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PURES ET APPLIQUÉES.

ARITHMÉTIQUE POLITIQUE.

Quelques remarques sur les élections , les assemblées
délibérantes et le système représentatif ;

Par M. GERGONKE.1

faisais partie en 1791 de la garde nationale de Nancy , laquelle
à cette époque se trouvait composée de 32 compagnies de 80 hommes
chacune 7 formant quatre bataillons ; en taut 256o Individus. .

Cette Institution, comme tant d'autres de la même date > était f

comme Ton sait , extrêmement démocratique ; tous les chefs , depuis
le caporal jusqu'au colonel , étalent élus par ceux-là même qui
deraîent ensuite devenir leur subordonnés * et pour une année seule-
ment , sauf réélection» Etait-ce un mal ? était-ce un bien ? c'est là
tine question tout à fait étrangère à mon sujet.

Le grade de colonel ne pouvait être postulé par beaucoup de
gens ; il exigeait quelques talens militaires , de l'aisance 3 du loïsif
et une sorte de crédit et de considération dans le public* Les suffraget

Tom. VI> n.° 1, i . e r juillet i8 i5 .
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ne roulaient donc gu^re , à chaque élection , que sur deux individus/
entre lesquels les votans prenaient parti , sou vert assez chaudement t

se traitant réciproquement de mauvais citoyens , et se donnant même
quelquefois des épithètes moins honnêtes encore 9 comme cela se
pratique en pareil. cas.

Le colonel en charge cette année-là ayant donné sa démission ,
les compagnies furent convoquées , chez leurs capitaines respectifs,
pour procéder à son remplacement. J'obtins, non sans quelque peine,
que le procès-verbal des opérations de la compagnie dont je faisais
partie , demeurerait chargé de la totalité des votes émis , et dont
la plupart étaient réputés voix perdues , par la majorité des votans.

]V|ais on n'avait pas pris la même précaution partout-, et? lorque
les 32 procès-verbaux des compagnies furent entre les mains du con-
seil d'administration , qui devait en fa.re le recensement, on s'aperçut
que la plupart se |boroaient à énoncer le nom du candidat qui avait
réuni en sa faveur le vœu - e la majorité.

Quelques membres du conseil , en fort petit nombre au surplus,"
proposèrent de faire recommencer les opérations^ mais on était pressé
d'en finir ; et il fut conséqut minent décidé que, dans chaque procès-
verbal 7 on réputerait candidat élu par la compagnie celui qui aurait
réuni le plus de voix en sa faveur ; et que, sans égard aux suf-
frages tombés sur d'autres , celui qui aurait été désigné par la
majorité absolue des compagnies serait définitivement élu*

On supposa donc tacitement , . et on crut bonnement en effet,
que la majorité absolue-des suffrages de la majorité absolue des
compagnies devait former la majorité absolue des suffrages des
votans. Cependant , perifdant qu'on procédait au recensement des
procès-verbaux, je fis en moi-même le petit calcul que voici :

La majorité absolue des suffrages dans une compagnie étant 4*
et la majorité absolue des compagnies étant 17, il s'ensuit que la
majorité absolue des suffrages de la majorité absolue des compagnies
ne s'élève qu'à 41 X*7 —^Ql suffrages ; et l'élu peut, en toute
rigueur, n'en avoir̂  pas obtenu davantage.
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Maïs , ajouiaî-je , s'il n'y a que deux concurrens j comme il est

très-possible et même très-probable , le compétiteur rejeté peut avoir
eu en sa faveur d'abord 3c) suffrages dans 17 compagnies et ensuite
la totalité dans les i5 autres, ce qui fait d'une part 663 et de
l'autre 1200 ; en tout i863.

Ainsi ? dans cette hypothèse , un candidat , avec 697 suffrages
seulement, est admis 5 et un autre ? avec i863 suffrages, c'est-à
dire , près du triple, est rejeté. Je rédigeai , sur ce sujet , une
courte note que je remis au conseil d'administration ; les yeux furent
aussitôt désillés , et il fut décidé qu'à l'avenir on procéderait d'une
manière un peu plus régulière.

Je sens qu'on aurait pu m'objecter que je supposais les choses
dans une limite extrême assez peu probable ; mais j'aurais pu
répondre à mon tour que du nombre de 697 suffrages que je
supposais à l'élu au nombre de 1281 qui lui aurait été nécessaire
pour l'être régulièrement ? il y avait une latitude assez raisonnable j
et que , quand bien même tout ne se serait pas exactement passé
comme je le supposais , toujours demeurait-il extrêmement possible
que l'élu eût eu moins de voix que son adversaire.

On aurait pu m'objecter aussi que je supposais tous les suffrages
partagés entre deux concurrens seulement, ce qui pouvait fort bien
n'être point rigoureusement vrai ; mais , outre que , comme je l'ai
déjà observé , cette supposition ne devait guère s'écarter de la vérité ;
le cas de plus de deux candidats pouvait offrir un inconvénient
beaucoup plus grave encore ; celui de présenter comme candidat
ayant obtenu la majorité absolue des suffrages d'une compagnie , un
individu réellement repoussé par cette majorité.

Pour faire , tout d'un coup, bien ressortir cet inconvénient > pous-
sons les choses à l'extrême ; supposons que les suffrages d'une
compagnie, au premier tour de scrutin, se soient répartis entre 78
candidats dont 76 aient obtenu une seule voix chacun et les deux
restans chacun 2* Quand bien même ces deux derniers auraient été
abhorrés par les 76 votans qui ne leur auraient pas accordé leurs
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suffrages, ils ne se seraient pas moins trouvé oblîge's de les faire
porter sur eux seuls a un second tour de scrutin , et quel qu'ait
été le vainqueur dans la lutte , il n'en eut pas moins eu réellement
76 suffrages contre lui ; et cependant il eut dû être présenté comme
ayant la majorité absolue des suffrages en sa faveur.

Faisons une seconde hypothèse ? moins éloignée du train ordinaire
des choses ; supposons seulement trois candidats A , B , C , dont,
à un premier tour de scrutin f le premier ait obtenu 27 suffrages,
le second 27 aussi et le troisième 26 seulement -, supposons en outre
<jue le candidat C agrée aux votans qui se sont prononcés en faveur
de A et B 7 mais un peu moins pourtant que ees deux derniers ;
supposons qu'au contraire tous ceux qui n'ont pas voté pour A ou
pour B aient une extrême répugnance à les voir élus ; il n'en faudra
pas moins choisir entre ces deux candidats seulement a un nouveau
tour de scretin ; et l'un d'eux sera alors réputé avoir obtenu la
majorité absolue des suffrages : la vérité sera pourtant qu'il n'en
aura eu réellement que 27 et que le candidat C qui était préféré
par 26 votans , et vu sans répugnance pa? les 54 autres, aura été
écarté dès le premier tour de scrutin.

On voit donc que le cas de plus de deux candidats , loin d'atténuer
les vices du système que je viens de combattre , n'est propre le
plus souvent, au contraire , qu'à en rendre les conséquences plus
dangereuses* Je pourrai donc , dans ce qui va suivre 9 continuer à
supposer qu'il w'y a que deux candidats seulement {*).

(*) Le peu qui précède est propre en même temps à faire entrevoir combien
l'art des scrutins est difficile ; et c'est pourtant sur cet art que reposent les
destinées des états libres. Les géomètres ont bien trouvé des méthodes parfaites
en théorie ,' mais ces méthodes portent sur une hypothèse malheureusement inad-
missible ; celle de votans tous éclaires et de bonne foi. C'est sans doute dans
la vue de balancer en partie les inconvéniens que je viens de signaler en passant,
qu'on a inventé , à diverses époques , les scrutins de liste , les listes de rejet,
etc. | mais ces palliatifs ne sont pas eux-mêmes sa«s quelque danger., et veulent
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Pour mieux faire sentir encore le vîce de la substitution des

YOtes par corporation aux votes par individus ; supposons toute la
garde nationale d'un département distribuée en 12 régimens com-
posés chacun comme l'était en 1791 la garde nationale de Nancy ;
et supposons en oiïtre que ? pour l'élection dTun commandant en
chef de ces 12 régimens ? on veuille suivre un mode analogue à
celui que j'ai dit avoir été suivi pour l'élection du colonel de la
garde nationale de Nancy ; les suffrages de 8 régimens suffiront
à l'élu ; or , nous avons vu ci-dessus que le suffrage de l'un d'eux
pouvait, à la rigueur , ne représenter que 697 votes seulement ;
d'où il suit que les suffrages de ces 8 régimens pourront n'en
représenter que 697x8 = 5576. Mais, d'un autre côté, le nombre
total des votans est 2560X12=80720; il s'ensuit donc que, dans
le cas de deux concurrens seulement , le concurrent rejeté peut
avoir en sa faveur un nombre de suffrages égal à 80720—5576= 25144 >
c'est-à-dire , près des cinq-sixièmes des voix.

Poussons plus loin encore , et supposons que , voulant élire un
généralissime de toutes les gardes nationales de France , on désire
en faire un choix conforme au vœu de la majorité absolue des
départemens. Nous en comptons 87 5 il faudra donc que l'élu
en réunisse 44 e n s a faveur ; mais nous venons de faire voir que
dans chacun d'eux 5576 suffrages seulement pouvaient former une
majorité apparente : l'élu n'aura donc, à la rigueur , besoin que
de 5576x44==:245344 suffrages. Or, le nombre total des votans
est ici 00720X87 = 2572640; d'où il suit que, dans le cas de deux
concurrens seulement , son adversaire aura pu être rejeté avec
2692640—245344==22229J6 suffrages , c'est-a-dire , avec près des
dix-onzièmes des voix.

être employés avec ménagement. Il serait tout a fait digne, soit des gouverne-
mens soit des sociétés savantes, de proposer l'intéressant sujet du meilleur mode
de scrutin pratique à l'émulation de ceux pour qui les ï*ee!ierches de cette nature
peuvent avoir quelque attrait.
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II en serait a peu près de même si 5 les compagnies n'ayant que

la faculté d'élire leurs capitaines , l'assemblée des capitaines élisait
le colonel ? celle des colonels le général , et celle des généraux le
généralissime ; et ceci , en supposant même que chaque capitaine
devint le fidèle interprète du vœu de sa compagnie , chaque colonel
celui du vœu des capitaines 9 et chaque général celui du vœu dea
«olonels. Encore ici l'opinion d'un peu plus d'un n . e des citoyens
composant la garde nationale pourrait l'emporter sur celle des dix,
autres i i e s . Si, au contraire , la plupart des mandataires s'écartaient
plus ou moins du vœu de leurs commettans , cela pourrait tantôt
ajouter encore aux inconvéniens du système mis en usage, et tantôt
en atténuer l'influence.

