciproquement ; d'ou il suit que le
nombre des répartitions (I) est égal & celui des répartitions (¢—1, p—1),
lequel est exprimé, suivant notre nolation,\par Ziear,pary

3. Retranchons la chose 4 de chacune des répartitions de Vespece ‘IT);.
nous aurons diminué d’une unité le nombre des choses, sans changer
celui des parts ; ainsi, les répartitions résnltant de ce retranchement
appartiendront & I'ensemble (¢—1 , p). Réciproquement, ayant une
répartition. appartenant 4 ce dernier ensemble, si I'on ajoute la chose
k a l'un quelconque des parts de cette répartition , on obtiendra
une répartition de l'espéce (II); et, comme il y a p parts, et par
conséquent p manitres de faire cette adjonction , chaque répartition
de l'ensemble (c—1,p) produira p répartitions de I’espece (1),
lesquelles. seront évidemment différentes entre elles. De plus, il est
facile de voir que deux répartitions différentes de 'ensemble (c—1, p).
le seront encore lorsqu’on y aura ajouté & d’une maniére quelconque.
Donc le nombre des répartitions (IL) est p fois celui des. répartitions.
(e—1, p); clest-d-dire, quiil est =pZ_, py.

Ainsi, (c,p) étant composé de (I) et de (II), on aura

Z(F,P),=P . Z(_C- H ,P)+Z(;- 1,Pm1) (A)f

4. Au moyen. de. cette équation , nous pourrons. former une
table & double entrée des valeurs de Z ) , pourvu que nous en
connaissions les. valeurs. initiales. Or, si p=1, on a Z P=L
ear, quel que soit le nombre des choses, il n’y a qu'une maniére:
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d'en faire une seule part. Cette formule donne done la p%emiére

ligne horizontale de la table. Ensuite , si p=c, on a encore Z

car il ny a de méme qu une maniére de faire n part avec n
choses. Cette formule fournit la diagonale qui part de la case qui
répond 3 ¢=1, p=1. Quant au cas ol on aurait p>¢, il est clair
quil n’y répond aucune repaxtlnon possible , de sorte que toutes
les cases situées de l'un des cotés de notre diagonale doivent de-

meurer vides.

Table des valeurs de L., py

Nombre de choses =¢.

Al 1|2 ! 314|516 7 8 9 10
s GRS | e | wie | a—
i1} 1 1 1 1
2 1|37 11531] 63 127 255 511
? 3 1|6 (25|90 301 | ¢66 | 3025 | 9330
=} e || ——
5‘ 4r 1 (10,65| 35 | 1701 | 7770 | 34105
o HAre
1) 5 1 [15] 140 | 1050 | 6951 42525
~ s O O T O T A
ao- 6 1| 21 266 | 2646 | 20827
J:|‘ p 1 28 | 462 | 588
8 1 36 750
9 # 1 45
10 1
]

5. Or, A linspection de cette table, on trouve, par une induction

assez facile,
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et on s’assure ensuite, par le calcul , que cette expression de Z py
satisfait réellement a I'équation (&) ; mais il faut de plus que les
valeurs initiales soient vérifices. Or, si p=1, la formule se réduit,
en effet, &4 l'unité, il en est de méme , dans le cas de c=p, en

vertu du théoréme connu :1.2.3 .p——;;”— — p-1)

2)f =3
amSI, cette formule est démontrée,

6. Nous avons supposé jusqu’ici qu’aucune part ne devait étre
nulle. Admettons maintenant qu’un nombre quelcongne de parts
puissent 'étre ; et nommons ¥, py le nombre des répartitions possibles
dans cette nouvelle hypothése. Lensemblc de toutes ces répartitions
pourra étre distribué en p espéces , suivant que le nombre des
parts non nulles , qui ne saurait étre zéro, sera 1, 2, 3....7.
Soit ¢ un quelconque de ces nombres. Le nombre des répartitions
dans lesquelles g parts ne sont pas nulles est, par ce qui precede,
Z, q ; donnant donc successivement 3 ¢ toutes les valeurs depuis 1
jusqud p inclusivement, on aura

Y(c, )—Z(c,l)+Z(c;z)+Z(c 3)+ ree e +Z(t Py 5

on aurait de méme

Y( P-—x)"“"Z(c l)+Z(c z)+Z(t,;)+‘"“+Z(c,P—-l) ’

d’oli, en retranchant et transposant
Yen=Yer—0+Zep - €

Ainsi, au moyen de la table précédente, et des valeurs initiales

de ¥, savoir Y, ,y==1, pour toutes les valeurs de ¢, on construira

facilemeat la table relative & la seconde hypothése , par de siu:ples
additions.

Table
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v
ot

Table des valeurs de Y,

Nombrc de choses =¢.

td= sued 9p 2IqUON

314151 6 7 3 9 10
noE
_[:_8_1_6- 32| 64| 128 256 512
:-1—4_4—; 122 365| 1094 3281 9842
2 —E—) 1551} 1871 715 2795 11051 43947 \
:—5— 15|32 2021 855 3845 18002 86472
:;;-5: 203 | 876 41-11 20648 | 109299 :
:E—x—;; 203 | 877 4139 | 21110 | 115179 |
:—f:-x—f;S_z:zoS 8771 4140 | 21146 115929.

4140 21147 | 115974

(M
o
—
o
| &
[¥)
<
[N
®
D |
LN ]

to
Ut
o
[ 331
8]
o
[«]
w
o]
NG )
)

4140 21147 | 115975

Tome FI.
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7. La loi des valeurs de ¥, dans cette derniére table, ne se
présente pas si facilement que dans la premitre. Cependant, avee

)

de l'attention, on parvient i trouver que ces valeurs peuvent étre
exprimées par la formule : "

! c P p p—1 »
Y(c,P)':' mj((' +0--; (p—.l)‘-{-r.-l-. :—;—( p-2)F »

+2. 2.2 P p-34. s (D)

1 2

dans laquelle les coefficiens o , 1, 2, 9, 44, 265,...... sont
liés entre cux par les équations.

oO=I1.I1I—1% ,
1=2,0+%1 ,
2=3, 11 ,
9=4.2%1 ,
44=5.9—1 ,
e e e e

en, en général,

a,,:n.a,,__,-l-(——l)” 5 - (E)

le quantitme 7 du premier terme de la formule étant o.

On s'assure ensuite, par un ealcul effectif, qu’elle satisfait &
I’équation (C). De plus, en faisant p=1, elle se réduit & Vunité,
ce qui vérifie les valeurs initiales ; d’ou il suit que cette formule
résout le probléme proposé. L’expression générale des coefficiens
03 1, 2495 44, wuw., cst au surplus



RESOLUES.
an=(—1)"§{ t—n—+n(n—1)—n(n—1)(n—234 ...} ;

car, outre que cette expression satisfait & 'équation (E), elle donne
la valeur initiale @,=1 (*).

8. En éliminant Z entre les deux equahons (A), (C), on par-
vient facilement a la suivante

Y .pn=p¥- 1Y peiy—(P—1) Y s pmry— Yo 2op- 0

qui a conséquemment pour intégrale la formule (D), tout comme
(A) a pour intégrale la formule (B); mais ces intégrales, pour étre
complétes doivent admettre un complément arbitraire.

- s

(*) Ces coefficiens peuvent encore ¢tre considérés comme lids gntre eux par
Iéquation aux différences

a,=myyFa. ) -
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QUESTIONS PROPOSEES.

szoblémes de Géomeélrie.

s e s s s

L CONSTRUIRE trois cercles tels que chacun d’eux touche les deux
autres, et qui satisfassent de ‘plus aux conditions suivantes, savoir :
1.% que les points de contact de'deux d’entre eux avec le troisidéme
soient deux points donnés; 2.* que ces deux-li soient tangents A uu
méme cercle donné ?

IL. Construire quatre sphérés telles que chacune touche les trois
“‘autres , et qui satisfassent dé¢ plus aux conditions suivantes: 1.° que

les points de contact des trois prcmiéres avec la quatriéme Soient
trois points donnés; 2.° que ces trois sphéres soient tangentes a
une méme spheére donnée ? ’

HI. Des trois quarrés qu'on peut inscrire & un méme triangle
scaléne , quel est le plus grand et quel est le plus petit ? ‘
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GEOMETRIE TRANSCENDANTE.

Théorie géométrique de la cycloide ,

Par M. Duv BourcuET, ancien capitaine de vaisseau,
Chevalier de 1'Ordre royal et militaire de St-Louis,
professeur de mathématiques spéceiales au collége de

Louis-le-Grand. )

o T o Vo UL VL N0 Sl ]

SI les gdomedtres n’avaient jamais en vue dans leurs recherches
que les applications pratiques dont elles peuvent étre susceptibles,
ils mettraient , sans doute , beaucoup moins de soin ct de prix a
obtenir, sous forme finie, une multitude d’expressions que o
pcut aisément avoir en séries trés-convergentes, ct propres consé—
gquemment & fournir des résultats incomparablement plus approchds
que , dans aucun cas, I'état physique des choses ne le réclame ,
et méme ne le permet. De quelle utilité pratique , par exemple,
pourrait étre la solution rigoureuse du probleme de la rectification
de la circonférence , aujourd’hui que nos séries nous ont fourni au-
dela des 150 premiers chiffres décimaux du rapport de la circon-
férence d'un cercle 4 son diamétre; lorsque sur-tout on considére
que les 20 premiers de ces chiffres sont plus que suffisans pour
déterminer, 3 moins de ’épaisseur d’un cheveu prés, la circonfé-
rence d’un cercle qui embrasserait tout notre syst¢me planétaire. A
quoi 'on peut ajouter encore que les expressions finies elles-mémes ,
dés qu'elles ne sont point & la fois algébriques et rationnelles, ne
sont susceptibles , tout comme les séries, que d’évaluation approchde.

"Toutefois , on ne saurait discqnvenir que , du moins aux yeus

Tom. VI, n.°1l, 1.°% godt 1815. 5
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des théoriciens, les expressions sous forme finie ne soient plus sa=
tisfaisantes qué les séries illimitées , quelque convergentes qu’on les
suppose dailleurs, Outre que ces sortes d’expressions s'introduisent
et se combinent plus facilement dans les calculs, “elles sont sou=
vent susceptibles d’un énoncé concis et élégant; et cest sans doute
ce qui les fait rechercher encore, lors méme qu’elles ne sont point
susceptibles d’évaluation immédiate , ainsi qu’il arrive pour la for~

Log.(—=1

mule de Bernoulli == V“‘ . On peut remarquer enfin que la

découverte de Pexpression finie d’une quantité, déja connue par les
séries, est un pas de plus dans la solution de l'important et diffi~
cile probléeme de la sommation des suites,

Par ces motifs , nous osons espérer que les géometres youdront
bien accueillir, avee quelque intercét et bienveillance , Popuscule que
Von va lire. Il présente , dans un eadre peu étendu, un systeme
complet de formules linies pour la rectification et la quadrature in-
dcfinie des arcs et segmens de cycloides, pour la quadrature des
surfaces et la cubature des corps ez;seudrés par la révolution de ces
arcs et segmins autour de checune des quatre lignes les plus re-
marquables de la courbe , erfin peur la determivation des centres
de gravité des unes et des autres. Piusicurs de ces expressions n’a-
vaient point été domnées jusquiici, et on paraissait méme incliner
a penser que quelques-unes d'entre ciles me pouvaient étre que

pac les séries. On va voir quelles sont toutes suscep\ibles d’une forme
finie. .

I. Pour éviter au lecteur Iembarras de feuilleter des traités da
calcul intégral, ou de suppléer & ce qu'on n’y trouve pas, et pour
lui offric en méme temps le moyen de vérifier facilement nos cal-
culs , nous croyens convenable de présenter britvement ici les seu-
les formules d’intégration , pen nombreuses dailleurs, qui nous se-

ront nécessaires pour parvenir & notre but. Nous sous-entendrons
Jes constantes.
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3.2 On a d’abord immédiatement

I

m-1

Jdz8in."z Cos.z=-} Sin™+1z, A)

JdzCos.™z Sin.z =— m_IH Cosm+iz, (B)

2.° Si Von a & intégrer des formules de I'une des deux formes
dzSin.2m+ Tz | dzCos.2m+1z

on les transformera dans les suivantes

\

dzSin.z(1—Cos.?z;™ , dzCos.z{1—Sin.2z)™ ,

lesquels , par leur développement , donneront une suite de termes
rentrant dans le cas (1.°).
3.2 Si les formules a intégrer sont de l'une des deux formes

dzSin."zCos.?>"**z , dzCos.™zSin 2 +1z |
on les transformera en celles-ci
dzSin."zCos.z(1—Sin.?z)" , dzCos."zSin.z(x—Cos.2z)" ,

Iesquelles , par leur développement, donneront une suite de termes
rentrant également dans le cas (1.°). '
4.° Si les formules a intégrer sont

dzSin2"z , dzCos2mz ,
Y 10 ad : . .
en aura recours a lintégration par parties, qui donne , comme l'om
sait,

me—g

JdzSin2m=1tz - (C)

. T 2
JSdz8in"z=— — Sin.>™~* zCos.z}
2m 2m

a2m

2;" JfdzCos*™—1z 5 (D}

1 .
JSdzCos.*™z =~ —— Cos.*™~"zSin.z-
2m

formules au moyen desquelles on parviendra, par degrés, 3 rame-
ner les intégrales cherchées 3 fdz=2z.
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5.° Si les formules 3 intégrer sont de I'une des deux formes
dz8Sin."2Co5s.2"z dzCos.™zS8in2"z ,
on leur substituera leurs équivalentes )
\ dzSin."z(1—Sin.2z)" | dzCos.mz(1—Cos.*z)" ,
lesquelles, par le développement, donneront une suile de termes
qui rentreront dans P'un des cas (2.°) et (4.°).

On sait donc, par ce qui préeéde , intégrer, sogs forme finie,
toute formule de la forme

dzSin."zCos.z ,

m et n étant des nombres entiers positifs quelconques ou zéro.
6.° Soit présentement une formule de la forme

z*kdzSin."zCos."z
I'intégration par parties donnera
Jz*dzSinmzCos."z=2z/2*"1dzSin."2Cos."z-fdz/zk"* dzS8in."zCos."z ; (E)

au moyen de quoi on ramencra , par degrés, lintégration deman-
dée 2 fdz8Sin."zCos."z , que’ nous avons traitée dans les numcdros
précédens,

IL Soient AO, AO/ respectivement ( fig. 1 ) la demi-base et
la montée d’une cycloide, et soient mendes O/A’/, OA’, respecti=
vement paralleles a ces deux droites. Par un queleonque M des
points de la courbe, soient menées aux mémes' droites les paral-
Ieles QQ/, PP/ termindes aux quatre droites. Soit G le lien du cen-
tre du cercle générateur, pour sa position ol le point décrivant est
en M, et soit DD/ son diamétre parallele & AO/, coupant QQ/ en
N ; soient enfin menées MD, MC, MDY/ et soient CD = CM=CD’==7.

Nous prendrons

0P =QM==z , MP =QO =y ,
OP/ =Q'M=a/, "MP/=Q/0/=y’
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au moyen de quoi nous aurons

x4a/==r , . dx—}—d.z/:o ,
d’ou
y4y/=2r"; dy-+dy’=o0 ,
Nous poserons’ en outre
Ang.DCM==2z ; Ang.D/'CM=22/ ,
ce qni donnera '
- 2(z42)==, d’ou dz—+dz/=o,
Cela posé, nous aurons
Arc MD =2rz Cord MD =2rSin,z =2rCos.2’ ,
Are. D/ =z2rz’ , Cord MD/ = 2rSin,z’ =2rCos.z .
Nous aunrons encore
PD =P/ D/=MN==rSin.2z2=2rSin.zCo0s.z=2rSin.z’Cos.z’
CN:rCos.zz:r(Cos.’z—Siﬁ.”z)=r(Sin.“z’-—Cos,’z’) ;

’

mais , par la pature de la cycloide ,
OP=0D—DP=drc MD-MN ;
MP =ND=CD-—CN ;

donc , en substituant,

a=2r(z—S8in.zCos.:z) , #!=2r(z/4-Sinz’/Cos.z’) ,
d'od :
y=2r8inz y/=2rSin.*z’
done encore
dr=4rdzSin2z , dw’/=4rdz/Cos.*z’ ,
dy==4rdz8in.zCos.z , dy’=4rdz’Sin.z’Cos.z’ .

Do 1 on passerait facilement aux équations primitive et différen-
tielle de la ceurbe, soit en & et y soit en a/ et y/; mais elles ne
nous seront pas nécessaires,

Pour la commeodité typographique, nous poserons encore
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’ Sinz =« , dod #2Hur=1,

Cos.z/=1¢ Sin.z/=u’ , dox #*ur=r1 ;

Cos.z =¢

ee qui donnera
x =2r(z—tu) , y=2ru®, de=f4rw’dz , dy =4riu dz ,

a/=z2r(e/4'w) , y'=zru? , da/=4ri*de, dy/=4ri'udz«

1II. Cherchons dabord les longueurs des arcs indéfinis MO ,
MO/ ? ‘

L’élément du premier de ces arcs est
\/W:ﬁudz ,
dont l'intégrale, commencant avec z , est (I)
Are MO=4r(1—1) =2(D’D-D'M). (a)
De 1A
Arc.00/=/4r=2DD" ,
_et par conséquent
Arce MO/=/fru/==2MD/ ; (%)

ce qui met en éyidence la propriété de la développée. On pourra

évidemment, par ce qui précéde, obtenir la longueur d’un arc quel-
conque de la courbe. )

IV. Cherchons les surfaces engendrées par I'arc OM, tournant
successivement autour de OP et OQ?

L’¢lément de la premidre surface est
2ayy/ dwif-dyr=16=r"’dz ,
dont l'intégrale , commengant avee z, est (I)
2 ar’(1—1)*(2-4-1). (o)

De la on conclura , pour l'expression de la surface engendrée
par larc entier OO0/, autour de OA

3 2 32 ’
~ar?="2Cer.r.
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L’élément de la seconde surface est

272y dxig-dyr = 16@r’udz(z—1v) ,
dont l'intégrale, commencgant avec z, est (I)
2 ar*{u(3m—u)—31z} . (d)
De 1a on conclura, pour la surface engendrée par Parc entier
00O/, tournant autour de OA/,

3,—‘ aa‘r".:l,i Cer.r.
Il est trés-remarquable que la surface engendrée par l'arc 00/ est
toujours de méme étendue , soit que cet arc tourne autour de OA
ou qu’il tourne autour de OA’. On pourra évidemment, par ce

gqui précede, obtenir la surface engendrée par un arc quelconque
de la courbe, tournant autour de OA ou OA/

V. Cherchons les coordonnées du centre de gravité de chacun
des deux arcs indéfinis MO et MO’ ?

Soient X, ¥ les coordonnées , pour l'origine O , du centre de
gravité du premjier de ces deux arcs; soient X/, ¥7 les coordon—
nees , pour lorigine O/, du centre de gravité du second.

Suivant la régle centrobarique , X et ¥ seront les quotiens fes-
pectifs des formules (d) et (¢) par la formule (¢) multipliée par
zw; de sorle qu'on aura
X= 2r{u(3-—u2)-31z} i

3(1e=i) (e)
Y=:ir(1—t)(2-1) .
Dans le cas on il sagira de l'arc entier O0%, on aura

.X:YG-‘;-I‘.

Or, on a, en général
Mom MQ!= Mom. Q0= Mom MO ;

prenant donc successivement Q’A et Q‘A’ pour axes des momens,
il viendra



36 THEORIE GEOMETRIQUE
27 [t/ (3=—t/z)—3utz}
3(t~u’)

13

?

Xlfrv' = fr(ar—3r,—4r(1—u) gzr}'.._

Y/ fru'=fr(2r—=2r)—4r(1m—u’){ 2r—2 r(1—u/) 2+ W)} 5
d’olt on tire , toutes réductions faites,
__2r {Bulgl=—(1—t))2(24-1') }
- 3u! ? (f)

Y'=:ru/*=;0Q".

Cette derniére formule prouve que le centre de gravité de tout
arc de cycloide qui a son milieu a4 son sommet O/ est au tiers de
sa fleche, & partir de ce sommet. D’aprés les précédens résultats ,
la recherche du centre de gravité d’un arc quelconque de eycloide

ne saurait oflrir de difficulté.

X

VL. Clkerchons les surfaces engendrées par Uar¢ MO/, tournant
autour de O’A’ ou O’AY
Suivant la régle centrobarique , ces surfaces seront les produits
respectifs de la formule (§) par 2#¥7 et 22X/, ce qui donnera
Zarwfi=4%.22.MP.2Cord MDY , (8)
Hwr { 3w/ e (1—t/ P (241)} (2
La premitre sera done les § de la surface engendrée par la tan-

3
gente MDD’/ tournant autour du méme axe. .

§il sagit de l'arc entier 00/, on aura, pour la premitre surface,
Zart=2A4rc.0A ;

c’est-a-dire , la ‘moitié de la surface engendrde par le méme arc au-
tour de OA; On aura ensuite , pour la seconde
2ar*3m—4)=4wrar—art ;

rdsultat qui prouve (IV) que la somme des surfaces engendrdes par

la demi-cycloide OO/, tournant successivement autour de AU/ et

OA’ est égale & la surface convexe du cylindre engendré par le

rectangle circonscrit a la cycloide entiére , tournant autour de sa
Lase:
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base. Au moyen de ce qui précede, on obtiendra facilement la sur-
face engendrée par un arc quelconque de la courbe, tournant au-
tour de O’A’ ou O’A, ou méme autour d’'une droite quelconque ,

puisque le centre de gravité de cet arc sera assignable.

VII. Cherchons les centres de graeité des surfaces engendrées
par OM tournant autour de OA ou OA’ ?
Nous avons déja vu (IV) que les ¢lémens de ces deux surfaces
sont respectivement
2myy/ T 5 emny/ TF 5
d’olt il suit que leur moment commun , par rapport aux plans con-
duits par O, perpendiculairement aux axes de rotation , est
2wryy/ degrdyr=32=r’u’de(z—w) ,
dont T'intégrale, commencant avec z, est (I)
Hard w(3o4-5urm—quil—152z(24-u)} ;
divisant donc eette intdgrale successivement par les deux formules
(c) et (), nous aurons pour les distances du point O aux centres
de gravité des deux surfaces,
aruBod-Suz—gui)— 1‘5tz(2+u2) 3
15(1==1)2(24-12)
ar §u(3o4-5ur—quby=—15¢z(24-u?) }
IS{u(3—u3)—3tz§

’ ()
- )

Dans le cas ou il sera question des - surfaces engendrées par la

révolution de l'arc entier OO/, ces deux expressions deviendront
également

Zr=20A’.
On pourra facilement , d’aprés ces résultats, trouver le centre de
gravité de la surface engendrée par un arc quelconque de la courbe,
tournant antour de OA ou QA/.

F1l1. Clerchons les centres de gravité des surfaces engendréss
par larc MO/, tournant autour de O’A’ et O/A P
Ces surfaces ayant pour élémens respectifs

Tom., V1.

!



38 THEORIE GEOMETRIQUE
sy TG, 2ealy T

le moment commun de ces élémens, par rapport aux plans conduils
par O/, perpendiculairement aux axes, sera

2m2!y/\/ doig-dys = 32w t/u/*d2/(2/-1'w’)
dont l'intégrale , commengant avec z/, est (I)

22 ard(1—t/){ 1502/ (14t )= (1 —2/) (f—7 2/ —181*— 17} ] 5

divisant donc successivement cette intégrale par les deux formules

(g) et (%), on aura, pour les distances du point O/ aux cenires
de gravité des deux surfaces

ar § 15u/2! (1 t)) == (1mmt!) (7 V18112 =13}

15u/(14-t") ? (m)
2r(1==t') § 15u'z! (1=4-t!) == (1 —=t!) (fmem7t! =1 8t’2;—9tl3)} (n)
15{ 3u/zl—=(1==t/)2(24-1) } ’ )

S’il s'agit des surfaces décrites par I’arc entier OO, ces formules
deviendront respectivement,
1578

3m—f
La premiére prouve que la distance du point A’ au centre de gravité
de la surface déerite par O’O autour de O’A’ et les £ de A/O,
et non point les ; de cette droite , comme quelques auteurs 'ont
derit. On peut, d’aprés ce qui précéde, trouver le centre de gravité

de la surface engendrée par un arc quelconque de la courbe, tournant
autour de O’A’ ou O/A.

wr—r=0/A/— A0, Lr.

IX. Cherchons les aires. des gquatre segmens OPM , OQM ,
OP'M, O/QYM?
L’¢lément du segment OPM est
ydz=28ru4dz ,
dont lintégrale, commengant avec. z , est (I)
OPM =r*{3z—tu{34-2u*)} . (»)

On aura ensuite
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OQM=ay--OPM ,
¢’est-a-dire ;
OQM=r*{tu(3— 20}z, 3—~4u*)} . (9)
De 13 on conclura
OAO/=tar=tCercr , CAD/=:lar*=lCercr ;
c’est-a-dire , que l'aire de la cycleidc entitre est triple de celle du
cercle générateur. On a cn outre
OPM=0'A’0—0QM—QA/P/M ,
O0/QM=0'A0-0PM—Q/APM ;
¢’est-a~dire ;
O/P/'M=r}{z/4-t/u/(1—21"*}} , (r)
O/QM=r*{z/(3—4¢/*)+1'u/(3—21*)} . (s)
De tout cela on déduira facilement ’aire de toute surface plane:
terminée par des lignes droites et par des arcs de cycloides,

X. Cherchons les volumes des corps engendrés par la révolution
des segmens OPM, OQM , tournant autour de OP et OQ, res—

pectivement ?
L’¢lément du premier de ces deux corps est

zy*dr=16=r*ufdz ,
dont l'intégrale, commengant avec z, est (I)
sar’{15z—1tu(15--10u+8ut)} « (aa)
D’aprés cela, le volume du corps engendré par la révolution du:
segment entier OAO’, autour de OA, sera
2zri=10A. Cerc.OA/;
c’est-3-dire , les ¢ du volume cylindre engendré par la révolution

du rectangle OA’O’A autour de OA. |
L’¢lément de l'autre corps est
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=2*dy = 16=r*fudz(z—1u)?
dont I'intégrale, commencant avec z, est (I)

Lar®6tuz(3—zu*)— 32 (3—4ur) —u*)g=—qui-t-4ut)} . -(0D)

D’aprés cela, le volume du corps engendré par la révolution da
segment entier OA’0O/, autour de OA’/, aura pour expression

Lar}3at—16)=; 0A’ ., Cerc.OA—28ph.r
c’est-a-dire , le quart du cylindre engendré par le rectangle OAG’/A/

tournant autour de OA’, moins deux sphéres ayant méme rayon
que le cercle générateur. ATaide de ees résultatson pousra t toujours trou-

ver le volume du corps engendré par un segment quelconque de la
courbe , tournant autour de OA ou OA/, -

X1 Cherchons le centre de gravité de chacun des quatre seg-
mens OPM, OQM, O/P/M, O/Q/M?

Par la régle centroéarzgue, Vordonnde du centre de gravité du
segment OPM s'obtiendra en divisant la formule (aa) par la formule
(/D) multipliée par 2= ; ce qui donnera
_ r4_{ 1§~~{'zk;5—}~10112+8ub) 3

E 3z ——tu(o+zu2)’; : (6’0)

Par la méme regle, l'abscisse du centre de gravité du 395m“nt
OQM s'obtiendra en divisant la formule (45) par la formule (9)
multiplide aussi par 2% ; ce gqni donnera

r{3:2(3—\-.’}u7-)--6tuz(3~2112)+u2(9—9uz+4u4)} (dd)
. qaa
3 {z(gﬁéllz)_tu(g_zu 2)} \

Mais on a, quel que soit Paxe des momens,

Mom . OPM = Mom OQMP—~Mem OQM ,
. ﬁ’fomﬂQM: Mom OOXIP— JMom . OPM

£

prenant donc respectivement OQ , OP pour axes des momens ,
on aura
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Mom.OPM = r}{gz*—62uz(3-+2u)+u* (94 3u*—8ut)} ,
Mom OQM =:73{#(1541ou*—16u*)—32(5—8u*)} ;
divisant donc respectivement ces momens par les formules (p) et

(9) , on aura pour l'abscisse du centre de gravité de OPM et ordonnée
de celui de OGQM

{9z ==6tuz(3—ou)du? (94-3ur—B8ut)}

= 3 ’ (ee)
3{3z—tu(3+4-2u>)}
r{3z(5~=8ut)=tu(154-10us=—16u4)} (f)
6{ z(3—4u2)—tu(3—2u2)} :

Voild donc les deux eoordonnées des centres de gravité des deux
segmens OPM, OQM qui se trouvent ainsi déterminées ; le point
O <dtant pris pour origive. .
On trouvera, d’aprés cela, pour Pordonnde et I'abscisse du centre
de gravité de l'aire OAQ/ de la demi-cycloide ,
e
r=2A0, r.gwlg;:s ;

et ensuite, pour l'ordonnée et I'abscisse du centre de gravité de
Pespace OA’O/,

3n2——16

tOA/

0, 7 —
1l nous reste maintenant A assigner les centres de gravité des deux

autres segmens MP/O/, MQ/O". Ici nous prendrons le point O/ pour

origine. Nous aurons d’abord, quel que soit l’arc,

Mom MP'O'=Mom OA'O'—Mom . QA’P'M—Mom.OQM ;

W lw

r=

.

prenant donc successivement OA’ et OA pour axes des momens ,
cette ¢quation deviendra

Mom MP/Q/ =L r¥{3z/-t/u! (3 —141"+4-8¢/4)}
Mom MP/O/ =17 32/ 461/t 2/ (1—22/*)F-(1—1/*)(4+71*—81/4)}.

En divisant donc ces deux momens par la formule (), on aura
pour Yordonnée et l’abscisse du centre de gravité du segment MP/O/,
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r{3zlilu! (3—1 41/34-81/4)}
6 &/ 4-t'u! (1mm2t!2)} ’ (65)
r332/3+61/u’z(:—2t”)+(x—i/IZ)(4+7t/2—8t’4)} ) (/zﬁ)
o{:’-}—t’u’(z-——zt’*)}
De id on pastera aisément 4 ordonnée et 2 Pabscisse du 4.2®
seqrment /M. On a, quel que soit I'axe des momens,
Mom.O/Qf‘M::"lfom.MP/O/Q/-;-Mom.lVIP’O/ 5

prenant donc successivement OP/ et OQ’ pour axes des momens,

on aura
Mom.O/Q'M =3 r3f{t/u/(21-=341/* 4= 1644 )32/ (7 ~—16/2 48274 1

Mom.O/Q'M=":r¥*32*(3—4i/*)468/uz/3— 1) = (1—ui'*, L5141}
Divisant enfin ces deux momens par la formuie ', on aura, pour

Vordonnée et I'abscissé du centre de gravité du segmeat O/Q/M,

1§32/ (== 168/ 24-8/8) -t/ (2 1 =3 4112} 1614} i
62/ (Bt tu! (3—2¢")} > (1)
7{32/2(3==4t/2) 461/t 2/ (G 2t/2) —= (1 =t/2) (4= 51/ 2}-41/4)}
3 & (34t )t/u! (3= 21/2)}

- @)

M. Poisson a paru penser que les abscisses des centres de gravité
de ces scgmens ne pouvaient étre exprimées. que par des séries
( Voyez sa Mécanique , tome 1.°" , page 147 ). Mais on voit,
par ce qui précéde , qu’on peut toujours avoir exactement , sous
forme finie , les deux coordonnées du centre de gravité d’une
surface plane quelconque , terminée par des lignes droites et des
arcs de cycloides.

X1l. Cherchons les volumes des corps engendrés par la révolution:
des deuxw segmens O'P'M, O'Q'M autour de O'P! et 0/Q/, res-
pectivement ?

Suivant la régle centrobarique , le volume do premier de ces
deux corps. s'obtiendra en multipliant par 2= le produit des deux

formules (r) et (gg); ce volume sera donc
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2 ar3{3z/-t/u/ (31 41/24-8114)} (mm)

Le volume de l'autre corps s'obtiendra, suivant la méme rdgle,
en multipliant par 2= le produit des deux formules (r) et (/);
ce volume sera donc

2 ar¥322(3—4t/*) 61/ 2(3—21/") — (1 =1/ )(4—51"* 442/} . (nn)

On trouvera, d’aprés cela, pour le volume du corps engendré
par O’A’O, tournant autour de O’A/,

a'ri=:0/A’ . Cerc.A/O ;
c’est-d-dire , le 8.™¢ du cylindre circonscrit ; et pour le volume
du corps engendré par O’AO , tournant autour de O‘A,
;ar3(ga*—16)=2 A0/, Cerc. AO—28ph.r ;

¢’est-d-dire , les 2 du cylindre circonscrit , moins deux sphtres ayant
méme rayon que le cercle générateur. On obtiendra facilement,
d’aprés cela, les volumes des corps engendrés par des segmens quel-
conques de cycloides, tournant autour de O’A’ ou O’A, ou méme
autour d’une droite quelconque , puisque (XI) le centre de gravité
de Taire de ce segment sera assignable.

XII. Cherchons les centres de gravité des corps engendrés par
la révolution des deux segmens OPM , OQM , tournant autour

de OP.et OQ respectivement ?
I’élément du premier de ces deux corps étant =y*dx, le moment

de cet élément, par rapport au plan conduit par O, perpendi-
culairement a l'axe, sera
wy2de=32mriubdz(z—tu) ,
dont Yintégrale , commengant avec z, est (I)
L art 45z2=6tuz (1 54-10u4-8ut)4uz (4541 5u=+8u4—36u5)} H
divisant donc par la formule (@z), on aura, pour la distance du
point O au centre de gravité de_ce volume,
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7§45 22611z (1541 0ur-8ut)ur (4541 5u24-Sut—36ub)}
3,15z —fu (154 10u2--But)}

En conséquence, s’il s'agit de la distance du point O au centre .

. (@

de gravité du corps engendré par OAO’, on trouvera pour son
expression
45224128
. 7 18om

L’élément du second de ces deux corps étant =z*dy , le moment
de cet élément, par rapport au plan conduit par O perpendicu~
lairement 4 l'axe, sera

wx’ydy=32wr*1u’(z—iu)* ,

dont l'intégrale , commengant avec z, est (I)

5 wr46tuz (154 roure—16u4)—9gz3(5—8ub)—u? ({541 5u=—=64ut-4-36u6)} ;
divisant donc par la formule (46), on aura, pour la distance du
point O au centre de gravitdé de ce volume

r{9z2(5=8ué)=—=6tuz (1541002 —16u4) 024541502641 i4-36u6)}
6{3z2(3—{u2)==btuz(3—202)4-u2(g=—gquz-4-fut)} . (79)

En conséquence, s’il s'agit de la distance du point O au centre
de gravité du corps engendré par OA’O’ , on trouvera pour son

expressian
r 27'&72——1 28

6 ' 3a2—16 ‘
On voit , d'aprés ce qui précéde, qu’il sera toujours facile de
déterminer le centre de gravité du corps engendré par un segment

quelconque de la eourbe, tournant autour de OA ou OA/.

XIV. Cherchons enfin les centres de gravité des corps engendrés
par la révolution des deux segmens O'MP/ , O'MQ’, tournant
autour de O'P’ et O/Q’, respectivement ?

L’¢lément du premier de ces deux corps étant =y/2d2’/ le moment
de cet élément, par rapport au plan conduit par O/ perpendicu-

X

laitement & l'axe , sera
w/y'*
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axly?da’ =32nrttutde! 2/ 00 ,;
dont I'intégrale, commengant avec z/, est (I)

3 #4926t/ 2! (3—1 4t/ 24-88'4) 4 (1 ==1/2) (164-2.5¢/2=681/4-4-361/6) } ;
divisant donc par la formule (mm), on aura, pour la distance du
point O/ au centre de gravité de ce corps,

r{Qz/ 2461t z! (3—1 41/ 2~4-81/4) F (1 —1/2) (1642 51/2—681/4~4-361/6) . ')
3{3a/-tu! (3—14t/2-4-8i'4)§
En conséquence , sl sagit de la distance du point O/ au centre
de gravité du corps engendié par OO’/A’, tournant autour de O’A/,

on lrouvera pour son cxpms.sfon'

—
r. -
-2

L’élément du second de ces deux corps étant mr’*dy/, le moment
de cet element, par rapport au plan perpendiculaire &4 l'axe, passant
par O/, sera

w2y dy/ =3 z= WUl (21 2,
dont Pintégrale , commengant avee z/, est (I)
—m413z'2(7 1687248074 )-6tu! 2 (2. 1-3 441 2=4-16174) ~ (1-2/2) (16~ 4~tf“+76t/4—361/6)3 ;
divisaut donc par la formule (nr), cn aura, pour la distance du
point O’ au centre de gravité de ce corps ,
7'9z'2(7 - 168/ 34-81/8)-61/u'z! (21 -3 4 24 161/4) - (1-2/2) (16-4 7276114 - 36116)}
6§32/2(3=—132) +b¢/u’z'(.,~—zzu)-—(x—-t/z)(4—at/’++t'«)} - (s9)

En conséquence , 8’il s'a:it de la distance du point O/ au cenfre

de gravité du corps engendré par G’OA , tournant autour de O’A,

on (rouvera pour son CXPPeSbiOH
. 7%
=-T. .

: 3ar—4

On voit, d’aprés ce qui précéde , qu’il sera toujours facile de
déterminer le centre de gravité du corps engendre par un segment
quelconque du cycloide, tournant autour de OA’ ou OA.

Paris, 17 janvier 1815,
Zom. V1. ) 7
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TRIGONOMETRIE.
Sur l'aire du triangle sphérique;

Par M. TEpEnaT , correspondant de Tinstitut, recteur de
Yacadémie de Nismes.

ha T Sy Vlg Vg Ui W VL V)

[OUT le monde connait le beau théortme de Cavalleri, sur Vaire
du triangle sphérique, et on le trouve démontrd trés - simplement
dans la plupart des traités el¢mentaires ; mais les jeunes-gens qui
dudient le calcul différeriie]l we serout peut-étie pas fiaches d’en
trouver 1c1 la demounstration suivante , fondde sur les principes de
ce calcul. ’

Soient &, b, ¢ (fig. 2 ) les trois cotés d'un triangle sphérique
A, B, C les trois angles respactivement opposés , et § son aire.

Si le coté ¢ et langle B restant fixes, Vangle A4 vient i croitre
de la quantité arbitraire 7, de manitre que le c6té & devienne b,

que AC devienne A4C’, et l'aire du triangle §/; on aura , par
la Série de Taylor,

ds ¢ d2S 7=
S'=S$ —_—— ——
+dA 1+dA2 Lo "o
db i d*b 12
b =b4 — — —_— = 17 .
+ dAd 1 +dA2 1.2 + 6+Ml

Du sommet 4 comme péle , soient décrits, entre les c6téds de
Pangle 7, les arcs de paralltles Cm, C/m’, et des points € et m/
soient abaissées sur le rayon OA4 de la sphere les perpendiculaires
CD, /D’ ;-on pourra toujours prendre i assez pctit, sans étre
nul, pour avoir



SPHERI QUE. 47
8> 84-C/ Am’ et §<LS4-CAm
mais , en prenant le rayon de la sphére pour unité, et remarquant

que AD , AD’ sont respectivement les féches des calotes dont
les portions de fuseaux CdAm et C’Am’ font partie, nous aurons

C Am =i(1—Cos.b) ,
C’Am’ =i(1—Cos.8’')=i 1—Cos.Cos Mi+8in £Sin. M7}

s

R ) My M3;3
“+ e SO Miz= —— - ;
1.2.3

I

mais, on a daillears

2,2

) M
Cos.Mi=1—

1.2

d’ott Pon voit qu’en substitnant , €/ A4m’ prendra cette forme

' Am'=1{1—Cos.b+ NI) .

Ainsi, en résumé , l'on aura

S/ < S+ —Cos.&)-—i— ,

as 7, &S i i
=5+ ZrrE ot

d«d L
8> §-(1—Cosd) =2\ Tope.,
d’od on conclura, par le Téoiéme d'Arbogast N
4 =1—Cos.b.. (1)

d.d

Présentement on. a, par les formu'es connues
Cos C4-Cous.ACos B

Sin .4Sin.B

Cos.c= ”

ce qui donne , & cause de B et ¢ constans ¢t de € fonction de A

:-jci Sin,CSin. A4 (Cos. L4 Cos. A’COS.C; =0 .

Mais. on a aussi.

Cos.B4Cos. ACos.C=8in.4%in.CCos & ;

donc,, en substituant ct divisant par Sin.C.,
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dc
E:ﬂ——!—COS.b_:O H (2)

¢liminant donc Cos.b entre cette équation et équation (1), il
viendra

dS=dA44dC ,
d’ol , en intégrant,

S=A+4C-+}Const.

Pour déterminer la constante , on remarquera que, silon a d=w,
on aura (=R et §=2B; dou

Const.=B—= ,
et conséquemment

S=A4+B+C—= .

On aurait pu parvenir plus bri¢vemrent au but en employant le
langage des infiniment petits. Cn aur+it d’abord substitué¢ dd a 73
on aurait remarqué que dS , c’est-h-dire , le triang'le sphéri(lue
CAC étant infiniment petit, le triangle curviligne €C/m était in-
finiment petit du second ordre ; qu'aiasi l'on pouvait poser sim-
plement

dS=CAm=dA{x—Cos.b) ;

mais, dans le petit triangle sphérique CAC’ ou Pangle € est le
supplément du méme angle de BAC, on a

Cos.C'—=C0s5.dACos.C

Cos.b= .
os.d Sin.dASin.C

Or, on a SindAd=dA, Cosdd=1, et /=CH+dC do) Cos.C*
=C0s.£C0s.dC—S8in.CSin.d C=Cos.C—d€Sin.C ; donc enfin
dC

COS.b —_— 5‘2 ,

eu, en substituant,
dS=d4+dC,

comme ci-dessus.
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QUESTIONS RESOLUES.

Deémonstration du théoréme de géomeélrie énonce & la
page 384 du Ve volume de ce recueil ;

Par M. J. B. DURRANDE.

(o %8 Vi Vo Vi Vo o T )

THE OREME. Tout gquadrilatire, plan ou gauche , rectiligne ou
sphérique , dans lequel la somme de deux cités opposés est égale
a la somme des deux autres cdtés , est circonscriptible au cercle.

Démonstration 1. Soit le quadrilatére plan ABCD ( fig. 3 ) dans
lequel on suppose

AB-+CD=BC+H-AD . (1)
Soient divisés les angles A, B en deux parties égales, par des
droites concourant en O. Soit joint ce point O aux sommets C et
D, et du méme point soient abaissées sur les directions des cotés
les perpendiculaires OE , OF , OG, OH; I'équation (1) deviendra
d’aprés cela
AE+4BE+4-CG+4-DG=BF-4|-CF+AH~+DH . (2)
Les triangles—rectangies OLA, OHA qui ont ’hypothénuse com-

mune et un angle oblique égal, par construction, sont égaux ; et
il en est de méme, pour de semblables raisons, des triangles rec~

tangles OEB, OFB ; donc d’abord
OH=OE=O0F; 3)

el ensuite
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AH=AE , BE=BF. o
Au moyen des équations (4), I'équation (2) se réduit A
CG+DG=CF+DH . (5)

Présentement OC, OD étant 'une et I'aufre hypothénuses com-
munes de deux triangles rectangles , on doit avuir

— 2 —2 — —:-—rl
OF +iF =06 +CG

— 3 —1 LS
Oii 4-lii =6G 401G,

retranchant donc, et ayaat égard & I'équation (3), il viendra

_1 —7 —— —3
CF —UH =G —i6 ,
ouw
(CF+DH) Ci*—DH, = (CG+4DG)(CG—DG) ,
ou simplement, en vertu de (5),
CF—DH=CG-DG ,
ou cncore en. ajoutant er retranchant cette dernitre 3 Iéquation (5) ,
transposant, réduisaut et divisant par 2.,
DG=DH , CG=CF ;
les. deux triangles rectangles OFC, GGG sont done éganx , ainsi
qne les. deux triangles rectangles OHD , CGD; on a donc
0G=0F=0H=O0OE ,,
et par conséquent le: cercle déerit du point O comme centre , etv
avec l'une quelconque de ces qeaire droiles pour rayon touchera
les cotes du quadrilatere: aux points. E, F, G, H, ct lul sera

en. elfet circonscrit. (*)

(* On aurait pu ne' point mener: d’abord OG, démontre- ,, comme ci-dcs:us,,
que CD=CF+4-DH , déterminer le pOil:]f G par la condition CC=t F, I'ctt. DG=DF"
el mener alors OG. On awrat remarqué ensuite que d'apres cate censtruction les,
cercles déerits des points A, B, G, D comme centves ¢ avec les. rayons. res=—

pectifs. AE. ow AH,, BE ou Bt', CF ou CG, DG ou DH se touchent deux -
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II. Si le quadrilatére est sphérique , aprés avoir fait une cons-
truction analogue et démontré comme ci-dessus que

Are.OH=Adrc.OF =Ar¢.OE , (6)
et que

Arc.C¥+Arc DH=Arc.CG+-Arc. DG , )

les couples de triangle sphériques dont les hypothénuses communes
sont Arc.OC et Arc.OD donneront

Cos.OF €os.CF = Co0s.0GC0s.CG ,
Cos.OHCos. DH=C05s.0GCos.DG :
prenant successivement la somme et la difference de ces deux équa=
tions, en ayant égard & I’équation (6) , on aura
Cus.OE Cos CF 4 Cos.DH)= C05.0G(C0s.CG1+Cos.DG) ;
ou, en dédoublant et divisant,

Cos.CF—Cos DH Cos.CG—Cos.DG
Cos.Ct4-Cos.DH ~ Cos.CG4-Cos.DG ’

ou, en décomposant , par les formules connues,
Tang 2(DH4CF)Tang -(DH-CF)=Tang :(DG+CG) Tang :(DG-CG);

ou, en simplifiant, au moyen de I'équation (7) , et passant ensuite
des tangentes aux doubles des arcs

Arc DH—Ar¢.CF = Arc DG—Are.CG ,

en combinant cette dernitre équation, par addition et soustraction
avec l'équation (7), ou en tirera, en transposant et réduisant,

deux aux points E, F, G, H, qui sont conséquemment sur une méme circonfé-
réacc ; on en aurait concli OG=OF=0H=OFE. De I serait résulté Iégalité
soit entre les triangles OFC, OGC, soit entre les triangles OHD, OGD ; et,
par suite , la perpendicularitd de OG sur CD; ce qui aurait établi que le cercle
touchant les trois premiers c6tés en H, E, F  touchait aussi le guatritme en G,

( Note de lauteur. )
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Are.CG=Arc.CF , ArcDG=ArcDF ;
et l'on achévera comme ci-dessus, (*)

I11. Soit enfin le quadrilatére gauche ADBD/ (fig. 4), dont
une des diagonales soit AB ; et concevons d’zbord qu’on ait fait
tourner autour de cette diagonale I'un des triangles qu'elle determine
pour "amener dans le plan de lautre, de maniére que le quadvi'—
latére devienne plan.

Soient inscrits aux deux triangles ADB, AD/B des cercles, dont
C, C/ soient les centres E, E/ les points de contact avec la dia-
gonale, G, H les points de contact du premicr avec les cotes DA,
DB, et enfin G/, H’ les points de contact du second avee les cotés
D/’A, D/B.

Si, comme nous le supposons, on a la relation

AD+BD/=BD+ AD/ , (1)
On pourra la transformer en celle-ci:

AG+DG+BH~+DH =BH+DH+AG--DG/ ; ()

mais on a, par la propriété des tangentes,

DH=DG ,
D'G/'=DH/ ,
AE =AG ,
BH=BE ,
AG/'=ATL,
BE =BH ,

ajoutant donc toutes ces équations 4 Iéquation (2), il viendra;

en reduisant

(") Ceci démontre que , sur une sphére comme sur un plan , lorsque quatre
cercles se touchent deux a deux, leurs quatre points de contact sont situés sur
une méme circonférence , et conséquemment dans un méme plan.

( Note de Vauteur ).

AE
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AE+BE/=BE+AE/ ,

mais, on a aussi

AE-4|-BE=AFE/+BE/ ;
ajoutant donc ou retranchant , on tirera de ces deux dernitres
AE=AFE/ ou BE=BE/ ;

ainsi , les points de contact E, E’ se confondent en un seul qu’a
Pavenir nous désignerons simplement par E, et qui se trouve con-
séquemment avec G et C/ sur une méme droite perpendiculaire
a AB.

Concevons que des points A, B pris successivement pour centres,
et avec des rayons respectifs AE=AG=AG’, BE=BH=BH’, on
décrive deux cercles , leurs tangentes extérieurcs concourront en
quelque point F du prolongement de la droite AB qui joint leurs
centres. Soient encore décrits des points D, D’ comme centres et
avec les rayons DG=DH, D’'G/=D/H’, ils toucheront les deux
autres , le premier en G, H et le second en G/, H’; donc, par
les théories connues, les droites GH, G/Il/ iront cencourir en F,
sur le prolongement de la diagonale AB.

Concevons présentement que V'on reléve le plan de 'un des deux
triangles ADB , AD/B, en le faisant tourner autour de AB, de
maniére & reconstruire le quadrilatére gauche; les droites GH, G/H/
ne cesseront pas, dans ce mouvement, de concourir en F et d'étre
conséquemment dans un méme plan, lequel contiendra aussi les
quatre points G, H, G/, H’; EC et EC/ ne cesscront pas pa-
reillement d’étre dans un méme plan perpendiculaire 3 AB.

Les axes de ces deux cercles , cest-a-dire , les perpendiculaires
menées 3 leurs plans par leurs centres, seront aussi dans ce dernier
plan, et se couperont conséquemment en un certain point O, lequel ,

Tome VL. 8
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appartenant 4 ces deux axes, sera également distant des points G,
H, G/, H/; puis donc que ces points sont sur un méme plan ;
ils appartiennent & une méme circonférence a laquelle conséquemment
notre quadrilatére est circonserit (*).

Si les deux diagonales étaient telles que leur somme fit égale
A celle des cétés opposés ,ces cotés et les deux diagonales ne seraient
autres que les six arétes du tétraédre dont il a été question 4 la
page 304 du V.° volume de ce recueil (*¥).

(*) Dans le vrai, si 'on veut appeler polygone circonscrit & un cercle, comme
on le fait communiment, un polygone donl tous les cdids sont des tangentes &
ce cercle, notre quadrilatére gauche ne scra point proprement circonscriptible
au cercle , mais & une sphere ayant le point O pour centre ¢t OE pour rayon.

J D 0.

(**) Le théovéme éiant ainsi démontré pour le quad ‘lutére gauche, se trounve
Pétre aussi pour le quadrilatere plan , quin’en est quun cas particulier. 1 nest
pas méme difficile d’en conclure aussi la démorsir.ticn pour le quedrilatere sphé-
rique. En y faisant , en effet, une samblable coastruciion , on s'assurera, par les
mémes moyens , gue les points B, B se confondent. Imaginant alors paz les points
G, H, G, I¥ des tangentes aux cercles , ces tangentes formercnt pur leurs
concours un quadrilatére gauche dans lequel les sommes de cdtés opposcs seront
égales; il sera donc circonscriptible au cercle, ct le eerele quoun lui inscrira sera
aussi inscrit au quadrilatére sphérique,

{ Note de l'auteur.)
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»
Solution du premier des deux problcmes de géomeirie

proposes a la page 228 du V. volurme des Annales ;

Par M. Zixprini, professeur de mathématiques au lycée,
et secrétaire perpétuel de Iinstitut royal & Venise (¥).

[a Yia Vo Wi Wi Wi Wi Vo

P ROBLEME. Diviser graphiquement l'aire d'un triangle en parties
égules , par des paralléles a sa base ?

Consiruction. Soit le triangle ASB ( fige 5 ) qu’il faille, par
exemple , diviser en cing parties égales , par des paralicles & sa
base.

Par son sommet §,soit menée une droite SD , paralltle 3 sa
base ADB et égale a sa hauteur SH. Soit ¢, le milieu de cette
parallele, et soit divisée ¢,S en cinq parties égales, aux points
€y, €ys ;5 c,e De ces points, pris successivement pour centres,
et avec leurs distances au point D pour rayon, soient décrits des
arcs coupant respectivement la hauteur en A, , /by, Ay, /iy les
paralleles mences & la base par ces derniers points seront les droites
cherchées.

Il ne serait pas diflicile , d’aprés cela , de diviser la surface
convexe d'unc pyramide ou d’un céne_en parties égales, par des

plans paralléles & sa base.

(*) Ce probléme, de premiére facilité , ne pouvant offrir d'intérét qu’a raison
de Pélégance de la construction , nous avons cru pouvoir passer sous silence une
multitude J'autres solutions quon en a données.

J. D. G.
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Si, au lien de diviser ¢,S en parties égales, on l'elit divisée en
parties proportionnelles 3 des nombres donnés quelconques , les
paralleles & la base, au lieu de diviser l'aire du triangle en parties
égales , l'auraient divisée en parties proportioni®lles a2 ces mémes
nombres.

Le premier cas n’étant méme qu’un cas particulier de ce dernier,
c’est eelui-ci qu’il suffira de démontrer. Il est dvident d’ailleurs que
tout se réduit & savoir diviser l'aire d’un triangle , par une paralltle
2 sa base en deux parties qui aient entre elles un rapport donné,

\

celui de m & 2, par exemple. ,

Démonstration. Tout étant dans la figure 6 comme dans la fi-
gure 5, si ce n'ast que C est le milieu de SD=8SH, que SC est
partagée en E en deux parties SE, EC proportionnelles & m et 2,
que E est le centre d’'un demi-cercle DLK coupant la hauteur
en L, et quenfin FG est la paralltle & AB conduite par Li; soient
M, N les deux segmens du triangle.

Nous aurons
M~+-N=ASB=:IABXxSH ,

SDxSK
SH

F=FSG=ASB. 2" =: AB +AB.
5o SH

=:AB.SK=:AB(DK—SD)
e'est ~ & - dire,
M4+-N=ABxSC ,

N=ABx (DE—SC)=ABx (DE—DC)=ABXCE ;

donc, en retranchant
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M=AB X (SC~CE)=ABXSE ;

donc enfin
E__m .
== *-

S
EC

2|2

De Ia division du cercle en portions de méme periméire
ayant entre elles un rapport donné;

Par M. GERGONNE.

[ Via Sla Vo Vla Vo Y2 Vo V1

Dans le L¢* volume de ce recueil , page 240 , M. Lhuilier a
donné une trés-élégante et trés-curieuse construction du probléme ou il
s'agit de diviser un cercle en parties égales a la fois en contour
et en surface.

Ce quon vient de lire m’a fait penser que la méthode de M.
Lhuil’er devait s’appliquer au probléme plus général ou il s'agit de
partager un cercle en parties de méme contour, ayant entre elles

(") M. Tédenat observe qu'en divisant la hauteur du triangle  partir du sommet
dans le rapport de n & m désignant par x le premier des deux segmens, par &
la hasteur du triangle total , et enfin par y celle du triangle & retrancher ," on a
P'équation y*=hx , qui appartient & la parabole et peut fournir une construction.

A la véritd, cette construction n'est point élémentaire , mais M. Tédenat re-
marque que son analogue est peut-étre la plus simple quon puisse appliquer au
second probléme de géométrie de la page 328 du V.¢ volume , relatif 4 la py-
ramide ; probléme non susceptible de solution élémentaire et qui conduit a Péquation
¥3==h*x de la premiere parabole cubique.

J.D. G.
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des rapports donnés. Non senlement I'épreuve a justifié mon attente;
mais j'ai va que la construction pouvait étre démontrée trés-brieve-
ment, sans rien emprunler de la théorie des suites dont les termes
sont des puissances semblables des termes d'une progression par
différences.

Soit en effet divisé le diamétre 2r d’un cercle ( fig. 7 ) en deux
segmens , proportionnels & m et n; en sorte que ces deux segmens

solent

mr anr

——— &

m--n ? m-pn *

sur ces deux segmens comme diamétres soient décerits, de part et
d'autre du diamétre total 2r , deux dewmi-circonférences dont les
longueurs seront conséquemment

wmr anr

t;z—+;z ¢ m~-n i
leur somme sera ainsi =7 ; c’est-d-dire que , quel que soit le rapport
de m & n, la courbe continué formée par les deux demi-circon-
férences intérieures et se terminant aux deux extrémitéds du dia-
metre 2r est constamment égale 2 la demi-circonférence extérieure.
Cetie courbe et le diametre 27 divisent le cercle exiérienr en
quatre segmens M, N, M/, N’ ; et lon a évidemment , par ce
qui précede , ' ‘

. m?ar2 / ' a . ' n2ra
M:;zr————v-——; N M =ar —N= :wr’_..Ew.__.__ s
(m-[-‘n) (m~§-n)>
n2r2 e . . mar?
N=!x 3 N=car*—M='ar—:= —
(m~4-n) (m~}-n)2

ou, en réduisant ,



done

m
M+M’=a'r ;n—-_{—;z N

et par conséquent

m—-2n
/= arim.
M Py xr-m (m_n)z ’
N'=Z=zrn. nam
Y (m+n)z ’

c’ost-h-dire , que la eouthe continae partage le cercle en deux

segucis propurtibuncls aus scgmens correspondans du diamétre,
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QUESTIONS PROPOSEES.

Problémes de Géomeélrie.

1. DI«':TEBMINER, en fonction des trois c6tés d’'un triangle sphérique ,
1.° le rayon sphérique du cercle inscrit ; 2.° le rayon sphérique
du cercle circonscrit; 3.° la distance sphérique entre leurs centres

sphériques (*)?

I1. Déterminer , en fonction des six arétes dun tétraddre, 1.°
le rayon de la sphere inscrite; 2.° le rayon de la sphere circons~
crite ; 3.° la distance entre leurs centres ?

(*) Tentends icipar distance sphérique entre deux points d’une sphere, l'arc de
grand cercle qui joint ces deux points. Yappelle centre sphérique d'un cercle d’une
sphére , ce qu'on appelle ordinairement son péle. Enfin , Vappelle rayon sphérique
de ce cercle arc de grand cercle qui joint son centre sphérique & I'un quelconque
des points de sa circonférence.
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ANALISE TRANSCENDANTE.

Du calcul des deérivations , ramené ¢ ses veéritables
principes , ou théorie du developpement des fonctions ,
et du retour des suites ;

3

"Par M. J. F. FrangA1s , professeur & Décole royale
de l'artillerie et du génie.

[a Ta o Vg Vg Vo Vi Vg Vo T2

DEPUIs Vinvention du TAéoréme de Taylor , surle développement
des fonctions dun binome, et du Théoréme de Lagrange, sur le
retour des fonctions et des séries , bien des géometres se sont occupés
d’étendre et de généraliser les découvertes de ces deux géometres
cilebres; et, sous le rapport de la théorie générale , on pcut dire
que les résultats auxquels ils sont parvenus ne laissent plus rien
4 désirer; mais les formules qui les contiennent, quelques précieuses
qu’elles soient comme solutions géndrales , ne font qu’indiquer une
suite d’opérations ultérieures , souvent si compliquées qu’elles dé-
couragent le calculateur le plus intrépide. 1l restait donc a trouver
une méthode simple , facile et uniforme, pour exécuter compléte—
ment et immédiatement tous ces développemens, tant directs que
de retour. Les géometres allemands sont les premiers qui ont réussi
dans cette recherche : leurs travaux ont donné naissance 3 un nou-
Tom. VI, n° 1, 1.°% septembre 1815. 9
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veau calcul, appelé Analise combinatoire par son inventeur Hin-
denhurg. Ce calcul résout & la vérité la question, mais d’une ma-
niére trop disparate avec les procedés ordinuires de I'analise : il oblige
4 former d'abord séparément les groupes de lettres, et ensuite leurs
cocfliciens numeériques , pour lesquels on a besoin de tables de
combinaisons calculées d’avance. Il etait réservé & Arbogast de donner
la solutiun generale, complete et analitique de¢ cette question dif-
ficile , dans son Caleul des dérivations. Malheureusement cet ouvrage
est entaché de plusicurs defauts trés-graves , qui ont dégouté les
géometres de sa lecture , et ont empéché quil ne fut étudié et connu
aatant qu’il le mérite. Ces défauts sont 1.° de n’avoir pas assez
justifié Vintroduction de ses nouvelles notations; 2.° de n’avoir pas
" défini assez nettement ses dérivées et ses dérivations s 3.° de déduire
sa théorie d'un principe qui n’est ni assez clair ni assez évident
(n.° 6); 4.° de I'exposer d’une maniére trop longue et trop em-
barrass’e ; 5.° enfin d’avoir noyé des résultats vraiment remarquables
dans une foule de choses qui sont, pour ainsi dire , hors d’ceuvre,
et sans liaison avec l’objet principal de son ouvrage; de sorte que
ce qui pouvait étre présenté dans quelques feuilles d'impression est
devenu un gros in-4.°. h

Je me propose, dans ce petit écrit, de remédier, le mieux que
je pourrai, & ces défauts de l'ouvrage d’Arbogast, en déduisant la
véritable théorie du calcul des dérivations du seul théoréme de
Taylor , sans l'emploi d’aucun principe nouveau ; de sorte que ce
calcul ne sera, a proprement parler , qu'une extension de ce
théoréme. ]

Afin de rendre l'exposition de cette théorie plus rapide, et de
présenter de suite aux géoméetres toute la partie usuelle de ce calcul,
je me contenterai quelquefois de généraliser les résultats par des
conclusions d'induction ; sauf 3 démontrer ces conclusions dans un
article 4 part. Pour la méme raison , je réléguerai dans des remarques

toutes les obscrvations , soit sur les notations , soit sur le fond méme
de la théorie.
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ARTICLE PREMIER.

Deéveloppement des fonctions selon les puissances ascen~
dantes de la variable.

1. On sait, par le théoréme de Taylor , que toute fonction d’un
binéme &+ ( x étant une variable qui reste indéterminée ), peut
étre développée en une série de cette forme

(1) fed-2)=a+4 g, 0-ta,2°Fa, 224 . .5
les coefficiens @, a,, a,, a,,.... étant déterminés par les valeurs
qne prennent la fonction f«+x) et ses coefficiens dilférentiels
dof(ed-x)"  do.fladr) d3f (o)
dx ' ogeadwr 71,2343 2ttt
on y fait #==o.
Nous représenterons ces valeurs particuliéres des coefficiens diffé-

, lorsqu’aprés la différentiation

. X I
rentiels par Dfe, —Dfe , —— p3 .
P * Ia * 723D fe....; et nous appellerons , avec

Arbogast, les quantités Dfa, Df, , D¥fw oo, dérivées , premicre , se-

conde , iroisiéme ,..... de fa. Ainsi la dérivée D"fz, d’un ordre quel-
2 . . . .

conque 7z, w'est autre chose que ce que devient le coefficient differentiel

df(wf-x) 1 , fai
— orsquon y fait g==o,
Nous aurons donc
. X [ 3 [ \
a,-—-TD%-——Da; Da=a, ,
I "f s
@y == e, pa=1.20, ,
() . . d’ott 'on tire ’
a;,=—=Dfa=——Da, - 3 —
37 1.23 1.2.3 ' réciproquement } D =r1.2.3a, , (
¢ ® 8 v-0 s e o 8 * " s I a2 e e+ @
e et e e e e
a4,= —— p'a= D'z ;
{ 32t L2 , | D"a=1.2...na. .
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Les valeurs (2) étant substitudes dans I'équation (1) donnent

@ (at-2) = fat-Dle. 2t — D 27— Difis i

1 1
=a+4Da.x4 —Da.2*+ i~ Dia. . 2d ...
1.2 o2

Mais ici il faut cbserver que ce développement peut devenir im-
possible ; ce qui arrive toutes les fois que fa et ses dérivées deviennent
infinies : ce cas a lieu pour la fonction Log.x, par exemple.

2. Remarque. La loi des Dérivations , ou de la formation des
dérivées successives, est évidemment la méme que celle des diffé-
rentiations , a la seule exception prés que nous supprimons les
dénominateurs inutiles Da, Da*, D&’ ,.....; ce qui revient & sup-
poser pa=1. En effet, on sait, et il est d'ailleurs évident que le
coefficient différentiel d’un ordre quelconque de la fonction d’un
binéme «-f-z est le méme, soit qu'on la différencie en regardant
# comme variable et « comme constant, soit qu'on la diff¢rencie

en regardant « comme variable, et # comme constant ; on a donc

dnfladx)  dnf(ad-x) ) dn, [(a-p-2) .
do = g Ofh en faisant x=o0, dans — o on obtient

LS LR 7 . s e e

o ==D"fu. 1l est donc démontré que la loi des dérivations est la

méme que celle des différentiations; et il s'ensuit ausssi que les
dérivées d’un ordre quelconque ne sont autre chose que les coef-
Siciens différenticls du méme ordre , pris relativement & la quantité
constante «, que lon feint étre gariable.

Il se présente ici naturellement une objection que lon a faite,
des Vorigine, contre la notation du calcul des dérivations : ¢’est que
les opérations dérivatives étant les mémes que celles du calcul diffé-
rentiel , il fallait les indiquer par les ménies notations. Je réponds
d’abord gu’absolument parlant la chose cut été possible; mais que,
pour Vordre et la précision , et d’aprés les rigles d’une saine lo=
gigue » des opérations qui, bien qu'identiques pour la forme , dif~
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ferent entidrement pour le fond, doivent étre représentées par des
signes différens. Je dis que ces opérations difierent entierement pour
le fond ; car les signes différentiels se rapportent aux variables et
3 leurs variabilité de grandeur , tandis que les signes dcrivatifs ne
se rapportent qu’aux seules constantes, et que les dérivées succes-
sives n’indiquent qu'une dépendance d’ordre et de succession dans
les termes d’un développement. Si Lagrange a été autorisé & introduire
une notation nouvelle, dans le calcul des variations, pour indiquer
une opération entierement identique avec la différentiation , et
qui se rapperte aux variables méme, sculement parce qu'elle ne
se rapporte pas & leur variabilit¢ de grandeur, mais 4 leur varia-
bilité de forme ; & plus forte raison sera-t-il permis , ou plutét
nécessaire , de représenter par une notation particuliere une opéra-
tion qui ne se rapporte pas méme aux variables, ni 4 aucune
espéce de variabilité.

Une autre raison, qui suffirait & elle seule pour justifier I'intre-
duction d’une notation partieuliére pour les dérivations, c’est qu’elles
peuavent se trouver , et se trouvent réellement souvent combinées avec les.
différentielles, dans une méme formule; il faut donc qu'on ne puisse pas
les confondre : ce qui arriverait infailliblement, si elles étaient repré-
sentées par-une méme notation, '

Quant & la suppression des dénominateurs Ds, Da®, Dz’ ,...i0;
leur inutilité seule suffit pour la justifier. Si des personnes habituées
anx considérations d’infiniment petits tiennent & conserver ces dé-
nominateurs , dans le calcul différentiel , ol leur considération abrége
quelquefois les raisonnemens dans des questions de géométrie et
de mécanique, mais ol elle peut aussi égarer ; il n’y a pas la moindre
raison de les conserver dans l’analise pure , ni, & plus forte raison, dans
les dérivations ot toute idée d’infiniment petit serait plus que déplacée.

3. Réciproquement , tout polynéme de la forme a-}a,2-42,2*
—+a,2%+4-.... (terminé ou non ), peut &lre représenté par @-+Da .z

1 I
+o D -

5 D’a. 2., olU, entre les coefficiens g, 4, ;
1e2.0
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Gy 5 @y yiiiiei.. et les dérivées successives de @ ; on a les rela=
tions (3).

En effet, en supposant, ce qui est toujours permis ,
(5) atazta, Va4 =1f(at2) ;
on a, d’aprés la définition des dérivées (n.° 1),

I I

30 -
D3 o= ——
1.2.3 1.2.3

1 X
a=fx, a,=Df2x=Da, azan’fa&: -——zD’a, a;= D2,

d’od Ton tire les relations (3).

8i le polynéme est terminé , et n’a qu’un nombre n de termes,
a,_, sera le dernier des cocfliciens; et tous les suivans @, , a,,, »
Gy yeee-., ainsi que leurs valeurs correspondantes, en dérivées de @,
seront égaux a zéro.

4. Remarque. 11 est bon d’observer que l’équation (5) peut étre
satisfaite d’une infinité de maniéres , et que « est entiérement indé-
terminé. En supposant «=o0, on a

I

a=fo, a,=Dfo=Dpa, 2,=—D*fo=—D’g, a;=—Dp*fo=—0%,...;
1.2 1.2 123 1.2.3

ce qui donne encore les relations (3).
5. Proposons-nous maintenant de développer la fonction d’un poly-
néme quelconque , ordonné selon les puissances ascendantes de la
variable , en une série qui procéde selon les mémes puissances ; c’est-

a-dire, de déterminer les coefficiens du second membre de I’équation
suivante :

(6) ¢latazta,00+a, 23 4) = A+ A a4 A, A 2P
D’aprés le n.° 3, le polynéme sous le signe de la fonction peut
étre représenté par f(«+a); le premier membre de cette équation

peut donc é&tre mis sous la forme of «—4x). Il suffit donc de substituer ,
dans l'équation (4), of au lieu de f; ce qui donne '

¢(a4-a, x4, x34a 334 )=0lat-D.pfex 4 ; D% @fu. a3 g D300 B
=@ 4~}D.9 6.5~ ; D@ a.x? 3 D4P a.x3ue
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en qbservant cependant que , dans ce cas, chacun des signes de
déiivation indique des opcrations ultérieures & exécuter , que nous
expliquerons dans la remarque suivante: c’est pourquoi mous avons
mis un point aprés chaque signe de dérivation , pour marquer celte
difference.

En comparant terme a terme l'équation (7).avec celle (6), on
en tire les valeurs suivantes:

(8) A=¢a, 4,=D.a, 4,=D0a, A; =002 .

¢t par conséquent

(9) oa=A , poa=A, , D’ .pa=24, , Dpa=064,,....;
6. Remarque. Nous avons démontré, dans la remarque du n,° 2,
, inédral n drfe d .
quon a, en général, D fx:a“T; on a donc aussi
d(ofz) d2(pfa)y di(efey
D.¢fau= R D ofe = ! D’.tpfn::—d-:a— sesene}
_deey . dea) di(ea)
.(Pd-—- D) . d-——mz—’ F .¢a-—— d 3 4 ocesce

Or, d’aprés les régles ordinaires de la différentiation des jfonctions
de fonctions , ou des fonctions de variables qui sont elles-mémes
fonctions de la variable -principale, on a
d(efx) _d((me) dfes
—_ 7. 7

de dfx " da

d(Pfa)  df:
4[5 'd: d(¢f¢) d2.fa d(¢f¢) (df'a)“

d2(@fx)
e da e " det (dfx)z
e e e C e et i e e as e ce e
ou, en mettant < au lieu de f«,
d(ga) _ d(¢a) da
de ~ da da’

d(@a) da
dea) Tz gzl _ degay da | dxee) [ da )

der de T de  der daz

oo'lla--nou.-o--a....-ooo‘lt;
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. . . . ’ L
Passant donc aux notations dérivatives, en supprimant les dénomis
nateurs , nous aurons

D .ofe=De¢fu.Doflu ,
D*.¢fe =Dofe.D¢fx4D*¢fu.(Df2)* ,

e ® 0 2 5 & ¢+ @ 0 & ¢ & 6" s s e s s s 0 0 ® e s s N

et

D .¢a=D¢aDa ,

D'.pz=Doa.D*aD*¢a.Da* ;

® 0 0 ¢ 6 & o 0+ s ® g s s s s s oo

Le développement de ces deux premitres dérivées suffit pour
expliquer la différence qui existe entre les dérivées sans point et
celles qui sont suivies d'un point : entre Dea, D*¢a , ... et D 02 , D*.0a ..
Les premiéres sont les dérivées de ¢z , en supposant De=1, D*a=o0,
D’a=0,..., et les autres sont les dérivées de ¢a, en supposant que
a est fonction de «, que ses dérivées successives sont Da, D’z , D’a, ..
et qu'elles ne sont pas toutes égales a zéro. En un mot, les dérivées
sans point, D@z, D*¢a, ..... sont les coefliciens du développement de
#(a+-z) et les dérivées suivies d'un point D.?a, D*.9a ,... sont les
coefliciens du développement de ¢{a~+4Da.z+: D*ax*+ ; Da.z’~+-...)

7. En exécutant, d’aprés la remarque précédente, les opérations
indiquées par les ddrivées suivies d'un point, on obtient pour les
six premiéres, en suivant les régles ordinaires de la différentiation ,
lorsqu’aucune différentielle n’est constante :

D .¢pa=D¢aDa ,
D2.pa=D¢a.D*a-}-D$a.Da* ,

D3.¢a=D¢a.p3a-4-D2pa.3paDa4-D3da De3 ,

Dh.pa=D¢a.Déa$ D2¢a;DaD3e+4-3(D%a)*]+D}ga.6Da*D2a4-Diga.Dat |

DS¢a=D¢a.Nda~-D2¢u(5DaDse—410D2aDn3a)-;-D3gal10Da*Dia~-15Da(Da)?]
~-D4¢a.10Da’D?a-D3da.Da’ ,

p.0a
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n5.¢a=n¢a-nﬁa+nz¢a[Gnalﬁa—}-:5Lﬂan4c+xo(n3a)=]
~}-p3¢a[15pa>Déa-6oranania—t15(p%a)3]
~}Dtga[20Da3D3a-}-45D0*(D20)*]4-D5¢a.15paipra}-Db¢a.Dab ’
et ainsi de suite.

En substituant ces valeurs dans les équations (8), et remplagant

les dérivées de a par leurs valeurs (3), on obtient

(
A4 =9¢a ,

4 ,=Db ¢a=Doa.a, 4 )

4, =:D¢a=De¢a.a,+:;D*¢a.a.* ,

A, =0’ ea=Doa.a,+}:D*¢a.2a,a,+;0%¢a.a’ ,

(10) { 4, =" 0a=Dea.a 4D’ ¢a(2a,0,+4a,*)+iD%0a.3a,a,+ LD'pu.a,*

A =770%gr=Doa.a + D ¢ga(2a,a 424, 4D’ ea(3a,’a ;430,a,%)

-+ Zpioa. 4a, ﬂz+noD5¢a'als s

A =05 p1=Dpa.as+iD*pa(2a,a f2a,a ,}a; ’)-l-';D3¢a(3a,’a4+2'3a,,a;,_;_a,z)

+ LD%g 4ala,+ 2t aa, )+ 0 ¢a.5e, e, Ao vb0a.a, 6
et ainsi de suite. .

Nous voici donc parvenus au développement complet des sept

premiers termes déla série (6), qui est Pobjet fondamental du calcul
des dérivations , sans supposer autre chose que le théoréme de

b

)

Taylor , et les régles ordinaires de la différentiation. Fn examinant
de prés la composition successive de ces termes, on en conclut
aisément la régle pratique suivante , pour déduire immédiatement
un terme quelconque de celui qui le précede.

REGLE FONDAMENTALE,

8. Pour déduire le développement de A,,., de celui 'de A,, le.s'
lettres étant disposées d’aprés leur ordre de succession
1.° On ne fera varier , dans chaque terme , que la derniére

Tom. FI. 10
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lettre ou sa puissance , en suivant les régles ordinaires dela diffé-
rentiation , et en meitant sz'mple}nent a, pour Da, a,ipdur Da,, 2,
pour Da, ..., sans autre coefficient que lunité ; )

2.° On fera varier de plus ( &aprés les mémes régles de la di[fé-
rentiation ) Uavant-derniére letire , sa puissance ow sa fonction ,
si elle se trauve étre lu lettre qui , dans [lordre numérique des
z'rza’ices} , précéde immédiatement la derniére du iterme; et comme
da puissance de la derniére lettre augmente alors d'une unité, on
divisera par son exposant ainsi augmenté.

Pour faire une application de cette régle, et’ pour micux en
faire comprendre l'usage , nous allons déduire le développement de
Ag de celui de A, [ formules (10) 1.

Le premier terme b¢s.z, donne , d’aprés la premitre partie de
la régle ,quiseuley estapplicable, D?a a¢. Lie second terme p*®a(2a,0,
~-24,a,) donne p¢a(2a,0,4a,a,40a,*), dont les deux premiers
termes sont dus a la premiere partie de la régle , et le dernier
3 ta secondé partie. Le troisidme terme :p*¢2(3a,’a,-34,a,*) donne
i0’%a(3a.*a j4-2.3a,a,4,4a,”), dont les deux premicrs termes d’aprés
la premiere partie de la regle et le dernier d’aprés la seconde. Le
quatriéme terme ;D44a.4a’a, donne ZLD40a(fa’aA-*-a%a,?),
dont le premier terme d’ap‘rés la premiére partie dela regle et le suivant

d’apres la seconde. Enfin, le terme -D%%z.4,® donne #;0%¢a.5a,%, ,

d’aprés la premigre partie de la regle et —;D%a.q,®, d'apres la
seconde. En rassemblant tous ces différens termes , on obtient exac-
tement le développement de A, tel que nous l'avons donné
[ formules (10) ].

On voit, d’aprés cet exemple, que la régle est d’une exdcution
trés-facile, et qu’elle fournit immédiatement les termes successifs
du développement, tout ordonnés et réduits 3 leur plus simple ex~
pression , sans qu’on ait, pour ainsi dire, d'autre peine que celle
de fes écrire. Il est vrai que , jusqu’a présent , cette régle n’est qu'une
conclusion d’induction ; mais nous nous proposons de la démontrer
dans un des articles suivans, Nous réservons pour le méme article
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la régle pour former immédiatement un terme quelconque da dévew
loppement, indépendamment de ceux qui le précedent.