On voit donc qu'en général les votes recueillis par corporation
ou par représentans peuvent être fort differens des votes recueillis
par individus. Ainsi, par exemple f le peuple romain qui murmurait
de la tenue des comices par centuries y à raison de leur composition
hétérogène , aurait pu aussi 9 à bon droit, réclamer contre la tenue
des comices par tribus et même par curies \ mais les vices de ces
deux derniers modes de recueillir les suffrages n'étaient sans doute
pas assez apparens pour offusquer le peuple-roi. Les suffrages re-
cueillis par cantons, en Suisse, présentent le même inconvénient.

Faisons encore une autre supposition. Nous comptons actuellement
en France 87 départemens. Au taux moyen , chacun d?£ux a 3 arron-
dissemens 9 chaque arrondissement i3 cantons , chaque canton 9
communes, et enfin chaque commune i5c^ votans ; ce qui porte le
nombre total des citoyens français ayant droit de voter ,à 169X9X13>

= 4855383.

Supposons ensuite qu'il soit statué qu'il y aura des assem-
blées primaires , des collèges électoraux de cantons , d'arron-
dissement et de département , subordonnes les uns aux autres , et
unae chambre de députés élus uniquement par ces derniers *f lesquels r

à leur tour^ seroat nommés par les collèges d'arrondissemens , ceux-
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ci par les collèges de cantons et ces derniers par les assemblées
primaires.

La majorité absolue sera 5 savoir :
Pour les communes . 80 votans ,
Pour les cantons . • . . 5 communes ,
Pour les arrondissemens 7 cantons ,
Pour les départemens . « . . » . . . 2 arrondissemens ,
Pour la chambre des députés, . . . 44 départemens ;

D'où il suit , en raisonnant comme ci-dessus , qu'en supposant même
que les mandataires de chaque ordre remplissent fidèlement le
vœu de leurs commettans > une délibération prise ou une élection
faite dans la chambre des représentans, à la majorité absolue des
suffrages , pourra à la rigueur ne représenter que l'opinion d'un
nombre des citoyens exprimé par

c'est-à-dire , l'opinion d'environ un vingtième des citoyens exerçant
leurs droits politiques ; tandis que les dix-neuf autres vingtièmes
pourraient être unanimes dans Fopinion diamétralement opposée a
celle-là 9 et conséquemment rejetée.

Voilà donc un vice assez grave absolument inhérent au système
représentatif. On a quelquefois objecté contre ce système que les
mandataires pouvaient s'écarter plus ou moins du mandat formel
ou tacite qu'ils avaient reçu ; mais il avait été peu remarqué jusqu'ici
que , même en demeurant scrupuleusement fidèles à ce mandat,
leurs déterminations pouvaient très-bien être en opposition avec ce
qu'on doit appeler l'opinion publique ; je veux dire avec l'opinioa
de la majorité* des citoyens admis à voter dans les assemblées
du peuple.

Soient, en général, 272+1 le nombre des votans dans les asssemblées
primaires , zn'-i-i le nombre de celles de ces assemblées qui doivent
nommer les électeurs d'une même assemblée du «econd ordre 0
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2/2//f+ï ïe nombre des assemblées du second ordre qui doivent
concourir à l'élection d'une même assemblée du troisième , et ainsi
de suite , jusqu'à l'assemblée centrale qui seule est supposée avoir
le droit de prendre des déterminations obligatoires pour tous les
votans j le nombre total de ces votans sera

et une décision prise à la majorité absolue des suffrages dans
l'assemblée centrale pourra , à la rigueur , ne représenter que le
yœu d'un nombre de citoyens exprimé par

c9est-à-dîre ] le rœu d'une fraction du nombre des citoyens ayanl
droit de suffrage exprimée par

Si n9 n;
y n;/>"..... sont de très-grands nombres 9 on pourra^

sans erreur sensible, négliger l'unité vis-à-vis de chacun d'eux, et f

à plus forte raison , vis-à-vis de leurs doubles y en sorte que , m
exprimant le nombre des assemblées successives , subordonnées les
unes aux autres, h fraction ci-dessus deviendra sensiblement

%

fraction draufant plus petite que m sera plus* grand. Ainsi , 1&
Vœu manifesté par la puissance législative pourra être opposé a celui
d'une majoriré d'autant plus grande des citoyens ayant droit de
concourir médiatement à la formation de la loi , qu'on aura employé
un plus grand nombre d'intermédiaires dans l'élection des fonctionnaires

composent cette puissance»
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SI l'état est très-étendu , on ne pourra guère se dispenser, même
en prenant pour n , nf, nff, de très-grands nombres , de prendre
aussi 772 assez grand. Ainsi > l'inconvénient que je signale Ici , comme
étant înévîtablement attaché au système représentatif, pourra devenir
de plus en plus sensible , à mesure que l'état sera plus étendu.

Le nombre total des citoyens ayant droit de voter demeurant le
même, plus les nombres n , n;

 7 n
n , seront petits et plus aussi

m devra être grand \ m sera donc le plus grand possible lorsqu'on
prendra pour n , nf , T Z ' ' , . . . » . . les plus petits nombres possibles ;
c'est-à-dire , lorsque chacun de ces nombres sera l'unité. 3m exprimera
alors le nombre total des votans ; et le vœu de l'assemblée légis-
lative pourra ne répondre qu'à celui d'une fraction du nombre des
citoyens exprimée par

En France , par exemple , le nombre des citoyens exerçant des
droits politiques ne s'éloigne guère de 4782969= 014. On a donc
m = i 4 ? a u moyen de quoi la fraction ci-dessus devient

i6384 . 1
= ••; Q, • , ou envi ron - — .

4782969 3oo

Supposons donc que y la France ayant à élire un chef 9 il soïl
réglé que ? pour procéder à son élection} les citoyens se réuniront
3 par 3 , pour élire un d'entre eux , comme électeur du premier
degré ; que les électeurs du premier degré se réuniront également
3 par 3 pour nommer des électeurs du second degré , et ainsi
progressivement, jusqu'à ce que toute la France se trouve repré-
sentée par une assemblée unique de trois individus s laquelle nommera
enfin l'un d'entre eux pour chef de l'état. Beaucoup de gens, j 'en
suis sûr y seraient tentés de regarder cette opération comme fort
régulière ; et pourtant ce qui vient d'être dit prouve évidemment
que Télu pourrait avoir , à la rigueur , les £ff de la nation contre luù

Tom. VU *



io SYSTÈME REPRÉSENTATIF.
Tout ce que j'ai dit ci-dessus peut , entre autres choses, con-

courir à expliquer comment il est souvent arrivé , dans la chambre
des députés de 1814? que l'opinion du rapporteur de la commis-
sion centrale se trouvait en opposition avec celle de la majorité de
cette chambre. Supposons , en effet, une chambre de 069 membres
divisée, comme celle-là , en g bureaux ; chaque bureau sera composé
de 4 1 membres 5 dont la majorité absolue sera 21 . Pourvu donc
que , dans 5 bureaux^ 21 membres soient d'un même avis , 5
membres de la commission centrale , formant la majorité de cette
commission, et conséquemment le rapporteur nommé par elle, par-
tageront aussi cet avis ; l'avis du rapporteur pourra donc ne repré-
senter que celui de 5 X 2 i = io5 membres , lequel pourra être
absolument opposé à celui des 264 membres restans , et formant
par conséquent la très-grande majorité de la chambre,

II est pourtant bien loin de ma pensée que la division d'une
assemblée délibérante en bureaux , formés par la voie du sort p
et périodiquement renouvelés soit vicieuse ; je la regarde même
comme tout à fait indispensable , sur-tout lorsque l'assemblée est
nombreuse. Elle régularise les conciliabules qui se formeraient
inévitablement, mais qui , composés d'individus attachés aux mêmes
idées 9 loin de s'éclairer par le choc des opinions 5 ne feraient au
contraire que s'obstiner davantage en faveur de celles qu'ils auraient
d'abord embrassées. D'ailleurs ? la division en bureaux , en ébauchant
les discussions , leur donne a la fois plus de décence et de maturité :
elle peut mettre des hommes , d'abord peu au courant des matières
auxquelles ces discussions sont relatives, mieux en état d'y prendre part ;
elle permet de mettre à profit les lumières de beaucoup d'hommes
yecommandables qui , à des connaissances très - étendues et à un
esprit droit , ne joignent pas un talent oratoire très-prononcé ; enfin
elle neutralise les efforts que ceux qui ont ce talent en partage
pourraient tenter, dans la vue de maîtriser ceux de leurs collègues
à qui la tactique de la tribune est peu familière. L'espèce d'oppo-
sition qui peut exister quelquefois entre l'avis de la commission
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centrale et celui de la majorité de la chambre est d'ailleurs sans
aucune sorte d'inconvénient 9 puisqu'en définitif c'est l'avis de cette
majorité et non celui de la commission qui est adopté.

Ceci nous montre en même temps le remède naturel à l'incon-
vénient que j'ai montré être Inhérent au système représentatif. Nous
voyons que ? s'il est à la fois absurde et impraticable d'appeler di-
rectement le peuple à discuter et à délibérer sur une multitude
de matières tout à fait hors de la portée moyenne de son intelli-
gence 9 c'est pourtant son opinion qu'il faut en venir à consulter,
lorsqu'il s'agit d'objets majeurs et simples à la fois , sur lesquels
il peut s'expliquer par oui et non ; et la puissance législative
ne doit plus alors se considérer à son égard que eomme une
simple commission centrale. C'est en particulier ce qu'on devroit tou-
jours faire à l'égard des lois fondamentales de l'état.

i5 juin I 8 I 5 »

GÉOMÉTRIE A1NALITIQUE.

Solution de quelques problèmes ;

Par M. BRET , professeur de mathématiques à la faculté
des sciences de l'académie de Grenoble*

I déjà insisté plusieurs fols dans ce recueil sur Favanîage qu'il
peut souvent y avoir à représenter par deux équations une ligne
droite sur un plan , et par trois équations une ligne droite ou un
plan dans l'espace. Je vais confirmer encore ce que j'ai dil alors?
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ea traitant par cette voie quelques problèmes Indéterminés, relatifs
a la génération des lignes et des surfaces , et dont la solution, par
les procédés ordinaires, exige des calculs assez compliqués.

PROBLÈME L Une droite se meut parallèlement, à elle-même ,
sur le plan de deux droites fixes. Dans chaque position de la
droite mobile > on prend sur elle un point tel que la'somme ou
la différence des quarrès des distances de ce point aux intersections
de cette droite avec les deux droites fixes soit égale à un quarrè
donné et constant -, on demande à quelle ligne appartient Vensemble
des points ainsi déterminés ?

Solution. Soient prises les droites fixes pour axes des coordonnées ;
soit y l'angle qu'elles forment, et soit q* le quarré constant donné.

Soient X, Y les coordonnées courantes sur le plan , et x , y
celles du point décrivant ; l'équation du système des deux droites
fixes sera

XY=o ; (0

en prenant donc pour les équations de la droite mobile

X=x+ar , Y=y+br , (s)

ce qui donne

-32-*-32+2«^CoS.y= ï ; (3)

nous aurons, en substituant (2) dans (1),

~o . (4)

Si nous représentons par r , r7 les deux racines de cette équation

nous aurons

_ * , _ y
r-"~ 7 > r — ï "'

et , par la condition du problème, **"
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équation d'une ligne du second ordre qui a son centre à l'origine,
e'est-à-dire , à l'intersection des deux droites fixes.
- En désignant par A 9 B les moitiés des diamètres conjugués aux-
quels la courbe se trouve rapportée ? nous aurons

ce qui donnera ? en substituant dans (3) f

^ est donc la diagonale du parallélogramme construit sur les gran-
deurs et directions de nos deux demi-diamètres conjugués. Les
équations de la droite mobile sont d'ailleurs (2) et (6)

X=x+—r, r= r +- r .

PROBLÈME IL Une droite qui se meut dans l'espace, parallè^
lement à elle-même , perce perpétuellement trois plans fixes ; dans
chacune de ses situations , on prend sur elle un point tel que la
somme ou la différence des quarrès de ses distances aux points
où elle perce les plans fxes est égalé à un quarrè donné et constant',
on demande à quelle surface appartient Vensemble des points ainsi
déterminés ?

Solution. Soient pris les trois plans fixes pour plans coordonnés;
soient <* , fi ^ y les angles que forment les axes , et soit q* le
quarré constant donné.

Soient X ? Y 9 Z les coordonnées courantes daas l'espace 5 et
je, y , z celles du point décrivant -7 l'équation du système des trois
plans fixes sera
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XTZ=o ; (i)

en prenant donc pour les équations de la droite mobile

Y=y+br , | 0)

Z=z-\-cr ;

ce qui donne

= i -, (3)

nous aurons* en substituant (2) dans (1)

Si nous représentons par r 7 r
f
 p r11 les trois racines de cette équa-

tion ? nous aurons

a h G

et ^ par la condition du problème ?

équation d'une surface du second ordre qui a son centre à l'origine
des coordonnées, c'est-à-dire , à l'intersection des trois plans fixes*

En désignant par A 7 B, C les moitiés des diamètres conjugués
auxquels la surface se trouve rapportée 9 nous aurons

A 7 B C

f f ?

ee qui donnera^ eu substituant dans (3),
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q est donc la diagonale du parallélépipède construit sur les gran-
deurs et directions de nos trois demi-diamètres conjugués. Les
équations de la droite mobile sont d'ailleurs (2) et (6)

X=x-\ r, Y=Y-\ r , Z=z-\ r.
9 q 9

PROBLÈME 111. Quelle courbe décrit un quelconque des points
d'une droite mobile , dont deux autres points sont assujettis à être
perpétuellement sur deux droites fixes tracées sur un même plan ?

Solution. En conservant les mêmes notations et conventions que
dans le Problème 1 , nous aurons comme alors

mais ici les racines doivent être deux constantes j en les représen
sentant donc par g et h , nous aurons

X

a

d'où

"~ ë

substituant donc dans

nous aurons, pour l'équation de la ligne cherchée

a:2

6*
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celle ligne est donc une ligne du second ordre qui a son cenlre à
Tintersection des deux droites fixes.

PROBLÈME IV. Quelle surface décrit dans Tespacç vu point
quelconque d'une droite mobile , dont trois autres points sont
assujettis à rester perpétuellement sur trois plans Jioces ?

Solution. En conservant les mêmes notations et conventions
dans le Problème 11, nous aurons comme alors

mais ici les racines doivent être trois constantes -, en les représen-

tant donc par g f h , k ; nous aurons

Substituant donc dans

a*+hz+c2+2bcCos.*+2caCos.p-+-2alCQS.<yzz r ;

nous aurons 5 pour l'équation de la surface cherchée r

ac2 . y* z* yz ^ zx xy _
— + j- + — +2 ï— Cos.*+2 —- Cos.*+a -^-COS.V=Î ;
g* h* hï hk kg * gh

€elte surface est donc une surface du second ordre ayant son centra
à l'intersection des trois plans fixes.

Cette génération des surfaces du second ordre a fixé particulière-
ment l'attention de M. Dupia % dans ses exc^llens Développemens
& géométrie, page 34o»

QUESTIONS
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QUESTIONS RÉSOLUES.

Solution du premier des deux problèmes de géométrie
proposés à la page ^99 du F.* volume de ce recueil j

Par M. J. B. DURRANDE*

X ROBLÈME. Construire quatre sphères telles que chacune d'elles
touche les trois autres, et qui satisfassent de plus aux condition^
suivantes ; savoir : i,° que les points de contact des trois premières
avec la quatrième soient trois points donnés ; 2.0 que ces trois sphères
soient tangentes à, un même plan donné ?

Solution. Soient A , B , C , D les centres des qnatre sphères
cherchées, a , b , c les points de contact donnés des trois premières*
avec la quatrième , af , b' , cf les points de contact des mêmes
sphères avec le plan donné. Ces trois derniers points sont inconnus ,
niais le plan qu'ils déterminent est connu.

Les droites AB , ab , afbf, concourent , comme Ton sait , en
un même point y du plan donné, lequel point n'est autre que le
sommet du cône circonscrit aux deux sphères dont les centres sont
A et B. Pour les mêmes raisons BG , bc , b/c/ , concourront en
un même point u et CA , fa , c/a/ en un même point £ du même
plan ; et il est encore connu que ces trois points u , fi , *y , appar-
tiendront à une même ligne droite , intersection du plan donné avec
celui du triangle donné abc ; il est évident en outre que ces points
* y £ y y seiont assignables, comme intersection du plan donné
les droites données bc, ca , ab+

2oru. VL ^



tS QUESTIONS
Si l'on fait de ces mêmes points les centres de trots sphères

ayant respectivement leurs rayons moyens proportionnels entre *b
et ac , $c et &a , ya et yb % ces sphères seront aussi données^ et
elles seront respectivement tangentes à celles dont les centres sont
A, B , C (*)* Chacune de ces dernières sera donc déterminée à
toucher deux des sphères dont les centres sont *, p , y , à toucher
le plan donné et a passer par l'un des points donnés a , b , c ,
problème qu'on sait résoudre (**). Ces trois sphères étant ainsi
construites , rien ne sera plus facile que de déterminer celle dont
le centre est D.

Nous n'indiquons Ici que le procédé théorique ; les méthodes de
la géométrie descriptive feront connaître la grandeur et la situation
des parties cherchées.

Solution du problème danalise proposé à la page 29g
du V.* volume de ce recueil ;

Par M. SERVOIS , professeur aux écoles d'artillerie*

JLROBLÈME. Assigner ? intégrale finie et complète de V équation
différentielle

t fXâx . -JXàx

dans laquelle X est supposé une fonction quelconque de x , dont

C*) Voyez la page 236 du V.e volume de ce recueil.
C*) Voyez le traité de Fermât : De tactionibus sphœricis \ voyejs aussi les

pages 349 et 35S du IV.e volumt de ce recueil.



RÉSOLUES. ,£
la différentielle est X'dx, et où e est la base des logarithmes
naturels ?

Solution. Soit posé

d'où.

en sntstîtuant dans la proposée , et divisant par e^** 9 elle de-
vient , toutes rédactions faites ,,

t*àx— tXàx— d/=o ;

mais , en rétablissant ce facteur , elle peut être écrite" aîn§i

qui revient à

* —JXdx
' . d^-J-d. — s=0 ;

et donne conséquemment

/

'—JXàx e '

.dH-7
d'oui

e

donc: enfim

—JXâx ]
= e . {X—

A—Je J .

Â. étant la fonction complémentaire de l'intégration».
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Autre solution du même problème ;

Par M. TÉDÉNÀT , correspondant de l'institut, recteur de
l'académie de ]Mismes.

OoiT Z une fonction de x dont la différentielle soit Z'àx > et U
différentielle seconde Znàx% ; soit fait

—;fXàx £[ . /jN

nous en conclurons

z>* J - / s a * 3

Valeurs qui , étant substituas dans la proposée

la réduiront a

Z''—XZ>—ZX'=?o ou

dont rtntégrale est

celle-ci , multipliée par e , revient a

à?Ze J =à.afe

dont l'intégrale est
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Ze =-afe

Z=
jXàx
c
j
c

On tire de là

b-f-afe Ax j + # ;
d'où

i --pCâx )
\ b-k-afe Ax \ ,

b+afe J Ax
sjuhstituant enfin cette valeur dans la valeur ( i ) de y , et posant

izz.—Aa % il viendra

A—ft J dx

Solution du problème de combinaisons proposé à la

page 628 du K.e volume de ce recueil ;

Par M. ÀRGÀND.

AROBLÈME. Avec m choses , toutes différentes les unes des
autres y de combien de manières peut-on foire \\ paris , avec la

J a culte de faire des parts nulles ?

Solution 1. Désignons y en général , par (m , n) Y ensemble de
toutes les manières de faire , avec m choses , n parts dont aucune
ne soit nulle ; et par Z(m^ le nombre de ces manières.