. Remarque 1. On a pu remarquer , en examinar_xt. la composition
es formules (10), que le signe de fonction, ainsi que les signes
de dérivation, n’affectent que la premiére lettre du polynéme dont
il s'agit:de développer la fonction. Arbogast appelle cette premiére
lettre origine de dérivations ou premier terme de polynéme , et
toutes les suivantes quantiiés polynomiales. 1l résulte de cette obser-
vaticn que la composition des termes successifs du développement,
en quantités polynémiales, reste la méme ,quelle que soit la fonc-
tion & développer ; et que toute la différence , dans le dévelop-
pement des diverses sortes de fonctions, consiste dans les valeurs
des dérivées Dda, D*9a, D'¢a,..., qui n’affectent que la premitre
lettre du polynéme. Ainsi on a, pour (a4a,2-+4-a,2°4...)"

Dpr==ma™" " | Dea=m(in—1)a""* , D’ga=m(m~1)(m—2)a™ 3, .;

(e x40 224 00)

pour ¢

DPa=¢* , D®a=c¢" , DPa==e*,...;
pour Cos.(a4a,2-+ta,24...)
ppa=—Sing , Da=—Cos.a , D¢a=-4Singz ,.i.;

et ainsi de suite, pour d’autres formes de fonctions.

Si le polynéme sous le signe de fonction était terminé , et coms
posé de 7z termes, on aurait @,=0, @y, ,=0, Gy ;==0,....; il
suffirait done alors de rejeter , dans les formules (10) , tous les
termes od il entrerait, comme facteur, une des quantités polyné~
miales dont l'indice serait supérieur & n—1 ; et, dans l'application’
de la regle du n.° précédent , on s’arréterait , dans cha que coeflicient
aa terme affecté de «2,_,.

10. Remarque 1I. L'inspection des termes successifs (10) du
développement de 1'équation (6) fait aisément découvrir la loi re=
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marquable qui y rigne. Elle consiste en ce que 4, est composé de
n termes, formés des dérivées successives

DPa  D@a  Dipa Pz

2 ’

1 1.2 1.2.3

sess e

1.2.3.0n °

dont les coefficiens se composent de la maniére suivante : 1.° le

. Drea , .
coefficient de ———— est composé de tous les produits de r letires
$e20000 I

qu’on peut former avec les quantités polynémiales @,, ¢, , 7, .y,
de mani¢re que la somme des indices de chaque produit soit 7 :
chaque lettre étant supposée écriie autant de fois qu’il y a d’unités
dans son exposant; 2.° les coefliciens numdriques de chaque pro-
duit indiquent le nombre de per:nutations dont les lettres de ce
D3ga

produit sont susceptibles. Ainsi, le coefficient de — dans Ay est
composé des trois produits 3a,4,0 ,4-2.3a,a,0;-} -a,a,a, , qui sont
les seuls qu'on peut former avec tro's lettres, de maniére que la
somme des indices dans chacun soit égale 3 6 : leurs cocfficiens
numériques indiquent , comme on voit, le nombre des permutations
dont les lettres qui les composent sont susccptibles. \

Ceite remarque , traduite en deux régles pratiques, 'une relative
3 la formation des groupes de lettres , et lautre relative & celle
des coefficiens numériques , daprés la théorie des combinaisons ,
constitue V' Analise combinatoire des géomeires allemands.

11. Si, au lieu de la fonction d’un polyndme olua.a-+ta,2*--...)
on avait a développer la fonction ¢!f{a~2) d'une fonction de binéme,
il suffirait, dapees le n.° 5, de substituer, dans les equations (10),
ou dans les résultats obtenus par la régle du u.° 8, pour les quan-
tités polyndmiales ¢, a,, @, , @5 ,...., leurs valeurs (2).

Entin , si I'on avait & développer la fonction d'une fonction de
polynéme Jo(atax+4a,2°+a 2’ ....), on aurait, dapres le
méme n° 5,

YP(ata,04-a ,x34-0 3 %3 ) =V ($3-D.$a. 2 1 D2 Pa.x3uf ; D3 Qa3 5
et
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et il suffirait de substituer, dans les équations (10), ou dans les
résultats obtenus par la regle du n.° 8 , pour les quantités poly-
némiales a, a,,a,, a,,... les dérivées correspondantes ¢z ,D.?z,
iD’%a, ;D°.Pa ..., qui doivent étre elles-mémes développées selon les
régles du n.° 8,

Il serait méme aisé, dans ce eas , d’obtenir immédiatement le
développement de la fonction proposée; car, en mettant dans I'équa-
tion (7) 4¢ a la place de ¢, on obtiendrait

Ye(ata,xta x4 ;x3+....)=¢¢a+1’!.4«¢a.x+-;-D*.'chpa.x’-}-.-.. H
et au moyen d’'une légére extension donnée & la régle du n.° 8,
on trouverait

D J¢a=DVda.Ddpa.a; ,

} D24 ga=DYda(Dga.a,4; D da.a,)+ ;DY ga(Dda)a.? ,

;D3 ¢a=DVga.(0¢a.a ;- D*pa.2a,a, 4D ¢a.6:%)

+ 1 D2dga.[(D4a)?aa:a5-42Dga. ; Dda.c Sl 3p3Yga.(Da)dald
et ainsi de suite.

Le développement préeédent dquivaut 2 celui d’une fonction triple
d’un binéme Jpf(a~wx). En eflet, pour aveir le dévelappement.de
eette fonction triple , il suffit -de suhstituer, dans:les formules pré-
cédentes,, POUF @, @, 5, G, , B3 yorune, les valeurs (2), en fonction
de . .
Nous ne pousserons pas plus loin ces observations, sur le déve-
loppement des fonctions multiples ; ce que nous venons de dire
suflit pour faire apercevoir la possibilité de cette extension , au moyen
du calcul des dérivations.

12. Jusqu’d présent nous n’avons considéré que les fonctions d'un
seul polynéme, et nous avens complétement résolu le probléme de
leur développement .successif : il nops resterajt maintenant & resoudre
la méme question .pour les fonctions de plusieurs polynémes, ainsi
que pour celles des polynémes & double ou a triple entrée ; mais
les limites que nous avons di prescrire & cet écrit, ne nous per-

Tome VL 13
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mettent pas d’entrer dans ces détails :' nous nous contenterons d'a-
jouter encore le développement des produits de deux polynémes

et de deux [onctions de polynomes, parce que nous en aurons besoin,
pour la théorie du retour des suites.

Proposons-nous d’abord de développer le produit
(11) (e4a.a4a,2°4a,2°4..) X (b+-b,a+b,2* 4D 2°+....)

en une série de la forme

A+ A x4, 2°FA4 2 4.

En effectuant la multiplication, par le procédé ordinaire, on obtient
(4 =a

Ay=ab,~4a,b ,

A,=ab,~4a b, Ha,b,

(12>< A,=ab,4a,b,+a,b,+ab,

o o » @ o ¢ ® & ® s & ® 6 o a e s e s s 8 ¢ o @

| Av=abA-a.b,_ \+a,bp sttt bita,btay

ou la loi est évidente.

D’aprés le n.® 3, le probléme peut se mettre sous la forme

(13) (a+4-Da.x+4- 2Dz L Dia.xd+4.. )X (b-4Db.o4- 1 D234 5 DIbx34-0)
- = A A XA g 22 A a3,

En substituant denc, dans les équations (12) , pour @, , 2, , @y«

b, b,, b,;... leurs valeurs en dérivées de @ et de &, d'aprés le
n.° 3, on obuent

A =ab ,
A, =plab)==a.0b+Dab ,
A4, =1:0*ab) =a.:0b+Da.Db4:00b ,
(14)( A4,=iv%(ab)=a’D%-+Da.;0°04 Dbt 00 ,

@ © ® ® o o o s & @ ® % e © O e s o e * s % e e o o ® ¢ 0 e ¢ o o o

1 pnb DA—1p pi—1q Da
= " ab)=a +Da. t.. DoH+———b ;
4, x.;....nD () Ty £an@-1) | L2w(nel) +1.z...n !
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olt @ et b (d’aprés les n.° 3 et 4) sont supposés étre respec—
tivement fonctions de deux quantités arbitraires « et g, dont les
dérivées sont De=1, D*®=0,..., D=1, D*B=0,...

De la comparaison des formules (12) et (14) résulte {a régle pratique
suivante :

REcLrE.

Poyr déduire A, , de Ay [ formules (12)], 1.° ne faites varier
dans chague terme, que b et ses dérivées , en écrivant b, pour
b, b, pour pb, , b, pour ob, ,....; 2.° dans le dernier terme
seulement , qui contient la plus haute dérivée de a, failes varier
celte dérivée, en écrivant a,. , pour Da,.

13. Soit maintenant & développer le produit de deux fonctions
de polynémes
(15) o(a+a,24a,2*+a,2°+...) <XV (b4-b.24b 224 2°+-...)

A+dz4A 2244 2
D’aprés le n.° 5, cette équation peut étre mise sous la forme
(16)  (¢pa+Dp.¢a.x4:0* pa.2*4..) (V04D Nb.2 41D Vb2 0.)
= A+D. A2+ 4. 240 4.2 +...., ‘
qui, étant comparée i celle (13), fait voir qu’il suffit de remplacer,
dans celle-ci, @ par ¢a, b par ¥b , et les signes de derivation
sans points par des signes de dérivation avec points ; on aura donc,
d'aprés le méme n.® 5, les équations analogues a celles (14) ; c'est~
a-dire ,
A=ea.4b ,
A=D.(pa.4b)=¢a.D.Lb+D.a. Vb ,
A y==1p2.(p2 Vb)==0a.:D*.Yo-}-D,¢a.D.Vb4-1D2.¢a. b ,
A= -n3 @ab)==pa.;03.4b-}-D.¢a.lD2. 4/6+ D*.9a.D. ¢b+—n3 ez,

4 8 c0 9 8 4 e p s e e b oae e« o o o v o e s s s s s 00 s

KRV 2/ 2 SH ‘

Ay=——— D", pa. sbb)_‘?’a

1.2,0:0 24073 1,200 (2==1)

b ¢
Nz ——— D"0d. -
D"t 00.D. L0+ —— D¢a ¥o ;

;.2...(11—-1)
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od chaque dérivée de ¢z et de ¥4 doit étre développée comme les
équations (10) ; c'est-d-dire, d’aprés la régle du n.* 8. Les formules
précédentes contiennent donc , au fond , tout ce qu'il faut pour la
solution compléte de la question ; mais, pour ne rien laisser a
désirer, nous allons en déduire les moyens d’exccuter immédiatemeut
le développement complet de ces formules.

14. En exécutant les dérivations indiquées , au moyen de la régle 8,
effectuant les multiplications, et ordonnant le tout par rapport aux
exposans des dérivées, on obtient

A=o¢a.¥b

A, =¢avVb.b,
~+Doatba,

A, =c¢av¥b.b,4oalp*Vb.b*
~DeaVb.a ,4+poa.vVb.ab,

~+:ip*¢aVb.a,?
Ay =¢avV), 4000 ¥b.25.5, ~+eain’tbb}
4-peaVb.a,4voav¥b(ab,4a,b,)Fpea. 0V b.a,b,?
+:ip*0aVb2a.a, - “iD*0a.DVb.ab,

~+-:n’eadb.a,’?
4, =¢z‘z.n¢5.54+¢a’.}D’¢5(25,5 0.0 lniwb.30 %,
B +D9‘a.¢l}.a4+1)<pa.n4fb(a,b,-l—a,»l),+a,,Zq,)—l»]ypagﬂ’%.(za,b,&,%—a,5,’)
~ip*0atb(2a,0 .40, *) 10000V b (0,2 F2a,0,6,)
~+:p*a.4b.3a,%a, '
+oa. 04 b.b 4
~D¢a.iD*Vb.a b}
“+-:D*¢0a..0*Vb.2,%b,?
“+:p*eatha, b,
Enteatbay,s
A;=0an¥b h +oa 0 Vb(ab,b F2b b ;) 0a.20°V5(38,%5 4 35,5 ,%)

+-Dga.Yb.c ,-‘{-nqaa.n%(alb‘i.Fa 27 34a 361490 4 b)~4D0a. 101 b (2a25:8 y4-u:b 1420, 8.5 . f-a, b1y
ﬂ-;Df¢a.«pb(za‘a.+2a 1@ )0 ean¥b(a*b 3 +-2a,0,b 24,0, b,}a,%b,)
‘ Fi0’pudb (30,0 ;+3a,a,%)

--ea.
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“tea.pib-40,%0, +Foa. —u8 L
+00u 0¥0(3a,6,°b,-a,8,%) 1wt Via B
+i070a.i0*¥0 20 b6 20,0, 50,070 L0V b B
30’00 p¥b(a b, +3a,2a,0,) ~+2i%0a 152V a0l 2
+5D0aVb.fala, - Zbos DY)
| +—oSpanyl a® |

et ainsi de suite.
En examinant la compesition successive de ces coefficiens , on en

~1
~Id

conclut la régle pratique suivante our déJuire unmcédiatement un
& q » P .

eoefficient quelconque de celui qui le precede.
REcuLE.

15. Pour déduire le développement de K, ., de celui de A ; les
déricées .des fonctions étant 'lz’l'.\"posc'e;s cn colonnes , d'aprés les
mdz'men.s'ion; de leurs exposans , et llc:s élrltrles lfl’apréx /ey_(‘ ordre de
;uctes&z’on ;

® On ne fera Vﬂ/lt’l‘ a'ans rﬁa(]ye terme de cﬁa(/zje colozme,
que l(’s (coefficiens composés des quam’z/m polynomm/fs B, 83585, 0,
b,, bz s by d'aprés la rzzgle du n. 83 en obs erwmt pour
ceux, qui, }(mtlmnenl a /a [pzs a’ef a tt (les b, de nffaz;e Vauer dﬂﬁon}
gue les b, et enmzie /es a, (nazs a’ans le dermfr terme sgulcment

ta.

.
de, c/zaqm’ cmjﬂ?nmt s

2.° On Jera varier de plus , mars dans la dcrmere co/onne Seu-
) EIEET)

lcmmt la /unctmn *Pb dans tous [es termes ;. el > comme Ia
Y
puissance de b, augmente alars dune unlté, on dzyzsera par son

€ LRI

expysant .ainsi gugmente ;
3.° Enfin , on fera encore varier , mars dans le dernier Ierme
Ae la derniére colonne seylement , la fonclion ga ; et , comme lg
puissance de a, augmente alors d'une unité on diisera par som
erpusant arnsi augmenla - h
Donnons des exemples de chacune des trois parties’ de cette rég!e.
-3.° Le coefficicnt 'de :p*¢a.p¥s, dans A, , est @,°b, 249
dom. V1. 12
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Pour en déduire celui du méme terme dans A , je fais d'abord
varier les 4, ce qui donne @,*6,-+24,a,b, ; faisant ensuite varier
les @ dans le dernier terme 2a,4,b, , on a, d’aprés la premiére partie

de la regle dune 8, 24,a,6, et d'aprés la seconde partie de cette

régle a,*/,. Rassemblant tous ces termes , ‘'on a le coefficient de
ip*Pa.db dans A4,

2.° En appliquant la seconde partie de la régle ci-dessus aux
cing termes de la derniére colonne de A, , on obtient les cing
premiers termes de la derniére colonne de A ;

3. Enfin, en appliquant la troisitme partie de la régle ci-dessus
au dernier terme - D*?a.¥b.a,* de la derniére colonne de A4, , on
obtient le dernier terme —;D%a.¥b.a,% de la dernitre colonne de 4

Cette rtgle est encore d’une exécution trés-facile, et si expédi-
tive .qu’on peut écrire de suite , et sans s'arréter , les termes suc~
cessifs du développement. Elle n’est, jusqu’a présent

, de méme que
celle du n.° 8, qu’une conclusion d’'induction ; mais nous la démon-

trerons complétement dans la suite , et nous donnerons aussi une
régle trés-simple , pour écrire immédiatement un terme quelconque
du développement , indépendamment de ceux qui le précedent,

16. Remarque 1. En examinant la composition des termes suc—
cessifs (18) du développement de 1’équation (15), on découvre la
loi remarquable suivante qui y régne. Le terme général 4,
composé de n colonnes , ordonnées selon les dimensions des expo-
sans des dérivées de ¢z et V5, de manitre que la m™° colonne
contient les m~4~1 termes
DPMYD nm~1lb DM—10a

. ’ Seen
L2euatl L2, (m=1) 1.2.0 (~1)

¢z.

v, 2 4,

‘ '2}...!”

Chacun de ces termes a pour coefficient une fonction des quanti(és
polynomiales @, , 2,, @5 ,.e,) bey by, by, ... dont voici la for=

. Dea. Db
Tnation : en supposant 7--s=m, le coefficient du terme . —— est

T %l ) & HPR )
composé de tous les produits de.m lettres, dont un nombre r.des
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quantités polynémiales en & et un nombre 4 des quantités polyné-
miales en &, de mani¢re que la somme de tous les indices de
chaque produit soit égale & #. Quant aux coefliciens numeériques
de chaque produit, on les obtient en multipliant I'un par l'autre
le nombre qui indique celui des permutations qu'on peut faire,
entre les Yuantités polynémiales en @, et le nombre qui indique
celui des permutions qu’on peut faire entre les quantités polyné-
miales en 5.

Ainsi, le coefficient de :D*¢z.iD’¥5, dans 4, est

3a,%0.8,*+3a,*0.*b ;4+6a,0,8,°b ,+20,0,0.3 a0} , cest-h-dxre .
36;016‘5,b,+3a;a,b.b,b‘+2.3010, ‘blb’+2alajblblbl+azalblblbl y

qui contient en effet tous les produits possibles de deux quantités
polynémiales en @ et de trois en &, de maniére que [a somme des
indices soit égale 3 7 ; et qui a des coefficiens numériques qui
suivent la loi que nous venons d’indiquer.

On pourrait donc, au moyen de cette loi, qui est dailleurs la
méme pour une fonction quclconque de deux polynémes indépen-
dans , former immédiatement un terme quelconque du développe<
ment , par la théorie des combinaisons; ce qui donnerait une ex+
tension considérable & l'analise combinatoire de Hmdenburg mais
le moyen que nous donnerons par la suite sera  la fois plus simple ,
plus direct et plus)anallthue.

On Temarquera sans doute que la snmphcnté de I'énoneé de cette
loi , ainsi que de celle du n.° 10, n'est due qu'au choix que
nous avons fait d’indices numérlques » pour représenter les quan-
tités po}ynémxales : elle n "aurait pu s’énoncer que trés-dlﬂicxlement »
avec les lettres dans l'ordre alphabetnque , employées par Arbogast
et Hmdenburg Ces lettres 3 indices ont encore |’avantage d’indiquer,
‘de la maniere la plus caracténsthue » leurs. relahons avec les dérivées

Dig

du premier terme du polyadme , puisqu’on a généralement Oy et
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tant il est vrai que souvent le plus léger changement dans les no—
talions peut avoir 'infiuence la plus heuveuse sur les métholer,

7. femargue 11. La theoiie que nous venons d’exposer, con-
tient tout ce qui est nécessa re pour le développement complet des
fonctions d’un polynome , ¢t méme , & la rigueur, pour celui d'une
for ».ion quelconque de deux polyndomes indépendans 5 cgr il sulfi-
rait, pour le développement de ¢{lata, xta 2 ..., b4l a+10a+0),
de remplacer , dans les formules (18), les produits tels que
Droa ’Yb

-3 par les dérivées particlles du méme ordre de 9@, 2).
I.2..7 ' 2.0.8 X

Mais , nous allons encore envisager celte thécrie sous un autrs
point de vue, qui nous facilitera singulicrement exposition de celle
du retour des fonctions et des séries, a laquelle nous nous propo-
sons de consacrer larticle 1l
18. On a, par le n.° 1,
(19) ?(a+y)=Pa-+D0a.y+iD*¢ay 0 0.y 4. ..

AN
Si I'on suppose

(20)  y=ax+a,24a, 2+ =20, A0, 2-+a, 27+,

ot lés “coefliciens @, , w,, a, ,... représentent des quantités quél-
‘tbnqués et ‘indépendantes , et qu'on substitue cette valeur de y dans.
Féquation (£9) , 'sén 'premier ' mrembre se “transformera en celui de
Véquation’ (7) ;-on aura-donc

.(21) ety =0(ata,x¥a,2*4a,2-...)
=%a+4Dpa.x+:D* p2.20>~+ 0’ Pu a3 ..

Cés deux 'd’év'tddppemons ne différent Tun de l'autre qu’en ce que,

‘dans tes'dérivées du premier , on suppose Da=1, D’a=o, p’a=o,..,,

‘et ‘dans celle “du: second , Pa=a, , D’a=2a, , p’u=6a, , .. La

maniere'de déduire les ‘dérivées suivies d'un point. de celles sans.

"point ~a ¢té “exposée aux n°° -7 et 8.

. - Léquasion {2} ): foarnit.donc. de: moyen de ; résoudre eette ques=
tion
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tion : y étant une fonction donnée de #, ou un polynéme en =z ;
développer , sclon les puissances de x , une fonction quelconque
¢la+y) ? En effet , d’aprés le n.° 3, I'équation (20) peut étre
mise sous la forme

(23) y=uaf(e}-2z) ,
et I'on a
(23) a,=fe , a,=Dfe , a;,=:Da , a,=:D%u i}
c’est-a-dire , que @, doit étre considéré comme un premier terme

de polynéme.
En substituant ces valeurs dans I'équation (211) , on obtient

(24) Bat-zf(ut-2)} = ¢(a+fe2-}-Df w.z* +1D*fuaz’ +-...)
=g¢a-}D.¢a.x4:0*Pa.2* 40" Pa. 23t ;

ot , dans le développement du dernier membre, qu’on exécute
d’aprés la régle du n.° 8, il faut substituer, pour 4,,a,,a;, ...

leurs valeurs (23).
1g. Si, dans la question du n.° précédent, la valeur de y était

donnée par I'équation suivante :
(25) y=a¥f(o4a)
qui, d’aprésle n.° 5, devient
(26)  y=a{HaebDHuat it Sart 0 ez )
il faudrait faire , dans Ie développement du dernier membre de
I'équation (24),
(27) a,=¥u , a,=D4lu, a,=D*Ha, a,=iD"Ha,..;
mais , conformément aux principes des n.° 5 et 6, ces derniéres

dérivées doivent étre suivies- d’'un point, et développées d'aprés e
n° 7. ‘

20. Si l'on avait 3 développer , selon les puissances de z ; Ia
fonction ¢l@-+z), z étant donné par l’équation

Tom. V1, 13
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(28) z=z¥ety) ]

et y par I'dquation (22) ; on aurait

(29) 4>(a+z):¢[a+x‘1’\'ﬁ+y)] =¢P:a+x'~1/[ﬁ+xf(a+x)]
= qb\a+x'41(la+['¢.x+Dfu.arz—’r';D’fu.x3+....)}
= Pa—+p.fa.x4-1p* 9a.2* D% Pat-. ... ;

mais ici, dans le développement dcs dérivées du dernier membre
il faudrait remplacer @, , @,, @;,... par Ye, DB, 1DWE, ...,
en observant de mettre , dans le développeruent de ces dernieres
dérivées , f« i la place de Dz, Df, a la place de :p*s, :Df= ala
place de iD%s; et ainsi de suite,

On pourrait aisément pousser plus loin ces substitutions. de fonc-
tions dans les fonctions, ou de séries dans les séries; et 'on voit
que le principe dc leur développement par les dérivations est simple

et uniforme : il ne reste que la complication des résultats, qui est
inhérenté 2 la chose méme.

ArTIiCcLE IL

Développement des fonctions selon les puissances d'une
Jonction quelconque de la variable , ou retour des

Jonctions et des series.

21. Depuis le n.° 18 de Varticle précédent , nous nous sommes

occupés de la question suivante : le développement d’une fonction
quelconque, selon les puissances d’une fonction donnée de la va-
riable principale , étant supposé connu ; en déduire le développement

selon les puissances de la variable principale ? Dans cet article,

nous allons résoudre la question inverse, savoir : le développement
d’une fonction quelconque , sclon les puissances de la variable prin-
cipale,, étant donné , ainsi qne la relation entre ceite variable et

une autre fonction ; en déduire le développement selon les puis-



DES DERIVATIONS. 83
sances de cette derniére fonction? Cette question contient le pro-
bléme général du retour des fonctions et des scries.

22. Proposons-nous de transformer le polynéme

(30) - AX-AatfAd, A P A
procédant selon les puissances de la variable principale # , en un
polynéme

(31) B+B.y+B,y*+B;y’+

procédant sclon les puissances de y , dont la valeur est supposée
donnée par I’dquation (20)

y=z(a,+a, x+a 2. -

En comparant le polynéme (30) avec lequanon (21), et le po-
lynéme (31) avec Péquation (19), on obtient '

(B2) A=¢a, A,=p%a, A,=D"9a, A4,=:0"02 ,..;
(33) B=¢a, B,=p¢a, B,=:0*%a, B;=p'%a,...

Ici, ce sont les dérivées suivies d’'un point qﬁi sont données immé-
diatement ; et la question se réduit & en déduire celles sans points.
On pourrait la résoudre en tirant les valeurs de ces derniéres des
équations (10), par des éliminations successives ; mais, outre que
ce moyen serait trop long, il est peu propre i faire découvrir la
loi qui y régne: il est bien plus simple de les former immédiate~
ment de la maniére suivante,

On a, daprés les n.°® 6 et 7, D.Pz=Dda.a, , et par conséquent
Dea=a,”'D.¢z ; donc, en répétant l'opération indiquée par cette
équation, on obtient
D ga=a,”*p.0a ,
p’pa=p(vpa)=a,” 'D.(a,"'D.ea) , .
pipa=p(8%a)=a," 'v.[d,""p.(a;""'D.2a)] ;

(34)

-
® * 8 o @ 2 e s+ s s e e s @ ® s e e s o 0+ )
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mais ici il faut observer que la maniére dont nous sommes parvenus
3 ces relations suppose que @, est un second terme de polynome ;
c’est-a-dire que, d’aprés le n.° 1, ona

13 — .
a,=pa , a4,=:Da, G;=Da@ ,uny= p"a ;

1.2..02
et par conséquent
pa,=p*a=2a,, p*a,=p’a=64,,.. D" ‘g, =p"a=1.2..0.0,;
ainsi, dans le développement des seconds membres des équations (34) ,
il faudra substituer pour les dérivées de @, leurs valeurs précédentes.
Mais si, conformément au n.° 18, on veut considérer ¢, comme
premier terme de polynéme, on a

@,=Da, , @,=Da, , @,=30°A, ,ena,=

p"™1a, :
1.2

en substituant ces valeurs dans les développemens des équations (34),
ce qui revient & y écrire 2pa, pour pa, , 3p*z, pour D*a, , 4p’a,

= [

pour p’z, ,..., 720" "a, pour p*"!g;, on pourra mettre ces équa-

tions sous la forme suivante : _
[ Dpa=a,"'p.0a ,

p*¢a=0p.(a," *n.¢a) ,
(35){ p’ea=p.(a,"30.00) ,

D ¢a=0""".(a,”"p.¢a) .

.

En substituant ces valeurs dans les équations (33), et remplagant
¢a par A4, ou obtient enfin

\ B=4,
B,=a,"'n. 4,
B,=:p.(a,"*p.4) ,

(36)\ B, =1to%(a,"30.4) ,

Y

L e e R A )

1
B =- " (e,""n.4);

l.@....n
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o, d’aprds P'observation du n.° 18, et d'aprés I'observation pre-
cédente , @, doit étre considéré comme un premier terme de polyn-me,
23. Si Don fait attention que I'équation (20) peut étre mise sous
la forme (22), et que le polynéme (30), d'aprés len.® 3, peut
feprésent=r une fonction quelconque ¢d=fr); le probiéme du n.°
précident fournit la solution de la question suivante : etant dounde
la relation y=ua{(a4x), développer la fonction quelconque ¢ +x)
suivant les puissances de .
Drapres cela, si I'on substitue , dans le polyréme (31), les va-
leurs (36) , et dans celle-ci pour A et @, leurs valears ¢ et f«,
on aura

(37 s+ =B+Py+B.v+B,y
=¢b4-(fu) "t p.¢5 yor-to {12 2p.0bYy Lot (fa) " 3n.0l by .
ol 'on peut supprimer, si i'cn veut , les points qui suivent les
signes de derivation qui affectent ¢4 ; car, dans le bindéme o4z,
on a pb=1; et par conséquent p.eb=peb.
On aurait de méme, dans la méme hypothese,

(38) ¢(b+blx+b,x’-i—&,x3+...)=B+B,y+B,y’+B;y3+...
= ob—(fu)" ' D.ob.yt-i04 (fu)" 0.0}y 502 {(fx)~ I D.0b}y ...
mais ici les points, aprés tous les signes de dérivation, sont in~
dispensables , car on a pb=b, , p*b=25, , p*b=6b,,..., et par

conséquent D.0b=0¢b.b, ,.....
On aurait encore , de la méme manidre, et pour la méme va-

leur de y ,
(B9)  VodFx)==\ @b} (fw) = "Di ¢b.yJ-1{(fe) = * DL b} y -3 (F) = 3D 0B}y 3 deues ,
ou les points, aprés les signes de dérivation sont encore nécessaires :
parce qu’om a D.¢9b=Dpy0b.D0b.

24. Si, dans la question du n.° précédent, la valeur de y était
donnée par Péquation (25)

y=aVf(a4-2),
Tome V1. 14
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il faudrait subsiituer, dans les équations (36), pour a, sa valeur
¥fe, conformément au n.° 19 ; ce qui donnerait,, d’aprés I'observation
faite sur I’équation (37) ﬂ

(40) PUb4x)=gb+(Hla) " DPb.y4-iD.{(If4) = 2D Yy 42 L(Ve) — 3 DPBYyS+-oos

Dans le cas particulier ot ¢ représente la puissance =1, I'équa-
tion (25) devient -

(41)

- x
Y= it

et alors I'équation (40) se éhange en
(42) ¢(b-+x)=0b4-f2.Dgb.y~4-1D. (f6) D@} 521D {((0) DIy y S d-1os
On aurait de méme, pour la valeur de y (25),
(43) F¢<b+x>=F¢b+<¢f~>~*D.qub.yﬁn-{(«lffu)-2n.F¢b§y’+éD=-{(¢f»)-3D~F¢b}y3+.

ou la méme observation n’a lieu qu’apres I'équation (39).

25. Proposons-nous enfin de r.soudre la q: estion suivante: étant
données les relations

(44) y=af(eta) , z=adety) ,

développer la fonction ¢(b~+z) selon les puissances de z, sans &
ni y.

En comparant les solutions des n.°s précédens avec la question
du n.° 20, dont celle-ci est l'inverse, on obtient immédiatement

45)  PO+x)7=¢b(48)~1.Deh. 24D (8 ~*DPbszf-302 (4B8) =3 -D¢b}z3-i--~,;

en observant seulement de mettre , dans le développement des dé-
rivées de 8 , fe pour s, pfse pour ;n’s, ;p*f« pour in’s, et
ainsi de suite,

En se conformant 3 cette observation, on aurait de méme

46 F:p(b-{-x)::F@b-{—(x}/,e)"D.F‘pb,z-{--;-D.{(\]/ﬁ)"D‘Ftpb}zﬁ-i-%l)z.{(\}ﬁ) =3D.Fobledte
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26. Remarque. La question traitée au n.° précédent est une es-
pece de retour double : on pourrait en former de pareilles sur des
retours iriples, quadruples , etc.: le principe de leurs solutions se
déduit aisément de celle du n.° précédent; et leur développement
par les dérivations s’exécuterait aussi facilement que leur complication
naturelle peut le permettre.

27. Depuis le commencement de cct article, nous n’avons fait
qu’établir les formules générales du retour des fonctions et des
séries ; occupons-nous maintenant de leur développement complet
et effectif. Reprenons , & cet effet, les problémes du n.° 23 , et
proposons-nous de développer complétement les coefficiens successifs
B, B, B,, B;,.. de I’équation (38).

Comme nous avons vu, aux n.°% 18 et 22, que ¢, devait étre
considéré comme un premier terme de pelynéme, dans I'équation
(20) ou (22), et que d’ailleurs les quantités a,, @, , @;,.. peu-
vent étre quelconques 5 nous les remplacerons Par €, €5 €53 5 €5 5uneey
afin de conserver la régularité dans les développemens ; ainsi, 1'é~

quation (20) ou (22) deviendra
(47) y=af(sb-2)=2(c4c,24c, 2* -, 27 +...)

Au moyen de cette observation , le probléme en question se réduit
4 développer les termes B, B,, B, , B, ,... des équations (36),
en y substituant ¢ a la place de @, , et de ¢/ 2 la place de 4 ;

ce qui donne
(48) 1B,=c~'0.0b, 2B,=p.(c"*0.98), 3B,=2p(c"?p.¢b)....

In comparant ces termes avec la formule (17), on voit aisément
que leur développement doit s’exécuter par la méme régle, en
observant cependant qu'ici la fonction ¢z est remplacée par une
puissance négative de ¢, dont I'exposant est égal a I'indice du terme;
et que la fonction 45 est remplacée par p.eb. Avec cette attention,
on aura, en suivant la régle du n.° 15, les développemens sui-

vans , analogues 3 ceux (18)
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P=¢b ,

I-B\ =" ‘.D@Z.z" N
2B, =c"*.pob.b 4" *.00eb.b,*
(e *).0pb.c.0x

D20¢b.5,3
A
2

3B,=c"}.obb e poebe2b by e 3.
—+p(c™?)0eb{c.d IR =S LT N

n2(c"?
+ _‘S“""') D¢bo€1151

4B, =c"4.08b. b Ao 0000(2b b b, e 33- 36,
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D2(c"?%) n=n¢b

ve2h3

+Dz(r ™ o085(2¢,20,0,+2¢,¢,5,*)+

D3(c" )

TR RS S IR AR e SR AN

-+

Di(c"%)

Ddbuc, b,

.

et ainsi de suite.
Si l'on effectue les dérivations des puissances négatives de c;

qui ne sont quindiquées, ainsi que celles de p%5 , et qu'on ordonne
selon les dérivées de 5, on ebtient

r B=%)
1B, =0b.c"*.b,

LY
2B, =0fblc" b, 42 ]-3-21- "B,

—2¢"3.b.c,

3B,=vgblc=3.5, +2‘i_.c 5.25,3 +3P_¢f¢-r53
—3c"4(b,c:+-b,e,) lg—3c “4.0.2c,
-+ %c".&xcﬁ
4B, =vol| 4 5, o ’3_2"_’5 6~ 4(2b.b 45,7
—4¢5(bct2b.b ,c,)

—4c= 5 (b b0, 0,
+£%’5‘0~6(25xcx01+51012)

(50) s ..._4.%6_6"7.510‘3

20

.5
-+ 4> ™82,
2

D3gh Dsob
32| =4 38,28, o=t b
6 24
—46—505130;

Tome VI 25
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b
5B =pe) e~ 5.b, +2I’);— . 5‘—’(25:[74_‘_25353)
_50‘6(5l6‘+520,+55c=+b‘m) _56.-6([“30;_{_25‘52& 25‘5501_‘_[}‘:‘;‘)
5.6
+~2— e (25,6,0;+b,6z’+253clc’+&’flz) +§:_,_—6€*7 (2&12015;+25xb :Cla)
567 ... .
23 ¢ g\JZl!c,(I;-{—ﬁ;C;a) _i.% 6"“3.5l2615
5.b.)7.8 =9 b ot
2.3.4
D30b ‘o \ i Dégdl _ Digh
+ST 6—’\05135;4—01}15,‘) +/} .—;Z- c ‘.45,353-‘-5-:;.[) ‘-515
—5c=%(bPc,+3b:%0,¢.) —5c=5.bbe,
5.6
—— 3.2
-+ i 7.0,

et ainsi de suite.

L’cxamen de la composition successive des termes fournit encore
une régle pratiqgue , pour déduire un terme quelconque de celui
qui le précede. '

REGLE.

28. Pour déduire le développement de (n-4-1)B,., de celui de
nB, , cclui-ci étant ordonné en colonnes , par rapport auz dérivées
successives de ¢b , les termes de chaque colonne , par rappori auz
puissances de ¢, et les quantités polynémiales d’aprés leur ordre
de succession

1.° On divisera tous les termes de wB, par n, on muliiplicra
chacun par lexposant de c dans ce terme ( abstraction faite du
signe ), et lon augmentera cet exposant d'une unité ( aussi abs-
traction faite de son signe);

2.° Oa ne fera varier , dans chaque terme de chaque colonne,
que les coefficiens composés des quantités polynémialesb,, b, , by, ...,
Ciy Cay €y yuu, daprés la régle du n 8; en observant , pour
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ceux qui contiennent & la fois desb et desc, de ne faire varier d'abord
gue les c , et ensuite les b, mais dans le dernier terme seulement
de chagque coefficient.

3.° On fera varier de plus , mais dans le dernier terme
seulement de chaque colonne , la puissance de c ; et, comme la
puissance de c, augmente alors d'une unité, on divisera par son
exposant ainsi augmenté

4.° Enfin , on fera varier ¢b, dans le tout dernier terme seu-

Dnt+10h DRPb
1.2. (n-4-1) posr 1 1.2 002
la pnissance de b, d’'une unité.

Cette regle est analogue 4 celle du n.® 15 : dans Dexécution
on n’a pas besoin de faire d’avance la-préparation de la premiére
partie ; elle peut se faire & mesure qu'on opére sur chaque terme.

29. Au moyen de la régle précédente, on peut écrire de suite
les termes successifs du développement de D'équation (38) tout
ordonnés et réduits a leur plus simple expression. Si T'on suppose
b,=1, b,=0, b;=0,..., on aura le cas de I'équation (37); et
il n’en résulte d’autre changement a la régle précédente qu’une
simplification dans la seconde partie , parce qu’il n’y a plus que
des quantités polynémiales d’une seule espéce; ainsi, les formules
(50) deviendront , pour ce cas ( en remplagant les colonnes par

, et augmeniant

lement , en mettant (n4-1)

des parenthéses ),
B=0b )
1B,=p%b.c""' ,
- s b
3B,=n¢lz(—2c”.cx)+2l-)-—f—.c“’ ,
2

3. 2

3B;=D'Plv<-—3c".c,+—;c".c,‘)ﬁ—zm —3 .c,)+3]—)—ﬁ‘- £t
2
4B —MPZ( AN +é—-c“° c‘c,—L-%'Gc" )-{-2?—% -40“’.0;—’-'4'—50“9.01’)
a :

.

D30h
e
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5 5.6 5.6. 8
5B =09/ [-Sc“‘.c4+—-2-c“7(2c,c,+c,’)--—zc"‘.3 ,+-—-Z— c .c;"]

2 5.
+2£i 50‘°.c,+i—§c ?.2¢ c,--—c"a >+3 ( ~5¢*C.c —l——-—c 7.¢, )
2
. b b
422 (5=t )5 28 s

et ainsi de suite.
Pour le développement de I'équation (39); comme on a , d’apres
le n* 5,

YO(b4-x)="(0b+4Deb.x4:D2¢b.x>+-5D300.x340) 4

la rigle reste la méme ; mais , au lieu de 02, il faut écrire ¥ob,
peb au lieu de &, , Ip*¢d au lieu de 4, , :0°¢b au lieade 2, , ct
ainsi de suite.

Pour le cas de I'équation (40), comme ¥fu=+¥¢ , il faudrait,
en conservant la méme régle, mettre partout ¢ a la place de ¢,
e 4 la place de ¢, 2p%¥c & la place dec,, ¢p’.dc a la place
de ¢, ,...; en observant que ces dérivées doivent étre elles-mémes
développées selon la régle du n.° 8; que p.¥e=n¥c.c,=p¥funfe,..,
et que , dans ces derniers développemens , il faut substituer f« pour
¢, ofe pour ¢, , ;D*f* pour ¢,, Zp’fa pour ¢, ..

Pour le cas de I'équation (43), il faudrait tenir compte , % la
fois , des deux observations précédentes, et écrire Fob pour ¢&,
peb pour &, , ..., et ¥¢ pour ¢, p¥c pour ¢, ...

Mais, pour I'équation (42), la regle du n.° préeédent semploie
sans la moindre restriction, parce que cette équation ne différe de
celle (37) que par le signe des exposans de ¢ ou f[«, dont cette
régle est indépendante.

Pour le développement de Déquation (45), il faudrait remplacer
£, €5 €4yuny par ¥&, DYF, 10°¥8 e, en observant que ne=c,
p=¢,, B=0C, ;e

Enfin’,
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Enfin, pour le développement de léquation (46) , il faudrait
tenir compte de l'observation précédente , et de plus mettre Fob
pour ¢b, peb pour b, , In*eb pour b, ,..
Au moyen de ces observations, l'application de la rigle du n.°
précédent est géndrale.
3o0. Remarque. En effectuant les dérivations de Db , indiqudes

. . D3dd Digb
dans les équations (49), on obtient D%¢s , -:gb— » gy +eeest DOUS

avons préféré, dans les équations (50) et (51), d’écrire, & la place

, D2¢Pb ., D3gb D4oh .
de ces résultats, 2 j , 3 —gi- ) 4?4—,..... parce que D¢, ;0°¢5,

i0%0h, Zp4b ..., sontles coefficiens du développement de ¢042) ,
et que, par ce moyen, les coefficiens numeériques sont mis en évidence :
ainsi , pour le probléme du n.° 22, on a p®l=4A,, p*?b=24,
D30d Diph

=34, , T =y,

Nous avons déji remarqué au n.° 27 que, d’aprés les n.°® 18
et 22, @, devait étre considéré comme premier terme de polyndéme,
et par conséquent comme indépendant de a; c’est pourpuoi, dés
le n.° 23, neus avons remplacé partout cette lettre par &, sous
les signes de fonction , afin de ne pas induire en erreur, par une
prétendue dépendance qui n’existait plus. Cette observation deviendra
encore plus claire par la théorie de larticle suivant.

C’est pour la meme faison, et pour conserver la régularité de
la loi des développemens, que nous avons remplacé, au n.° 27,
le polynéme a,+4-a,x+a;2*+ ... par celui cc, a4, 2%4.... St,
au n° 18, nous avons préféré la premiére de ces “.ux [ormes,
cc n’élait que pour mieux faire apercevoir l'identité des dévelop-
pemens de ola~+a,x-ta,2*4...) et de ola+a(a,+a,z+...)% , et
pour rendre plus palpable la dépendance mutuelle des coefliciens
des développemens de ¢(a4y) ct de ¢(a+a,24a,2?-....) ; dépen-
dance qui nous a tant simplifié Pexposition de la théorie du reteur
des suites. On aura remarqué sans doute que la loi de cette dé-

Tom. VI, n.° IV, 1.°* octobre 1815. 16
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pendance est la méme que celle du changement de la variable
principale , dans la différentiation d’une fonction de deux variables.

ArTicLE IIL

Démonstration des régles de deéveloppement , et régles
pour écrire immédiatement un terime quelconque des
developpemens , tant direct que de retour.

31. Les régles des n.°® 8, 15 et 28 ne sont que des conclusions
d’induction , tirées de I'examen de la formation successive des termes
d’un développement ; et , sous ce rapport , elles peuvent laisser
~quelque doute sur 'exactitude des résultats qu’elles fournissent. 1l
est denc nécessaire de démontrer ces régles , afin que le calcul des
dérivations soit non seulement un instrument commode et expédiuf,
mais encore slir et rigourcux,

Ces mémes régles n’offrent que le moyen de former successivement
les termes du développement, en déduisant chacun de celui qui le
précéde ; de sorte que, pour avoir, par exemple , le vingtiéme terme
du développement, il faut calculer auparavant les dix-neuf qui sont
a2 sa gauche. Mais souvent on n’a besoin que d’un terme assez
éloigné de Vorigine du développement pour que le calcul préalable
de tous ceux qui le précédent exige une perte de temps aussi
considérable qu’inutile & 'cbjet qu’on a en vue. 1l est donc essen-
tiel d’avoir le moyen de former immédiatement un terme quelconque ,
indépendamment de tous ceux qui seraient avant lui.

Tels sont w's deux objets que nous nous proposons de remplir
dans cet article.

32. Si, dans le polynéme a--a,2-4a,2*+a,2°+.... , on suppose

a,=0, a,=0,.., l'équation (7) deviendra
(52)  e(e4-a,2)=ea+D.0a. 2410 022> +10 0a.2 ...

mais , par la supposition que nous venons de faire, on a [ équa-
tions (3) ], pa=a,, D6==0, D’@=0 ,u.; ce qui donne, d'aprés
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les n.° 6 et 7, D.p@a=Dea.a,, D'.ea=D¢a.a,* ,D’.0a=D¢a.a,3,...
En substituant ces valeurs dans I'équation (25), on obtient

(53) ¢(a+a,x)=¢a+D¢a.a,x—}-fD’@a.a,’x’—l—%B“"cpa.u,’x3+._,,;
résultat identique avec celui qu'on aurait obtenu en mettant ¢,z
la place de # dans le théoréme de Taylor.

Supposons maintenant que @, devienne a,4a,r : les puis-
sances de a, se changeront en puissances de @42,z qui,
étant elles - mémes des fonctions de binéme , peuvent étre dé-
veloppées comme les équations (52) et (53) ; mais , dans
ce cas , ces formules se termineront , parce que Dg,=g,

, Dna
D*2,=0, ... donnent, en général,
. 1.2

L

n
X
- =(0a,)"=a,", et*+.a,7= 0

Substituant donc , avec cette attention, @,4-@,2 pour @, , dans 1’é-
quation (53), on obtient
olat-x(a,4a ,x)[=¢a+4Dga(a,+4-Darx)x~4;D*¢a(a,24-D.a > x~41D2 6,2 x2)x*
+ip3¢a(a34D.a:3 x-}ip%adxr-piDda S s 4.,
En effectuant les dérivations indiquées, d’aprés les régles ordinaires
de la différentiation , et remplagant Dz, par a,, cette équation
devient
¢{a+x(a +a,x)i=pa-}-Dpa(a 42 ,x)x+§l§2¢a (ar*42a,8 y 2402 ,x2)x2
Jip3ga(a,d4-3a,2a , x4-30.0 5 2% -0 o 3x3) 3o
En ordonnant cette équation par rapport aux puissances de z ,
on obtient
(54) ¢ (a0 x4a ,x2)=¢a-}-Doa.c,x-4(DPa.¢ y~}-1D2*¢a.a,*) x>
+(§D24>a.2a;a,+§D3¢a.m3}x3+(§n=¢a.a,=+§D3¢a.3a;=a,+ﬁn4¢a,a,4)x4+,,_
Si l'on suppose ensuite que &, devienne a,-a,x , I’équation
précédente deviendra, d’aprés les mémes principes,
plat-a,x4-x2(a 40 ;) j=¢a4-Dga.e,x~+ DPala+Da: &)=4-1D?Pa.a, 22
+{ip*¢a.2a,(a . +Da, .x)+-;-D3<pa.a,3;x3+§§D24>a (@;24-D.a3* x4-1D3a 222)
+3D30a.30:2(0:4-Da 2. X)-75D4Pa.a 4 xbenen
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ou, en effectuant les dérivations indiquées ,» mettant #; pour Da,,
et ordonnant par rapport Az,

(55) Plada,c4-a yx24-a yx3)=¢a-+}-D@a.a x4 (Dga.a ;4-;D*¢a.a,2x3) a2

- (DPa.a y4-1D-Pa 2a,a ,45D3Pa.a1) ¥4 iD?@a(201a 346 3 2 )50 Pa.3a,%a

~-sDéga.at i,

En comparant les coefficiens des seconds membres des équations

(563), (54) , (35) avec les formules (10), on voit que les deux
premiers termes de Véquation (53), les trois premiers de (54) et
les quatre premiers de (35) sont deja complets. En continuaut ces
substitutions, on obtiendrait chaque fois un terme complet de plus,
et l'on arriverait enfin au développement entier de la fonction de
polynome ¢(a+a,24a,2*+a,2°+....). Mais, sans aller plus loin,
nous pouvons deja obscerver, 1.° qu'on ne fait jamais varier, dans
chaque terme . qu'une scule lettre & la fois, ou sa puissance , et
que celte lettre est la derniére duns ordre des indices ; car, d’aprés
la marche que nous venons de suivre, dans ces développemens
successifs , il est évident que les derniéres letires , dans l'ordre des
indices , ne provienvent que des variations qu’ont subies les lettres
précedentes; or, si 'on faisajt encore varier celles-ci, 1l ep résulterait
que les mémes lctires auraient subi plusieurs variations ; ce qui est
contraire a la marche de ces substitutions successives, o l’on ne
fait plus attention aux lettres qui ont deja subi une variation ; et
il s'ensuit que, dans chaque terme, on ne doit faire varier que
la derniére lettre ou sa puissance ; 2.° que , dans ces variations
successives , chaque lettre est considérée comme un premier terme
de polynome : Cest-d-dire, qu'on écrit 4, pour Dz, , @; pour Da,,
a, pour Ba, ,..., sans autre coeflficient que l'unité.
-~ Voila donc les deux conditions principales de la premidre partie
de la regle da n. 8 justifiées. Muis examinons de plus pres la
formation de chaque terme du développement, en supposant que
toutes les substitutions précédentes, au lieu d’étre successives, soient
faites a4 la fois.

33. Le terme A,4,, ou le coeflicient de 2"+*, dans le déve=~
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loppement de ¢¢-fa,24-a,2°+a,2°+..) ne peut btre composé
que des trois parties suivantes : 1.° du terme correspondant du dé-
veloppement de ¢(e—a,x; , équation (33) , cest-4 - dire , de

Drx+l¢a
1.2 (1)
a4 a,z pour a,, de a,4a,x pour a,, de a,-}a,x pour a,,
et ainsi de suite, dans les dernieres lettres ( ou leurs puissances )
de chaque terme de A,; 3.° enfin, de ceux provenant des mémes
substitutions , dans les puissances des derniéres letires des termes
de 4,_, , Aurz,.., en remontant. Examinons chacune de ces

a,"t', 2.° des termes provenant de la substitution de

trois parties :
1.° La premiére partie a toujours évidemment lieu ; car il faut

qu’elle subsiste quand ¢,, ¢, , a,,.. deviennent nuls ; nous verrons
tout & I'heure comment la régle du n.° 8 la fournit.

2.° En faisant la substitution indiquée, dans un terme de Ax de
la forme ¢a,%a, , par exemple; on obtient ¢z,%a,4a,x), et il
en résulte pour 4, , le terme Z2a,%z,; ce qui revient a faire va-
rier a, de Da, , et a éerire @, , 4 la place de cette dérivée. Si
le terme avait été de la forme ¢az,%2,®, on aurait obteny ga,“(a,“s—[—-
D.a.’s.x-{—-:-D‘.(z‘ﬁ.x“-{—....) , et il en serait résulté , pour A", le
terme ¢a,*.D.a B=pa,%a P~ a, ; cela revient dqbnqjlﬁncqre A diffé-
rencier @,®, d’aprés les régles ordinaires, et 4 écrire @, a la place
de pa,. Cest ce qui constitue, avec l'observation de la fin du n.°
précédent , la premiére partie de la régle du n.° 8.

3. 1l paraitrait d’abord que, pour trouver les termes de cette
troisitme partie, on est obligé de recourir aux termes ou coeffi-
ciens antérieurs a celui de A,; mais on peut s'en dispenser , au
moyen de Dobservation suivante. Si 4, , doit contenir un terme
provenant d'une puissance de quantité polynémiale , qui a regu un
accroissement , 4, contient aussi un terme d& A4 cctte puissance,
qui en est la dérivée immédiatement inférieure ; par exemple , si

6.5.4.3

v 3 ¢
a.?a,%, A, contiendra : D’ ¢, f=
1!3’3’4 , ‘ , ” 6 3

i ir - -
d,,.;., doit contenir wDha, =
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-2—.3-11,30‘3 : de plus, ces termes, dus aux puissances des quantités

polynémiales, sont toujours aisés 3 reconnaitre , en ce que les deux
derniéres lettres se suivent, dans l'ordre des indices, et récipro-
quement; car, on a évidemment ( ¢ étant un cocflicient numérique
3 — 3 2} 5

convenable ) ¢a,%az,*=¢a*(Da;)*=;p*a % Il ne reste donc que de
savoir déduire d’un semblable terme dans A, son correspondant dans
Ay .. Soit donc ¢a,’a,’ ce terme dans A4,; on a ga.’a,'=¢a,"(Da,)

Di.ay+* DS+ 1 _azr-l-:

; or, le terme correspondant dans 4, , sera

1.2.008 12400 (5=F1)
I D-"a!r-}'r P (r .
=—D.———=—D.a, (Da,)=——.a,""'a2,*+"': ce qui re-
s4-1 2.8 s4-1 + (Das) s41 * 3 ’ 1 i

vient & différencier l'avant-derniére lettre , ou sa puissance , a
écrire @, pour Da, , et a diviser le résultat par l'exposant de la
puissance de la derniére lettre , qui se trouve augmenté d’unc unité.
On ne fait donc autre chose qu’exécuter la seconde partie de la

régle du n.* 8. Cette méme partie de la régle , appliquée a la
n

.a," de A4, fournitle terme prToe .

1.2 .0..72 1.2.. (n-4-1)

, dont nous avons parlé au commencement de ce n.°

fonction ¢z dans le terme

a',""""
La régle du n.° 8 est donc parfaitement exacte , et fournit le
moyen le plus simple pour déduire le développement d'un terme
A"+t de celui du terme A4, qui le précéde immédiatement.
34. Proposons-nous maintenant de développer immédiatement,

et indépendamment des termes qui précédent, un terme quelconque
p".¢a .
A,= % de I'équation (6) ou (7).

1e2.0002

En faisant
(56) ¢=ata, vt a2 4a,27+... ,
cette dquation devient , d'aprés le n.° 32, équation (53)
(57) ¢la+¢x) =¢a-+4-Dea.lx~+D0a.2*2*+:D%0a.2 23 ...,
Mais , ¢ étant lui-méme un polynéme , ses puissances sont des.
fonctions de polynémes qui, d’aprés le n.° 5, deviennent.
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¢ = a, D tx+DNa 2 Dk et
d=gl+Da’ a4 0% @430 a 32 .
(58) ¢

® o @ & * o+ o+ @ 5 6 & P o s e ot 3 & & s o s s s a

k "=a 4., " 2+1D%a B4 IDd e M

od g, doit étre considéré comme un premier terme de polynéme ;

I

Cest-a-dire , qu'on a De,=a,, iD'a¢,=a,, D, ’e,;=a,.... PP——
0 20s0i (T2
Mo —
D ra, =a,.

Substituant ces valeurs dans Véquatiorr (57), on obtient

(59) ¢lata,x4a,2*}a,204-) =
A+A,I+A,x’ +A;m3+ e e e e e . +A"'x"-i-...:
n—1
==pa+tDea.a,x4D¢a.Da,| -}Dea’Da,|.. .+Dga. i ‘.-1..,,,,
1.2u.(n==1) '
-3 2
+ED"P(J.0,’ +fD’¢a.D.a,’ x"'+.-.+§D’¢a, DN &2 J{"....
’ 1:2.00(n=2)
DA—3.9;3

~-5D'eaa® | . . 4iDige

120, (n~3) Px"

Dr—19a

-}

°Llle Tz n-o;
1.2...(n=1) D:a +

D"¢a
. 2 e
L2ewn F J+ )
d’'a l'on tire
Dt ¢a DH—14, Dr—13,4,2
60 J = =Dea . 1D P @ e
( ) L -9 ) ¢ x.z...(n-—-x)+' ¢ 1.2 (N=2)
DA—13.q,3 D tga D"¢a
13 N § n
D2, ————— - ———— D& e’
T 1.2, (A=3) +x.2...(nw—x) il +x.3....n vo?

o, en éerivant cette formule & rebours,
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. p.Qa D"Qa w D'ga et
‘A = _— . JD.a
G 4,= 1200l L2euolt a+ 1.2.(n=1} !
. Dr—20g . Dn—1%.q,? pr~Ig,
.Ipte, " ... 41p*0z. ————— +Dea. .
+ I.z...(n—z) 3 X + + 1 .2“.(,1—3) 1 .2."(,1_.1)

Les quantités qui restent 3 développer , dans cette derniére formule,
se succédent dans l'ordre suivant

D~ DAl

(62} a,", D.a,""*", D%a T, 00T e 1.2.(n-2) * L2..(z-1)"

Si tous les exposans de @, , sous les signes de dérivation , étaient
les mémes et égaux & z#, on appliquerait immédiatement , au déve-
loppement de ces quantités , la régle du n.° 8 ; mais, comme ils
vont toujours en diminuant, il est nécessaire , avant tout , de faire
subir 2 chaque terme une préparation qui consiste & diminuer
Pexposant de 4, d’une unité, d’un terme au suivant , et & mo-
difier en conséquence les coefficiens numériques provenant de ces
exposans. '

Pour trouver la rdgle de cette préparation , observons que les

dérivées (62) se développent elles-mémes selon la formule (61),
et quon a, en général,

Dr.aln—-r Dralﬂ-—r LDI‘-- T n—r Dr——zal"_r
— r,

63 = a D.a,"  ———1D%2,
(63) L2n(@=—T)  K2ed 2 L2 (re—1) 2 12 (r—2) * .
Dr—sg—r DSg,r— DrI—1Ig
-+ o bDa =
U L2 (P==5) 124008 1.2,.(r—1)

. . DrH1,gnt~T~1 .

Or, pour déduire de ce développement celuide —————— , il suffit
1.2..(r1)

D".a,"‘r" T

d’en déduire d’abord celui de , et d’appliquer & ce dernier

£.2.,.7
la régle du n.° 8. A cet effet, on changera, dans tous les termes
de la formule (63), # en z—1; mais voyons cc qui en résultera
pour
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pour un terme quelconque. On a, d'aprés les régles ordinaires de
la différentiation ,

Dr—sgn—r (7er?) (e e 1 ) (NP2 oo (N2 27 5 42) (=275 41 ) n 2
-t Ial >

Y20 (Fmms) 1.2.3 o (r—5)

Dr==ian=r=C (pp () (T ==2) i.r. (Rme 2P s 1) (n=2r=}-5) g n—trs—t
.4, .

LIz (r—s) 12300 (7=s)

. o D n=rm .
- Ainsi , pour déduire le développement de ———— de celui de
X. 2007

Dra 1"""

— il suffit de diviser chaque terme de ce développement par

n—r , de le multiplier par Pexposant de &, dans ce terme, et de
diminuer cet exposant d’une unité; ce qui fournit la régle pratique

suivante.

REcLE,

Dr+1,g,nere Y

35. Pour déduire le développement de FPT de celui de

Dra 'n—r

, divisez chaque terme de ce dernier développement par
X200

n—r , multipliez-le par lexposant de a, dans ce terme ( en obser-
vant que , dans les termes sans a, , cet exposant est zéro ), et
diminuez son exposant d'une unité, Aprés celle préparation, suivez
la régle du n.° 8.

Pour donner un exemple de cette régle, mnous allons I’appliquer
au développement de A4 , dans I"équation (6) ou (5g). Les quantités
a développer, dans ce cas, sont

' 3 3 T
a.°, pa’, Ip*at, 0'e’, D4a?, D%, .

La premiére de ces quantités reste ,°; la dérivée D.a,® donne ba,tz, ;
pour en déduire celle :D%¢,* , il faut la diviser par 5, multiplier

Tom. VI. 17
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par 4, exposant de a,, et diminuer cet exposant d’une unité; ce
qui donne 4a,’a, : appliquant ensuite la régle du n.® 8 & ce terme
ainsi préparé , on trouve 4a,’a,~*2a,’a,*. Pour déduire de cette
derivée celle zp%.g,%, il faut diviser le tout par 4, multiplier res-
pectivement les deux termes par 3 et 2, exposans de g, et diminuer
ces exposans d’unc unité ; ce qui donne 3(2,’(1,-}5345110,’ : appliquant
la régle dun.® 8, on obtient 3al’a‘+2.3ala,a,+a,3. Pour déduire
de cette derniére celle ;p%a,*, il faut diviser Je tout par 3, mul-
tiplier les trois termes respectivement par 2, 1, 0, exposans de a,,
et diminuer ees exposans d’une unité; ce qui donne 2a8'a ;A-2a,a,
appliquant la régle du n.° 8, on obtient 24,4 ,;~4-22,4,404,* Enfin,

pour déduire de cette dérivée celle ;=D%a, , il faut diviser tous les

terines par 2, les multipker respectivement par 1, o, 0o, exposans
de ., et diminuer ces exposans d’une unité ; ce qui donne &, ,
dont la dérivée est a@g, d'aprés la régle du n.® 8. En rassemblant
tous ces termes, et les multipliant par leurs coefficiens respectifs (61),
on aura le développement de A, écrit en sens inverse.

L’énoncé de ces opérations pcut paraitre un peu long ; mais leur
exécution est trés-expéditive. Aprés s'étre exercé a calculer quatre
ou cinq termes , on en a tellement Thabitude qu’il n’en cofite plus,
pour ainsi dire, que la peine de les derire.

36. Remarque. La régle précédente donne non seulement le moyen
d’écrire immédiatement le coeflicient d’'une puissance quelconque
de x, dans le développement de ?{e+-a,2+2a,2*}....) , mais encore
une partie quelconque de ce coefficient , sans calculer le reste. Ainsi,

s1 I'on demande le coefficient de

o dans le développement de

D".Qa

A=

. . u. . ni=r.aq,r
, I'équation (61) indiquera que ce coefficient est -~

1.2 (1) ’
dont le développement peut sexécuter immédiatement , d’aprés la

régle précédente et 1'équation (G1). Cette observation peut avoir les
applications les plus utiles, dans la théorie des hasards , et dans
celle de la partition des nombres. Nous avons vu au n.° 10 quele

1.2 .00e 2
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. D’ .¢a T e |, ,
coefficient de — dans T, ¢lait composé de tous les produits de

" 7 lettres qu’on peut former avec les quantités polynémiales a, ,
a@,, @y y+..., de manitre que ta somme des indices de chaque
produit soit égale & n, et que les coefliciens numériques de chaque
produit indiquéient le nombre des permutations dont les lettres de
ees produits sont Susceptibles : nous aurons denc immédiatement tous
ces produits , avec leurs coefliciens numériques , en développant la
Dn-—r_alr . . ‘ -
dérivée e De plus, le nombre des termes dont ce déve-
loppement sera composé indiquera de combien de maniéres on peut
composer le nombre 7, avec 7 nombres , égaux ou inégaux. Ainsi,
en supposant n=12, r=8 , on aura, pour le coefficient de

Déga b2da -
, dans ———— ,
1.2,..8 1.2 weee 12

~pta, =2p%, %0, 400, .2, D%, % '%a ,*+-Da,t D% a,

8765 . ., 876 . 87 . A |
= 1-2-3-401%14—‘— 1230 3a,tas+ 2 (2410 ,4a ;") H5a a0

Ce coefficient étant composé de cinq termes , fait voir que le nombre
12 peut étre formé de cinq maniéres différentes , par I'addition de huit
nombres, savoir: 1-f1~4-1-414-2+42+42-42, 141t id 41424243,
i+ 144244, 4343, 14141
4141414145, lesquels sont donnés immeédiatement par les
indices et exposans des lettres des produits.

37. La regle du n.° 15 n’est qu'un corollaire de celle du n.° 8
et de celle du n.° 12, qui est une suite évidente des équations
(12): en effet, si dan’s I’équation (15) on suppose @,=0, @;=0,..,
b,=o0 , b,=o0, .., elle deviendra

64 (ot x)XY G+ x)=A+Ax—+A 22 A3 234 ;

or, le premier membre de cette équation devient, d’apres 'équation (53),
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65) (¢a+D¢a.¢lx-Hn’Qa.aﬁx’-{-...)(\l/b+D’&Pb-h$+§D’4'b-5x’#’-l-m)‘_ B
Ce produit étant dé’veloppé , d’aprds I’équation (1 3), donne
(66) o(ata.x) XV (o+b.2)=,
A +-4.x A,z s O
=eaVb+toeanVbb, ) eaipbb? +paiD*4b.b,}
+peatb.a, x+n¢a.n‘l’5.alb, 2* +Doa.iD*$b.a,b,’
+-ip*tatb.a,? ~-iD*¢0a.Dyb.a*h,

4:n*eabia,’
O O e Ty
V2
e ul ) Lo +-....
‘ 1.2 e 2
. nn-s-l-q/b He— )
“+.tDoc. T a0, e
n—22lp l
+....+§chpa.-—?———-—i— -alzén- 2 +o-|:
1e240(n"2)
) s b ey’
+...of-iD30a. ik 4 albnt @

1.2..(n—3) ’

B e N Y B

1—1 ™
LI SPLETY M R S

LI e

Ici les colonnes qui forment les coefficiens de z ne sont autre chose
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que les dernidres colonnes des équations (18). Or, le produit (65)
g'effectuant comme le produit (13), avec la seule différence qu'y
la place de 2 et de &, il faut écrire ¢z et ¥4, et D.ga=bea, ,
D.4b=D¥b.b, , ... 4 la place de Dz, Db ,...; il sensuit que , pour
déduire la derniére colonne de A, , de celle de 4, [ équations (18) ],

il faut faire varier ¥4 dans tous les termes de cette colonne , et
D"¢a

de plus faire varier ¢z dans le dernier terme Vb.a,"de cette

I.2.02
méme colonne. Les deux premiéres parties du n.° 15 se trouvent
donc démontrées.

Les n autres colonnes qui composent A,,, ne peuvent donc
provenir que de la variation des quantités polynémiales a,, @, ,8; ..
by by, by, Cest-d-dire, de la substitution de #,-}a,x poura,,
de a,~}a;x pour a,,..., de b,-&,2 pour &,, de b,~+b,& pour
b,y e, dans les termes précédens. 11 faut donc appliquer ici la régle
du n.° 8, modifiée par la coexistance de deux polynémes indé-
pendans, c’est-a-dire , par la régle du n.° 12; ce qui constitue la
premiere partie de la régle du n.°® 15. Cette régle se trouve donc

entiérement justifide.

38. Passons maintenant au développement immeédiat, et indépendant
des termes qui precédent, d’un terme quelconque de I'équation (15),
ou du terme général A,.=——-—-————D”((¢d'¢b) .

1s2.0..2

En effectuant compleétement le développement indiqué par la der=
niére des équations {17}, d’aprés les n.°®* 34 et 35, et 'ordonnant
selon la somme des exposans de dérivation , relatifs a ¢z et ¥4,

on peut le mettre sous la forme suivante :

o".(¢a.lb) _ D"¢a ‘pr—1Qa

- b.a,"¥ .«PZ.D.a,"“ e

(67) 1.2.072 T 1.2 1.20.(n=1)

b1 K Y, ~29a

Dyb.a b 4

DN
1.2.0(n=—1) 1.2...(n=2)

.Dyb.D.(a,"~ ’5,)-{-}.:;.
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D=1 tpa . n—1 -~ ¢a
+ 12000 (R=2) DDA, + 1.2.. (n-S)

 ID*0.D.(2,2 =35, )4,

~}-:p*¢a. II;”(:_P_[; 5 .a.*b,""*+Dea. ‘—]:;&% D.(a,5,"~*)
~+-p?a. % a.b." ' ea. «E?(——If:) /R
o0, b
D00 Vb . —-::'——— —— +Déa.bb. — w_‘f_l)
wee=-DP2.DVS . -—;(n—(:;)z ~+02.D¥b L:f:(;f_‘n
901DV Ii’z_”m_i_)

Il n’y a plus, dans cette formule, dont la loi est trés-élégante,’
que des fonctions de quantités polynémiales 3 développer ; et elles
.se succédent par colonnes dans Vordre suivant :

e ] n—1x
a® D.g,'"t ID2.gtmt® D i D «ar
I y Dy )2 TV 9 o 3 9
. 1.2..(n-2) 1.2, (1=1)
D= (a,b,) Dr=1.b;
N R - w—
a," b, (a,*%D,), 0% (a,"3D,), ... ,

14200 (R=2) 1.2, (n==I1) >

. Di~—1.%
a0, 0.(a 0 107a 48 ), :

"lzw(n—2)
(68) { 2,253, D(an"45,%), 102 (a,"" 58,7, ...

© 6 6 o 6 o o 0 e 8 s s b s e e s « o »
a5, ,pfa,," %), D2 b1
axb:"—l R D.b‘"'t

b'n ,
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Si tous les exposans de @, , sous le signe de dérivation, étaient
les mémes que dans les termes correspondans de la premiére co-
lonne , on pourrait appliquer immédiatement au développement de
ces quantités la régle du n.° 15; mais, comme ces exposans vent
en diminuant d’une unité, d’'une colonne a l'autre , comme au n.° 34,
il est nécessaire de faire subir & chaque terme la méme préparation que
dans ce n.° ; c’est-d-dire, qu’il faut soumettre chaque terme 3 la
régle du n.® 35, et ensuite y appliquer celle du n. 15. Par ce
moyen , on peut développer immédiatement un terme quelconque

D (a.b) )4 . . 14 . .
de I'équation (15), indépendamment de ceux qui le pré-

1.2..n
ctdent.

39. Remarque. On peut faire ici une observation analogue
celle du n.° 36. Par le procédé du n.° précédent , on peut aussi
D (0a.Vb)

1.2..1n

Dr'ga DL
— , ——=i=  S€ra
1.2, 000" X.2..8

calculer immédiatement un terme quelconque de , indé-

pendamment des autres : ainsi le coefficient de

Di=r=s.(a,"h %) ' s '
————————, dont le développement s’exécutera par le n.? précé-

1.2, (=—1r—2S5)
dent, en remplacant n par n—r—s, ¢z par a," et ¥4 par b, et
_considérant @, et b, comme des premiers termes de polynémes.
Supposant donc n=12, r=7, s=2, on aura, pour le coeflicient de
Diga D2Yd D12.(Pa.)b)
. , dans

3.2..7 1.2 1.2..12

03.(2,70:2)

3 =i0%2,0.%a,® —D%,7.0,°Da.* +Da,’.b,2n%,
~+1D%2,7.0b,%.a,*b,~Da, . 0b,* D(a,b,)+Fa,” Db, [0,
4 D @,".5p%,%a,0,*+ a,’.:D*h,°D.b2?

7.6.5

1.2,3

7.6 6
atb2a, = a’dbr2a,0,-470.50.%a,
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., 76
e

5.20,.0,0,42a%2b,(a,b,a,b,)+a.28,5,
ta,%.a,b,>a20,0,

D’aprds la remarque du n.° 17, qui sapplique également ici ,
le procédé du n.° précédent donne aussi le moyen de calculer im-
médiatement un terme quelconque du développement d’une fonction
quelconque de deux polynémes indépendans @ g+4-a,24-a,2°.....,
b+-b, 240, 2°+....) ; il suffit pour cela de remplacer, dans la for-
mule (67) les produits des dérivées de ¢z et ¢4 par les dérivées
partielles correspondantes de ¢a,5); et le n.° précédent fait voir
avec quelle facilité le calcul des dérivations fournit la solution de
ce probléme compliqué, et intraitable par les méthodes ordinaires.

40. La régle du n.° 28 est un corollaire bien simple de celles
des n.> 15 et 35; en effet, la forme du terme général /48),

B pA-1 . (c=n D.¢h) DR= L (Qa. b)Y
nBy= 1.2.0(2—1)

, étant comparée 3 celle (17) 4,.,=

1.200.(2~=1) ?

fait voir qu'on obtient la premiére , en remplagant , dans celle-ci ¥4
par ¢~", et ¢z par D.?b. Les régles de développement doivent donc
¢tre les mémes pour l'une et lautre formes, sauf les différences
suivantes : 1.° I'exposant de ¢ diminuant d’une unité d’un terme
Tautre , il faut faire subir & chaque terme, avant d’en déduire le
suivant, la préparation du n.° 35 ; 2.° ¢g étant remplacé par 0.95,

s . D".D.pb r+1 . 0p Drt+10h
il sensuit qu’on a, en général, - !pr=n . :D =(r-i—1)-———--—-—-I - (r-:r) ;
o2 sene I.24 206
D'D¢ Dr+l¢5 . B . . ’
- .._(r--{-x)12 s ¢ ce qui produit les coefficiens numériques

égaux aux exposans de dérivation ; 3.° enfin, nous avens ordonné
différemment les termes des équations (50) , en transformant les
lignes horizontales des équations (18) en colonnes , et réciproque-
ment : il enest résulté que les derniéres colonnes des équations (18)
sont devenues les derniers termes de chaque colonne des équations

(30)
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(50), en transformant les lignes horizontales des équations (18) en
colonnes , et réciproquement : il en est résulté que les dernitres
colonnes des équations (18) sont devenues les derniers termes de
chaque colonne des équations (50) ; ce qui a produit les modifications
‘des 2.m¢ ¢t 3.m¢ parties de la régle du n.° 15. .

41. En tenant compte des observations du n.° précédent, la for-
mule (67) fournit le moyen de développer immeédiatement un quel-
conque des termes (48) , indépendamment des preccdens on a,
en géndral ,

D=1 (c=n.D.¢b)

(69) nB=" =

142000 (72~=1)

(o= )B 1)

nwb pr—1 ¢b

( ¢ Db T

1.20.(n—

D"-.l¢b Dt— ¢

I - -n\ e I A PR S N T ] =z

TG I)1.2. (1) ( 5 ¢ +(72 2/ /¥.2.0.(n=2) e ).D.(l), €l)+"
Dr—20h —3¢b

(r2 e 102 )8, 2, (n-3)— 0*(c™).D.(5,"" 3¢,?)

1e2e0a(2=2)

1.2..(n—3)"

-3 (c=") DI==3 (c™n)

2 .‘_ 3 3 w3 2 2 "“;
-+3..p ob.2 AP ble," 325D <p5 e D.(5,2¢," )
D=2 (c—1)

DHRZ(C-n)
z u-z+ ¢5 '-D-fé clm-'t)

I.a...(n—z) Ie20n (n— )

~4-2..D¢b.

pn= i (c——n)

N~-1X
+D<Pb 1e2e0.(==1) 5101
~ 13,3
n 3 —r 2 —T1 Dob. ""\
“-3.20%05. (¢ ) :—(——‘—‘"{-2 D*¢h. (6 ) rz—2)+ s (c /1.2.(n-1)
oy D (6, iy D200
+2. D (P5 D(c ll) +D(P5 D(c n - 2'"(71_2)

=3 (bic,2
»e ..+D¢b ;D? (L‘—'") 12_-(512_—(:—3‘;

Tome V1. 18
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oli les quantitds qui restent 2 développer sont de la méme forme
que celles (68), du n 38, et doivent étre développées de la méme
maniére,

42. Au moyen du n.° précédent, nous sommes donc en état de
calculer immediatensent un terme quelconque d’une fonction de po-
lynéme , ordonné selon les puissances d’une fonction ou d’un poly-
néme donné ; ce qui constitue le probléme général du retour des
fonctions et des séries, étendu aux fonctions de polynémes. De
plus, daprés la remarque du n.° 39, qui estapplicable & ce cas,
nous pouvons aussi calculer immédiatement une partie quelconque
d'un terme , sans calculer le reste de ce terme. Mais, ce qu'ily
a de plus remarquable , cest que cette question difficile est résolue
d’une maniére si simple qu’on n'a, pour ainsi dire, que la peine
d’écrire le résultat.

CONCLUSION.

43. Résumons, en deux mots , 'objet et I'esprit du calcul des
dérivations , tel qu'il résulte de ce petit écrit. Le théoréme de Taylor
donne le développement d’une fonction simple d’un binéme, selon
les puissances ascendantes de la variable principale , ou selon les
mémes puissances d’une fonction quelconque donnée de cette va-
riable. Le passage du théoréme de Taylor au développement des
fonctions de polynémes, ou des fonctions de fonctions , selon les
puissances ascendantes de la variable , n’est autre chose que le
passage de la différentiation d’une fonction , en regardant la dif-
férentielle de la variable prineipale comme constante, 3 la diffé-
rentielle de la méme fonction , en ne regardant aucune différentielle
comme constante. Quant au passage du développement d’une fonc-
tion, selon les puissances ascendantes de la variable A celui selon
les puissances ascendantes d’une fonction donnée de cette variable ;
( ce qui constitue le retour des fonctions et des séries ); il n’est
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autre chose que celui de la différentiation d’une fonction , en chan-
geant de variable principale ou indépendante.

44. Me voict parvenu au terme que je m’étais proposé : celui
de déduire la véritable théorie du calcul des derivations du seul
théoréme de Taylor, sans I'emploi d’aucun principe nouveau. J'es-
pere que les géometres verront avec plaisir ce beau corollaire d’un
théoréme qui a déja éié si fécond. Le cadre étroit dans lequel
j’ai resserré l'essence de ce calcul les engagera sans doute & donner
quelques momens & la lecture de ce petit écrit ; et jose présumer
quelle les réconciliera avec le calcul des dérivations , dont P'ouvrage
d’Arbogast a pu les éloigner. Mon but n’a pas - été d'épuiser la
matjére, mais d’éveiller I'attention des géométres sur I'utilité, trop
méconnue , des ‘dérivations ; et de leur éviter la recherche pé-
nible de nouveaux moyens de développement , en leur présentant
ceux qui sont, & la fois , les plus simples et les plus expéditifs
qu’on puisse trouver.

Les géométres auxquels V'Analise combinatoire est familiére
verront, par nos remarques des n.°* 10, 16 et 36, que le calcul
des dérivations contient , non seulement les véritables sources des
régles de cette analise , et leur extension & des fonctions de plu-
sieurs polynémes indépendans, mais encore les moyens d’exécution

les plus commodes et les plus rapides.
Metz , Ie 5 de mai 1815.
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ANALISE ALGEBRIQUE.

Théorémes nouveaua , sur les limites extrémes des racines
des équations numeriques ;

Par M. Brer, professeur de mathématiques a la faculté
des sciences de lacadémie de Grenoble.