Soient ç le nombre des choses , p celui des parts , k l'une de
ces choses à volonté 7 R l'ensemble des c—1 autres choses. On
pourra, dans l'ensemble (c,p)7 distinguer deux espèces de répar-
titions; savoir : des répartitions (I) dans lesquelles la chose k formera
à elle seule une part , et des répartitions (II) où la chose k
se trouvera réunie, dans unç mémo par t , ayec une ou plusieurs

choses R%
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2. Considérons d'abord les répartitions r , r / , r / / . . . . . . appartenant

à l'espèce (I). Si de chacune de ses répartitions on retranche la
part formée par &, il restera des répartitions ?, / / , f",.*.. de
C—i choses distribuées en p—i parts, ou , suivant notre notation%

des répartitions appartenante l'ensemble (c—i %p—i). Réciproque-
ment si , à des répartitions f., / , / ' , contenues dans ce dernier
ensemble f on ajoute une part formée d'une nouvelle chose k , on
obtiendra r , r / , rlf , de l'espèce (I). Il est de plus évident
que y s\ r, rf, ru , .••• ne sont pas identiques > / » , / , ftf , . ••• ne
le seront pas non plus , et réciproquement ; d'où il suit que le
nombre des répartitions (I) est égal à celui des répartitions {c— i , p—i) *
lequel est exprimé, suivant notre notation, par Z(C~i,p- ty

3. Retranchons la chose k de chacune des répartitions de l'espèce 'IT) ;
nous aurons diminué d'une unité le nombre des choses, sans changer
celui des parts ; ainsi, les répartitions résultant de ce retranchement
appartiendront à l'ensemble {c—i , /?)• Réciproquement, ayant une
répartition appartenant à ce dernier ensemble , si l'on ajoute la chose
k à L'un quelconque des parts de cette répartition , on obtiendra
une répartition de l'espèce (II) ; e t , comme il y a p parts x et par
conséquent p manières de faire cette adjonction, chaque répartition
de L'ensemble (£— Î ,/?) produira p répartitions de l'espèce (II) ,
lesquelles, seront évidemment différentes entre elles. "De plus ,11 est
facile de voir que deux répartitions différentes de l'ensemble {c—i , p)
le seront encore lorsqu'on y aura ajouté k d'une manière quelconque.,
Donc le nombre des répartitions (II) est p fois celui des répartitions
(c—i 9p)r c'est-à-dire, qu'il est s=zpZ^^t vy

Ainsi , (c, p) étant composéL de (I) et de (II) t< on aura

4* Au moyen de cette équation , nou^ pourrons, former une*
table à double entrée des valeurs de Z(C$n » pourvu que nous en
connaissions les valeurs* Initiales. O r , si / ? = i , on a Z^c«>= i ;t

quel qua soit lô nombre des choses, il n'y a qu'une manière;
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tTen faire une seule part. Cette formule donne donc la première
ligne horizontale de la table. Ensuite , si p-=-c, on a encore Z{c « = i ;

car il n'y a de même qu'une manière de faire n part avec ri
choses. Cette formule fournit la diagonale qui part de la case qui
répond à £ = i , p=i. Quant au cas où on aurait /?>£, il est clair
qu'il n'y re'pond aucune répartition possible , de sorte que toutes
les cases situées de l'un des côtés de notre diagonale doivent de-
meurer vides.

Table des pâleurs de Z^ py

Nombre de choses =£.

2
o

A

i

2

3

4

5

6

7

8

9

to

i

i

—

2

I

I

3

i

3

i

—

4

i

7

6

i

5

i

i5

25

IO

I

—

—

6

i

3i

9°

65

i5

i

7

i

63

3oi

35o

x4o

21

I

8

i

127

966

1701

io5o

266

28

1

9

1

3o25

7770

6951

2646

462

36

1

10

1

5n

933o

34105

42525

22827

588o

75o

45

1

5. Or, à l'inspection de cette table, on trouve, par une induction
assez facile,
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et on s'assure ensuite , par le calcul , que cette expression de Zçc.w
satisfait réellement à l'équation (JL) ; mais 11 faut de plus que les
râleurs initiales soient vérifiées. Or, si p=i , la formule se réduit,
en effet, à l'unité , 11 en est de même , dans le cas de c~p, en

Tertu du théorème connu 11.2.0 ..p=pp P"lf\—• \P-2-f-.*•.%

ainsi, cette formule est démontrée.
6» Nous avons supposé jusqu'Ici qu'aucune part ne devait être

nulle. Admettons maintenant qu'un nombre quelconque de parts
puissent l'être ; et nommons Y^ p^ le nombre des répartitions possibles
dans cette nouvelle hypothèse, ^./ensemble de toutes ces répartitions
pourra être distribué en p espèces , suivant que le nombre des
parts non nulles , qui ne saurait être zéro , sera 1 , 2 , 3.. . . /?*
Soit q un quelconque de ces nombres. Le nombre des répartitions
dans lesquelles q parts ne sont pas nulles est^ par ce qui précède,
ZçC,q) ; donnant donc successivement à q toutes les valeurs> depuis 1
jusqu'à p inclusivement, on aura

©n aurait de même

c, p - 1X V

d'où t en retranchant et transposant

^ ^ ( Q

Ainsi > au moyen de la table précédente, et des valeurs initiales
de Y\ savoir f ^ , ) = i , pour toutes les valeurs de c , on construira
facilement la table relative a la secoudje hypothèse ;. par de simples*
g

Table
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Table des valeurs de

Nombre de choses = £

•2!
O

I
a>

•s

Tome VI.
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7. La loi des valeurs de Y , dans cette dernière table, ne s»

présente pas si facilement que dans la première. Cependant , avec
de l'attention , on parvient à trouver que ces valeurs peuvent être
exprime'es par la formule

,/-/-.p^.(?-iH.l, (D)

d a n s laquel le les coeffieiens o 9 1 ? 2 , 9 , 4 4 > ^ 6 5 , •••••. sont
i i é s en t r e e u x par les é q u a t i o n s .

0 = 1 . ï — 1

2 = 3 , l —I

9=4.a+i

en général,

le quantième n du premier terme de la formule étant o.
On s'assure ensuite , par un calcul effectif, qu'elle satisfait ï

l'équation (C). De plus, en faisant /?=i , elle se réduit à l'unité,
ce qui vérifie les valeurs initiales ; d'où il suit que cette formule
résout le problème proposé. L'expression générale des coefficiens
o , 1 » 2 t 9 9 44 > .«•••.. ? est au surplus
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étH=(— i)"{i—n+n(n— i )—n(n— i )O~^4"- } ;

car , outre que cette expression satisfait à l'équation (E), elle donne
la valeur initiale ao—i ( * ).

8. En éliminant Z entre les deux e'quations (A) , (C) ? on par-
vient facilement à la suivante

qui a conse'quemment pour intégrale la formule (D) , tout comme
(A) a pour intégrale la formule (B) ; mais ces intégrales, pour être
complètes doiyeut admettre un complément arbitraire*

(*) Ces coeiHciens peqvent encore $tre considérés comme îiçs çptre eyx par
I*é^uation ?ux différences

J. D. G.
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QUESTIONS PROPOSÉES,
Problèmes de Géométrie*

h V̂ ONSTRUIRE trois cercles tels que chacun d'eux touche les deux
autres , et qui satisfassent de plus aux conditions suivantes , savoir t
i .° que les points de contact de deux d'entre eux avec le troisième
soient deux points donnés-, 2.* que ces deux-là soient tangents à uu
même cercle donné ?

II. Construire quatre sphères telles que chacune touche les trois
autres, et qui satisfassent dé plus aux conditions suivantes: i.° que
les points de contact des trois premières avec la quatrième soient
trois points donnés -, 2.0 que ces trois sphères soient tangentes à
une même sphère donnée ?

III. J)çs trois quarrés qu'on peut inscrire à un même triangle
se aie ne ,, quel est le plus grand et quel est le plus petit 2
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GÉOMÉTRIE TRANSCENDANTE.

Théorie géométrique de la cycloïde ,

Par M. Du B O U R G U E T , ancien capitaine de vaisseau,
Chevalier de l'Ordre royal et militaire de St-Louis r

professeur de mathématiques spéciales au collège de
Louis-le-Grand. *

I les géomètres n'avaient jamais en vue dans leurs recherches'
que les applications pratiques dont elles peuvent être susceptibles,
ils mettraient ? sans doute , beaucoup moins de soin et de prix à
obtenir ? sous forme finie 9 une multitude d^expressions que l'on:
peut aisément avoir en séries très-convergentes , et propres consé-
Guemment à fournir des résultats incomparablement plus approchés
que , dans aucun cas , l'état physique des choses ne le réclame ,.
et même ne le permet. De quelle utilité pratique , par exemple ,
pourrait être la solution rigoureuse du problème de la rectification
de la circonférence ^ aujourd'hui que nos séries nous ont fourni au-
dela des i5o premiers chiffres décimaux du rapport de la circon-
férence d'un cercle à son diamètre ; lorsque sur-tout on considère
que les 20 premiers de ces chiffres sont plus que suffisans pour
déterminer , à moins de l'épaisseur d'un cheveu près, la circonfé-
rence d'un cercle qui embrasserait tout notre système planétaire. A
quoi l'on peut ajouter encore que les expressions finies elles-mêmes 9

dès qu'elles ne sont point à la fois algébriques et rationnelles , ne
sont susceptibles ? tout comme les séries 9 que d'évaluation approchée..

Toutefois , on ne saurait disconvenir que , du moins aux yeux
Tom.FIPn.0II>i.ev août 1816* 5
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des théoriciens , les expressions sous forme finie ne soient plus sa-

tisfaisantes que les séries illimitées , quelque convergentes qu'on les

Suppose d'ailleurs. Outre que ces sortes d'expressions s'introduisent

et se combinent plus facilement dans les calculs % * elles sont sou^

¥ent susceptibles d'un énoncé concis et élégant ; et c'est sans doute

ce qui les fait rechercher encore, lors même qu'elles ne sont point

susceptibles d'évaluation immédiate , ainsi qu'il arrive pour la for-

mule de Bernoulli w==-^i-=-- . On peut remarquer enfin que la

découverte de l'expression finie d'une quantité, déjà connue par les
séries , est un pas de plus daivs la solution de l'important et diffi-
cile problème de la sommation des suites.

Par ces motifs , nous osons espérer que les géomètres voudront
bien accueillir 5 avec quelque intérêt et bienveillance , l'opuscule que
l'on va lire. Il présente , dnns un cadre peu étendu , un système
complet de formules finies pour la rectification et la quadrature in~
dcfinie des arcs et segmcns do cvc^ud^s ? pour la quadrature des
surfaces et la cubature d^s iorp*» engendrés par la révolution de ce$
arcs et segimns autour de chacune des quatre lignes les plus re -
marquables de la courbe «, ei'l-u prur la détermination des centres
de gravité des unes et des autres. Plusieurs de ces expressions n'a*
vaient point été données jusqu'ici 5 et on ' paraissait même incliner
à penser que quelques-unes d'entre élus ne pouvaient l'être que
par les séries* Oa va voir qu'elles sont toutes susceptibles d'une form^
finie.

L Pour éviter au lecteur l'embarras de feuilleter des traités da
calcul intégral , ou de suppléer à ce qu'on n'y trouve pas t et pour
lui offrir en même temps le moyen de vérifier facilement nos cal*"
culs , nous croyons convenable de présenter brièvement ici les seu«
les formules d'intégration , peu nombreuses d'ailleurs, qui nous se-
ront nécessaires pour parvenir à notre but, Nous sous-enteudrons
}çs constantes.
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.* On a d'abord immédiatement

/dzSin.m,sCos.z=H i_Sin.m+'z , (A)

f + 1 z . (B)zSm.z

.° Si Ton a à intégrer des formules de Tune des deux formes

on les transformera dans les suivantes

àzCos.zÇi

lesquels , par leur développement ? donneront une suite de termes
rentrant dans le cas (i.°)--

3.° Si les formules à intégrer sont de l'une des deux formes

on les transformera en celles-ci

dz$\n.mzCos.z(i— Sm.2z)n , dzCos.mzSm.zr
Ki~Cost

zz)n ,

lesquelles , par leur développement, donneront uner suite de termes
rentrant également dans le cas (i.°).

4-° Si les formules à intégrer sont

àzS\n*mz , dzCo$.*mz f

en aura recours à l'intégration par parties , qui donne , comme Pow
sait,

2.171 1 \ S

.2m^rzSm^^ ; (D>
2.771

formules au moyen desquelles on parviendra, par degrés, à rame-
ner les intégrales cherchées à Jàz^=-z*
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5.° Si les formules à intégrer sont de l'une des deux formes

dzS\n.mzCos,2"z , àzCos,mz$in*nz ,

on leur substituera leurs équivalentes

dz$'m.mz(i — Sin.V)" , dzCos.mz(i — Cos.*z)n ,

lesquelles , par le développement, donneront une suite de termes
qui rentreront dans l'un des cas (2.0) et (4«°)-

On sait donc , par ce qui précède , intégrer ; soys forme finie f

toute formule de la forme

m et n étant des nombres entiers positifs quelconques ou zéro.
6.° Soit présentement une formule de la forme

zkdz$ln.mzCos.nz j

l'intégration par parties donnera

fzkdzSin,mzCos.nz=zfzk~ldzS\n.mzGos.nz-fdzfzk-l dz$ln.mzCos9
nz ; (E)

au moyen de quoi on ramènera , par degrés P l'intégration deman«*
dée à /dzSin.m^Cos."z , que nous avons traitée dans lçs numéros
précédens,

IL Soient AO, AO ; respectivement ( fig. 1 ) la demi-base et
la montée d'une cycloïde, et soient menées O /À / , OxV , respect!-»
Yenient parallèles à ces deux droites. Par un quelconque M des
points de la courbe , soient menées aux mêmes1 droites les paral-
lèles QÇ^', PP ; terminées aux quatre droites. Soit C le lien du cen-
tre du cercle générateur ? pour sa position où le point décrivant est
en M , et soit DDX son diamètre parallèle à AO' , coupant QQ ; en
N ; soient cnEn menées M*D, MC, MD/ et soient C D ^ C U s s C D ^ r .

Nous prendrons
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au moyen de <juoi nous aurons

d'où

Nous poserons* en outre

Ang.DCM=2Z ;

ce <jni donnera

Cela posé , nous aurons

, CorâMD =2rSin,

Nous aurons encore

PB— P'D'

maïs ? par la nature de la cyeioïde 9

OD—DP^^r^.MD—MN

= ND=CD—CN 1 .
donc 5 en substituant ?

| d'où

donc encore

Do là on passerait facilement aux équations primitive et différen-
tielle de 3a eeurbe f soit en m et y soit en x' et ^ 5 mais elles ne
nous seront pas nécessaires*

Pour la commodité typographique , nous poserons encore
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Cos.z—t , S\n.z=u , d'où t2+u2=z

Cos.s' = // t Sin.s'=0' ? d'où ^ 2 + « / 2 =

ee qui donnera

x = 2r(z —/ « ) > jr =2rw 2 » d# =4r«2dz , dy =

III. Cherchons dabord les longueurs des arcs indéfinis M O ,
MO' ?

L'élément du premier de ces arcs est

dont Vîntégraïe, commençant avec z , est (I)

^ r ^ . M 0 = 4 r ( i — / ) = 2 ( D / D - D / M ) , Ça)

De là

.et par conséquent

Arc. MO^ru'-zMD' ; (h)

ce qui met en évidence la propriété de la développée. On pourra
évidemment, par ce qui précède, obtenir la longueur d'un arc quel-
conque de la courbe.

IV. Cherchons les surfaces engendrées par Tare OM, tournant
successivement autour de OP et OQ ?

L'élément de la première surface est

dont l'intégrale ? commençant avec z , est (I)

De là on conclura ^ pour l'expression de la surface engendrée
par Tara entier OO / , autour de OA.
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' L'élément de la seconde surface est

z-~~tu) ,

dont l'Intégrale, commençant avec 2, est (I)

^*r*{«(3~aa)—3/z}. (d)

De là on conclura , pour la surface engendrée par Tare entier
, tournant autour de OA / ,

Il est très-remarquable que la surface engendrée par l'arc 0 0 ' est
toujours de même étendue , soît que cet arc tourne autour de OA
ou qu'il tourne autour de OA'. On pourra évidemment , par ce
qui précède , obtenir la surface engendrée par un arc quelconque
de la courbe, tournant autour de OA ou OA/

V, Cherchons les coordonnées du centre de gravite de chacun
des deux arcs indéfinis MO et MO7 ?

Soient X, Y les coordonnées , pour l'origine O , du centre de
gravité du premier de ces deux arcs ; soient X/ , Y/ les coordon-*
nées , pour l'origine 0 / , du centre de gravité du second,

Suivant la régie centroharique ? X et Y seront les quotiens res-
pectifs des formules (d) et {c) par la formule (a) multipliée par
%-wi de sorte qu'on aura

^_ sr { w(3—w*)

Dans le cas oh il s'agira de Tare entier OQ' , on aura

XzzY^lr.
Or j on a 5 en général

prenant donc successivement 0 ^ et O'A' pour axes des
jî viendra
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Y/.4ru/^4r(2r— {r)—4r(i— u'){2r— | r ( i -
d'où on tire , toutes réductions faites ,

w _ 2T

(/)

Cette dernière formule prouve que le centre de gravité de toul
atc de cycloïde qui a son milieu à son sommet O7 est au tiers de
sa flèche P à partir de ce sommet* D'après les précédens résultats ,
la recherche du centre de gravité d'un arc quelconque de cycloïde
me saurait offrir de difficulté.

VI. Cherchons les surfaces engendrées par tare MO/
5 tournant

autour de OrkJ ou Ofk ?
Suivant la règle centrobarique , ces surfaces seront les produite*

respectifs de la formule (b) par 2zrY' et 2srÀv, ce qui donnera

H^rV 3 =^.2^MP^Cor^MD^ r '(g)

^*r*{3u'z>—(i— ///(2+//)} . (h)

La première sera done les j de la surface engendrée par la tan-
gente MD7 tournant autour du même axe.

S'il s'agit de l'arc entier OQ/
 7 on aura , pour la première surface,,

c'est-à-dire 9 la moitié de la surface engendrée par le même arc au-
tour de OA^ On aura ensuite , pour la seconde

résultat qui prouve (IV) que la sottime des surfaces engendrées par
la demi-cycloïde OO; , tournant successivement autour de AO^ efc
OA7 eat égale à la surface convexe du cylindre engendré par le
rectangle circonscrit à la cycloïde entière r tournant autour de sa
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base. Au moyen de ce qui précède, on obtiendra facilement la sur-
face engendrée par un arc quelconque de la courbe , tournant au-
tour de (XV ou O7A , ou môme autour d'une droite quelconque ?

puisque le centre de gravité de cet arc sera assignable.

VII. Cherchons les centres de gravité des surfaces engendrées
par Oyi tournant autour de OA ou OA/ ?

Nous avons déjà vu (IV) que les élémens de ces deux surfaces
sont respectivement

d'où il suit que leur moment commun , par rapport aux plans con-
duits par O 9 perpendiculairement aux axes de rotation , est

—tu) f

dont l'intégrale , commençant avec z 9 est (I)

divisant donc cette intégrale successivement par les deux formules
(c) et (d) , nous aurons pour les distances du point O aux centres
de gravité des deux surfaces „

Dans le cas où il sera question des surfaces engendrées par la
révolution de l'arc entier OO7 , ces deux expressions deviendront
également

i£r— JLÎ OA'
On pourra facilement 5 d'après ces résultats ? trouver le centre de
gravité de la surface engendrée par un arc quelconque de la courbe t

tournant autour de OA ou QA'.

VIII. Cherchons les centres de gravité des surfaces engendrées
par lfarc M O , tournant autour de O'h/ et Q'A ?

Ces surfaces ayant pour élémens respectifs
Tom. VI* 6
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le moment commun de ces élémens , par rapport aux plans conduits
par O;, perpendiculairement aux axes , sera

dont l'intégrale 5 commençant avec z' , est (I)

î 5
divisant donc successivement cette intégrale par les deux formules
(g) et (h) , on aura , pour les distances du point O/ aux centres
de gravité des deux surfaces

+<0} ''—(î—^)"(a+<0} '
S'il s'agit des surfaces décrites par l'arc entier O'O, ces formules

deviendront respectivement 9

La première prouve que la distance du point À7- au centre de gravité
de la surface décrite par OO autour de O/A' et les -^ de A7O ,
et non point les | de cette droite , comme quelques auteurs Pont
écrit. On peut , d'après ce qui précède, trouver le centre de gravité
de la surface engendrée par un arc quelconque de la courbe, tournant
autour de O ^ ou O'A.

IX. Cherchons les aires, des quatre segmens OPM , OQM ,
O'P'M, O'Q/M?

L'élément du segment OPM est

dont l'intégrale, commençant avec.z, est (ï)

OPM = r2{3^—
On aura ensuite
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OQM=ay—OPM,
esest-à-dire ,"

De là on conclura

O A O ^ 7 ^r2=f Gérer , OA'Q'~ ~ ^r2 = 7 Cerc.r ;

c'est-à-dire, que Faire de la cjcioia-c entière est triple de celle da
cercle générateur. On a en outre

O/P^1=O/A'O—OQM—QÀ'P'M ,

O'Q'M=O'AO—OPM—-Q'APM ;
c'est-à-dire ^

— 2t'*)} , (r)

De tout cela on déduira facilement l'aire de toute surface plané
terminée par des lignes droites et par des arc& de cycloïdes»

X. Cherchons les volumes des corps engendrés par la révolution*
des segmens OPM , OQM , tournant autour de OP et OQ, res-
pectivement ?

L/élément du premier de ces deux corps est

dont l'intégrale , commençant avec z , est (I)

^r3(i5zr—^(i5+ioz/24-8«4)} .. (ad)

D'après cela, le volume du corps engendré par la révolution dw
segment entier OAO7, autour de OA , sera

c'est-à-dire , les j da volume cylindre engendré par la révolution*
du rectangle OA/CVA autour de OA. ,

L'élément de l'autre corps est
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Tsr^dy^. i6&r2tudz(z—tuf y

dont l'intégrale , commençant arec z , est (I)

D'après cela, le volume du corps engendré par la révolution âa
segment entier OÀ/O', autour T̂e OA/ 5 aura pour expression

c'est-à-dire , le quart du cylindre engendré par le rectangle OÀO'Â/
tournant autour de OA ; , moins deuK sphères ayant même rayon
que le cercle générateur. A. l'aide de ees résultats on pourra toujours trou-
ver le volume du corps engendré par un segment quelconque de la
courbe , tournant autour de OA ou OA ;,

XI . Cherchons le centre de gravité de chacun des c/uatrê seg-
mens OPM, OQM , Q/p^l t O ^ M ?