[a = Sa " S M2 7]

POUR rendre la théerie que je vais développer plus facile 3 saisir,
je crois couvenable de Vappliquer & un exemple particalier. Rien

ne sera plus facile ensuite que de l'exposer d’une manieére générale.
Soit donc l’équation du g.™¢ degré

V a2 -bat—ca! —datexS— frtmgai-hat—ka+l=o0, (1)

dans laquelle les signes sont supposés en évidence ; et proposons—
nous d’obtenir une limite supéricure de ses racines.

Nous remarquerons d’abord que , quels que soient A4 et m ,ona

Asm=A(z"—1)t A=Az —1)(am" ' F2™ *F..Fz41)+A
ou, en posant pour abréger #—1=y dou z=1-4y

.A:c’":Ayx"""+Ayxm"+..-.+Ayx+Ay+A . (2)

Cela posé , appliquons la transformation (2) a tous les termes
positifs de léquation (1), et mous aurons
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axg:ayx8+ayx1+ayx6+ayx5+ayx4+ayx3+ayxz+ay¢.+ay..‘_,, ;
bat= . . . . byaiq-byat by xSdbywidby s Fbyxitbyx +by40
LT s v e e e e e i eymidreyad dreyaa ey Jeye

e Y 1 e 2 e

I = .....cc.. ..--.-.o...--.-..o.-....l.
Introdui- 2 ces développemens dans I’équation (1) , rassemblant les
ternic v wiic tes des mémes pnissances de « , et écrivant les premiers
ceun de ces termes dont le coefficient renferme une partie négative,
on obtiendra la transformde

§(atbyy-clort{(athyy-dias+ (atbte)y-f Jwid{(adbtery-glai et bte bhyy -
+y{azS-(a-0) x5 (a-p-b4-e)’ (a4 b4-e4-R) 34 (a4 bfe-h4-D==0 . 3)

Or, il est clair que , pourvu qu’on ne prenne pas ¥ négatif ou,
ce qui revient au méme, x positif plus petit que I'unité, les termes
de la seconde ligne donneront toujours un résulsat positif quelque
autre valeur qu'on puisse d’aillenrs prendre pour z ; donc, pour
que touvte autre valeur, mise pour x dansI'équation (1), ne donne
point un résultat négatif , il suffit uniquement qu’elle ne rende point
ndgative la premic¢re ligne de I'équation (3), ce qui arrivera infail-
liblement si elle ne rend négatif aucun des termes qui la composent.

Cette condition sera évidemment remplie , si 'on fait en sorte
que les binémes

(a+b).y*c ) (4+5+¢’)}"—f, (ﬂ+5+3+i‘)7—"k ?
(a+bly—d , (at+o+4-€y—5 ,

soient positifs ; or, c’est ce qui arrivera nécessairement , si l'on ne
prend pas y ou x—ix moindre que la plus grande des fractions
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¢ d f g L .
a+b’ atd’ atide’ atbte’ atbteth’

ou, ce qui revient au méme , si I'on ne prend pas # moindre que
le plus grand des cinq nombres

d S g

c .
I+:-;-—b’ I+a+b’ I+a+lz+e’ I-l_'a-{-lr-f-e’ 1+

k
atbteth
ce qui fournit la régle suivante,

THEOREME I. En ajoutant successivement & l'unité une suite
de fractions ayant pour numérateurs les coefficiens négatifs d'une
équation proposée , pris positivement , et pour dénominateurs la
somme de tous les coefficiens positifs qui les précédent respective-
ment , le plus grand des nombres résultans pourra étre pris pour
limite supérieure des racines de cette équation.

Il cst entendu au surplus que, dans la pratique, il suffira de
eonsidérer le plus grand coeflicient dans chacune des séries de termes
négatifs.

Appliquons cette régle & la recherche d’une limite supéricure des
racines de l’équation

22141 125~ 1085262431247 22°=2302~348=0 ;

cette Jimite sera le plus grand des deux nombres

) 26 26

1 2411 I+_1§ d

. 348 348 .
x---I‘z-}-x1-{-31-«[—3:. ou I+x16 !

ainsi , cette limite sera 4.
Si 'on veut obtenir la limite inférieure des mémes racines] on
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remarquera qu'en changeant les signes des racines de la proposée,
elle devient ‘ )

22T =112°—102°426244-312°—722*—=2302-1348=0 ;

or, par la régle ci-dessus, on pourra prendre pour limite supérieure
des racines de cette derniére le plus grand des nombres

11
1= —

2
1 230 +230
-1—2+26+3x ou 1 59 ’

ainsi, cette limite sera 7 ; d’ol il résulte que toutes les racines
réelles de la proposée sont comprises entre -4 et —7,

La méthode vulgaire , indiquée par M. Lacroix dans ses ¢lémens,
donne pour ces limites =175 et —116; la méthode plus parfaite
de Lagrange , adoptée par M. Francceur , donne —-20 et —116,
on voit par 12 combien la nétre leur est préférable. Je ne dis rien
de la méthode des dérivées successives , attribuée & Mac-Laurain,
laquelle n’est qu'un titonnement assez laborieux.

Reprenons la transformée (3). En vertu de la formule (2) on a

ax'=ayx'+ayxS+ayst4ayzrayzi oy 2> ayat-ay-ta.

Mais , en vertu de la méme formule les termes ayz® et aya? peuvent
étre développés comme il suit :

ayz®=ay*at~ay*ziHay a*tayrz-tay*ay ;
AYXZ = . L ei o ot 0o oo e @y ztay*ay ;

ce qui donnera, en substituant et ordonnant;
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axd=gyxi4-ayxs4ay:
~+ay

x2-4-2ay>
+ ay

x3+ay2
+ay

xifay2

x+24y’l+2ay,
Fay

+ oy [+ a.

Mais on aura encore, en vertu de la méme formule (2),

z-t-2ay?
-+ ay*

~+2ay2
+ ay ;

(cay*~-ay)z*=zay’
-+ ay?

ce qui doxinera ; en substituant de nouveau

arb=gyz'tayzt+tay*|attay?|a 4 ayilet oy
ay | ay | Haay] 430y

4 ey | H-3ey

4+

Par de semblables transformations; on trouvera

(@Dt =(a4-b)yat+(a+D0)y 2’ +(e+ D)y [a+ (a4
o :HH‘Z)J’l ~+2(at-b)y
- o (ath)
(a4-be)a = (a4-b4-o)ya4-(at-b+e)y
A-(a--bte)
(0t bt-e+-R)y=(atbtetR) -

En ajoutant ensemble tous ces résultats ; il viendra

02 -(a--b)a’4-(at-b+-e)x*+(a--b-4-e4-7)

=aya’,
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=ayxl-foyxéd ay?

Khefn ay?|xi-f ay3lata ' ay3
20y

+(20+6‘)’)}' ~+ (3a+b)}"" ~+ (4a+53_)’2
FGatabtery] + Gartitreyy
Gt 3b204h)

substituant cette valeur dans I'équation (3), elle prendra Ia forme
que voici -

{ay*+-(a+-0)y—cla’+{ay (e +b)y—dix

FHay aa+-B)y 4 (a4-D-Fe)y—ffat
4
Hay (2at By (oo —g) 2

FHayt+(3a+8)y -+ Badt-204-e)y*~(a+t-b+-e+-h)y—Hx
FHayt-thotb)y i 4-(6a4-3b+-e)y>4-(hat-3b4-2e-+-h)y +-(at-bet-h4-1)}=0.

Or, il est clair que, pourvu que y soit positif , ou que z soit plus
grand que l'unité, la derniére ligne de cette équation sera toujours
positive ; il suffira donc, pour que tout son premier membre le
soit, de donner & y une valeur positive qui ne rende négatif aucun
des coefficiens des termes en x; or, comme fous les termes qui
composent chacun de ces coefliciens sont positifs excepté le dernier,
il suffira , pour satisfaire & cette condition , de prendre y tel que
dans aucun de ces coefficiens le premier terme ne soit moindre
que le dernier , ce qui revient a faire

ay’>c , ay’>f,

ﬂy’>‘z y ‘ay3->g »
me- VI- i 19

ay*>k ,
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le signe > n'excluant pas I’égalité; or, cela se réduit évidemment
a prendre 2 au moins aussi grand que le plus grand des nombres

z 3 '7‘

I+V£‘ > I+V';; 4

!+yz,«7 1+ g
s a °

ce qui fournit cette seconde regle : ‘

THEOREME 1I. Si, aprés avoir divisé successivement chacun
des coefficiens négatifs d'une équation par le coefficient du premier
terme , on extrait de chaque quotient une racine dont le degré soit
le nombre des termes positifs qui précédent le coefficient négatif
dont il s’agit, le plus grand des nombres qu'on obtiendra ‘en aug-
mentant chacune de ces racines d’une unilé pourra éire pris pour
limnite sopérieure des racines de [l'équation proposée.

Il est entendu au surplus que , dans I’application de cette régle,
comme dans celle de la précédente, il suffira d’avoir égard au plus
grand coefficient négatif de chaque série de termes consécutivement
négatifs.

En faisant I'application de cette régle & I’équation déji -prise pour

exemple , on trouvera, pour la limite des racines positives- le plus
grand des nombres ,

I+V—-§ ;

1+\7¥ » THYEIE

a

et pour la limite des racines négatives, prise positivement, le plus
grand des nombres

YT, R

c’est-3-dire, que ces deux limites seront -5 et —7. On voit que
cette régle rentre dans celle qu'indique M. Franceeur.
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Au lieu de faire abstraction des termes intermédiaires des poly-
némes en y qui multiplient les diverses puissances de # , dans 1'é-
quation (4), on peut y avoir égard , et chercher & rendre ces
polynémes tous positifs par Vapplication da 1%édoréme I on verra
sur-le-champ qu’il faut pour cela prendre y au moins égal au plus

grand des nombres

c S
1+b+2a ? l+e+:§-«§~4a ’ "
| T it e
) &
I”.’-‘17--!-2a, ? l+e+2b+4a ?

ce qui revient 3 prendre # au moins égal au plus grand des nombres

c S
i tiamge .
) 2+ et 6a
) g
2+ b4-2a ’ 2-'!-'e-}-zb-l--/,a ?

é'est-a-dire ; qu'on peut prendre pour limite supérieure des racines
le plus grand des nombres qu’on obtient en ajoutant i deuz unités
une suite de fractions ayant pour numérateurs les divers coefficiens
négatifs pris positivement , et pour dénominateurs la somme des
produits des coefficiens positifs qui les précédent respectivement,
et de droite & gauche , par les puissances successives de deusr , %
partir de sa puissance zéro, ou de l'unité.

Mais , de méme que nous avons appliqué le Théoréme I & Dé-
quation (4), pour en conclure ce dernier , nous pouvons également
lui appliquer celui-ci, et nous en conclurrons qu'en y prenant pour
y le plus grand des nombres
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c c
>+ e =t i

d a
a+ (a4-b)42a >+ b43a ’

S — S -
2+ (a4-b4-e)+t-2(2040)4a _—2+ e4-3b4-92 ’
2~} g =24 —f __

(ab4-e)4-2{2a+4b)+t4a e4-3b49a ’

k
e e Gat T i Gat b 5e

&

=2 h4-detootara >

ou, ce qui revient au méme ; en prenant pour x le plus grand
des nombres

ay . S
el S+ e

: k
2 ‘ 3+ h4-3e4-9b+27a

a £ -

St 3+ edhbtga ’

on aura une limite supérieure des racines de cette équation ; c’est-
4-dire qu'on peut prendre pour limite supérieure des racines d'une
équation proposée le plus grand des nombres qu’on obtient en ajoutant
A frois une suite de fractions ayant pour numeérateurs les coefliciens
négatifs de la proposée, pris positivement, et pour dénominateurs
la somme des produits des coefficiens positifs qui les précédent
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respectivement ; de droite & gauche , par les puissances successives
de 7rois , A partir de sa puissance zéro , c’est-d-dire , de l'unité.

On peut pareillement appliquer cette derniére rdgle a rendre
positifs les coefficiens fonctions de y de l'équation (4) , et l'on
trouvera que tout se réduit 4 ne pas prendre # moindre que le
plus grand des nombres

c N
4+ b4-4a ’ 4+ e~+4o416a ’ y

4+ hf-he1604-640 '

d g .
4+ b4ha ’ s ed-4b-416a '

et, comme rien ne limite ce raisonnement, on pourra dire géné-
ralement qu'on rendra positif le premier membre de I'équation (4)»

et conséquemment de 1’équation (1), en prenant pour z le plus
grand des nombres

np—— , n—d—;

bf-an e-4-bn~4-an
. +—-*-t-—’f-——--—u .
_ " h=-en-f-bn2~4-ans *
8
n+ b+tan ’ n-lne-l—bn-{-an’ >

n dtant un nombre entier positif quelconque. De I3 résulte cette
nouvelle reégle.

THEOREME I11. En ajoutant successivement & un nombre entier
Posilif arbitraire une suite de fractions ayant successivement pour
numérateurs les coefficiens négattfs d'une équation proposée , pris
positivement , et pour dénominateurs la somme des produils des
cocfficiens posilifs qui les précédent respectivement , de drotte &
gauche , par les puissances successives du nombre arbitraire , &
partir de sa puissance zéro ou de lunité ; le plus grand des nombres
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résullans pourra éire pris pour limite supérieure des racines de
cetle équation.

- Observons , 1.° que ce théoréme renferme le Théoréme I, comme
cas particulier : c’est celui od le nombre arbitraire est I'unité; 2.*
que , dans son application , comme dans celle de celui-la, il suffit
de faive cntrer en considération le plus grand des coefliciens que
renferme chaque série de termes consécutivement négatifs, de sorte
quon n’a pas plus de nombres a calculer qu'il n’y a de ces séries 5
3.° qu'enfin, en prenant successivement pour le nombre arbitraire
1, 2, 3,.8 on trouvera Souvent une limite minsnum , inféricure

b

a celle que donnerait I'application duv Z7éeréwe I.

e I T 57 5 o S PO TR i

GEOMETRIE DES SURFACES COURBES.

De la génération des paraboloides elliplique et
hyperbolique ;

Par M. BErarD , principal et professeur de mathématiques
du collége de Briancon , membre de plusigurs sociétés
savantes.

TOUTE parabole , rapportée & deux axes quelconques, formant
entre eux un angle y , est y, comme l'on sait, exprimée par une
équation de la forme

(424 By)y42(A’24By)+C=o0 . (2)

Supposons que, par une transformation de coordonnées; on soit
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parvenu a rapporter la courbe & son diamétre principal , pris pour

axe des 7, et a la tangente & son sommet, prise pour axe des z;
supposons de plus que, par suite de cette transformation , I’équation

soit devenue
w=2P¢ , (2)

P étant conséquemment le demi-paramaire.

Sil'on désigne par @, &, respectivement les coordonnées de 'origine
primitive rapportée aux axes de # et des &, et par «, g les angles
que font respectivement les axes des x et des y avec 'axe des 2,
on repassera, comme l'on sait, du systtme transformé au systeme

primitif , en posant
t==a~zCos.x4yCos.4 ,

, 3)
uz=b4xSin.« - ySin.s .

En faisant la substitution dans l’équation (2) , on obtiendra Ia
transformée

 (#Sin.aySin.2)af (b Sin.we=P Cos.4) 2~} (bSin. sm=PCos.8)y |4 (32==Pa)=0 ;

laquelle ne devra différer au plus de 'dquation (1) que par un
facteur commun 3 tous ses termes; désignant donc ce facteur par
a*, on aura

Sina=»4 , &Sinu~=PCosa=r'4’ ,
Sins=a8 , &5n.p—=PCoss=nrB",
breaPa=2"C ;
¢quations auxquelles il faudra joindre I'équation de condition

COS(,@ﬁ)==QOS.&COS;ﬁ-i-Sin.uSin.p=C03‘y 3
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Or, de ces six équations la cinquidme est la seule qui renferme
z et €, d'ou il suit que les cinq autres sont suffisantes pour dé-
terminer les cinq quantités @, &, «, 8, P, et que ces quantités
sont des fonctions de A4, B, A/, B’ seulement.

Observons en outre que, dans le systéme transformé , I'équation
du diameétre principal étant #=o , I’équation de ce diamétre sera,
dans le systtme primitif (3),

xSi‘n.x—I—ySin.ﬁ-{%: o ;

puis donc que cette équation ne renferme point @, la détermination
des constantes qu’elle contient sera indépendante de C.

Il est donc établi, par ce qui précede, que si, dans l'égquation
d’une parabole, rapporiée & deux axes obliques quelconques , on fait
seulement varier le dernier terme, on fera simplement glisser son
sommet le long de son diamétre principal , considéré comme droite
indéfinie , sans changer aucunement le position de ce diaméire ni les
dimensions de la courbe.

Les mémes considérations établissent que réciproquement s7, sans
changer aucunement les dimensions d’une parabole ni la situation
de son diaméire principal , on fait simplement glisser son sommet
le long de ce diamétre ; & quelque systéme d’axes que la courbe
soit d'ailleurs rapportée , on pourra toujours amener sa nouvelle
équation & ne différer de la premiére que par son dernier iterme.

Il en irait absolument de méme si l'on faisait glisser un point
quelconque de la courbe le long d’un diamétre passant par ce point,
puisqu’alors le sommet de cette parabole parcourrait aussi son dia-
métre prineipal.

Cela posé , soit un paraboloide quelconque , elliptique ou hyper~
bolique. Par l'un quelconque de ses points menons-lui un diamétre
et un plan tangent ; menons-lui ensuite un plan secant paralléle a ce plan
tangent; la section sera une ellipse ou une hyperbole ; menons &

cette courbe deux diamttres conjugués queleconques ; et menons ,
sur
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sur le plan tangent, deux paralleles & ces diamétres. Soient prises
ces deux paralléles pour axes des x et des y, et le diametre du
parabolo'x’dé qui passe par leur intersectien pour axe des z ; I'équation

de cette surface sera, comme l'on sait
Azt By*~-Cz=0;

A et B étant de mémes signes ou de signes contraires , suivant
que le paraboloide est elliptique ou hyperbolique.

Or, présentement , soit qu’on donne 3 & ou a y une suite de
valeurs particuli¢res , on obtiendra toujours une suite d’équations
de paraboles ne différant uniquement que par le terme tout connu,
et qui répondront conséquemment, d’aprés ce qui a été dit précé-
demment , & des paraboles égales, ayant toutes un méme point de
leur périmetre sur le plan des xz ou sur celui des yz. On peut
donc de cette observation deduire les conséquences que voici :

1. Les sectz'om{para&olz’ques Jaites & un paraboloide , elliptique
ou’ hyperbolique , par des plans paralléles quelconques , sont des
paraboles égales entre elles , ayant leurs points homologues situés
sur dauires paraboles aussi égales enire elles et comprises dans
des plans paralléles.

11. Réciproguement , tout paraéolaza’e, ellzptzque ou hyperbolique,
peut éire congu ezzgendre par le mouvement dune parabole, de
grandeur invariable, demeurant constamment pam/lele @ un méme
plan, et dont lun quelcongue des points décrit une autre para-
bole , fizée de gra}m’ew‘ et de situation dans lespace.

La différence entre le paraboloide elliptique et le paraboloide
hyperbolique ne consiste donc uniquement qu’en ce que la parabole
génératrice et la parabole directrice ont leur concayité tourndes dans
le méme sens pour le premier, et en sens inverse pour le second.

Le cylindre parabolique et le plan ne sont que des cas parti~
culiers de cette génération ; le premier a lieu lorsque la parabole
génératrice ou la parabole directrice dégénére en ligne droite ; le
sccond répond au cas ol cela arrive & la fois 3 toutes les deux.

Tom. V1. 20
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QUESTIONS RESOLUES.

h

Solution du probléme de dynamique proposé a la
page 220 du Ve volume de ce recueil ;

Par M. J. F. Frangais, professeur & Iécole royale
de lartillerie et du génie.

N AxvrvAaavNw

P ROBLEME. On donne la sous-tendante de larc que doit dé-

crire lextrémité inférieure d'un pendule simple ; et on demande
quelle longucur doit avoir ce pendule, pour que la durée de ses
oscillations soit un minimum ?

Solution. Soient 2a la longueur de la sous-tendante donnde , 2e
Pamplitude d’oscillation qui lui répond, 7 la longueur inconnue du
pendule , ¢ Pangle que fait sa direction avec la verticale & une
époque quelconque 7; en supposant nulle la vitesse initiale et dé-
signant la gravité par g=g™,8088 environ ; il est connu qu’on aura

— r e i e e i @
de= Vuz—g‘ v/ Cos.6—Cos.u ’ Q)

on aura de plus

rSine=a ; , (2)

au moyen de quoi, éliminant r de (1), il viendra

= = & 5
—V 38 v/ Sin.w(Cos.é=Cos.#) °
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intégrant’ entre #==« et ¢==0 ¢t designant par 27 la durée d'une
oscillation entiére , on trouvera (*)

« 1 . 21 . 1 . Y
2T== ? ‘Sin.“-<l+A,Sm. I“+Azsm°l'?“+AlSln'67“+"') i (4)

les coefficiens A4, , 4, , 4, ,... étant donnés par la loi suivante

.An= { 1.3 5’.....(271—-1);' ) (5)

2.4.6.0u0.20

En considérant T comme fonction de «, différentiant I'équation (4)

. dT , ,
sous ce point de vue et égalant i d zéro, on trouvera, toutes ré-
%

ductions faites,
1=2B,Sin2;«+B,Sin.*a}-B +Sin .6‘1¢-|—-.... (6)

équation dans laquelle les coefficiens B,, B, , B, ,... sont donnés

par la loi suivante.

4}224—8 —
B=7—""—"-.4 | (7)

e

L’équation (6) n’est point susceptible de résolution exacte ni di-
recte ; en la traitant par le retour des suites, on trouve 3 peu prés

Sin.;#«=0,338255 ,d’0tt «=71.°72.33/ et r= 'Si_:: =1,056823.2; Ié-

uation (4) donne ensuite 27= 2 .1,126105= _z .
q (4) = P o™,986547

Mais cette valeur de 27 est-elle bien réellement un minimum ?
Pour répondre a cette question nous remarquerons ‘d’abord que »

(") Voyez, pour les détails de I'intégration , le Traité de mécanique de M.
PoI1ssON ; tome I, page 415.
J. D. G.
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soit que nous fassions «=0 ou «=180°, nous trouverons également
2T=%=c0o ; de sorte que la valeur en question se trouve comprise
entre deux maxima ; ce qui est déji le caractére d'un véritable
minimum ; mais ce n'est guére que par le calcul des valeurs par-
ticulidres que l'on peut s’assurer , avec certitude, qu'il n’en existe
point d’autres entre ces deux limites. En supposantAsuccess'}vement

w=71° et «=71°15/, il vient 2T=wV i.:,l36394,et2T=wVZ,
8 8

1,136376 ; d’otl'on voit que la valeur trouvée ci-dessus, moindre
que ces deux la, est comprise entre elles.

Remarque. Ce probléme trouve son application dans la Théorie
des ponts : il sert & déterminer la longueur du cable, ou cordage
d’ancre, d’un pont volant (*), de maniére que le trajet de la ri-
vitre se fasse dans le moindre temps possible. Il faut cependant
observer que cette application suppose que la vitesse du courant est
uniforme , sur toute la' largeur de la riviére ; circonstance qui n’a
pas généralement lieu ; mais le résultat du probléme peut toujours
servir de premidre approximation, que l'on corrige ensuite d’aprés
I’expérience.

- Le pont volant offre encore & résoudre une autre question inté=
ressante dans la pratique : c’est de déterminer la longueur du cable
de manitre que la vitesse du pont volant, dans la position ¢=o0,
soit un maximum.

(*) Un pont volant est un pelit pont , isolé et mohile , ordinairement établi
sur deux bateaux, et attaché A lune des extrémités d’'un cable dont l'autre ex=
trémijté est fixéde p}ar une ancre, soit au bord du fleuve soit entre ses deux rives.
Le choc du courant de leau sur ce pont, faisani ici un effet analogue & celui
de la pesanteur sur le pendule, le fait osciller d'une rive a I'autre autour de I'ancre;
L’application que fait ici M. Frangais de sa théorie suppose que le cours d’eau
est rectiligne et d’'une largeur constante , et que I'ancre est fixée dans son inté-
rieur, a égale distance de ses deux bords, 3a est supposé la largeur du fleuve
st r la longueur du cordage d’ancre.

J. D. 6.
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Reprédsentons par ¢ la vitesse du pont volant dans cette position.
L’équation (3) donne pour la vitesse , dans une position quelconque,

de 00 ve
— = iﬁSm.u(Cos.e—-Cos.n) s ®

qui, en faisant é=o, devient
p= V‘z_g.Sin.u(l—COS.a) . (9)
a
copr e ) . . dy .
En différentiant cette équation ; et faisant 4. =0, on obtient
o

(1—Cos.«)(14-2Cos.6)=0 . (10)

Le premier de ces facteurs égalé ¥ zéro donne =0, pour la va-
leur minimum de ¢ , qui répond & r=%=cc. Le second donne

Cos.u==—12, d’olt w=120° pour la valeur mazimum de ¢; ce qui
résout bien la question abstraite d’un pendule simple , mais ne peut
pas convenir au pont volant , pour lequel « me peut pas excéder
go°. Ainsi, pour cette question , il faut rejeter toutes les valeurs
négatives de Cos.«. D’'aprés cette observation , la seule inspection
de I’équation (9) prouve que ¢ aura sa seule valeur mazimum ad-
missible dans la pratique , lorsqu’on aura Sin.e=1 et cos.«=o,
d’ol wz=go°; ce qui donne, pour la longueur du cable, r=a.

AP

Solution des deux problémes de géoméirie proposes &
la page 356 du V. volume des Annales;
Par M. TEDENAT , correspondant de linstitut, recteur de
lacadémie de Nismes.
[ Vi Vo Wl Vi Yo S ST 3
P ROBLEME 1. Déterminer les trois cdtés dun triangle , en

Jonction des perpendiculaires abaissées sur leurs directions du cenire
du cercle circonscrit ?



130 QUESTIONS

Solution, Soient X, Y, Z les trois angles du triangle ; z, y,
z les cotés respectivement opposés; et enflin, @, &, ¢ les perpens
diculaives abaissces surleurs directions du centre du cercle circonserit.

La droite qui joint le centre & I'une quelconque des extremites
du coté z est I'hypothénuse d'un triangle-rectangle dont les deux
cotés de l’angle droit sont ;z et ¢ , et dans lequel I'angle opposé
a iz est Z; d’ou il suit quon duit avoir

acTang Z=z ;

ou, en quarrant et transformant la tangente en fonction du cosinus
4fer=(4e*+42*,Cos.2Z . (1)

Les pieds des perpendiculaires a , b étant les milieux respectifs
des c6tés x, ¥ , il s’ensuit que la droite qui les joint est paral-
léle & z et égale & Iz; et, comme d'ailleurs I'angle de ces deux
droites @, & est supplément de Z, il s’ensuit qu'on doit avoir

z=4(a*4+-b*+2abCus.Z)
2*—4(a*+5*)=8abCos.Z . (2)
Si, entre les équations (1) et (2), on élimine z*, il viendra

2abCos} ZHa*+b*+c*)Cos*L—c*=o0 ;

ou

ou encore
c*Sec}Z—(a*+b*4¢c*)Sec.Z—2ab=o0 ; (G

équation du troisitme degré, sans second terme, qui est dans le
ca- irréductible; et on aura deux autres équations analogues pour
déterminer X et ¥. X, ¥, Z étant ainsi connus, on menera par
us méme point trois droites égales 3 2, 4, ¢ formant autour de
ce point des angles supplémens de ceux-la ; menant ensuite i ces
trois droites par leurs extrémités des perpendiculaires, termindes 2
1 ur rencontre commune, le triangle demandé se trouvera construit.

Si I'on voulait avoir immédiatement I’équation qui donne le co6té
z, il ne s'agirait que d’éliminer Cos.Z entre les équations (1) et (2),
ce qui donnerait
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ghemf (2032 b rwemr) 20416 (@ -H-5%) (a24-b2=202) 2248 c3 (a2} ) 220 ;
et 'on aurait des équations analogues pour & et y. Le derrier terme
de cette équation étant positif, il s'ensuit que , si le probleme est
possible, il n’admettra que deux solutions au plas.

PROBLEME 1I. Déterminer les trois cbtés d'un triangle , en
Jonction des droites qui joignent le centre du cercle inscrit a ses
sommets ?

Solution. Soient encore ici z, ¥, z les trois c6tés du triangle ;
X, Y, Z les angles respectivement opposés ; et soient @, &, ¢
les droites qui joignent le centre A leurs sommets.

La droite ¢ est I'hypothénuse commune de deux triangles-rec-
tangles , dont un des cotés de l'angle droit est le rayon r du cercle
inserit, et dans lesquels I'angle opposé est :Z ; d’ou il suit qu’on
doit avoir

- r=¢SiniZ . (1)

Les droites @, & forment avec le c6té z un triangle, dans lequel
langle opposé a z est ¢g+:Z, ¢ désignant l'angle droit ; laire de
ce triangle est donc

2 abSin(g4:12)=3abCos:Z ;

mais, comme sa hauteur est r,son aire aura aussi pour expression
irz ; donc
rz=abCos 17 ;

ou, en éliminant 7, au moyen de I’équation (1)

czSin;Z=abCosiZ . ' (2)
D’un autre cété, le méme triangle donne
S =g b 4-2ab5ini4 . 3)

En éliminant z, entre les équations (2) et (3) et transformant
le cosinus en siaus, il vieat
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20bc38in 3t Z4-[c* (a?4-b2)4-a2b°]Sin 2L Z—a2h==0 ,
ou encore

@2}2Cosec. 31 Z —[c2(a>~}-2) 442571 Cosec.; Zm=20bcr==0 ;

équation du troisitme degré, sans second terme qui est dans le cas
irrcductible ; et on aura deux autres équations analogues pour dé-
terminer X et Y. X, ¥, Z étant ainsi connus ; on menera, par
un méme point trois droites, égales 4 a, &, ¢, formant autour de
ce point des angles ¢g4+:X, ¢4<¥, ¢g-+:Z. En joignant leurs extré-
] mités par trois autres droites, le triangle demandé se trouvera construit.

Si lon voulait avoir immédiatement lequation, qui donne le c6té
z, il ne s’agirait que d’¢liminer Sin.;Z du quarré de équation (2),
au moyen de l’équation (3), aprés y avoir transformé le cosinus
en sinus , ce qui donnerait

C2ZG+[025"-2£2(02+5 2)]zé __(az+bn) [2425 3-—(:2(a2+52)]zza2+52(a2-52)2=:o ;

ct Yon aurait des équations analogues pour # ct . On voit encore
ici que le dernier terme de I'équation étant positif, le probleme,
lorsqu’il sera possible, n’admetira que deux solutions au plus.

{“— —— — ]

QUESTIONS PROPOSEES.

Probléme d.Analise.

UNE équation de forme quelconque, entre tant de variables qu’on “
voudra , étant donnde ; assigner & ces variables des valeurs telles
que la plus grande de toutes soit la moindre possible , ou que la
moindre de toutes soit la plus grande possible ?
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ECLIPSES DE SOLEIL. 13

1
I
l
I

ASTRONOMIE.

Memoire sur les éclipses de soleil ;

Par M. le professeur Krame, doyen de la faculté des
sciences de Strasbourg.

(o YUa Y Vg Vi, Vo Vo 1o 9

( Premiére parlie. )

. P ROBLEME. Soient (fig. 1) S le cenire du disque du soleil,
vu de la terre , dont le centre doit conséquemment se irouver sur
la perpendiculaire menée au plan de ce disque par le point S ;
et soit CC’/ le diamétre du méme disque. On suppose que deuz
observateurs, situés en deux points de la surface de la terre,
poient au méme instant le centre du disque Ilunaire sur le disque
solaire , 'un en L et lautre en 1/ ; et on demande la relation
générale entre les diverses quantités que le probléme donne liew
de considérer ?

2. Solution. Les quantitds donndes du probléme sont : les’ demi-
diametres du soleil, de la lune et de la terre; nous nommerons
le premier 4, le second & et le troisitme ¢ ; ensuite les distanees
des centres du soleil et de la lune & celui de la terre; nous les

désignerons par A et B ; cela rend les demi-diameétres apparens des

. , a b }
deux astres respectivement égaux 2 2t F et leurs parallaxes

. . c ¢ . .
horizontales égales 2 — ¢t Toutefois , dans cette analise , nous

ne ferons aucun usage des parallaxes. s
Tom. VI, n.°FV , 1.5F novembre 1815 21
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3. Il faudra fixer les trois axes rectangulaires auxquels nous
assignerons le centre de la terre pour point d’intersection commune,
et auxquels nous rapporterons tant le centre de la lune que les
deux peints de la surface de la terre ot les deux observateurs sont
placés. En désignant par x, y, z les coordonnées de l'un, et par
!,y , 2/ celles de {’autre , ce qui donne z*+4y*~+-2* =z/*4-y/*+-2/*=c*,
nous supposerons 'axe des & dirigé du centre de la terre vers celui
du soleil ; 'axe des y sera mené dans le plan de Décliptique, pa-
rallélement au diameétre €€/ du soleil , c’est~a-dire , vers la partie
orientale du ciel ; l'axe des z, perpendiculaire au plan des deux
autres, sera dirigé vers le péle de Vécliptique.

4. Nous nemmerons P, @, R les coordonndes du centre de la
lune , respectivement paralleles aux z , y, z, et prises dans le
méme sens ; ce qui donne P*~-(Q*~+R*=p>. Comme prés de la
conjonction le quarré B* I'emporte considérablement sur la somme

Q*+AR*, la différence B—P sera presque nulle; et, & plus forte

. . . . *-+-R2
raison , sera-t-il permis de faire P:&—Q_;
2

5. La position du point L sur le disque solaire sera déterminée
par les deux coordonnées SN et NL ; etcelle du point L’ par les
deux coordonnées SN/ ct N/L/; elles seront respectivement paral-
leles aux axes des y et des z. Nous ferons

SN=q¢ , SN'=g¢q’,

NL=r ; NL/=r .

6. Nous avons exposé , dans le tableau suivant, pour chacun des
deux observateurs , les coordonnées des trois points par lesquels
passe le rayon visuel, savoir :

1. Le lieu de l'observateur ;
2. Le centre de la lune ;

3. Le lieu apparent de ce centre sur le disque solaire.
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1.8* Observateur. 2.2¢ Observateur.
Iov v s e o X 9y, 2, x , ¥, 2,
2......05,0, R, B, Q, R,
K 4,9, r; 4,9 ,1.

Nous en déduiroms les quatre proportions

A—z :B—zx =qg—y : Q—y ,

Az : B—2t =1 —z : B—z ,

A—z': B—z/=qg/'—y’: Qu=y’ ,

A—z': B—a/=r'—z' : R—2z/ .
(Ad—=)Q—y)=(B—z)7—r) »
(A—z ) BA—z )=(B—x)r—2z) ,
(Ad—a'XQ—y)=(B—a)g'—y") 5
(A—2z)(RBmz!) =(B—2a')(1'—2') .

7. En éliminant ici les deux coordonnées @, R du centre de la

lune , on en fera deux autves, auxquelles nous donnerons la forme
suivante , pour en faire ressortir la symétrie

(A—=B)y+4-(B—2x)g _ (A—B)y'4-(B—a')g’
A—x - A—x/ ¢

(A—B)z4-(B=—x)r (A==B)z/}(Be—z!)r!
A—2x - A=—a'

Elles font connaitre la relation entre le déplacement de I'observateur
et celui du lieu apparent du centre de la lune , et contiennent
ainsi la solution du probléme.

8. Elles deviennent beaucoup plus simples, si on suppose 1’un
des deux observateurs au centre méme de la terre. Il en résulte
Véclipse par laquelle le calculateur doit commencer dans tous les
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cas , et que nous nommerons éclipse géocentrigue. En placant au

centre de la terre celui des deux observateurs 3 qui se rapportent

les lettres accentuées 2/, y/, z/, de méme que ¢/, 7/, on aura
a’=o0, y/=o0, z/=0; les coordonnées ¢/, 7/ pourront étre immé-
diatement déduites des tables , et regardées comme des quantitds
donndes. Les équations deviendront

A(A—B)yy=(Ad—x)Bg/—Ag(B—x) ;
A(A—B)z=(A—x)Br'—dr(B—zx) .
s. En divisant par (4—2)B, et en faisant, pour abxégcr
A(B—x)
Bld—ay >
on aura
y:z=q'—ng:r'—nr .

Le maxzimum de x n’est qu'un soixantiéme de B, qui n’est lui-
méme qu'un quatre centiéme de A ; la fraction » différe done trés-
peu de L'unité ; ainsi, dans tous les cas, les deux rapports y: z et
g’—q : r/—r sont presque égaux entre eux.

10. Le quarré de la distance du lieu de Dobservateur au centre
de la lunc est égal a (P—a2)*+4~(Q—y)’+(f—z)*, ou a B*—=2Px
—2Qy—2Rz--c*; ce qui rend cette distance presque égale 3 B—a.
Si T'on veut tenir compte de lerreur, trés-peu sensible, que cette
formule laisse subsister , on fera cette distance égale a B—a—o ;
et Uon aura
2Q y42Rz—y2emz2

B—x °

202

11. PROBLEME 11. Le lieu apparent du centre de 1a lune sur

le disque solaire étant 1/, dans le cas de léclipse géocentrigque ;

on demande dans quel endroit de la terre cette éclipse paraitra
centrale , dans le méme instant ?

12. Solution. Lies quantités données sontici ¢/, r/; les inconnues
sont z, y, z; il faut les déterminer de maniére que g=o, r=o.
Les équations du n.° 8 fournissent
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A(A—B)y= (A~ 2)Bg;
A(A—B)z=_A==z)Br! ;

- ¢’est-a-dire ;
By Br!
Y= B T B

aprés quoi on trouvera z, en vertu de z*==c*—y?—z Cettc solution
nous aidera & trouver, sur le glebe , la courbe de l'éclipse centrale.

13. PROBLEME 111. Déterminer , dans la méme supposition ,
Lendroit du globe , o l'on observe , dans le méme instant , le
centre de la lune sur un point donné du disque solaire ?

14. Les quantités données sont ici ¢, r; ¢/, r/; les inconnues
x, y, z, seront fournies par ces mémes équations du n.° 8. En
y supprimant B dans 4—2B et z dans 4—zx et B—2x , on trouve

_ By'—p _ B@—n

=g A=

ce sont lh les premires valeurs approchées des deux inconnues y
et z; elles font connaitre # 2 laide de z*=¢*—y>—2z°. Donc si,
pour abréger, on fait a*=(g’~g)*~(r’—r)* ; ce qui rend a égal &
la distance des deux lieux apparens du centre de la lune sur le

disque solaire , on aura le quarré de la troisidme ordonnée =z, égal
B2
a e — M quantité que , pour abréger , nous désignerons par %2,
et qui, pour exprimer la valeur rigoureuse de 2*, a besoin d’étre
eorrigée encore.
15. A cet effet, on fera x=h—a , et sachant d’avance que o sera
une quantité trés-petite , on s’arrétera , dans les développemens a

sa premitre puissance. [aisant donc, peur abréger
F=AB(g'—q)4(49—Bg")h
GC=AB(r/wr)-(Ar —Br')k

e

1)

en tirouvera
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F2ef-G*—(A—B)2B2a2

2= .
* T F(dg—Bq))4-G (Ar—Br'y4-A>(A—B)h

On peut remarquer qu’une erreur commise dans x influe peu sur
les coordonnées y , z; de sorte qu'aprés avoir déterminé z, et en
avoir déduit y et z, & l'aide des équations du n.° 8 ; on aura une
nouvelle valeur de # , trés-approchée, et beaucoup plus exacte que
la précédente , en faisant x=y/ cr—myr—z2.

16. PROBLEME 1V. On demande léquation de la courbe , tracée
sur la surface du globe, ou I'éclipse parait d'une grandeur donnée;
cest-d-dire , ou le centre de la lune , observé géocentriquement
en L/ parait partout éloigné de celui S du soleil d’une méme quan—
tité, que nous désignerons par £, tellement que £2=q*~+r*?

17. Solution. On aura donc, en vertu des équationsdu n.° 8,

Af(B—x)={(A—2z)Bg/—A(A—B)y }+{(4 —2)Br'— A(A—B)z}.
Combinant cette équation avec celle du globe , savoir : 22~-y*--22=¢?,
on pourra en tirer celles des trois projections de la courbe demandée,
faites sur les trois plans prificipaux, et dont la forme , trés-com-
pliquée , nous annoncera d’abord une courbe A double courbure.

18. Le cas le plus simple serait celui ot les centres de ces trois
astres seraient sur une méme ligne droite ; ce qui ferait du centre
du soleil le lieu géocentrique de celui de la lune. Ayant alors
g'==0, r’=o0, les deux équations du n.° 8 deviendront

(B—a)g=—dy , (B—a)r=—Adz;
d'ou il résultera I’équation
(B—a)fr =(Ad—B)(cma) ,

qui ne renferme plus que la seule inconnue #. Effectivement, dans.
ce cas, la courbe demandée est un petit cercle du globe perpen-
diculaire & la ligne des centres, et dont il reste & déterminer la
distance au centre de la terre , moyennant '’équation qu’on vient
de trouver.

19. Faisant, pour abréger,
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(B2=—c?)
O —————
(4—B)>

f=R,

lIa solution de notre équation du second degré donnera
Bf*4-(4—B)*R
= =y
Pour que la solution soit possible, il faut que J* soit une quantité
positive ; il faut donc qu’on ait
A,

B2z
ou bicn, en supprimant B dans 4 —B et ¢* dans B*—c* ,
- Ac

f<—B-§

conclusions évidentes d’ailleurs.

20. Pour donner une solution, au moins approximative , du pro-
bleme général, supprimons, dans les deux équations du n.° 8,7
dans A—B, et x dans A—x et B—x ; elles deviendront

Bg=Bg'—Ay , Br=Br'—Az;

d’olt 'on tire, en ajoutant les quarrés de part et d’autre,
Befz Bql 2 Br/ )z
() (Z )

équation de la projection de la courbe demandde, faite sur le plan

mené par le centre de la terre, perpendiculairement 2 la ligne des
centres.

21. Cette équation appartient & un cercle ayant pour rayon
Bf . Bg/
R et dont le centre est éloigné de l'axe des z, de — dans le

Br’ . .
sens des y , et de = dans celui des z. La courbe en question

est donc celle qui résulte de l'intersection de la sphére et du cy-
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lindre droit. Tant que l'axe du cylindre passe par le centre de la
sphére , cette intersection est un cercle, ;;erpendiculaire sur I'axe;
c’est le cas que nous avons examiné précédemment. Dans tous les
autres cas,’ ce sera une courbe 3 double courbure.

22, Des trois axes principaux auxquels nous avons rapporté jus-
qu’ici le lieu de l'observateur, celui des x était dirigé vers le centre
du soleil ; celui des y était perpendiculaire au premier , dans le
plan de Décliptique; et celui des z perpendiculaire aux précédens,
était dirigé vers son péle. Pour nous rapprocher des longitudes et
des latitudes géographiques, nous introduirons trois nouveaux axes
rectangulaires , ayant encore leur intersection commune au centre
de la terre , afin d’y rapporter nos trois nouvelles variables que
nous désignerons par les lettres majuscules X, ¥, Z. L’axe des
X sera dirigé vers le point d'¢quinoxe du printemps ; laxe
des ¥ sera dans la colure des solstices et dirigé vers le go.™°
degré de l'équateur; enfin , 'axe des Z sera dirigé vers le poéle
de ce grand cercle.

23. Le triangle sphérique tri-rectangle que j’ai nommé orzfoédre,
est le représentant de tout systtme de trois axes rectangulaires entre
eux. Leur point commun d’intersection est le centre de la sphére,
dont la surface comprend huit orthotdres. Si d’un point I, pris
dans l'espace , on méne au sommet commun une droite que nous
prendrons pour unité, et qui fasse avec eux les angles «, 8, »,
on aura trois triangles-rectangles , dont les bases , Cos.z, Cos.8,
Cos.» , seront les coordonnées du point I, rapporté & nos trois axes
rectangulaires. Ces angles seront remplacés dans l’orthoédre , dont
nous supposons les trois sommets A, B, C, par les trois arcs-de
grands cercles Al, BI, CI, menés du point I aux trois sommets
de lorthotdre ; ainsi les trois letires # , ¥, 2z, employées pour dé-
signer les coordomnées de I, seront équivalentes & Cos.z , Cos.z,
COS.y.

24. En regardant D'orthot¢dre A/B/C/ (fig. 2), comme le repré-
sentant du systtme des trois axes rectangulaires que nous avoms

employés
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employés jusqu’ici , on pourra prendre le c6té A/B/ pour le plan
de I'écliptique, le troisitme sommet C/ pour le péle de ce plan, et le
sommet A’ pour-le lieu apparent du soleil , vu du centre de la terre, qui
estleméme que celui de P'orthoédre. Prolongeant le ¢6té A’B/ jusqu’au
point d’aries qui est ici désigné par A, et menant sur la surface de la
sphére Parc AB , faisantavec AA/B/ un angle égal & Vobliquité de 1’é~
eliptique , le grand cercle dont AB fait partie pourra représenter 1'é-
quateur. Il ne restera donc plus qu’a prendre l'arc AB égal & un
quart de circonférence , et assigner la position du point C, péle de
cet arc, pour avoir, dans le nouvel orthoédre ABC, le représentant
du nouveau systéme de coordonnées que nous avons désigné d’avance
par les letires majuscules X, ¥, Z.

25. Soit s T'oblignité de Iécliptique , et « I'arc AA’/, longitude
du soleil au moment de 'observation. Menons des trois sommets de
I’'un des deux orthoédres aux trois sommets de l'autre des arcs de
grands cercles , qui ne sont pas exprimés dans la figure, mais qu’il
est aisé d’imaginer ; on aura

_AA=a €C05s.BA’=Cos.:Sin.« , Cos.CA’=Sin.:Sin.« ,
AB/=qgo°4-« , Cos.BB’=Cos.:Cos.« , Cos.CB’=Sin:Cos.« ,
AC/'=qgo° ; BC/=g0°4-: ; CC/=: .

26. En vertu du n.° 24, on aura, pour nos deux orthoddres,
x=Cos Al , X=Cos.Al ,
y=Cos.BE , Y=~Cos.BI ,
z2=Cos.C'l , Z=Cos.CI .

Reste donc & passer, avec facilitd, de I'un de nos deux systimes

de coordonnées & l'autre ; ce qui sera 'objet du théoréme suivant :

27. THEOREME. Désignant parp, q,r, les coordonndes dun

point quelconque A d'une surface sphérique , ot parp’, q/, v , celles

d’'un autre point quelconque B de la méme surface ; le cosinus de
Tom. V1. 22
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Parc de grand cercle AB, compris enire ces deux points, sera
Cos.AB =pp’~-qq/~rr’.

28. En combinant ensemble les formules des trois derniers n.°s
on aura pour résultat les six égalités qui suivent , lesquelles rem-
ferment la solution du probléme qui nous occupe,

2 =-}XCos.«4YCos:Sin.«+ZSin.sSin.« )
g ==—XSin.«~4-¥Cos.:Cos.«4ZSin.sCos.« ,
z= =Y Sin. ~+ZCos s 5

et réciproquement
X=xCos.«  —ySin.a ,
Y—‘——-ICOS.581H.¢+yCOS.eCOS.u-—;ZSin.s )
Z = zSin.eSin.x~+ySin.:Cos.a~+zCos.s .

29. L’angle que fait, dans un instant donné, le méridien d’un lieu
avec le colure des équinoxes, est ce qu'on appelle ascension droite
du milieu du ciel, ascension droite du méridien , ou angle horaire
de l'équinoxe; et, comme, dans toute cette analise , 'un de ses deux
cotés sera toujours le colure des équinoxes, nous le nommerons
simplement angle horaire. Au moment du midi vrai, I'angle horaire .
sera donc égal a l'ascension droite du soleil. Et si 'on désigne par

' A Tascension droite du soleil au midi vrai d'un certain jour, et
par A’ ce qu’elle sera au midi vrai du jour suivant, P’angle horaire
aura augmenté, pendant cet intervalle de 360°~+A’—A ; quantité
que, pour abréger , nous désignerons par «. Comme de plus cette
augmentation sera proportionnelle au temps , il s'ensuit qu’en pre-
nant pour unité la. durée entiere d'un jour solaire , Vangle
horaire , au bout du temps 7, considéré comme une fraction quel-
conque du jour sera égal A-tat.

30. Si de plus on ddsigne par D la différence angulaire entre le
méridien dont nous parlons et un autre méridien du globe situé a
son orient ; langle horaire au moment du midi vrai étant A4 pour
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Ie premier des deux, il sera pour le second, dans Ie méme instant,
égal 3 A-+D; et, aprés une fraction de jour exprimée par #, il
sera A-+D--«# , en eonservanta « sa signification w=A4/— 44 360°,
Ainsi , désignant généralement l'angle horaire par £, on aura
F=A+D+¢cl.
- 31. L’autre angle qui sert & déterminer la position du lien de
Vobservateur, par rapport 3 nos trois plans principaux, c’est la la-
titude du lieu : nous la désignerons par a. L’angle A est une quantité
constante pour chaque lieu de la terrc; I'angle x est une quantité
variable qui, pendant sa rotation , varie proportionnellement au temps.
32. La tangente de l’angle horaire est, dans tous les cas, égale a
—;; et, dans la suppesition d'une terre sphériéue, la latitude 2 a
. Z
pour sinus — ; Il en résulte ,

X=¢Cos.»Coswpe ,
Y=cCos.aS1n.. ,
Z=cSin.» .

Moyennant ces formules, on aura , pour chaque instant, les coor=
donndes X, ¥, Z de tout lieu dont en connait la latitude. Les
formules du n.° 28 nous aideront 4 en déduire les coordonnées z,
¥, 2, qui se rapportent immédiatement 3 la phase de Iéclipse ,
et qui pourront servir dans l'application des formules du n.° 8.

83. L’applatissement de la terre , si toutefois on veut y [faire
attention , dans les calculs sur les éclipses , apportera quelques lé-
geres modifications & nos formules. En conservant la lettre ¢ pour
désigner le demi. petit axe BC du globe (fig. 3): et en nommant
@ le grand axe AC, la latitude du point M ne sera plus I'angle
ACM ; ce sera l'angle ARM que fait le grand axe AC avec la
normale MR. En supposant de plus aux méridiens une forme ellip-

tique , on aura
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=2  a4Cos.2a--ctSin2p

M =a=Cos.=A+02$in.=A !
—1 4Cos.2a _—: c4Sin* A R
CcP =—2= —, PM = —
a2Cos.2A4=c2Sin.2A a2Cas.2A=4-c28in.2a

La ligne PM est toujours la méme que lordonnée Z , tandis que
CP est identique avec 1/ X>4-Y>

34. Si, en faisant e=c+4-#, on s’arréte, dans les développemens,
aux premitres puissances de #, on aura

CM = ¢+#Cos.?a ,
CP = ¢Cos.r+4#Cos.r(2—Cos.?») ;
PM =¢Sin.a—a8Sin.aCos.*»

et, en mettant ces deux expressions 3 la plaee de ¢Cos.a et de
¢Sin.a, on pourra encore employer les trois formules du n.° 33,
méme dans la supposition d’une terre sphéroidique.

35. Le calcul de léclipse gdocentrique n’a aucune difficulté. I1
faudra détermincr , pour chaque instant proposé, les coordonnées
SN/=¢/, N'L/=7/ (fig. 1), du lieu géocentrique du centrc de la
lune sur le disque solaire. Ayant déjd désigné par L la longitude
du soleil, soit » la longitude de la lune, et ¢ sa latitude ; on aura

g'=ATang.(1—az) r’=ATang. :

ce sont 14 les valeurs absolues de ces coordonnées. Pour avoir leurs
yaleurs angulaires , exprimées en minutes et secondes du cercle dont
le rayon est wn , il faudra diviser par 4 ; on aura ainsi

g/ =t r'=e ,

36. Dans lintervalle d’'un midi & Vautre, la longitude du soleil
eroit proportionnellement au temps. Dans la connaissanee des temps ,
-année 1816, je trouve. cette longitude «

Pour le 18 novembre , & midi. . . . . . 180°4=56°4/. 2/,

\

Pour le 19 novembre , & midi. . . . . . 180°4-59°.4/.487 ,
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Comme les deux différences du 18 au 19 et du 19 au 20 sont
rigoureusement égales , la simple progression arithmétique suffit;
ainsi , la longitude du soleil,,-au bout du temps 7, comptée depuis
le midi vraidu 18, en prenant pour unité la durée d’'un jour solaire,
sera «=180°4-56°.4".2"/4-3640"¢.
37. 1l n’en est pas de méme de la lune , dont les inégalités ,
pendant ce méme intervalle de temps, sont déja trés-sensibles. La
longitude de cet astre est égale & sept signes, plus

Le 18 & midi. . . . ... 13% 8. g”= 47289” , °
Le 16 4 minuit. . . ... 20.32.49 = 73969 ,
Le 19 3 midi. . . .. .. 27 .54 .40 =100485 ,
Le 19 & minuit. . . . .. 35.a3. 6 =126786 .

[0

Le premier terme de la colonne est 47289 ; sa premidre différence
est +260680” ; sa seconde différence est —164/ ; et sa troisiéme
différence est —517/. Ces dcux dernieres sont trés-sensibles encore,
Les quatre valeurs sont comprises dans la formule

=747 28 455490 1—226/12m 688 |

il faudra s’en servir pour frouver, avee précision , les valeurs des
longitudes intermédiaires.
38. On trouve de méme la latitude de la lune

Le 18 & midi. . . . ..+ 2% 4.367=n476/ ,
Le 18 4 minuit. . . . .8 1 .25.54 =5154 ,
midi. . ..... .45.58 =2758 ,
Le 19 & minuit. . . ... 5.34 = 334 .

A

Le 19

Le premier terme de la colonne est 7476/ ; sa premiére différence
est —2322”; la seconde est —74/ ; la troisitme est =46/, Elles

nous font connaitre les valeurs exactes des latitudes intermédiaires,
au moyen de la formule
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"= 7476”—-4538”t——244//12_64//;5'

39. Pour nous débarrasser de I’emploi de ces polynémes, il fau-
dra resserrer les limites du temps. L’éclipse est eomprise , pour Vob-
servateur de Berlin , entre huit heures du matin et midi, temps
vrai de Paris. On trouve , A I'aide de nos formules , qu’a huit heures
du matin, la longitude de Ia lune sera 180°4-51°.277.48/, et sa
latitude 5¢/.22”7. A midi vrai du méme jour , sa longitude sera
180°457°.54/.45" , et sa latitude 13/.24”. Pendant cet intervalle de
quatre heures, sa longitude aura donc changé de 2°.26/.577, et sa
Iatitude de 13%.24. A ces mémes huit heures du matin, la longitude
du soleil aura été 18a°-456°.547.35"/, elle aura done changé , jusqu’a
midi vrai du méme jour, de 10%.7”; ce qui nous permettra d’ex—
primer nos trois quantités angulaires par de simples binémes, de la
forme A-+Bt. On aura donc alors , en prenant Pintervalle de quatre
heures pour l'unité du temps # , lequel sera compté depuis huit
heures du matin , temps vrai de Paris ,

«=180°+456°.54".35/4~ 607/t ,
1=180°455%.27/.48/4-8817/¢ ,
= 59%.22/— 804"t ;

-

done
g/ =n==w=e=5207"4-8210"¢ ,
r'= 0 =—+3562"m= 804"t .
4oe Il nous sera donc permis de supposer , en général , g=M4-mz ;
r=N-}nt ; les facteurs numériques M, N, m , n, étant immé-
diatement donnés par les tables. Dans le cas de Iéclipse de 1816,
en aura dong
=—>Db207/ ; m=-48210”7 ,

N =-4-3562" , n=-= 804" .
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Le temps 7, exprimé en fonction de lintervalle de quatre heures,
sera compté depuis huit heures du matin , temps vrai de Paris.

41. Le moment de la conjonction estindiqué par ¢g=o0, d’od il résulte

M .
#=— — ., Dans I'éclipse géocentrique de 1816 , on aura #=0, 634226 ;
m

la conjonction arrivera donc & 10".327.13/ du matin ; la latitude de
Nm—=Mn ..
lalune sera alors ————;ce qui fait, dansle cas actuel , 3052/ ou 5/.50”
m
42. La plus courte distance apparente des centres, vue de celui
de la terre, indiquera le milieu de I'éclipse géocentrique ; clle répond
Mm--Nn Mn—Nn
4 == == ————; elle sera égale & ——=—=. Dans l’éclipse de 1816,
mz+nz Vm2+n:
on aura 7==0,670286 ; ce qui répond a 1040’52/ ; et elle sera
égale & 3037/=>50".37".
43. Le jour de Déclipse , les deux demi-diametres apparens du
soleil et de la lune seront respectivement 73% et 787/ ; ce qui

donne pour leur somme 1¢60”. Comme cette somme est beaucoup

X

plus petite que la moindre distance géocentrique des deux centres,
on voit qu'il n’existera pas d’éclipse géocentrique ; le centre de la
terre ne pouvant entrer ni dans I'ombre de la lune, ni méme dans
sa pénombre. Cela n’empéchera pas de déterminer , pour chaque
instant, les deux coordonnées ¢/, 7/; mais, quelque valeur qu’on suppose
a 7z, le lieu apparent du centre de la lune sera toujours beaucoup
au-deld du disque solaire : I'éclipse, en effet, ne sera visible que
pour une partic de 'hémisphére boréal du globe.

44. On trouve , dans la connaissance des temps, et en employant
une interpolation convenable, que le 19 novembre , & 10 heures
du matin, temps vrai de Paris , le demi-diametre apparent du soleil
est de 97374 , et celui de la lune g87”. En supposant le rayon
de la terre égal & l'unité, celui du seleil sera 111,48, et celui de
la lune 0,273 ( LALANDE , abrégé d’'astronomie ). ™Divisant les
premiers nombres par les derniers, on aura les parallaxes horizontales
au moment du milieu de éclipse géocentrique , pour lequel il faut
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prendre ici celui de la plus petite distance apparente des centres ,
elle sera 87,7345 pour le soleil et 3617/ pour la lune. Passant de
13 aux distances réelles, on aura

La premitre A= 23615 ; Log.4=4,3731879 ;
La seconde B=57,0765; Log.B=1,7560767 .

45. Les ascensions droites du soleil , au midi vrai du 18 et do
19 novembre , seront, d’aprésles tables,

Au 18 .....d=180°453°44/.28" ,
Au 19 . .c. . A'=180454 .47. 2 .

La différence est 1°.2.347, ou 3754//. On aura donc «=360%4
3754, ce qui rend 'angle horaire g==233°.44/.28//--(360°4-3754/")¢;
le temps étant compté depuis le midi vrai du 18 novembre, et
exprimé en fraction d’'un jour solaire. Pour établir de la conformité
entre nos formules, il vaudra mieux prendre lintervalle de quatre
heures pour unité de temps, et compter depuis huit heures du matin.
On aura alors x=174°36/.36"4-216626"¢. Pour tout autre obser-
vateur , placé a l'orient de Paris, il faudra ajouter & cette formule
la différence angulaire des méridiens, que nous avons désignée par
D. Pour Berlin, on aura D=11°2/, faisant en temps 44/.8".

46. Pour donner une application de nos formules, poursuivons
Véclipse du 19 novembre d’heure en heure, depuis huit heures du matin
jusqua midi, en supposant l'observateur placé i Berlin, quia pour

“hauteur du péle . a=52°.31%45/. La lettre £ se rapportera toujours
au temps vrai de Paris. Il faudra commencer par ¢/, 7/, coordonnées.
du centre de la lune , observé du centre de la terre. Elles formeront
deux progressions arithmétiques , ayant pour leurs premiers termes,

Celle de ¢/ . . . . . —5207/ .,
Celle de r/ e o & o o +3562// ;—

¢t pour leurs différences,
celle
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« =+20357

Ce”e de r}'.o.

. — 2017,

Les longitudes du soleil et les angles horaires formeront aussi deux
rogressions arithmétiques, ayant pour leurs premiers termes
ques, ay P )

..... 236.°54/.35/"
. 185.938/.36/ ;

Celle de la longitude «
Celle de 'angle horaire p. .
et pour différences
2,327

15.°2/.36 .

Celle de la longitude « . . . .
Celle de I’'angle heraire # . . .

Voici la table;

Temps. | ¢/ r v=180"+ | w=189°+
8k —5207/| 43562/ | 560.547.35" 50,3836/
9 |—3154 | 43361 |56 57.7 |20 4112
10. —1102 |-3160 | 56 .59 .39 35 .43 .48
1. -+ 950 |~42959 | 57 . 2 .11 56 .46 .24
I2. 43003 |~+2758 | 87 . 4 .43 65 .49 . o

47. La latitude connue de Berlin , et les angles horaires qu’on
vient de déterminer, conduisent aux coordonnées X, ¥, Z , moyennant
les formules du n.° 32; ensuite de quoi celles du n.° 28 feront
connaitre , sans difficulté , les coordonnées z , ¥, z, dont la valeur
numérique est changée a chaque instant , en vertu de la rotation

Tom. V1 23
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du globe , ainsi que des mouvemens propres du soleil et de la lune.
En voici la table :

Temps. x y z

8k 0,1117452 | ==~0,6497894 | 0,7580235
9. 0,2107286 | —0,5418849 | 0,8136055
10. 6,2772901 — 0,4087702 | 0,8694922 |
11, 0,3068908 | —0,2595157 | 0,9156797 ||
12. 0,2075057 | — 051042659 | 0,9490080

= — —

E———

48. Les coordonnées &, ¥, z, meneront immédiatement 3 celles
que nous avons désignées par ¢, r , et qui détermineront le lieu

apparent du centre de la lune sur le disque du soleil, moyennant
les formules du n,* §, savoir :

Ag(B—2)=(A—2)By'—A(4—B)y ,
Ar(B—a)=(A—z)Br! — A(A==B)z .
Comme la plus grande valeur de z de la table n’est ensore qu’un
quatre-vingt milli¢me de A, nous pouvons supprimer & dans 4—z ;
ce qui réduit nos formules a

(B—=)g=By'—(A—B)y ,

(B~z)r=Br'—(A4—DB)z .
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Ces formules font connaitre les valeurs absolues de ¢, r. Pour les
réduire en secondes, il faudra diviser 4—B par ATang.1”; il en
résultera le quotient 205767 ; et , en désignant ce quotient par
%, on aura

(B—a)g=Bg'—ny ,
(B—a)r=DB1'—nz .

Ces formules nous feront connaitre les grandeurs apparentes des
coordonnées ¢, r, vues de l'observatoire de Berlin et exprimées en
secondes. Nous avons ajouté, dans la troisitme colonne de la table
ei-jointe , la distance apparente du centre du soleil 4 celui de la

lune, c’est-a-dire, /7472

ﬁ'
Temps. q r V g2

8.5 —2868” | 48507 | 29917
9 —1204 | 427 1278 H
10. -+ 375 | — =23 376 *
1. | 41897 | —347 1928
12. +3396 | —670 3461 JL
49. Pour rendre cette table plus compléte , en la construisant

de quart d’heure en quart d’heure , il faudra employer linterpo-
lation ; on aura
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Temps. q r Distances des centres.
8+ o | —2868” 8507/ 2991”/
8. 15 | —2443 +743 2565

30 —2023 ~+637 .2 121
8. 45 —1611 4532 1701
9. o© —1204 427 1278
9. 15 — 802 +323 876
9- 3o — 405 ~}222 461
9. 45 —_ 13 121 122
10. o© -+ 375 — 23 376
10. 15 + 759 —_ 73 756
10. 3o 41141 ~—167 1153 .
10. 45 1519 ~258 1541
11. o | 41897 —347 1928
1 15 | 42272 — 432 2313
rr. 3o }-2646 —515 2696
1. 4% 3021 — 594 3079
12, o +3396 —670 3461
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La méthode d’interpolation que nous avons employéde , pour cons<
truire cette table, sera I'objet du probléme qui suit :

50. PROBLEME 1V. Soit y une fonction de x, telle que
Pour z=0 , 1, 2,3 ,4, cierenn 5
On aity=a,b, c,d,e, wuwu.;

on demande de comprendre toutes ces valeurs particuliéres dans une
seule formule, telle que y=A-4-Bax~+Cx*+-Dx*+-...., et de faire

connaitre la loi générale des coefficiens, A, B, C, D,...?

41. Solution. Désignons par Aa, 240%, 6A%¢, 240% ..., les
premiére , seconde, troisiéme , quatriéme , ... différences du premier
terme de la colonne ; tellement que

Aa=b—ea,

2A*a=c—2b~4a ;
6A%0=d—3ct3b—a ;
24A%e= e—4d+6c— 45+a >

.
® 9 ° e @ 0 5 & o 4 0 0 o s 0 0y

on aura alors

A=a

B= AvewrlA?04-20%0w 6A F240%00muit )
C= Ag—3 A3 a411A%—=50A% 4.0 ;
D= Adg— A 3505w
E= Atge—10A%2duie
F= ' AlGe—.ivie

52. Les coefficiens numériques de ces suites sont les mémes que
ceux des facultés des divers degrés. La faculté de 7 & exposant cing,
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qui est le développement du produit z(z-1)(z-42)(z<+3)(z-44)
oa 2*+ 10244352502 +24, a pour ses coefficiens 1, 10, 33, S0,
24 ; et tels sont aussi les nombres de la colonne verticale des A®a. La
série est d’'un grand usage, sur-tout dans les cas ou les différences
Aa, A*a, A’a, Ata, ... vont rapidement en décroissant ; ce qui
rend la suite A+Bz~+-Cz*+-.... trés-convergente ; mais le défaut
méme de cette circonstance n’dte rien 3 sa généralité.

53. L’application de ces formules 4 la table du n.° 48 donne

12g=—344164-20572f= 645+ 384 34,
12r=-+10800— 512424 1324 36— *
6y s ¥r=-+17946— 32514~—=~13815 4781782 ~10207* .

54. Une interpolation analogue , faite dans la table du n.° 4g;
nous apprendra que la moindre distance des centres, qui indique le
milieu de V'éclipse, aura lien & g%.46%.44/, temps vrai de Paris ;
ce qui équivaut a 10%.30/.52/, temps vrai de Berlin. Une déter-
mination générale et plus rigoureuse , sera l'objet du probleme
suivant,

55. PROBLEME V. On demande la relation générale qui existe,
au moment du milieu de [éclipse , ou de la plus grande phase ,
entre le temps et la position géographique du lieu de Pobservateur ?

56. Solution. L’épaisseur de la partie éclipsée est généralement
égale 4 la somme des deux demi-diamétres du soleil et de la lune,
moins la distance de leurs centres ; le moment de la plus grande
phase est donc celui de la moindre distance des centres. Le quarré
de cette distance est ¢*-}-r*; on aura donc , pour le cas du mi-
nimum, léquation gdg-frdr=o. Or, nous ayons n.° & les deux
équatiens qui suivent :

Ag(B—z)=(A—z)Bg'—A(4~B)y ;
Ar(B—z)=(A=sez)Br'—A(4—B)z .

Nous avons de plus
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'=M-4mt ; dg/=mdz ;
7 2 d’ou 2 ¢

r'= N+nt ; dr/=ndz .

Les coordonnées géocentriques ¢/, 7/ sont fonctions du temps seul ;

mais les coordonnées #, ¥, z, sont fonctions du temps et de la
position géographique du lieu de l'observateur , c’est-a-dire, de sa
longitude et de sa latitude. Elles doivent donc, toutes les trois, étre
considérées comme variables.

57. En différenciant, sous ce point de vue, les deux équations
du n.° 8, et y introduisant mdz et ndz, en place de dg’/ et dr/,
il vient

A(B—z)dg=(Ag—Bg’)dz—~A(A—B)dy +(4—x)Bmds ,
A(B—z)dr=(Ar—Br/)dz—A(A-~B)dz4{~(A—z)Bn d¢ .
Mais , les équations du probléme donnant
(B—a)(Ag—By')=(A~B)(By'—Ady) ,
(B—x)(Ar—Br')={A—B)(Br'—A4z) ,
¢hangent les dernitres dans les suivantes
A(Bw=z)*dg=(A—B)(Bg/—~Ay)dz
—A(A~—B) (B—z)dy
+(A—z)B—2Bmdz ;
A(B—x)*dr ==(4—B)(Br'—Az)dx
—A(A— B) (B=z)dz
A A—x)(B—x)Bndt .

58. 11 ne reste plus qu'd prendre la somme des produits respectifs
de ces deux équations par ¢ et r, pour former la fonction gdg4rdr
qui, égalée & zéro, doit donner la plus courte distance des centres.
En posant, pour abréger,
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(Bg'—Ay)g(Br'—Az)r=P ,
il en résultera ’équation
(A=B) Pdx=A(A—B)(B—x) (¢dy~+rdz) = (A=—x) (B~—x)B(mg-nr)dt .
59. L’équation de la spheére #*+4-y*~4-z*=o0, donne, en différen~

ciant zdz—+ydy--zdz=o0. On pourra donc éliminer la différentielle
dz de I'équation précédente; il viendra ainsi
B( A=) (Bm=x) (mg=f-nr)xdt=(A~=B){Py~}A(B==x)qx}dy
(A =B){Pz4-A(B=—x)rx}dz .

6o. En conséquence, si I'on suppose que le moment d’une plus
grande phase est donnée d’avance , ce qui rend dfz=o, et quon
demande l’endroit de la terre ou Dlobservateur doit se placer , pour
voir cette moindre distance apparente des centres sous un angle donné ,
il faudra égaler séparément 3 zéro les deux cocfficiens de dy et dz.
Il en résultera les deux équations qui suivent :

o=Py+4A(B—z)gx , o=Pz+A(B—z)rz .
61. Ces équations donnent immédiatement % = -Z— ; de sorte qu’on

peut faire y=#kg , z=kr. Les équations du n.° 8 deviendront alors

(A==x)Bg'= A(A—B)kg4-A(B=2x)q ,
(A—x)Br'=A(A—B)kr-}-A(B=x)r ,

de sorte qu'en faisant, pour abréger

nA(A—B)4A(B—z)=F
on aura

(A—z)Bg'=Fg ,
(A—2)Br'= Fr ;
ainsi donc, au moment de la plus grande phase , quelle que soit

d’ailleurs sa grandeur absolue ; on a toujours —=—= L. dou

“résulte le théoréme qui suit:
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61. THEOREME. Les licux apparens du centre de la lune sur

le disque solaire , vus de djfférens points du globe , au méme moment

d'une plus grande phase , sont silués sur une ligne droite | qui
passe par le centre du disque.

b

-~

GEOMETRIE ANALITIQUE.

Construction géométrique des equations du deuxiéme
degré a deux et a trois variables ;

Par M. BErarp , principal et professeur de methématiques
du collége de Briancon , membre de plusieurs sociétés

savantes.

[a Yia Via Vi Sl Vo Vo Vig Vo V]

LE sujet dont je me propose ici d’entretenir le lecteur a déja été
tant de fois rebattu, qu’il n’est plus, pour ainsi dire, permis d’y
revenir de nouveau, sans bien préciser d’abord ce qu'on se propose
d’ajouter aux théories déja connues.

On n’avait encore , pour la recherche des grandeur et direction
des diametres principaux, dans les lignes et surfaces du second ordre ,
que des méthodes indirectes et compliquées, lorsqu’en 1810 je pu-
bliai, dans mes Opuscules, Véquation dont les racines sont les quarrés
des demi-diamétres principaux des lignes du second ordre , rapportées
a des axes rectangulaires; équation que j’y déduisais de la méthode
de maximis et minimis.

M. Gergonne , ignorant sans doute ce que j'avais fait sur ce
sujet, y revint peu aprés, par des procédés analogues (_ Annales,
tom. IT, pag. 335)

Tome V1. 24
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Auparavant ( Annales , tom. 11, pag. 33), M. Bret avait donné,
par la transformation des coordonnées , appliquée d’'une maniere in-
génieuse qui lui est propre, I’équation qui conduit a la détermi-
nation des diamé&tres principaux , dans les surfaces du second ordre,
rapportées & des axes rectangulaires.

En octobre 1813 ( Annales, tom. III, pag. 105), je donnai,
pour la premiére fois , I'équation aux quarrés des demi-diamétres
principaux des lignes et surfaces du second ordre, rapportée i des
axes obliques quelconques. Cette équation remarquable , ainsi que
les théorémes que jen ai déduits , ont été reproduits par M. Binet
(Journal de Uécole polytechnique , XV1.° cahier, pag. 321), par
M. Hachette ( Traité des surfaces du second degré , Paris 1813),
et par M. Garnier ( Géométrie analitique, pag. 372 ).

M. Bret ( Annales , tom. IV , pag. g3 ) , étendit ensuite ses
méthodes au cas général des axes obliques.

Je rassemblai tout ce que j’avais fait sur ce sujet dans un mémoire
que je publiai en 1814 ( voyez I’annonce , Annales, février 1814 ),
et dans lequel je m'occupai également des lignes et surfaces du
second ordre dépourvues de centre, dont il n’avait pas encore été
traité jusqu’alors.

M. Gergonne ( Annales, tom. V, pag. 61 ), a donné une mé-
thode trés-simple et trés-remarquable , pour la discussion géométrigue
des équations du second degré & deux et i trois variables,dans ’hypo-
thése des axes obliques ; mais on peut raisonnablement regretter que
I'auteur n’ait point été aussi heureux dans la recherche des longueurs
des demi-diamétres principaux.

Enfin , M. Bret ( Annales , tom. V, pag. 357 ), a donné une
méthode nouvelle, assez britve, et dégagée de toute application du
calcul différentiel , pour parvenir , dans les lignes et surfaces qui
ont un centre , et, quelle que soit la direction des axes, & I’équation
dont les racines sont les quarrés des demi-diameétres principaux.

Il est certes bien loin de ma pensée de revenir ici de nouveau
sur le mode de discussion employé par M. Gergonne , et qui parait
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laisser bien peu de choses & désirer ; mon dessein est seulement,
en admettant comme déja connues toutes les vérités que ce mode
de discussion, ou tout autre équivalent, peut faire découvrir, de
montrer comment on peut facilement construire la ligne ou la sur-
face dont I'équation est donnéde, du moins lorsque cette ligne ou
cette surface a un centre; car je ne dois pas dissimuler que, pour
le cas ou elle en est dépourvue , je n’ai encore rien trouvé d'assez
simple, d'assez élégant et d’assez symétrique pour oser ici en occu-
per le lecteur. On trouvera au surplus, dans le mémoire rappelé plus
haut, ce que j’ai pu faire de micux a cet égard.

§ L

Construction des lignes du second ordre.

Lorsqu’une ligne ou portion de ligne du second ordre est tracée
sur un plan, la méthode la plus simple que l'on puisse employer
pour en déterminer le centre est la suivante: on y trace, sous une
direction quelconque , deux ou un plus grand nombre de cordes
paralleles, dont les milieux déterminent la direction d’'un certain
diamétre ; on répéte la méme opération pour d’autres cordes pa-
ralléles, d’une direction différente de celle des premidres; eton
obtient ainsi un second diamétre. Sices deux diamétres se coupent,
la courbe a un centre, lequel n’est autre que leur intersection;
s’ils sont paralleles, tous les autres diamétres que lon pourrait
construire leur seraient également paralléles, etla courbe est dépourvue
de centre, ou, en d'autres termes, elle a son centre situé & une
distance infinie ; si enfin ces deux diamétres se confondent, tout
autre diametre se confondrait avec eux, et la courbe a une infinité
de centres, situés sur une méme ligne droite.

Imitons ce procédé par l’analise. Soit

Az*+By*+-2Cxy~-24'z4-2B'y-4D=0 , (1)
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Iéquation de la courbe dont il s’agit ; angle des coordonnées

étant supposé =y. '
Soit #=a 1’équation d'une corde quelconque paralléle 3 laxe

des ¥ ; en combinant cette équation avec la propesée, celle-ci
deviendra

Ca--B/
y==2. 5 ¥+

Aa?42 04D
B 0.

les deux valeurs de y déduites de cette équation seront les ordonnées
des extrémités de la corde dont il sagit. Mais le coeflicient du
second terme d'une équation du second degré , pris avec un signe

contraire, étant la somme de ses racines, il en résulte que, pour
le milieu de cette corde , on aura

Ca+4-B'
B 5

y:—-

en changeant donc @ en z, dans cette derniére équation, I'équation
résultante

By+-Cx+B'=o

sera celle du lieu géométrique des milieux de toutes les cordes
paralleles & l'axe des y; c’est-2-dire, I'équation du diametre qui
coupe toutes ces cordes en dcux parties égales.

On peut remarquer que cette équation n’est autre chose que la’
dérivée de la proposde {1), prise par rapport a y seulement ; et en
conclure que la dérivée de la méme équation, prise par rapport a
« seulement, sera I'équation du diametre coupant en deux parties
égales les cordes paralléles & Taxe des . ‘

11 suit de 1a que les équations des diametres coupanten deux parties
égales les cordes paralleles aux deux axes sont

Az4-Cy+A'=o ,
By—+-Cx~4-B'=o0 .
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En th¥se générale ces deux diamétres se couperont: ils seront pa-
ralleles si I'on a

C(*—AB=o0 dod C=y 7B ;
enfin ils se confondront, si I'on a en outre,

CB/'=BA’ ou CA'=ADB
d’od
Al B
A=C -1§7' 9 B=C 7 .
Dans le premier cas, la courbe aura un centre; dans le second,
elle en sera dépourvue, enfin dans le troisiéme , elle en aura une
infinité , tous situés sur une droite dont 'équation sera

A'z-Bly-- -‘f(;f =o.

occupons-nous uniquement du premier de ces trois cas.

Nous venons d’observer que, lorsqu’une ligne da second ordre
a un centre, ce centre est déterminé par lintersection de deux
quelconques de ses diamétres. Si, de ce méme centre et d’un rayon
quelconque , on décrit un cercle, ce cercle coupefa, en général ,
la courbe en quatre points, lesquels seront les extrémités de deux
diamétres égaux, symétriquement situés par rapport aux dia-
métres principaux ; de sorte que la droite qui divisera en deux parties
égales l'angle de ces deux diamétres, indiquera par sa direction
celle de l'un des diamétres principaux. Si donc on prend le rayon
du cercle de telle manitre que les deux diamétres se {confondent,
I’'un des diamétres principaux se confondra aussi avec eux, et le
rayon du cercle sera la moitié de ce diamétre.

Imitons analitiquement ce procédé. D’abord la combinaison des
équations (2) donne, pour les équations du centre '

BA—CB AB—C A
‘ 3

r = -—————-‘Cz—AB ’ y‘: ———-_-C'*—AB .
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En y transportant l'origine, et posant, pour abréger

ABD—AB/*=B_A"—=DC*42A'B'C
C:—AB =E, 4)

I'équation (1) devient
Az*4-By*+2Czy=E . (5)

L’équation du cercle ayant son centre & la nouvelle origine, et
son rayon égal a r est

z*y*4-22yCosiy=r* . (6)

Soit donc y=mx l'équation du diamdtre passant par Pune des
intersections des deux courbes, il viendra, e¢n substituant dans les
équations (5) et (6),

(A-+Bm* +2Cm) x*=E ,

)

(1m2*~42mCosy)z*=r* ;
d’olt on conclura, par l'élimination de 22,
(Br*—E)Yn*4-2(Cr*—ECos.y)m—-+{Ar*—E)=o0 . (8)

Telle est donc I'dquation qui donnera les directions des deux dia-
metres qui passent par les intersections de la courbe avec le cercle
dont le centre coincide avec le sien, et dont le rayon est r.

Si nous supposons ce rayon 7 indéterminé , nous pourrons profiter
de son indétermination pour faire coincider les deux diamétres,
lesquels auront alors pour direction commune celle de l'un des.
diamétres principaux; et la valeur qui en résultera pour r sera
la moitié de la longueur de ce diamétre.

Il faut pour cela que l'équation (8) ait ses deux racines égales;
c’est-a-dire , qu’il faut que son premier membre soit un quarré, ou
du moins puisse le devenir, 4 'aide d’un multiplicateur convenable,.
indépendant de m. En la multipliant par Br’e=E, elle devient

(Br*~—E)*m*~-2(Br*>—E)(Cr*~ECos.y)m+(Br*—E)(Ar*—E)=o .
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Or, sous cette forme, on voit qu'elle sera un} quarré si 'on a
(Cr*—ECos.y)* =(Br*~E)(Ar*—E) ,
c’est-a-dire ,
(C*~=dB)r*+4-E(A+B—2CCos.y)r*—E*Sin.*y=o0 ; (9)
et qu’alors la racine de ce quarré sera
(Br*—E)m—~+(Cr*—ECos.y)=o0 . (10)

La premiére de ces deux équations fera connaitre les deux valeurs
de r*, et on en conclura, au moyen de la secomde, les valeurs
correspondantes de . Il est difficile de penser qu’aucune autre voie
puisse conduire aussi bri¢vement 3 la détermination des grandeurs et
directions des demi-diameétres conjugués.

§ 1L
Construction des surfaces du second ordre.

Lorsqu'une surface ou portion de surface du second- ordre est
donnée dans ’espace, la méthode la plus simple que l'on puisse
employer pour en déterminer le centre est la suivante : on lui méne,
sous une direction quelconque, trois ou un plus grand nombre de
cordes paralltles, non comprises dans un méme plan, dont les
milieux déterminent la position d’'un certain plan diamétral; on
répete la méme opération pour deux autres systtmes de cordes
paralleles, d’une direction différente de celle des premiéres; on
obtient ainsi deux autres plans diamétraux. Si les trois plans se
coupent en un point, la surface a un centre, lequel n’est autre
que leur intersection; s’ils se coupent tous trois , suivant une méme
droite, la surface a une infinité de centres situés sur cette droite;
s’ils se confondent, elle a une infinité de centres situés sur 'un deux ;
enfin s'ils sont paralleles, ou si seulement leurs intersections deux
a dcux sont paralléles, la surface est dépourvue de centre ou,en
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d’autres termes, elle a son centre situé A une distance infinie.
Imitons ce procédé, par l'analise; soit

Ax>*4-By>~4-Cz2~p2A4'yz4-2B'za-42Clxy 42 Al x+-2B"y42C'4D=0 , (1)

Péquation de la surface dont il s’agit, les angles des coordonnées
étant « , 8, v.
Soient x=a , y=> les équations d’'une corde quelconque, paral-

léle 2 I'axe des z; en combinant ces équations avec la proposée ,
celle-ci deviendra.

N A'b4-Bla4-C" + Aa2<4-Bb2>4-2.Clab4-2.A" a4-2B/b-D
z =

a
z*4- C C 0.

Les deux valeurs de z, déduites de cette équation, seront les coor-
données, paralléles anx z, des d~ux extrémités de la corde dont
il s’agit. Mais le coeflicient du sccond terme d'une équation du second
degré, pris avec un signe contraire, étant la somme de ses racines,
il en résulte que, pour le milieu de cette corde , on doit avoir

A’b4-Bla4-Crt
T ;

Z=—

en changeant donc 2 en x et & en y , dans cette dernitre , 14~
quation résultante

Cot-Aly+-Biz-Cr=0

sera celle du lieu géométrique des milieux de toutes les cordes
paralleles & I'axe des z, c'est-a-dire , I'équation du plan diametral
qui coupe toutes ces cordes en deux parties égales.

On peut remarquer que cette équation n’est autre chose que la
dérivée de la proposée (1), prise par rapport i z sculement; et en
conelure que les dérivédes de la méme équation ,- prises successivement
par rapport 2 x et y seront les équations des plans diamétraux
coupant en deux parties égales les cordes respectivement paralléles
aux axes des x et des y-

Il
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1l suit de 1& que les équations des plans diamétraux coupant en
deux parties €gales les eordes paralltles aux trois axes sont

Ax=4-C'y~+-B'zA''—=0 ,
By+A'z4-Cla~+-B"'=0 , } (2)
Cz4-B/a4Ay-++C/ =0 ,

En thdse générale ees trois plans se couperont en un point: Ils
se couperont suivant une méme droite , lieu des centres, si l'on a;

% la fois,
A (A —BIC)) 4B (Br—C/AN-C (C—A/B))=0 ,
AV AP B OBV B e O Ay (€ — A/ BY) =0
ils se confondront en un seul, lieu des centres , si I'on a, 2 la fois;
Ad'—B/Cl=o , _
BB—Cid'=0 , A'AV=BB/=CC" ;

CCl—A'B'=o0 ,

enfin , ils n’auront aucun point commun , et conséquemment la

surface sera dépourvue de centre, si I'on a

ABC—A AP — BB CCl a A/ BIC =0

Occupons-nous uniquement du cas o les trois plans se coupent
en un point.

Nous venons de voir que, lorsqu’une surface du second ordre a
un centre, ce centre est déterminé par liamtersection des trois quel-
conques de ses plans diamétraux. Si de ce méme centre, et d’un
rayon quelconque, on décrit-une spheére, cette sphére coupera en

Tom. V1. 25
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général la surface suivant une courbe & double courbure ,aux dif-
férens points de laquelle menant des rayons, ces rayons seront les
élémens rectilignes d’une certaine surface conique ayant méme centre
que la sphére. Mais , si I'on prend le rayon de la sphére de telle
maniére que tous ces élémens se confondent en une seule droite,
cette droite indiquera, par sa direction celle de 1'un des diametres

principaux , et le rayon qui remplira cette condition sera la moitié
de la longueur de ce diaméetre.

Imitons analitiquement ce procédé. D’abord, en posant pour abréger
A*—~BC=a , AA'—B'C'=a’ ,
Bre—CA=b , BB'—C'A'=¥,
C(*~AB=c¢ , CC'—A'B'=¢ ;
ABC—AA"*—BB*—CC’*4-2A'B/C'=4d ;
il viendra (2), pour les coordonnédes du centre,

a A''-c'BI4-b! Cl*
T= ————7——-——-—— >

b B/ a!Cll e’ Al
- d ’ (3)

cCI-4-b' A'-a' Bt
—_—— _._—&__—_ °

En y transportant P'origine, et faisant encore pour abréger
8 A" BB cC/ 20/ B C/4-2b'C/ AV =20 A/'BY = —dE |, (4)
I'équation (1) deviendra simplement

Az*+-By*+-Cz2 A2 A'yz+2B/ 204202y =E . (%)
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1’équation de la sphére ayant son centre i la nouvelle origine
et son rayon égal & 7, est

z*- y‘+z’+2yzCos.u+2szds.p+2xyCos.y=r’ . (6)

Soient donc z=mz, y==nz les équations du diamdtre passant par
Tun queleonque des points de Dintersection des deux surfuaces ; il
viendra, en substituant dans les équations (5) et (6),

(Am*+Bn*-Co24'n4 2B/mt-2C'mnz* = E
7)
(m*4-n*~+14-2nCos.u -+ 2mCos.g-4-2misCosiy )2 =1 3 '

d’ol on conclura par I’élimination de 22

(Ar*—E)m*<-(Br*=eE )n*~-(Cr*—E)
©)
+2(A4'r*—ECos.«)n+2(B/r*—ECos.p)m+2(C/'r*—ECos.y)mn=o

Telle est donc la relation qui doit exister entre 7 et n pour que
Ia droite , dont les équations sont z=mz et y=nz, soit située sur
la surface du céne. On voit qu'a chaque valeur de l'une de ces
quantités répondront deux valeurs de l'autre ; ce qui revient a dire
que tout plan conduit par l'origine perpendiculairement , soit au plan
des xz soit au plan des yz , coupera la surface conique suivant
deux dc ses génératrices. .

Mais, si 'on suppose que le rayon r ait été choisi de maniére
que toutes ces génératrices se confondent entre elles et avec un des
diamétres principaux ; il devra arriver Que, soit qu’on résolve I'é—
quation (8) par rapport 3 m ou qu'on la résolve par rapportan,
la valeur de l'une ou de l'autre de ces quantités sera unique ou,
ce qui revient au méme, se réduira uniquement 3 sa partie ration-
nelle. En exprimant cette double condition, c’est-d-dire, en sup-
primant le radical dans cette équation résolue successivement par
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rapport & m et & n, et chassant ensuite le dénominateur, on oh-
tiendra , en transposant, les deux équations

(4Ar*—E)Ym—(C'r*—ECos.)n4-(B/r*—ECos.g)=o0 ,

(9)
(Br*—E)n=4-(C/r*—ECos.y)m~+(A'r*—ECos.w)=o0 ;

lesquelles ne sont, ausurplus, que les dérivées de (8), prises succes~
sivement par rapport a m ct par rapport 4 2. Telles sont donc les
équations qui feront cennaitre les valeurs de m et de » qui con-
viennent aux diameétres principaux , lorsque toutefois 7 sera déter-
minée conformément & la présente hypothése.

Au moyen de ces équations, ’équation (8) se simplifie; en en
retranchant en effet la somme des produits respectifs de celles-ci
par m et n, elle devient

(B/r*—~ECos.g)ym=4~(A'r*—ECos.)n++(Cr*~E)=o0 . (10)
Eliminant donc m et » de cette derniére , an moyen des équa-

tions (9), et faisant encore usage des abréviations déja employées
ci-dessus il viendra

dr‘—l—E(a+Iz+c+2a/Cos.-+2b/Cos.ﬁ+2c}Cos.y)r“
ASin.? u—2A/(Cos.x—Cos.8Cos.y)
+E* | +4BSin.*g—2B/Cos.p=mCos.5Cos.«) | 72 (11)
~-CSin,?y=2C’(Cos.yy —Cos.xCos.8)

— E*(1—Cos.* #==C05. == Cos,%y4-2C05.4C05.£Cos.5) =0 .

Cette dernmiére équation fera connaitre les longueurs des demi-dia-
métres principaux ; on en conclura ensuite leurs directions , au
moyen des équations (g). On conviendra encore ici qu'il n’est guére
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présumable que tout autre procédé puisse conduire au but d’une
" maniére tout & Ja fois aussi simple et aussi élémentaire.

Ceux qui désireront plus de développemens sur ce sujet, pourront
consulter Pouvrage déja cité sur la Discussion et la construction
des lignes et surfaces du second ordre ; ouvrage dans lequel je me
suis principalement attaché & faire connaitre les caractéres et la cons-
truction des huit cas que présente I'équation a deux variables, et
des quinze cas que présente celle qui en renferme trois.

- - — =

QUESTIONS RESOLUES.

Solution du IILe probléme de géomeétrie propesé & la
page 28 de ce volume ;

Par M., J. B. DurranDE.

_P ROBLEME. Des itrois quarrés qui peuvent étre inscrits & un
méme iriangle scaléne, quel est le plus grand et quel est le
plus petit ?

Solution. 11 est évident que ce probléme se réduit au suivant:

Des deux quarrés inscrits qui reposent sur deux cbtés inégaux
dun méme triangle, quel est le plus grand et quel est le plus
peiit P '

C’est donc sous ce point de vue que nous allons le résoudre.

Soient ¢, 4, ¢ les trois cotés d’un triangle ; @/ , &/ les per-
pendiculaires abaissées respectivement sur les directions de 4 et 4
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des sommets opposés; et x, § les cotés des quarrds inscrits, re-
posant respeglivement sur @ et 4 comme bases. Soient enfin’ 7 le
rayon du cercle circonscrit , et ¢ l'aire dn triangle.

Il est dabord évident que # ct y seront déterminés par les

proportions

a':a::(a/—x): 2 ,

o b (—y) iy ;

desquelles on tire

aad’ 124
X = a+a’ ) = 6‘;——5-, .
Or,on a
al=aa' =bb’ ,
d'ou
/= 2t , b= fbi "

donc encore, en substituant ,

2at 2bt
= =
arfeat ’ Y b2t

Enfin on a ( Applicat. de l'alg. & la géom. de LACROIX )

abe abe
r=-—, dou 2af=— ;
4t ’ P
donc enfin
abe abe

7= 2arbe ’ y= 2brca

Ces deux valeurs ayant le méme numérateur, nous jugerons de
leur grandeur relative en comparant leurs dénominateurs ; or,
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(zar-be)—(2br—-ca)=2r(a—b)~c(a—b)=(2r—c)(a—1B) ;

et , comme ¢ ne peut jamais surpasser 2r , il s'ensuit que cette
différence suivra le signe @e a—>5; si donc on suppose a>&, on
aura aussi

2artbe> 2br+4-ca ,

et conséquemment

<y ;

ainsi , des quarrés inscrits qui posent sur deux eétés d’'un triangle,
le plus petit est celui qui pose sur le plus grand de ces deux
cotés.

Il est aisé de conclure de la que des trois quarrés inscrits 3 un
méme triangle scaléne, le plus grand pose sur le plus petit cété,
le moyen sur le moyen et le plus petit sur le plus grand.

Si I'on demandait dans quel cas deux de ces quarrés sont égaux,
on exprimerait cette condition en posant

(2r—c) (a=b)=o0;

ce qui donne a=4 ou c=zr ; ainsi cela a lieu, 1.° lorsque les
c6tés sur lesquels repesent ces quarrés sont égaux ; 2.° lorsque ces
cotés sont perpendiculaires 'un A l'autre. Dans ce dernier cas, les
deux quarrés se confondent.
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QUESTIONS PROPOSEES.

Theéorémes de Géeometrie spherique.

I Sx trois cercles se coupent sur une sphére; les trois arcs de
grands cercles qui joindront leurs points d’intersection deux 4 deux
concourront en un méme point.

II. Si on mene a trois cercles d’'une spheére , pris deux 3 deux,
des arcs de grands cercles tangens , tant extérieurement qu’inté-
rieurement ; les trois points de concours des arcs tangens extérieurs
serent situés sur un méme grand cercle ; et les trois points de
concours des arcs tangens intérieurs seront deux & deux sur un
méme grand cercle avec 'un des premiers.

Probléme de statique.

TST/ (fig. 4) est un levier coudé, rectiligne , de forme inva-
riable et sans pesanteur, ne pouvant se mouvoir que dans un méme
plan autour du point fixe S. AB, A/B/ sont deux droites fixes et
indéfinies, données de position dans ce plan. Enfin C, C/ sont les
centres de deux cercles pesans et homogeénes de rayons et de poids
connus , assujett':s a poser a la fois, et respectivement sur ADB et
A’B’ et sur les bras de levier ST et ST/, et libres d’ailleurs de
tout obstacle. On demande les conditions d’équilibre de cette ma-
chine , abstraction faite du frottement ?




%m.Vl,Plan. H, pag.iss -i73.
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ASTRONOMIE.

Sur la déclinaison des planétes ;

Par M. le professeur Kmamp , doyen de la faculté des
sciences de Strasbourg.

L. Vla Vg o Vi W S

I LEs déclinaisons des plandtes , consignées dans nos éphémérides ,
forment des séries trés-irrégulitres , et dont il parait fort difficile
de déterminer la loi. Prenons pour exemple les années 1811, 1812,
1813, 1814, 1815, qui sont les cinq premitres de la décade
actuelle.

Pendant ces cinq années, la déclinaison d'Uranus a été constam-
ment australe; et on peut remarquer que, pendant une partie de
Pannée, elle a passé sans cesse de sa plus grande valeur 4 la plus
petite, et que pendant lautre, elle a repassé de la plus petite &
la plus grande. Les plus grandes déclinaisons étaient renfermées
entre les limites 17°.6/ et 21°.22/; celles des moindres déclinaisons
ont été 15°.45/ et 20°.42’; la plantte s'est donc écartée du plan
de l'équateur.

La déclinaison constamment australe de Sgzurne a fait des os-~
cillations semblables ; ses plus grandes déclinaisons ont diminué de
23°.6/ 4 19°40’; les plus petites ont diminué de méme depuis
21°5%/ jusqud 17%45/; la plantte sest donc rapprochée de
Yéquateur.

La déclinaison de Jupiter a été boréale pendant les quatre années
1811, 1812, 1813, 1814. Le 16 novembre de cette derniére année,

Tom. VI, n.° VI, 1.°* décembre 1815. 26
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la plandte a traversé le plan de I’équateur; le g avril 1815, elle
Ia repassé une seconde fois; et le g juillet de cette méme année,
elle est redescendue de nouveau dans I'’hémisphére australe.

Mars a traversé cing fois le plan de P'équateur; savoir, le 1.t%
février et le 25 octobre 1812; le 1.°T janvier et le 7 octobre 1814,
et le 10juillet 1815, Les intervalles de temps de I'un de ces passages
3 lautre ont été successivement 266, 433,280, 276 jours; nombres
dont Tinégalité ne saurait dépendre deVellipticité de 'orbite.

Fenus a traversé le méme plan douze fois; et, en exprimant en

-jours les intervalles de temps d'un passage a l'autre , on trouve les
nombres qui suivent: 181, 142, 265, 148, 244, 154, 45, 52,
149, 145, 153. L’excentricité presque insensible de lorbite de
Vénus n’a rien de commun avec I'inégalité de ces nombres.

Ces mémes intervalles sont encore beaucoup plus inégaux pour
Mercure qui, pendant ces cing années , a traversé seize fois le plan
de l'équateur. La recherche des lois qui lient entr’eux les termes
de ces séries irrégulitres dépend du probléme suivant:

o. PROBLEME. Connaissant les élémens de Porbite d'une pla-
néte, on demande I'expression générale de sa déclinaison , pour un
temps quelconque proposé? .

Solution. Soient EZT lécliptique (fig. 1) S le soleil; T la
terre; SE la ligne des équinoxes; SNQ la ligne menée du soleil
au nceud ascendant de Dorbite de la plandte: cette dernitre étant
supposée en M, élevée au-dessus du plan de Iécliptique. Abaissons
de M sur ce plan la perpendiculaire ML, et sur la ligne des
neuds la perpendiculaire MN. Menons de plus, dans le plan
méme de Dlécliptique, la ligne TL, dont le prolongement rencontre
en Q la ligne des nceuds et la ligne LN; ensuite les deux rayons
vecteurs SM, ST, et enfin la ligne TM, de la terre T A la
planéte M. Quant aux lignes auxiliaires , remarquons que S Z est
paralléle & TLQ; que TO est paralléle 3 LN, et conséquemment
perpendiculaire comme elle 3 la ligne des poeuds S Q; et qu'enfin

e



DES PLANETES. 175
LH est paralltle 2 eette méme ligne des nceuds, et conséquemment
perpendiculaire 4 TO.
3. Cela étant, spient

. B Tangle LNM, inclinaison de lorbite;

a....ll’angle ESN, longitude du neeud ascendant;

¢... Vangle EST, longitude héliocentrique de la terre;

e... 'angle MSN que fait le rayon vecteur de la planéte avec
la ligne des nceuds;

a... la ligne ST, rayon vecteur’ de la terre ;

7... la ligne. SM, rayon vecteur de la planéte ;

L... I'angle ESZ, longitude géocentrique de la planédte;

L'.... langle MTL, latitude géocentrique dc la plandte;
3=L.... Yangle NSZ que  fait Ja ligne des nceuds avec SZ, ou avec
sa parallele TLQ.

4. Les élémens de lorbite de la plandte étant supposés comius,

les deux rayons vecteurs ¢, , de méme que les angles g, 5, ¢,
#, seront donnés de méme. Par leur moyen, on exprimera les angles

o=—L et L/ dela maniére suivante

aSin.(e-;-e?)—rCos.ﬁSin.s
Tang.(a—-L‘)_- rCos.@#—aCos.(—3)

»

7Sin.ASin.«Cos.(=1,)
7Cos.@=aCos. (—7)

Tang.L/'=

5. Pour abréger, désignons pa; R* la somme des quarrds du nu-
mérateur et du dénominateur de la premiére de ces deux fractions,
de celle qui exprime la tangente de l’angle y~ZL. On aura ainsi :

BRSin.(y3—L)=4aSin.(¢—p)—rSin.«Cos.s ,
RCos.(3~L) —rCos.w—aCos.(6—) »

On trouvera de méme, 2 cause de»L:a\-—-(g«-—-L) ,
RSin.Z =rSin.3Cos.44rCos.ySin,#Cos,p—~aSin.¢ ,
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RCos.L=rCos.yCos.4—~rSin.3Sin.«Cos.s—aCos.! ;
et enfin

RTang.L’=rSin.sSin.g .
6. Soit, en second lieu, f* la somme des quarrés des deux termes

8e la seconde fraction, qui exprime la tangente de la latitude géo-
centrique L/, ou R*~-r’Sin.*«Sin.*g. On trouve , en développant,
f*=a*:—2ar{Cos.(¢~—y)Cos.4~Sin.(¢4e=y)Sin.aCos.a}+-r* ;
la lettre f désigne donc la ligne TM , distance de la terre A la
planéte. Il en résulte
SSin.L’=r8in.gSin.* , fCos.L'=R .

7. Nous avons fait connaitre ailleurs les formules par lesquelles
on trouve l'ascension droite et la déclinaison d’un astre , dont on
connait la longitude et la latitude. Soient ( fig. 2 ) EX l'équateur,
EY Pécliptique, S un astre quelconque ; soit de plus s I'obliquité
de l'écliptique, A Pascension dreite EA , 4/ la déclinaison SA , L

la longitude EL, L/ la latitude SL ; cette dernitre étant supposée
boréale. On aura

Sin.4’=Sin.Sin.LCos.L/'~4Cos.Sin.L/ .
8. 1l ne reste qu’d développer cette expression, pour avoir celle
de la déclinaison , au bout d’un temps donné ; on trouvera (4, 5, 6)
. r(Sin.8Cos,#Sin.¢4-C0s.8Sin.#Cos. Sin.s4-Sin. #Sin. BCos.5) -aSin.4Sin.s
Sin.4/'= - 7 - .

9. On simplifiera cette expresTsit;n, en introduisant un angle a,
tel que ' ‘

" Sin.dSin.s
Cos.0Sin.+Cos.84Cos.4Sin.8 *

Tanga=

on aura alors

© rSin.dSin.(A~}-a) ==aSin.ASin.0 -,
i /-.- L] .
Sin.4/= =y . Sin.s

10, Le soleil étant rapporté au centre de-la sphére, soit FS le
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grand cercle de cette spheére déterminé par lorbite de la planéte ;
ce grand cercle coupant I'équateur en F et I’écliptique en B, et par
conséquent BS étant argument de la latitude ES la distance i I4-
quinoxe et B le nceud ascendant; ’arc BF sera ce que nous avons
désigné par a, et argument de latitude BS sera »; on aura donc

rSin.BESin.FS==aSin.BFSin.¢

. g .
Sin, 4/ = [SnEF .Sins .

11. Comme P'angle s, ou l'inclinaison de lorbite vers I'écliptique,
est un angle trés-petit, pour toutes les plandtes de notre systéme
solaire , on voit que I'arc » ou BF ne saurait différer beaucoup de
I'arc 3 ou BE, qut est la longitude de nceud. On trouve effecti-
vement Tang.(3—») égale, A peu prés, 3 Sin.sSin.yCos.s ; ce qui
rend cette différence angulaire sensiblement proportionnelle au sinus
de linclinaison de l’orbite. Si la planéte se mouvait entiérement dans
le plan de Iécliptique, on aurait exactement a=y, et le sinus de
la déelinaison de la plandte, ou Sin.4’, se trouverait étre

. rSin.(df-a)==aSin.0 _,
SinA'= S . Sin .
S
12. Dans le cas d’une plandte infiniment éloignée , et qui ren-
trerait ainsi dans la classe des étoiles fixes, la distance r ferait dis=

paraitre @, et il viendrait par conséquent

Sin.BESin.FSSin.s
Sin.BF"
Cette expression est une quantité constante, et indépendante dm
temps ; et on voit qu'clle me veut dire autre chose que sin. SA;
Yarc SA étant effectivement la déclinaison de 1’étoile.

13. Le moment du passage de la planite par le plan de I'équateur
est celul ou la déclinaison A/ est nulle; on a alors

Sin.A'=

7Sin.sSin.(x4)=aSin.Siu.¢ ;

équation dans laquelle les angles ¢ et o, de méme que les deux
rayons vecteurs @ et 7, sont des fomstions trés - connues, mais
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transcendantes du temps, et qui ne peuvent étre développées qu’en
scries infinies. Le probléme est donc insoluble, dans le cas des
orbites clliptiques; et dans la supposition méme d'un mouvement uni-
forme et circulaire, il exige I'emploi de la regle de fausse po-
sition.

14. En nous bornant au calcul des mouvemens moyens , essayons
de déterminer (g) la déclinaison des planétes de notre systéme, telle
q’u’elle doit avoir été le 1.°* janvier de l'année 1815, & midi.
Le logarithme de la distance de la terre au soleil était alors
9,0926560; et la longitude du soleil était 280°. 16/. 30”; on aura
donc Log.a=9.9926560 et 6=100%16".30% De plus , du 1.°*
janvier 1801 A minuit jusquwau 1.°% janvier 1815 & midi il s'est
éconlé 5113 jours et demni. :

15. Il faudra connaitre les mouvemens moyens journaliers de la
terre , de la planete et du nceud de celle-ci. Soient dong

Mm.... le mouvement ‘moyen journalier de la terre,
2 ... le mouvement moyen journalier de la plandte,

% ... le mouvement moyen journalier du nceud.

Les trois moyens mouvemens seront exprimés en degrés et parties
de degrés. Le mouvement 4 sera une fraction trés-petite, et qui
ne deviendra bien sensible qu'au bout d’un siecle.

16. 1l faudra connaitre aussi les longitudes héliocentriques moyennes
de la terre, de la plandte, et du nceud de celle-ci, a I'époque dont
on veut partir. Soient donc , pour cette époque,

M.... 1a longitude de la terre;
" N... la longitude de la planete,

H.. la longitude. de son nceud.

Ainsi-, les mouvemens étant, supposés uniformes et circulaires; on
aura ;
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e=M-+mz ,
EL=N-n:,
EB=H—#%: .
17. 11 en résultera
BL=EL—-EB=N—IH+(n-}2) ;
ainsi ,
Tang.[N=H--(n--h)i}
Cos.8
La letfre # désigne ici le nombre des jours écoulés depuis I'épeque
fixe jusqu’a celle pour laquelle on veut déterminer la longitude de

la planete. Comme Pangle g est trds-petit, pour toutes les plandtes
de notre systéme , excepté Mercure , on aura sensiblement Cos.g=1,

Tang.BS=Tang.wwe=

ce qui donne
o= Ne—H~A-(n4-5)z
18. Les mouvemens moyens et journaliers des plandtes sont ex-
primés dans la table qui suit:

Mercure. . . . . 4°09237706 ,
Vénus. . . ... 1 60217659 ,
,08564716 ,
sD24e7126 ,
08312016 ,
Saturne. . . . . 0 ,03349833 ,
Uranus. . . . . 0 ,01176835 .

La troisime de ces valeurs est celle de 72 ; les autres appartiennent
aux 2 des différentes plandtes de notre systéme.

1g. Voyons présentement quelles erreurs pourra enirainer, dans
le calcul des latitudes au commencement de 1815, Vemploi des
moyens mouvemens. On a d’abord les distances moyennes , ¢lest-a=
dire , 7, ainsi qu'il suit:

Tetre. « « o o &
Mars . . . ...
Jupiter. . se e

© © o ©°
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0,7233323 ,
1,5236935 ,
5,202794 . ,
9,53877..,

19,1833... ;

Ma!’s.n e s 6 & o @
Jupiter. . . ...
Saturne. . . . . .

Uranus. . « . . .

T

20. Les arcs dderits pendant 5113 jours I,
conférences entitres, seront respectivement (18)

46°.227. 12" ;

Mercure. . . . .
Vénus, .. ... 272 43 48
Mars. . + . . . . 159 ,56.16

Jupiter . .« « . 65 . 4.51
Saturnes « . . . 271 a7.37
Uranus. . . . . 60 .10.50

0,3870981 , Logr=9.5878210 ;

9.8593379 »
0,1828978 ,
0,7162365 ,

0,9794924 »
1,2829233 .

en rejetant les cir-

2

Mais , au commencement de 1801 , les longitudes étaient

Mercure. « . .«
Vénus. . « . o«
Mars. .
Jupiter . . . .

D o o o o

Saturne. . . ..
Uranus. . . ..

163°.56/.277 ,
10 44 .31
64 .7.2
. 102 .12 .36
135 .20 .32
177 47 18

?
»
»
?

H

ajoutant donc ces arcs aux précédens , en rejetant encore les circon<
férences entitres , on obtiendra pour les longitudes, au commencement

de 1815,

Mercure. . .

« . 210°.184.39" ,
283 .28 .23
c e 223 5728 ,

?

Jupiter;
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Jupiter. . . ..

Saturne .

Uranus . .

167 .17 .27 ;
«..306 38. 9,
..237 58.8.

181

21. Le mouvement séculaire rétrograde du nceud de chaque pla-
néte et le mouvement de ce nceud pour 5113 jours I sont ainsi

qu’il suit :

Mercure. » . . .

Yénus. . . .
Mars, . . . .
Jupiter. . .

Saturne. . . .

Uranus. « »

782/, 1/.49"

r

.. 1870 , 4.21 ,
«.2329 , 5.26 ,
.. 1578 , 3 .41 ,
2260 , 5.6 ,

. 35¢8 , 8.23 ;

mais la longitude du neeud , au commencement de 1801 , dtait

Mercure. . . .

o 45°.57.317

Vénus. « v - o o« 74 52.40 ,
Marse . o« oo o« 48 .1.28 ,
Jupiter . « « . . 98 25.34 ,
Saturne. . . . . 111 .55 47,
Uranus. . . .. 7251 .14 3

cette longitude p devait donc étre, au commencement de 1815,

étant donc cette
Tom. V1

Mercure, . .

.. 9== 45°550.47

Vénus, « o o .. .. 74 .48 .20

Mars . .o oo vo. 47.56.2

Jupiter . . . .. 98 .21.53 ,

Saturne. + « . . . . 111 .50.31

Uranus. . ... .. 72 .42 .51 ,

derniére longitude de celle de la planite pour la
27
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méme époque de 1815 , on obtiendra pour l'arc BL , base du
triangle sphérique rectangle BLS ,
Mercure. . . . . BL=164°.23. o,
Vénus, . « « 6o« « 208 .40. 0 .,
Mars . o« . - 0o . s 176. 1.16 ,

Jupiter. . . . ... 68 :55 34
Saturne. . . . .. . . 104 .47 .38 ,
Uranus. « « « ... . 165. 6.54 3

"mais , les inclinaisons g des orbites sont respectivement

Mercure. « .. . 13=5°.‘9’. o',
Vénus. . « o v ... 3.23.35
Mars.. . . .. e..1.b1.0
Jupiter. . . . ... 1.18 .52
Saturne. . . . ... 2.29.38 ,
Uranus. « « v . .. 0.46.:25 .

Divisant donc par le cosinus de cette inclinaison g la tangente de
de BL, on obtiendra pour quotient la tangente de BS ou @ qu'on
trouvera étre ainsi

Mercure. . . . . @=164°.16/.29" ;

Vénus. .. ... 208 .42.36 ,

Mars.. « . ... 176 1 .9 ,

Jupiter . . . ., 68 .55.24 ,

Saturne. . . .. 194 48 .30

22. On a dilleurs, pour le commeneement de 1815, le loga-

rithme du rayon vecteur terrestre ou Log.a=9,9926560 , la longitude
héliocentrique de la terre ou 8=100°16"30", et Lobliquité de Ié-
cliptique ¢=23°.27/.50” ; d’aprés quoi on trouvera ¢—y ainsi qu’il
suit ;
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Mercure. . . . .
Vénus. « . . ..
Marse « o o« ..
Jupiter . .. ..
Saturne.. . . . .

Uranus . . ...

bemep= 54°.20/.48" ,
25 .28.10 , |

52 .20.28 ,

b54.37 ,
24.0 ,

27 33 39 H
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23. Avec toutes cgs donndes, et % l'aide des formules du com-
mencement de ce mémoire , on trouvera, pour la distance f de la

terre & la planéte et pour l'angle a ,

* Mercure. . . . . . J= 1,173566 , a= 38°.14".14" ,
Vénus. . . . 1,705748 67 .35.20 ,
Mars. . .o 2,208150 , 4o .32.54 ,
Jupiter. . . ... 4,903223 , 95 59.14 ,
Satarne. . . . .. 9,676540 , 107 .29.48
Uranus. . . ... 19,919737 , 71 .23 .0 ;

et on aura enfin pour la déclinaison A’ , que nous mettons en

regard avec celle des éphémérides,
Suiv. not. cal.

22°%44'.37"". 4

Mercure. « « « .

. 23 38.20 .4

Ve,nus‘ o o o

Mars . « . ... 19 .35.40 .B

Jupiter. . . .. 1 .50. 0 .4
Saturne. . . . . 21 16.0 .4
Uranus. . . . . 19 .58. 0 .4

Suiv. les éphém.

23°13
23 .38
19 .34
2 .29

20 .28

21 . 1

Diff,
+-28/.23/7,

— 0.20 ,
— I .40 ,
~“+29.0 ,
—48.0 ,

—63. o

24. En comparant successivement ces différences avec la plus
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grande équation du centre de la plandte , on trouve qu’elles en

sont respectivement , du moins 3 peu de chose prés , les fractions
suivantes

SRS SN SRR I

50 % 150 Y 384 Y B 2 8 ) 5 )
Ces résultats, et sur-tout celui qui répond & Mercure, la plus ex-
centrique de toutes les plandtes, conduisent & conjecturer, avec
beaucoup de vraisemblance, que Tellipticité des orbites intlue moins
qu'on ne le croirait sur la déclinaison des plandtes, que cependant
Perreur qui résulte du simple emploi des moyens mouvemens,
dans le calculde cette déclinaison, augmente avec les dimensions
de lorbite.

25. La condition du passage de la plandte par le plan de 1%-
quateur est renfermée dans Déquation rSmn.ySin./a-e)=2gSin.a
Sin.e , (13). L’état insoluble de cette équation , dans la suppo-
sition du mouvement elliptique, nous oblige 4 nous contenter de
I’emploi des mouvemens moyens.. Encore serons-nous obligés de
proﬁte'r de la circonstance favorable que nous présente I'inclinaison
des orbites qui, dans nowre systéme solaire , est partout assez petite

pour qu’on puisse , sans errcur sensible, supposer Cos. g=1, ce qui
onne simplement (1
d pl t

o=N—H+(n4-r)t .

26. L’extréme lenteur du mouvement des neeuds nous permet
en outre, du moins pour un nombre d’années limité, de supposer
% nulle; il résultera de la ®== N—FH--nt. Dans cette méme sup-
position, l'angle a deviendra une quantité constante, et indépen-
dante du temps. Ainsi désignant par L. ce que devient alorsque
dans Uexpression générale de Tang. » (9), on remplace la letire
s par H (17), ce qui donnera

Sin HSin.e
Cos.HSin.s4Cos.¢Sin.g

Véquation finale du problime sera

Tang.l.=
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7Sin HSin.(L4-N—H--nt)=afin.LSin.(M-+-m/) .

" 27. Cette équation ne renferme que la seule inconnue 2 : c¢’cst
le nombre des jours comptés depuis I'époque fixe jusqu'd 1é-
poque ou se fera quelque passage de la planéte par le plan de
I'équateur. Les quantités m, n, a, r seront liées entrelles par la

H 7 . m r
loi de XKépler ('—n-)’=(1>3 . Mais, comme les rapports —, —sont
n a n a

incommensurables, 1’équation , malgré sa simplicité apparente, sera
transcendante , et exigera, pour sa résolution I'emploi de la régle de
fausse position. On sait de plus que la série que forment les racines
de cette équation n’a rien de commun, méme dans les cas les plus
simples , avec les progressions arithmétiques , géométriques , recur-
rentes, etc.

28. La simplicité de I'équation finale (26) rend au moins 'employ
des fausses positions trés-facile ; et on pourra s’en servir avec avan-
tage , pour trouver les valeurs approchées des passages d’une planéfe
par le plan de I'équateur, pour une année quelconque qui ne serait
pas trop éloignée.

29. Aprés avoir discuté les cas ot la déclinaison devient nulle,
examinons les époques ou elle parvient & son mazximum ou mini-
mum. Les notations précédentes seront conservées ; nous supposerons
toujours /% sensiblement nul, ce qui donnera y=H et nous ferons
la longitude de la plantte EL ou N-nt=..

3o. Le quarré de la distance de la terre & la plantte ou f* a
été trouvé (6).

S*=a*—2ar[Cos.(#—5)Cos.a~+Sin.(4—y)Sin.«Cos.s] 7.
Eu faisant Cos.g=1, cette formule deviendra
Sr=a*—2arCos.(8—y—a)+71*,
ou bien
Sf=a*—2arCos.| M—N--(m—n)t]+r*;

et, en différentiant,
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Sdf=ar(m—n)Sin.(b—y—2u)dz.

31. L’expression générale du sinus de la déclinaison a été trouvée
(9)- Pour remplir la condition proposée, il faut égaler i zéro la
différentielle de cette quantité. En y regardant @, r, », A comme
constants , nous n’y aurons que les trois seules variables ¢, #, />
qui toutes dépendent du temps; nous aurons ainsi

di=mds , de=nds
et nous venons de trouver df (30).

32. Nous parviendrons ainsi 3 une équation composée de huit
termes , et qui a au moins l'apparence d’étre compliquée. On y
reconnait bientét les deux facteurs suivans

rSin.3Sin.(s4-a— 3)— aSin.ASin. ¢=F,
nrSin.yCos.(*+4a—y)—maSin.aCos.b=G ;
et I’équation devient ainsi
S2G=ar F(m—n)Sin.(t—=*) .

33. Pour en tirer Vinconnue #, voyons ce qu’elle deviendrait dans
le cas d’une planéte dont lorbite serait couchée dans le plan de
Pécliptique. L’angle g alors serait égal & zéro ; la différence angu-
laire A—y s’évanouirait ; et toute l’équation serait divisible par
Sin.p=Sin.a. Supprimant ce facteur commun, on aurait

F=rSin.x—aSing , G =nrCos.»—maCos.0 .
L’équation serait alors décomposable dans les deux facteurs qui
suivent ‘

rCos.x*—aCos.t ,
nri*—ar(m--n)Cos.(¢—»)+ma* .

34. En égalant le premier facteur & zéro, on obtient I’équation

rCos.(N+-nt)=aCos..M—+m?) ;

elle rdpond naturellement 3 Iéquation trouvée (26) qui dans la
méme hypothése, se réduit a
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rSin.(N4-nt)=aSin.(M~+ms) ,

et fait connaitre les passages de la planéte par le plan de Iéquateur.
35. Le second facteur égalé a zéro donne

ma2~}-nra

o (1—e)= s [M—N-H(m—r)i] = Tt

Cette formule est connue ; c’est celle qui détermine I'époque ou
la planéte devient stationnarre. Ainsi donc, en supposant le mouve-
ment de la planéte uniforme et circulaire, et son orbite couchée dansle
plan méme de Décliptique, elle parviendra a sa plus grande ou a sa
moindre déclinaison au moment méme ou elle deviendra station-
naire.

36. On sait que le cosinus de tout angle A est aussi celui des
angles 2a—A , 254-d, 4a—A , f==+A4 , etc. En conséquence,
ma2-f-nr2
(m~-n)ar
sinus, et par Z, #, #/,... les valeurs consécutives de I’inconnue ¢,
on aura

en désignant par A4 le moindre des angles qui aura pour co~

(memen)t = A=M+4N , (m—n) =25—A<M+N ,
(m—n)t/'=2a4+A—=M~+4N , (m=—=n)t!"'=fae=d=—M+4N ,

(m=—n)tV=fat-AwmM 4N , (m—n)t'=6zemAd—M-+4N ,

-.--o.-'n'-nu.o--oto-:o.-...;;:.a.)

Ces racines formeront ainsi deux progressions arithmétiques ayant
.y 2% , i .
pour différence commune —— ; c’est la durée d'une révolution sy-
1T ===
nodique.

37. Donc, en supposant la plantte mue dans le plan deI'écliptique ;
d’'vn mouvement uniforme et circulaire , les époques des plus grandes
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et des moindres déclinaisons forment trois progressions trés-distinctes.
La premitre comprend les racines de l’équaiion rCos.(N-+nt)=a
Cos.(M~+mt). Les déclinaisons que cette équation fait connaitre sont
toutes du genre des maxima ; elles précédent et elles suivent les
passages de la planéte par l’équateur, et elles sont ainsi alternative=-
ment bordales et australes. Les deux autres forment deux progres-
sions arithmétiques , indépendantes de cette premiére , qui ont pour
différence commune la durée de la révolution synodique , et dans

lesquelles la différence de deux termes correspondans 2//—i/ , 3///—y// .

24

sera partout la méme, savoir .
me—n

38. Nous avons rassemblé dans les deux tables qui suivent les
plus grandes et les moindres déclinaisons , de méme que les passages par
I'équateur , de la planete de Mars, pendant les cinq anndes 1811,
1812, 1813, 1814, 1815. Les jours sont comptés d’une série con-
tinue, depuis le 1.°* de V'an 1811.

3g9. La premiére table contient les passages de Mars par I'équateur,
ainsi que les plus grandes déclinaisons dont ils sont précédés et
suivis ; ces derniéres, qui résultent de I'équation rCos.x=aCos.¢t,
sont alternativement désignées par les lettres A et B ; les passages le
sont alternativement par AB et BA, suivant que l'astre entre dans
Phémisphére boréal ou dans I'hémisphére austral.

Plus grandes déclinais.
et nossages par léquat.  Jours. Différenc.
26° ¥ A..... 265
AB..... 394 ...c....129

24%22’ B ..... b24........130
BA..... 666 ........142
23°38A ... . 815 ... 149
. 282

AB .....1096 .. ... ..

24°36.B.....1235 ........138
€Ces
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BA..... 1377 ... ... 142
23%44. A o . vV oabrr ... ... 134
AB . ... .1652........ 141

La plupart de ces différences varient, il est vrai, entre des limites
assez resserrées 129 et 149 ; mais la différence 282 suffit seule pour
exclure tout soupgon d’'une presque égalité qui pourrait exister entre
elles.

La seconde table contient les époques ou la plandte parvient &
sa plus grande ou & sa moindre déclinaison, sans traverser le plan
de I'équateur, conformément aux formules (35, 36); ces époques
sont celles qui suivent :

Plus grande. . . « . . A .. ... 136 jours.

Moindre. . . . % ... A

Plas grande. . . ... A ....: 8gr
A

Moindre. . . . . ...

.
(o)

[@p}

v

Plus grande. . . . . . B.....1718
Moindre. . » ... ..B..... 1770

Les plus grandes déclinaisons ont lieu aux époques 136, 891, 1718
jours, et les plus petites aux époques 175, g62, 1770. Les diffé-
rences des premiers nombres sont 755 et 827, dont la moyenne est
791; les différences des derniers sont 787 et 808, dont la moyenne
est 797. Le milieu entre ces deux moyennes 794, et la durée de
la révolution synodique est seulement 780 ; la différence de 14 jours
doit étre rejetée sur Dellipticité de lorbite et sur l'angle d’enyiron

Tom. V1. 28
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deux degrds que fait le plan de cette orbite avec celui de Iéclip-
tique.

40. On peut remarquer que les plus grandes et les moindres lon-
gitudes géocentriques ont lieu aux jours qui suivent:

Plus grande. . . . 110 jours.

Moindre. « . . .. 176
Plus grande. . . . 912
Moindre. . . ... g73
Plus grande. . . . 1717
Moindre. . . . . . 1780

Ainsi les jours des plus grandes et des moindres longitudes ne sont
pas éloignés de ceux des plus grandes ct des moindres déciinaisons ,
conformément a la remarque déja faite /35). Les plus grandes et les ’
moindres déclinaisons , tiréesde I’équation rCos.(N+nt) =aCos.(M+mt),
n’ont rien de commun avec les plus grandes et les moindres longi-
tudes géocentriques, ce qui nous apprend a les distinguer facilement,

par la simple observation des longitudes, de celles quirépondent i
Pautre équation

nr*—(m=-n)arCos.(¢—x ~+ma*=o .

41. Pour déterminer, d’aprés les tables ou les observations, le
jour et méme I'heure ol les plus grandes ou moindres déclinaisons
ont di avoir lien, on peut cmployer la méthode qui suit. Soient

« le temps et y la déclinaison qui y répond , anx eunviron du
maximum ou du minimum., il sera permis de supposer

y:A-{-B.’L‘-{—C&" .
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La déclinaison y parviendra & son maximum ou minimum , lorsque

B
FT=e—m—= 1 ON aura dans ce cas

4AC—Ra
=

.

42. Pour déterminer les ccefficiens 4, B, C , on emploira
les déclinaisons , calculdes ou observées , « , 8, ¥ , répondant
respectivement aux temps...2, &, ¢, de maniére que la déclinaison
moyenne g soit plus grande ou moindre que chacune des extrémes
«, . Alors on aura les trois équations

a—=A+Ba+Ca* ,
8=A-Bb+Ch*

y=A+B€+CC3 s

desquelles on tirera

A=

be(b==c)at-ca(c=a)pt-ab(a—=b)y

(b=c)(c—a)(a=b) ?

(premc?) 2k (c*—a2) p-(a?=012) 7|
(b—c) (c=—a) (a—b)

B = ,
B—) st (c—a) - (a—b) ¥

C=
(& =c)(c—a)(a=b)

Le temps au bout duquel la plus grande ou la” moindre déclinaisan

aura lien sera :
e t—at) e (@ =)y
T 0wt c—a)e(a—b)y

et cette déclinaison sera

. (G-c)bard(c-a)ipr(a-BYiy2-2(b-c)2(c-a)2af-2(c-a)2(a-b)2By~2(a-b)2 (b-c2y
- 4(b—c)(c—a)(a—b) [(h—c) a(c=a) p+(a—b)7]

’

.-
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Si_l'on prend les temps en progression arithmétique, ce qui per-
mettra de supposer ¢=—1, =0, ¢=-1, ces formules deviendront

. e—y . #* 4168y 2—=8ag—88y—2ya
r=I—— =.

3 4-—-:>.ﬁ+y H J’ 8 a-—2‘6+'y *

43. Les formules qui ont été objet de ce mémoire , fondées sur
ce que I'orbite de la plangte était supposée dans le plan de lélip-
tique , subissent quelques modifications lorsqu’elle est hors de ce
plan; ce qui sera U'cbjet d'un autre mémoire.

GEOMETRIE ELEMENTAIRE.

Sur la recherche du rapport de la circonference du
cercle a son diamétre.

Par M. GERGONNE.

[a Yo "R S Sl Sl Vi T 5]

DANS un petit traité élémentaire de géométrie plane, publié & Nancy en
1813, par M. SCHAWAB, on trouve, entre autres choses intéressantes,
le théoréme que voici:

Soient deux polygones réguliers de méme périmétre , l'un de
m et lautre de am cdtés; soient respectivement v, R les rayons
des cercles inscrit et circonscrit au premier, v, R/ les rayons
des cercles inscrit et circonscrit au dernier ,on aura

1.° —r7' R 2° =7 :R:R.

Cet élégant théoréme se démontre trés-simplement comme il suit :
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Soit SMC (fig. 3) un triangle, rectangle en M ; soit prolongé le
c6té MC au-deld du point C , de maniére que son prolongement
CC/ soit égal & T'hypothénuse CS. Soit mende C’S, et soit abaissée
du point C sur cette droite la perpendiculaire CS/; enfin soit menée
S/M/ parallele & SM. Voici ee qui résulte de cette construction :
Le triangle SCC’ ayant ses deux cétés CS et CC/ égaux, doit aussi
avoir les angles opposés égaux , et conséquemment G/ I'un d’eux
est égal & leur demi-somme ; cet angle C/ est donc aussi moitié de
Pangle extérienr SCM. En outre, le point S/ étant le milieu de
SC/, il sensuit que S/M’ est la moitié de SM ; ainsi , on a en
meme temps

S'M/'=15M , Ang.S'C/M/=:A4ng.SCM .
Il résulte de 14 que, si Pon suppose que MS soit un demi-cété
d’an polygone régulier de 7 cétés , dont C soit le centre, M’/S/
sera un demi-c6té du polygone régulier de 2m c6tés , de méme
contour , dont C/ sera le centre. Or, il est clair que CM et CS
seront les rayons des cercles inscrit et circonscrit au premier; et
que C’M/ et C’S/ seront les rayons des cercles inscrit et circonscrit
au dernier: ainsi l'on aura

CM=r ; CM/=r/,
CS=R ; CS'=R .

Or, le point M/ étant le milieu de C’M, on doit avoir aC/MN/
= (/M=CM~+-CC’=CM~-CS; et de plus le triangle CS$/C’, rec=
tangle en 8/ donne TF'=C/M/x C/'C=CM’XCS ; donc 2r/=r-4-1,
et A*=r'R; cest-a-dire,

~rr'R , —r/ B R

comme nous l'avions annoncé.
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Cette proposition peut encore étre démontrée trigonométriquement
ainsi qu'il suit: '

On a d'abord évidernment

- 4 »
r=ARCos. — (1) r’:B’Cos.;—r—n- ; (2)
de plus , les périmétres des dewx polygones étant 2mrTang.
g k.
—_ / .— , on doit avoi
—, 4mr/Tang ——» ‘on doit avoir

i a @
rTang. - =2r/ Tang. ot 3)

Si l'on élimine 7, 7/ de cette dernitre équation, au moyen des
deux précédentes, il viendra

= s w
ASin, —=2R/Sin. — ,
m am
ou bien
. = x . =
2ASin, — Cos,— =2R'Sin. — ,
2m 21m. am

ou en réduisant
»

RCos. —=H',

am
équation qui, combinde par multiplication avec I'équation (2) donne
Br/=R" @)

qui est la seconde de nos deux propositions..
On a en outre

T %
2005.> — =1-4+Cos. —
am.

m
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d’olt éliminant les cosinus, au-moyen des équations (1), (2), il
vient

773 r r4+R
2@ EE g

mettant dans cette derniére pour R’z sa valeur (4), il viendra enfin
2r'=r+R ,

qui est la premitre des deux propositions annoncées.

Cela posé , concevons un polygone régulier quelconque, de 72 cétés,
dont on connaisse le périmétre p , ainsi que les rayons r et B des
cercles inscrit et circonscrit ; si l’on forme une série, dont les
premier et second termes soient respectivement r et 2 , et dont
Jes suivans soient alternativement , & partir du troisiéme, moyens
par différences et par quotiens entre les deux qui précédent immé-
diatement chacun d’eux; il suit de ce qui vient d’¢tre démontré,
que les termes de rangs impairs de cette série seront successivement
les rayons des cercles inscrits aux polygones réguliers de m , 2m,
4m y 8m .. cOtés, ayant leurs périmeires constamment égaux ap,
et que les termes de rangs pairs de la méme suite seront succes-
sivement les rayons des cercles circonscrits aux mémes polygones.

Mais, lorsque, le périmétre d’'un pelygone régulier demeurant
constant , le nombre de ses cétés croit continuellement, le rayon
du cercle inscrit croit aussi sans cesse , tandis qu'au contraire celui
du cercle circonscrit décroit’; le premier est toujours moindre et le
second plus grand que le rayon du cercle dont la circonférence serait
égale au périmetre du polygone ; mais ils ‘tendent sans cesse , 1'un
et Vautre, vers cette limite commune.

Ainsi, dans la série dont il vient d’étre question, tandis que les
termes de rangs impairs croitront sans cesse , ceux de rangs pairs,
au contraire , décroitront continuellement ; mais de maniére que les
uns et les autres tendront, de plus en plus, & devenir égaux entre
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eux , et au rayon du cercle dont la circonférence serait p; c'est-af
dire , que ces termes convergeront perpétuellement vers la valeur

P
!

Voild donc un procédé , aussi simple qu'élégant, pour obtenir du
nombre = une valeur aussi approchée qu'on pourra le désirer; il

(* Soient rg, ry , T3 yunTx les rayons des cercles inscrits, et By, R,

BR;,...B, ceux des cercles circonscrits ; nous aurons les deux équations aus
différences

2y =Tx+Re , R,y =Bx'rx+ : 3

pous aurons pareillement, en changeant x en a-f-1,
2xqy =TeprBegey » Ry s =R Teps

Si, entre ces quatre équations, on élimine successivement R, , Byty 3 Byt2)
et ensuite 7'y, x4y y Ta4=2 » On obtiendra ces deux-ci

CL PTG TRT ) S
Bx(2‘321+ :""Bzx+ t)=Rax+x .

La premiére de ces équations exprime , entre les termes de rangs impairs , une
relation inlépendante des termes de rangs pairs, et la scconde entre les termes
de rangs pairs, une relation indépendante des termes de rangs impairs. On voit
en outre que, dans le cas de x==w , lintégrale commune des ces deux équations

P ~_ soit le cosinus & ltiple de la ci
est —— , pourvu seulement que 7 Sit le cosinus d’un sous-multiple de la circon-
27
R
férence ; et I'on a alors p==2my\/H2=r2.
. r . . . . . . n .
Si " était le cosinus d’une fraction ratiornelle et irréductible — de la cire
m

conférence , on tomberait alors sur les polygones éloilés de M. Poinsot, et la

A . . 14
série convergerait continuellement vers —.
anaw

ne
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ne s’agira, en effet, que de déterminer r et R, avec un nombre
suffisant de chiffres décimaux, et d’en conclure ensuite, comme il
vient d’étre dit, les autres termes de la suite, avec le méme degré
J’approximation, jusqu’a ce qu’on soit parvenu & deux termes con-
séeutifs qui ne présentent plus aucune différence dans l'ordre de
décimales adopté. Divisant = p par 'un d’eux, le quotient qu’on
obtiendra sera une valeur approchée du nombre = . On en connaitra
le degré d’approximation en divisant de nouveau Zp par le méme
diviseur , augmenté ou diminué d’une unité décimale du dernier
ordre; et on ne conservera dans le résultat que les chiffres décimaux
communs aux deux qunotiens. On se rappellera au surplus que, dans
les extractions de racines quarrées, dés qu'on a obtenu plus de la
moitié des chiffres de laracine , on peut obtenir les suivans par une
simple division. .

Ce procédé est déja bien simple, mais il est encore susceptible
de quelques simplifications assez motables. Et d’abord , I'inégalité
des termes de la série diminuant continuellement, & mesure que
ces termes seront plus avancés vers la droite, on parviendra bient6t
3 deux termes consécutifs qui, abstraction faite de la virgule , se
ressembleront, vers la droite, dans plus de la moitié¢ de leurs chiffres :
or, lorsqu'on en sera parvenu la, on pourra, sans erreur sensible,
dans le degré d’'approximation qu'on aura eu en vue, substituer des
demi-sommes aux racines quarrées de produits ; de sorte que le
calcul des termes ultérieurs de la série se poursnivra, d’une maniére
tout 2 fait simple et uniforme, en prenant constamment, pour chaque
terme , la demi-somme des deux qui le préceéderont immédiatement.
Cette remarque , qui n’a point échappé & M. Schwab , peut se jus-
tifier eomme il suit.

Tout se réduit évidemment & prouver que la demi-somme de
deux nombres eutiers, qui ont plus de la moitié de leurs chifires
pareils vers la gauche, ne differe pas de plus d’une demi - unité
de la racine quarrée de leur produit. Or, soient en effet A le plus
petit de ces nombres et A2 le plus grand; il s'agira de prouver que

Tome V1 29
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(A+ia)—y TFaE <L
ou, en transposant et multipliant par 2,
2A4(a—1) </ Aijaa .
En quarrant et réduisant, cette inégalité devient
(a=—1)>
4A
Or , puisqu'on suppose que & n’a pas la moitié du nombre des

<1.

chiffres de A, a* et & plus forte raison (¢—1)* n’'aura pas autant
(a—1)?

4A
ble fraction , comme 'exprime Dinégalité ci-dessus.

sera une vérila-

de chiffres que A, d'ou il suit qu’en effet

Voild donc déja notre procédé devenu bien simple ; mais, quelque
facile qu’il puisse étre de prendre la demi-somme de deux nombres ,
si I'on faisait le calcul avec beaucoup de chiffres décimaux , on
pourrait se trouver entrainé & répéter un grand nombre de fois cette
opération , avant d’étre parvenu 2 anéantir totalement la différence
entre deux termes consécutifs : voyons donc si nous ne pourrons
point encore nous épargner ce travail.

Soient @ , & respectivement , deux termes consécutifs d’une suite
dont chaque terme est la demi-somme des deux qui le precedent
immédiatement ; les termes subséquens de cette suite seront

a-}-b a-4-3% 3a+4-5b S5a4-116 11a-4-21b .
‘2 ) 4 b 8 ki 16 3 32 ) teere o
et il s’agira de connaitre le dernier terme de cette suite , prolongée

a l'infini. Pour le découvrir, donncns & ces termes cette autre forme
2(a4-2b)4-(a—b) 4la~4-2b)~—(a—d) 8(a4-20)4-(a~b)

3.2 ’ 3.4 ? 3.8 e
on verra alors que son terme général est
a--2b a—b
\ ___(___l)n'. .
3 3.28

Or, dans le cas de » infini, la szconde partie de cette valeur
s'évanouit ; d’od il suit que le dernier terme de la série est i(a-}-28).
On pourra donc, dés qu'on sera parvenu a deux termes consécutifs
différant dans moins de moitié de leurs chiffres décimaux, calculer
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de suite le dernier terme de la série, sans passer par le calcul des
intermédiaires. (*)

Il n’est plus question présentement que de fixer le choix du po-
lygone primitif devant servir de point de départ. Ce choix pourrait
étre fait d’une infinité de manicres différentes ; mais de tous les
polygones réguliers , le plus simple est, sans contredit, le systeme
de deux droites qui se confondent : c’est un polygone de deux cotés ,
ayant deux angles nuls., dans lequel le cercle inscrit a un rayon
nul et le cercle circonscrit un rayon égal & la moitié de I'un de
ses cotés ou au quart de son périmétre; de sorte qu'en prenant ce

. _ 14 . 2
rayon pour unifté , ce pénmetre sera 4; et — deviendra — .
’ 27 =

Ainsi’, la suite dont les deux premiers termes sont o et 1, et dont
les autres sont alternativement, a partir du troisiéme, moyens par
differences et par quotiens entre les deux qui les précedent immé-

. 2 .
diatement , converge sans cesse vers la valeur de — (**). Voici le
k.

calcul de ces termes, avec sept chiffres décimaux , et en ayant égard

aux observations précédemment faites, )

(") Ce qui précéde revient a dire que, si I'on a I"équation aux différences
2Zx+-:.:Zx+Zx+x >
3Zp =2Z,+27, ;

d’ott résulte encore ce théoréme de géométrie.

THEOREME. Soient marqués arbitrairement , sur une droite indéfinie deux
points 1 et 2; puis, sur la méme droite , soient marqués successivement un
point 3 également distant de 1 et a2, un point 4 également distant de 2 et 3,
un point 5 également distant de 3 et 4 , et ainsi de suite. Cette opération ,
continuée & linfini , conduira & un point final qui se trouyera situé aux devx
tiers de Dintervalle entre 1 et 2 , & partir de 1.

(**) De la résulte ce théoréme.

T/héoréme. Soit CMS (fig. 4) un triangle isoctle , rectangle en M. Soit prolongé
MC, de sorle que CC'==CS , et soit menée SC/, dont & soit le milieu j soit
fait C/C'==Cr9, et soit menée S'C”, dont S soit le milieu ; soit fait C#C"=CrSx.

il s’ensuivra
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(1)= .....=0,0000000; (10)= V BIX() 50’6?‘76435 ;
(2)# e v ... =1,0000000; (11)=1%'g)+(10)} =0,6361083 ;
(3)=H(1)+ (2)}=0,5000000; (12)= v/ Goxan ~ =06368754 5
@)= v @B =07071068; (13)=H11)+(12)} =0,6364919 ;
(5)=}{<3)+(4)}.—;0,6035534-, (14,= vV a2xa3) =0,6366836 ;
(6)= v GG =06532815; (15)=2(13)4-(14)} =0,6365878 ;
(7):2{(5)—{—(6)}50,6284174; (16)= V' Hx05 50,63f§6357 ;
(8)= v/ ®x) =0,6407389; (173=1(15)+(16} =0,6366117 ;
(9)=H(7)+(8)}=0,6345731; (0)=%16)42(17)}=0,6366197 .

On a donc —:—_=0,6366197 d'od -:-r =0,3183098 ; résultat exact

sept chiffres décimaux.

o— —

QUESTIONS PROPOSEES.
Problémes de Geéomeéltrie.

1. DANS la vue de boucher un trou polygonal, fait dans une étoffe qui
aun envers, on a taillé une pitce polygonale de la méme étoffe. Cette
pitce bouche exactement le tron ; mais c’est en mettant Uenvers &
Vendroit. Ne scrait-il pas possible de la déceuper en plusieurs autres
pitces qui, assemblées entre elles, formassent une nouvelle pitce qni
bouchit encore le trou, mais sans offrir cet inconvénient ?

II. Deux polyédres étant symétriques 'un a Vautre, c’est-a-dire ,
¢gaux mais non superposables ; décomposer 'un d’eux en parties qui

assemblées d’une autre mani¢re, forment, par leur réunion , un po-
lyédre identique avec l'autre ? (*)

et soit mende §/C” , dont S soit le milieu ; et ainsi de suite. Les droites
cer, ¢or, CrCm . ., convergeront sans cesse vers le rayon du cercle dont la
circonférence serait 4MS.

(*) M. Legendre a démontré, dans ses Flémens de géoméirie, que deux po-
lyédres symétriques sont des sommes de parties superposables , moins d’autres
sommes de parlies superposables. Celv suffit bien pour constater V'équivalence
des volumes , mais non pour exdcuter la superposition efective.
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PHILOSOPHIE MATHEMATIQUE.

Doutes et réflexions sur quelques principes fondamentaus -
de la mecanique rationnelle ;

Par M. Dusuar , chevalier de Tordre royal et militaire
de St-Louis, professeur & I'écoie royale de lartillerie
et du génie.

A s s e i e R

L)
J’AI déjA insinué, dans le précédent volume de ce recueil (pag. 215),
qu’il y avait une sorte de contradiction, du moins apparente,
entre certaines applications du principe des momens et le principe
qui permet de transporter le point d’application d’'une force en un
lieu quelconque de sa direction. Je me propose de revenir ici sur
ee sujet d'une maniére plus spéciale ; et je commencerai par me
proposer le probléme suivant -

PROBLEME. Des. forces quelconques , appliquées & différens.
points d’un corps solide et ayant une résultante unique , étant
données de grandeur et de position; on demande le point dappli-
cation de leur résultante?

La solutien de ce probléme, qui ne présente aucune difficulté,
serait absolument sans intérét , si I'auteur d'un traité de statique
trés-répandu n’avait fait la remarque que le probl¢me est indéterminé-,
et que le calcul se borne & donner les équations de la droite qui
représente la direction de la résultante, et sur laquelle se trouve
le point demandé. C’est a la page 119 de la statique de M. Poinsot
qu'est faite cette remarque , fondée sur ce que les valeurs des ecor=

Tom. VI, n° VI, 1.%% janpier 1816. 3o
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données du point d’application de la résultante se présentent sous
la forme 3, lorsqu’on veut les déterminer par les équations aux-
quelles conduit la recherche de cette résultante. Cela doit en effet
étre ainsi, suivant M. Poinsot, parce que la résultante pouvant étre
supposée appliquée & un point quelconque de sa direction , il est

impossible que le calcul dctermine 'un de ces points de préférence
3 tous les autres (¥).

Si ce raisonnement était exact, il s'ensuivrait que le calcul ne
pourrait donner le point d’application de la résultante de deux forces
paralleles, ni de deux forces qui agissent suivant une méme droite,
ni méme de deux forces qui concourent en un point; car la résul-
tante pouvant étre supposée appliquée a un point quelconque de
sa direciion , il serait impossible que le calcul déterminat Iun de
ces points de préférence a tous les autres (**).

Sans pousser plus loin ces conséquences absurdes, il est facile
d’apercevoir le defaut da raisonnement de M. Poinsot. Le principe’,
supposé vrai, qu'une force peut étre censée appliquée a un point
quelconque de sa direction n’empéche pas que la résultante d’un
certain nombre de forces, agissant sur un corps solide , n’ait un
point d’application déterminé (***) 5 et , si d’aillenrs les équations

(*) M. Poinsot n’a fait, ce me semble, en ceci, quénoncer d’une maniére un
peu plus posilive ce que tous les géomeétres qui ont écrit dans ces derniers temps
ont implicitement admis. Aucun d’eux n’a songé , plus que lui, 2 assigner le
point d'application de la résultante. Javouerai que moi-méme jai constamment
jusquici professé la méme doctrine qu’eux,

J. D. G.

(**) Jai aussi constamment pensé jusqu’ici que le calcul ne pouvait proprement
donner le point d’application de la résultante , soit de deux forces paralléles | soit de
‘deux forces qui agissent suivant la méme droite , soit enfin de deux forces qui
concourent en un méme point. J. D .G.

¢** 1l me parait, au contraire, que ces deux choses s'excluent formellement ;
quest-ce en effet qui distinguerait, autrement , le point d'application effeetif de
la résultante de celui ol on peut la supposer appliquée ? 7D

. D. G.
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qui doivent déterminer la résultante donnent des valeurs 2, pour
les coordonnées de son point d’application ; au lieu de dire , avec M.
Poinsot , que cela doit étre , parce que la résultante est censée ap-
plignée a un point quelconque de sa direction; on dira que cela
doit étre, par la raison bien simple que les équations d’une droite
ne déterminent pas l'un des points de cette droite plutét que tout
aatre ; et on en conclura qu’il faat, outre les équations de la ré-
sultante , une autre équation entre les coordonnées de son point
d’application , pour la détermination compléte de ce point.

Solution. Soient donc X’ ¥’ Z/; X/, ¥/, Z/, .... les composantes ,
paralléles aux axes, des forces P/, P/, ..., appliqués a différens points
(= ,y,2), (&’ ,y", 2/), ... &un systeme solide libre. Soient X, ¥,
Z les composantes paralléles aux axes de leur résultante P, dont
(#, y, z) soit le point d’application; on aura, comme l'on sait (*), pour
Pintensité de la résultante ,

P=y/ CXy+4EY»+4E.2 3 (1)
et sa direction sera donnée par les trois équations

y2 L/ =22 Y/ =2y Z/—Z2.2'Y ,

22X maB. 2/ =22/ X'—32.2/Z" , \ (2)
238, Y —yE2 X/ =Z.2/Y—=Z.y'X ;

dont chacune est comportée par les deux autres, au moyen de la
condition

(Y2 =22 Y2 X (2.2 X/ 2 x/ Z) S ¥ (S, Y Im3,y' X1V 2. Z)=0 3)
qui exprime que la résultante est unique. €es équations se réduisent
donc ainsi & deux, et ne peuvent econséquemment déterminer autre
chose que la direction de la résultante, et non les coordonnées z,
¥, = de son point d’application. 1l s’agit donc de trouver une nouvelle
€quation entre les mémes coordonnées.

(* Voyez Prony, Francoeur , Poinsot, Labey ou Poissos.
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Soient «, 8, v, respectivement , les angles que forme Ia direction
de la résultante P avec les axes des x, y, z; ces angles seront
connus par les équations de cette résultante, et l'on aura

PCos.e=3=.X’ , PCos.p=3%.Y" , PCos.y=Z.Z/ . (4)

Cela posé , si 'on imagine un plan normal a la direction de la
résultante , et passant par son point d’application ; en désignant
par @, b, ¢ les coordonnées de ce point, la perpendiculaire abaissée
sur ce plan du point (a/, y/, 2z’ ) aura pour longueur

(2'——a)Cos.a~+y'—b)Cos.g4(z/—c)Cos.y . (5)

Si ensuite on décompose chacune des forces X/, ¥7, Z/ en deux

autres , I'une perpendiculaire et 'autre paralléle au plan dont il
s'agit, les composantes de la premitre sorte seront

X’Cos.« , pour le force X/ ,
Y'Cos.g , pour la force ¥’ ,
Z'Cos.y poﬂr la force Z/ ;
d'ou il suit que
X'Cos.a-+Y"Cos.p~+Z/Cos.y 6)

sera la composante totale de P/ paralltle 3 la résultante , et qu'ainst
son moment par rapport a notre plan normal sera (5)
"(X/COSJ&-*-Y’C03.}3+Z/COS-7>{(x’—a)cos,a-*-(y/—b)Cos_p.*.(zl_c)cos.y} , )
ou, en développant,

2/ X/ Cos.2 a4y’ Z'=~2'Y")Cos.Cos.y
-y’ Y"Cos.* g+ (2’ X'z’ Z")Cos.4Cos.«
)
+z’Z’Qos.’y+(x’Y/+y’Z/)Cos.uCos.ﬁ

—(aCosa~+-6Cos.s~+¢Cos.)(X'Cos.a=4¥"Cos.t+Z/Cos.y) .
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Si I'on exécute la méme décomposition pour les autres composantes
Pl P, ... du systtme, on en déduira des résultats analogues,
On aura donc , au lieu des puissances P/, P/,... du systéme,
d’autres puissances , dont les unes seront paralleles 3 la résultante,
tandis que les autres lui seront normales ; ces derniéres devront donc
se détruire; et la somme des momens des premieéres , par rapport
a4 notre plan normal devra étre nulle , puisque ce plan est supposé
passer par le point d’application de la résultante. En exprimant donc
que la somme des [ormules semblables & (8), relatives & toutes les
forces, est nulle; remarquant que les quantités constantes 2, &, ¢,
Cos.«, Cos.s, Cos.y et leurs fonctions peuvent étre placées hors du
signe &, et quenfin

=(X'Cos.a4-X"Cos.p+2Z/Cos.y)=P , (9)
il viendra

P(aCos.a~+bCos.~4cCos.y)
Cos,’»E.Lr/X’-I—Cos.ﬁCos.yE_(y’Z/+z’Y’)
= +Qos.’ﬁz.y’I”+Cos.yCos.aS(z/X’+x’Z’) I ; (10)
~+Cos.*y2.2'Z ’+Cos.»Co¥.p2(x/Y .Y

ou enfin, en remettant {pour Cos.e, Cos.8, Cos.y les valeurs donndes
par les dquations (4),

P03, X'+ b2, Y4032/
(X)) 52/ XI5, Y/2.2/5(y' 2/ 42 V)

=| FEV)PEy V42 25X X2 Y. (11)
(2. 2/) 5.2/ 2 5. X2 Y Z (2! Yy’ XV

Or, puisque @, &, ¢ sont les coordonnées du point d'application
de la résultante, on doit avoir (2)
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B3.Y/ 3. Y=y 2/ —2'Y") ,
2 X/—0% Z' =2/ XI—x'27) , | . (12)
a2V —b2. X =%z Y'—y'X') 3

En combinant deux quelconques de ces trois équations avec l’équa—
tion (r1), posant pour abréger

Sy/Z!—2.2Y'=4 ,
B X—Z2x'Z'=B , . (13)
22 Y—Zy/X'=C ,
EX P22 X4 (3.Y 22y Y -(2.2') 2.2 2/ =K ; (1)
> O WAMNIAL 20 €
225 X2 XI-2'27) ) =§ , (15)
+-2.X/Z.Y'E(2' Y-}y X7)

et ayant égard aux équations (1 et 3), il viendra

a= -sz{P*(CZ.Y/—BS.Z()+(K+S)2.X/§ ,

b=%;{P*(AE.Z’—-CS.X/)—!—(K-{-S)E.Y/}, L (16)

= ?Z {P(BE.X/—AZ.Y)4(K+8)=.2% ;
telles sont dc;nc les coordonnées du point d’application de la ré-
sultante P. Sil'on supposecette résultante parallele al'axe des z, onaura

EX'=0, Z2Y=o0, 2Z'=P;
d’ot '
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K=P32z2Z2!, S=o ;
ee- qui donnera

B A .22
0= 5=+-—E s =5

¢’est-a-dire ,
_ (& Z1—=zIX7) S(y! Z!=—=z'Y") _ =22z

a= —_ .

2.2 r T .2/ ! PR

Si en outre on supposait que les puissances primitives P/, P/, P/,
sont paralleles a cet axe des Z , ces puissances ne seraient autre
chose que les composantes Z/, Z/, Z"!, ... ; tandis que les autres
composantes X/, X/, X/ ... Y, Y, Y, ... seraient nulles ; on

aurait donc alors simplement

=.xlZ SylZ! .22
= = 5 (17)

a=—- = —— c=
sz’ =z’ P’

formules qui vont nous servir & constater une erreur , dans la théoris
actuelle de la pression des fluides sur les corps flottans (*).
A )

(*) Serait-ce trop hasarder que de dire qu'en calculant les formules (16) , M,
Dubuat n’a peut-étre fait autre chose qu'assigner un point de la direction de la
résultante , lié par une loi géométrique ou analitique tout & fait arbitraire , avee
d’autres points, pris arbitrairement sur les directions des composantes ? Qu’est~
ce en effet que le moment d'une force ? Peutil étre quelque chose indépen-
damment d’une définition ? Et, quelque définition qu’on en veuille donner , les momens
peuvent-ilsavoir , & priori, quelques propriéiés non renfermées, du moins implicites
ment, dans la définition qu'on aura voulu en donner? Fai déterminé la ré-
sultante de plusieurs forces paralléles ( et je n’ai eu nullement besoin pour ccla
de connaitre leurs points d’application )5 je cherche la “distance de cette résul-
tante & un plan fixe , parallele aux directions des forces ; je trouve que cette
distance est égale & la somme des produits des composantes par leurs distances
3 ce plan, divisée par la somme de ces mémes composantes , c’est-a-dire , par
la résultante ; j'en conclus que le produit de la résultante par sa distance a un
plan fixe , paralléle & la direction commune des forces , est €gal 3 la somme
des produits des composantes par leurs distances au méme plan ; je prévois que
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On sait que les pressions exercées par un fluide pesant sur les
divers points de la surface antérieure d’un corps flottant, ont une
résultante unique et verticale , égale au poids du volume de fluide
déplacé, et passant par le centre de gravité du volume de la ca- .
réne, supposée homogéne. A 1’égard du point d’application de cette
rdsultante, il est le méme , suivant tous les auteurs d’'Hydrostatique,
que le centre de gravité du volume de la caréne; cependant, si
on le détermine par les formes que nous venons d’exposer, on
trouvera , en le comparant & ce centre, que la verticale comprise

N

je serai souvent dans le cas de rappeler cette proposition; celte pensée me fait
désirer d’en pouvoir abréger I'énoncé™: dans “cclte vue , je conviens d’appeler
MOMENT d’une force le produit de cette force par sa distance 2 un plan parale
lele a sa direction; et dés-lors ma proposition se réduit a dire simplement que
le moment de la résuliunte est égal & la somme des momens des composantes,
Tout est , dans ce cas, clair et intelligible ; mais , du moment que je compare
une force & un plan non paralléle 4 sa direction , je n’apergois plus de moment,
du moins d'aprés le sens que je viens tout-a-Uheure d’attacher 4 ce mot. A la
vérité , je pourrais bien , en généralisant la définition , appeler MOMENT d’une force
Te produit de cette force par la distance ‘de son point d'application & un plan
guelconque ; mais, s'il est admis que ce point peut élre pris arbitrairement sur
sa direction , il s’'ensuivra , comme M. Dubuat I'a fort bien observé lui-méme
¢ Annales , tom. V , pag. 215), quexcepté le cas du parallélisme au plan, le
moment d'une force est Zout ce gqu'on voudra.