Par la règle ccniroharicjue , l'ordonnée du centre de gravité du
segment OPM s'obtiendra en divisant la formule (aa) par la formule
(/?,) multipliée par 2^ -, ce qui donner*

Par la même règU , l'abscisse du centre de gravité du segment
OQM s'obtiendra en divisant la formule {bb) par la formule (f)
multipliée aussi par 2^ ; ce qui donnera

3 {z(3—>2)

Mais on a 9 quel que soit l'axe des momens ,

prenant donc respectivement _OQ , OP pour axes des moment s

on aura
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divisant donc respectivement ces inomens par les formules (/?) et
{g) , on aura pour l'abscisse du centre de gravité de OPM et l'ordonnée
de celui de OQM

5—8M*)-—f«(

6 [ z(5—4f/23—tu (3—2w2)}

Voilà donc les deux coordonnées des centres de gravité des deux
segrnens OPM, OQ\1 qui se trouvent ainsi déterminées ; le point
O étant pris pour origine.

On trouvera 9 d'après cela, pour l'ordonnée et l'abscisse du centre
de gravité de Taire OAO/ de la demi-cycloïde ,

et ensuite ? pour l'ordonnée et l'abscisse du centre de gravité de
l'espace OA /O / ,

— t A / 3^2—16

II nous reste maintenant à assigner les centres de gravité des deux
autres segmens M P ^ 7 , IMQ/O'. Ici nous prendrons le point O/ pour
origine. Nous aurons d'abord , quel que soit Tare ,

prenant donc successivement OÀ; et OA pour axes des momens 9

cette équation deviendra

En divisant donc ces deux momens par la formule (r) , on aura
pour l'ordonnée et l'abscisse du centre de gravité du segment MP'O' ,
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De là on passera aisément à l'ordonnée et à l'abscisse du 4*ine*
serment O /Q /M. On a^ quel que soit Taxe des momens ;

Mom.O'Q'M^MomMP'O'Q'—MomMP'O' ;

prenant donc successivement OY/ et QQf pour axes des raoraensj,
on aura

Divisant enfin ces deux momens par la formule ,, , oo aura* pour
l'ordonnée et l'abscisse du centre de gravité du segment

}

M. Poisson a paru penser que les abscisses des centres de gravite
de ces segmens ne pouvaient être exprimées que par des séries
( Voyez sa. Mécanique , tome i*er , page 147 )• Mais on voit,
par ce qui précède , qu'on peut toujours avoir exactement , sous
forme finie , les deux coordonnées du centre de gravité d'une
surface plane quelconque , terminée par des lignes droites et des»
arcs de cycloïdes*

XII. Cherchons les volume? des corps engendrés par la révolution
des deux segmens OT<M % O'QW autour de O'P' et O ' Q ' , res-
pectivement ?

Suivant la règle centrobarique 7 le volume du premier de ces
deux corps, s'obtiendra en multipliant par ZT» le produit des deux,
formules (r) et {gg) \ ce volume sera donc
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\ «r*{3z'+t'u'(3— i4t/2+8tn)}. (mm)

Le volume de l'autre corps s'obtiendra 9 suivant la même règle,
multipliant par 2^ le produit des deux formules (r) et (//) ;

ce volume sera donc

On trouvera, d'après cela, pour le volume du corps engendré
par CVA/Q 7 tournant autour de CKA/ ,

\w*r*=\O'hf .Cerc.MQ ;

c'est-à-dire , le 8.me du cylindre circonscrit ; et pour le volume
du corps engendré par O'AO 7 tournant autour de Ĉ A ,

i*r3(9»a— i6)=J AO^ Cerc.kO—iSph.r ;

c'est-à-dire , les \ du cylindre circonscrit , moins deux sphères ayant
même rayon que le cercle générateur. On obtiendra facilement,
d'après cela , les volumes des corps engendrés par des segmens quel-
conques de cycloïdes , tournant autour de O/A/ ou O;A s ou même
autour d'une droite quelconque , puisque (XI) le centre de gravité
de Taire de ce segment sera assignable.

XIIT. Cherchons les centres de gravité des corps engendres par
la révolution des deux segmens OPM , OQM , tournant autour
de OP et OQ respectivement?

L'éle'ment du premier de ces deux corps étant wy2d#, le moment
de cet élément , par rapport au plan conduit par O , perpendi-
culairement à l'axe, sera

dont Tintégrale, commençant avec z , est (I)

divisant donc par la formule {ad), on aura , pour la distance du
point O au centre de gravité de^ce volume 9
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En conséquence , s'il s'agit de la distance du point O au centre
de gravité du corps engendré par CAO' , on trouvera pour son
expression

L'élément du second de ces deux corps étant wx*dy , le moment
de cet élément, par rapport au plaa conduit par O perpendicu-*
lairement à Taxe , sera

w#2ydy=32«r2/#3(z—tuf ,
dont Fintégrale , commençant avec z , est (I)

divisant donc par la formule (bb) 9 on aura , pour la distance du
point O au centre de gravité de ce volume

r{9*a(5—8«0—Qtuzcî +iou*—iGu*)+**(4$+*5u*—'64*/4-f36i/6)}
6{3z2c3—4u*)*-6ta (̂3— SM2)+M2(9—%u2+^)} * ^ '

En conséquence , s'il s'agît de la distance du point O au centre
de gravité du corps engendré par OA /O / , on trouvera pour soci
expression

r 271s2—.128

6 ' 'Ô-SJZ—i€T

On voit ? d'après ce qui précède , qu'il sera toujours facile de
déterminer le centre de gravité du corps engendré par un segment
quelconque de la courbe ? tournant autour de OA ou OA7.

XIV. Cherchons enfin les centres de gravité des corps engendres
par la révolution des deux segmens O/MP/

 r O /MQ /, tournant
autour de O /P / et CVQ7., respectivement ?

L'élément du premier de ces deux corps étant 2sry/zdx/ le moment
àe cet élément, par rapport au plan conduit par O/ perpendicu-
lairement à l'axe > sera
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dont l'intégrale, commençant avec zr, est (I)

divisant donc par la formule (mm) , on aura , pour la distance du
point O' au centre de gravité de ce corps f

68/'4+36/'G)}

En conséquence , s'il s'agit de la distance du point O/ au centre
de gravité du corps engondié par OO'À' , tournant autour de O'hf 9

on trouvera pour &on expression

L'élément du second de ces deux corps étant srr /2dy /, le moment
de cet élément , par rapportai! plan perpendiculaire ,à l 'axe, passant
par O ;

 r sera

dont l'intégrale , commençant avec zf
 9 est (I)

divisant donc par la founule (/i/2) s en aura, pour la distance da
point O/ au centre de gravite de ce corps ,

i.«/=)(i6-47//a+7G/^.36//6)]
—_ : ,— ,.. -. (ss)
//2)(4—5^-f-4^4)| * v y

En conséquence , s'il s'agit de la distance du poïnt O/ au centre
de gravité du corps engendré par CKQÀ ; tournant autour de O;KP

on trouvera pour son expression

» * 4
On voit, d'après ce qui précède , qu'il sera toujours facile de

déterminer le centre de gravité du corps engendre par un. segment
quelconque da cycloïde ^ tournant autour de OA' ou OA.

Paris , 17 janvier 181 S.
Tom. FI. 7
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TRIGONOMETRIE.
Sur Taire du triangle sphérique ;

Par M. TÉDENAT , correspondant de l'institut, recteur de
l'académie de JNismes.

JL OUT le monde connaît le beau théorème de Cavallerî 9 sur l'aire
du triangle sphérique , et on le trouve démontré très - simplement
dans la plupart des traités elémenta'ies ; mais leb jeunes-gens qui
étudient le calcul difféivLiieî xm seront peut-êtie pas fâchés d'en
trouver ici la démonstration suivante , fondue sur les principes de
ce calcul.

Soient ù , b , c ( fig. 2 ) les trois côtés d'un triangle sphérique
A , B p C les trois angles respectivement opposés , et S son aire.

£i le côlé c et l'angle B restant fixes, l'angle A vient à croître
de la quantité arbitraire 1 , de manière que le côté b devienne bf',
que AC devienne ÀC;

 9 et l'aire du triangle S' ; on aura , par
la Série de Taylor 9

1.2

a A 1 àA2 ï.2

Du sommet A comme pôle , soient décrits ? entre les côtés de
l'angle i , les arcs de parallèles Cm 7 C/m/, et des points 'C et m/

soient abaissées sur le rayon OÀ de la sphère les perpendiculaires
CD, 7?2/D/ ; "on pourra toujours prendre / assez petit , sans être
nu l , pour avoir
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S'>S+C'Arn< et

maïs , en prenant le rayon de la sphère pour unité , et remarquant
que AD 9 AD; sont respectivement les flèches des calotes dont
les portions de fuseaux CAm et C/Am/ font partie , nous aurons

CAm—t(i—Cos.#) ,

C'Am' = iXi—Cob.b')=i\i—Cos.lCo&.Mi-{r&in *Sin Jlf/j ;

mais, on a d'ailleurs

K S\M' '

d'où, l'on voit qu'eu substituant 5 Ci'Am* prendra cette forme

Ainsi , en résumé ,, l'on aura

5'<54-(i—Cos.i)— ,

—±2\ —
1 I »2

d'où on. conclura , par le Thèoièrne d'Arbogast,.

il=,—Cos.*.. (i)

Présentement on a 9 par l«\s formules connues

Cos C~f»Cus.^Cos/J

Sin A

ce qui donne , à cause de B et /: constans et de C fonction de A

Mais, on a aussi.

Cos

dbnc• %, en substituant et divisant par Sin.6 7
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de

+C0S.b = O ; (2)

éliminant donc Cos,£ entre cette équation et l'équation ( i) , il
viendra

àS
d'où , en intégrant,

Pour déterminer la constante , on remarquera que , si l'on a Azzzi
on aura C = B et S=zB ; d'où

Const.— B—-3T 9

et conséquemment

On aurait pu parvenir plus brièvement au but en employant le
langage des infiniment petits. On aurait d'abord substitué AA à i;
on aurait remarqué que àS , c'est-à-dire ? le triangle sphérique
CAO étant infiniment petit, le triangle curviligne COm était in-̂
finiment petit du second ordre ^ qu'ainsi l'on pouvait poser sim-
plement

mais, dans le petit triangle spîiérique CACf où l'angle C est le
supplément du rnerne angle de BAC , on a

Cos.C7—Cos.d^Cos.C

SlnAASïn.C

Or 5 on a S\a.dA = àA 9 Cos.dA— i , et C/=C-{-dC d'où Cos.Cf

ssCos.CCos.dC—-Sin.CSîn.dC'=Cos.6>—dCSin.C ; donc enfin
dC

,os. — — — ,

#u, en substituant,

ci-dessus»
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QUESTIONS RÉSOLUES.

Démonstration du théorème de géométrie énoncé à la
page 384 du V? volume de ce recueil ;

Par M. J, B. DURRÀNDE.

A BÉOPtÈME. Tout quadrilatère , plan ou gauche , rediligne ou
sphêricjue, dans lequel la somme de deux côtés opposés est égala
à la somme des deux autres côtés, est circonscriptible au cercle.

Démonstration L Soit le quadrilatère plan ABCD ( fig. 3 ) dans
lequel on suppose

AB+CD=BC+AD . (1)

Soient divisés les angles A , B en deux parties égales , par des
droites concourant en O. Soit joint ce point O aux sommets G et
D ; et du même point soient abaissées sur les directions des côtés
les perpendiculaires QE ; OF ? OG, OH \ Téguation (1) deviendra
d'après cela

ÀE+BE-4-CG+DG=BF+CF+AH+DH . (2)

Les triangles-rectangles OEÀ, OHÀ qui ont Phypothénuse com-
mune et un angle oblique égal 7 par construction , sont égaux ; et
il en est de même , pour de semblables raisons, des triangles rec-
tangles OEB? OFB ; donc d'abord

OH=OE=OF 5 (3)
et ensuite
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AH=AE , BE=BF . (4)

Au moyen des équations (4), l'équation (2) se réduit à

CG4rBG~CFH-BH . (5) ,
Présentement OC ,, OD étant Tune et l'aufre hypotliénuses com-

munes de deux triangles rectangles , on doit avuir

li = oG + DG „
retranchant donc , et ayant, égard à l'équation (3) , il viendrai

OUI

(CF+DH);CF-DH) =(CG+DG)(ÇG—DG) *
ou, simplement, ea vertu de (5) ,

G F — D R = C G - D G ,

ou encore ea ajoutant et retranchant celte dernière à réquatîon (5)
transposant r réduisant et diviiaut par 2.,

les deux triangles rectangles OFC , CGC sont donc og-mx , ainsi
q̂ t»e les, duux triangles rectar>gle6 OHD „ OGD ; on a. doua

OG=OF = OH=OE „
et par conséquent \e> cercle décrit du p«>int O comme centre , et
a^cc Tune quelconque de ces quatre droites pour rayon , touchera
les cotes d*j quadrilatère, aux points, E , F 5 G , H 9 et lui sera,
en. elïet circonscrit.. {*),

(*) On aurait pu ne' point mener- d'abord O G , démontre*,, comme ci-d< s?us,,
que ,CD=CF-f-DH ? déterminer le point G [>̂ r la condition C 0 = ' F,.dN^iVDG=:DF'
et mener- alors OG, On .an'a.t remarqué ensuite que d'apits et lie ci'iN^tnichoii les.

cercles <1écrits des points A, B , C , D comme centres et avec les, rajena- res--
tik AE. OLL AH h BE ou Bï y CF ou CG , DG ou DU se touchent deux & *
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II. Si le quadrilatère est sphérique , après avoir fait une cons-
truction analogue et démontré comme ci-dessus que

Arc.QH=:Jrc.OFz=Jrc.QE , (6)
et que

Arc.C¥-\-ArcJ)ft~Arc>CG-\~ArcX)G , (7)

les couples de triangle sphériques dont les hypothënuses communes
sont Arc.QQj et Arc.QD donneront

Cos.QT 6W.CF = Cos.OGCos.CG ,

Cos.OUCos.Bïï^Cos.OGCos.DG :

prenant successivement la somme et la différence de ces deux équa-
tions 9 en ayant égard à l'équation (6) , on aura

Cas.QECos C¥±^€osI)H)~Cos.QG{Cos.CG-?rCos3)G) -,

ou , en dédoublant et divisant,

COJ.CF—CosBH Cos.CG—Cos&G

Cos.Cï~t-Cosl)H. ~ Cos.CG+Cos.DG '

ou ? en décomposant , par les formules connues ?

T*7^.f(DH+CF) Tang.\(DH-CF)=Tang.%DG+C&) Tang.\ÇDG-CG) ;

ou, en simplifiant, au moyen de l'équation (7) , et passant ensuite
des tangentes aux doubles des arcs

en combinant cette dernière équation, par addition et soustraction
avec l'équation (7) , ou en tirera, en transposant et réduisant,

deux aux points E , F , G , H , qui sont conséquemment sur une même cïrconfé-
réacc ; on en aurait conclu OG~OF==OH~OE. De ïk serait résulté l'égalité
sok entre les triangles OFC 9 OGC , soit entre les triangles OHD , OGD ; et 9

par suite , la perpen acuîarifé de OG sur CD ; ce qui aurait établi que le cercle
touchant ïes troi* premiers côtés en H, E , F , touchait auéèî le ôûatritme en G.

( Note de Vauteur, )
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'Jrc.CG^Arc.CF , Jrc.DG^Jrc.VF j

et Ton achèvera comme ci-dessus. (*)
III. Soit enfin le quadrilatère gauche ABBD' ( fi g. 4 ) , dont

une des diagonales soit AB ; et concevons d'abord qu'on ait fait
tourner autour de cette diagonale lrun des triangles qu'elle détermine
pour l'amener dans le plan de l'autre , de manière que le quadri-
latère devienne plan.

Soient inscrits aux deux triangles ÀDB , AD'B des cerclrs , dont
C , C soient les centres E , E ' les points de contact avec la dia-
gonale , G , H les points de contact du premier avec les côtes DA. f
DB , et enfin G/

 9 H/ les points de contact du second avec les côtét
D'A . D'B.

Si , comme nous le supposons 5 on a la relation

AD+BD'=BD+ AD/ , (i)

On pourra la transformer en celle-ci :

AG4"DG+BH/H-D^=BH+DH+AG/+D^ v (a)

aïs on a , par la propriété àes tangentes,

AE ^AG
BH=BE

ajoutant donc toutes ces équations à l'équation- (a) , îl viendra ;
en réduisant

(*) Ceci démontre que , sur une sphère comme sur un plan f lorsque
cercles se touchent deux à deux , leurs quatre points de contact M>nt situés suc
un& même circonférence t et coiiséquemment dans un mente plan.

C £iote de l'auteur )*~

AE
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AE+BE'=BE+AE' ;

mats, on a aussi

ajoutant donc ou retranchant > on tirera de ces deux dernières

ÀE=ÀE / ou

ainsi, les points de contact E , E ' se confondent en un seul qu'à
l'avenir nous désignerons simplement par E , et qui se trouve con-
séquemment avec G et C/ sur une même droite perpendiculaire
à AB.

Concevons que des points À, B pris successivement pour centres,
et avec des rayons respectifs A E ^ A G — AG'? BE=BH = BH /, on
décrive deux cercles , leurs tangentes extérieures concourront en
quelque point F du prolongement de la droite AB qui joint leurs
centres. Soient encore décrits des points D , D' comme centres et
avec les rayons D G = D H ? D / G / =D / H / , Us toucheront les deux
autres ? le premier en G , H et le second en G; , H' ; donc 9 par
les théories connues , les droites GH * G/H/ iront concourir en F ,
sur le prolongement de la diagonale AB.

Concevons présentement que l'on relève le plan de Tun des deux
triangles ADB , AD'B , en le faisant tourner autour de AB , de
manière à reconstruire le quadrilatère gauche; les droites GH, G/H/

ne cesseront pas 5 dans ce mouvement, de concourir en F et dfêtre
eonséquemment dans un même plan , lequel contiendra aussi les
quatre points G , H , G\ H7 ; EC et EC^ ne cesseront pas pa-
reillement d'être dans tin même plan perpendiculaire à AB.

Les axes de ces deux cercle* , c'est-à-dire , les perpendiculaires
menées à leurs plms par leurs centres , seront aussi dans ce dernier
pian , et se couperont conscquemment en un certain point O , lequel,

Tome VL 8
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appartenant a ces deux axes, sera également distant des points G ,
H , G ' , H ' ; puis donc que ces points sont sur un même plan;
ils appartiennent à une même circonférence à laquelle conséquemment
notre quadrilatère est circonscrit (*).

Si les deux diagonales étaient telles que leur somme fût égale
à celle des côtés opposés 5 ces côtés et les deux diagonales ne seraient
autres que les six arêtes du tétraèdre dont il a été question à la
p.îge 3o4 du V.e volume de ce recueil (+Jf).

(*) Dans le vrai, si l'on veut appeler polygone circonscrit à un cercle , comme
on le fait communément , un polygone dont tous les cotés sont des tangentes k
ce cercle, notre quadrilatère gauihc ne sera point proprement circonscriplibie
au cercle , mais à une sphère ajant le point O pour centre et OE pour rayon.

J D. O.
(**) Le théorème élant ainsi démontré pour le quad -iLatère gauche , se trouve

l'être aussi pour le quadrilatère plan , qui n'en est qu un c«is parliculifT. il n'est
pas même difficile d'en conclure aussi la démon*'r,.Lcii pour le cjmMJrilatere sphé-
rique. En y faisant , en effr:t » une semblable construciion » on s'assurera , par les
mêmes moyens , q»ie les points E , E ; se confondent, imaginant alors par les points
G , H , G' , H' des tangentes aux cercles , ces tangentes formeront par leurs
concours un quadrilatère gauche dans lequel les sommes de côtés opposes seront
égales ; il sera donc circonscriptible au cercle , et le cercle qu'on lui inscrira sera

si inscrit au quadrilatère sphérique.

< Noie de Vauteur. )
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Solution du premier des deux problèmes de géométrie
proposés à la page 5-2 8 du V^ volume des Annales ;

Par M. ZINDRINI , professeur de mathématiques au lycée,
et secrétaire perpétuel de l'Institut royal à Venise (*)*

Jt ROBLÈME. Diviser graphiquement Taire d'un triangle en parties
égaies , par des parallèles à sa base F

Construction. Soit le triangle ÀSB ( fîg, 5 ) qu'il faille , par
exemple ? diviser en cinq parties e'gales , par des parallèles à sa
base»

Par son "sommet S 5 soît menée une droite SD , parallèle à sa
base ÀB et égale à sa hauteur SH. Soit co le milieu de cette
parallèle, et soit divisée cQ$ en cinq parties égales , aux points
c t j c% , c% , c4. De ces points $ pris successivement pour centres,
et avec leurs dislances au point D pour rayon , soient décrits des
arcs coupant respectivement la hauteur en hx > hz , hv 9 //4 ; les
parallèles menées à la base par ces derniers points seront les droites
cherchées*

II ne serait pas difficile , d'après cela , de diviser la surface
convexe d'une pyramide ou d'un cône^ en parties e'gales 9 par des
plans parallèles à sa base.