En vain objectera-t-on, contre cette doctrine, que tous les géométres recon~
maissent lexistence d’un centre des forces paralleles ; qu'est-ce, en effet, que ce
centre ? le voici : on prend arbitrairement, sur "les directions de plusieurs forces
paralleles , des points que on suppose fixes; on imagine ensuite que les forces ,
toujours. appliquées & ces points, changent d’une manitre quelconque leur direc-
tion commune; on trouve que , dans ce changement , la résultante est toujours
dirigée vers un méme point fixe , et c’est ce point qu'on nomme le centre des
Jorces paralléles. Mais , outre que rien de semblable ne saurait plus exister, lors-
que les forces cessent d’élre paralleles; qui ne voit que , méme dans le cas ok
elles sont telles , ce qu'on appelle centre des forces est tout aussi arbilraire et
vaziable gue les points pris arbitrairement sur les directions de ces forces?

J. D. G.
enire
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entre le point d’application de la résultante des'pousse'es du Huide
et le plan de flottaison est double de la verticale comprise entre
ce méme plan et le centre de volume de la caréne. Cest donc une
erreur de dire que ces deux points se confondent en un seul, Ce-
pendant cette erreur serait assez indifférente , si le principe déja cité,
gu'une force peut étre censée appliquée & un point quelconque de
sa direction , était vrai géncralement et sans exception; car, en
vertu de ce principe, le centre de volume de la carénc, qui est
toujours sur la direction verticale de la résultante des poussées du
fluide , pourrait étre pris pour le point d’application de la résul-
tante. Il en serait de méme & I’égard d’une résultante ou méme d’une
force quélconque-, il suffirait, dans tous les eas, de connaitre sa
direction , et la rccherche de son point d’application serait teut a
fait inutile. Or, nous avens déja eu occasion de remarquer ( An-
nales , tom. V, pag. 215), qu’il n’est pas toujours permis de dé-
placer le point d'application d’une force, et de le perter sur un
autre point de sa direction (*). En revenant ici sur cette remarque,
nous allons essayer de développer ce que nous n’avions fait qu’in-
diquer en Iendroit cité.

Le principe dont il sagit n’est plus anjourd’hui réputé une simple
hypothése ; c¢’est une proposition démontrée , ou du moins que l'on
croit l’¢tre, et dont l'énoncé est:

.» On ne change rien & laction d'une force , en transportant sen
» point d’application en un peint quelcongue de sa direction, pourvu

(* 1l est permis, je crois , de déplacer le point d'application d’une force ,
lorsque cette force doit conserver- invariablement la méme direction ; mais, si elle
doit changer de direction par rapport aun systeme auquel elle est appliquée ou,
ce qui revient au méme , si ce sysiéme doit changer de situation par rapport
4 elle , on ne jouira plus de la méme faculté; le point d’application de la force
sera alors celui par lequel sa direction ne cessera de passer, malgré le change-
ment survenu. C’est , en particulier , le cas des corps pesans; c’est également
celui des corps solides flottant sur des fluides.

J. D. G,
Tom. VL 33
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» que ce second point soit censé lié au premier , par une droita
» inflexible, et que lintensité et la direction de la force soient
» restées les mémes. » .

Admettons d’abord la preposition, et voyons quelles en seraient’
les conséquences.

1.° La condition de stabilité d’un corps solide, flottant sur un
fluide pesant, est que le centre de gravité du corps soit inférieur,
dans la position d’équilibre, au centre des pressions du fluide;ou,
si le premier de ces deux points est supéricur au second, il faut,
pour la stabilité de Véquilibre, que leur distance verticale soit moindre
qu’une longueur donnée par le caleul, et dépendante de 1’étendue
et de la figure de la flottaison , ainsi que de la masse dua corps.
Mais, en se permettant de déplacer, & volonté, le point d’applica-
tion des forces, tout cela se simplifie, et I'équilibre est toujours
stable ou, silon veut, ne l’est jamais. Veut-on que I'équilibre soit
stable? On déplace le point d’application de la résultante des pous-
sées du fluide, dans la position d’équilibre, et on le porte , sur la
direction verticale de cette résultante, au-dessus du centre de gra-
vité du corps; cela suffit, comme nous venons de le dire, pour
gue 1’équilibre soit stable. Veut-on, au contraire , qu'il ne le soit
pas? On porte le centre de pression, sur la méme verticale assez
au-dessous du centre de gravité pour qu’il en soit ainsi. En faisant
ces déplacemens, on a soin de dire que le point d’application de
la, force et le point de sa direction auquel on le transporte sont
censés liés entre eux par une verge inflexible et inextensible (*).

2.° La durée des oscillations d'un pendule dépend, non scule-
ment de Pamplitude des oscillations et du moment d'inertie du pen-
dule, mais encore de la distance verticale de son centre de gravité

(*) Pour parvenir & la condition de stabilité de I'équilibre d’un corps flottant,
on est obligé de comparer sa position d'équilibre & une autre position qui en

soit trés-voisines Il y a donc lieu , dans ce cas, & l'exception mentionnée dans
la note précédente. J. D. G.
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au centre ou 4 l'axe de rotation , dans la position d’équilibre. Or,
le centre de gravité d'un corps est le point d’application de la
résultante des actions exercées par la gravité sur les molécules ma-
térielles de ce corps (*); le centre de gravité peut donc étre déplacé
sur sa verticale, tout comme le point d’application de toute autre
force peut l'étre sur sa direction (**). Ce déplacement étant fait ,
dans la position d’équilibre du pendule , le centre de gravité
élant transporté au centre de rotation, la durée des oscillations est
nulle. On pourrait lui donner une valeur queleonque, en déplagant
convenablement le centre de gravité (***).

3.° Ce que nous venons de dire convient, avec quelques modi-
Acations, & tous les systémes, et, en particulier, 4 un syste¢me de
corps pesans. La distinction des équilibres stables et non stables du
systtme suppose que la hauteur du centre de gravité est variable,
et la détermination de la durée des oscillations, que le systéme peut
faire sur une position d’équilibre stable, dépend de la valeur de
Pordonnée verticale du centre de gravité, dans la position d’équilibre.
En vertu du déplacement des forces, le centre de gravité n’est pas
en un point plutét qu'en un autre de sa verticale; dou il suit qu’il
ne devrait étre question ni de la distinction des équilibres stables
et non stables, ni de la durée des oscillations d’un systéme de corps
pesants, dans tout - traité de mécanique ot on a démontré, désles
premiéres pages, qu’une force peut étre supposée appliquée en l'un
quelconque des points de sa direction (¥***),

La démonstration de ce principe est fondée sur plusieurs autres
- propositions , dont la premitre est celle-ci
« Deux forces égales et contraires appliqtiées aux deux extrémités

(* Dans toutes les situations que ce corps peut prendre dans l'espave.

(**). Ouz, dans le cas d'équilibre ; non , dans celui du mouvement.

(***) Cette seconde objection me parait devoir se résoudr¢ comme la premiére,
(****) Méme réponse encore que ci-dessus.. J. D. G..
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» d'une droite inflexible, et agissant dans la direction de cette droite
» sont en équilibre. »

Il est certain que I'équilibre a lieu entre les deux forces ; mais
la preuve que l'on en donne, et qui consiste & dire qu’il n’y a pas
de raison pour que le mouvement naisse d’un cété plutét que de
l'autre , n’est peut-étre pas aussi claire qu’elle pourrait d’abord le
paraitre. En l'appliquant aux Couples de M. Poinsot, composés de
deux forces égales, paralleles et contraires, on en cenclurait que
les deux forces d’'un méme couple sont en équilibre ; car on pourrait
dire aussi qu’il n’y a pas de raison pour que le mouvement naisse
plutét dans le scns de 'ane de ces forces que dans le sens de
I'autre (*). Si Pon objectait que les momens des forces, par rapport
au centre de masse du corps solide auquel on les suppose appli~
quées pouvant étre inégaux, cette inégalité détruit I'indentité entre
les actions des deux forces, nous objecterions 4 notre tour que la
méme inégalité de momens peut exister dans le cas de deux forces
égales et contraires, appliquées aux extrémités d’'une droite faisant
partie d’'un corps solide , et agissant dans ladirection de cette droite (**).
Les momens des forces , par rapport 2 un plan normal i leur
direction , et passant par le centre de masse du corps, peuvent
étre inégaux ; ce qui détruit aussi lidentité parfaite que suppose la

(* Clest aussi 1a ce qui arrive ; le systéme n’est alors entrainé dans le sens
d’aucune force, ou plutdt il Pest également dans le sens de I'une et de Pautre;
car c’est A cela que revient au fond le mouvement de rotation que ces forces
tendent a faire naitre. ‘

(**) L’une et Pautre objections me sembleraient étre tout au moins prématurdes ;
on ne peut gulre savoir ce que c’est que des momens, ni de quelles proprictés
ils jouissent, lorsqu’on n’en est encore qu'a la démonstration du principe dont
il s’agit ici. D’ailleurs , encore une fois, loin que la mécanique doive recevoir
ses lois *de la théorie des momens , cette théorie me semble au contraire devoiy
étre absolument subordonnée aux principes de celle science ; principes aun défaud
desquels les momens sort et ne peuvent étre que Jes fonctions: tout & fait in-
signifiantes. : : J. D. G,
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preuve. Mais laissons li cette preuve, et voyons la suite de la dé-
moastration.

. La seconde proposition dont on y fait usage peut étre dnoncée
de la maniére suivante.

- « Si des forces appliquées a un systdme sont en équilibre , elles
» se détruisent, et sont i l'égard du systéme, comme si elles n’exis-
» taient pas; en sorte qu’il est permis, dans tous lescas, de faire
» abstraction de ces forces, lorsqu’elles sont appliquées au systéme,
» ou.de les y supposer appliquées lorsqu’elles ne le sont pas réel-
» lement. »

C’est principalement sur celte proposition , admise jusqu'a présent
sans preuve, qu'est-établie la démonstration du théoréme relatif au
déplacement du point d’application des forces. Il importe done
d’examiner si cette proposition ‘est vraie en général, ou si, au con-
traire , elle admet des exceptions dans quelques cas particuliers.

Or, les équations del’équilibre et celles du mouvement d’un systéme
étant respectivement

=/ Xdo+ Ydy+Zdz)=o0 ,

d(""Z"’) = 3(Xdz-+Ydy+42dz) ;

Si on ajoute aux forces' X, ¥, Z, ou si l'on en retranche dautres
forces en équilibre, etsatisfaisant par conséquent i la premiére équa-
tion , il est évident que ces nouvelles forces ne changeront rien 2
Pexpression X(Xda+Ydy--Zdz), commune aux deux équations;
d’otr il semblerait permis de conclure que des forces en équilibre se
détrnisent et s’évanouissent également , soit dans les formules de la
statique soit dans celles de la dynamique. Mais on sait que, pour
obtenir certaines conditions ou pour parvenir A certains résultats
‘du mouvement d’un systéme , il faut différentier la seconde équation,
et évaluer la différentielle d*.Z.mn*, dans une position d’équilibre.
Cette différentielle devient alors une fonction des forces en équilibre,'
telle que ces forees me s’y évanouissent plus; ce qui suffit poui‘
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‘prouver qué des forces en équilibre ne se détruisent pas toujours
et ne sont pas toujours, & ’égard d'un systtme, comme si elles
n’existaient pas. '

Cependant, lorsqu’il ne s’agit que des conditions de Péquilibre ou,
plus généralement , lorsque la solaution d'un probléme n’exige pas
que la formule d=mn* soit différentiée et évaluée dans une posi-
tion d’équilibre, nous venons de voir que des forces supposées en
équiiibre se détruisent., et peuvent étre regardées comme nulles; il
est -dont permis alors de changer le point d'application d’une force,
et de le porter en un autre point de sa direction, pourvu (et
¢’est la condition énoneée dans tous les traités ) que le second point
soit lié ou censé lié, c'est-d-dire , regardé comme lié au premier, par
uneverge inflexible et inextensible.

Ici se présentent naturellement deux questions. Que signifient ces
expressions : cemsés lids ow regardés comme liés? Sile point au-
‘quel on transporte la force fait partie d’un systéme, sa liaison avec
le point d’application est déterminée par la nature du systéme; elle
est par conséquent indépendante de tout ee qu’on peut imaginer en
disant que les deux points sont liés ou censés liés entre eux par
une verge inflexible et inextensible. Si-, au contraire, le second point
est pris hors du systtme, sa liaison avec le premier est tout a fait
arbitrdire, et toujours telle qu’'oh voudra le supposei‘. La fiction
exprimée par ces termes : censés lids ou regardés comme lids, est
donc inutile dans le second cas et contradictoire dans le premier (*).
On éviterait ce double inconvénient, en réduisant la condition du
déplacement des forces & ce que le second point, s'il fait partie

(™ Quelques auteurs, pour démontrer les conditions de I'équilibre du polygone
fimiculaire , transpertent d'un nceud au nceud voisin les points d’application des
forces ou de leurs résultantes. Ces noeuds ‘sont donc censés liés entre eux par
une droite inflexible. Cependant, d’aprés la définition du polygone funiculaire ,
donnde par les mémes auteurs , les noeuds sont assemblés par des cordes flexibles 3
il y a donc ici contradiction, '

. " Note de M. Dubuat,
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du systtme, soit tel que sa distance au premier soit, par la nature
méme de ce systtme, constante et invariable. Mais, cette condition
est-elle absolument nécessaire? et ne peut-il exister qu’une seule
espéce de liaison entre deux points, dont I'un est le point d’ap-
plication d’une force, et l'autre celui auquel il est permis de trans-
porter ce point d’'application ? telle est la seconde question qu'il s'agit
de résoudre (*). .

Or, la propriété en vertu de laquelle un point situé sur la direc—
tion d’une force peut étre pris pour le point d’application de cette
force , consiste en ce que deux forces égales et contraires , appliqudes
aux deux points, suivant la direction de la droite qui les. joint, sont
en équilibre. Il faut donc, aprés avoir posé les équations del'équi-
libre , en conclure les équations de condition qui peuvent avoir
lieu entre les coordonnées de ces deux points.

Soient donc x, ¥, z, 4/, ¥/, &/ ces coordonnées; X, ¥, Z,
~X, —~Y, —Z les forces égales et opposées appliquées aux deux
i)oints; solent aussi

(") Voici comment j’ai cru devoir entendre jusquici la faculté de déplacer le
point d’application d’une force. Une force' étant appliquée A un point d'un sys-
téme , je prends arbilrairement un second point sur la direction de cette force,
Si ce point est un point du systéme qui, par sa nature, soit invariablement lié
avec le premier, je suppose que la force lui est appliquée ; si c'est, au contraire,un
point de Pespace , tout & fait étranger au systéme , je ne puis y transporter la
force sans imaginer , au peéalable, une liaison de ce point avec le premier. II
m’'importe peu , au surplus, que la condition de distance invariable entre les
deux points soit nécessaire ; tout ce qu'il faut pour mon_ but, cest qulelle soit
suffisante.

Dans la statique, il doit étre permis , en outre , de transporter une force d’un
point d’un systéme & un awtre point du systéme non li€¢" avec. hi d’une maniére
invariable ; car, lorsque Péquilibre existe dans un systéme, cet équilibre doit sub-
sister ; 4 plus forte raison, si lon congoit que le systéme se soit tout-a-coup
solidifié. On peut donc , dans le pelygone funiculaire en.éguilibre , supposer tous
les nceuds liés entre eux d’une maniére invariable,

J. D, G,
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' Adz++Bdy+Cdz+A/da'+Bldy+Cdz'=0 ,

Ddz4-Edy+Fdz+-D/dz'+E/dy/'+-Fdz'=o0 ,

les équation de condition, entre les coordonndes; les équations de
Véquilibre seront

X+rd+pD4-=0 , —X4rA'4-uD/+.=o0 ,
Y4-aB4-wE+..=0 , ==Y+4aB'+pE/4-..=0 ,
ZArNCHAuF+..=0 , —Z4rC'A-pF'4..=0 ,
a et s étant deux indéterminédes. En nomm;;nt R la résultante des
forces X, Y, Z et désign;?nt par s la distance entre les deux

points on a

B ials
’

Lzt

X=R.

Y—R .y—-'s'f . Z=R.

R S i

d’ot il est facile de conclure
x—x' .‘t-—x’
= — 4D , A= . —— ~-«D/,
S

sl !
B2 s, b=y I

Zemaz! e 7

FoF , C=——p. ——teF/;

§ S

C=p.

pet « étant des indéterminées dépendant des premitres. Substituant
ces valeurs dans la premitre équation de condition, il vient
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;'-3 (#—2")(dzmmdz’)H(y—y ) (dy—dy)4-(z=z/)(dz -dz/)}
d-2(Ddz+Edy+Fdz+D/da/-+-E/dy'4-Fldz/=o0 ,

ou simplement
(z—2')(dz—dz’) A= (ymeay’)(dy mmdy’)4-(2=2/)(dz=—d2') =0 .

On trouverait le méme résultat en prenant les valeursde D, E, F,
D', E’, F/, et les substituant dans la seconde équation de con=-
dition. Donc il ne peut y avoir qu'une seule équation de condition
entre les coordonnées des deux points; et cette équation exprime
que la distance entre ces deux points est constante et invariable.

Il suit de tout ce qui a ¢été dit ci-dessus que le théoréme relatif
au changement du point d’application des forces est sujet a des
exceptions, dans plusieurs cas connus; que, hors de ce cas, le
théoréme est. démontré , ainsi que la condition & observer dans la
maniére de déplacer ce point. Mais il se présente encore ici une question
% examiner; c’est la suivante ;

Le théoréme relatif au déplacement du point d’application des
forces, peut-il étre démontré au commencement d’un traité de mé-
canique ; et peut-il conséquemment étre considéré comme devant servir
de fondement & cette science ?

En réduisant la question au seul cas de I'équilibre , pour lequel
le théoréme est vrai, généralement et sans exception, et en I'énon-
cant de la manitre suivante : Lorsqu’rl sagit d’exprimer les con-
ditions de I'équilibre d'un systéme , il est permis de trensporter les
points dapplication des forces & des points quelconques de leur
direction , pourva que ces poz’h{s , 8'tls font partie du systéme solent
¢ des distances fizes et invariables des points réels d’application (*);

¢*) JYavoue que je n'ai jamais bien compris ce que pouvait étre , en statique-,
le point réel & application d’une force. Lein que je croie difficile d’admettre

Tome FI. 32



218 SUR LES PRINCIPES
en I'énongant , disons-nous, de cette manidre , sa démonstration
dépend , comme nous 'avons déjh remarqué, de celle d’une autre
proposition , laquelle , réduite aussi au cas de Véquilibre, est : §7,
parmi les forces appliguées & un systéme, il s’cn trouve qui soient
d’elles-mémes en équilibre , leur existence dans le systéme ne chan-
gera rien aux conditions de l'équilibre entre les autres forces qui
lui sont appliguces.
_ Clest donc cette dernitre proposition qu’il faudra démontrer , 4
moins pourtant qu'on ne veuille I'admettre comme évidente d’elle-
méme. La difficulté de trouver une démonstration antérieure i toute
théorie, et fondée uniquement sur la définition des forces en équilibre,
fera probablement qu’on s’en tiendra & ce dernier parti (*). Mais
alors il conviendra d’expliquer pourquoi cette proposition , vraie sans
exception en stalique, ne l'est point toujours en dynamique (**).
Quoi qu’il en soit, en I'admettant comme un théoréme démontré
ou comme une proposition évidente d’elle-méme, il est facile d'en
conclure la formule générale de l'équilibre entre des forces quel-
conques, appliquées  un systdme aussi quelconque.

Soient en effet X, ¥, Z, X/, Y/, Z/, ...des forces en équi-
libre , appliquées anx différens points (#, ¥, z), (#/, ¥/, 2/), ee.. d'un
systéme ; et supposons la condition d’équilibre exprimée par I'équation

qu'une force peut étre transportée suivant sa direction; il me semble au contraire
que toute la difficulté consisterait plutdt ici 4 hien établir quil n’est pas permis
de transporter une force parallelement 2 sa direction ( Voyez Annales , tom. I,
Ppag. 175, & la note ).

(*) Ce serait assez mon avis, et cela précisément parce que la proposition dont
il agit me semble résulter évidemment de la définition de I'équilibre.

(**) Jai quelquefois pensé que les forces, considérées indépendamment du
mouvement qu'elles peuvent faire nallre , n'étant que des étres de raison , on avait
peut-&tre tort de vouloir isoler la science de I'équilibre de celle du mouvement.
Ne serait-ce pas & celte cause que tiendraient en partie les difficultés théoriques
‘que Yon rencontre des l'entrée de la mécanique ?

J. D. G.
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(1

Soient P, Q, R, P/, Q/, R/,.... dautres forces, indépendantes des
premiéres , appliquées aux mémes points ; la condition de 1’équilibre
entre les forces totales X+P, Y+4-Q , Z-+R , X'+P/', Y'+(/,
Z/'--R!, ... sera

F(X, Y, Z,X,Y ,2Z yux,¥,2,3%, ¥ y2/,.)=0"

FX4-P,Y4Q,Z+-B, X'+ P/ .Y+ Q. Z2/+-R,... 2,5,2,2",y/,2/,..)=0
ou , en supprimant dans le développement la partie détruite par
Iéquation (1), et désignant par F,, Fy, Fy,... les fonctions dé-
rivées de F, prises successivement par rapport 3 X, ¥, Z, e

PF(X,Y,Z, )4QF/X,Y,Z, )V BF{X, Y, Z, .)}uw=0.

En vertu de{la proposition mentionnée plus haut, les forces en
e'quilibre X,Y,Z,... doivent s’évanouir, et il ne doit rester dans
le premier membre de I'équation quc les forces P, Q, B, ..
donc les fonctions dérivées sont des dimensions nulles , et la fonc-
tion primitive F est lindaire ; ce qui change I'équation (1) en celle-ci

AXABYA-CZ+A' X4 BYH-CZ =0 5 (2)

4, B, C, 4, B', C/, ..\ étant des coefficiens encore inconnus ;
mais indépendans de lmtensxte des ferces. '
Cela posé, lorsque la résultante des forces X, ¥, Z , qui agis-
sent le point (z,y,z), est perpendxcu]axre a la surface courbe
sur laquelle ce point est assujetti & se mouvoir , c’est-3-dire ,
lorsqu’on a ’équation de condition Xdx—X dy~+Zdz=o, les forces
X, Y, Z sont en équilibre , et ]a somme des termes qui contiennent
ces forces doit s’évanouir ; donc expression linéaire AX+BY+CZ
doit étre de la forme w(Xdz-+Ydy-+4Zdz) , » étant indépendant
des forces. Par une raison semblable A4/X/-B/'Y/-C'Z’ doit étre



220~ SUR LES PRINCIPES DE LA MECANIQUE.
de la_forme @c\X’dz/-{-I”dy/—[—Z’dz) , et ainsi de suite ; de sorte

que lequauon (2) devient
p(XdoYdy 4Z dz)4-p/ (X' X dy'4-Z/d2 ) F-eei==0 « é)]
De plus, lorsqu’il y a, entre les coordonndes des deux points (£, 2)

(«/,y’, /) , ainsi qu’entre les forces qui leur sont appliquées, la
réaction exprimée par

Xdx+4Ydy--Zdz4-Xda'4-Y'dy'4-Z'dz'=0 ,
les forces X, ¥, Z, X/, ¥/, .Z/ considérées ensemble sont en équilibre R
et doivent conséquemment s’évanouir , et il en serait de méme pour

deux autres groupes de forces quelconques (*); d'oit il suit qu'on
doit avoir ug=u/=gu/=...; & qui réduit I'équation (3) a

#2(Xda-Ydy4-Zdzy=0 ;

dans laquelle le facteur u, indépendant des forces, ne peut donner
une condition d’équilibre en I'égalant & zéro ; donc enfin I'équation
générale de I'équilibre doit étre simplement

=(Xda-}-Ydy4-Zdz)==0 . (**)

" Cette proposition étant facile & établir , nous en fsupprimons la démons-
tration , pour abréger,

Note de M. Dubuat.

¢**) M. Dobuat voudra peut-&tre bien me pardonner la maniére franche dont
yai hasardé de combaltre quelques assertions répandues dans le cours de son mé-
moire. Si méme il considére la liberté avec laquelle j’en ai usé & son égard comme
un témoignage de l'estime que je lui porte, il ne fera que me rendre une justice
rigoureuse, Loin que je regarde son travail comme inutile ou déplacé, je pense
au contraire que c'est & des dissertaions du genre de la sienne que ce recueil
doit étre principalement consacré ; et je me feral toujours un devoir d’accueillir
avec empressement toutes celles qui auront pour objet d’éclaircir et de perfectionner
Jes doctrines fondamentales gqui constituent proprement la philosophie de la science.

J. D. G,
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QUESTIONS RESOLUES.

Solution des deux problémes de géomeétrie proposés &
la page 60 de ce volume.

[a 2 " Vi ¥ VL, VI, VL VI

Solution du premier probléme ;

Par un ABONNE.

LE probléme proposé revient évidemment i celui-ci:

PROBLEME. Déterminer , en fonction des trois angles plans d'un
angle triédre, 1.° angle générateur du cdne droit inscrit; 2.° langle
générateur du céne droit circonscrit ; 3.° enfin , Pangle que forment
entre eux les axes deces deux cines?

Ce probléme se trouvant implicitement résolu dans un article
inséré a la page 329 du précédent volume des Annales ; je n’aurai
pour ainsi dire ici d’autre tiche A remplir qu'd en faire ressortir la
solution démandée ; et je serai conséquemment dans le cas d'y renvoyer
fréquemment (*).

(*) L'auteur de cet article , en le rédigeant, devait ne point connaitre, ou du
moins avoir totalement perdu de vue un article de M. Frangais , inséré dans la
Correspondance sur I'école polytechnique (tom. 1.°T , n.° 9, janvier 1808, pag. 337 ).

Ce sont exactement les mémes résultals et la méme mani¢re de procéder. Au
‘ eurplus , ces formules de M. Frangais avaient déjd paru, antérieurement, dans le
- XIV.e cshier du Journal de Udcole polytechnique ( page 182) ; mais alors sa
marche , pour y parvenir, était un peu différente.
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Solution, Solent a , b, ¢ , les trois angles plans de langle
triddre dontil s'agit; 7 angle générateur du céne droit inserit; A
Pangle générateur du céne droit circonscrit, et D I’angleque forment
les axes de ces deux coénes. Soient faits , pour abréger,

2s=a+b~4c ,
A?=1~Cos.2a—Cos.26—Cos.2c-}2Cos.aCos.6Cos.c .

Si, dans le mémoire cité, on suppose que les trois axes sont les
arétes de notre angle triedre , on aura

o, d=e, (z,x)=b, (=, y)=c. ()

Y. Si, dans I'équation (R), ( Annales, tom. V, pag. 331), on
substitue pour @, 4, ¢, les valeurs données par les équations (13),
( pag. 337 ), en ayant égard aux conventions ci-dessus, il viendra

8in*aSin*(yz , r)+-2Sin.58in.c Cos.(z2 , r)Sin.(xy, 1)
‘ Sin.258in3(zx , r)4-2S8in.cSin.aCos.(xy, r)Sinyz, r) \=A* .
" 8in2eSint(2y , r)4-2Sin.aSinbCos.(yz, 7)Sin.(z2, T)

Si Pon suppose ensuite que la droite désignée par r, dans cette
€quation est I'axe du coOne droit inscrit, lequel doit conséquemment

faire, avec les trois faces de l'angle tritdre, des angles égaux entre eux
et a l'angle générateur r de ce cone, on aura

Aay,r)=(yz, ry=(zx, r)=r;

par suite de quoi notre équation donnera

() 1l faut bien remarquer que nos @, b, ¢ ne sont point ceux du mémoire ¢ité,
T en est de méme de r.
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A:

Sin.'r= Sin.*g=+28in.5Sin.cCos.a ®

=} Sin.25+4-2Sin.cSin.aCos. &
~-Sin.?>¢c+42Sin.aSin.5Cos.¢

il. Si, dans la formule (7), (tom.V, pag.334), on prend pour
r l'axe du céne droit circonscrit, lequel doit faire avec les trois arétes
de l'angle triddre des angles égaux entre eux et a l'angle génératqur
‘R de ce céne, on aura

(r, 2)=(r, y)=(r, 2)=R ;
en conséquence, cette formule donnera
AN

Sin.?g—2(Cos.a— Cos.6Cos.c) ()
~Sin,>6—2(Cos.5 —Cos.cCos.q)
~+-Sin.?¢—2(€os.c —Cos.eCos.0)

IIL Si enfin, dans l’équation (1g9), (tom:V, pag. 338), on
substitue pour Sin(yz, x), Sin(zx, *y) , Sin(2y, z) les valeurs
données par les équations (14), ( tom. V, pag. 337), il viendra

Cos.*R=

Sin.aSin(yz, r)Cos.(r/, x)
ACos.(r, M)={ +Sin.6Sin.(zz , r)Cos.(r, y) } ;
~-Sin.cSin.(zy , r)Cos.(r/, z)

prenant alors pour r I'axe du céne |inscrit, et pour 7/ celui du cdne
circonserit, ce qui donnera, a la fois,

(yz, N=(zx, )=(xy, r)=r ;
)= , N=(" , 2)=h,
¢, =D ;
eette équation donnera

Cos.D= ;—(Sin.a+Sin.6+Sin.c)Sin.rCO§.R ; 3
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formule dans laquelle il ne sera plus question que de substituer pour
A, Sinr, Cos.R les valeurs trouvées ci-dessus (I, IT). (*)
1V. De l'expression (1) de Sin.*r on conclut aisément
4Sin2s

Cossr= . Sin.*a+2Sin.4Sin.cCos.a ° @

~+Sin.*4-42Sin.cSin.aCos.b
~}Sin.2c~4-28in.aSin.sCos.c

et pat suite
A ,
Tangr=-e—r oo+ (5)
or, on trouve aisément
A= 4Sin.sSin.(s—a)Sin.(s—5)Sin.(s—¢) ;
donc enfin
Tang p= \/bm sSin. (s=—2a)Sin.(s—b)Siu. (s-—c) : (6)
Sin.s
formule commode pour Ie calcul par logarithmes. :
Si dans cette derniére formule, on suppose le rayon de la sphére
infini , il viendra
o VSG=a)6—0)5—0) ; (7)

)

expression connue du rayon du cercle inscrit.au tnangle rectiligne,
en fonction de ses trois e6tés.
V. De Pexpression (2) de Cos.*R on conclut aisément
165in.224Sin.*25Sin.2 ¢
SinJR=—— G

Sin.*a—2(Cos.a—€o0s.6Cos.c)

=+ Sin,?)~—2(Cos.b—Cos.cCos a)

-Sin.?¢c—2(Cos.c—Cos.2Cos.5)

et, par suite,

(™ Tl serait intéressant de découvrir si, pour lé triangle sphérique , comme pour
le triangle rectiligne , D est simplement fonction de r et R ( voyez Annales,
tom. III, pag. 347). Le moyen de s’en assurer serait d’éliminer, entre les équa-
tions (1, 2, 3), deux quelconques des trois angles @, §, ¢, afin de voir si ls

troisitme disparaitrait aussi de lui-méme ; mais ce moyen ne parait pas étre d’une
sxécution trés-facile. J. b. G.

Tang.*
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16Sin.224Sin.214Sin 217

A Tang.*R= - ; (9)
ou, en mettant pour A? sa valeur ci-dessus, et extrayant la racine
quarrée ,
28in.2a8in.25Sin.Z¢
Tang.R= = — : 10) -
§ VSin(san.(s—a)Sin.(s--b)Sin.(s—c) ’ ( )

formule commode par le calcul par logarithmes.
Si, dans cette derniére formule, on suppose le rayon de la sphire
infini, elle deviendra

R

abe
= ; g
Woimaehoms + (Y
expression connue durayon du cercle circonscrit au triangle rectiligne ,
en fonction de ces trois cotés.

ST

Solution du deuxiéme probléme ;

Par M. BErarDp , principal et professeur de mathématiques
du collége de Briancon , membre de plusieurs sociétés

savantes.

§ I

Trouver le rayon de la sphére inscrite & um téiraédre ?

Soient ABCD le tétratdre donné; :
AireBCD=A , 4ireCDA=B , AireDAB=C , AireABC=D :
T le volume du tétraédre; r le rayon de la sphire inserite ;
AD=z , BD=54 , CD=¢ , BC=d , CA=¢ , AB=f;

o le centre de la sphére inscrite , @/, 4/, ¢/ ses coordonnées res-
pectivement paralleles 3 @, &, ¢, le sommet D étant lorigine ;
&> %, k les perpendiculaires abaissées des sommets A, B, C

sur les plans des faces oppesées 4, B, C;
Enfin, «, s, les angles que forment deux i deux les arétes

ﬂ, 6’ Ce
Tom. VI 33
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En concevant le tétraddre comme composé de quatre autres ayant
leur sommet commun au point o, et ayant pour bases les quatre
faces 4 , B, €, D du premier ; leur hauteur commune .sera le
rayon cherché r, et I'on aura conséquemment

T=(A+B+C+D) .o 3
d’olt on tire
: T
7= 44B4C+4D ° ()

Do est la diagonale d’un parallélipipéde , dont les arétés concourant

en D sont égales a a’, &/, ¢/; et dans lequel les distances entre

les faces opposées sont toutes égales a . En conséquence , les triangles-
rectangles semblables donnent

ar br cr .
al=— o= — o=— . 2
g 2 h ] k A ( )

Voili donc les coordonnées du centre déterminées. On sait d’ailleurs que
. 62+52_d3 cz+az_e3 az+bz_ £
Cos.a= Cos.p= ——— Cos.9y= s

2be ’ A 2ca ’ S 2ab ?

T'=:abc\/ 7=Cos.2a—Cos.*~—Cos.2y4-2C05.#C05.8Cos.y 3
A=3bcSin.e , B=%caSing , C=abSiny ;

?
D=3y sofifafrdade—di—ei—fs ;

3T T 3T
g::-———, ]z:——, k:—é-'

9

A B

au moyen de quoi r, a’/, &, ¢/ peuvent, sans difficulté , &tre ex=
primés en fonction des six arétes.

Les équations de Do sont

x _ ¥

— e

z
ol 4 P
ou

ou
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= — _'):_ — z
de By~ Cc
ou enfin
L =t = 3)
Sin.«  Sin.8 Sin.y
§. IL

Trouver le rayon de la sphére circonscrite & un tétraddre ?

Tout ¢étant d'ailleurs comme ci-dessus , soient de plus O le centre
et R le rayon de la sphere circonscrite ; en désignant par a”/, &/, ¢/’
les coordonnées du centre de cette sphére, respectivement parallles
aux arétes @, b, ¢, son équation sera o *

(2=—a’")*4=2(y—b"")(z—¢'")Cos.&
d-(y—b"")*2(z—c")(@~=a’')Cos.t ) =R* : (4)
+(z_.g//.)’-}-z(x—a”)(y—-ﬁ”)Cos.'y

Pour exprimer que cette sphire passe par les quatre sommets A,

B, C, D, il faudra écrire que son équation est également satisfaite
par chacun des quatre systtmes de valeurs

Z=0 , ¥y=0 , z2=0 ,
F=a , y=o0, z==0,
zx=o0 , y=b , z=o0 ,

=0 , y=o0 , z=c .
Cela donne

a//’+5”’+c”’+zb”1:”Cos.u-{—zc”a”Cos.p+2a”5’/Co§.y=R' v (B
(a=a/ly2-4=b!/24-c/ 34~ 257! CO8. thmmm 20/ (gumm!!) COs. Bum2 b (quewga!!) Co5.9p =R 2 ,
@13 (bl Y2 gl 3 w20 (B —B//) Co8.0~4-2¢"'a" Cos. g~—=20/'(b=b"") Cos.9=R2 , (6)
613 efb12 (€t ) 22! (commi /) C o5 =20/ (c=="") C0S, B4-26"5'Cos.y==R3
Retranchant I’équation (5) de chacune des équations (6) , celles-ci Qg-

viendront , en divisant la premiére par @, la seconde par & et la
troisiéme par ¢,
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2a’’~2¢/"Cos.p4-28/"Cos.y=a ,
28"/ 424" Cos.py4-2¢"'Cos.a=b ,
2¢""4-25/"Cos.a—}2a"Cos.g=c .

E lant
n se rappe an que 36T

azbzcz ’

1~Cos.?a—Cos.p*—Cos.*y4-2Cos.2Cos.5Cos.y= (7)

on en tire

2p2c2

ol =" Tc {aSin.? ==b(C0s.y—Cos.aCos.6)—c(Cos.s—Cos.yCos.«}} ,
7212
25202 .

b=~ Ti $2Sin.? g—c(Cos.a—Cos.£Co08.5)—2(Cos.5== C0s.«Cos.8)} ,
72
azbc? |, . .

= T §¢Sin.?y—a(Cos.s ~Co0s.9Cos.4)—5(Cos.x—Cos.6Cos.r)} »

substituant ces valeurs dans Idquation (5), etayant toujours égard
b

4 Déquation (7), il viendra
a*Sin.*a—25¢(Cos.u—Cos.£Cos.v)

a2b2c?

= T ~+5*8in.*g-~2¢a(Cos.p—Cos.yCos.«) ) . ®)
~+-¢*Sin.?y—245(Cos.y—Cos.«Cos.2)
§. 1L

Trouper la distance entre les centres des sphéres inscrite et cir-
conscrile & un méme tétraédre ?

En représentant par D cette distance, et conservant d’ailleurs les
mémes dénominations que ci-dessus , on aura

(a/—=a! A2 (b!—b/")(¢/—c!"YCos.4

; D= +(5’—5”)’+2(c’-—c”)(a’—-a”)Cos./3
~+(e'—c!")*4-2(a' —a'") (b'—~b'") Cos.y

. formule dans laquelle il n’est plus question que de substituer pour les

coordonnées des deux centres les valeurs trouvées ci-dessus, et qui se
simplifierait peut-étre , en y introduisant les rayons R et 7. (*)

3 (9

¢* 1l serait sur-tout intéressant de savoir si D peut étre exprimé uniquemen{}%
en fongtion de B et 7. . J. D, &,
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GEOMETRIE ANALITIQUE.

Théorémes nouveaux sur les lignes et surfaces du
second ordre ;

Par M. FrecIER , ancien éléve de T'école polytechnique.
[a T Via S5, Vo Vi Vo Vi Vi %)

J ’A1 annoncé, dans le I111.¢ volume de la Correspondance sur I'école
polytechnique ( n.° 3, janvier 1816, page 394 ), un théoréme en
vertu duquel on peut construire , avec un équerre, pour tout ins—
trument , la normale et par conséquent la tangente 2 une ligne du
second ordre , indépendamment de la connaissance des diamétres
principaux. Je me propose ici de démontrer ce théoreme, ainsi que
plusieurs autres théorémes analogues , sur les lignes et surfaces du

second ordre. .

Une ligne du second ordre étant donnée, et un point fixe étant
pris arbitrairement sur cette courbe ; si I'on prend la tangente en
ce point pour axe des # et la normale qui lui répond pour axe
des y, en désignant par NN la longueur de la normale , mesurée
depuis Dorigine jusqu'au point ol elle rencontre de nouveau la
courbe , par

y=dAz+N ,

4
I'équation de la tangente i cette derni¢re extrémité de la normale,
et enfin par P le rayon de courbure qui répond a lorigine ; I'é-
quation de la courbe dont il s’agit, sera

Jom. V1, no VIII, 1.° féprier 1816. 34
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Nz*+-2Py(y—Az—N)=o . (0
Soit D une droite menée arbitrairement par lorigine , et formant

respectivement avec les axes des x et des y des angles dont les
cosinus soient 2 et &, ce qui donnera

o -br=1 ; (2)
l’équation de cette droite sera
ay=bx ; (3)

en la combinant avec I'dquation (1), on obtiendra, pour les coor-

données de lintersection de D avec la courbe

2NPab

X =
Na24-2Pb2—2A4Pab ’

(4)

2NPb2
r= Naz4-2Pb2=-2.4Pab '

Pour une nouvelle droite D/, passant également par lorigine, et

formant avec les axes des x et des y des angles .dont les cosinus
soient respectivemnent @/, 4/, ce qui donne

a'l2+b/2=1 3 (5>
on aura semblablement

2NPalh!
X=—
Na2-2 Pl :mm2 APa'b °

(6)

_ 2 NPj/2
¥= Na/2oPb/2=—2 APab!

On trouvera aisément d’aprés cela que Iéquation de la corde C

qui joint les extrémités des deux droites D, D/ est, en divisant
par ab/—ba’, : “

{N(ab'+la’)—2APbb \x+-(2Pbl/—Naa\y=2NPbl/ . (7)

Si, pour savoir en quels points la corde G coupe la normale et
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la tangente , on fait successivement , dans cette équation , x et
y=o0, il viendra

2NP
y=—"—, o ®
2P-'"N-I;F,
o 2NP ( )
- Va a’ 9
Ny e

. aar -
d’ott Lon voit que, pourvu que =7 Soit constant, la corde C cou-

pera toujours la normale au méme point ; et que , pourvu que
a a!

3 +-b-; soit constant, cette méme corde coupera toujours la tan-

gente au méme point, quelles que puissent étre d’ailleurs les di-
rections des droites D et D/,
. . , aal .
Parmi les divers cas ou —, ¢St constant, I'un des plus simples est,

sans contredit, celuil ou l'on a

’ N aa”
aa’4bb/=0 , dot -—=—13;
124
les droites D, D’ sont alors perpendiculaires 'une & Pautre; et'le
point fixe de la normale par lequel passe la droite C cst donnée (8).
par la formule
__ =NP '
Y= 2P4N (IO)

De 13 résulte ce théortme

THEOREME 1. 8i lon inscrit & une ligne du second ordre
une sutte de triangles-rectangles ayant tous le sommet de langle
droit situé en un méme point de cette courbe ; leurs hypothénuses
concourront toules en un méme point de la normale menée par
le sommet commun & tous ces triangles; d'ok il suit encore, par
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la théorie des pbles (*), que les points de concours des tangentes
aux extrémités de ces hypothénuses seront tous situés sur une
méme droite.

Si donc , n’ayant d’autre instrument qu'un équerre, on veut cons-
truire la tangente et la normale en un point quelconque d’une ligng
du second ordre, il ne s'agira que de construire , avec i'cquerre , deux
triangles rectangles ayantle sommet de I'angle droit au point dontil
sagit; la droite menée de ce point a I'intersection des hyporhénuses
des deux triangles sera la normale , et conséquemment la perpen-
diculaire mencde & cette droite , par le méme point de la courbe,
en sera la tangente.

Cette construction fournit en outre un moyen assez simple d’ob-
tenir le rayon de courbure, et conséquemment la situation du centre
du cercle osculateur. Si, en effet, I'on désigne par K la distance
de Porigine au point fixe de la normale par lequel passent toutes
les hypothénuses , point que nous venons d’enseigner a déterminer;
on aura (10) )

2NP KN
=——, dou P=!.,—.
2P-4-IN :
1l résulte clairement de notre analise qu’il y aurait une infinité
d’autres cas ol les droites C se couperaient en un méme point de

la normale. Nous nous bornerons 4 signaler celui ou l'on aurait

aa’ l=Bb a o
55 =1 ou ad/= > Ou encore — = — ;

c’est celul ol les droites D, D’/ feraient d’'un méme cété, soit avec
la fangente soit avec la normale, des angles complément l'un de
Tautre. Le point fixe scrait alors donné par la formule

_ 2 NP
y_-zP—-N ’

(*) YVoyez Annales , tome III , page 293.
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a o
Parmi les différens cas ou 7;+'17 est constant , I'un des plus

remarquables est celui ou cette fonction est nulle, Les droites D,
D/ font alors, de differens c6tés, des angles égaux soit avec la tangente
soif avec la normale; c’est-a-dire, en #Fautres termes , que la nor-
male divise en deux parties égalés 'angle formé par ces deux droites.
Le point fixe de la tangente ol concourent alors les droites C est
donné (g) par la formule

ce point est donc celui ou concourrent les tangentes aux deux extré-
mités de la normale. De 13 résulte ce théoreme :

THEOREME 1I. §i Pon inscrit & une ligne du second ordre
.une suite de triangles , ayant ifous un sommet commun , et dont
Langle @ ce sommet soit divisé en deux parties égales par la nor-
male qui lui répond ; les cdtés opposés de ces triangles iront tous
concourir au point de la tangente ou elle est coupée par la tan-
gente & lautre extrémité de cette normale ; d’ou il résulte encore
par la théorie des poles , que les points de concours des tangentes
aux exlrémités de ces Iroisiémes cOtés de triangles seromt situés
sur une méme droite , laquelle ne sera autre ici que la normale
elle-méme.

La vérité de ce théoréme s’apercoit au surplus immédiatement;
en remarquant que l’équation du systéme de deux droites qui, pas-
sant par l'origine, font de part et d’autre des angles égaux avec la
normale ; est de la forme

z*=ry* , (11)

dans laquelle Ao est une constante qui détermine l'angle des deux
droites. Or, en ¢liminant 2* entre cette équation et ’équation (1),
il vient, en divisant par y ,

(Na=2P)y—2P(Az+N)=o0 ; (12)
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équation d'une droite qui, quel que soit A, coupe toujours l'axe

. N
des x au point pour lequel on a F=—— .

1 est aisé de voir, d’aprés cela, que si , par le point de la
s P
courbe que l'on considére, 'on meéne deux cordes divisant en deux
parties- égales les angles que forme la normale avec la tangente,
la droite qui joindra les extrémités de ces cordes déterminera, sur
qui )

la normale et sur la tangente, les points fixes relatifs & nos deux
théorémes.

Une surface du second ordre étant donnée , et un point fixe étant
pris arbitrairement sur cette surface ; si on prend les deux tangentes
conjuguées rectangulaires de ce point pour axes des x et des y et
la normale qui répond au méme point pour axe des z; en dési-
gnant par N la longueur de la normale terminée a la surface,

supposant que l’équation du plan tangent a la seconde extrémité
de- cette normale est

z=Ax+By+N ,

et représentant respectivement par P et Q les rayons de courbure
des sections suivant les plans des zz et des yz; I'équation de la
surface dont il s’agit prendra la forme

N(Qz*~4-Py*)+-2PQz(z—Ax—By—~N) =0 (*). (1)
Soit D une droite menée arbitrairement par lorigine , et formant
respectivement avec les axes des x, des y et des z des angles dont
les cosinus soient @ , &, ¢, ce qui donnera
a~4-b—cr=1 ; (2)
les équations de cette droite seront

cx=az , cy=bz; 3)

en les combinant avec I'équation (1), on obtiendra, pour les coor—
données de D’intersection de D avec la surface courbe,

") Voyez. Annales, tom. 1V, pages 372 et 375.
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2NPQac 3

#= N(Qa{-Pb*yf2PQc(c—Aa—Bb) °
2NPQbc

¥ T N(Qa>~4-Lb)4-2.PQc(c—.Aa—Bb) ’  (4)
2INPQc?

2= N(Qa>~+4-Pb2)4-2PQc(c—.Aa—Bb) ) )

Pour deux autres droites D7, D/ passant également par lorigine,
et formant avec les axes des 2, des y et des z des angles dont
les cosinus soient @/, 4/, ¢’ , pour l'une, et a”, b, ¢/, pour
Yautre , ce qui donne

oY e =, )
on aura semblablement
2P Qa'c! )
%= N(Qa - Pory42P Qo (' dal—Bby °
2INPQb/c!
Y= N@ag PP Qoo—da—bry * (1)
2NPQc’2
“= N(Qa/»4-Pb)42PQc/ (c—dAd—BY) °
_ 2NPQallc! ) \
r= N(Qa//2e-Pb/12)}-2PQc (¢! = Aal'=Bb'") °
. 2NPQb/ !
Y= "2 112y, 1"l / )} (8)
NQa/l2==Pb/2) 42 P Qcl! (c!'==Ada/—Bb'") [
_ 2NPQc"
£= N(Qa!'2ef-Pb!/2) -2 P Qc" (c/'==Aa/'=Bb/') : )

On trouvera aisement, d’aprés cela, que I'équation du plan C
qui joint les extrémités des droites D, D/, D’ est

cc/be'—cb')(NQa/*+NPb'"*—24PQa’c")
~-clc! (b ¢! ~=c'b!") (N Qa*+NPb*—2A4PQac) ) =
¢l (b//cm—c"b) NQa’*4-NPb/*—2APQa’c’)
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cc’{ca’—ac’) NQa/"+NPb'*—2BPQb/c")
A -l {c/a!! —a'c!)(NQa*+-NPb*—2BPQbc) ) y
e a—al’c)(NQa"*+NPb"*—2 BPQU/c)
cc'(ab'— ba’)(NQa'*~ NPb/*4-2P Qc'’*)
o -c'c/(a’b’ —b'a’(NQa*+NPb*4-2P(Qc *) z
~+-c/'e(a’b—b"a)(NQa’*+ NPb/*~+2PQc’*)
=2 NPQcc’c"(ab/c/'—ac'b/'4-ca’b/!'—pa'c!'4-be'a'—cb/a’) , (g)
Cela posé , supposons que chacune de nos droites D, D/, D/,

soit perpendiculaire aux deux autres , nous exprimerons cette cir-
sonstance par les trois équations

aa’ bl Fcc’ =o, I
&a"-b'Y4-c'c!" =0 , (10)
a’a b5 ~4c"c =o; S
lesquelles , combinées avec les relations ( 2, 5, 6 ), donneront
entr’autres (*)
be! —cb! =al'! , ca! —ac’ =b', abl —ba =/
bie—c'b'=a , ca'—alc =b , a'bl—ba'=c , ){(11)
et par conséquent
ablct'—ac'bl!'A-ca’b!—ba'c!'Y-bc'a! emch/al
=a(blc!'— ¢/b")+a' (b c—c’b) +a'(be!—cb’) ) (12)
=a*+¥b4-ci=1 .

En conséquence , I'équation (9) deviendra simplement

(*) Voyez la Correspondance sur Iécole polytechnique , tome III , n° 3,
yanvier 1816 , page 302.
(Vg
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{NQ(cc/a"3-c'eadt c/'ca’) - NP (cc'a/ b c/c! ab2od-c/'calb ™ Yy AP Qec'c!
+{NP(CC/5”3+CIC”b3+C”0bl3)+NQ(Cc,a/mb”’i‘c/c”azb‘i‘c”Ca/’b')—zBPQcc’g//}y-
Fcec! NQ4NP42PQ)z=2NPQcc/c" . (3

Si , dans la vue de savoir en quel point le plan C rencontre
Paxe des z, cest-a-dire, la normale, on fait x et y égaux 2 zéro,
cette derniére équation donnera

2NPQ
= PN Q+HQO+Py (x4)
résultat entitrement indépendant de la situation des droites D, D/,
D”. De la résulte le théoréme que voici :

THEOREME 1il. 8¢, & une surface du second ordre, on ins-
erit une suite de téiraédres rectangles , ayant tous le sommet de
leur angle droit tritdre situé en un méme point quclconque de celle
surface ; leurs faces Lypothénusales concourront toutes en un méme
point de la normale menée par le sommet commun de tous ces
tétraédres ; d'ov il suit encore, par la théorie des pbles , que les
surfaces coniques circonscrites qui auront pour lignes de contact
avec la surface dont il s’agit, ses intersections avec les plans des
Saces hypothénusales de ces tétraédres , auront toutes leurs sommets
situés sur un méme plan.

On voit par la que linscription 3 une surface du seecond ordre

F4

de trois tétraédres rectangles, ayant tous le sommet de leur angle
droit tri¢dre situé en un méme point de cette surface, suffit pour
déterminer la direction de la normale et conséquemment du plan
tangent en ce point. _

Concevons présentement une surface conique ayant' son centre 3
Vorigine , dont laxe soit I'axe des z, c’est-a-dire, la normale, et
dont les sections paralléles au plan tangent, elliptiques ou hyper-
boliques , aient leurs diamétres principaux respectivement propor-
tionnels aux racines quarrées des rayons de plus grande et de moindre
courbure au point que nous considérons ; I'équation de cette surface

conique sera de la forme A
Tom. V1. 35
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Qz*4-Py*=az* ; (15)
» édtant une indéterminde qui fixe la grandeur de cette surface conique:
En combinant I’équation (15) avec I'équation (1), pour en éliminer
Qz*~4-Py*, il vient, en divisant par z,
(Nat-2PQ)z —2PQ{Ax+By—+N)=o0 ; (16)

?
équation linéaire , qui nous montre que, quel que soit a» , Vinter-
section des deux surfaces est toujours une courbe plane.

Si, dans la vue de connaitre suivant quelle droite le plan de cette
courbe rencontre le plan tangent, on fait z=o, dans I’équation (16)»
elle deviendra

Az-4-By+N=o; (17)
résultat tout a fait indépendant de a; ce qui donne lieu au théo-
réme que voici :

THEOREME 1V. Si une suite de surfaces coniques ont respective-
ment pour centre et pour axe commun un point pris arbitrairement sur
une surface quelconque du second ordre et la normale & cette sur-
Jace en ce point ; et si en outre les sections de ces surfaces coniques
par des plans paralléles au plan tangent , lesquelles auront leur
centire sur la normale , ont leurs diamétres principauz proportionnels
‘a@uz racines quarrées des rayons de plus grande et de moindre
courbure de la surface & leur sommet commun ; toutes ces surfaces
coniques couperont la surface du second ordre suivant une série
de courbes planes , dont les plans viendront tous passer par la
droite intersection des plans tangens aux deux extrémités de la
normale ; d'ou il suit , par la théorie des pbles, que les surfaces
coniques circonscrites , ayant ces courbes planes pour lignes de
contact avec la surface du second ordre , auroht toutes leurs sommets
situés sur une méme droite (*).

(*) Donc aussi les cdénes de révolution qui ont respectivement pour sommet et
pour axe commun un ombilic d’une surface du second ordre et la normale qui
lui répond, coupent cette surface suivant une série de cercles.

J. D. G.
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Il est clair que , quelles que soient dailleurs les directions de
nos trois droites D, D/, D/, pourvu qu’elles se trouvent situdes
toutes trois sur l'une quelconque de nos surfaces coniques, le plan
C, passant par leurs extrémités , coupera toujours le plan tangent
suivant une méme droite, puisque ce plan ne sera autre que celui
de la courbe plane intersection de la surface du second ordre avec
la surface conique sur laquelle les trois droites seront situées.

Mais , pour exprimer que la droite D est sur la surface conique,
il faut éliminer =, y, z entre les équations (3) et (15). Expri-
mant ensuite la méme condition pour les droites D/ , D/ , il en
résultera les trois équations ' ‘

Qa *4-Pb *=xc *,
Qa’ *4-Pb'2*=unc’* , ) (18)
Qa//’..f_Pé//z: 7\6//3 R

entre lesquelles dliminant P ct @, ce qui fera aussi disparaitre a, -
on arrivera a la condition

c? (a/: L2l a”“)—]—c”(a”’ﬁ‘-—- 5//zaz) -i—c”‘(a‘ ) Ay bz) =0 . (x 9)
laquelle , jointe aux trois autres ,

a b *Hc =1 ;
a’ z+bl =+C’2=I , (20)
a//3+5//3+c’/2= I ,

donnera le systtme complet des conditions sous l'influence desquelles
les droites D, D/, D peuvent varier de direction, sans que le plan
que déterminent leurs extrémités ecesse de passer par la section
eommune des plans tangens aux deux extrémités de la normale.
Au surplus, la condition (19) peut étre remplacée par la suivante:
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PR N PR SOy S YV Ry VY P (21)

que l'on en déduit en prenant la somme des produits des équa-
tions (20) par @*b/*—b"*a'* , a/*b*—b'*a*, a*b’*~b*a’* , et ayant
égard A cette méme équation (19).

La démonstration analitique du 7T%éoréme III pouvant paraitre
un peu compliquée , il ne sera pas hors de propos de montrer, en
terminant,, comment , par des considérations purement géométriques,
on peut le déduire du Théoréme I.

Soient SABC ¢t SA/B/C deux tétratdres rectangles en S, inscrits
3 une surface du second ordre, et ayant I’aréte SCG commune ; les
plans ASB, A’SB/ étant tous deux perpendiculaires & SC coincide-
ront et détermineront dans la surface une section qui sera une
ligne du second ordre, & laquelle seront inscrits les deux triangles—
rectangles de méme sommet ASB, A’SB/. Soit P l'intersection des
hypothénuses AB, A’/B’ de ces triangles ; SP sera ( Théoréme 1)
la direction de la normale 4 la section au point §; et le point P
sera, sur cette normale , un point tout A fait fixe et indépendant de
la situation respective de nos deux tétraédres. Soit T la tangente
au point S de la section, laquelle est situde sur le plan tangent
4 la surface courbe; sil'on meéne CP, le triangle CSP sera rectangle
en S; mais SC, étant perpendiculaire au plan de la section , doit
aussi é&tre perpendiculaire a la tangente T, qui est dans ce plan;
donc cette tangente T est & la fois perpendiculaire & SC et SP ;
et conséquemment eile est perpendiculaire au. plan du triangle; le
plan tangent & la surface courbc en S, qui contient cette tangente
T sera donc aussi perpendicu\aire au plan CSP , et conséqueri)ment
ce dernier contiendra la normale & la surface courbe en 8, laquelle
coupera CP en quelque point Q , par lequel passeront également
les deux faces hypothénusales ACB , A‘CB/, puisqu’elles se coupent
suivant CP qui contient ce point Q.

Il est donc établi par la qu’en faisant tourner notre .angle triddre
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tri-rectangle DD/D”, autour de ’une quelconque de ses arétes, le
plan C déterminé par les extrémités de ces mémes arétes ne cessera
pas de couper la normale & la surface courbe en un méme point
fixe Q. Or, il est connu que tout changement de situation d’un
angle trieédre tri-rectangle, autour de son sommet , revient ¥ trois
rotations successives autour de ses arétes (*); donc, quelle que soit
la situation de cet angle triddre, le plan G coupera toujours la nor-
male au méme point.

(*) Cette proposition , qui revient A dire que 1on peut toujours faire coincider
sur une sphére deux triangles sphériques tri-rectangles ABC , A/B/C/ , au moyen
"de trois rotations successives du premier autour de ses sommets , peut se démontrer
assez simplement comme il suit.

Soit B’ le point o se coupent les arcs de grands cercles BC et A”B” ; si 'on
conduit un arc de grand cercle AB/ et un autre AC”, coupant BC en C/, le
point B/, étant distant d’un cadran des poinls A et C”, sera le péle de larc
AC' ; et , puisque d’ailleurs le point A est le pole de B/C’, il s’ensuit que le
triangle AB/C’ sera tri-rectangle comme ABC , et pourra étre considéré comme
résultant de la rotation de celui-ci autour de son sommet A.

Soit A’ le point d'intersection des arcs de grands cercles AC' et AVB/, si
Yon. condvit I'arc de grand cercle B/C”; B/ élant le pdle de I'arc C’A et C~
celui de Parc A/Br; il segsuit que le triangle C/B/A! est tri-rectangle, comme
le triangle (/B’A, et peut conséquemment étre considéré comme résultant de
la rotation de celui-ci auteur de son sommet B’.

Enfin, le triangle A”B#C/ ayant le sommet C// commun avec le triangle A/B/C/.
peat pareillement étre considéré comme résultant de la rotatien de celui-ci autour
de ce sommet commun C/; ce qui démontre complétement la proposition an~
nongée,

J. D. G.
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| ANALISE.

Application de la meéthode des moindres quarrés &
Uinterpolation des suites ;

Par M. GERGONNE.

'

——

LOBSQU’UNE fonction d’une seule variable est donnée , on peut
toujours déterminer rigoureusement et directement les valeurs, tant
de la fonction que de ses divers coefficiens différentiels , répondant
3 une valeur donnée de la variable indépendante ; tout comme, lors-
qu'une ligne courbe est donnée , on peut toujours , pour 'une quel~
conque de ses abscisses , construire l'ordonnée , la tangente , le
cercle osculateur, etec.

Mais , de méme qu’au lieu de donner une courbe , on peut donner
seulement un certain nombre de ses points, on peut aussi , au lieu
de donner une fonction d’une variable , donner seulement les valeurs
que prend cette fonction pour un certain nombre de valeurs de la
variable indépendante , et demander ensuite d’assigner les valeurs,
‘tant de cette fonction que de ses divers ccefficiens différentiels ,
pour une autre valeur quelconque de cette variable ; tout comme
on pourrait demander quelles sont , pour une abscissc donnée , 'or—
donnée, la tangente, le cercle osculateur, etc. , d’une courbe dont
on connaitrait seulement un certain nombre de points. C’est en cela
que consiste le probleme de Vinterpolation des suites.

Ce probléme se réduit évidemment a remonter des valeurs données
celle de la fonction a laquelle elles appartiennent, ou des points
donnés au tracé de la courbe sur laquelle on les suppose situéds :

Y
Y
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or, par 13 méme il est indéterminé ; car, par des points donnés ,
non consécutifs , méme en nombre infini , on peut toujours faire
passer une infinité de courbes différentes (*).

Ces courbes pourront fort bien , dans certaines parties de leur
cours , différer les unes des autres d’'une maniére notable ; ct la méme
différence devra sc faire remarquer aussi dans les ordonnées, tan-
gentes , cercles osculateurs, étc., qui répondront 4 une méme abs-
cisse. On congoit pourtant que , si les points donnés sont assez voisins
les uns des autres, les courbes qui les comprendront ne pourront
différer notablement , dans lintervalle embrassé par ces points, du
moins si aucune d’elles n’a dans cet intervalle une asymptote paral-
lele a4 T'axe des ordonnées ; on eongoit méme que ces points pourront
toujours étre supposés assez multipliés, et, en méme temps , assez
voisins les uns des autres , pour que les différences entre ces courbes
deviennent pour ainsi dire insensibles. Les ordonnées qui répondront
4 une méme abscisse , comprise dans les limites de ces points, seront
donc sensiblement égales ; mais la différence entre les tangentes pourra
étre plus sensible, celle entre les cercles osculateurs encore d’avan~
tage, et ainsi de suite.

Concluons de 13 que , si des fonctions de formes diverses prennent
les mémes valeurs, pour certaines valeurs détermindes, et voisines
les unes des autres, de la variable indépendante , sans devenir in-
finies pour aucune valeur comprise entre celles-la ; ces fonctions
prendront des valeurs peu différentes , pour d’autres valeurs de
cette variable,, comprises dans les limites qu'embrassent les premiéres ;
mais il n’en sera plus de méme des coefliciens différentiels successifs
qui, d’une fonction & l'autre, pourront différer de plus en plus,
3 mesure que Pordre en sera plus élevé.

On pourra denc, sans erreur sensible , adopter indistinctement et
arbitrairement l'une des fonctions pour la fonction cherchée ; tout

(M On peut consulter sur ce sujet une dissertation qui se trouve a la page 252
du V.© volume de ce recueil.
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comme , lorsque plusieurs courbes qui passent par les mémes points
ne présentent cntre elles que des différences insensibles , on peut
en regarder une quelconque comme étant réellement celle dont ces
points font partie.

La courbe et la fonction pouvant ainsi étre choisies d’une infinité
de manjéres différentes , il sera convenable de s’arréter aux plus
simples, c’est-a=dire , & la courbe parabolique et & la fonction ra-
tionnelle et enti¢re qu'elle représente graphiquement. Ce choix sera
d’autant mieux fondé qu’il est connu que toute fonction quine devient
infinie pour aucune valeur finie de la variable dont elle dépend,
est toujours développable en série procédant suivant les puissances
ascendantes de cette variable. -

Le procédé auquel nous venons d’étre conduitest aussi celui qu’on suit
communément ; on suppose que Vordonnée de la courbe cherchée est
une fonction compléte, rationnelle et entiére de 'abscisse , dans laquelle
on admet autant de termes qu’il y a de syst¢mes de valeur donnés ;
les coefficiens de ces termes sont inconnus , et on les détermine
en exprimant que la courbe passe par les points donnés. Ces coefliciens
une fois déterminés , rien n’est plus facile ensuite que d’assigner
Pordonnée et les coefficiens différentiels qui répondent & une abscisse
quelconque ; mais on ne peut compter sur les valeurs que la formule
leur assignera qu’autant qu’on n’en fera I'application qu’d une abscisse
comprise entre celles des points donnés, et méme ne se rapprochant
pas trop de la plus grande ni de la plus petite.

Cette méthode qui , en particulier, a été employée par M. Laplace,
dans son mémoire sur la Recherche des orbites des cométes (*) ,
renferme une source d’erreur, dans la suppositien, tout i fait gra-
tuite , d’une courbe du genre parabolique. Néanmoins, si I'on peuvait
compter en toute rigueur sur les valeurs données de la fonction ,
et si ces valeurs étaient trés-multipliées et trés-voisines , ce que

") Voyez les Mémoires de Uacadémie des sciences de Paris, pour 1780.
nous
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nous avons dit ci-dessus, montre assez que l’erreur résultant de cette
supposition ne serait jamais bien considérable.

Mais il n’en va pas ordinairement ainsi; les valeurs discontinues
de la fonction, sur lesquelles on s’appuie pour construire la formule,
sont communément déduites d’expériences ou d’observations suscep-
tibles d’'une exactitude assez bornée ; et il arrive alors, comme M.
Legendre I'a fort bien observé (*), que les erreurs qui les affectent
peuvent avoir d’autant plus d’influence sur la formule finale et sur
les résultats qu'on en déduit, que ces valeurs sont en plus grand
nombre.

Concevons , en effet, qu’on ait tracé une courbe quelconque, et
qu'on lui ait mené plusicurs ordonnées peu distantes les unes des
autres ; si 'on vient A faire subir 3 ces ordonnées des altérations,
trés-légeres d’ailleurs, tantét en plus et tantét en moins , et qu’en—
suite on tente de faire passer une courbe continue par les extrémités
de ces ordonnées ainsi altérées, on s’apcrcevra aisément que , si les
altérations qu’elles ont subi n’ont qu'une faible influence sur Ta
grandeur des ordonndes intermédiaires , il n’en est plus ainsi a I’égard
de la direction de la tangente qui souvent [;our une méme abscisse
aura pu subir un changement trés-notable ; la différence pourra étre
plus sensible encore & I"égard de la grandeur du cercle osculateur.

Ces apercus graphiques peuvent facilement étre confirmés par le
ealcul. Supposons, en effet, un nombre impair d’ordonnées données,
toutes équidistantes , et dont la distance commune soit prise pour
unité, Soient o Pabscisse et & 'ordonnée du milien; 1, 2, 3,....
les abscisses et &/, &7, b/, ..... les ordonnées qui les suivent; =1,
—2, —3, ... les abscisses et 4,, 4,,, &,,,... les ordonnees qui les
précedent ; et cherchons les coefliciens différentiels qui repondent 2
T'ordonnée du milieu ; nous trouverons, pour le cas de trois ordonnées
seulement ,

(") Voyez ses Nouvelles méthodes pour la détermination des orbites des cométes,
Paris , 1806, (pag. iv)

Tam. V1. 36
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dy _ b=}, dzy
de — 2 ’  da®

= (5’+5,)-—25 5

pour le cas de cinq ordonnées

dy  8(@p'=b)=—(3"—b,) dzy  3ob—16(4-b)+G"4b)

N ———— e So— ’

dx 12 dx? 12

pour le cas de sept coordonnées

dy __ 45Q"=b )= (b ==b ;)" )
dx 6o ’

dzy 490b—270(b/b))4-27(0"4-b,)=2.(b""4-b ;)

dx? 180 ’

et ainsi de suite.

Or, supposons que , toutes les autres ordonnées étant d’ailleurs
exactes, l'ordonnée 4/ seule soit en erreur d’une quantité g, et dé-

‘dy d»
signons par E.— , E, —= les erre i en ré Ie
8 P e’ T urs qu ésulteront sur les

coefficiens différentiels ; il est aisé de voir qu’on aura, dans le cas
de trois ordonnées ,

dy Ly .
=, Bem=ie
dans le cas de cinq coordonnées
. dy _. &y _.
E_é; =it E-'&;—;ﬁ H
dans le cas de sept ordonnées
dy dzy
E.'——— _"':1 E_ =56 .
dx ‘IG ’ dx2 407

de sorte que les erreurs sur le coefficient différentiel du premier
ordre croissent comme les nombres =, 2, I, 2 et tendent ainsi

ARV AL

sans cesse a devenir égales a I'erreur méme commise sur I'ordonnée 4/ ;



DES SUITES. 247
et que I'erreur commise sur le coefficient différentiel du second ordre
est constamment double de celle-]a.

M. Legendre a done été fondé A dire qu'en multipliant les données
on s'exposait a faire croitre aussi les erpeurs dans la méme propor-
tion. Il est pourtant juste de remarquer que c’est en supposant qu'il
n’y a qu’une seule ordonnée fautive, ce qui exclut toute possibilité
de compensation d’erreurs ; et en supposant de plus que l'ordonnée
fautive est précisément celle dont la valeur, exacte ou nen , exerce
Pinfluence la plus notable sur nos deux coefficiens differentiels.

Quoi qu’il en soit, cette source d’errcur parait n'avoir point échappé
3 Tattention de M. Laplace. Voici, en effet , comment il s'exprime
( Mécanique céleste , tom. I, pag. 201 ): « Ces expressions sont
» d’autant plus précises, qu’il y a plus d’observations, et que les
» in}ervalles qui les séparent sont plus petits ; on pourrait done
» employer toutes les observations voisines de I’époque choisie , si
elles éiaient exactes; mmais les erreurs dont clles sont touvjours
susceptibles conduiraient a un résultat fautif; ainsi, pour diminuer
Uinfluence de ces erreurs, il faut augmenter Uintervalle des obser-
vations extrémes , & mesure que l'on emploie plus d’observations. »

¥ ¥ ¥ ¥

Il serait peut-étre plus exact de dive qu’zl faut employer des obser—
vations de plus en plus distantes entre elles , @ mesure qu'on en
emploie un plus grand nombre ; et nous allons voir, en effet, qu'avec
cetle attention , on peut , 4 volonté, atténuer les erreurs. Soit @
Vintervalle , supposé constant , qui sépare les valeurs consécutives
de x ; intervalle que, ci-dessus, nous avions pris pour unité, Nos:
résultats deviendront alors

) . d . B dy B

Pour 3 observations, E L= , E =i
dwe ta dx? az

. Iy . 8 .y, B

Pour 5 observations, E"é; =37 Ter tan )
. dy [ dxy ¢ f_
Pour 7 observations, E. — =1 - T 4
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Pourvu donc que nous prenions pour @ des nombres qui croissent
plus rapidement que ceux de la suite =, %, %,... nos erreurs iront
continuellement en décroissant, & mesure que nous aurons recours
a un plus grand nombre d'observations. Supposons, par exemple,
que nous fassions croitre les valeurs de @ suivant les nombres de la
suite naturelle ; et prenons pour unité la valeur de cette quantité

qui répond au cas de trois observations, nous aurons alors

Pour 3 observations , E.ze , E.Zg
Pour 5 observations , E.ig , E.%g .

3¢ 2

Pour 7 observations , E.2¢ , E.ig ,

?
d’ott 'on voit qu’alors les ecrreurs sur les coefficiens différentiels
du premier ordre décroitront comme les inverses des nombres na-
turels , et que cclles qui affecteront les coefficiens différentiels du
second ordre décroitront suivant la progression, plus rapide encore,
des inverses des nombres triangulaires. La méthode de M. Laplace
est donc , du moins de ce c6té, tout a fait & I’abri du reproche.
Mais , supposons qu’on ait, entre deux limites fixes données, des
observations assez nombreuses pour rendre trés-petite la différence entre
les valeurs consécutives de x. Suivant ce qui_ vient d'étre dit, on
devra rejeter un d'autant plus grand nombre de ces observations
y Ay

qu'on en voudra employer davantage dansla recherche de = et -

Or, c’est 14 un inconvénient assez grave, sur-tout si ’on n’a aucun
motif de suspecter plutét les données que 'on rejette que celles dont
on se propose de faire exclusivement usage ; puisqu’on se prive ainsi
des compensations d’erreurs sur lesquelles on pourrait compter en
les employant toutes.

En réfléchissant sur ce sujet, il m’a paru qu’il était possible de
tout concilier , au moyen de la méthode des moindres quarréds (*),

(*) On sait que la méthode des moindres quarrés repose sur ce principe que
la valeur moyenne, la plus probahlement voisine de P'exactitude , d'une quantité
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et d'arriver par elle a toute la précision qu'il est possible d’espérer
dans la recherche qui nous occupe. Voici pour cela de quelle ma-
nidre je congois qu'on en doit faire usage.

Solent @, @/, a”,.. des valeurs de #, en nombre quelconque,

et soient &, &/, 4" ,... les valeurs données et correspondantes de y.
Soit posé

y=A4Ba-+Cx*4-Dz’H-.... ; (1)

en prenant dans cette fonction autant de termes seulement qu’on
en admettrait si, suivant ce qui vient d’étre dit ci-dessus, on ne
se proposait d’employer qu'une partie des valeurs correspondantes
de & et de y; il Sagira de déterminer les valeurs des coefliciens
A, B, C, D,... Si leur nombre était égal a celui des obser-
vations , on pourrait leur assigner des valeurs qui rendissent les
erreurs touf i fait nulles; mais la chose sera{impossible dans le cas

actuel, et il faudra se contenter de rendre minimum la somme de
leurs quarrés.

Ces erreurs étant respectivement
A+4Ba 4Ca *~-Da -....~b ;
A-4-Ba! +Ca’ *~4-Da/ 34-.o..~b/ ,
A~=Ba''4-Ca'*4-Da! oo —=b"

© o e 4 ® . s o @ s s e s e 00 v v s g

il faudra faire

dont on a plusieurs valeurs approchées, est celle qui , étant supposée tout A fait
exacle , rendrait minimum la somme des quarrés des erreurs dont les autres seraient
alors affectées. Le premier ouvrage imprimé dans lequel il ait été fait mention
de cette méthode est le mémoire de M. Legendre, déja cité dans une précé-
dente note ( 1806). Dans un ouvrage publié eu 1809, M. Gauss a déclaré faire
usage d’une semblable méthode depuis 1795 ; et M. Laplace a démontré posté-

rieurement que cetle méthode est rigoureusement conforme a la doctrine des
probabilités.
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(44+Ba +Ca *4-Da 3grumd 3* 3
+(d4Ba’ 4-Ca’ *+Da’ *+ee.—b )?
~+(A~4-Ba/’+Ca/*4Da'Pt......—b")?
Foe e e
Slest-3-dire , en différentiant par rapport 3 4, B, C, D, ...
(A+Ba +Ca *~+...e=b Ydd+a dB4e *dC+...)
A (A4+Ba’ +Ca’ *+...—b' ) dAd~4-a’ dB-+}a! *dCH-. ).
(A4 Ba''4-Ca!*~-....—b'")(d A+-a”d B+ a*d C+-....)
R R T et et e e

A cause de l'indépendance entre 4, B, C, ... les multiplicateurs
de d4, dB, dC,... devront séparément étre nuls .faisant done
en général, pour abréger,
SBa"=a"-a'" /" -....... . s
Sa"b=amb+a"" b/ ta' b daas
on aura cette suite d'équations
Zo* A+3Za B+4+32a*.CH+2a® DH4-....=%a0b
¢ . A4-3a . B4+-2a3.CH-2a* . DA-....=Za b , I
2ot A4-Z2a3 . B4-Zat (205 . D+-....=20a%b

=minimum ;

=O.

(1)

.
® o * & o o * & o s s ¢t e+ e e & o o © s o & o o g

en nombre pré ‘sément égal i celui des coefliciens 4, B, €, D,...
qvil sagit de déterminer; et, tandis que les methodes orldinaires
donnent pour y et ses coefliciens differeniiels des valeurs d'une pré=-
c€ision toujours un peu inflerieure & ceille des donnees d’apres les—
quelles on les calcule , on pourra le plus souvent espérer ici de
Vemporter en precision sur ces données elles-memes.

Le cas le plus simple, ct en méme temwps le plus fréquent, est
eelui od les valeurs de z sont en progression par differences; il est

alors permis de substituer & cette progression ia suite naturelle des
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nombres. Soit 2n~1 le nombre des valeurs connues et ecorrespon-
dantes de « et ¥, on pourra numéroter o la valeur de z qui se
trouvera occuper le milieu, de maniére que le numérotage soit

—n, —(n—1), =3 ,—2, —1, 30, 41, 42,43, t(@=1), }n

si alors on désigne par =™ la somme des m.™¢® puissances des
nombres de la suite naturelle , on aura

Za°=2n-+1, ZSa=o0, Ba*=23n*, Ba’=o0, Zat=23n* ,..;
au moyen de quoi les équations (1) deviendront

(2n+1)A4-22n2.C4-....=3p , 23n*.B+2Znt.D4..=22 0,
230, Ad-23nt Cti.=20b , 2304 B422n°D4-...=2a°0 ,
2 Ent, A+2200.C4n.=2atb , 2208 B+23n8 . D4-....=2a% ,

€ 8 e o & * @ 1 <+ @ s 6 s ® & e ¢ o+ 8 8 2 8 s e s s e s s s e s s s 4

ainsi, outre que les sommes de puissances semblables des nombres
naturels sont données par des formules connues et générales , on
aura ici l'avantage de pouvoir caleuler séparément les coefficiens de
rangs pairs et ceux de rangs impairs, ce qui simplifiera le travail
d’'une maniére notable.

Dans le cas méme ol ni les valeurs de # ni celles de y ne
marcheraient en progression par différences, on pourrait encore profiter
de ces simplifications , en procédant comme il suit: on supposerait
que 2z et y sont toutes deux fonctions d’une troisiéme variable z,
dont les valeurs, tout A fait arbitraires , pourraient étre numeérotées
comme nous l'avons dit ci-dessus & I'égard de z ; on chercherait

2 2
par notre procédé , les valeurs de :—j— , -% , —3;; R g—z%,....; et
on aurait ensuite par les formules connues, relatives an changement
de la variable indépendante ,
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dy de dw dy dx
dy dz dzy ___J; dz® dz _dz2
dx — dr ? der dx Y. ’

dx dz

cette méthode me semblerait préférable & celle qui consiste & inter-
poler entre les observations , afin de les rendre équidistantes ; attendu
qu’il peut étre dangereux , dans un probléme d’une nature aussi
dclicate , de dénaturer les données avant d’en faire usage.

Il nous parait que lintroduction. des procédds que nous venons
d’'indiquer , dans la méthode de M. Laplace, pour la détermination
des orbites des cometes , ne peut qu’ajouter beaucoup i sa précision ,
du moins dans le cas ou 'on peut disposer d’un grand nombre d’ob-
servations ; mais cette méthode , comme beaucoup d’autres, aura
toujours le grave inconvénient de n’étre, au fond , qu'un tatonne-
ment bien dirigé.

I resterait ici au surplus un autre probléme & résoudre, lequel
pourrait étre énoncé comme il suit: On sa/t que des points donnés,
en nombre quelconque, sont a peu prés situés sur une courbe para-
bolique d’un degré déterminé , mais inconnu; et l'on demande de
découvrir quel est le plus probablement le degré de cette courbe P
La solution de ce probleme leverait compléte'ment P'incertitude du
calculatenr qui, voulant appliquer la mdthcde de M. Laplace, se
trouve pouvoir disposer d’'un grand nombre d observations.

TRIGONOMETRIE
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TRIGONOMETRIE SPHERIQUE.

Recherche de la relation entre les six arcs de grands
cercles qui joignent, deux & deux , qualre points de
la surface d'une splére ;

Par M. BirarDp , principal et professeur de mathématiques
du collége de Briancon , membre de plusieurs sociétés
savantes. ‘

[a Ja Zha Vo Sia Vo Vo S

M. Bret a donné, dans ce recneil (*), et MM. Francais (**) et
Carnot (***) avaient donné avant lui I'équation de relation entre les
six arcs de grands cercles qui joignent, deux & deux, quatre points
de la surface d’ure sphere ou, ce qui revient au méme , I'¢quation
de relation entre les six angles que forment, dcux a deux. quatre
droites partant d'un méme point et non situées dans un méme plan,
Je suis parvenu, de mon c6té , & cette dquation , par les considé=~
ralions suivantes qui m’ont paru assez simples pour mériter d'étre
readues publiques.

Soient OA, OB, OGC, OD quatre droites indéfinies , partant d'un
méme point O, et ayant dailleurs des directions quclconques dans
Pespace. Soient faits

 Tome V, page 334,
(**) Voyez la page 221 de ce volume.
(***) Mémoire sur la relution entre cing points dans Uespace , page 35.

dome VL. 37
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| AngBOC=z , AngDOA=d’
Ang.COA=} , AngDOB=V
AngAOB=¢ , AngDOC=c .

Par OA , OB, OC prises deux 3 deux soient conduits trois
plans. Soit prise sur OD une partie OR==r , et par le point R
soient conduits trois nouveaux plans respectivement paralleles aux
premiers ; ils formeront avec eux un parallélipipede dont 7 sera la
diagonale; désignons par x, ¥, z respectivement, les arétes de ce
parallélipipéde qui répondent 3 OA , OB , OC ; nous aurons ainsi

Ang(y , 2)=a , Ang(r,z)=a’

- g

Ang(z,2)=b, Ang(r ,y):&k

~

Ang(z,y)=c ; Ang(r, z)=c¢ .

Or, il est connu que la projection d’une droite sur wune aufre
est le produit de cette droite par le cosinus de son inclinaison sur
Pautre ; en considérant donc les divers quadrilatéres gauches que forment
les arétes consécutives #, y, z avec la diagonale 7, il viendra

r=2xCos.a’+yCos.b/42Cos.c’ ; (1)
2=rCos.a’—yCos.cammzCos.5 ,

y=rCos.b/—zCos.a—=2Cos.c , (2)

z=rCos.c/~2Cos.bmyCos.a .

Des trois dernitres on tire
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Sin.2aCos.0’=~Co03.5/{ Cos.c —~C05,6C05.5)~=Cos.¢/ (Cos.h==Cos.cCos.a)
1—=Cos,2a=~C05.28==C05.20-42G05.3C05.6Cos.c *

L==T «

Sin.25Cos.5/—=Cos.¢/(Cos.a==C0s.:HCos.c)=~Cos.a/ (Cos.ca=Cos.aCos.b)

1==C05,2@8=~C 05,2b==Cos.2¢4-2C0s.2C0s.6Cos.c

7':7‘0 PS

Sin.2cCos.c’--Cos.a’(CoAs.b--Cos.cCos.a)-Cos.b’(Cos.a-—Cos.bCos.c) ‘
=7 .
z 1~=Cos.2a=—Cos.2h=~Cos.2¢4-2C08.2Cos.6Cos.c ’

substituant donc ces valeurs dans I’dquation (1), divisant par r et
chassant le dénominateur commun, on obtiendra

1—Cos.2g—Co0s.2b—Cos.>c-+2Cos.2Cos.5Cos.c
Sin.22Cos.2a’—2Co0s.5/Cos.c/(Cos.a—Cos.5Cos.c)

=( =+Sin.?6Cos.25/~~2Cos.c’Cos.a/(Gos.b—Cos.cCos.z) } ; (3)
~+Sin.2cCos.*¢’—2Cos.a’Cos.5/(Cos.c=—Cos.aCos.0)

qui est précisément la relation donnée par MM. Bret, Garnot et
Francais.
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L3

QUESTIONS PROPOSLES.
Probléeme de Géeomeéltrie.

CONSTRUIBE un quadrilatére dont les qnatre cotds soient donnds,
tant de grandeur que de disposition consécutive , et qui soit €qui=
valent au quarré construit sur une droite donnée ?

Probléme de statique.

T.a démonstration des conditions d'’qnilibre sur la vis, que T'on
trouve dans tous les traités elementaires de statique, suppose essen-
. tiellement que le point de l'ecion que P'on considere tend 3 des=
cendre suivant une tangente a4 I'léiice dicectrice du filet de la vis,
Mais celte supposition , vraie pour la vis dans laquelle la section
. du flet par un plan passaut par 'axe est rectungulaire , cesse de
: I'éire lorsque cette section est un triangle ou un segment de cercle.
A On proposerait donc, d’aprés cela, de degager la recherche de
- Péquilibre dans la vis de toute supposition sur la figure du filet
dont elle est revétue ?




RECHERCHE DES ORBITELS. 257

[ e S—— e —
ASTRONOMIE.

Examen de Uhypothése d'un mouvement recliligne et
uniforme , considerée comme moyen de parvenir &
la determination des orbites des corps célestes

Par M. GERGOXNNE.

-~

L SI un point mobile parcourt dans Vespace , d'un mouvement
varié quelconque , une courbe plane ou a double courbure, et si
Fon n'a i eonsidérer les circonstances de son mouvement que durant
un intervalle de- temps assez court ; il sera permis de supposer,.
sans crainte d’erreur sensible , que, durant cet intervalle de temps,
le point dont il s’agit parcourt, d’'un mouvement rectiligne et uni-
forme , la tangente a la trajectoire qu’il décrit réellement. Cetto
supposition , admise par tous les géométres, et sur laquelle ils ont
méme fondé la méthode des tangentes, ne pourrait souffrir d’objec~
tion que dans. le seul cas ol la partie de trajectoirc que I’on considére:
offrirait quelque point singulier , ou bien dans celui ol la vitesse
du mobile , entre les extrémités de cette portion de trajectoire ,.
éprouverait quelque changement brusque et fini. ‘

En admettant donc cette hypothese, cencevons que 'on ait trois:
observations complétes d’une planéte, embrassant un intervalle de
temps peu considérable. ; ces trois observations ferent connaitre. la
situation de trois rayons visuels , dirigés de l'observateur vers I'astre ,
ainsi que les temps quileur correspondent; et, généralement parlant,
ces trois rayons visuels ne seront point dans le méme plan. Dans

Tom. V1, n.°1X,1.°* mars 1816.. 38
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Ihypothése que nous admettons ici, la droite supposée parcourue
par l'astre, d’'un mouvement uniforme, se trouvera donc assujettie
a cette double condition, 1.° d’étre coupée i la fois par les trois
rayons visuels ; 2.° d’étre coupée par ces rayons en parties propor—
tionnelles aux intervalles de temps écoulés entre les observations.
Or, en vertu de cette double condition , la droite dont il sagit
se trouve déterminée et unique, et peut méme étre assignée par
une analise fort simple.

Cette droite ainsi déterminée , le plan conduit par elle et par
le centre du soleil peut étre considéré comme le plan de Dorbite;
lIes points ol il est'percé par les rayons visuels sont les licux de
Pastre aux époques des trois observations. On peut dong obtenir
facilement , pour les mémes époques , les trois rayons vecteurs ,
ainsi que les angles qu’ils forment deux 2 deux ; or, il n’en faut
pas davantage pour assigner les dimensions de l'orbite et la situation
de la ligne des apsides (*). Ainsi, par un calcul tout a fait élé-
mentaire,, on obtiendra tous les élémens de 1’astre, sauf cependant
I’époque du périhélie, pour laquelle il faudra nécessairement recourir
aux lois de Képler.

Voild & quoi reviennent & peu prés, pour le fond , une multi-
tude des méithodes indiquées , a diverses époques , comme propres
3 la détermination approchée des élémens des astres, & commencer
par cclle que NEWTON a donnée, dans son Arithmétique universclie.
A la vérité, aucune d’clles n’a réalisé , dans les applications , espoir
qu’en avaient con¢u leurs inventeurs ; mais on a pu croire que leur
non succds, dans la pratique , devait tenir ou au trop d’intervalle
entre les observations, ou aux erreurs dont elles se trouvaient en-
tachdes ; erreurs d’autant plus influentes que I'intervalle qu’embrassent
les observations est moins considérable. '

A la vérité, dans l'un de ses mémoires sur les cométes , LAGRANGE

(*) Ce probléme a été élégamment résolu par M. le professeur Kramp, & la
pege 197 du 1V.® volume de ce recueil.
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a fait: voir que , méme dans linfiniment petit, cest-h-dire, 2 la
limite , Fhypothése d'un mouvement rectiligne et uniforme nc peut
étre admise ; mais, soit que les motifs sur lesquels s'est appuyé cet
illustre géometre n’aient point frappé également tous les esprits ;
soit que l'idée qu’il a cherché i repousser ait paru trop séduisante
4 quelques-uns pour devoir étre abandonnée ; soit enfin que lautorité
de Vauteur de VArithmétique universelle ait exercé en ceci plus d’as-
cendant qu’il ne convient dans des matiéres de géométrie et de calcul;
on a continuéd , bien postérieurement, a la publication des mémoires
de Lagrange, et dans des ouvrages trés-recommandables d’ailleurs ,
a indiquer la méthode de Newton comme proprs, tout. au moins,
a fournir une premiére approximation.

Des géometres trés-distinguds , sans admelire proprement ’hypo-
thése d’'un mouvement rectiligne et uniforme, ont pourtant fait &
peu prés I'équivalent ; c’est-a-dire , qu’aprés avoir d’abord attaqué
le probléme de front, par les principes de la gravitation, ils ont
cherché, chemin faisant, & le simplifier , par diverses suppositions
qui rentrent , pour le fond, dans 'hypothése qu'ils semblaient vouloir
dviter. lls n’ont fait ainsi gme parvenir , a travers les pénibles calculs
que nécessite I’emploi des méthodes légitimes, 4 desrésultats équivoques ,
qu'ils auraient pu se procurer directement & bien moins de frais (*).

Je pense donc qu’il pourra n’étre pas tout 2 fait inutile de revenir
de nouveau sur I'examen de I'hypothése d’'un mouvement sensible=
ment rectiligne. et uniforme durant un.intervalle de temps peu con-
sidérable , considérée comme moyen de parvenir aux élémens du
mouvement des astres. Mais voyons d’abord quelles sont les formules
analitiques qui résultent de cette hypothese.

(" Il importe aussi de remarquer que , dans les procédés approximatifs , il
ne suffit pas de s'assurer que les quantités que I'on se permet de négliger sont
fort petites, mais quil faut de plus qu'elles ne soient pas d’une petitesse compa=
rable & celle des quantités vis-a~vis de qui en les néglige; et c’est Ia une. chosy
3 laquelle on ne fait pas toujours assez d'atlention,
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IL Soient prises respectivement pour axes des z , ¥ ; Z positifs
les droites menées du centre du soleil 2 I'équinoxe du printemps ,
au solstice d’eté et au pole boréal de I’écliptique. Soient alors res-
pectivement

Pour les époques #,, £, ¢,
r,, r, v’ les rayons vecteurs de la terre,
«,, «, & ses longitudes,
8/, 8, 8 les longitudes géocentriques d’un astre ,
vy vy o ses latitudes géocentriques.
X ,X, X
Y,, Y, Y ses coordonnées ;
Z,,Z,2
D,, D, D/ ses distances % la terre.
nous aurons d’abord
Z,=D,Sin.y, ,
Z =D Sin.y , (1)
Z'=D'Sin.o/

nous exprimerons ensuite que les trois lieux répondent aux trois
rayons visuels, en écrivant

X=r,Cos.24D,Cos.8,Cos.y, , Y;:r,Sin.u,+D,S§n./3,Cos.y, ’

“e

X =r Cos,« D Cos.p Cos.y , Y =r Sin.z}-D Sin.gCos.y ; (2)
’=r’C_os.u’+D’Cos.p’Cos.7’ 3 Y'=r'Sin.«/4-D'Sin.pg'Cos.y’ ;

et tout cela aura lieu indépendamment de toute hypothése sur la
nature du mouvement de Dastre et sur la nature de la trajectoire
quil déerit, '

Si présentement on suppose que lintervalle qui sépare les obser-
vations extrémes 7, , 7/ est assez court pour que , durant cet inter-
valle , on puisse considérer le mouvement de l'astre comme sensible-
ment rectiligne et uniforme , on aura ‘ Lo '
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X=X, X=X Y=Y, Y=Y Z—2 z-z

t—t,  t—t | =t et 'ttt gy

¢’est-a-dire ,
)X =t 1)) X1t ) X0 5
=Y —(#—t )Y +(t—2)Y' =0 , ) (3)
=02 —t'—1)Z4(t—1t)Z'=0 .

Mettant dans ces derniéres équations les valeurs données ( 2 et 3 ),
elles deviendront ’

(2'—2)Cos.8,Cos.y,. D;=4-(t/—1)r,Cos.«,
—(#/—1,)Co5.8Co0s.y .D —(t/—1,)r Cos.« Y =o s
~}-(2—12,)Cos.p'Cos.o/ I/~ (¢—1,)r/Cos.«’

(#/—1)Sin.,Cos.y,.D/4(#/—2)r,Sin.«,  (4)
~—(#/—t2,,Sin.pCos.y D —(¢/—12)r8in.a )} =o,
+-(2—12,)Sin.p/Cos.o/ I/4-(#—1,)r/Sin.«/

{#/-=1)Sin.y D/~ (2—1,)Sin.y.D4-(z—2,)Sin.y/.D' =0 ;
desquelles il s’agira de tirer les valeurs de D, D, D.
On simplifie un peu ces équations en posant

#—t)D,Cos.py=4, , (W/=t)r,=y, ,

(t/=t)DCos.y =A , (#/—it)r=p , (5)

(¢—1)D'Cos./ =4/ , (t=t)r'=y ;

elles deviennent ainsi

A, Cos.p)—ACos.g+A'Cos.p’+(p/Cos.a/—pCos.a=¢Cos.a’) =0 ,

A Sin.g—ASin. p+-A/Sin, g/~ (5, Sin.e/—¢Sin.a—t¢ Sin.«)=0 , } (6)
A Tang.y,—ATang.y+4-A’/Tangsy/=o .

On en tire la valeur de A, en prenant la somme de leurs produits
respectifs par

Sin.pTang.y’-—Sin.,e/'I‘ang.y; Cos.p'Tang.y~Cos.8Tang.y/, Sin.(a—pg);
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6n en tire celle de A, en prenant la somme de leurs produits

Sin.ﬁ,Tang.y’;Sin .e’Tang.y,, Cos.p’Tang.y,~Cos.g, Tang.y/, Sin.(#/-8,);.

on en tire enfin celle de A/, en prenant la somme de leurs produits

respectifs par

Sin.g, Tang.»—Sin.gTFang.y,, Cos.egTang.y—Cos.p, Tang., , Sin.(s6—8,).

En posant ensuite, pour abréger,

€t/=t)r,Sin.(a;=p)) ~—(t'—t ) Sin. (e Jof- (=t )1/ Sinr.{/ == y=f,

(t/—t)r@in.(x,;-p ) —(tl et Y1 Sin (Y- (t—t )1/ Sin. (=) =f , (7)

(t/—t)r,'Sin.(;,—;a/) v (=t JrSin.(@==p) - (t—1 )r!Sin. (' —£)=F, ;

Sin.(ﬁ’+ﬁ)Tang.yrSIn.(ﬁ’—ﬁ,)Tang.y+Sin.(ﬁ—[s,)Tang.y’zk : (©)]
il vient _

f Tang.y/=—f* Tang.y )
.D/= n ——— T
- @l=)kCos.y,

- fiTang.y'—f'Tang.y,
D= /==t )kCos.y ’ ( (9)

D= JiTang.y==f Tang.y,
T T (t==tpkCosiy/

€es valeurs étant calculées, les équations (1 et 2) feront con—
naitre les coordonnées des trois lieux de l'astre, Considérant ensuite
le plan de Vorbite comme un plan passant par lorigine et par les
deux lieux extrémes, on aura, pour son équation

(Z.Y'—Y,2))a4(X,2'=Z X )y (¥, X'—X,Y)z=0 ; (10
ig (10)

ce plan se trouvera donc entiérement déterminé ; et on achdvera Ia
solution comme il a été dit ci-dessus.
On pourra aussi poser, pour I'époque 2 ;
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Jdx X=X, 3

e=X, T=m
¥ dy Y=Y,
y=xI » —5; t'—t,
dz Zl—Z

=7, = ="
de tle—t,

L,

et avec ces six quantités on déterminera complétement les élémens
de lastre suivant ce qui a été dit ( Annales, tome II, page 8).

ITL. Voyons présentement ce que deviennent ces 1ésultats 3 la
limite , c’est-d-dire , lorsque Vintervalle de temps qui sépare les
observations extrémes est infiniment petit ou nul. Posons d’abord ,

pour abréger,

=——> }(”)

r,Cos.e,=g, , rSin.e=Fk, , Cos.pCot.y=m,, Sin.gCot.y~=n,,

rCos.a=g , rSina=h , Cos.zCot.y=m , SinpCoty=n,

r'Cos.a'=g’ ; 7'Sin.a/=h’; Cos.gCot.s’=m’ ; Sin.gCot.y/=n’ H

Nous aurons conséquemment

r,Sin;(u,-—p,)z(m Py~—n ,g;flﬁﬁg.w
7 Sinu(s —p,)=(m,h —n,g YTang.y,
r'Sin.(«/—g,) = (m,i/ —n,g/)Tang.y;
7,8in.(e)—p )=(m b —n g,)Tang.y
7 Sid. (e —p)=(m & —n g Tanig:y
-7/8in.(«/—p/)=(m h'—n g')Tang.y
7,Sin.(ep—p')=(m'h,~n’g,) Tang.,/
7 Sin.(« —p)=(m’h —n’g )Tang.y/
7/81n («/'—p’ )= (m'}/—n’g/)Tang.o/

g

- (13)

J
. Sin.(#'—p )=(m n’—m’'n )Tang.o'Tang.y ,
Sin.(#' —8,)=(mn’—m’n,) Tang /Tang.y, ,

Sin.(8 —8,)=(mm —m n, Tang.y Tang-y, .

(19
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Supposons en oulre que les observations soient équidistantes et
posons .

Vemt=1—1,=7 , dod #—t=—27;
en substituant toutes ces valeurs dans les formules (7 et 8),elles
deviendront

Sr=im /b= )—n/ g—28+g K Tang.y,,

f="1m (hy—2b~-l)—n (g —28-+g ¥Tangy , 3 (15)

S =mthy—2hh)—n'(g —~25-+g" )} Tang +/;
E={(mn'—m/n)—(mn'-m’n,)+-(m,n—mn,}Tang .o Tang.yTang.y, ; (16)
de sorte qu’en posant
(m—m,) (n/—=n) == (/=) (n=—n ) ==(Mn et 1) =(m/1 =it 1/ yoh=(m/nw=mn/)y=K ; (17)
et substituant dans (g) , il viendra

(m!—m) (hy—2h4-R')—(n'—n) (g —26-")
D, — .KS >
.y,

(ml=m ) (h =2 By (01 ) (g =284 5") (18)
2KSin.y ’

_ (mm==m))(hj—2h-b)=(n—n,) (g ~288")

- KSin.yt r o)

D =

D’

et par suite (1)

—Z;= = {(—m V(2B W )0/ =n Y528 )}
~Z = (/e (b 2B b )/ —,) (gr—2g+8)} » $(19)

1 .
—7/= }Z{(m ~ ) (hy—2h-h)—(n —n,)(g,~28+5")} 5 |
ce qui donne encore
R 7%§<n,—nn+n1)(gz-f-zg+g’a—cml—zm+m’>(hr-zﬁ'+7~>}‘ i (20)

et Pon. a ensuite
X=g+mZ , Y=h+nZ . (ar)

- Présentement
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Présentement, g, 2, m , n, Z étant des fonctions de 2, les-

quelles deviennent g/, by, m;, n,y.Z, ou g/, b , m!, n, Z,
lorsque # devient z~i ou t—+47 , il s’ensuit qu'on doit avoir

dg ¢ d2g 12 dig 3

=g e—— = ———— — 74
818 dt 1 + diz 1.2 di3 1.2.3 +G/ ?
dg ¢ d2g- 72 dig 3 L.
/ — — — — — — — G/l“ .
& dt 1 + de= 1.2+ des 1.2.3+ !
dh i &k i Ih 3 ,
by=h — — —— —— — ——-H*,

. s
bl=bd— —f— — - — w——-i—-i-H/z";

ds 1 dez 1.2 7 A3 1.23
=G T @ W
enk T g = @

gz 2 i ¥z 8 bz .
T A& 1 da 1o ds 1.2.3+€/Z ’
4z i a4z i 3z 3
—_— e —
de 1 dez 1.2 de3 123
6,6 ,H, H, M, M,N,, N, ¢, ¢ étant des fonctions
de # qui ne deviennent pas nulles lorsque # est zéro.
On déduit de tout cela

,+ g/ 1'4 H

dg , .
g§r—28+g,= —df #4646

doh ,
ﬁ/‘2ﬁ+b/= _d_t-: Z.2+(H/+H/>l4 H

dz ,
mmambm/= o e (MM
Tom. V1. 39
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d2 )
np—2nbn'= — P-(NAN) 5

=z S i S =M
nl—n,=2 -da’:-' i+ %’g ;—3- +(N’—lY,)z"‘ ;
Z—Z=a i TS )
nmnm b e
mem= T M
W= st a atE T T

d’apres quoi, en posant pour abréger

dm dn dzm d3n d:n dm
S=(N Yo — (MM — — 2 — —— - — —
(N+N) de ( ) dt *\ dex A3 dex A

€ . .
. d*m d2 .
— V= N T —(w—r) T
G+ (N'4-N i"l — M/;i_]p] f_’.’ (M, N’ — M/ 3 .
=+ (V4N a5 ( 7) ai (¢ (M, N ;

: dm dn d’m  dzh din dg
— an a0\ e e 98
F =2(H'+-H)) & 2(6"+6;) dz +3 ds  dee des  dee )

. dzh &gy, . d3m oy,
+§ (M'—M)) — —(N'—N)) j;;'} ""f‘-—;sl (HA-H )y ~(6 +Gu§;;§ :

(M =M ) (H'=-H))—(N'—DN, X&'+ 6,3 ;



din d>m d2 . a-n
V=(6'46) So—(H+H) == +(N'+N)) & —(+m,) o
—{(M'=-M Y H/A-H ) — (N'+N,(6'+G %

il viendra

dem d:k d°n 42 .
(mant-n') (g /2845 -(mm=2m4-m')(h = 2h~4-h ) ==~ g = de dt.zn dtf}cé+V16 .

En conséquence, on aura (18 et 19)
) dm d= h dn dzg .
Z 2{5»:—' dez T de &z §+Fl
- dm d2n dn d°m LaSie ?
N @@ Eg
dom dh _den dig) (22)
gdz- ETERTR dzss"V‘z ’
—_— | e 2 —
2 de +9; Poded —‘J(g gl)l}l =t dm d@n dn dm

%dt &z T dr de

.
2>

=

résultats: sur lesquels nous reviendrons tout i heure.

Si présentement on suppose que les observations coineident,.
c’est-a-dire, si l'on suppose que lintervalle de temps Z qui sépare
Vobservation moyenne des deux observations extrémes est nul, il
viendra, en adoptant, pour plus de simplicité les notations de Lagrange

m/h!—n'g!! e Y
Z=m — 5. ZlI= - (23)
m/nll ==n!m!" 2(m/n!lm—n/m'’)

IV. Si nous n’eussions eu en vue que de parvenir 3 ces derniers
résultats, nous aurions pu les obtenir d’une maniére incomparable-
ment plus simple , ainsi que nous l'allons voir ; et il en serait
résulté: une nouvelle méthode qui, si I'hypothése qui nous occupe
pouvait étre: admise , paraitrait devoir lemporter de bean~
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coup sur la précédente , sous le rapport de la rigueur et de la
briéveté.

Soient toujours, pour une époque quelconque 7, r le rayon vecteur
de la terre , « sa longitude ou celle du soleil augmentée de six
signes , # la longitude et 5 la latitude géocentriques d'un astre ; en
posant, pour abréger , comme ci-dessus ,

rCos.a=g , Cos.pCot.y=m ,

(24)

rSin.e=% , Sin.gCoty=n ;

g, £, m, n seront des variables fonctions de #, et les équations
des rayons visuels seront
x=g~4mz , y=h+nz ; (25)

or, en conservant toujours la notation des fonctions , I'hypothése d’un
mouvement rectiligne et uniforme revient 4 supposer a la fois

' all=o , yi'=o, zl=o ;
différentiant donc deux fois consécutivement, sous ce point de vue,
les équations (24), on en tirera

x/:g/+mz/+m/z s 0:3//+2m/z/+m//z ,

26) (27)
y' =W+ nz'4n'z; o=A""4-2n'z'4-n""z .,

Les deux dernitres donnent sur-le-champ

— m'h”—n'g” 2/ m”h”—-n”g” ’28)
m/ni—m/int 2(m/n/l==n/ml’y ‘
On a ensuite , par les équations (26)
=/t (Ml 2 2) BV e (M e o ) !
=6 2(m/n/l—==n'/m'’) ’ , )
(2
, ]/+ (nm/!—2m/n")h/—(nn"—on')g! 29
=2 5
y 2(m'n!l—n'm!") ?
et enfin, par les équations (25),
m’h”-—n’g" m'hl!_nlgll
X =gl ———" y=h—n—— ., (30)
m/nll—nlm!! m/n!l——n'/m!!



DES ORBITES, 269
Voici comment on tirerait parti de ces formules. Au moyen de
plusieurs observations peu distantes , au nombre de trois au moins ,
mais qu’il serait utile d’avoir en plus grand nombre , on se pro-
curerait une suite de valeurs de r, «, g, %, ¢ et conséquemment
de g, 2, m, n. Par les méthodes connues d'interpolation , on
déterminerait chacune de ces quatre derniéres quantités en fonction
de 7, de manitre quelles soient amenédes & cette forme

§ =G otGotG, 4G ... ,
h=H,+H:+H,t*+H,834.... , R
m=M M+ M0+ M ... (31)
n =No+N+ N, 4N, 4. .

Les coefficiens numériques une fois déterminés , on aurait

g =6, 426,14 3G, ~4... , g'=2(6,43Gi+...),
b =H,+2H,i43H,*~-.... , ﬁ// =2(H,=4-3H,t+....)
m/ =M, 42M t+3M ;... , m/=2(M,43M;t-+}...) ,

= N,+2N,t4 3N, 2*~4... ; 0’/ =2(N,43N,t4...);

Prenant alors pour Z# une époque qui soit & peu prés moyenne
"entre ceclles des observations extrémes , les formules ci-dessus feraient
connaitre, pour cette époque , les valeurs numériques de g, g/, g%,
Ly, k', m, m, m’, n,n ,n!,ecton en conclurait, par
les formules (28 , 29, 30), les valeurs numériques de z, 2/, v, ¥/,
z, 2/, desquelles enfin on déduirait ( Annales, tom. II, pag. 8)

tous les élémens du mouvement de lastre.

On pourrait, au surplus, s’épargner la peine de deux interpola-
tions en profitant des circonstances connues du mouvement de la
terre pour exprimer g, g/, g/, %, &/, A en fonction de r et «,
comme l’a fait M. Laplace , dans sa méthode pour les cométes.
On pourrait aussi , 3 Pexemple du méme géométre , dans le cas
ou l'on saurait que Vorbite est parabolique , ou a peu prés, pro-
fiter de I'équation de condition

’

(32)
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fwr=(2 -y 4-22) (@ -y 2/")?

pour éliminer de nos formules celle des deux quantités m/ , n't
que l'on soupgonnerait étre déterminée de la maniére la moins ri-
goureuse , & raison des variations trop peu sensibles des valeurs
consécutives de m ou de n. Ainsi, sous tous les rapports , cette
méthode ne le céderait 4 aucune -autre, sous le double pbint de
vue de la rigucur et de la brieveté, ainsi que sous celui de la
simplicité et de l’élégance de la théorie qui y aurait conduit, si
Pon pouvait faire quelque fond sur ’hypothése qui lui sert de base.
Voyons donc, d’une maniére plus particulitre , ce qu’on doit penser

de cette hypothése..

V. Nous avons déduit les formules (23) des formules (22), en
supposant que lintervalle de temps 7 qui sépare les observations était
tout 4 fait nul; mais , nous serions encore parvenus aux mémes
résultats , si nous eussions sculement supposé cet intervalle de temps
assez petit pour qu’il fat permis d’en ndgliger les puissances
supérieures a la premiére ; car tous les termes négligés dans les
formules (22), pour parvenir aux formules (23), sont affectés. de 22
au moins ; donc, si les formules (23) étaient rigoureuses, dans le
cas d’observations infiniment voisines , les formules (22), et consé-
quemment les formules (9) , devraient s'éloigner peu de I'exactitude ,
lorsqu’on les appliquerait a des observations qui ne seraient point
séparées les unes des autres par un intervalle de temps trop con-
sidérable ; si domc alors elles conduisent 3 des résultats tout a fait
défectueux , il faut en conclure qu’clles ne sont pas exactes , méme
4 la limite, et quainsi elles sont en défaut dans I'application , moins
par le trop d’intervalle entre les observations, que par le principe
méme sur lequel elles reposent.

Si tout mouvement varié et curviligne peut, durant un intervalle
de temps assez: court, étre considéré, sans erreur sensible, comme
uniforme et rectiligne , nous pourrons. supposer tel le mouvement
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de la terre , dans lintervalle qu’embrassent les ohservations. On
peut méme remarquer que souvent cetle supposition s’éloignera
moins de la vérité pour la terre que pour l'astre ohservéd, et c’est
par exemple ce qui arrivera lorsque cet astre sera une plandte in-
férieure on une comdte passant fort prés du soleil. Yoyons donc ce
que deviennent nos formules dans cette hypothése.

Si lon pose, pour abréger,
(t—1,8'—('—1,))5+t'—1)g/=GC ,
(=2l = (=t oA~ (t/—21)hy)=H ;

les formules (7 et 8) deviendront, au moyen des transformations

(13 et 14),

(33)

JSr=(n,H—n,G)Tang.y, ,
f=(m H—n G)Tangs , | (34)
JS'=m’H—n/G)Tangy .
K ={(m! —m)(n—n,)—(m—m,)(n/—n)jTang.s/TangsTang.y,; (35)
en conséquence de quoi les formules (9) deviendront
(m!—m)H—(n'—n)G

{(m/m=m) (n—n )==(m—m,) (n'==n)}Sin.y, ’

.D/=

(m/==m,H=—=(n'=n,)G
D= - ’ , ) (36)

- { (Ml—m) (n==n,)==(m==mn,) (n’——n)} Sin,y

Di— (m—m ) He=(n==n,)G

o {(m/—m)(”"‘n/)_(m—ml) (",_”)}Sin-'?' ’

Cela posé, pour exprimer que le mouvement de la terre est rec~
tiligne et uniforme, il faudra écrire

8—8 _ 8= h'-—lz__ h—hA,
- - foom t, L] - - 1=t ? (37)

c’est-A-dire ,
(t—1))g'—(t'—1)g+({t'—1)g=CG=o0 ,
(=t )l —(t/ =t o (V/—1) )= H=0 ;

(38)
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cette supposition rend donc nuls les numérateurs des formules (36);
nous allons voir qu'elle andantit également leurs dénominateurs.
Cn a, dans le cas actuel,
X=g~+mzZ, , Y,=h~+¥nz, ;
X=g4mZ , Y=h+nZz , Qo)
X=g/+m'Z' 5 Y'=W4nwZ';
au moyen de quoi les ¢quations (3) deviendront, en ayant égard
aux équations (38),
GE=t)m!Z! (=t Y Z (! = )m! Z' =0 ,
(t—2)) n'Z!'—=(t/—t)) nZA-(t'—1)n,Z =0 ,
(t—1) Z~(@'—t) Z4(—1t) Z,=o .
Or, si, entre ces trois dernitres équations, on élimine, comme
inconnues , deux quelconques des trois quantités (t==z,)Z/ , (#—1)Z ,
(#—=t)Z,, la troisitme disparait aussi, et il vient pour résultat final

m/=—m m=—nm,

n/——n n—rn,

ou (m'—m)(n—n,)—(m—m,)(n'—n)=o .

Il est donc certain que, dans I'hypothése ol le mouvement de
la teire et celui de lastre sont, l'un et I'autre , rectilignes et uni-
formes, les valeurs de D,, D, D/, et par suite celles des coor-
données de cet astre, se présentent sous la forme indéterminée < ;
mais on sait que quelquefois cette forme n’est qu'une sorte de masque
que prennent eertaines formules trés-déterminées , lorsqu’on les ap-
plique a des cas particuliers pour lesquels elles n’avaient point été
calculées ; il est done nécessaire .de faire voir que , dans le cas qui
nous occupe , les valeurs de D,, D, D/, doivent nécessairement
étre indéterminées ; et c’est 1& une chose extrémement facile.

Soient, en effet, @, &, ¢ trois lieux consécutifs de I'astre, et o/,
% , ¢/ les lieux correspondans de la terre; de maniére que les
rayons visuels dirigés. de l'une a lautre soient a’a, b'b, cc. Si
Von suppose les mouvemens rectilignes et uniformes , on deyra avoir

ab:a’l! iibei b .
Cela
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Cela posé , concevons par a’a et /6 deux plans paralltles A, B,
ce qui est toujours possible ; par le point ¢ concevons un troisiéme
plen G, paralléle aux’-deux premiers ; et soit @ le point ol ce
nouvean plan coupera la droite 4/4’c/ ; par la propriété connue des
droites coupées par des plans paralleles, on aura

ab:a'l:be: bd

proportion qui, comparée avec la précédente , prouve que le point
d’ n’est autre chose que le point ¢/ lui-méme, et qu’ainsi le plan
C contient la droite ¢/c. 1l demeure donc établi par la que, lorsque
deux points parcourent , d'un mouvement uniforme , deux droites
non comprises dans un méme plan, la droite qui va de I'un a lautre
demeure perpétuellement parall¢le & un méme plan fixe.

Or, soit présentement une droite quelconque a”/5”c’/, autre que
a'b/c’ et abc, posant i la fois sur les trois rayons visuels a’a , &',
¢/c, et les coupant respectivement en @/, 5/, ¢/ ; ces trois points
seront aussi ceux ol cette droite percera nos trois plans paralléles.
A, B, G; on devra donc avoir

ab.ab ;b b

donc, si un point se meut sur cette droite de maniére ¥ parvenir
en a’/, b, ¢, respectivement , en méme temps que lastre par-
vient réellement en @/ , 4/, ¢/, et la terre en 2, 4, ¢, ce point
sera mu aussi d’'un mouvement rectiligne et uniforme ; donc enfin,
en admettant le mouvement rectiligne et uniforme de la terre , la
supposition que l’astre observé se meut uniformément sur une ligne
droite , assujettit simplement cette droite A poser 2 la fois sur les
trois rayons visuels, sans en fixer aucunement la situation.

Le calcul différentiel confirme parfaitement cette conclusion , et
méme d’une maniére fort simple. Nous avons déja vu (24) que les
équations du rayon visuel variable étaient

x=g+mz ’ y=h+nz ’ (38)
or, dans I'hypothése du double mouvement rectiligne et uniforme
de la terre et de l’astre observé , on doit avoir

- Tome VL 4o
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al’=o0 , y/'=0", z/'=0 , g/=o0 , h''=o0 ; 39)
différentiant donc deux fois consécutivement les équations (38), en
ayant égard 2 ces conditions, il viendra
a’'=g/+4mz'+m'z , o=2m’z/+m’z ,

(40)

ylez/-l- nz/4-n'z ; o=z2n'z4n'z .
Or, les deux derniéres équations ne suffisent plus alors pour déter-
miner z et z/ ; et elles ne peuvent plus subsister cnsemble que
sous la condition
m'n!'—n'm!'=o ,
qui, jointe aux dcux conditions g/=o0, A/=o0, réduisent en effet
les valeurs (28, 29, 30) a 2.

Que doit-on donc penser de la validité d’une hypothése qui , appli-
quée , dans une méme question , & deux cas tout & fait semblables,
donne , comme absolument indéterminées, des quantités qui, de
leur nature, sont détermindes et uniques, En vain dirait-on que,
du moins en n’appliquant cette hypothése qu'a un seul des deux
cas, on doit se promettre d’approcher mieux du but; dés lors, en
effet , qu'elle est défectueuse , on perd , en n’y recourant qu’une
seule fois, la chance des compensations d’erreurs qu'on aurait pu du
moins se promettre de son double emploi.

Mais voici de nouvelles counsidérations qui nous paraissent de
nature & mettre dans le plus grand jour tout le vide de I’hypothése
dont nous cherchons a dcarter 'usage. Considérons l'ensemble des
rayons visuels dirigés sans cesse de la terre en mouvement vers un
astre aussi en mouvement ; ces rayons visuels, considérés comme
indéfinis, engendreront dans I'espace une certaine surface gauche, dont
la nature dépendra dec celle du mouvement simultané des deux
astres. Soient tracées sur cette surface tant de courbes continues
qu'on voudra, de maniére que ces courbes, d’ailleurs quelconques,
ne présentent , dans leur cours, aucun point de rebroussement.
“Soient alers une soite d'astres fictifs parcourant ces différentes courbes
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de telle maniére qu'ils parviennent tous, en ‘méme temps que l'astre
réel , sur chacun des élémens rectilignes de la surface gauche ;
c’est-a-dire, de maniére que , pour l'cbservateur, ils cachent sans
cesse cet astre réel ou soient sans cesse cachdés par lui. Les données
fournies par l'observation seront constamment les mémes pour tous.
Or, s'il était permis, du moins pendant un intervalle de temps peu con-
sidérable , de supposer le mouvement de Yun d'eux sensiblement
rectiligne et uniforme , on dcvrait incontestablement jouir de la
méme liberté a Pégard de tous les autres. Or, en soumettant cette
hypothése au calcul, ct ayant d’ailleurs égard au mouvement varié
et curviligue de la terre, on troaverait que, pour un instant quel-
conque, ces astres sont tous situés au méme point de V'espace, et
qu’ainsi ils suivent perpétuellement la méme route. L’hypothese d’un
mouvement sensiblement rectiligne et uniforme, pendant un temps
trés-court , ne saurait donc étre admise, puisqu’elle tend & faire juger
égales des quantités' qui peuvent étre d’ailleurs fort différentes.

Quelques géométres ont pensé pouvoir du moins admettre cette:
hypothése dans la recherche du plan de lorbite, sauf ensuite & pro-
céder d’une maniére plus rigoureuse dans la recherche des dimen-
sions de cette orbite et dc sa position sur ce plan. Mais, ces der-
niers élémens étant inévitablement subordonnés au premier , cela
revient & peu prés & achever, avec beaucoup de soin et de pré-
eision, un calcul entrepris sur de fausses donndes..

D’autres ont cru faire une moindre erreur, em supposant seule~
ment le mouvement de lastre rectiligne sans le supposer uniforme ;
mais cette hypothése , se trouvant en contradiction formelle avec le
principe des aires , semble devoir étre plus fautive encore que la
premiére. Si l'on faisait I'inverse , c’est-a-dire , si on supposait le
mouvement uniforme, mais non recctiligne , cette hypothése , com-
binde avec le principe des aires, reviendrait & attribuer & l'astre un
mouvement circulaire autour du soleil ; et 'on sent qu’excepté dans

le' voisinage des apsides , cette hypothése scrait tout a fait insou-
tenable..
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Les équations du mouvement d’une planéte ou d’'une cométe sont;
comme l'on sait,

> ©y rz
all = = = , ==

> Y =—

ri r3 r3
or, on voit que I'hypothése d’'un mouvement rectiligne et uniferme
revenant & supposer z//=o0 , y”/=o0 , z//=o0 , cette hypothése ne
pourrait étre admise, en toute rigucur , que pour le seul cas de
r=w . Nous ne disconviendrons donc pas que cette hypothése ne
puisse étre tolérable, pour une comete *encore fort éloignée de son
périhélie , et nous pensons que dans ce cas il serait bon de ne
point faire usage d'observations trop rapprochées; mais , comme
d’ordinaire ce n’est point dans ces circonstances que les cométes
peuvent étre observées, la méthode ne pourrait étre alors applxquee
que dans des cas extrémement peu: fréquens.

SRR

—— r——

GEOMETRIE DES SURFACES COURBES.

Démonstration et application d'un theoréme relatif &
Uintersection des surfaces du second ordre;

- Par M. Berarp , principal et professeur de mathématiques
du collége de Briancon , membre de plusieurs sociétés
savantes.

[ % T Vi Sla Sia Vg Sl V]

THE" OREME. Si deux surfaces du second ordre se coupent , suivani
Je systéme.de deux lignes courbes, isolées l'une de lautre, et si

Pune de ces courbes est une courbe plane , I'autre sera également une
courbe plane.
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Démonstration. Imaginons que I'on projette '’ensemble des deux
intersections sur un plan quelconque , non perpendiculaire & celui
de la section supposée plane ; le systtme des deux projections pourra
étre exprimé par uwne équation unique qui sera du 4.° degré au
plus; mais la section supposée plane étant du 2.¢ degré aura pour
sa projection une équation de ce degré , laquelle devra diviser I'équa-
tion du 4.° degré, et donnera pour quotient une équation du 2.°
degré au plus, laquelle appartiendra & la projection de l'autre in-
tersection ; cette intersection ne saurait donc étre elle- méme une
courbe d’un degré supérieur au second ; elle est donc Vintersection
de l'une des surfaces dont il s'agit par un plan, c’est-a-dire , une- -
courbe plane,

Application. Soit un vase , figuré en portion de surface du second
ordre , dont le bord soit déterminé par la section de cette surface
par un plan. Si ce vase est exposé soit aux rayons du soleil soit
3 ceux d’'une lumiére voisine, son bord formera dans son intérieur
une ombre dont la limite sera lintersection de la surface de ce
vase avec une surface cylindrique ou conique , dont les élémens
rectilignes passeront constamment par le bord du vase. Or, ce bord
est une ligne du second ordre , puisquil est Vintersection d’une
surface du second ordre avec un plan; donc le cylindre ou le céne
est une surface du méme ordre, coupant celle du vase suivant deux
courbes dont l'une est le bord méme de ce vase et I'autre la limite
de Pombre projetée par ce bord dans son intérieur ; puis donc que
la premiére de ces deux lignes est une courbe plane , 'autre doit
en étre une aussi.

Remarque. En général , deux surfaces de ordre m se coupant
réciproquement , suivant le systtme de deux courbes isolées , I'équa-~
tion de la projection de I'ensemble de ces deux courbes sur un
plan quelconque sera du degré m*. Si l'une des intersections
est plane , sa projection sera du degré m ; l'autre ne sera donc géné-

ralement plane qu’autant qu’on aura m*—m=m OU m=3, comme
ci-dessus.
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QUESTIONS RESOLUES.

Solution des deux problémes de géomeélrie proposes ¢
la page 356 du V. volume des Annales; (*)

- Par M. J. B. DurraNDE.

(o Ve Slg Vg Wo Vi, Vo Vo Vo V3

PROBI.EME I. Construire un Iriangle dans lequel on connalt
seulement les distances des sommets au centre du cercle inserit ?

Solution. Tout se réduit évidemment & trouver le rayon du cercle
inscrit. Soit donc R ce rayon; soient A, B, C les sommets du
triangle et @, &, ¢ leurs distances respectives au centre du cercle;
en aura

=aSin:A , A=lSin:B , R=cSin.iC ; (1)
mais on sait que , A, B, C étant les trois angles d’un triangle, on a
2Sin.2ASin :BSin.:C+-Sin.22A--Sin.*;B+-Sin.>;C—1=0 ;

substituant dans cette derniére équation les valeurs données par les
équations (1), il viendra, toutes réductions faites,

(*) Ces problemes ont déja été: résolus a la page 129 de ce volume ; mais
les solutions. que I'on va lire nous ont paru differcr assez des premiéres pour
meriter: d’étre: mentionnées..

J. D. G..
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2a55}2’+(5‘c’+c’a“+a’5’)R’—a’Z’c’.—:.o :

En mettant cette équation sous la forme
1 \3 X
abict| = | —(4cra*+a*0?) | — ) —z2abc=o0 .
R h
1 .
et considérant | comme I'inconnue, elle sera sans second terme.

PROBLEME 1. Construire un triangle dans lequel on connait
seulement les distances des cdtés au centre du cercle circonscrit ?

Solution. Tout se réduit encore évidemment ici a trouver le rayon
du cercle circonscrit. Soit donc R ce rayon; soient A, B, C les
sommets du triangle et @, 4, ¢ les perpendiculaires abaissées res-
pectivement du centre du cercle sur les cotés qui leur sont respec-
tivement opposés ; on aura

RCos.A=a , RCos.B=2 , ACos.C=c¢ ; (1)

?

on aura de plus

1—Cos.2A.— Cos.>B—Cos.*B—2Co0s.A Cos.BCos.C=0 ;

?

substituant donc , dans cette derniére équation, les valeurs donndes
par les équations (1), elle deviendra, toutes réductions faites,

R (a* 02 4-c) R=2abc=0 ;

2

équation du troisi¢me degré sams” second- terme.
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QUESTIONS PROPOSEES.

Probléeme de Geomeétrie.

DEUx sections coniques coexistant d’une maniére quelconque sur
un méme plan ; on demande , 1.° quel est le lieu des péles de
chacune qui correspondent a toutes les tangentes & lautre? 2.° &
quelle courbe sont tangentes toutes les droites qui, considérées par
rapport A chacune, ont;leur péle sur I'autre?

Probléme d Hydro-dynamique.

Un vase, en forme de céne tronqué i bases paralleles ; ayant son
axe vertical , est rempli d’'un fluide pesant et incompressible. On
pratique a la surface de ce vase une fente latérale dont les cotés,
supposés. rectilignes , vont concourir au sommet du céne, et qui
s’étend sur toute la longueur du vase. Le liquide s’écoule de tous
les points de cette ouverture, avec des vitesses proportionnelles aux
racines quarrées des hauteurs de la surface de nivean au-dessus de
chacun de ces points. On demande d’aprés cela quelle sera la loi
d’abaissement de cette surface de niveau ?
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ANALISE TRANSCENDANTE.

Formules nouvelles , pour lintégration approchée de
toute fonction différentielle d'une seule variable, entre
deux [imites données quelcongues ;

Par M. le professeur Kramr , doyen de la faculté des
scicnces de lacadémie de Strasbourg.

[a e Sla Vo Vo Vg Vie Ve % )

L’OBJET que nous nous proposons dans ce mémoire est d’enseigner
a déterminer , entre des limites données quelconques, lintégrale
de toute différentielle de la forme Xdx, quelle que puisse étre
d’ailleurs la forme de la fonction de # désignée par X. La mé~
thode que nous allons faire connaitre a cela de particulier qu'elle
est , en quelque sorte , étrangére aux principes du calcul intégral
et 3 la notion des infinimens petits; elle ne suppose que les prin-
cipes connus de I'algtbre élémentaire ; elle s’étend & toutes les fonc-
tions quelconques , a celles méme qui se sont constamment refusées
jusqu’ici a tous les moyens d’intégration connus ; elle donne I'intégrale
demandée , moyennant un nombre trés-limité de termes, avec une
précision bien supéricure a tout ce qu'on pourrait se promettre de
I'usage des suites infinies.

r. On sait que Tintégration de toute formule Xdz , entre des
Iimites données, #=a& et x=a’, par exemple, revient & quarrer
l'aire mixtiligne terminée d’une part par la courbe dont I’équation
serait- ¥y =X, d’une autre par l’axe des z , et enfin par les ordonnées

Tom. VI, n.° X, 1.5% avril 1816. 4%
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b, b/ de cette courbe répondant respectivement aux abscisses 2 et a’,
C'est méme de 12 que cc probleme a été appelé probleme des
quadratures , et c’est sous ce point de vue que nous Ienvisagerons
constamment , dans tout ce qui va suivre.

2. Soit fait , pour abréger a/—a=c; et, pour fixer les idées,
imaginons que l'on ait divisé Iintervalle ¢ en douze parties égales ;
désignons par 2, , @, @, 5..es- @105 @515 @y, les abscisses qui
répondent aux Zrefze points de divisions; au moyen de I'équation
y=X, nous pourrons calculer les ordonnées qui leur correspondent ;
représentons-les respectivement par by, b,y b, el by by y s
nous connaitrons ainsi treize points de la courbe qu’il s'agit de
quarrer entre les limites x=a, et #=a,, , pour lesquclles on a
respectivement y=54, , y=5

Iz2°
3. Soient joints les deux points extrémes (4o, 04), (2,,, &,,)
par une corde , cette corde, avec sa projection ¢ et les deux or-

données extrémes formera wn trapéze ; en désignant son aire par
S;,, et posant

12(5170"‘“:51 z>=5/1 1 s

nous aurons
N AT
4. Soient joints consécutivement les #rois points-(2, 5 &,), (26, &s);

(a:., b,,) par deux cordes; ces cordes formeront , avec ¢ et les

irois ordonnées b, , bg, b, , , deux traptzes ; en désignant la somme
de leurs aires par S;, et posant

6(%50+56+%bl z)=b/6 ’
noas aurons
Sﬁ = ?".'55/6 .

5. Soient joints consécutivement les guatre points (@4, bo), (@45 8,),
(@55 bg), (@,,,b,,) par trois cordes ; ces cordes formeront,
avec ¢ et les quatre ordonnédes b,, by, by , by, Irois trapizes;
en désignant la somme de leurs aires par 5, , et posant
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4(%50+54+53+551 D=0, ,
nous aurons
S,==ct/, .

6. Soient joints consécutivement les ¢/ng points (@, , b,), (2, ,5)),
(@6, b6) 5 (ag. by) s (@4 5 b, ,) par quatre cordes ;ces cordes [ormeront,
avec ¢ et les cing ordonnées b, , &, , bs, by, b,, , quatre trapézes ;
en désignant la somme de leurs aires par §, , et posant

3(260+5;+56+&9+'}61 z)=5/3 ’
nous aurons
S,=xcl/, .

7. Soient joints consécutivement les sep? points (@, , &,), (2, , 5,)),
(a4 ’ 54) » (a5 5 86), (a5, b4), (@10, b10) 5 (arz » by 3) par siz cordes ;
ces cordes formeront, avec ¢ et les sept ordonnées b,,4,,5, , b,
by, b,y b,,, six traplzes ; en désignant la somme de leurs aires
par S, , ct posant

20004040 05000 t100)=0 s
nous aurons
S,==cb/, .
8. Enfin ; soient joints consécutivement tous les Zreize points de
la courbe par douze cordes; ces cordes formeront , avec ¢ et les

treize ordonnées, douze trapizes; en désignant la somme de leurs
aires par §,;, et posant

bbbt b b hbikB A A At D =V
nous aurons
S.==cl/, .
9. Aucune des aires §,,, S5, S,, S;, §,, 5. n'est aire de

mandée ; mais il résulte évidemment de ‘notre procédé que ces aires
convergent de plus en plus vers celle-la. Donc aussi la ligne par
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laquelle il faut multiplier ¢ pour avoir l'aire demandée n'est aucune
des lignes &/,,, V', b/, , b’y , &/, , ¥/, , mais une ligne vers la-
quelle celles-1a convergent de plus en plus.

10. Portons les ordonnées ¢y, , &6, &/, , Z’, , &, , b/, sur leurs
correspondantes b, , , b5, b, , by, b,, b,; et imaginons une courbe
situde au-dessus de la premiére , passant par les siwx poiats (a,, 4/,),
(a, s 073), (ay, b/;) y (@4 5/4) s (as, 5/6)a (@5, &,,); cette courbe
prolongée rencontrera le prolongement de l'ordennee &, en quelque
point, en désignant par 4/, son ordonnée qui répond i celle-li,
et conséquemment a Dlabscisse a, les ordonnées 3/,, , ¥/, IZW
b,, b,, b/, tendant continuellement vers la ligne par laquelle il
faut multiplier ¢ pour avoir laire cherchée , en désignant cette
aire par S, , nous pourrons prendre sensiblement

: SO=1'_5L‘5/0 2

et tout se réduira i trouver 4/, ; probléme qui rentre dans les
méthodes connues d’interpolation. Par la nature méme de ces mé-
thodes , et de l'espece d’arbitraire auquel elles sont inévitablement
assujetties , la valeur que nous trouverons pour &/, ne sera poiat
proprement la véritable ; mais sa différence avec elle sera compa-
rable 4 celle qui existe entre le rayon et le sinus-verse d’un trés-
petit angle , tel que serait, par exemple, celui d’'une minute ou
méme d’une seconde. L ffectivement nous verrons bientt que , dans
tous les cas ordinaires d’intégration, cette différence n’est sensible
qua la dixi¢me ou a la douzitme décimale. D’ailleurs on peut la
diminuer 4 volonté , en augmentant le nombre des parties dgales
de ¢ qu’on pourra porter & 18, 24, 30, 36, 48 ou 6o au lieu
de 12,

11. Il est facile de voir, par la nature de la courbe dont les
ordonnées sont &/, , &, b, , by, b, , ., quelle doit couper
perpendiculairement Vordonnée &/, , c’est-a-dire , en d’autres termes,
qu’en prenant 3/ pour le symbole général des ordonnées de cette
courbe, et faisant répondre l'origine & V'ordonnée #/,, on doit avoir
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dy’
en méme temps x=o, o =o;ce qui exige que l'expression de y!

ne renferme point la premiére puissance de . Pour plus d’uni-
formité, nous en exclurons également toutes les autres puissances
impaires, ¢t nous poserons simplement

y'= A-+Bx*4-Cx*+4Dx’+Ex’+-..... ;

il sagira donc de déterminer le coefficient 4, auquel se réduit y’
Jlorsque w=o.

12. En prenant ¢ pour unité , il faudra donc qu’aux valeurs
1,2,3,4,6, 12 de x, répondent pour y/ les valeurs &/,
o'y, b5, b5 Vs, by,y, ce qui donnera

¥, =44+ B+ C+ D+ E4 F,
b, =A4 2°B4 20C+ 20D+ 22E+4- 2°F
v, =A+4 3B+ 3:C-+ 3°D+4 3E-4- S°F
Y, =A+ {B4 {0+ D+ PE4 [oF
¥y =A4+ 6*°B4 6¢C+ 6°D4- 6°E-} G6°F ,
b, =A412*B-}12¢CH 126D+ 128 E4-12"°F
et , en éliminant , entre ces six équations, les cing coefliciens B,
C,D,E, F,la valeur de 4 que l'on tirera de I'équation finale,
en fonction de 2/,, #',5 &', , ¥/, b's, &,,, sera, pour ¢=12,
Iintégrale demandée ; nous avons vu d'ailleurs qu’on a
by =b,4b b0 b bbb, b by by DD s
b, =bot2b,2b 2064203420, 40, ,
Y, =,43b,+3b+3by+320,, ,
b y=2bo44b ;A-4b 3420,
b s =3by4-6b¢+30, , ,
b, =6b,+6b,, . (*)

™ Je dois lidée, trés-ingénieuse , qui sert de fondement i cette nouvelle
muéthode d'intégration 4 M. »’OBENHEIM , ancien sous-directeur des fortifications
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13. Les équations quil s'agit de résoudre étant au nombre de
six , nous allons les présenter sous la forme plus générale que voici

o/ = A+ Ba+Ca*+Da*+Ea‘~+Fa® ,

b= A+ Bb4Cb* +Db*+-EL+ Fb°

¢! = A+Be+Cc* + D +Ect+Fc’

d' = A+ Bd+Cd* D&+ Ed*~+-Fd* ,

e/ =A+Be+Ce* 4De*+Ee* Fe’

S = A+-BfA-CP+Df +Ef 4 Ef .
Les quantités a’, &/, ¢/, d’, ¢/, f, de méme que @, b,¢,4d ¢, f,
sont regardées comme donnédes, et il s’agit uniquement d’obtenir la
valeur de A ; de sorte que les cinq autres quantités 8, C, D, E, F
sont tout & fait indifférentes au probléme qui nous occupe. Or,
on trouve

Y= bedefa’
- (b—a) (c=a)(d—a)(e—a)( f—a)
-+ cdefab’
(c=b) (d=—0b)(e—0b) ( f=b) (a—b)
defabc!
-+ =
(d==c)(e==c)(f—c)(a=—c) (b=c)
efabcd'
+ ¢
(e=d)(J=—d)(@—d)(b—d)(c—d)
Sabede!
-+ — -~
(J—e)(a—c)(b—e){c—e)(d—e)
o+ abedefT

@—f)&—=F)(c—f)(d=—f)e=/)

)

professeur de mathématiques a I'école d’artillerie de Strasbourg. Il I'a exposée
dans un ouvrage qu’il vient de publier sous le titre de BALISTIQUE ou Indication
de quelques expériences propres & compléter la théorie db mouvement des pro-
jectiles de Ulartillerie ; mais je crois pouvoir en revendiquer les développemens
et applications qui vont suivre , lesquels sont entierement mon ouvrage.

( Note de M, KRamp, )
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La loi que suit cette expression géncrale est évidente, et on peut
aisément [’étendre au cas ou l'on aurait un plus grand nombre
d’équations.

14. JYappellerai diviseur général le nombre des- parties dgales
dans lesquelles on aura divisé l'intervalle ¢ qui sépare les ordonnées
extrémes qui terminent Iespace mixtiligne qu'il s’agit de quar-
rer ; nombre qui a constamment été supposé 12 dans ce qui
precéde. Le choix de ce nombre n’est point indifférent ; et a
grandeur & peu prés égale, on doit donner la préférence a celui
qui a le plus grand nombre de petits diviseurs, tel que 6 , 12,
18 , 24, 30, 36, 48, 60 ,.... Nous allons voir, au surplus,
que, dans les applications pratiques, il doit étre & peu prés superflu
d’aller au-deld de 24; attendu qu’en se bornant & ce nombre, on
peut, dans les cas ordinaires , obtenir les intégrales avec dowze
chuiffres décimaux exacts, au moins,

15. Le diviseur général étant choisi, le nombre et la nature des
parties aliquotes 2 employer sont encore- arbitraires. Il convient de
ne jamais donner lexclusion aux aliquotes 1, 2, 3; et le plus
exact sera de les employer toutes; mais il en résultera nécessaire~
ment plus de peine pour le calculateur; d’ailleurs en n’allant pas
méme au-dela de 6, on peut obtenir des résultats qui, pour la
précision , excédent déji les besoins ordinaires de I'analise.

16. Premiére formule. Prenons d’abord pour diviseur général
le nombre 6, en employant tous les aliquotes x , 2 , 3 , 6 ; nous
aurons simplement ici

bedo! cdab/ dabc! . abed,
S — + — — -
(b-a)(c-e)(d-a) * (c-b)(d-b)(e-D) (@-¢)(a=c)(b-c) ~ (a-d)(a-d)(c-d)

Or, on a, dans le cas actuel, e=1, b=4, c=9, d=36, ce qui
donne, en substituant ,

12960/ =567b/4-1 120/ ==d!
A= = 3
40
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et, en prenant pour unité l'intervalle entre deux ordonndes con-
sécutives , ce sera 1a Vintégrale demandée.

17. Pour plus de simplicité , appelons les sept prdonnées du cas
actuel 4, 8, », 5, ¢, ¢, ”; nous aurons

a' =tatp4ytott-4-1
b = wt29t2:4
e/ =}a435417
d'=3a437

ee qui donnera, en substituant,

f= 246(ar1) 41206 (840162 (y45) 163248
= 8o .

En prenant donc I'intervalle entier qui sépare les ordonnées extrémes
« et 7 pour unité; on aura finalement pour lintégrale cherchée

fde=4“"“"”"“21603-;2-!-27<v+e)+zm . 0

.

Si; dans cette dernitre formule, on fait s=g=j= === =y=1,
elle devient /Xdr=1, ainsi que cela doit &tre.
18. Ezxemple premier. On demande le logarithme naturel de deuz ?

Le logarithme d’un nombre quelconque 7~ est I'intégrale de
dx . . . . .
— » depuis =1 jusqu’d ax=pn. En divisant donc en siz parties
égales lintervalle compris entre un et deux , et remarquant qu'ict

I .
X= —, pous aurons d’abord
: X

=1,00000000 , «==1,50000000 ,

a4

p=:=0.85714286 , 84-¢=1,40259740
s =0,75000000 , y4:=1,35000000 ,

8=} =0;66666667 , 25=1,33333333
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s =:5=0,60000000 ,

g=£=054545455 ,

= 2=0,50000000 ;

Ces valeurs étant substituées dans la formule (I), on aura
Log.2=0,69314806 . |

La valeur rigoureuse est
Log.2==0 69314718 .

La différence est donc -+0,06000088 , moindre qu'un millioniéme,
19. ELxemple 1l. On demande la longueur du demi-quadrans

k. J

= — 7
La longueur de l'arc dont la tangente est # est I'intégrale de
dx

I x>
cette méme intégrale , prise entre zéro et wm; divisant donc cet in-

, prise depuis ==0 jusqu'a x=1; celle de I'arc % scra  done

tervalle en siz parties égales, et remarquant qu'ici X= , il viendra.

1§-x2
a= {==T1,00000000 , «+4%1=1,50000000 ,
#=1=0,97297297 , A+¢=1,56313690 ,
»=123=0,90000000 , »+i=1,59230769,
}=-‘—‘=o,80000000 , 29=1,60000000 ..

&5

=0,59016393 ,

&
y = 2==0,50000000 ;
€es valeurs étant substituées dans la. formule (I), on aura
»
%
La valeur rigoureuse est
dom. Fli, 42

=0,7853927r .



290 METHODE
% =0,78539816 . )

Ainsi I'erreur est —0,00000545 , moindre que un cent millidme.
20. Cette premiére formule (17) est la plus simple et la plus
aisée de toutes ; c’est celle qui exige le moins de calculs ; mais
Cest aussi cvlle qui donne les résultats les moins approchés. Celles
qui vont suivre seront beaucoup plus exactes.
21. Deuxiéme formule. Prenons 12 pour diviseur général , mais

n’admettons d’abord que les parties aliquotes 1 , 2,3, 4, 6 ;
cela donnera

_ bedea’ + cdealt deabc!
T (b=a)(c—a)(d—a) (e—a) (c==b) (d==Db) (e==b) (a==b) (d-c)(e-c)(f-c)(g-)

+ eabcd’ + abede!
(e—d)(a=d)(b~d)(c=d) = (a~=e)(b=e)(c—e) (d==e)

Or , nous avons ici e=1 , b=4 , c=g , d=16 , e=36 , nous

aurons donc , en prenant pour unité l'intervalle entre les deux ordon-
nées exirémes,

A= 17080/} 5b/4-320¢'—5/d'-}-¢’

>

12600

mais on a, dans le cas actuel,
o/= 2t sty bt s abe
b/='u+2'y+2|+2’1+25+27n+' .
d=tart 3y 4Bt
d'=1a+4s+L+2 ,
e/ =3u+06143 ;

ce qui donnera, en substituant,

JXdz= 49(adn+4288(84r) =27 (v4-2)F448(84-2)—63 (5404288240413 44

2100 *
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22. Ezemple 1. On demande de nouveau le logarithme de deuz ?

En divisant en douze parties égales l'intervalle entre un et deuz ,
nous aurons

«=22=1,0000000000 , &=}»=1,5000000000 ,
F=1=0,9230769231 , p+pr=1,4448160535,
y=15=0,8571428571 , »+ar=1,4025974026 ,
0=1:==0,8000000000 , p+x=1,3714285714 ,
#=2=0,7500000000 , s+ *=1,3500000000 ,
| g=I=0- 058823529 , ¢-=1,3374613003 ,

y=1=0,6666666667 ,  2,=1.3333333333 ;

0=1-=0,6315789474 ",

+= = =0,6000000000 ,
e=1-==0,5714285714 ;

A=2=0,5454545455 ,

w==0,5217391304 ,

» =1>=0,5000000000 ;

ce qui donnera, en substituant dans la formule (II)
Log.2=0.6931471816 ;
la valeur rigoureuse est
Log.2=0,6931471806 ;
Verreur est done
©,0000000010 ,

c’est-i-dire , que cette valeur est exacte dans les Zui? premiers
chiffres décimanx.
23. Remarque. Avec le seul logarithme de dewx on peut fagiles
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ment trouver tous les autres- Soit 7 un nombre absolument quel<
conque dont il faille chercher le logarithme. Soit 2" la puissance
de desxr qui lui est immédiatement inférieure ; et soit 144 le quo-
tient qu'on obtient en divisant le premier de ces deux nombres par
le second. Comme % sera certainement un nombre moindre que
Punité, la formule (I) suffira pour déterminer le logarithme de 147 ;

. . . g s 6
divisant donc % en siz parties égales on aura =3 , p::—ﬁ_—ﬁ; ,
6 6 6 6 6 1L f
T e - - = ¥ T emmcam— T -
Y=o’ CToga ) Toga’ STerh "Tegon +h aa

dra multiplier par 4 l'intégrale obtenue par la formule ; on aura alors
le logarithme de 1-}-%, auquel ajoutaut » fois celui de deux , on
aura celui de m avec une erreur qui ne tombera pas au-dessus de
Ya Auitiéme ou méme de la neuvidme décimale.

24. Ezemple 11. On demande le logarithme naturel de 10000 ?

La puissance de dezx immédiatement inférieure a 10000 est
81g2=2"%. On aura ainsi m=10000 , =13 , 1+b=22"20=1-
2o =1-1; on aura donc

8193
Log.10000=13Log.2+4Log(14 =2

512

Pour trouver ce dernier logarithme, on fera

1013 ? — 1013 — 3072 31073 3072
3398 9 o= JaiT ) S/ 5ia 0 g— ity 1=,

30
e B= G, v=

On trouvera ensuite

41(a+"%= 74,58720000 ,
216 84-2)=390,781 45008 ,
27(v4s)= 48,68667756 ,
272 =244.96745680 .
T.a somme 759.02278444 de ces quatre nombres , divisée par 840 ’
et multipliée_par ~2=:! donne pour le logarithme de 1% ou 332,
0,1994270243. La valeur rigourcuse est 0,1994270243 ; la différence
est donc seulement de guatre unités décimalcs du drizréme ordre.
25. D’un autre c6té , ayant trouvé lLoga=c,Ag314-18.6, on
aura 13Log.2=9.0109133608. Ajoutunt celui qu'on vieat de trouver,
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il en rdsultera le logarithme de 10000 égal & 9,2103403851. kn
prenant le quart de ce logarithme, on aura, pour le module de nos
tables vulgaires

Log.10=2,3025850963 .
La valeur rigoureuse étant
Log.10=2,3025850930 ;

on voit que l’erreur est au-dessous de guatre unités décimales du
neuviéme ordre.

26. Exemple 11I. On demande la longueur de tout arc dont on
connait la tangente ?

dx
I/arc dont la tangente est z est l'intégrale de rise depuis
Y o a tangente nteg 1+x2’p P

=0 jusqud x=¢ En se servant de la formule (II) les quantités
qu’il faudra y substituer pour «, #, ,....2, p, 7 seront des frac=
_ tions ayant pour numérateur commun 144, et pour dénominateurs
respectifs les nombres 144, 14441, V44-4-41* , 144~ 92>, 1441682,
14441002 , 14441212, 14441442° 5 et Yarc cherché sera la
valeur qui en résultera pour A , multiplide par 7 L’'exemple sui-
vant nous fera juger du degré dexactxtude de ce procédé.

27. Exemple IV. On demande, suivant la [ormule Precédente,

la longueur de I'arc -Z- ?

Les dénominateurs de nos quantités s, 8, »,.u.A, @, * sont ici
Y44 , 145, 148 , 153, 160, 169 180, 193, 208, 225, 244,
265, 288 , ce qui donnera

ehr=i =
ptp=i 1 =000 =1,5364996746
ria=Ei = 22 =1,563136g074

R et LI =1,5811764706 ,

38 173§

=1,5000000000 ;

s =St M 1 =1,5g23076g23 ,
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Qo= teem sy 5081840955 ;

193 169-493
— 514 144 _8_ —
2 1=324- 2= 1 =25,6000000000 .
d’ot on conclura finalement

-:—:- =0,7853981727 .

La valeur rigoureuse étant

-’f =0,7853981634 ,

il s'ensuit que l'erreur tombe au-dessous d'une unité déeimale du
huitiéme ordre.

28. Exemple V. Rectification générale de l'ellipse.

Ce célebre probléme qui exerce , depuis plus dun siécle, le
génie de nos plus grands analistes, rentre de lui-meéme dans noes
formules générales, dont il ne présente qu’un cas trés-particulier,
Soient @, 6 les deux demi-axes, et proposons-nous de rectifier I'arc
compris depuis 'extrémité de a jusqu’au point dont la normale fait
avec ¢ un angle a; la formule A intégrer sera

azb2da
(@2Cos.2A4-62Sin.2a) %

depuis a=o. Si Fon veut se contenter de la premitre formule, on
remplacera successivement la lettre a, dans

a2bz

(a2C05.2A+bESi11.2}\)‘:‘ ’

a s

d’abord par zéro et ensuite par ; , 2. %, 2de a On auraainsi les

z 1
" 59 &
valeursde «, 8. ., §, ¢. &, %, dot on conclura eellesde 2/, &/, ¢/,
d’, et par suite celle de 4 qui, multipiiée par I'arc entier a,
exprimé en parties du rayon, fera connaitre la longueur de Yare

eherché,

29. Supposons , par exemple, quil soit question d'assigner la
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longueur du quart de Pellipse ;

; » sera un angle droit , et devra
conséquemment devenir successivement 0° , 15°, 30°, £5° , Go

Q.
75° , go® Or, on sait que e
Sin? o =CO5.’900..':0 .
Cos.* 0 = Sin.*go°=1 ,
Sin215°=Cos.*75° =217
Cos.215°=8in.275° =2+ 1%
Sin.230%=Cos.?60° =1
Cos.230°=8Sin.260°=2
:

8in.245°=C0s.245°=

H

2

Il viendra donc, en posant pour abréger le quarré a*—2* de l'ex-
centricité =¢°, .

Ayant obtenu la valeur de 4, on la multipliera par —=1,5708 , et

Yon aura ainsi une valeur du quart d’ellipse qm, dans les cas
erdinaires , ne scra pas fautive d'un cent-milliéme.

v
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. 30. Exemple ¥1. On demande l'intégrale de e=*"d?, depuis #==0
jusqua s=3 ¥ .
L'intervalle étant divisé en douze parties égales, on aura
Pourz=0,00 , la fonction e~ =1,0000000 , '
0,25 0,9394332 ,

0,50 0,7788009 ,
0,75 0,5697828
1,00 0,3678794 ,
1,25 0,2006113 ,
1,50 0,1053g92 ,
1,75 0,0467706 ,
2,00 0,0183156 ¢
2,25 0,0063297 ,
2,50 0,0013904 ;
2,75 _ 0,0005244 ,
3,00 0.c001234 .
"En employant la formule (IT), on trouve , pour le numérateur de

Pintégrale. . . « e o o oo v v o 620,3635233 ,

et pour son dénominateur . . .. 2100 ;
mais , 4 cause de V'intervalle 3, il faudra diviser par 700 seulement,.

ce qui donnera finalement
Se=td¢=0,8862336 .

31. Dans mon Analise des réfractions astronomiques , j’ai donné
une table des intégrales de ¢™*'d¢, prises jusqu'a I'infini. J'y trouve
Depuis =0, . + . . . 0,88622692 ,

Depuis =3, . . + . . 0,00001958 ;

Elle estdonc'de 023, . . ... 088620734 ;
la différence avec la précédente n'exceéde guére wn guarante-milliéme
@’unité, a '

32.
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32. Ezemple VII. On demande I'intégrale de %ﬁc , depuis #=1

jusqu’d une valeur queleonque de x ?
x

La courbe dont I'dquation est = e; n’a aucun de ses points situé
dans les angles des coordonndes de signes contraires ; mais elle a,
dans chacun des angles des coordonnées de mémes signes, une partie qui
présente deux branches infinies. Les axes sont les asymptotes de la
partie située dans I'angle des coordonnées négatives ; quant a l’autre
partie , elle n’a qu'une seule asymptote qui est I'axe des y; elle
a une ordonnée minimum qui répond au point pour lequel on a
=1, et conséquemment y=e¢ ; et, a partic de ce point jusqu’3
Porigine , Paccroissement de lordonnée est trés-rapide, et s'éleéve a
un ordre d’infini qu’il n’est pas méme possible de déterminer ; de
sorte que cette branche ne peut approcher indéfiniment d’aucune
courbe connue, A moins peut-étre que ce ne soit la branche cur-
viligne de la Logistique ordinaire.

33. Cherchons, par la premidre formule, l'aire de la courbe, d’abord
entre 1 et 7, puis entre 7 et 13 ; et nous chercherons ensuite ;
par la seconde formule, laire totale entre 1 et 13, laquelle doit
étre rigourcusement égale & la somme des deux premieres. La dif-
férence que nous trouverons entre les deux résultats nous mettra 1
méme d’apprécier Verreur que notre méthode laisse subsister , dans
le cas particulier de ce probleme.

34. On trouve , dans les Tables logarithmiques de SCHULZE
( Berlin , 1778 ) , unc table des puissances de e=2,71828...,
depuis la premitre jusqu'd la vingt-quatriéme. Divisant donc les
treize premiers par leurs exposans respectifs , nous aurons nos
treize ordonndes ainsi qu’il suit:

w= 2,71828

1)

= 3,694528 »

y= 6,695178 »
Tom, VL ' +
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>=  13,649537 ,
e=  29,682632 ,
2= 67,238132 ,
¥»= 156,661880 ,
0= 372,619748 ,
«= 00,342659 ,
x= 2202,646579 ,
r= 5443,1037092 ,
#=13562,899285 ,
v =34031,769385 .

35. On aura d’abosd , par la formule (I) , pour Vaire comprise
entre 1 €t 7, '

facuntny216(4- a7 (rdazad
140 !

et pour l'aire comprise entre 9 et 13,

410N ~4216004-p)4-27 (14-2)F-2722 -
140 ’

On trouvera ensuite , par la formule (II), pour l'aire totale, com~
prise entre 1 et 13,

et e ) — 2 ) ) — 2 () R

35 175

36. On aura ainsi |,
Pour Vaire entre 1 et 7 ;..::. 189064q9for ,
Pour l'aire entre 7 et 13, . ... 37015,696762 ,

Pour Vaire entre 1 et 13 , . . .« 37198,443648 .

Cette dernitre est un peu moindre que la somme des deux autres;
et elle doit naturellement étre réputée plus exacte ; la difference
est 8,go2515; c’est environ la 4200™¢ partic de lintégrale entitre.
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Cette différence est un peu plus sensible que celles de tous les
problémes précédens ; mais il faut considérer aussi & quelle inté-
grale on avait a faire. Celle de ff;f tient une des premicres places
parmi ces intégrales éminemment réfractaires , qui se sont constamment
jusqu'ici montrées rebelles i tous les moyens d’intégration connus ,
sans méme en exclure I'emploi des séries infinies. Hinc ergo natura
hujus functionis iranscendentis parum cognoscitur , dit EULER
( Calc. intég., vol. 1, n.° 238).
37. Egalant entre elles la somme des deux formules qui nous ont
donné les aires partielles et celle qui nous a donné Paire totale,

Y

on est conduit & cette nouvelle égalité trés-remarquable

Cefer) =8 (B d27 (rt-2) =48 (AF-2)4-43 (s~ ) =8 (L )==14. =

Cest I'équation de condition ; pour que le point du milieu ; ou
bien tout autre de nos freize points, se trouve sur la courbe déter-
‘minée par les douze autres. Elle est rigoureusement satisfaite , dans
le cas ol nos treize ordonnées sont égales entre elles : elle est
rigoureusement remplie encore dans une infinité d’autres courbes
dont il serait trop long de faire ici I’énumération. Elle est remplie,
quoiquavec une différence presque insensible , lorsque la portion
de courbe qui est comprise entre les limites de I'intégrale , est sans
asymptote , sans imaginaires, sans point d’inflexion ni de rebrous-
sement ; lorsqu’enfin elle ne s'écarte pas trop de quelque courbe
rentrante , telle que sont les ellipses de différens degrés. Ces sortes
d’équation de condition , nouvelles dans I'analise , sont essentielles
dans la théorie de linterpolation ; elles pourront étre le sujet d’un
mémoire particulier.

38. Troisiéme jformule. En conservant le diviseur genéral 12,
ajoutons aux cing premiers aliquotes 1 , 2 , 3 , 4, 6 , ic nombre
12 lui-méme. Nous aurons alors a=1 , 6=4 , ¢=q9 , d=106 , e=36,
J=144 ; et ensuite (13) )



350 METHODE
216216004 =2985984a’—16679525/
~} 585728¢/— 1042474/
-+ 2288¢/'— g
ce qui donnera
18018004 = 4£1833(at)+248832(g-4-¢4o4)
—29160{y+2)439526434*)
—63909(c+*)-t118416y .
Le calcul d’aprds cette formule cst beaucoup plus ‘compliqué, mais
aussi elle réduit & peu prés au quart l'erreur de lautre.

39. Quatriéme formule. En prenant pour diviseur général 18,
et pour ses parties aliquotes 1 , 2 , 3, 6 , 9, dot a=1, =4,
¢=9 ; d=36, ¢=81, on obtient d’abord (21)

2772004 =24057a’~109356'+2310¢’ =33d'+-¢’ ,
et ensuite

308004 =496(a47) 426734 tfutet?) -
2430+ ate+0)1344300=)
T991 (143444~ ,

4o. Cinguiéme formule. En prenant pour diviseur général 24,
et pour scs aliquotes 1, 2 , 3, 4, 6 , dod a=1 , b=4 , ¢=9,
d=16 , ¢=36 , on obticnt d’abord

25200 Ad=1728a'=q45b/=320c/—b54d'+¢’ :
Cette formule parait étre , au dénominateur prds, qui est double , iden-
tique avec notre seconde formule ; elle ne I'est pourtant pas ; parce
que le nombre des ordonnées étant double, les lettres o/, &/, ¢/,

d , ¢, en acquiérent des valeurs entierement différentes. On trouve,
en effet, en diésignant par ¢ la 25.¢ ordonnée

4200 A==49(a4-5)F288(84Et4pett-odod-a)
27 (Ao 44804 atad-x)
G305 et 134 pn) 985
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L’erreur que cette formule laisse subsister dans le caleul de l'are
d 1 M M (Y » .
T laquelle est soustractive , n’est sensible qu'a la onzi¢me décimale.

41. Sizidme formule. Le diviseur général étant encore 24 ; si
Ton emploie les parties aliquotes 1, 2,3, 4,6, 8 ; ce qui
donne e=1, b=4, ¢=9, d=16, ¢=36, f=64 ; on aura
d’abord (13)

970200.4==6758 ja/==388085/4-1 4336 men 7 2d/4-88e'~=3f" ;
et cnsuite
80850.4==933 (e~ ) +-563 2 (g4 {4 t-pt- £t ot-v-4-)
=836 (yA4-o)4-9216(4-x-f-ar4-%)
1760 (4 @) 42792 (14-7)=1762 (14041868 .
L’usage de cette formule rdduit au quart I'erreur que la précédente
avait laissé subsister.

42. Septiéme formule. Le diviseur général étant toujours 24,
prenons ses aliquotes 1 , 2,3, 4, 6,8, 12 ; ce qui donnera
a=1 , b=4 , c=q , d=16 , =36 , f=64 , g=144 ; on aura
d’abord ‘

15765750 4=265/42080a/—155675528/4-5963776¢".
—1216215d/4-45760¢'=2106f475" ; 3
et ensuite
315310500 4=362135 (a4-#)4-2211840(B4-{ 404 gt E4-ot-9-}-a)
—382782(y4-A4o-V¥) 43702784 (d4-xfm4-%)
==788157 (s+4-@) 41131072 (s4-2)—789561 (+4-9)47256747

L .
Par 'usage de cette formule I'erreur du calcul de 7 e devient sen-=

sible que sur la douziéme décimale.

43. Huitiéme formule. Prenons pour diviseur général 6o, et pour
ses aliquotes 1, 2, 3, 4, 5; dod a=1, b=4, ¢=9, d=16,
e¢=25; cela donnera d’abord
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126.4==2100/m~120b/4-45¢c/==10d/+}-¢' «
Comme nous avons ici 61 ordonnées , nous représenterons

Les vingt premitres par « , 8 , % , e ce .0 , T ;2 3
Les vingt suivantes par o , & , o/ 5 .... ¢ , 7 ;¥

Les vingt autres par o , g7 , o/ , o . W W

Et enfin la derniére par «7/, 1l viendra ainsi

1512 4=7 (et a/") 42 Bttt peb G ooprod- 2/ o
S o e U U SR T SIC BE VR S S8l LS S I
69 (-2t B HE v e ey (ke )
F43(C e 7 e w o wl) o= 21 (1 7 s 1 g Y5 (A o AT

© 13 (b e ¢ oo g e 777) s TO (B A L)1 3 (! /) whm T 1ON .

Nous n’avons point mis cettc formule 3 D’épreuve ; mais on peut
r w 9 y A .
présumer que dans le calcul de 7 I'erreur qu’entrainerait son usage:

tomberait au-deld de la vingziéme décimale.

44. Nous ne craignons pas d’avancer qu’a I'aide de ces diverses for-
mules, toute intégrale quelconque,de la forme /Xdx , peut étre évalude
numériquement, entre les limites données, moyennant un nombre fini et
trés-limité de termes , inddpendamment du calcul intégral , et de toute
notion d’infiniment petit, par les sculs moyens que fournit I'algébre
élémentaire , et avec toute la précision que l'on veut donner 2 son
ealcul - ' pourvu seulement que la fonction X ne devienne ni infinie
ni imaginaire , dans Pétendue de Vintégration. Toute fonction inté-
grale d'une seule variable , telle que fXdz, doit donc étre comprise
désormais dans la classe des quantiiés entiérement connues.
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R

Réflexions sur la methode qui sert de base au préceédent
mémoire et applications diverses de cette methode ;

Par M. GERGONNE.

e e e Wt " et ey

LA méthode dont M. Kramp vient de faire usage, dans le précédent
mémoire , pour résoudre le probléme des quadratures , est extréme-
ment remarquable, et nous parait tout-i-fait digne de l’attention
des géometres. Elle semble devoir &tre trés-féconde en applications
curieuses et utiles ; et nous n’hésitons pas i la regarder comme une des
plus belles et des plus ingénieuses inventions d’analise qui aient
eu lieu dans ces derniers temps.

L’esprit de cette méthode consiste proprement & chercher , 4 dessein,
des résultats moins approchés que celui dont on est déja en pos-
session , et & les employer & perfectionner celui-la. Cest exactement
prendre de Pélan ; cest réculer pour mieux sauter. Les détails dans
lesquels nous allons entrer pourront faire entrevoir de combien d’ap-
plications varides cette méthode peut étre susceptible ; ils montreront
en méme-temps que lapproximation qu’elle est capable de fournir,
dans tous les cas , n’a pour ainsi dire d’autre limite que celles de la
patience du calculateur. Mais, avant d’entrer en matiére , arrétons-
nous encore un moment sur le probléme des quadratures.

1. Quelque rapide que puisse étre un procédé approximatif, ce
procédd doit étre jugé imparfait, s’il ne renferme pas en soi quelque
moyen d’apprécier 'erreur a laquelle son wsage peut exposer. Or,
telle serait la méthode des quadratures, développées dans le précédent
mémoire , si on ne lui faisait pas subir unc légére modification, Cette
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modification consiste & substituer successivement aux traptzes des
rectangles inscrits ct des rectangles circonscrits. Cela conduira & deux
résultats , I'un plus grand et lautre plus petit que le véritable , et
dont la différence donnera conséquemment la limite de l'erreur dont
chacun d’eux se trouvera affecté. A la vérité , toutes choses égales
d’ailleurs , ces résultats seront moins approchés que ceux qu'on
déduirait de l'usage des trapézes; mais il nous parait qu’on ne doit
pas balancer 2 sacrifier quelque chose du c6té de la précision et
de la rapidité , lorsqu’il s’agit de remplir une condition sans laquelle
aucun procédé approximatif ne saurait étre employé avec quelque
sécurité. Nous verrons d’ailleurs bientot que cet inconvénient disparait
presque totalement , par un emploi convenable de la méthode.
Cect suppose , au surplus , qu'entre les limites de l'intégrale , les
ordonnées de la courbe qu’il s’agit de quarrer sont toujours crois-
santes ou toujours décroissantes ; mais on sait que , dans le cas
contraire , on peut toujours décomposer l’intégrale en plusieurs parties
telles que , pour chacune d’elles, cette condition se trouve remplie.
Nous appliquerons uniquement ces réflexions au. cas ou le diviseur-
général est 6, et ses aliquotes 1 , 2, 3., 6. Soient « , 8, » ,
» 5,5, ¢, ", les sept ordonnées équidistantes que , peur fixer les
idées , nous. supposerond perpétuellement croissantes ; prenons de
plus pour unité, comme dans le précédent mémoire , lintervalle
qui sépare les ordonnées extrémes. En considérant les rectangles
inscrits dont les bases sont successivement ¢, +, ;, I, nous aurons,,
pour la somme de leurs aires.,

Bases =: , 6 rectangles..... (ap+rto+-}) =10 ..
Bases =1 , 3 rectangles. .. .. i(adyts)=320’ ,

Bases =: , 2 rectangles. «o.. 2af9) =3 ,

Bases =1, 1 rectangle.....f«=1d .

Si nous passons ensuite aux rectangles circonscrits, nous trou—
verons les sommes d’aires ainsi qu'il suit

Basse:
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. Bases =} , 6 rectangles.... (8ot ydit-gf =10’ ,
Bases =3 , 3 reclangles....i(o4e+2)=1 ,

Bases =; , 2 rectangles....i(347)=2:¢/ ,

a

(48]
<)
Qo

l

— r 1
Base =1, 1 rectangle.....Zr=3d" .
Nous aurons tovjours d’ailleurs la formule

12960/ —5670/4-112/~—d/
5040 ’

A=

en y faisant donc successivement les deux substitutions , il viendra

82442164 0)F27 (v F27248

SXdx > 7
216(8+4)F27 (yv-4¢)f-27204-824
JXdz < 8o -
La différence
41 (yrme).
420 ?

est [a limite de l'erreur que pourra entrainer I'emploi de I'une ow
de Tautre de ces deux formules, dont la demi-somme est préci-
sément la formule de M. Kramp, ainsi que ce cela doit étre.

Si Fon applique ces formules aux deux exemples de lauteur,
c’est-a-dirc, a4 la recherche du logarithme naturel de =2; et 2 cells

) =
du nombre 7 comme, dans l'un et dans lautre cas, on aa=r

et »=0,5, on aura 1—a=—=:; de sorte que la limite de [erreur
est 77,5 ou environ . Nous allons voir an surplus que la- résolution
du probléme des quadratures peut encore étre présentée sous une
autre forme qui, sans exiger un grand nombre de divisions de
Iétendue de I'intégrale , est néanmoins susceptible d’'une approximation

presque illimitée.
- . .y . . - . =T -
Supposons toujours qu’il soit question d’obtenir - ou, ce qui

Tome VE » 44
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revient au méme, l'intégrale de

entre o et 1 en posant y= oy

et divisant d’abord lintervalle en cing parties égales seulement;
nous aurons

-

Pour z2=0 , X, 5, 555 5T,

Lt

“

— 25 x5 3
_y'—"[,;?’xg’l

Comme ici les ordonnées sont continuellement décroissantes , les

“

!
|

x
> %1 ? T °

IS
»

rectangles inscrits , auxquels nous nous bornerens , et qui, ayant ; pour
base commune , auront successivement pour hauteur les cing der-
niéres ordonnédes, seront

~
“

Premier. . .

1l

al

s ~
£=0,1923077 , }-

”
“

Deuxitme. . . . =L=0,1724138 ,

M

"
-

5

Troisiéme. . $;=0,1470588 , ) somme =0,6337315.

|
|

wlv wle wle

™
IS

* r —_— 5 e |
Quatri¢me . . . 3.5=%=o0,1219512 ,
T
B

Cinqui¢me . . . =-=1=0,1000000 . -

10 s
En multipliant ce résultat par 4 on

4, obtiendra pour premitre
valeur approchée du nombre =

#=2,03492060=4 .

Pour obtenir une valeur plus approchée , cherchons-en une suite
d’autres qui le soient moins. Soit d'abord divisée l'étendue de I'in-

tégrale en quatre parties égales; nos quatre rectangles inscrits seront
alors tels qu’il suit:

Premier, . . .. 32 =2=0,2352041,
Deuxiéme., . . 2 2=1=0,2000000
A RO H ? 9

o o somme =0,7202941 .
Troisieme. . . . ;.= =75=0,1600000,
Quatrieme. . . . 2.2 ==; =0,1250000.

Ce résultat, multiplié par 4, donnera pour seconde valeur moins
- approchée de =
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==2,8811764/=8 .

Divisons le méme intervalle en trois parties égales seulement, les
rectangles inscrits' résultans seront

Premier. . . . . L.2=2=0,3000000,
Deuxitme. . . . LE=2=0,2307692, ) somme =0,6974359 .
Troisiéme. . . . 1.1 = ;=0,1666667 .

Ce résultat, multiplié par 4, donnera pour troisitme valeur , moins:
approché que la précédente, du nombre =

#=2,7897436=C .

Divisons ensuite. cet intervalle en deux parties égales seulement,.
les deux rectangles inscrits correspondans seront

Premier. . . . . $2=2=0,4000000 ,
somme =0,6500000 ;

e

Deuxi¢me. . . . $.;=:=0,2500000 .

résultat qui, multiplié par 4, donne, pour quatriéme valeur encore-
moins approchée du nombre = ,

==2,6000000=1D,

Considérant enfin l'intervalle entier , nous aurons pour le rec—
tangle inscrit 1.;=:=o0,5000000 qui, multiplié par 4, donnera,
pour la derniere valeur, la moins approchée de =,

@ =2,0000000=1F .

Il est évident qu’aucune des quantités 4, B, C, D, E n'est
la valeur de =, et qu'elles sont toutes plus pelites que cette va-
leur; mais , si on les considére comme répondant respectivement
aux indices 5 , 4, 3, 2, 1, il est clair que la valeur de = répondra
a lindice o ; puisque , pour cet indice , on sera dans le méme
cas que si l'on avait considéré une infinité de rectangles inscrits
infiniment petits, Donc, & linverse, si 'on considére respective—
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ment 4, B, C, D, E comme une suite de termes répondant
aux indices 3, £, 2, % 1 le terme de cette suite répondant
3 lindice ; ou zéro sera la valeur exacte de =; et, comme il en
sera encore cvidemment de méme en rendant tous les indices 6o
fois plus grands ; il sensuit que ,si 'on construit une courbe telle
qu’aux abscisses 12, 15 , 20, 30 , 60 répondent respectivement
les ordonnées A, B, C, D, E, la valeur d¢ = sera 1'ordonnée
de cette courbe repondant a 'abscisse zéro.

‘Or, on a vu, dans le précedent mémoire , qu’en supposant , pour
plus de simplicité , que cette courbe est parabolique , et que son
équation ne renferme que des puissances paires de labscisse, si
a, b, c,d, e représentent les quarrés des abscisses qui répon-
dent respectivement aux ordonnées 4, B, €, D, E, on doit
avoir sensiblement

bede A cdeaB deabC

= +
(b=—g)(c~—~a)(d=—a)(e—a) (c==b) (d—b) (e==b)(a=—Db) (d-c)(e-c)(a-c)(b-c)
eabeD abcdE

+ + : ™)

(e—~d)(a=—d)(b=—d)(c—d) (a=t) (b=e) (c—e) (d=—e)
Faisant donc , dans cette formule , A=144 , b=225, ¢=40o0 ,
d=qo0 , =3600 , elle deviendra, toutes réductions faites

1953125.4—2097152B4-531441C—24576 D442 F V)
?

T —_

7.8.8.9.9.10

formule dans laquelle il n’est plus question que de substituer les
valeurs ci-dessus. ‘On trouve ainsi

19531254=5732277,3437500,

531441 C=1482584,1285276, 7214945,4722776 ,
42E= 84,0000000 ;

2097152B=60422064,8496128 ,

6106162, 4406128 .
24576D= 638q7,6000000 ; § o0 UhA490128

Donc 7.8.8.9.9 107= 1108783,0226648 .
d’ou 7#=3,0555088 =" .
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Cette valeur cst encore peu approchée ; mais on doit en étre peu
surpris , sl l'on considére que d’abord nous avons substitué des
rectangles aux trapézes, et quen outre nous n'en avons ewployé
que cing au plus.

On se tromperait toutefois si I'on se figurait que c'est la tout
le degré d’approximation anquel il soit possible de parvenir, avec
d’aussi faibles moyens.-On peut, en effet, traiter ce nouveau résultat
A’ comme nous avons traité le premier A ; c'est-a-dire, chercher
des résultats moins approchés .que lui et les employer a le perfec-
tionner.

Supposons donc que nous n’ayons pas été au-dela de guarre di-
visions ; c’est-a-dire , faisons abstraction de la valeur A4 ; nous pour-
rons alors considérer B, €, D, E, comme repondant respective-
ment aux indices 3, ¥, {, 1, ou, en multipliant par 12, comme
répondant aux indices 3 , 4 , 6 , 12 ; nous aurons alors & employer
la formule

cdeB debC + ebcD + bcdE
"= (c-0)(d-b)(e-b) = (d-c)(e=c)(b-c) ~ (e-d)(b-d)(c~d)  (b-€)(c-€)(d-e)

5 (AV)

dans laquelle il faudra faire b=9, ¢=16 , d=36 , e=144 ; ce
qui donnera

_ 819283—6561C4896D~—7E

7 5.7.8.9 ’ (Iv9)

Fin substituant donc nous aurons

81928=23602,5970688 ,

896D = 2329,6000000 ; 1 25932,1970688 ,
6561 C= 6,
561 18303,507759 § 18317,5077596 ;

7E= " 14,0000000 ;

Donc 5.7.8.9 #=7614,6893092 ;
dott ==  3,0217025=RB'
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En n’allant pas au-deld de #rois divisions; c’est-d-dire, en faisant
abstraction des valeurs 4, B, nous pourrons considérer C, D, E

comme répondant respectivement aux indices >, 7, 1, ou, en

multipliant par 6, comme répondant aux indices 2 , 3 , 6 ; nous
aurons alors 2 employer la formule

deC ecD cdE
_ : I11
“ (d==c) (e==c) + (e—d)(c=—d) + (c=e)(d=—e) ’ ( )

dans laquelle il faudra faire =4 , =9 , ¢==16 ; ce qui donnera

__ 243C—128D4-5E )
= 55 : (1)

En substituant donc, nous aurons.

243C=677,9076948 ,

5E= 10,0000000 ;

§ 687,9076948

128D = 332,8000000
Donc 4.5.6 == 355,1076948
d’ot = 2,0592308=1C" .

En ne faisant ensuite que deux divisions, nous aurons

eD  dE 4D—E
T o—d +-‘;-:—e ) ([l) ou wm= T‘—- > (III)

ce qui donnera
4D =10,4{000000

E= 2,0000000
dou 3= 8§,4000000
et == 2,8000000=1I) .

En ne considérant enfin qu’un scul rectangle inscrit, nous au-—
rons. de nouveau, comme <i-dessus,
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==2,000000=F/

Nous pouvons présentement traiter les valeurs de moins en moins
approchées 4/, B/ , €/, D/ , E’, comme nous avions traité les
valeurs 4 , B, C, D, E , cest-a-dire , les substituer dans la
formule

1953125472097 152B/~4-531441C'~—24576D/~-42 F/

7= ;

7.8.8.9.9.10

ce qui donnera
19531254/=5967790,6250000 ,
531441€/=1572656,5755828 , 3 7540531,2005828 ,
4oE/ = 84,0000000 ;

2 52B’=6336960, 8oo ,
09712 336969, 4412800 6405782,2412800 ;
24576D'= 68812,8000000 ;

Donc 7.8.8.9.9.10 #=1134748,9593028 ;

dott == 3,1270639=4" .

Voild présentement une valeur un peu plus approchée que les
valeurs 4/ et A ; or, de méme que nous avons déduit 4’/ , B!,
¢ ,D ,E ded,B,C,D, E, nous pourrons déduire 4%,
B ¢ D' E’ de A’ , B’ , €/, D', E; et, en continuant
toujours ainsi, nous parviendrons 2 des valeurs de plus en plus
approchdes; a la vérité, le procédé peut paraitre un peu long;
mais il D’aurait été beaucoup moins, si nous ne nous étions, dés
I'abord , bornés & dessein & ¢ing divisions de Dintégrale.

En procédant, comme il vient d’étre dit, on aura

A"=3,1270639 ,
B/=3,1083625 ,
C7=3,0891090 ,
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D/'=3,0666667 ,

E"=2.0000000 ;

d’oti on conélura , par la formule (V/), une nouvelle valeur de =

Si, ne connaissant pas, & l'avance, la valeur exacte de =, on
voulait juger du degré d’approximation obtenu aprés un certain
nombre de pareiiles opérations, il ne s’agirait que de faire un- semblable
calcul sur les rectangles circonscrits. On n’adopterait alors dans la
valeur de = que les chiffres décimaux communs aux deux résultats.
Nous allons voir, au surplus, qu'en suivant toujours esprit de la
méme méthode on peut se procurer bien plus rapidement une va-
leur appTochée du nombre = , et ce sera ia notre premiére application.

I1. Supposons, pour un moment, que la géométrie n’offre absolument
aucun moyen de calculer, méme par approximation, les périmétres.
des polygones réguliers au-delad de six cotés. Nous allons voir que,
tandis que les procédés ordinaires , étendus jusqu’au polygone de-
96 cétés, donnent une valeur qui n’est exacte que dans les deuwr
premiers chiffres décimaux, notre méthode, au contraire , bornée
a I'hexagone, donne unrésultat qui n’est fautif que dans la sixiéme
décimalce seulement. '

Observons auparavant que deux diamétres qui se confondent,
dans un cercle dont le rayon est un, forment un véritable poly-
gone régulier inscrit de deux cotés, dont le périmétre est quatre.
En conséquence , nous aurons les demi-périmétres des polygenes
réguliers inscrits aw cercle dont le rayon est uz ainsi qu'il suit:

De deux cotés. . . . 2 =2,0000000=1F ,
De trois. . .. .. .. /3 =2,5980762=D ,
De gquatre . . .. .. 2y/2  =2,8284272=C,
De cing. ... ... Y/ To—2y5=2,938g265=8 ,
Desiw....eo... > = 3,0000000=4 .

$i
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Si Ton considére les demi-périmetres 4, B, €, D, E comme

répondant respectivement aux indices 7, 3, 3,2, 2 le nombre =

devra répondre i I'indice 2=o0, et il en sera encore de méme , en prenant

les indices 60 fois plus grands 10, 12, 15, 20, 3o. Faisant donc ,

dans la formunle (V) a=100, b=144, ¢=225, d=400 , e=Q9oo,
elle deviendra

w

__ 1469664 4—1953125B4-720896C—72171D+4-1056E

?

6.6.6.7.10.11

ce qui donnera, en substituant,

14696644 = 4408992,0000000 ,

1056 E= 2112,0000000 ;
19531258="5740090,8203125,

72171D= 187505,7554302

720966C=2034001,8547712, E 6450105,8547712 ,
g 5927596,5757427 :

Donc 6.6.6.7.10.11 == 522509,2790285
dott == 3,1415g02=4" ;

résultat qui me commence 3 étre fautif qu'a la siziéme décimales

Si, ne connaissant point & I'avance la valeur exacte du nombre:
=, on voulait juger du degré] d'approximpation de ce résultat, il
suffirait de faire un semblable calcul relativement aux polygones
circonscrits ; et 'on n’admetirait ensuite, dans la valeur approchde
du nombre =, que les chiffres décimaux communs aux deux ré-
sultats.

On aurait tort de penser au surplus que Papproximation & laquelle
nous venens de parvenir est toute celle que peut donner la consi-
dération des cing premiers polygones réguliers ; si , en effet, nous
nous arrétons successivement au 4.°, au 3.°, au 2.° et au 1.°%;
en désignant r.spectivement par B/, €/, D/, E’ les valeurs approchées
de = résultant de leur considération; nous pourrons. considérer A/,

Tom. V1. 45
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B, €', D/, E’, comme des termes répondant respectivement aux
indices 2, =, 2, 1 1; et, en cherchant , comme ci-dessus , le
terme qui répond & lindice £ ou o, ce sera une valeur plus ap-

prochée de =.

I11. Notre deuxiéme application aura encore pour objet la re<
cherche du nombre =, mais nous y procéderons de maniére & faire
voir comment la méthode dont nous cherchons ici 3 étendre Pusage
s'applique 4 la sommation des séries convergentes , dont on connait
seulement un" petit nombre des premiers termes, sans que méme
il soit aucunement besoin d’en connaitre la loi.

Prenons la série connue de Leibnitz.

m=f(i—i b= i — S )

en réduisant chaque terme de rang pair avec le terme de rang im-
pair qui le précéde immédiatement , elle deviendra

#8452+ 5 e e

Nous allons essayer de la sommer au moyen de ses siz premiers
termes seulement.

On a
1T terme ;-=0,3333333, 1.7 =0,3333333=F,
2,° . ... 75=00285714, Som. des deux 1..™ =0,3619047=E,
3¢ ... ==o,0101010, des trois 1.** =0,3720057=D,
4% ... ==;=0,00561282, des quatre 1.°™* =0,3771339=C,
52 ... 5%;=0,0030960, des cinq 1.°*% =0,3802299=2F8,
6f ... ==;=0,0020704; des six 1.8 =0,3823:03=4.

Si nous considérons ces nombres 4 , B ,C, D, E, F comme
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M 3 N 1 T T x .
répondant respectivement aux indices 2, 1, I X : g il est

id Zd dpondre A Vindice 1= %
évident que ) evra repondre a lindice ;—o et qull en sera encore

de méme pour les indices 6o fois plus grands 10, 12, 15, 20 ,
30 , 6o. Faisant donc, dans la formule du n.° 13 du précédent
mémoire , =100, b=144, c¢=225, d=4oo , e=goo , f=3600,
on aura

4.70.9.10.10.117=
181398528 4—244140625B492274688C
—9743085D+4-168960E —66F
¢¢ qui donnera en substituant
181398528 4=69348711,6739584 , }"
92274688C=34799912,9567232 , 104209772,0487936 ,
163960E= 61147,4181120 ; ‘
244140625B=92829565,4296875 ,
9743085D= 3624483,1555845 , } 96454070,5852720 ;

66 F= 22,0000000 ;

Done 4.7.9.9.10.10.11 == 7755701,4635216 ;
dot == 3,1087468=4' .

On ne sera pas surpris du peu d’exactitude de cette valeur, si
Pon fait attention a4 Dlextréme lenteur de la série , qui tend sans.
eesse a n’étre plus convergente.

Il est d’ailleurs aisé ici, comme dans les précédens exemples,
de se procurer une valeur plus approchée, en en cherchant d’autres
qui le soient moins; si , en effet, on désigne respectivement par
B, ¢, D, E, F les valeurs quon obtient, en se bornant

successivement a cing, quatre, trois, deux et un termes, on aura
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A/=2,1087468 ,
B/=3,0985080 ,

/=3,08153q0 ;
D/=3,0493500 ,
E/=2,9714280 ,

Fl=2,6666666 .

En substituant ces valeurs dans la précédente formule & la place
de 4, B, C, D, E, F et divisant le résultat par 8, attendu

0 .. = . . A .
qu'elles n'expriment plus ici 5 » mais = lui-méme , on obtiendra

z=3,1360361=4" ,

valeur plus approchde que la précédente, et de laquelle il serait
facile , par les mémes moyens, d’en déduire d’autres qui le soient
davantage encore. Ainsi, malgré le peu de convergence de la série,
il ne faudra qu’un peu de patience pour obtenir, & Taide de ses

six premiers termes seulcment, des valeurs de plus en plus approchées
de la somme de tous ses termes.

Si, ne connaissant pas & lavance la valeur rigoureuse du nombre
=, on voulait juger de la précision des résultats successivement ob-

tenus , on remarquerait que la séric de Leibnitz peut aussi étre
mise sous cctte autre forme

=G tamt st s

faisant donc le calcul du nombre # par cette nouvelle série , comme
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par la premidre , on n’admettrait , dans sa valeur définitive, que
les chiffres décimaux communs aux deux résultats.

IV.Pour troisi¢me application , nous choisirons le probléme important
et delicat de Dinterpolation des suites ; mais ici les formes de I'ap-
plication de la méthode pouva;t étre varices d'une multitude de
manieres differentes; nous insisterons principalement sur quelques
procédés , en nous bornant par rapport aux autres a unc brieve
indication.

On sait que le probléme qui nous occupe se réduit d former
Péquation d’une courbe parabolique passant par un certain nombre
de points dont on connait les coordonnées, ou du moins s’écartant
le moins possible de ces points, que 'on peut supposer n’ctre qu’a
peu prés sur la courbe qu’on cherehe. Supposons donc, en premier
lieu , pour suivre exactement lesprit du procédé de M. Kramp ,
que l’on ait sept ordonndes équidistantes «, #,y, 9, s, ¢, #;o0n
pourra chercher successivement I'expression générale de I'ordonnée
de la parabole 1.° du siziéme degré, passant par les extrémités
de ces ordonnées.; 2.° du 7roisidme degré , passant par les ex-—
tremités des mémes ordonnées prises de deux en deux seulement ;
3.° du deuxiéme degré, passant par leurs extrémités , de trois en
trois ; 4.° enfin du premier degré , passant uniquement par les ex—
trémitds des deux ordonnées extrémes.

Désignant a'ors respectivement ces expressions par 4, B, €, D
et les considérant comme répondant aux indices respectifs 2, =, 1, 1,
ou, ce qui revientau méme, aux indices 1, 2, 3, 6; le terme
qui répondra 4 lindice zéro équivaudra sensiblement a la valeur
générale de Pordonnée qui répondrait au cas ol on aurait fait entrer
en considération une infinité d’ordonnées intermédiaires entre les or-
donndes extrémes, et sera conséquemment une expression plus exacte
de l'ordonnée géndrale que celle qu’avait fourni la considération des
sept points donnés.

L’application de ce procédé exige que le nombre des points donnés
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diminué d’une unité, ait le plus grand nombre possible de diviseurs,
Voici un autre procédé qui n’est point sujet & cette limitation.

Lorsque les ordonnées données sont équidistantes et en nombre
impair, on peut toujours, pour plus de simplicité, prendre leur com-
mune distance pour unité , et supposer en outre que lordonnée
moyenne répond A lorigine. Supposons done qu’on ait les cinq
ordonnées consécutives g, , 8 , # , A’ , g/ , répondant respective=
ment aux abscisses =2 , —I , 0 , 41 , 42 ; et proposons-
nous de trouver l'ordonnée y qui doit répondre & I'abscisse quel-
eonque .

1.° Ne considérons d’abord que l'ordonnée g/, et posons

E=g, .

2.° Considérons en second lieu les deux ordonnédes g, , 8,; en
désignant par D l'ordonnée générale de la droite qui jownt leurs
extrémités supérieures , nous aurons

D=(2,—,,)+(—8,)* *

3.° Considérons ensuite les trois ordonnédes 8, , &, 5, # ; en dé-
signant par € lordonnnée générale de la parabole ordinaire qui
joint leurs extrémités supérieures , nous aurons

C=p+4-1Bs—4e 8, a4 8—20F8,)2" .
4.° Appelant de méme B l'ordonnée générale de la parabole du
troisitme degré qui joint les exirémités supérieures des quatre or=
données 8, , 8, , & , 8/ , nons aurons
B=F~A-;(2p'+-36—6848, )2+ (8 —264-£ /)2
+%(:5/——3ﬂ+3@,—,3//)x"' . v
5.9 Appelant enfin A4 Pordonnée générale de la parabole du qua-
tritme degré qui résulte de ’emploi total de cing données g, £ 5
g, 8, B, on aura
A= (B —B8'-8 /8 Ja— B/ —B8F 4-14p—88 +p,)5*
(8 2B 2Ry = )0 5 (B = 28/ 2828, 4R ) 2% o
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Si présentement on considére les valeurs successives 4 , B, C ,
D , E comme répondant suceessivement aux indices 3, 2, * X 1,
ou, ce qui revient au méme , aux indices 6o fois plus grands 12,
15, 20, 30, 60, le terme répondant i l'indice o sera sensible-
ment ce qu’on obtiendrait pour y , en ayant égard & une infinité
d’autres ordonndes qui scraient censées suivre #/ suivant la loi qui
régit les premictres ; on trouve dans ce cas, comme nous l'avons
dé¢ja vu,

__ 1953125 A==2097152B4-531441C—=24576D+-4>E
- 7.8.8.9.9.10

.
’

et il ne restera plus que les substitutions & exécuter.

On pourra ensuite procéder d’une maniére inverse ; c’est-a-dire,
prendre successivement une, deux, trois , quatre et cinq ordonnées
en allant de A/ vers 8, ; on obtiendra ainsi une nouvelle expression
de y, qui ne difftrera au surplus de la précédente qu'en ce que
»” et £ y seront respectivement changés en 8, et B8,, et réciproque=-
ment, Cette nouvelle sera relative & I'hypothése ot l'on aurait eu
égard & une infinité d’'ordonnées précédant £,. La demi-somme de
ces expressions donnera lexpression la plus convenable & employer.
Leur différence qui sera nécessairement trés-petite fera connaitre
sensiblement V’erreur dans laquelle I’emploi de chacune d’elles peut
entrainer.

Mais de toutes les manitres d’appliquer la nouvelle méthode 3
Yinterpolation des suites la plus exacte parait devoir étre la suivante.
Soient -1 le nombre des valeurs donnédes et correspondantes de
z et de y. Soient 4, B, C, D,..... les fonctions des degrés n,
n—1 , n—2 , n~3... représentant le plus exactement possible les
valeurs données ; ces fonctions étant obtenues par la methode des
moindres quarrés , ainsi qu’il a été expliqué dans ce volume ( pag. 242
et suiv. ). On considérera 4, B, C, D, ... comme répondant res-

I I

1
~.....; et cherchant,
ne=1? pemz’ pe=3 ! '

. . . 1
pectivement aux indices — ,
(]
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comme ci-dessus , le terme qui doit répondrea I'indice zéro, on prendra
ce terme pour la valeur de y.

Nous n'entrerons point actuellement dans plus de détails a ce sujet;
sur lequel nous pourrons peut-étre revenir une autre fois. 11 nous
suffit pour le présent d’avoir montré que lanalise posséde , dans la
méthode développée par M. Kramp , un nouvel instrument, suscep~
tible sans doute de perfectionnement ; mais qui, tel qu’il est, peut
déja , dans un grand nombre de circonstances , devenir d'un usage
trés-précieux.

——

== —

QUESTIONS PROPOSEES.

Probléme physico-mathématique.

SOIT un globe , d’un rayon connu, également lumineux dans toute
sa surface. Soit de plus, dans le voisinage de ce globe, un trés-
petit corps que, pour plus de simplicité , nous supposerons réduit
3 un point. Si lon imagine un cone cirgonscrit au glcbe , dont le
sommet soit le point dont il s’agit ; sa ligne de contact, qui sera
un cercle, partagera la surface du globe en deux calottes sphériques
inégales, dont la plus petite seule éclairera le petit corps; et cette
calotte , d’autant plus petite que ce corps sera plus voisin du globe,
ne pourra devenir une hémisphére qu’autant que le méme corps
sera infiniment éloigné. )

11 est aisé de concevoir , d’aprds cela que , soit que le corps dont
il s'agit soit trés-voisin du globe , soit qu'au contraire il en soit
trés-éloigné , ce globe , dans l'un et dans l'autre cas, ne pourra I'é-
clairer que faitblement.

Il y a donc une certaine distance & laquelle le petit corps recevra
du globe la plus grande lumiére possible; et ce que nous proposons
i, c’est d'assigner cette distance ?
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GEOMETRIE ANALITIQUE.

Théorémes nouveaux sur les lignes et surfaces du
second ordre;

Par M. Frécier , ancien éleve de I'école polytechnique.

(s Tia Vla Vig ¥ ¥ Vo ¥l Vo V)

J’AI démontré , & la page 229 de ce volume , quatre théordmes
asscz remarquables , relatifs aux lignes et surfaces du second ordre.
Mais j’ai remarqué postéricurement que le premier et le troisieme
n’étaient que des cas trés- particuliers del deux autres théorémes
beaucoup plus généraux. Ce sont ces derniers que je me propose

tci de démontrer.

On a vu ( pag. 130 ) quen prenant respectivement pour axes
des x et des y la tangente et la normale en un point quelconque
d’une ligne du second ordre , désignant par N la longueur de la
partie de cettc normale interceptée par la courbe , par P le rayon .
de courbure ; et supposant que I'équation de la tangente i I'extrémité
de la normale opposée a lorigine fit

y=Aa+-N ;
nous avons vu, dis-je, que léquation dc la courbe était alors
Na*4-2Pyyem Az—N)=0 . (1)

Nous avons vu, en outre, qu'en menant par l'origine deux droites.
D, D/, ayant respectivement pour équations, sayoir :

Tom. VI, n.° XI, 15% mai 1816, 46
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D, ay=bx; D/, dy=bxz, (=)
ce qui permet de supposer

atbr=1, a*+b*=1, (3)

Péquation de la corde C qui joint les points de rencontre de ces
droites avec la courbe est

{N(ab/-+ba')—2APbb/\x+4-(2Pbb!—Naa’yy =2NPbl/ , %)

d’ot nous avons conclu que cette corde rencontre I'axe des y, c’est-
a-dire, la normale, en un point pour lequel on doit avoir
2 NPbY/
O
2Pbb/==Naa’

Cela posé , concevons une seconde ligne du second ordre dont
les axes des coordonnées soient les diametres principaux ; et concevons
de plus que D, D’ soient deux diamétres conjugués quelconques
de cetle seconde courbe ; nous exprimerons cette circonstance par
Péquation :

eaa’+pbl/ =0 ; (6)

dans laquelle « ct g sont deux constantes, ne dépendant que des
dimensions de la seconde courbe.

Or, si l'on élimine 44/ de la formule (5), au moyen de la re-
lation (G), aa’ disparaitra de lui-méme, et il viendra
2¢NP ‘
= m—r b 2

quantité constante. De li résulte ce théoréme :

THEOREME 1. Si I'on congoit , sur un méme plan , deux lignes
quelconques du second ordre , telles que le centre de la seconde
soit un point quelcongue du périmétre de la premiére , et que ses
diamétres principaux soient dirigés suivan! la tangente et la nor-
male & cette premiére courbe av point dont il s’agit; de quelque
maniére que l'on méne deux diamétres conjuguds @ la'seconde courbe,

.
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la corde de la premiére qui joindra leurs points de rencontre avec
elle coupera constamment la normale au méme point 3 d'od il suit
encore , par la propriété connue des piles , que les tangentes aux
extrémités de cette corde concourront toujours sur une méme drotte.

La forme da résultat(7) prouve, en outre, que, pourvu que la seconde
courbe demeure constamment semblable & elle-méme, elle pourra
varier de grandeur , sans que la corde C cesse pour cela de couper
la normale au méme point,

Ce théoréme est sur-tout remarquable , lorsque la seconde courbe
est un cercle ; tous les diamétres conjugués sont alors rectangulaires,
et il en résulte notre théortine de la page 231, duquel nous avons
déduit le moyen de construire , avec un équerre pour tout instru-

ment, la tangente et la normale en un point quelconque d’une ligne
du second ordre.

Nous avons vu ( page 234 ) qu’en prenant respectivement pour
axes des x , des y et des z les deux tangentes principales. et la-
normale en un point quelconque d’une surface du second ordre,
désignant par N la longucur de la partie de cette normale inter-
ceptée par la surface, par P et ( les deux rayons de courbure

principaux , et supposant que 'équation du plan tangent i V'extrémité:
de la normale opposée 4 lorigine fat

z=Axz-+By+4N ;
nous avons vu, dis-je , que I'équation de la surface était alors
N(Qz*+Py*)+-2PQz(z—Ax—By—-N)=o0 . (1)

Nous avons vu, en outre, qu’en menant par l'origine trois droites.
D, D/, D/, ayant respectivement pour équations, savoir :
cx=az , cx=alz , dx=a"z
IR D/ D (2)

cy=bz ; cy=blz Jy=1t'z 3

ce qui permet de supposer
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a b *Hc =1,
a’ 4= el =1, (3
(1”’—[—-5”’—!—1:”’:1 j)
Péquation du plan C qui joint les points de rencontre de ces droites
avec la surface est
cc'(be!'—cb)(NQa/’* 4+ NPb/’*—2 AP Qa’’c)
-c'c(bc!'—'b) N Qa*~+NPb*—24APQa ¢ ) ) =
~c'c (V/c—c"b)NQa*=NPl*—2APQa'c")
cc'(ca’—ac’NQa'*4-NPb/*—2BP Qb ¢c')
A A-elet{cla =alc! (N Qa*+NPb*—2BPQbc) ) ¥
~clc (¢/'a m=a//c)(NQa/*+~NPb/>—2BPQb'c’)
: cc (ab/—=b a' \NQa’*+~NPb/*+2PQc'’*)
‘ - ~A-cc(a’b ' —b'a")(NQa'*4~NPb*~-2P(Qc *) ) z
-c’c(a'b—b"a)(NQa'*+NPQb*42PJc’ *)
==2NPQcc’'c"(ab'c!!—ac’b/!--ca'b/'—ba’c/+-be'a’—cb'a’) 5 (4)
ol nous avons conclu que ce plan rencontre l'axe des z , cest-
3-dire , la normale, en un point dont on obtient la distance & I'origine,

en posant, dans cette équaiion z=o et y=o .
En posant, pour abréger,

a’c’c//(a’lz/’—-b’a’/)—i—a”c”c(a”ﬁ-—&”a)-{-u’“cc’(aﬁ’—-—&a’):d .
brc'c!(@'b/—bla! )= b ce(a/ b— b a) b/ cc! (ab! —ba')=e , ) (5)

c’c’c”(tz’é”—- b/a//)+c’2c’c”{a”&-—Z)”a)+c”zcc/(ab’-—ba’) =f ;

cette distance sera donnée par la formule

2fNPQ
£ ANQ-FeNP42/PQ

(6

Cela posé, concevons une seconde surface du second ordre dont
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les axes des coordonndes soient les diametres principaux; et con-
cevons de plus que D , D/, D’ soient trois diametres conjugués
quelconques de cette seconde surface ; nous exprimerons cette cir-
constance par les trois équations de condition

, 2/ @/ -l b -yl =0

aa'’a +-pb"b +-yc'c =0 , ) (7)

e a'~4-pb b=y ¢’=o0 ,
dans lesquelles «, #, 5 sont trois constantes ne dépendant que des
dimensions de la seconde surface.

Si Pon prend successivement les différences deux & deux des
produits respectifs de ces equations d'abord par &, &, b, puis
par @, @/, @, il viendra

aa'(@ b —b a)=yc''b ¢/ —c ¥') ,

wa (a/ b/'=bla’\=yc (U c!'—c' b") , Y (8)

aa! (a''b —b"a )=y’ (b/c —c'b ) ;

gb(a b —b a' Y=yc"(c &/ —a ') ,

b (o b'—b a’y=ye (¢! a''—a' ) , % (Q)

8b (@b —b'a Y=yc! (¢"a —a'lc ) .
En prenant la somme des produiis respectifs des équations (8) par
acc’ , ac’c” , a’c’c, et la somme des produits respectifs des équa-
tions (9) par &”cc’, be'c”, b'cc , et ayant égard aux équations (5),
il vient simplement \

ad=yf , PBe=yof ; (r0)
éliminant enfin & et ¢ de la formule (6); au moyen de ces deux
derniéres équations , f disparaitra aussi de lui - méme, ct il viendra
2¢S8NP

2= ,syNQ-;-uyNP-?-gxﬁPQ ; (11)

quantité constante. De la résulte ce théoréme :

THEOREME 11. S Pon congoit, dans Pespace, deux surfaces
quelconques du sgcond ordre , telles que le centre de la seconde

7
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soit un point quelconque de la premitre , et que ses diaméires
principauz soicnt dirigés suivant les deuxz tangentes principales et
la normale & cette premiére surface, au point dont il sagit; de
quelque maniére que lon méne trois diaméires conjugués a la se-
conde surfuce , le plan qui contiendra leurs intersections avec lz
premiére coupera constamment la normale au méme point, d'ou
7l suit encore , par la propriéié connue des poles , que le cone
circonscrit & la premiére surface de maniére qu’il la touche suivant
son intersection avec le plan dont il sagit, aura toujours son
sommet sur un méme plan. .

La forme du résultat (11) montre en outre que , pourvu que
la seconde surface demeure constamment semblable 4 elle-méme,
elle pourra varier de grandeur sans que le plan C cesse pour cela
de couper la normale au méme point.

Ce théoréme est sur-tout remarquable , Jorsque la seconde surface
est une sphére ; tous les systemes de diamétres conjugués sont alors
rectangulaires , et il en résulte notre théoréme de la page 237,

parfaitemeut analogue a celui de la page 23r1.

N

QUESTIONS RESOLUES.

Démonstration des deuax théorémes énonceés a la
page 172 de ce volume , et de quelques aulres
theéorémes analogues ;

Par M. J. B. DurrANDE.

[a Via Vo Vg Vo Vig Ul Vb Vo V]

SOIENT a, b, ¢ lescosinus des angles que forme avec trois axes
rectangulaires, ’'axe- d'un cone droit qu: a son sommet a Vorigine , et
dont l'angle gencrateur est r; ce qui donnera
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b 4-cr=1 . (1)
les équations de cet axe seront
cx=az , cy=bz . (2)
Soient
Cx=A4z, Cy=Bz, (3)

les équations d’une génératrice quelconque 4, B, C étant les cosinns

des angles que forme cette génératrice avec les mémes axes ; ce
qui donne

A*+B*4-C*=1 4)

A, B, C, seront indéterminés ; et le cosinus de I'angle de la géné-
ratrice avec l'axe sera, en ayant égard aux conditions (1 et 4),

aA+bB4-cC ;
mais cet angle doit &tre constant et égal 3 r; done
aA+-bB-+cC=Cos.r . (5)

D’un autre c6té, les équations ( 3 et 4 ) donnent

x z

A: —_— B:.' -—-——:‘L——.: C: —
V @tyies V wyitas V @ityitz

substituant donc dans Péquation (5), quarrant et chassant le dé-
nominateur, il viendra finalement pour I'équation du céne dont il s’agit

(az4-bytezy = (@ hy>+z)Cos.r . ©)

Ddésignons ce céne par C.Pour un autre céne €/, de méme sommet
8 P )
que le premier, l'équation scra

(@’34-b'y-Yc/z)* = (a*~+y*42")Cos.r/ ()
avec la condition
a4l =1 . (6)

Nos deux cénes €, €’ se coupent , en général, suivant deux droites



328 QUESTIONS
passant par l'origine; e? toute combinaison de leurs équations doit
éire I'équation d’une surface passant par ces deux droites : telle est
done , en particulier, Péquation qu’on obtient en multipliant celles—
la en croix, et qui devient, par la suppression du facteur commun
et l'extraction de la racine quarrée

(azx+by—t-cz)Cos.r/= - (e/a+4b'y--c’z)Cos.r .

Y
Celte équation appartient , comme on le voit , & deux plans passant

I'un et Vautre par lorigine , et dont 'un seulement contient les
intersections des deux cénes; on le reconnaitra facilement, en sup-
posant pour un moment que les deux cones deviennent égaux et
coincidens; I'équation doit alors se réduire 2 0=0; ce qui ne peut
avoir lieu qu'en prenant le signe supérieur. Ainsi , il est certain
que I’équation du plan qui contient les deux intersections des deux
cones est

(ax—4-dy—-cz)Cos.r’={(a’x-4-b'y 4-c’z) Cos.r . (&)

Cette équation est aussi celle de leur plan tangent commun , lors-
quil se touche; et on voit, en outre, que dans le cas ou, n'ayant
que le sommet commun , ils sont tout-a-fait extérieurs ou intérieurs
I'un a Tautre , le plan (4”) n’en existe pas moins. Nous nomme-
rons ce plan (£/) , a Vavenir, le Plan radical des deux coénes C et C/.

Concevons un troisitme céne €/ ayant méme sommet que les
deux autres et ayant son axe dans l'axe des z; ce nouveau edne
aura aussi des plans radicaux (k‘ct %) avec € et €’/ et on déduira
les équations de ces plans de celle du plan (4#”), en supposant
successivement , dans celle-ci, que €’ et ensuite € devient €/ ; c'est—
d-dire , en y supposant d'abord a’=o0 , ¥/=o0 , /=1 , r'=r",
puis ensuite a=0 , b=o0 ,c=r1 , r=r". Cela donnera

(2 240 y+¢ z,Cos.r//=zCos.r , | (&):
(@/z~+b'y~c’z) Cos.r”’=2Cos.r’ . (%)

"Toute combinaison de ces deux équations appartiendra & um
plan
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plan qui contiendra Vlintersection des plans (& et k) ; et puisque ,
par lélimination de 7/ entre elles, on retombe sur I'équation (%),
il en résulte le théoréme suivant :

THEOREME 1. Les plans radicaux de Irols cones droits de
méme sommet , pris deux & deux , se coupent tous Irois suivant
une méme droite.

Nous appellerons & Vavenir cette droite 'awe radical des trois cénes:

Corollaire. Donc si T'on congeit que l'un des cénes seulement ,
ayant toujours d’ailleurs son sommet commun avec les deux autres ,
varie de grandeur et de situation dans Yespace, lintersection de ses
plans radicaux , déterminds par rapport aux deux autres, variable
comme lui, ne sortira pas néanmoins d’'un méme plan, lequel sera
le plan radical de ees deux-ci.

Si l'on congoit une sphere qui ait son centre au sommet commun
des trois ednes , leurs intersections avec elles seront de petits cerclesi
tandis que les intersections des plans radicaux avec elle seront de
grands cercles , que l'on pourra appeler awes radicauxr des deux
cercles auxquels chacun d'eux sera relatil. I’axe radical de deux
cercles sera en particulier ’arc de grand cercle qui passera par lenr
leur intersection , lorsque ces deux cercles se couperont; et l'on
aura ce théoréme :

THEOREME 11 ILes axes radicaux de irois cercles quelconques
dune méme sphére , pris deux & deux , se coupent tous irois er
un méme point. (*)

Nous appellerons a lavenir ce point le centre radical de trois
cercles.

Corollaire. Donc , si Yon congoit que l'un des cercles seulement
varie de grandeur et de situation sur la sphére, le point de con-
cours de ses axes radicaux, déterminés par rapport anx deux autres ,
variables comme lui, ne sortira pas néanmoins d'un grand cercle,
lequel sera l'axe radical de ces deux-ci.

J—

) Cest le premier des deux théorémes de la page 172

Tom. V1.
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De Id résulte un moyan facile d'obtenir l'axe radical de deux
cercles d’'une sphere, lorsgu~ ces cercles ne se coupent pas. Il con-
siste & déerire d'aberd un cersle goi coupe ces deux-1a ; en conduisant
denx grands cereles par leurs intersections avec Ini, ces grands
cercles se couperont en un point de l'axe radical cherche ; renou-
velant donc Vopération pour un autre cercle d:fTérent du premier
et coupant encore les deux autres, on obtiendra un second point
de cet axe radical, et il ne sera plus question que de faire passer
un grand cercle par ces deux points (*). On peut donc aussi faci-
lement obtenir le centre radical de trois cercles d’une sphére.

Tout ce que nouus venons de dire, relativement a la sphere, étant

(*) On demandera peut-élre comment on peut faire passer un arc de grand
cercle par deux poirts donnés sur une sphere ? il est aisé de voir que ceite
question se réduit & déterminer 'un de ses péles ; et il est tout aussi facile de
voir que ce poéle est & lintersection de deux ar¢s décrits de ces deux points
comme pbles, et avec unc ouverture de compas égale a hypothénuse d’un triangle-
rectangle isocele’, dont les deux cotés de Iangle droit sont égaux au rayon de
la sphére.

Mais , dira-t-on, ceci suppose que I'on connait le rayon de la sphére ; el comment
pourra-t-on le déterminer? Voici la méthode, trés-simple , que THEODOSE indique
pour cela, dans ses Sphérigues; elle porte avec elle sa démonstration :

Décrivez sur la sphere un cercle quelconque , en gardant en réserve l'ouverture
de compas qui aura servi a le décrire. Marquez sur la circonférence de ce cercle
trois points arbitraires , dont vous prendrez , avec le compas, les distances deux
a deux. De ces trois distances faites , sur un plan, les trois c6tés d’un triangle
recliligne , auquel ensuite vous circonscrirez un cercle , dont le rayon sera évidem-
ment égal A celui da cercle tracé sur la sphére. Construisez ensuite un triangle«
rectangle dont P'hypothénusc soit votre ouverture de compas, mise en réserve, et
Yun des c6tés de l'angle droit le rayon de votre cercle. Prolongesz I'autre cété de
Pangle droit, jusqu'h sa rencontre avec la perpendiculaire menée & ’hypothénuse
du sommet opposé. Vous formerez ainsi un plus grand triangle - rectangle dont
le premier fera partie, ct dont Ihypothénuse sera le diametre de la sphere.

On a lieu d'étre surpris quun probleme aussi majeur et d'une construction si
facile ne soit trait¢ dans aucun de nos livres élémentaires.

J. D. G.



RESOLUES. 33r
indépendant de son rayon , doit étre vrai aussi pour le plan, qui
nest autre chose qu’une sphére dont le rayon est infini; on a donc
le théoréme .suivant :

THEOREME 1I1. Les axes radicauz de trofs cercles traeds sur
un méme plan , et pris successivement deux & deux , se coupent
tous trois en un méme point.

Corollaire. Donc , si l'on concoit que I'un seulement des trois
cercles varie & la fois de grandeur et de situation sur le plan, le
point de concours de ses axes radicaux , déterminés par rapport aux
deux autres, variable comme lui, ne sortira pas ndanmoins d’une
ligne droite, laquelle sera l’axe radical de ces deux-ci.

On peut donc, en opérant comme il a été dit pour la sphére,
construire facilement I'axe radical de deux cercles qui ne se cou-
pent pas.

Si I'on congoit que l'on fasse tourner le systtme de deux cercles:
et de leur axe radical autour de la droite qui joint leurs centres,
les deux cercles engendreront des sphéres, et I'axe radical engendrera
un plan qu'on pourra appeler le plan radical de ces deux spheéres.
Or, dc la et de ce qui précéde, résulte le théoréme suivant :

THEOREME 1V . Les plans radicauz de trois sphéres , considérées
successivement deux & deux , se coupent tous trois suivant une méme
droite.

Cette droite , évidemment perpendiculaire au plan qui contient
les trois centres, est ce que nous appellerons & I'avenir Vaxe radical
des trois sphéres..

De 14 il est encore aisé de conclure ce théortme-ci :

THEOREME V. Les siz plans radicaux qui naissent de la
considération de quatre sphéres prises deux & deux , et les quatre
azes radicaux qui naissent de la considération des mémes sphires
prises trois @ trois, concourent en un méme point.

Ce point est ce que nous appellerons le centre radical des.
quatre sphéres.

Corollaire. Donc , si l'on congoit que l'une seulement de ces
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spheres varie 4 la fois de grandeur et de situation dans Pespace,
le point de concours de ses plans radicaux, déterminés par rapport
aux trois autres , variable comme elle , ne sortiva pas néanmoins
d’une ligne droite , laquelle sera l'axe radical de ces trois-ci.
Retournons présentement a nos trois cones. Supposons que C' et
C// soient tangents I'un & Vautre ; leur plan radical (4”) deviendra
lcur plan tangent commun, dont lintersection avec le plan des axes

déterminera la ligne de contact des deux cones. Mais, I'équation de
ce dernier; plan est

ay=bxz ,
et sa combinaison avec I'équation (4’) donne

(a*+20* ,aCos.r/ = pz(Cos.r—cCos.r’’) ,
(a*+0*)yCos.r/=bz{Cos.r—cCos.r'’) ;

ainsi , voila les deux équations de la ligne de contact des deux ednes
C et C/.}Mais, l'angle de leurs axes devant étre égal 3 la somme
ou i la différence de leurs angles générateurs, on doit avoir

c=Cos.(r'"4-r) , dou a*4b*=1—c*=Sin>(r/4r) ;

7 devant étre pris positivement ou négativement , suivant que les
deux cones se touchent ewtérieurement ouw intérieurement. On a

d’apres cela
Cos.r—cCos.r”’=Cos.r—Cos.r"”.Cos.(r/ 4-r)=Sin.r//Sin.(+/"--1) ;

au moyen de quoi nos deux équations deviennent
azTang.V bzTang.r/

—_— = — /
= Sin.(7”4r) i ¥ Sin.(r''4-r) )

On trouvera semblablement , pour les équations de la ligne de contact
de C/ et C/

a’zTang.r/ b'zTang.r! .
T= o Y=o * ®
Sin(r’4r') Sin.(r/'4r")

Si Von conduit un plan par ces deux droites, son équation sera



RESOLUES. 333

3 Sin. (¢/er/y=B'S . (/4 r) Jr—m{a’Sin. (/"4 1) =aSin. () }y - (abl~ayTang r7==0 3
ou, en développant

§(2Sin.r'—5/Sin.r)Cos.r/~-(8Cos.r’'—b/'Cos.r)Sin.r// x

—{ aSin.r/—a'Sin.r)Cos.r””4~(aCos.r'—a'Cos.r)Sin.r}y  (T)
~(ab/—ba’)zTang.r'"=o .

D’un autre c6té, I'équation du plan qui contient les axes de C et
O est

(be!—cb ) xd(ca'=ac’ yyY-(ab/—ba’ ,z=0 ; (7
laquelle, 3 eause de '

c=Cos.(r""-}-r) , c’=Cos.(r/'4T17)

devient , en substituant et développant,

§(&Sin r/p/Sin.r)Sin.r//—(bCos.r'—b/Cos.r,Cos.r’ \x
~{(@Sin.r’—a’Sin.r)Sin.r/—(aCos.r’—a’Cos.r)Cos.r’’}y
—(al/=ba")z=0 .

Ces deux plans se coupent, en général; et, toute équation déduite
de la combinaison des leurs doit appartenir & une surface qui contient
leur intersection : telle sera donc , en particulier celle qu’on obtiendra
en ajoutant & I'équation (T"/) le produit de cette derniére par Tang.7//;
cette équation est

(6Sin.r/—b4/Sin.r)x=(aSin.r/==a’Sin.r)y ; &)

cest donc celle d’'un plan qui concourt en une méme droite avec
les deux autres, et dont conséquemment la ligne d’intersection est
déterminée par cette derniére équation et par 1’équation (7) ; or, elles
ne contiennent , ni I'une ni Pautre, rien de relatif au céne €/,
et seraicnt encore les mémes si 77/ était infini ; on a donc ce théordme :

THEOREME V1. Si un céne variable de grandeur est consiam-
ment tangent & deux autres cbnes , de grandeur et de situation
invariable , le plan qui contiendra ses lignes de contact avec eux,
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variable comme lui , coupera toujours néanmoins le plan de leurs
axes suivant une méme droite , laquelle ne sera autre que l'inter-
section de ce dernier plan avec le plan tangent commun auz
deux clnes.

Nous appellerons & l'avenir cette droite Vaxe de similitude des
deux cones fixes.

En censidérant le sommet commun des trois cénes comme le
centre d’une sphére d'un rayon quelconque , on obtient cet autre
théoréme :

THEOREME VIIIL Si un cercle tracé sur une sphére , variable
de grandeur, est constamment tangent & deux autres cercles de la
méme sphére , de grandeur et de situation invariable , P'arc de grand
cercle conduit par ses points de conlact avec eux , variable comme
lui , coupera toujours néanmoins l'arc de grand cercle qui joint
leurs pbles en un méme point , lequel ne sera autre que linter-
section de cet arc de grand cercle avec l'arc de grand ecercle tangent
¢ la jfois aux deux cercles.

Ce point, que nous appellerons & 'avenir le centre de similitude
des deux cercles, est facile & assigner, lorsqu’on pecut condaire un
arc de grand cercle qui les touche tous deux. Dans le cas contraire,
en décrivant un petit cercle qui les touche I'un et Jl'autre , et
conduisant ensuite un grand cercle par les deux points de contact,
ce grand cercle contiendra le centre de similitude ; en répétant donc
la méme opération pour un autre petit cercle, touchant encore les
kdeux cercles dont il s’agit, on obtiendra un nouveau grand cercle,
dont D'intersection avec le premier donnera le point cherché. On
doit seulement remarquer qu’ici on aura deux centres de similitude.
placés aux deux extrémités d'un méme diametre de la spheére.

Tout ceci étant indépendant de la grandeur du rayon de la sphére
devra &tre vrai aussi lorsque ce rayon sera infini, c’est-a-dire , lors~
que la sphére deviendra un plan ; on a donc ce théoréme:

THEOREME VIII. Si un cercle varichle de grandeur sur un
Plan est constamment tangent & deux autres cercles , de grandeur:
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et de situation ineariable, tracés sur le méme plan ; la droite con-
duite par ses points de contact avec eux , variable comme lui ’
coupera toujours néanmoins la droite qui joint les centres en un
méme point , lequel ne sera auire que celui ou cette droite est coupée
par la tangente commune aux deux cercles.

Ce point, que nous appellerons & I'avenir le centre de similitude
des deux cercles, peut étre déterminé, lors méme qu’on ne peut
mener & ces deux cercles une tanrgente commune , en suivant exacte—
ment ce que nous venons de dire pour deux cercles d’une sphére,

De ce théoréme il est encore facile de déduire le suivant :

THEOREME IX. Si une sphire variable de grandeur est cons-
Zamment tangenle & deux autres sphéres, de grandeur et de si-
tuation invariable , la droite conduite par les points de contact ,
pariable comme elle , coupera toujours néanmoins la droite qui
joint les centres , et la coupera toujours en un méme point , lequel
ne sera autre que le sommet du cone citconscrit @ la fois eux
deux sphéres fixes.

Nous appellerons & l'avenir ce point le centre de similitude des
deux spheres. _ . '

Revenons encore & nos cénes. D’aprés ce qui a été dit ci-dessus,
en obtiendra I'axe de similitude des deux cénes €, €/, en com=
binant entre elles les deux équations ( 7 et 8), ce qui donnera

__ aSin.r/=—a/Sin.r __ bSinr’—b/Sin.r

=723 =< T2 e’
¢Sin.rl—c'Sin,r » Y cSin.rle—c/Sinr ( )

Mais il faut remarquer que tout ceci est relatif & I’hypothése ol
le cone €/ touche les deux autres extéricurement. Ces formules
conviennent également au cas ol ce méme céne les enveloppe tous
deux, car elles ne changent pas par le changement simultané des
signes de r ct /. En conséquence, la droite (¢”) est celle suivant
laquelle le plan des axes de € et €’ est coupé par leurs plans
tangens extérieurs. Pour obtenir celles suivant lesquelles le méme
plan est coupé par leurs plans tangens communs intérieurs, il
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suffira de changer, dans ces formules, le signe de 'un quelconque
des deux angles 7, 7/, ce qui dannera également

aSin.r'4-a/Sin.r

bSin.r'4-0/Sin.r
X = —r——— T =
cSin.r/== ¢/Sinr

» Y= Sy £ ()
Pour distinguer ces deux axes de similitude 'un de lautre , nous
appellerons le premier axe de similitude externe, et le second axe
de similitude inzerne. Nous admettrons des d¢énominateurs analogues,
soit pour deux cercles tracés sur une méme sphére ou sur un plan,
soit pour deux sphéres dans l’espace.

En considérant ensuite successivement ¢ systéme des deux cercles
C, C” et celui des deux cercles €’ ,-C” , on devra trouver également
4 chaque systéme un axe de similitude externe et un axe de similitude
interne. Désignons respectivement ces axes par (¢/) et (/) pour le
premier systtme, et par (¢) et (Z) pour le sccend.

On conclura les équations de (¢/) et (/) de celles de (¢#) et (i),
en supposant , dans celles-ci, que €’ devient C//; c’est-2-dire , en
supposant &’=o0 , b’=o0 , ¢/=1 , r’=r/". On conclura semblable-
ment les équations de (¢) et (7) de celles de (¢) et (), en sup-
posant , dans celles-ci, que € devient C”/; c’est-a-dirc, en supposant

g=0 , b=o0, ¢=1 , r=r. 1l viendra ainsi

aSin.r" bSin.r
— . , . z ? ') - Q: . . \8’)
¢Sin,r¥==Sin r cSinr!'e—Sin.»
aSin.r 5Sin.r/

cSin.r/'4-Sin.r

a'Sin.r!
¢!Sin.r/!==Sin.r!

a'Sin.r'

¢/Sinr//-4-Sin.r!

Si Lon fait passer un plan par les droites (¢), (¢/) son équation

sera

z’
z, y==—T"—2Z2;

z = T e o %
> ¥ ¢'Sinr!'4=8in.s

e
~
N
~
N

"= —‘——-_—?— z
J ¢Sin.r/'<4-Sin,r

b'Sin.r’

¢/Sin.r!! =Sin.r!

o'Sin.r!

)

{(be’ —cb’)
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§(bc'mmct/)Sing//—(bSina/—b/'Sinr)lz
—{(ae'—ca’)Sin.r!/—(aSin.r/—a'§in.r)}y (E)
~+(ab/ —ba’)zSinr’=0 ;

si 'on veut savoir suivant quelle droite ce plan coupe celui des axes
des cénes €, €7, il faudra combiner son équation avee celle de ce
dernier plan, qui est, commc nous l'avons déja vu

(be'—cbx~4(ca’ —ac’)y+-(ab'—ba’)z=0 ; (7)

mais en retranchant de la premidtre le produit de cette derniére par
Sin.r//, elle-se réduit simplement &

(@Sinr/—&/Sinr)z = (aSin.r’'—a’Sin.r)y ;

équation qui a évidemment lieu en méme temps que les équations
(¢”), d’ou il suit que cette derniére droite est sur le plan (E)

Mais , puisque (7), (&), (¢/) se déduisent respcctivement de (e),-
(¢), (¢”), par le seul changement du signe r ou de 7/, on doit
en conclure que les trois équations qu’on déduira de I’équation (E)
par les changemens successif et simultané de ces signes , sont les
équations de trois plans (I) , (I/) , (1) , dont le premier contient
(&) , (), (@), le second (7), (¢/), (/) et le troisitme (2), (&),
(¢//). On a donc le théoréme que voici :

THEOREME X. Les azes de similitude externes de trois cénes
de méme sommet , considérés successivement deuzx & deux , sont tous
trois sur un méme plan : chacun d'eux est sur un méme plan avec
deux des axes de similitude internes ; de sorte que ces six axes
sont sur quatre plans.

On peut appeler les quatre plans qui contiennent les six axes

Tome VLI 48
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de similitude de trois cénes les plans de similitude de ces trois cones.
Un seulement est exzerne, et les trois autres sont internes.

En considérant le sommet commun des trois cénes comme le
centre d’une sphére, d'un réyon quelconque , on obtiendra cet autre
théoréme '

THEOREME XI. Les centres de similitude externes de trois
cercles d'une sphére , considérés successivement deuzx & deux , sont
fous trois sur un méme arc de grand cercle : chacun d'eux est sur
un méme arc de grand cercle avec deux des centres de similitude
internes ; de sorte que ces siw centres sont sur quaire arcs de grands
cercles. (*)

On peut appeler ces grands cercles les axes de similitude des
trois cercles dont il s'agit; un seul est externe, et les trois autres
sont Internes.

La vérité de ce théoréme étant indépendante de la grandeur du
rayon de la sphera, il sera vrai encore lorsque ce rayon sera infini;
on a donc cet autre théoréme :

THEOREME XI1. Les centres de similitude externes de trois
cercles tracés sur un méme plan , et considérés successivement deuzx
& deux , sont tous trois sur une méme ligne droite : chacun d'eux
est en ligne droite avec deux des centres de similitude internes ;
de sorte que ces six cenires sont sur qualre droites.

On peut appeler ces droites les axes de similitude des trois cercles ;
un seul est externe et les trois autres sont internes.

De la il est encore ais¢ de déduire les trois théorémes que voici:

THEOREME XlI1I. Les centres de similitude externes de irois
sphéres , prises successivement deux & deux , sont tous irois situés
sur une méme ligne droite , contenue dans le plan de leurs centres :
chacun d’cux est en ligne droite avec deux des centres de similitude
internes, de sorie que ces six poinls, tous situés sur le plan des
centres , sont sur quatre drotles tracées sur ce plan.

{" Cest le deuxiéme théoreme de la page 172.
/
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On peut appeler ces quatre droites les azes de similitude des
trois sphéres; un seul est ewxterne, et les trois autres sont inzernes.

THEOREME X1V, Si une sphére variable de grandeur dans
Pespace est constamment tangente & trois sphéres de grandeur et
de situation invariable ; le plan conduit par ses points de contact
avec elles , variable cormme elle , coupera toujours néanmoins le plan
des centres suivant une méme droite , laquelle ne sera autre que l'axe
de similitude des trois sphires.

On doit remarquer que I'axe dont il sagit est ewzerne , lorsque
la sphére variable touche extérieurement ou enveloppe a la fois les
trois sphéres fixes ; et qu'au contraire il est Znferne lorsque la sphére
variable touche I'une des spheres fixes extéricurement et enveloppe
les deux autres, ou encore lorsque , touchant ces deux-ci extérieure=
ment , elle enveloppe la premiére.

THEOREME XV. Les siz centres de similitude externes de
quaire sphéres considérées successivement deux & deux , et consé-=
guemment les quatre axes de similitude externes de ces mémes sphéres
considérées successivernent Irols & Irois soni situés sur un méme
plan : chacun de ces axes est dans un méme plan avec trois des
siz cenires de similitude iniernes; de sorte que les douze centres
sont sur seize droites qui sont elles-mémes situées sur cing plans.

On peut appeler ces plans les plans de similitude des quatre sphéres ;
un seul est externc tandis que les quatre autres sont internes.

Les théorémes que nous venons d’énoncer sont connus, pour la
plupart ; mais il n’était pas inutile de [aire voir comment, en éta=
blissant entre eux une subordination convenable, on parvient faci-
lement & les demontrer. Ce qu’on trouve a la page 349 du IV.*
volume de ce recueil sulfira pour en faire senlir l'importance et

Yutilité,
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Solution des deux problémes proposes & la page 200
de ce volume ;

Par M. J. B. DurranDE.

g O s g e

1. DEUX figures planes, tracées sur deux plans différens, et d’un
scul coté de chacun de ces plaus seulement, peuvent étre égales de
deux maniéres que, dans une multitude de circonstances, on est
obligé de bien distinguer. Il peut arriver, en effet, que, pour faire
coincider les deux figures, il faille appliquer les deux plans l'un “sur
Yautre de maniére que ces figures soient toutes deux en dessus ou
toutes deux en dessous, ou, ce qui revient au méme , de maniére
que Urndroit de T'une soit appliqué contre lenvers de lautre; ou
bien il peut se [aire que , pour les faire coincider, il faille au contraire
appliguer les deux plans o elles sont tracées 'un contre P'autre de telle
sorte que les deux figures soient I'une et I'autre en dedans ou I'une et
Pautre en dehors de ces deux plans. Une gravure et la planche d’otion I'a
tirde sont dans le dernier de ces deux cas : deux épreuves d'une
méme gravure sont dans le premier,

Pour distinguer ces deux cas par des dénominations différentes,
nons dirons que deux figures dgales , tracdes sur un méme plan,
sont identiques , lorsqu’il suffira de faire glisser ou tourner l'une
d’elles sur ce plan, sans le quitter, pour Vamener A couvrir exacte-
ment autre. Nous dirons au contraire que deux figures égales, tracées
sur un méme plan sont symétrigues , lorsqu’on ne pourra les amener
a coincider qu’en renversant préalablement 'une d’elles, de maniére
que la face qu’elle montrait d’abord extérieurement soit appliquée

contre le plan. 1l est aisé de voir, 1.° que deux figures identiques
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ou symétriques par rapport & une troisitme sont ilentiques entre
elles ; 2.° mais que si, de deux figures, I'une est dentique ¢t 1'autre
symétrique par rapport & une troisitme , elles seront symetriques l'une
% l'autre,

Il importe de remarquer qu’il y a des fhigures égales qui sont
3 la fois identiques et symétriques 'une & Vautre : ce sont celles
qu’une droite partage en deux parties égales symétriquement dis-
posees par rapport i elle; de telle sorte que cette droite soit per-
pendiculaire sur le milien de toute droite qui joindra deux points
homologues des deux parties ; c’est , par exemple, le cas du triangle
isocéle , et c’est encore le cas d’un quadrilatére formé de deux
triangles isoctles, opposés base & base. Le dessein géométral de la
fagade d'un édifice tout-i-fait régulier est également dans ce cas :
Vépreuve d’un tel dessein ne différe aucunement de la planche d’od
elle est tirde. Nous dirons 4 l'avenir qu’une ﬁgure est symétrigue
per rapport & elle-méme , lorsqu’elle se trouvera dans ce eas.

i imporie encore de remarquer que , si l'on décompose deux
polygones égaux en triangles , par des diagonales homologues ;
suivant que les polygones seront identiques on symétriques , les
triangles homologues seront eux-mémes identiques ou symétriques.

Draprés cctte dernidre remarque le premier des deux problémes
proposés peut étre réduit i ce qui suit :

PROBLEME. Décomposer un triangle donné quelconque en parties
symétriques par rapport & elles-mémes ?

Solution. Du centre du cercle inscrit au triangle soient abaissées
des perpendiculaires sur ses cotés ; ces perpendiculaires seront égales,

et les pieds de deux quelconques seront également distants du sommet
de l'angle sur les cotés duquel elles tomberont.

Ces perpendiculaires diviseront donc le triangle en trois quadri-
latéres dont chacun sera formé de deux triangles isocéles , opposés

base & base, et qui conséquemment seront symétriques & eux-mémes;
le probléme sera donc eomplétement résolu.

- Lorsque le triangle dont il sagit est rectangle, le probléme peut
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¢tre fort simplement résolu, en joignant le sommet de Pangle droit
au milieu de I'hypothénuse par une droite qui divise le triangle
en deux triangles isocéles , et conséquemment symétriques par rapport
4 cux-mémes.

Si le triangle est acutané]e; en joignant le centre du cercle cir-
conscrit aux trois sommets par des droites; ces droites le diviseront
en trois triangles isoctles , et conséquemment symétriques par rapport
3 eux-mémes.

Si enfin le triangle est obtusangle ; la perpendiculaire abaissée
du sommet de I'angle obtus sur le c6té opposé le divisera en deux
triangles rectangles dont chacun pourra ensuite étre ultéricurement
divisé en deux triangles isoceles et conséquemment symétriques par
rapport a4 eux-memes. On aura donc en tout quatre de ces triangles.

Mais la premiére solution que nous avons donnée a 'avantage de
s’appliquer uniformément et sans distinction & tous les eas.

On voit, par ce qui précéde, que, deux polygones symétriques,
chacun de m cétés, étant donnés, on peut toujours décomposer I'un
d’eux en 3(m—2) parties au plus qui, différemment disposées entre
celles, forment un polygone identique avec l'autre.

I1. Etendons présentement cette théorie aux figures tracédes sur
une sphére ; clles présentent exactement les mémes distinctions ,
mais avec cette circonstance particulitre qu'ici deux figures symé-
triques ne peuvent, en aucune sorte , étre superposées, du moins
en géncral. La raison en est que, lorsqu’on veut tenter la super—
position de deux parcilles figures, elles opposent leur convexité ou
leur concavité I'une a l'autre , de sorte qu’elles ne peuvent se convenir
que dans leurs sommets ou dans un point de leur intérieur.

Mais il est sur la sphére , comme sur un plan , des ﬁgures‘
symétriques & elles~-mémes ; ce sont celles que le plan d'un grand
cercle divise en deux parties égales, tellemeut disposées par rapport
4 ce plan quil se trouve & la fois perpendiculaire sur le miliew
de toutes les droites qui joignent leurs points homologues. De ce
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nombre est, en partieulier , le triangle spherique isoctle ; et de ce
nombre est encore le quadrilatére sphérique formé de deux triangles
sphériques isoctles , opposés base a base.

On peuat remarquer de plus que , si 'on décompose deux polygones
sphériques égaux en triangles sphériques , par des diagonales homo-
logues ; suivant que les polygones seront identiques ou symétriques ,
les triangles sphériques homologues seront eux-mémes identiques ou
symétriques.

En conséquence , le probléme ou l'on demanderait de couvrir
un polygone sphérique avec les parties d’un autre polygone sphé-
rique qui lui serait symétriques se réduit au suivant :

PROBLEME. Décomposer un triangle sphérique quelconque cn
parties symétriques par rapport & elles-mémes ? .

Solution. La solution de ce probleéme est tout-i-fait analogue a
celle que nous avons donnée relativement au triangle rectiligne. On
voit en effet que, si Ion abaisse du pole du cercle inscrit des arcs
de grands cercles perpendiculaires sur les trois cétés du triangle,
ces arcs le partageront en trois (ii]adrilatércs sphériques syinétriques
¢ eux-mémes, comme étant tous trois formés de deux triangles sphé-
riques isocéles , opposés base A base.

On pourrait encore chercher & imiter ici les autres solutions que
nous avons donndes relativement au triangle rectiligne ; mais on
ignore dans quel cas le péle du cercle circonscrit au triangle sphé~
rique tombe dans ce triangle , sur I'un de ses c6tés ou hors de lui,
et il n’est pas démontré que , dans ce dernier cas , le triangle puisse
toujours étre décomposé en d’autres pour lesquels le péle du cercle
circonscrit ne soit pomt extérieur.

Il résulte de ceci que deux polygones de 7 cdtés, symétriques
I'un & l'autre, étant tracés sur une méme sphére , on peut toujours
décomposer l'un d’eux en 3(m—2) parties au plus qui, disposées
convenablement, couvriront exactement l'autre.

ITI. 1l est presque superflu de faire remarquer que tout ce que



314 QUESTIONS.

nous venons de dire (II) s'applique, sans restrictions, aux angles
polytdres égaux , lesquels peuvent aussi étre tantét identiques et
tant6t symcétriques. Nous aurons seulement d observer ici que les
développemens de deux angles polyédres symétriques sont toujours
superposables, soit par un c6té soit par l'autre ; de sorte que deux
tels angles polyeédres ne différent uniquement que par la partie de
leur développement qui en a formé la surface intérieure, lorsqu’on
a plié ces développemens pour les former.

Ainsi , en résumé, il y a des angles polyedres symétriques & eux-
mémes; et ce sont ceux qu’'un plan passant par leur sommet par-
tage en deux parties égales tellement situées , que ce plan est 2
la fois perpendiculaire sur le milicu de toutes les droites qui
joignent leurs points homologues. Tels sont, en particulier , angle
triedre isocele et I’angle tétraddre formé de la réunion de deux angles
triedres isoctles , opposés base i base. Enfin , si 'on décompose deux
angles polyddres égaux en un méme nombre d’angles triédres, par
des plans diagonaux homologues; suivant que ces angles polyedres
seront identiques ou symétriques, les angles triedres résultant de leur
décomposition seront eux-mémes identiques ou symétriques.

On voit d'aprds cela que, si ’on veut remplir un angle polyddre
avec les parties d'un autre angle polytdre qui lui est symétrique,
tout se réduira k savoir décomposer un angle tritdre en parties sy-
métriques 3 elles-mémes. Pour résoudre ce dernier probléme il suffit
de conduire par I'axe du eéne inscrit des plans perpendiculaires aux
faces ; ces plans partageront 'angle triedre en trois angles tétraddres
symétriques a eux-mémes, par ce qui précede.

On pourrait aussi recourir ici 4 la considération du céne circonscrit ;
mais il faudrait savoir auparavant dans quel cas l'axe d'un tel
cone tombe dans lintérieur de V'angle triddre sur I'une de ses faces
ou extéricurement; et il faudrait en outre qu’il fit démontré que,
dans ce dernier cas, l'angle triedre est toujours dccomposable en
d’autres tels que , pour aucun d'eux, l'axe du céne circonscrit

n'est extérieur, 0
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Il résulte de ceci que, deux angles polytdres syméiriques de m

faces chacun étant donnés, on peut toujours décomposer I'un d’eux

en 3(m—2) parties au plus qui , convenablement disposées entre
elles , remplissent exactement l'autre.

IV. Passons enfin & 1a considération des corps égaux et appelons
encore corps /dentiques ceux qui sont superposables, et peuvent consé-
quemment étre congus comme ayant été coulés dans un moule commun.
Appelons au contraire corps symétriques, ceux qui , malgré leur
parfaite égalité , ne sauraicnt é&tre superposés , ni conséquemment
congus coulés dans un moule commun, On peut citer nos deux mains
comme l’exemple le plus commun des corps de ce dernier genre ;
quelque parfaite égalité qu’on suppose exister entre elles, jamais
une main droite ne saurait étre convenablement remplacée par une
main gauche ; aussi le gant d'une main ne pcat-il servir & l'autre
qu'en le retournant, le dedans en dchors.

Observons encore qu’ici un corps peut étre symétrique & lui-méme;
c’estace qui arrive toutes les fois quun plan le divise en deux parties
égales , tellement disposées I'une par rapport  l'autre, que ce plan
est & la fois perpendiculaire sur le milicu de toutes les droites qui
joignent leurs points homologues. C'est, par exemple , le cas d’un
tétraddfe dont deux faces sont des triangles isoctles ayant leur base
commune ; et c’est encore le cas d’'une pyramide quadrangulaire qui,
ayant pour base un quadrilatére symétrique & lui-méme, serait dé-
eomposable , par un plan diagonal , en deux semblables tétratdres.

Observons enfin que , si 'en décompose deux polyedres égaux
quelconques en un méme nombre de tétraddres , par des plans
diagonaux homologues ; suivant que les deux polyedres seront iden-~
tiques ou symétriques, les tétraédres résultant de leur décomposition
seront eux-mémes identiques ou symdtriques.

Il résulte évidemment de la que la question qui consiste 4 dé-
composer un polyeédre quelconque en parties qui, disposées entre
elles d’'une autre maniére , forment un polyedre symétrique par

Tom- VI. 49
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rapport au premicr, se réduit, en derni¢re analise, au probléme
suivant :

PROBLEME. Décomposer un tétraddre donné quelconque en parties
symétrigues par rapport a elles-mémes ¢

Solution. Soient A , B, C, D les sommets du tétraédre, et O
le centre de la sphére inscrite; de ce centre soient abaissées sur les
faces des perpendiculaires dont les pieds soient respectivement A/,
B/, C/, D/ ; par ces perpendiculaires , prises deux & deux , soient
fait passés six plans ;3 ces plans diviseront le tetraédre en quatre
exaedres octogones & faces q-adrilatéres. Bornons-nous 4 considérer
Pun deux : celul qui contient le sommet D, et dont conséquem-
ment les trois arétes de langle opposé sont 0/, OB/, OC.
Nommons @ , 4, ¢ les trois somwnets non encore désignés ; en sorfe
que les arétes Dz , Db , Dc soient respectivement opposées a celles
que nous venons de mommer.

Menons la diagonale DO , ainsi que les diagonales des faces DA/,
DB/, DC/ ; par la premicre et par chacune des autres soient con-
duits trois plans; ces plans diviseront I'exaddre en trois pyrarhides
triangulaires ayant leur sommet commun en D, et ayant pour bases
les trois faces de l'angle O. Bornons-nous a considérer I'une d’elles:
celle dont la base est OA’cB.

A’ et B étant les points de contact de la sphere inscrite avec
deux des faces du tétraddre , il s’ensuit d’abord que OA/=O0B/;
il s'ensuit en outre que DA’=DB/, comme tangentes menées a une
sphére d’un méme point extérieur; et , comme d’ailleurs les deux
triangles DcA’, DcB’, qui ont le ¢6té De commun, sont l'un et
Pautre rectangles en ¢; il sensuit que cB/=cA"

Ainsi notre pyramide quadrangulaire se trouve étre du genre de
celles que nous avons signaldes plus haut comme étant symétriques
3 elles-mémes; et, comme on prouverait la méme chose des deux
autres, il s'ensuit que notre exaédre est composé de trois parties
symétriques elles-mémes ; et, attendu qu'on en peut dire autant
des trois autres exatdres , il en résulte finalement que notre tétraédre
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est décomposable en douze pyramides quadrangulaires symétriques
3 elles-méimes.

Ou pourrait, A l'exemple de M. Legendre , recourir aussi i la
cousideration de la sphére circonscrite , laquelle, dans certains cas ,
offvirait It moyen de décomposer le tétraddre en douze autres , symé-~
trigucs & eux-mmémes; mais on ne sait pas dans quel cas le centre
d'une telle sphere est intérieur au téiratdre , 4 sa surface ou hors
de lui, et il n’est point démontré que , dans ce dernier cas, le
tétraédre puisse étre décomposé en d’autres pour chacun desquels
le centre de la spheére circonscrite ne soit point extérieur ; tandis que
notre procédé ne souffre absolument aucune sorte d’exception.

Il est aisé de conclure'de ceci que tout polyédre est décomposable
en douze fojs autant de parties symétriques 2 elles-mémes qu’il peut
fournir de tétraédres par sa décomposition.

Remarque 1. Au moyen de la théorie qui précede, on pourrait,
en géoméirie , démontrer I’égalité des triangles sphcriques , angles
tricdres et tétratdres par la superposition ; sauf ensuite i prouver,
comme ci-dessus , que , lorsque cette superposition ne peut avoir lieu
en masse , on peut du moins I'effectuer par parties.

Remargue 11. De méme que I'on distingue deux sortes d'égalité,
on peut aussi distinguer deux sortes de similitude ; elles donnent
exactement lieu aux mémes considérations.

QUESTIONS PROPOSEES.

Problémes de Geométrie.

L DETEBMINER dans quels cas le péle du cercle circonscrit 3 un
triangle sphérique donné est intérieur au triangle , dans quel cas il
se trouve sur 'un de ses céOtés, et dans quel cas il lui est exirieur.
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Démontrer en outre , s’il est possible, que , dans ce dernier cas,
le triangle sphérique est toujours décomposable en d’autres tels que,
pour aucun d’eux, le péle du cercle circonserit ne lui est extérienr?
11, Determiner dans quels cas le centre de la sphére circonscrite
a un tétraddre donné est intéricur au tétraédre, dans quel cas il
se trouve sur sa surface, et dans quel cas il lui est extérieur. Dé-
montrer en outre, s'il est possible , que , dans ce dernier cas, le
tétraddre est toujours décomposable en d’autres tels que, pour aucun
d’eux , le centre de la sphére circonserite ne lui est extérieur ?

T/heéorémes de Geomeltrie.

On sait que, lorsque deux golygones semblables sont semblable~
ment situés sur un méme plan, c’est-a-dire , lorsqu’ils ont leurs cétés
homolegues paralléles , les droites qui joignent leurs sommets homo-
logues concourent en un méme point, qu’on peut appeler le cenire
de similitude des deux polygones. On peut de plus appeler axe
radical des mémes polygones la droite qui joint les intersections
de deux quolconques des cotés du premier avec leurs homologues
dans le second.

Ces démonstrations admises , on propose de démontrer les deux
théorémes suivans :

Trois polygoénes semblables étant semblablement placés sur un méme
plan; 1.° lestrois centres de similitude quirésultent deleur combinaison
deux 3 deux sont situés sur une méme ligne droite ; 2.° les trois axes.
radicaux qui résultent de la méme combinaison se coupent en un méme
point.
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Memoire sur les éclipses de soleil ;

Par M. le professeur Kmamp , doyen de la faculté des
sciences de Strasbourg.
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-

( Deuxiéme partie. ) (*)

62. L’EQUAT'ION différenticlle compléte , entre dy, dz, dz, nous
fait voir que tous les problémes ‘concernant les éclipses, dans les-
quels le moment d'une plus grande phase, ou d’une phase quelcon-
que, de grandeur donnée est au nombre des inconnues , ne sauraient
admettre aucune solution directe, attendu qu’ils ménent a des équa-
tions trés-compliquées, et de plus éminemment transcendantes. La
solution directe est restreinte aux cas ol le temps est au nombre
des quantités donndes, ce qui permet de supposer dz=o. La question
de' déterminer linstant de la plus grande phase, pour un cndroit
dont la position géographique est connue, ne peut étre résolu qu’en
employant les fausses positions. Nous allons en donner un exemple ;
cn déterminant l'instant de la plus grande phase, pous l'observatoire.
de Berlin.

Nous avons détermind la distance des centres pour les trois mo-
mens de g30/ , gn45/ , 100/ , temps vrai a Paris, égale a 461,
122, 376. On pourra les représenter par un trindéme, tel que A+B14-C¢%;

¢*) Voyez la page 133 de ce volume.
Xom. VI, n.° XII, 1.°* juin 1816, bo



350 ECLIPSE

en comptant le temps # depuis gh.30/, et en prenant un quart d’heure
ou 15 pour unité de femps; de maniére que '

pour = o, | N 2,

on ait la distance =461 , 122 , 376 ;

ce qui donne 4=461 , 2B=—1271 , 20=593. La moindre dis~

B 127t oy y o qe
tance répondra & f=-— :—E-=:;=16/.4”. Le milicu de léclipse
aerivera donc & ¢*.46/.47, temps de Paris; ce qui équivaut & 10%.30/.127,
B2

—-cequl,

temps de Berlin., La moindre distance des centres sera 4— 7C

dans le cas actuel , fait 1207 ou 2/ de degré.

On aura une approximation encore plus parfaite, en comprenant dans
cette interpolation les cinq ordonnées 876 , 461 , 122 , 376 , 756,
qui répondent aux époques y*,1y , ¢*.30’ , gh45 , 10%0/, 10" 15
En designant par ¢ le temps exprimé en quart d’heures , et compté
depuis ¢*.45/, tant en avant qu’en arriére , on trouve la distance
des centres égale a

n32—280t42025¢2 4 253=—2462* ;

2

en conséquence , le temps 7 auquel appartient la moindre distance
des centres, sera la racine de I’équation

o=—280+4405014-752—q84:% ;

5

Elle donne #=;% d'un quart d’heure, ou % d’une minute; ou
enlin 1/.2”, Le milieu de I'éclipse arrivera donc 3 " 46/2” , temps
vrai de Paris, équiva’ant 2 10%.30/.107, temps vrai de Berlin; ce
qui ne différe que de deur secondes de Vapproximation déja employée.
Le temps ¢ de nos formules , depuis le n.° 39, sera donc 0,4418 ;
et, si I'on emploie cettc fonction numérique pour déterminer les
coordonnées , on trouvera les trois rapports ¢ : r, ¢/ i 1/, y: 2,
rigoureusement égaux entre eux.

63. PROBLEME V1Il. On demande la position géographique
du liew ou léclipse doit paraiire centrale dans un instant donné?,
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64. Solution. L'instant donné fera connaitre les deux coordonnées
g’ , 1/, moyennant les formules ¢’=M--m¢ , r/=N-+nt. La con-
dition d’une éclipse centrale donne ¢==o0 , 7=o0 : on aura donc (8),
en supprimant # dans 4—x , ce que la nature du probléme nous
Byt Brt
4B’ T 4—B
Nous avons donné les valeurs numériques de M , N, m , n, en
secondes d’un cercle dont le rayon était la distance A du centre

de la terre & celui du soleil , savoir: (40)

, et ensnite ¥=/ ci—yr—z3,

permet de faire, y=

M=-—5207", m=-+48210",
N=+43562 , n=— 804" .

Il faudra exprimer de méme le rayon € de la terre, lequel par
conséquent deviendra égal & 87,7345 qui constitue (44) la parallaze
horizontale du soleil.

65. Le commencement ‘et la fin de I'éclipse centrale sont marqués
par les deux limites extrémes au-delad desquelles la coordonnée x
n’a plus de valeur réelle. On aura donc, pour ces deux instans,

. . , A4 .
¢*=y>+z*. Ainsi, en faisant, pour abréger, - —! =h, ce qu

rend %2=413,1056 (44) , on aura Dléquation A*c*=(M-m? 4=
(N-+nt)* ; ou bien

(m*~n*)*2(Mm--Nn)t+-(M*~4N*)=h*c* .
Donc, si, pour abréger, on fait .

Rr=(m*~+n*)*c*~(Mne~Nm)* ;
que de plus on désigne par z le commencement de I'éclipse , par 2/
sa fin, et qu'on en fasse autant pour les coordonnées y et z qui
s’y rapportent, on anra
(Mm<4-Nn)+4R = (Mm<3-Nn)—R

- ma-fn2 : IeT m24-n? ?
n(Mn=—=Nm)—mR , n(Mn=~—Nm)+mR

ly=- T, , hy'=-+ S z

1=
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m(Mn—=Nm)4nR P m(Mn==Nm)=nR
- m2-4-n2 » NE=" m24-n2 ’
Il en résulte que ny—mz , aussi bien que ny’—mz/, est égal &
Mn—Nm

h

66. Les quatre derniéres formules font connaitre les coordonnées

hz=

y et z, en partics décimales de la parallaxe horizontale; et, pour
les réduire en parties décimales du rayon de la terre, il faut encore
les diviser par 8,7345. Le temps # est compté depuis huit heures
du matin , ayant pour unité lintervalle de quatre heures.

67. Dans l'éclipse de 1816, on trouve

m*~4-n*=-468050516 ,
ch\/ migni=--29765611 ,
Mm4+Nn=~—45613318 ,
Mn—Nn=—250575q2 ,
R=-4-16062648

s

ee qui donne .
I==—40,434246 ; #=-}0,006326 ;
y=-=0,4550212 ; y/=+0,6191160

o

z=-40,8904171; z/=-40,7852276 ;

te qui fixe le commencement de T'éclipse & 9".447.13//, et sa fin &
112.37/.3" , temps wvrai de Paris ; d'ot résulte,, pour sa durée totale,
ah52/.507.

68. Des coordonnées z , y , z , dont la premitre est zéro, il
faut passer aux coordonnées X , ¥, Z , moyennant les formules
du n.° 28, lesquelles deviennent ici

X=~—ySin.« ,
Y = 4yCos.:Cos.a—=zSin.s ;
4 =-ySinsCos.a42zCose .
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Les longitudes # et o/, calculdes d’aprés les formules du n.® 36
_savoir

«=180°4-56°.54.35/"4607"z ,
donnent, pour les deux époques du commencement et do la fin
de I'éclipse ,
« =180°456°.587.54" ;
u’=1800+07 R T4 N

On en tire,, pour le commencement et pour la fin de 1'éclipse

X=—0,3816174 ; X'=-0,5196770 ;
Y =w0,1270458 ; ¥’/==0,6215034 ;
Z=0,9155471 ; Z'=-+0,5862338 .
69. Des coordonnées X , ¥, Z et X/ , ¥/ , Z’ ; on pasde aux
latitudes a, »/, ainsi qu’aux angles horaires x, &/, 4 Paide des

Y
formules Sina=Z2Z , Sina/=Z2Z’, Tangu= < 'lang,u = — Y :

X *
d’ot il résulte
a= 66°.43.17" ; /= 35°.53.24";
=108%.24.48" ; W=129°54". 4.
L'expression de Pangle horaire x, compté depuis huit heures g
malin , en prenant lintervalle de quatre heures pour unité de temps;

est (45) £=174°.30/.36/4-216626"¢+4-D. On aura donc , pour le
le cas actuel ,

@ =200°19/.57"4-D ;
@/ =228%44/ 44/"D" :
70. On aura donc, pour les latitudes ;
| a=065%47/ ; a’=35°3 !
Pour les angles horaires, il faudra prendre ;

«=1804-18°.24/.48" , W =180°+129°.54.4" ;

donc



"ECLIPSES
——y0 810 o/ o/ :
D=—1°55.g" ; D'=81°¢/ 24" : o
Le commencement de I'éclipse centrale aura donc liew, a pres de
deux degrés, 3 loccident de Paris , sous la latitude de 65°.47/; et
sa fin & 81° environ, 4 Vorient de Paris , sous la latitude de 35°.3%

354

71. En poursuivant la courbe de l’éclipse centrale , de quart d’heure

en quart d’heure, on trouvera

Commencem.! X=—0,3816174, ¥=-0,1270458 , Z=-}0,9155471

9457 . —0,4243338,  —0,0996840,  -+0,8832180
100 ¢ o0 v .. —0,4597629, —0,4836834, ~+o0,7447607
1005 ... ... —0,3983856,  —0,6310864,  —0,0655960
10.30 . ... .. —0,3059972, —0,7347272, ~+0,6054293
10445 .. .. .. —0,1g912901, —0,8068382,  ~+0.5589459
I1.0 + ... —0,0554173,  —0,8490128,  —0,5254575
1rab .. ... .40,1068099, —0,8549988, ~+-0,5076834
1130 ¢ -+0,3135564, —0,7956789, ~0,5182441
fin.........40,5196770, —0,6215034,, ~+0,5862338

72. De ces coordonnées on passera aux latitudes a, aux angles
horaires ¢, et de la aux différences de méridiens D. On aura, de
¥ . IS o .
quart d’heure en quart d’heure , les angles qui suivent ,

Commencem.' A=66°.17/. 0/, p=198°24/.48"

, D=— 1°55. o/

9h45 o ... 62. 1.5 , 205.12. 3 , ~+ 4 .15.54
10.0 . .... 48.8.9 , 226 .27.8 , ~+21 .45 .20
105> . ... 41 43 41, 237 44 .13 , 29 .16 .46
10.30 . .... 37.15.37 , 247 .23 .22 , 435 .10.16
1045 ... .. 33 .58 .58 , 256 .39 .44 , 40 .40 .59

I1.0 «:i ... 31.41.56

266 .45 .56 |

446 .31 .32

II.15 ..... 30.30.35 , 277 .7 a5 453 .37 .12
1130 « oL, 3ra2.52 , 2gr .30 .29 , ~+64 .14 .47
ﬁnOv:Q::.:35;53|42’ 309-5404 > +81-9'24‘
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Ta courbe tracde d'aprés ces données sera conforme % celle des
Ephémérides de Berlin. ( Année 1816.)

v3. PROBLEME IX. Déterminer la position géographique du
point du glole d’ow l'on peut voir , dans un instant donné , quelque
plus grande phase dune grandeur donnée ?

74. Solution. Le but du probléme est de tracer surle globe les
courbes des plus grandes phases, ainsi que des attouchemens des
bords du soleil et de la lune qui indiquent les progres successifs de
I'éclipse. Les quantités données du probleme sont les coordonnées
g’ , v/ du centre de la lune, vu géocentriquement sur le disque
solaire , et qui sont des fonctions connues du temps #, et de plus /,
distance apparente des centres au moment de la plus grande phase.
Les inconnues sont les coordonnédes ¢, 7 du centre de la lune, vu
sur le disque solaire, d’un point de la surface du globe dont on
demande les coordonnées z, y, z. '

75. Les cinq équations seront ; savoir, les deux premidres (8)

A(Ad—B)y=(A—ax)Bg'—Ag(B—=) ,

A(A—B)z =(A~—2z)Br/'—Ar(B—x) ;
la troisi¢éme

x2+yz+zz=__cz ;
équation de la sphére; et la quatritme
=,

qui exprime la relation entre la distance des centres et les coordonnées,
La cinquiéme résulte de T'égalité des rapports g :r, ¢/ i1/, y:iz,

qui indiquent l'époque du milieu de léclipse ou celle de la plus’

grande phase.
76. Cette égalité nous permet de supposer
9=mql ’ 'y=nq/ N
r=mr’ , z=nr!/.
Faisant de plus , pour abréger, p*=—=¢/*-r/*; ce qui rend p égal
4 la distance apparente des centres du soleil et de la lune, vus géo
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centriquement; et ce qui en fait ainsi une quantité entiérement connué,

il ne reste plus que les deux inconnues

ainsi que le facteur m:‘f-—;
P

12 et x, pour lesquelles nous avons les deux équationg
nA(AeeB)p= AB(p—f )+ (Af—Bp)a ;
c=x~n’p* .
7. Voici les formules qui contienneut la solution f{inale du proy
bléme. Faites
P=AB(p—f) ,
Q'—:A(A—B) >
R=Af—Bp ,
= (Q*+R*)—P*
et alors les coordonnées inconnues du probléme ; savoir, #,y, z
geront exprimées comme il suit:

__ PR—Qm
=g
_ PQ4-Ro ¢/
7 Q+h p '
_'_ PQ4-ED
=+ Q4R " p
On a dailleurs
. . fq’ [r,
= r=— 3
= P

ainsi, le probleme est résolu.
78. Le commencement et la fin d'une plus grande phase de
grandeur donnée, et telle que la distance apparente des centres soit
- f=v/¢*4r>, est encore indiqué par les deux limites au-deld des—
_ quelles 'ordonnée # n’a plus de valeur réelle. On aura, dans ce
gas, PR=QII; d'ou l'on tire

P=V =y (Mtmty - NFnyr=lef .
On aura de plus
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Q  p  A=Bp~ Ip

. A .
en consefvant la notation /z:-]-g—--x ; ce qui, dans le cas actuel

(44) , rend Z=413,1056. La solution (17) sera applicable au
probléme plus général que nous traitons, en remplacant simplement
% par ked-f.

79. Le quarré que nous avons désigné par R* (65) deviendra ainsi
(be-f)*(m*+4n*) —(Mr—Nm)?; et, a laide du radical B, on dé~
terminera , par les formules qui suivent, les inconnues 7, ¥, z,
de méme que 2/, ¥/, z/, dont les unes se rapportent au commen~
cement et les autres & la fin de la plus grande phase. Les temps
seront exprimés en parties décimales de Vintervalle de quatre heures;
et les coordonnées en parties décimales du rayon du globe terrestre.

(Mm<}-Nn)4-R y (Mm—-Nn)-}-R

l5= -

m2+n2 L mz.i...nz 3
¥ __+n(Mn—Nm)-mR ¥y n(Mn==Nm)+4mBR
c (hef ) (m24-n2) ’ c (he4-f ) (m2fn2) 4
z __ m(Mn==Nm)4-nR z! . m(Mne=Nm)=—=nR
¢ (heRfym4ny ' e (he-tf) (mapn2)

80. La grandeur de Péclipse, ou la largeur de la partie delipsée-
du soleil, est égale & la somme des deux demi- diameétres moins
la distance des centres ou, dans le cas actuel, 3 1960”/—f. On
Vexprime ordinairement en douziémes du diamétre entier du soleil,
dont chacun prend le nom de dorg?; si on en exprime le nombre
par», on aura f=1g60"/—1247"5 ou f=1960—162,25. Le prc~
duit Zc étant 36087, on aura la table qui suit:

Tom. V1 51
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o doigts , f=1960" ,. he-4-f=5568"
mr......1473 ,......5081
VI...... 987 5 e-e0e:4595
IX...ue.. 500 , eeeu.. 4108
XIL .. .. . 13 ,......3621
—IX oo 47h s eeen. 3134

81. Passant de 12 au radical B, et aux temps # et #/, qui in=

diquent l¢ commencement et la fin de la phase, on aura cette
autre table

o doigts. . . . R=38504793 , 1=0,2510409 , #=1,3830624 ;
mr........33610097 , .. 0,3233365 , . . 1,3111352 ;
VI..o.....28441820, ..0,3992842 , . . 1,2351873 ;
IX..... e .. 22814787 , .. 0,4819732 , . . 1,152483 ,
XI. ...... . 16259486 , .. 0,56783032 , ... 1,0561684 ,
~IX ..., 6364441, .. 0,7237105 , . . 0,9107610 :

82. Le radical R s%évanounit , et les deux valeurs de z qui se
rapportent au commencement et & la fin de la plus grande phase
Mn—Nm ...
m ; ce qui fait
7c4f=3038.0n en tire f=—DL70. Otant cette quantité de la somme
des deux demi-diamdtres apparens qui cst 1960, on aura la largeur
de la partie éclipsée égale & 1390 ; ct, si on compare cctte largeur
au diamétre apparent du soleil , qui est 1947 , on trouvera que la
phase est, dans ce moment, de 8 doigts 34/; chaque doigt ¢tant
supposé , selon l'usage , divisé en 6o’

83. Les coordonnées y et z de chaque point de la courbe dc
Ia plus grande phase, au lever ou au coucher du soleil , se trouvent,
4 Paide des formules (79), qui deviennent, pour le cas pacticulier
de Véclipse de 1816,

se confondent en une seule , lorsque Ac+-f=
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L e 245FI—R e 24538744 R
(he-kf)8288,735 Che—-f)8288,735
25527 {1674-R , 255874 167—R
Z= A B T .
(he4-/38453),945 (he-+/)84639,945

On aura ainsi , pour Ja branche occidentale,

o doigts. . . . . y==0,7809997 » . . . 2=0,6243312,
L . .. .. .. .. —0,7396425 , . . ... 0,6729998 ,
VIL...... ... =—0,6823358 , .. ... 0,7310387 ,
IXo. ... e i . =—0,5979688, . . ... 08015192,
XII. .o oot o0 =—0,4599799 5 « + + « » 0,8870292 ,
—IX......0.. . —0,1505402 , .. . .. 0,886037 ,
Coincidence. . . . . —0,0974631 , ... .. 0,99523g2

“e

et pour la branche orientale ,
o doigts, .« . . ¥==0,887320r , z=0,4611537 ,
M. . . ... ... 08561515, .. 0,5167247 ,
VL.........08111929 ,.. 05847784 ,
IX.. ..o 0. 07421019 , . . 0,6072869 ,
XIL..oo. 0ot . 06234979, . . 0,7818249 ,
—IX .........03394676 , .. 0,0406176 ,
Coincidence. . . . —0,0974631 , . . 0.9952392 .

84. Le moment de coincidence est celui oti, par la position géo—"
graphique du lieu, le moment du lever et celui du coucher du
soleil sont confondus ensemble , ce qui ne peut arriver que dans
quelque point de l'une des deux zénes glaciales. Le temps 7z qui
indique ce moment, compté depuis huit heures du matin, temps
vrai de Paris , en fraction de l'intervalle de quatré heures est exprimé
Mm+4-Nn '

e ce qui, dans l'exemple actuel fait 0,67028
m2=-n2

par ==Yl =—
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ou 240’52/, Ce moment arrivera donc & 10M.40’.527, temps vrai
de Paris, ou 1128, temps yrai de Berlin. Les coordonnées de
cet endroit seront

n
V/ m4ns ’

m
z=2z/=

ce qui fait, dans I'exemple actuel

y=y'=-—0,0974631 ,

z=2z/=-40,9952392 I

V migni

-

85. Des coordonndes y, z, on passera aux coordonnées X , Y,
Z , meyennant les formules '

mr.....
Vi.....
IX .. .
XIL .. ..
—IX.....
Coincidence.
D SN
X, ....
IX..
VL R
L. ...,
O..... .

X:—ySin.u ’
Y=-4yCos.:Cos.a—2zSin.s ;
Z =4ySin(Cos.«~+2Cos.c .

La longitude « cst égale & 180°4-56°.547.33//4-607/t ; et on irouve
les valeurs numdriques de # déja calculées (81). On a ainsi

o doigts, X=-—0,6546446 , ¥ =-}0,1420239 , Z=-40,7424754 5

—0,6200787,
—0,5721055,
—0,5014467 ,
—0,3858032,
—o0,126298¢,
—0,0817834,
-}0,2849049,
~+-0,52342q0,

. +o0,6231110,

. 40,6812303,

—+0,7 190900,
~+0,7453713,

—0,1024262,
~}0,0500345,
—0,0203208 ,
—o0,1 237346 ’
—0,3184869,
—0,3476458 ,
—0,5438384,
—0,6220665
—0,6366098,
—0,6338336,
—0,0319792,

—0,6252237,

~+0,7778471 4
~+0,8186517,
+0,8649496 ’
~+0,9142386,

‘ +0,93947 53,

~+0,9340527,
—+-0,7893480 ,
~4+0,56822844,
~+0,4543796,
~}-0,3610662 ,
-+-0,288g310,
-4-0,2313369 .

) Y
86. On a de plus (31) Sina=z; Tang.= < Ces deux for-
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mules “ferdnt comnaitre , pour chacune de ces plus grandes phases,
la latitude a, et l'angle horaire « , ol elle peut étre observée. De
ce dernier angle on parvient a la différence D des méridiens , moyen~
nant la formule (45). On trouve

o doigts, a=47°.56".34" , u==167°.45.34" , D=mm21°.57"24",
m......51.3.5 , 170.37 14, —23 26 .45,
VI......5457 0 , 175, 0.7 —23.38.11 ,
IX......59.52.37 , 182 .19 .12, —21.17 32 ,
XIL.....66.552 , 197.47.20 ,  =—11.37.11,
—-IX...... 69 .57 49 , 248 .22.7 +30.12.37 4
Coincidence . 69 . 4 .32 , 256 .45 .43 , ~+32.58 .33 ,
—IX......52.7.28 , 297 .38.57 68 .14. 7
XI. .....35.36.41 , 310. 4 .42 , 71 .54 .43 ,-
IX...... 27. 1 .30 , 314 .23 .10 , ~}70.25.33 ,
VIi......z21.9.5 , 316.55.45 , 467 .59 .35 ;
IMI......10.47 .49 , 318 .41 .21 , <464 .10.59 ,
O v v s v 13 .22.33 320.0.35 , “+62.10.32 ,

87. La courbe des plus grandes phases qui peuvent avoir lieu au
lever et au coucher du soleil , commencera donc, dans sa branche
occidentale , située dans Tocéan atlantique, & quelques degrés au-
dessus des Isles Agores ; elle suivra la direction du premier méridien,
jusqu’a la latitude de V'Isle d'Islande ; elle traversera cette Isle ; elle
passera au nord du continent de la Scandinavie, traversera la mer
blanche & Vest d’Archangel, traversera ensuite tout le continent de
Pasie , du nord au sud, et passera A l'oucst de Diz. Sa branche
orientale sera terminde dans l'océan Indien , prés des lsles Lakedives.

88. Le point de la courbe ol la branche orientale se réunit 3
Poccidentale , et qu’on peut considérer comme constituant le sommet
de cette courbe , ou comme celui de tous ses points qui approche
le plus du pole boréal, est celui o le soleil, pendant son mou-
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vement diarne , ne fait qu'effleurer I'horizon , et ol par conséquent
les deux momens du lever ct du coucher de cet astre coincident
enscmble. Ce point difféere de celui ol le radical B s'évanouit, et
que nous avons déterminé (84) par les deux coordonnées
n : ‘m

Y= Vg T Vg
Pour déterminer sa position, pour laquelle la latitude a , ainsi que
son sinus , ou la coordonnée Z devient un minimum , il faut prendre
I'expression de celte coordonnée ou

Z=ySin.cCos.«~+4zCos.¢

et en égaler & zéro la différentielle, prise en regardant p=/jc4-f
comme la variable du probléme. Cette ligne est fonction du temps #;
la longitude « du soleil en dépend aussi; et la solution rigoureuse
du probltme exigerait qu'on elit égard A cette variation. Mais, comme
alors on aurait & faire 4 une équation finale enti¢rement transcen—
dente ; comme dailleurs cette longitude , dans lintervalle de deux
ou de trois heures, ne varie effectivement que de quelques wminutes,
quantité que la nature du probléme nous permet de négliger, nous
assignerons a cette longitude, pour_ valeur constante et moyenne,
celle qu'elle a au moment ol le radical R s'évanouit, et qui a lieu
a 11h.25, temps vrai de Berlin; on aura ainsi «=57°.2".517,

Sin.tCos.e

Cos s

dérons ce produit comme la tangente d’un nouvel angle ¢; tellement
que Tang.p=Tang.:Cos.«. Alors, égalant 4 zéro (88) la différentielle
de Z, on aura Iéquation fort simple o=sdy+dz, qui, aprés avoir

+ 8g. Faisons, pour abréger , ou Tang:Cos.«=7; et consi-

été duement développée , conduit a la formule finale

Mn—Nm
}IL’—I-/—-/?— mCos.¢—nSin.o
Dans ldclipse de 1816, on trouve ¢=-—=13°7/.4"; d'oi il résulte

hed-f=p=23065". Et, comme Lc=36087, on aura f, ou la dis-
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tance des centres dans ce méme moment , égale b 543/, Cela donne,

pour la large o de la partie éclipsée , 14177, et pour la grandeur

de I'éclipse 8 dmgts 447,

90. PROBLEME X. On demande de tracer , sur la surface du
globe , la courbe des plus grandes phases, vues dans wn méme
instant , des différens poinis de cette surface ?

91. Solution. Le moment de ces observations, étant le méme pour
tous , est supposé donné ; les coordonndes ¢/, v/, de méme que la
racine de la somme de leurs quarrés , que nous avons désignée parp, et
qui est la distance apparente des centres du soleil et de la lune,
vue de celui de la terre, et de plus la longitude « du soleil , au
moment de toutes ces observations , seront les quantités connues du
probléme. Les inconnues sont au nombre de cing : ce sont les
coordonnées ¢, r, du centre de la lunc, vu sur le disque du
soleil , des différens endroits de la terre , dont les coordonnées sont
%, ¥, 2. Le probléme, en effet, ne différe du précédent que par
les moycens approximatifs que sa nature nous permet d’employer.

92. La nature des plus grandes phases nous permet de fuire encore

g=mg’ , y=ng ,

r=mr! , z=nr!.

On aura ainsi ¢?=a’~np*, ct f=mp, ce qui [ait encore dc m
une quantité entiérement connuve. D’ailleurs , en supprimant x dans

—x , et 2 plus forte raison dan — autre équation deyiendra
B—z, et & plus fort dans A=z, Pautre équation d i
knp=p~—f; d'ou il résulte

_r=f =Ny . __w=Lr
o T T w7

et enfin
(p=f)2 (7w+f-—p) <7zc—f+7>)
ha he

X2

On a dailleurs
_ S .
[/.—- 7 2 7r=

T?

S
?
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ainsi le probléme est approximativement résolu. D’ailleurs, commis
les coordonnées ¢/ et 7/ sont ici des quantités constantes, la pro-
portion y : z=g’: 1/ nous fait voir que la projection de la courbe
demandée, sur le plan mené par le centre de la terre, perpendicu-
lairement au rayon dirigé vers le centre du soleil, est une ligne
droite qui passe par le centre de la terre, et qu’ainsi la courbe
elle-méme est un grand cercle du globe terrestre.

93. Pour montrer [’application de nos formules , essayons de
déterminer les points du globe ol Von pourra observer toutes les
plus grandes phases qui devront avoir lieu au moment du midi vrai,
temps de Berlin , équivalant & 11215527, temps vrai de Paris,
Ce temps, compté depuis huit heures du matin, et exprimé en
parties décimales de lintervalle de quatre heures , donnera ¢=0,816111;
d'ou il résulte

§g'=M~+mt=-1493",27 ;
r’ = N+ nt=-2905 ,85 ;
et par conséquent p =. ... . -3267 ,08 .

La quantité p—f doit étre regardée comme variable , parce qu’elle
dépend de la grandeur de la phase. Tirant les f°, ou les distances
apparentes des deux centres , des formules (80), on aura la table
suivante ; _
. o doigts. - . . . p—f=13077,
1§ I L
‘ VL ..o L. .2281 ,
]X............27679
XIL...........3254 ,
LY TN LA ¢

On a dailleurs 2=413,1056; donc

hp=134964qg ,

4 =0,0001266716 ,
chp

!

:l_ =0,0002464984 -

<hp
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Il en résulte la table suivante des cocrdonndes > ¥ » £, ddsignant
la position géographique des endroits qu’on demande,

o doigts, . « 2=0,932083 , . . y=0,16556qq , . . 2=0,3221931 ,
OL.......0867668 ,....02272273 , ... .0,{421762 ,
VL .......0774934, ... .0,2888847 , . . . .0,5621593 ,
IXo. ... ...00641718 , ... .0,3505421 , ... .0,6821424 ;
XL, .o o0 et 0431604, « . . . 0,41216995 , . . . . 0,8021255 ,

—IX ... ... Imaginaire ....0,4738569 , ... .0,9221086 .
94. A Taide des formules déji connues ; savoir :
X=2Cos.« —ySin.« ,
Y =xCos.sSin.a-}yCos.«Cos.a—zSin.c ,
Z = 2Sin.sSin.a~}ySin.cCos.a-zCos.: ,

on passera de li aux coordonnées X, ¥, Z. On aura, au moment
demandé, qui est celui du midi vrai de Berlin,

Long. du soleil =«=180°4-57°.2".50" ;

d’ott on conclura
o doigts . « X=—0,3680712, ¥=-0,9283573, Z=—0,0517300 ,.
m....... —0,2812956, —0,9573141, ~+0,0665001 ,
VI.......-—0,1791135, —0,6644726, ~+o,1941914 ,.
IX ... o0 —0,0549145, —0,90404805, ~+0,3354086 ,
XII.......—0,1109516, —0,8575093, ~+4-0,5022183" .

95. De la il n’y a qu’un pas & faire pour déterminer la latitude a,

Pangle horaire « et la distance D' des méridiens , pour les endroits
quon demande, et par lesquels notre courbe doit passer , D étant

comptée depuis le meéridien de Paris, On trouve
dome ¥V 52
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o doigls, a=—= 205757/ | u=248%.22/.227, D=24°.39/.157 ¢

OL .....43.48.46 , 253.37.30, a9 +54.23 ,
VL .....<4r1t 151, 259 .28 .45 , 35 .45 28,
IX. . ... . +19.35.50 , 266 .30 .30 , 42 .47 .23
XIH.....=+30.8.48 , 277 .22.20 , 53 39 .13 .

g6. La courbe se termine vers le nord , au point qui est indiqué
par x=o, au-deld duquel cette limite n’a plus que des valeurs
imaginaires. On a alors p—f=ch, ou f=p—36087; et, comme
p=3267/,1l en résulte f=—=341/. La largeur de la partie éclipsée
sera done 1960”=—=341//=1619"; ce qui donne, pour la grandeur
de Téclipse, la fraction 222 ou 10 doigts environ. Les coordonnées
g et z de ’endroit du globe qui est le dernier de tous ceux ou l'on
puisse voir quelque plus grande phase d’éclipse , qui sera ici celle
de dix doigts, au moment du midi vrai de Berlin, deviendront dans

cq’ cr!

ce cas y== -p— , Z2== 7 ; on aura de plus, pour les coordonnées

X, Y, Z, les formules suivantes :
pX==—cqg/'Sin.a ,
pY=-4cqg’Cos.cCos.e— cr'Sin.s ,
PZ=-4cq’ Sin.sCos.a~}-cr/Cos.s ,

d’ott il résulte
¢’Sin.eCos.e-t-r'Cos.¢

Sina=— 9'Cos.eCos.ee==r/Sin.s

3 Tang.u=
P ’ 8 pSina
ce qui donne finalement

A= 450470587

p=315.29.45 ,
D= g1 .44.38

a l'orient de Paris.
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97. En appliquant au Probdléme 1X la méthode approximative

qul a été employce ici, et en suppnmant x dans B—ux , et, 2 plus

forte raison , dans A—z léquauon nA(A—B/pz_—AB(p——j)—l-
(Af=—Bp)x deviendra np=p—f; ce qui donne

gl
—_ Tk .p ? - 4 ’
72—_—-';,—!,' d’'ou
P p=f v Sr!
Z=—=, =, T==— ;
h o p P

et on a de plus

=L f>” R CL o Al 20
h2

98. PROBLEME XI. Connaissant la latitude du liew et Iheure
de la plus grande phase, on demande la longitude du premier et

la quantiié de lautre ?
99. Solution. DIONIS DU SEJOUR ( Mém. de lacad. des scienees

de Paris, 1765, pag. 306 ), a attaché quelque importance & ce
probléme qui, sans aucun emploi de nouveaux principes, se résout
facilement A l’aide de nos formules. Le temps étant donné, la lon-
gitude « du soleil devra étre considérée comme donnée aussi. Il
faut en dire autant des lignes ¢/, 7/, coordonnées du centre de la
lune , vu géocentriquement sur le disque solaire, ainsi que de la.
ligne p , distance géocentrique des centres du soleil et de la lune,
égale a grgqr.
100. On a de plus les deux équations.
Sr=g~r c=z*ty4z* ;

qui ne renferment que des quantités inconnues , & l'exception du
seul rayon ¢ de la terre. 11 faudra dailleurs (8) se rappeler (8) les
deux équations

A(A—B)y={A—2z)Bg'—(B—2z)A4q ;
A(A=B)z=(Ad=—2)Br/—(B=—2)Ar .
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1or. La condition de la plus grande phase donne g:r=g¢’:r'=y : &
Il en résulte

— fq, = .ZL 2
7= ';" » ¥ p V¢ —x® Yy
frt r
r:L ) zZ= -—ch_xx o
r P

substituant ces valeurs dans les deux derniéres équations (100), on
obtiendra celle-ci :

A(A—B )/ =z =(4=2)Bp—(B—2)Af ;
elle ne renferme plus que les deux seules inconnues f et .
102, On a de plus les équations déja connues

X=cCos.rCos.p ,

=¢Cos.aSin.z ,

Z=cSina 3
de méme que celles-ci : '
X=2xCos.s —ySin.« ;
Y =2xCos.:Sin.«~-yCos.sCos.a—z Sin.s ,
=2Sin. «Sin.«~4ySin. «Cos.e4zCos.¢ «

Substituant dans les trois derni¢res les valeurs de y et z (101),
elles deviendront

epCos.aCos.u=pxCos.« =~ — ¢/ Sin.ay/i—x> ,
cpCos.aCos.p=px Cos.cSin.a~+(¢/Cos.«Cos.a—r/Sin.c)y/ o> ,
cp Sinaa =paSin.: Sin.e-1-{(7’Sin.eCos.u+r/Cosis’y/ o2 .

103, Comme la latitude du lieu est au nombre des quantités
connues , la troisitme de ces équations ne renfermera que la seule
inconnue x. Il faudra donc résoudre cette équation ; mais , pour
présenter linconnue & sous la forme la plus simple, faisons, pour
2oréger ,
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=¢/Sin.sCos.«~r'Cos.c ;
=p Sin.sSin.e ,
C =pSin.a ;
et enfin, RA*=A*4-B*—C*. On aura alors
(A*4B*)x =(BC~AR) ,
(4*4-B*)y/ ci—z>=(AC+-BR)c .
On pourra remarquer que
A*+-C*={g'Sin.s=4-r/Cos.:Cos.«)*+r"*Sin.e :

ro4. De la coordonnéde x en passera facilement aux deux autres
¥, z (1o1). On aura de méme la distance des centres f, qu’on
tirera de I'équation

A A—B)\/ ci—zs=(A—z)Bp—(B—2) Af .

En supprimant ici x, dans 4—z et B—y, ce que la nature du
probléme nous permet de faire, on aura, pour valeur suffisamment
approchée de f, celle qui suit:

—_ MACHBR)
SEp—hy c—wi=p—— o

105. Reste donc a déterminer l’angle horaire w, duquel dépend
ensuite la Jongitude du lieu. En reprenant les trois équations (102),
ct en divisant la seconde par la premiére , on trouvera

Y4 rCne gS;“.a-—’— (ﬂ/COS.eCOS.M—r/Sin.s\,‘/c’-—x"

Tang.pe= - : R
prlosa—g/Sin.ey/ c2—x2

106. Pour présenter encore les deux termes de cette fraction sous
la forme la plus simple, employons les nouvelles notations g, 4, ¢,
pour designer les quantités qui suivent

a=¢’Cos.—7/Sin.: Cos.« ;
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b=g’ Sins~+r/Cos.Cos.a ,
c= ~-r/Sin.« ;
d'olt il résulte :
oo~ =p* ,
a*}b*=qg*+r*Cas.’« ,
b =A*4-B* .
En conséquence
R2=b*~+c*—p*Sin2r=p*Cos?r—a*=(b*~4-¢*)Cos.*a—a*Sin.’a.
107. A l'aide de ces notations, I'angle horaire «pourra étre déterminé ,.
i l'aide de I’'une des trois formules qui suivent :
’ abSinA==cR
acSina4-bR ’
abSin A=—cH
(b2+4c2)Cos.A: !
ac Sin.a~-bR
(b2+c=)Cos.7L )

Tang.,u =—

Sin.‘u:—

COS*&:—I—

Le probléme sera résolu.

108. EXEMPLE. On demande , sous la latitude de 50° , la position
de lendroit o lon verra le milicu de U'éclipse aw moment du midi
yrai de Berlin, qui répond & 11*.15/.52/ | temps vrai de Paris ?

10g. On trouvera ici (93), #=0,816111 , compté depuis huit
heures. du matin; d'oit il résulte

9'=M+nzt=+1493/’,27 N
p=-3267",08 .
r'=N -+ nt=-2905",85 ,
La longitude du soleil sera , au méme instant, en vertu des. formules.
eonnues , «=180°+457°.2/.50".
110. On tire de ces données les valeurs numériques suivantes des
quantités. que nous, avons désignées par A, B, €, R (103)
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A=42342,15 , A’+B’=6677192 R
B=—1001,57 , R*= 413534 ,
C=-}-2502,73 , R = 643 , 066 .

111, Passant de I3 3 celles que nous avons désignées par @ , 5,
¢ (106), on trouvera

2=+1999,155 ,

&="— 855,353 ?
aSina=1531,442 :
c=-—2438,354 ,
La latitude A=50° , en vertu de l'’énoncé du probléme.
112. Il en résulte pour Tang.p les deux valeurs

Log.Tang..=8,4463652 ; donc p= 1°36/. 3/ ;-
ou Log.Tang.;«:—:o,zuéxm ;0 ou  p=58%2n/ 40/ .,

1l faudra s’attacher & la seconde des deux valeurs qui, augmentde
de 180°, deviendra p=238°.27".40".

113. Le méme angle horaire est, en vertu de la formule générale ;
p=174°.36.36/4-216626"t~+D ; ce qui fait, dans le cas actuel;
p=223°43"7"4D. La différence des méridiens deviendra ainsi
D=14°44".33". L’endroit demandé sera donc & prés de 15 degrés
3 lorient de Paris, sous la latitude boréale de 50° Clest i trés—
peu prés le méridien de BRESLAU en Silésie. L’éclipse de soleil , au
moment du midi vrai & Berlin, sera donc totale & I'endroit qu’on

vient de déterminer , et qui se trouve & un degré au nord de
Breslau.
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ANALISE TRANSCENDANTE.

Deuxiéme recueil de formules , servant & intégrer
toute differentielle quelconque proposéce ;

Par M. le professeur Krame , doyen de la faculté des
sciences de Strasbourg.

s o Pt e T G Py e it

1. LE probléme indéterminé d'intégrer numériquement, par appro-
ximation, une différentielle quelconque, entre des limites données,
admet plusieurs solutions. Celle que nous avons donnée , dans un
précédent mémoire (*) , était fondée sur la simple considération des
traptzes rectilignes. La solution que nous donnerons actuellement
sera établie sur I'analise des lignes courbes ; et l'on sent bicn qu'en
précision clle doit I"emporter sur l'autre.

2. PROBLEME. Une ligne courbe n’étant connue que par les
grandeurs d'un certain nombre d'ordonnées équidistantes , et par
lintervalle qui les sépare ; on demande Paire mixtiligne comprise
enire ceite courbe , les deux ordonnées extrémes et Uaxe des x?

3. Solution, Comme par des points donnds on peut toujours faire
passer une infinit¢ de courbes différentes, le probleme , pris & la
rigueur, est indéterminé et ne peut cesser de l'étre qu'en assignant
une relation générale , mais arbitraire , entre I'abscisse # et ordonnée
y. Celle qui se présente le plus naturellement est y=A+Bat-Ca?
~+Da*4..... Alors, en prenant pour unité l'intervalle constant qui

€). Yoyez la page 281 de ce volume.
sépare’
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sépare les ordonnées, supposant que la premitre se confond avec
Paxe des y , et les représentant consécutivement par 2,4 ,¢,d, ...,
notre hypothése nous fournit, pour déterminer les coefficiens A ,
B, C, D,..., les équations suivantes

a=4d ,

b=A+ B+ C+ D+..,

c=A42B+4+4,CH 8D+-.... ,

—=A~4-3B+qC+-27D+-.... ,

° e o o+ @ & o o & o+ e * 2 o 2 F)
en nombre égal i celui des points donnés.
4. 11 est d’ailleurs connu, comme nous l'avons déji observé, dans
un précédent mémoire (*), quen représentant respectivement pax

Az, 2A% , 6% ,.... les premidres, secondes, troisi¢mes,....,
différences des ordonnées ; c’est-a-dire, en posant
Aa=b—a,

1.20%=c—25+ ¢,
1.2.34%¢=4—-3c+4+30— a ,
1.2.3.{A\a=¢e—4d}-6c—40-1a

..............

¢ ® ® o0 o & » @

on aura
A=c
B= Aa—A’at20’0— 648%a+24050—... ,
C= Ara=3A0%aF 110 —5040%.... ,
D= Alg— 6A%%--350A%0—... .
E= Atgam104°%24...
F= A’g—,... H

ee qui donne

(*) Voyez la page 153 de ce volume,
Tom. V1. 52
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y=a-}x Aotz (x==1) A204-x (xmm1) (—2) Al (X mm 1) (Lm2) (£=m3) Abs
% (1) (2 —2) (x=3) (x—4) AS@F0ene
formule dont la loi est évidente.
5. En conséquence, l'aire demandée qui, en général est Sydz;
sera lintégrale de
Adz+Brxda-t-Cx*dx+Da’da+Extdr—-....
c’est-3-dire ,

Az+iBai 1ot Dat - ot 5

ou bien
Syde=az

~+ A afzdxe

+Arafz(x—1)dr

H-A3ufz(r—1)x—2)dr

+Atafx x—1)(x—2) x—3)dx

R N
ce qui donne également en dlveloppant

frde—ar .\
o
DA

xt s : 3
+<T_;x+:)A a
7yt 6 11 6
—1—'\§T_Ix”+.?x_:)A$a
EARNILE R L L TAAS
+ =T e =2t A

120\

[ 13 8s 3 ras 74 [
R e e s St ALY

[ I e e e

6. Cette intégrale,, qui s'évanouit avec z, doit étre prise jusqua
cetle méme quantité =, qui désigne le nombre des divisions de l'axe
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des x qui se trouvent comprises entre les limites de Iintégrale , et
qui est aiasi arbitraire. 1l est entendu dailleurs que , dans la dernidre
formule ci-dessus , si I'on fait =7, que nous appellerons le dip/seur
général , ou simplement le diviscur , il faudra s’arréter a la diffiérence
A%. Enfin, comme nous avons pris ju-qu’ici pour unité lintervalle
constant entre les oirdonndes; si, comme il parait plus conveneble
de le faire, on veut prendre pour unité lintervulle cutier catre les

-

limites de lintégrale , .i faudra diviser le résuliat obtenu par » 3
sauf ensuite, davs '+ applications, & multiplicr par ce méme intervalle,
lorsqu’il s¢ trouvera différent de Punité.

7. Voici présentement , d'aprés toutes ces attentions la série des
forimules finales qu'on obtient , en prenant successivement pour divzseur

tous les nombres de wn a douze.
Premiére formule , diviseur un,
2f/Xdx=a+d
11. Formule , diviseur deuz ,
6/Xdz=a+c
45 .
111t Formule , diviseur Zrots,
. 8/Xdx=a+d
+ 3(0tc) .
1V.6 Formule , diviseur gquatre ,
90/ Xdw=7(ate)
+32(844)
+12¢ .
V.® Formule , diviseur ¢ing o
288/Xdz=19(a+f)
+75(0+¢)
+ 50(c4d) :
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v1e Formule, diviseur siz;
840/ Xdzw=41(atg)
+216004f)
+ 27(cte)
+272d .
yi1e Formule, diviseur sept
17280/Xde=751 (a-4-%)
43577 (0+3)
1324 (1)
~+-2486(d-}-¢)
w111, Formule, diviseur huit,
89600/ Xdr= 989(a~t7)
"4~ 5888(6+4-%)
— 928 (c4g)
+10496(d+f)
—4540e .
IX.% Formule , diviseur neuf ,
89600/ Xdx =2857(a-k)
~+15741(0-7)
~}-1080(c+-%)
+19344(d+5)
45778 (e+/) :
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X Formule , diviseur dix,
598752/ Xdr=16067 (a-+12)
~-1063005-+%)
— 48525(c+7)
~+272400(d--2)
—260550{e-¢)
44273681 .

XL.* Formule, diviscur onze,
87091200/Xdz= 2171465(a4m)
+13486539(5417)
— 3237113(¢c+- k)
~+25226685(d+417)
— 9595542( e+ %)

-+15493566( f~-¢) :

XII.* Formule, diviseur douze,

2425500/Xdr=53143(e~n)
~+ 373014(b~m)
— 248517(c41)
~-1220630(d--1 )
—1655505(¢ 1)
+2846124(/4-)
—2770278g .

8. Il est clair qu'en supposant toutes les coordonnées @ ,4,¢,d, ...,
égalesentre elles et & l'unité, 'aire demapdée deviendra un simple quarré,
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égal lui-méme 3 DPunité; ainsi, dans ce cas , les valeurs de fXdz,
déduites des formules précédentes , doivent toutes se réduire & I'unité;;
ce qui peut servir, au besoin, & vérifier simplement l'exactitude des

coefficiens de nos formules.
9. Faisons I’essai de ces formules 3 quelques cas connus ; et cher-

chons, par le moyen de l'une d’elles, le rapport du diamétre a la

circonférence. On  sait que Ulintégrale de T est 'arc qui a pour
1 2

tangente le nombre désigné par 7, et quen y supposant ¢ dgald
Punité, cette intégrale doit fairz connaitre la longueur de l'arc de 45°

a
ou —. Prenant , par exemple , sgp? pour diviseur général, on aura

a=1 , h=:,
b:%’ §=5
c:‘:—%, f:$'3>
=5, =%,

ce qui donne

4

— 3 — 3
¢Z+IZ—; = s

49135 1333
bg=1201 =100,

49127 __ Gi2e
cHf=550=00,

d_l_g—:_"_‘_”—-""”
T s8.65 37170

-

-e

donc
791{a+2%)= 1126,5000000000 ,

3577(64g)= 5567,4952941176 ,
1323(c+f)= 2099,1914839368 ,
2989(d+e)= 4778,4358090186 .

=155871,6225870730 ;
= 0,7853948256 .
Sa longueur réelle est 0,7853981634 5

Verreur est donc —0,0000033378 ,
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c’est -4 - dire ; moins de frois unitds décimales du siziime ordrle
10. En emp]oyant successivement toutes nos dowze formules, e£
mettant en regard de chaque résultat 'erreur doat il se trouve affecté,

on obtient le tableau suivant:

I. $=o0,7500000000 , Erreur =—0,0353981634 ,

1I. 0,7833333333 , —o0,0020648301 ,

L. 0,7846153846 , —0,0007827788 ,

IV.  0,7855294118 , }-0,0001312484 ,

V. 0,7854696045 , —}0,0000714411 ,

VI  0,7853427139 , —0,0000054495 ,

VIL. 0,7853948256 ,

VIIL.  0,7853981685 , ~}-0,0000000051 ,
~}0,0000000106 ,

—0,0000033378 ,

IX. 0,7853981740 ,

X. 0,7853981874 , ~+4-0,0000000240 ,
XI.  0,7853981785 , ~0,0000000151 ,
XII.  0,7853981630 , = 0,0000000004 +

r1. La série de ces erreurs est beaucoup plus irréguliére que la
nature du probleme, et les moyens de solution que nous y avons
appliqués , ne sembleraient devoir le comporter. On pouvait présumer
que , plus on emploirait de points pour y faire passer la courbe,
et plus on la [erait coincider avec la valeur rigourcuse de ce quon
cherchait, et quainsi la série des erreurs serait constamment décrois-
sante. Cependant le calcul fait, et répété plusieurs fois avec soin,
prouve e contraire ; les diviseurs neuf , dix, onze donnent des ré-
sultats moins exacts que le diviseur huit qui ne laisse qu’une
erreur d’environ une demi-unité décimale du 8.¢ ordre. Celte irré-
gularité nous met dans I'impossibilité d’appliquer jci lingénicuse
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méthode d’approximation dont nous nous sommes $ervis avec succés
dans le mémoire cité au commencement de celui-ci. Il y avait alors
une limite asymptotique , rigoureusement assignable par le calcul;
tandis qu’ici la série de valeurs & laquelle nous venons de parvenir
ne permet gudre de rien soupgonner de semblable (*).

12. Heureusement la nouvelle méthode que nous proposons est,
toutes chases égales d’ailleurs, susceptible de fournir d’elle-méme ,
ct sans auxiliaires quelconques, des résultats beaucoup plus exacts
que ceux qu'on déduit de Tautre. Pour le prouver, du moins par
des exemples , cherchons encore, d’aprés les deux méthodes, la
Iongueur de l'arc de 45°=%, en ne prenant d’abord pour diviseur
général que fuit avec ses aliquotes 1 , 2, 4, 8. En suivant la
marche indiquée dans le précédent mémoire , on trouvera , en général ,

5670/Xdz = =217(a-+7)

~+1024(b~4-d-+f4-7)
=+ 352(c+g)
~+ 436¢ .
Or, on a ic
a=1 ; i=:,
5=%" ='.'GT‘; 2
L':f:'.: ’ g=;';‘: »
d=:, J= ‘:'3 ’
e=2 ;

en conséquence , on aura
ey
ati=1,
btp=gaits

6s.113 ?

(" Les mémes considérations n'infirmeraient-elles pas ce que nous avons dit
sur linterpolation des suites ( page 317 de ce volume )? ce serait l1a une chose

ibtéressante 3 examiner;
J. D. G.

c¥g
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1l en rédsultera

=0,785396445q .
La valeur rigoureuse étant . . . 0,7853981634 ,
Perreur sera —0,00000171%5 ;
tandis que , par notre 8.™° formule, l'erreur est simplement
4-0,0000c00051 ;

c’est-a-dire , environ 338 fois moindre.

13. Faisons encore, sur le méme arc Z, Yessai du diviseur gl
néral 12, avec ses aliquotes 1 , 2, 3, 4 » 6, 12. Nous aurong
d’abord

1801800fXdr= 41833 (a+n)

~+248832(04/44-m):
—29160{c+7)
+395264(d-4%)
~= 63g909(e-2)
+118416¢ .
Or, dans le cas présent,
a=1 , 3 n=2: ;
=3 m=:3,
=15 > I=3%2
=35 k=33,

' Fom. V1. | 54



382 FORMULES

-—T44 ¢ T44 -
¢ 160 ) " a638 2
'— 144 144
=10 h=: 23
—14
g—na .

Achevant le calcul, on trouvera finalement
£=0,7853981728 ,
valeur exacte =0,7853981634 ,

erreur  —-0,0000000094 .

L’erreur de notre douziéme formule est seulement

—0,0000000003 ;

c'est-a-dire , environ trente fois moindre.

14. Dans le calcul des formules générales (7), je me suis arrété
au diviseur 12, J'aurais désiré de pouvoir continuer cette table jusqu’au
diviseur 24 ; mais immensité du travail m’a effrayé. 1l doit sans
doute y avoir quelque méthode beaucoup plus abrégée que celle que
nous avons suivie; mais jusqu’ici, au moins, je 'ai cherchée vainement.
Nous allons voir , au surplus, qu'a l'aide de ces formules (7), on
peut aisément parvenir & d’autres , beaucoup plus approchées , en
partageant lintervalle entier qui sépare les deux ordonnées extrémes,
en plusieurs autres intervalles égaux entre cux.

15. En continuant de désigner les ordonnées , séparées les unes des
autres par des intervalles égaux entre eux, par les lettres 2 , &,
¢, d ,..... se succédant constamment suivant I'ordre alphabétique,
sans omission d’aucune lettre intermédiaire ; on voit qu’une portjon
quelconque de notre aire curviligne sera clairement désignée par les
deux ordonnées extrémes qui la comprendront. Convenons donc ,
par exemple , que le symbole (DN) représentera Vaire curviligne
terminée par les deux ordonnées 4 et n ; en employant des lettres
majuscules de préférence aux autres, pour préyenir I'équivoque, et
renfermant le tout entre deux parenthéses,

AN
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16. En conséquence de cette notation , on aura ( Formule 1)

a+b c-d

(4B)= <BC>— 0 (CD)=—, E)="2

d'ou , par addition , en prenant iintervalle entier pour unit¢
2(ABy=(a41) ,
HAC)=(a+c)F2b
6(4D)={a+d)+2(b+4<) ,
8{AE)=(a+4e)+-2(b4c+d) ;

ainsi qu’il résulte de la simple addition des trapdzes rectilignes,
17. La formule Il donne ensuite

6(4C)=a+4b+4c, 6,CE)=c+4d+e, 6(EC)=e+lf+g, ...
d"m‘x , par addition, en prenant lintervalle entier pour unité,
- 6(40) =(a+0e)+4b ,
12(4E j)=(a+-e)+4(b+3)+t2¢ ;
18(A4G)=(a+g)+4(+d+f)+2(cte) ,
2 {AL)= (i) 4+ D)2 (cetg)

formules fort simples, dont la loi est manifeste ; elles supposent
nécessairement un diviseur multiple de dewx , et se recommandent
par lexactitude des résultats qu'on en déduit.

18. En opérant d’une maniére semblable sur la formule III , on

obtiendra successivement
8(AD)=(a-d)4340) »
16(AG)=(a4-8)4-3(b4-c4-e-}f )24
24 (AK)=(aHR)43(b4-c-ofthti)t2(d+g) -
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32(ANy=(a-}-n)43@+c4edfFhti4l4+m)t2d4g+H ;

L I ® S8 ¢ s o s s e e s s 8 e s a8 s s e o e .

formules applicables au seul cas ou le diviseur est multiple de zrois.
19. La formule IV donne de méme

9o(4AE)y=7(a+e)+320-Fd)+120 , _
180(AD=7 (a4 432 0~+-dHS+h)+12(c4-g)F 142
270(AN)=7 (a+4m)+320+-d 4 Hhttm) 12 c4g D414+
360(AR)=7(a+n)+43200+d+/F-h4-k4mtodg)fr2(ctgd4p) 1 etidn) ,

formules applicables & tout diviseur multiple de quatre.
20. De la formule V, on tirera semblablement

288(AF)=19(a-kf )47 50~+-e)+-50c+d)
576(ALy=19(a4-1473(0Fe+g+F)+50(c+-d+-h+1)438f
854(AQ=19(a+9)+75b~4-e+4g+k+4m=+-p)+5o0(c-d4-hg-i4-n4-0)4-38(f+D) 5

. . . . . . . . . . s o “oe . . .

21. En employant consécutivement les lettres ¢, %, la formule
V1 donnera

840(AG)=41 (481421604 )t27(ct-e)4-2724
1680¢ANY=}1(a-}n)42 \6(b+f+h+m)+27(c+e+i+l)+773(d+r’f)+82g ,
3360(AT)=41(a}-8)+216bfF-hA-m—t-0--5) 427 (c-pef-i4-I-p+T)
F272(d+-k+-9) 48208+ 1) ,
4200(AZY=={1(a = 2) 4=216(0 4= f ot h o= = 0 = s <1 + )
=27 (ctetitltptrdeda) 4= 272(d4-kt-g4w)4-82(g4n+t) ,
22. La formule VI donne
28350(4I) =989 a-4-1)4-5888(6-+%)-928 ctg)+10496{d—+-f)-4540¢ ,
56700(4R)=089(a~+r)45888(b+l+k-t¢)—q28(c+g+I+p)
+10496(d—4fFm—4-0)—4540(e-Fn)+19787 ,
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85050(AZ)=0q89(a-}z)+5888(b4-k—4-k—+-g-+s-+y)
—928(cgtitpid-a)t10496(@tf4mtotutw) ]
—4540(ednt-o)41978(~r)

23. On pourra continuer ainsi pour les formules 1IX, X, XI,
jusqu'd la douziéme qui donnera finalement

3425500(AN)= 53143(a-n)+ 373014(b-m)
—248517(c+41)+1229630(d+4-% )
—1655505(e-+i)+42846124(F+4)

—2770278¢ ,
4851000(A42Z)=53143(a4-2)+373014(b~+m~+o0-y)
— 248517 (c-V+l4-pt-2)+1 229630(d+l£+q+w)
—1655505(e~4-i-r¢)42846124(f =+ A5 4-u)
—2770278(g412)-}106286n ; ’
cette derniére se trouve ainsi composée de 24 trapizes curvilignes.
24. On voit que, pour rédiger en assez peu de temps un gros recueil
de ces formules intégrales, il n'en colterait presque que la peine
d’écrire. Nous allons faire I'application de celles que nous croyons

les plus remarquables , pour déterminer la longueur de I'arc de
45°=2, dont la valeur rigoureuse , calculée a douze décimales, est

Z=0,7853 816 3397 :

prise de-

d¢
122’
puis 7=o jusqud 7=1. En supposant cet intervalle divisé en 24
parties égales, etdésignant par @, &, ¢ ...z les valeurs numériques

Nous avons déja vu que cet arc est l'intégrale de

. X o . .
carrespondantes de la fraction > depuis la premiére 1, jusqu'a
1+=13

la vingt-cinquiéme 0,5 ; on aura la ‘table suivante :
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e¢<+z=1,5000 0000 0000 y
b4-y=1,5195 3386 6073 ,
ct2=1,5364 9967 4691 ,
d~4w=1,5509 8706 6031 ,
e--¢=1,5631 3690 7399 ,
J~+u=1,5731 3051 7086 ,
g+ 1t=1,5811 7647 0588 ,
I+ 5s=1,5874 9595 3757 ,
i+ r=1,5928 0769 2308 ,
k4-g=1,5958 1345 2363 ,
{+p=1,5981 8499 5554 ,
m~4o0=1,5995 5321 4640 ,

2n =1,6000 0000 0000 .

25, Essayons d’abord la division de I'intervalle entier en s/ parties
égales. Nous pourrons employer la troisiéme formule (17) , la deuziéme
(18) ou la premiére (21). Voiei le tableau des résultats qu'on en
obtient et des erreurs qui les affectent, rapportées 2 la douzieéme
décimale comme unité.

1.7 0,7853 9794 5234 , euii. == 22 8163 ;

2.™¢ 0,7853 9586 2445 , ... —230 0952,

3. 0,7853 9271 3917 , e =544 9480 .
Le premier de ces résultats , qui répend i la trds-simple formule
(17), est donc exact dans les siz premiers chiffres décimaux.

26. Essayons, en second lieu , la division de lintervalle en douze
parties égales. Les aliquotes 2 , 3, 4, 6 , 12 nous permettent
d’employer les formules qui suivent ; savoir : la siziéme (17), la
guatri¢me (18) ,1a troisiéme (19) , la premiére (21) et la premiére (23).
11 en résulte les cinq valeurs approchées quisuivent, vis-a-vis de quelles
nous avens placé, comme ci-dessus, les crreurs qui les affectent ,



D'INTEGRATION. 38,

1.7*  0,7853 9816 0076 , ... — 332y

2™¢ 0,7853 9814 8470 4 wun ==14927 ,
3.me  0,7853 9817 4399 , ... 11002 ,
4>¢ 0,7853 9815 0574 , .. — 12823 ,
5me  0,7053 0816 3064 , e — 333 .

On voit qu’ici encore le premier résultat, qui répond i la formule
(17) est plus exact que les trois qui suivent ; mais le plus exact
de tous est le dernier, qui répond 2 la formule (23). L’erreur ne
s’y manifeste qu’'a la diziéme décimale seulement.

27. Employons enfin la division de l'intervalle entier en 24 parties
égales. La considération des aliquotes 12 , 8 , 6 , 4, 3 , 2 nous
permetira d’employer par voie d’addition les formules 1I, 1II , IV,
VI, VIII , XII; il en résulte , pour I'arc § les valeurs approchées
qui. suivent , affectées des erreurs placées en regard de chacune d’elles

a2 0,7853 9816 3346 , e = 52,
2.2 0,7853 9816 3164 , wuve = 34 4
3.m¢ 0,7853 9816 3563 , ... 4166 ;
4¢ 0,7853 9816 3397 , wou 4+ o0 ;5
5™ 0,7853 9816 3398 , e = 1 ;

6.m¢  ,7853 9816 3397 , s == T .
Notre deuxiéme formule maintient donc encore sa supdriorité parthi

les trois premiéres , sous le rapport de l'exactitude ; mais on voit

en méme temps que la quatritme est exacte dans les dowze pres
miéres décimales, i
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QUESTIONS PROPOSEES.

Probléme d'astronomie.

,TOUS nos annuaires nous donnent I’heure du lever et celle du
coucher du soleil et de la lune pour D'observatoire de Paris ; mais
les indications qu'ils: fournissent sont fautives, pour les autres points
de la France, et cela d’autant plus, qu'ils se tronvent plus eloignés
de la Capitale. L’erreur est sur-tout sensible pour la lune , a raison
de la grande déclinaison dont elle est susceptible.

Cependant comme il serait trop pénible de calculer en entier ;
jour par jour, les heures du lever et du coucher de ces astres pour

Y

chaque localité , on ‘peut désirer de mettre & profit les calculs déja
faits pour Paris, en appliquant & leurs résultats les corrections eon-
venables. Cela donne lieu au probléme général que voici:
Connaissant la déclinaison d’un astre , ainsi que I'heure de son
lever ou de son coucher, pour un point déterminé du globe terrestre ,
déterminer la correction qui doit étre appliquée & I'heure indiquée

pour la reudre propre a un autre point déterminé du globe peu
distant du premier ?

FIN DU SIXIEME VOLUME.



TABLE DES MATIERES. 389

TABLE

Des matiéres contenues dans le VIe volume des
Annales.

ANALISE ALGEBRIQUE.

TBEORI‘?.MES nouveaux , sur les limites extrémes des racines des équations

numériques : par M. Bret. 112%=122.

Application de la méthode des moindres quarrés a linterpolation des suites ;

par M, Gergonne. 242==253,
ANALISE TRANSCENDANTE.

Solution d'un probléme de calcul intégral; par M. Servoise 1820,

Autre solution du méme probleme ; par M. Tédenat. 20=21

Du calcul des deérivations , ramené & ses véritables principes ou théorie du
développement des fonctions et du retour des suites ; par M. J. F. Frangais. 61—g3.

Formules nouvelles , pour lintégration approchée de toute fonction différen-
tielle d’une seule variable , entre deux limites données quelconques; par M.

Kramp. 281—303.
Réflexion sur la méthode employée par M. Kramp , dans le précédent mémoire ,
et applications diverses de cette méthode ; par M. Gergonne. 303—320.

Deuxiéme recveil de formules, pour I'intégralion approchée de toute fonction
différentielle d’une seul¢ variabie ; par M. Kramp. 372+388,
Tome VI. 35



390 TABLE

ARITHMETIQUE POLITIQUE.

Quelques remarques sur les élections , les assemblées délibérantes et le systeme
représentatif ; par M. Gergonne. 1==11,

ASTRONOMIE:

Mémoire sur les éclipses de soleil ; par M. Kramp. ( premiére partie.) 133==155,

Sur la déclinaison des planetes; par M. Kramp. 173—192¢

Examen de I'bypothése d’un mouvement sensiblement rectiligne et uniforme ,

considéré comme moyen de parvenir i la détermination approchée des orbites

des corps célestes; par M. Gergonne. 257276

Meémoire sur les éclipses de soleil ; par M. Kramp. ( deuxiéme partie.) 359=—372.
COMBINAISONS.
Solution d’un probleme de combinaisons; par M. Argqnd. 2Yew28;
DYNAMIQUE.

Solution d’un probleme sur le pendule et sur le pont - volant ; par M. J.
F. Frangais. 126—129.

GEOMETRIE ANALITIQUE.

Solution de quelques probieémes ; par M. Bret. 11==17.

De la génération des paraboloides elliptiques et hyperboliques ; par M.
Bérard. 122 — 126

Construction géométrique des équations du deuxiéme degré, & deux et  trois
variables ; par M. Bérard. 157163,



DES MATIERES. 391

Théoremes nouveaux , sur les lignes et surfaces du second ordre; par M,

Frégier. 22Q=—242,
Démonstration analitique de quinze théoremes, relatifs au cercle , au céue
droit et 4 la sphére; par M. J. B. Durrande. 326=-3 ;0.

GEOMETRIE ELEMENTAIRE.

Solution d'un probleme sur les contacts des sphéres et des plans; per M.

J. B. Durrande. 17—18,
Démonstration d'un théoreme sur les quadrilatéres plans ou gauches, recti-
lignes ou sphériques ; par M. J. B. Durrande. ~ 49—55.
Division graphique de l'aire du triangle et du volume du tétraédre en raison
donnée ; par M. Zindrini. 55—5n.
Division graphique de Yaire du cercle en raison donnée , par M. Ger-
gonne, 5760,
Solution de deux problémes relatifs au triangle; par M. Tédenat. 12131,
Aulre solution des mémes problémes ; par M. Durrande. 178—180.
Sur la recherche du rapport du diameétre 3 la circonférence ; par M.
Gergonne. 192—200.
Solution d’un probleme relatif aux sphéres inscrite et circonscrite au tétraédre
et a la distance de leurs centres; par M. Bérard. 225=—22q,
Solution d’'un probleme relatif aux polygones et aux polyédres symétriques ;
par M. J. B. Durrande. 340=347.

GEOMETRIE TRANSCENDANTE.
Théorie géométrique de la cycloide, par M. Du Bourguet. . 29=46.
PHILOSOPHIE MATHEMATIQUE.

Doutes et réflexions sur quelques principes fondamentaux de la: mécanique
rationnelle ; par M. Dubuat. 201=—=22Ts



392 TABLE

TRIGONOMETRIE

Recherche de l'aire du triangle sphérique ; par M. Tédenct, 46=49s

Recherche de la relation entre les six arcs de grands cercles qui joignent,
deux 4 deux, quatre points de la surface d’une spheére ; par M. Bérard. 253=256.

Solution d’un probléme relalif aux cercles inscrit et circonscrit & un méme

1

triangle sphérique et & larc de grand cercle qui joint leurs pdles; par un
dbonné. 221=-223



DES MATIERES.

CORRESPONDANCE

Entre les questions proposées et les questions résolues.

Probléme 1. résolu,
Towme V, page 299  Probleme II.
Probléme III.
Probléme 1.
Page 3"8{ Problémes IT et 1IL
Page 256  Problémes I et II
Probléme 1.
Page 384 Probléme IL
Théoréme.
Probléeme 1.

Tome VI, page 28 Probléme 1L
Probléme IIL

P 60{ Probléme 1.
€
8 Probléme 1L

Page 132 Probleme.
Pove 172 Thécesmes I et 11,
g8 17 Probléme.

Page 200 Problemes I et IL

tome VI,

pages

139—132,

17~=18
R————————y
318~mnp
2128
5551
278==280

sl

221==225

225==229

|

326=340

|

340m=347
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ERRATA

Pour le sixiéme volume des Annales,
[ % Vi Vi W, W VL VL )

Pour le texte.

P AGE 1i2, lignes 4 et 8, en remontant, ==z ; lisez: o
Page 143, lignes 3 et 5 wmu; lisez: o
Page 144, ligne 12, en remontant; =L ; lsez : a.
Page 146, ligne 8 ==13/.24/; lisez : 45/.58".
Page 147, ligne 13 — 789" ; lisez : 987/,
?a};e 149, tableau , titre de la derniére colonne =p=189°4}; lisez : =180+,
La page 213 est marquée 113.
Page 348, ligne 11 ——goligones ; lisez : polygones.
' Ligne 19 ==démonstrations ; lisez : dénominations.

Pour les planches.

Planche IIT, fg. 2, des trois arcs. -qui partent du point S Pintermédiaire doit
étre prolongé jusqu'au point A, :