(*) Ce problème t de première facilité, ne pouvant offrir d'intérêt qu'à raison
de l'élégance de la construction , nous avons cru pouvoir passer sous silence une
multitude i'autrea solutionâ cpi'on en a données-
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Si 5 au lieu de diviser c0S en parues égales, on l'eût divisée en

parties proportionnelles à des nombres donnés quelconques , les
parallèles à la base ? au lieu de diviser Taire du triangle en parties
égales , l'auraient divisée en parties proportioniMles à ces même*
nombres.

Le premier cas n'étant même qu'un cas particulier de ce dernier,
c'est celui-ci qu'il suffira de démontrer. Il est évident d'ailleurs que
tout se réduit à savoir diviser Taire d'un triangle , par une parallèle
à sa base en deux parties qui aient entre elles un rapport donné,
celui de m à n. , par exemple.

Démonstration* Tout étant dans la figure 6 comme dans la fi-
gure 5 9 si ce n'ôst que G est le milieu de SD=SH , que SG est
partagée en E en deux parties SE , EC proportionnelles h m et n,
que E est le centre d'un derni-cercle DLK. coupant la hauteur
en L , et qu'enfin FG est la parallèle à AB conduite par L j soient
M 7 N les deux segmens du triangle.

Nous aurons

» i AB. SKtz L AB(DK~SD)

«5est - a - dire 9

M-hN=ABxSC ,

N=ABx(DE~SC)«=sABx(DE—DC)=ABxCE

donc 9 en rctrancliant ,
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De la division du cercle en portions de même périmètre
ayant entre elles un rapport donné;

Par M. GERGONNE.

Dans le I.er volume de ce recueil , page ^4o , M* Lhuîlîer a

donné une très élégante et très-curieuse construction du problème où il

s'agit de diviser un cercle en parties égales à la fois en contour

et en surface»

Ce qu'on vient de lire m'a fait penser que la méthode de M,

Lhuil'er devait s'appliquer au problème plus général où 11 s'agit de

partager un cercle en parties de même contour, ayant entre elles

<*) M. Tédenat observe qu'en divisant la hauteur du triangle à partir du sommet
dans le rapport de » à m désignant par x le premier des deux segmens , par h
la hasteur du triangle total , et enfin par y celle du triangle à retrancher ,* on â
l'équation y2=hx , qui appartient à la parabole et peut fournir une construction.

A la vérité , cette construction n'est point élémentaire , mais M. Tédenat re-
marque que son analogue est peut-être la plus simple qu'on puisse appliquer au
second problème de géométrie de la page 3a8 du Y.e volume , relatif à la py-
ramide ; problème non susceptible de solution élémentaire et qui conduit à l'équation

^e ia première parabole cubique,
I. D. G.
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des rapports donnés. Non seulement l'épreuve a justifie mon attente;
mais j'ai vu que la construction pouvait être démontrée très-briève-
ment, sans rien emprunter de la théorie des suites dont les termes
sont des puissances semblables des termes d'une progression par
différences.

Soit en effet divisé le diamètre 2r d'un cercle ( fig. 7 ) en deux
segmens, proportionnels à m et n \ en sorte que ces deux &egmcns
soient

zmr 2.nr
Z72-J-72 772-4-/2

sur ces deux segmens comme diamètres soient décrits f de part et
d'autre du diamètre total 2r , deux demi-circonférences dont les
longueurs seront consequemment

m-\-n

leur somme sera ainsi ^r ; c'est-à-dire que , quel que soit le rapport
de m à n , la courbe continué formée par les deux demi-circon-
férences intérieures et se terminant aux deux extrémités du dia-
mètre 2T est constamment égale à la demi-circonférence extérieure*

Cette courbe et le.,diamètre zr divisent le cercle extérieur eu
quatre segmens M% N> ffl r W \ et Ton a évidemment , par ce
qui précède ,

ou , en réduisant >
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done

et par conséquent

cVsf-à-flire , qnp la :̂mrhe continue partage le cercle en deux
seg<ac;j;> p:jpuiUouiiili «IUJS. àuguieiis cuirespondans du diamètre.
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QUESTIONS PROPOSÉES.

Problèmes de Géométrie*

I. UÉTERMIKER , en fonction des trois côtés d'un triangle sphérique ,
ï.° le rayon sphérique du cercle inscrit -, 2.0 le rayon sphérique
du cercle circonscrit -, 3.° la distance sphérique entre leurs centres
sphérïques (*)?

II. Déterminer , en fonction des six arêtes d'un tétraèdre , ï.°
le rayon de la sphère inscrite ; 2.0 le rayon de la sphère circons-'
crile ; 3«° la distance entre leurs centres ?

(*) J'entends ici par distance sphérique entre deux points d'une sphère, Tare de
grand cercle qui joint ces deux points. J'appelle centre sphérique d'un cercle d'une
sphère , ce qu'on appelle ordinairement son pôle. Enfin , j'appelle rayon sphérique
de ce cercle l'arc de grand cercle qui joint son centre sphérique à l'un quelconque
des points de sa circonférence»
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CALCUL DES DÉRIVATIONS. 6*

ANALISE TRANSCENDANTE.

Du calcul des dérivations , ramené à ses véritables
principes , ou théorie du développement des fonctions >
et du retour des suites ;

Par M. J. F. FRANÇAIS , professeur à Técole royale
de l'artillerie et du génie.

l'invention du Théorème de Taylor , sur le développement
des fonctions d un binôme, et du Théorème de Lagrange , sur le
retour des fonctions et des séries , bien des géomètres se sont occupés
d'étendre et de généraliser les découvertes de ces deux géomètres
célèbres ; et, sous le rapport de la théorie générale ? on peut dire
que les résultats auxquels ils sont parvenus ne laissent plus rien
a désirer ; mais les formules qui les contiennent, quelques précieuses
qu'elles soient comme solutions générales , ne font qu'indiquer une
suite d'opérations ultérieures , souvent si compliquées qu'elles dé-
eourageut le calculateur le plus intrépide, 11 restait donc à trouver
une méthode simple y facile et uniforme , pour exécuter complète—
me»t et immédiatement tous ces développemens , tant directs que
de retour, Les géomètres allemands sont ies premiers qui ont réussi
dans cette recherche : leurs travaux ont donné naissance à un nou—

Tom.FI, /2.°2I/ , i .C ï septembre I 8 I 5 . g
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veau calcul, appelé Ânalise combinaioire par son inventeur H//2-
denhurg. Ce calcul résout à la vérité la question , mais d'une ma-
nié) e trop disparate avec les procédés ordinaires de l'avalise : il oblige
à former d'abord séparément les groupes de lettres 5 et ensuite leurs
eoeffîeiens numériques , pour lesquels on a besoin de tables de
combinaisoiis calculées d'avance. Il était réservé à Àrbogasi de donner
la solution générale , complète et analiîique de cette question dif-
ficile P dans son Calcul des dérivations* Malheureusement cet ouvrage
est entaché de plusieurs défauts très-graves , qui ont dégoûté les
géomètres de &a lecture , et ont empêché qu'il ne fût étudié et connu
auiant qu'il le mérite. Ces défauts sont i.° de n'a\oir pas assez
justifié l'introduction de ses nouvelles notations ; 2.° de n'avoir pas

7 défini assez nettement ses dérivées et ses dérivations ^ 3.° de déduire
sa théorie d'un principe qui n'est ni assez clair ni assez évident
( n.° 6 ) ; 4»° de l'exposer d'une manière trop longue et trop em-
barrassée ; 5.° enfin d'avoir noyé des résultats vraiment remarquables
dans une foule de choses qui sont , pour ainsi dire , hors d'oeuvre,
et sans liaison avec l'objet principal de son ouvrage ; de sorte que
ce qui pouvait être présenté dans quelques feuilles d'impression est
devenu un gros in-4.°.

Je me propose, dans ce petit écrit, de remédier, le mieux que
je pourrai , à ces défauts de l'ouvrage d'Àrbogast, en déduisant la
véritable théorie du calcul des dérivations du seul théorème de
Taylor, sans l'emploi d'aucun principe nouveau ; de sorte que ce
calcul ne sera , à proprement parler , qu'une extension de ce
théorème.

Afin de rendre l'exposition de cette théorie plus rapide 9 et de
présenter de suite aux géomètres toute la partie usuelle de ce calcul ,
je me contenterai quelquefois de généraliser les résultats par des
conclusions d'induction ; sauf à démontrer ces conclusions dans un
article à part. Pour la même raison , je réléguerai dans des remarques
toutes les observations ; soit sur les notations 7 soit sur le fond même
de la théorie*
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ARTICLE PREMIER.

63

Développement des fondions selon les puissances ascen-
dantes de la variable.

i . On sait , par le théorème de Taylor , que toute fonction d'un
binôme *-\-x ( x étant une variable qui reste indéterminée ) ? peut
être développée en une série de cette forme

(i) K«+*)-a-¥alx+a^-\raîx
3+ ..;

les coefficîens a , ax, az , a% , . . . . étant déterminés parles valeurs
qne prennent la fonction f^-J-ar) et ses coefficîens différentiels

~7 7 , lorsqu'après la différentiationt
1 .

on y fait ^ r=o .

Nous représenterons ces valeurs particulières des coefficîens diffé-

rentiels par Df«, ^ D 2 ^ y i.... ; et nous appellerons , avec

Arbogast, les quantités Df*, B%U , D3f* , . . . • , dérivées, première , se-
condé , troisième 7 . . . . . de f«. Ainsi la dérivée D;zf*, d'un ordre quel-
conque n , n'est autre chose que ce que devient le coefficient différentiel

-— , lorsquon y tait #=so
d o s " •* J **

Nous aurons donc

ï>na ,

d'où Ton tire

réciproquement

D tfrr

(3)
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Les valeurs ( 2 ) étant substituées dans l'équation ( 1 ) donnent

(4) f(«-Hc) = f«+Df«. x+ — D»f*
12

1.2.0

Mais ici il faut observer que ce développement peut devenir im-
possible ; ce qui arrive toutes les fois que f« et ses déîivées deviennent
infinies : ce cas a lieu pour la fonction Log*#, par exemple.

2. Remarque. La loi des Dérivations , ou de la formation des
dérivées successives, est évidemment la même que celle des diffe-
rentiations 7 à la seule exception près que nous supprimons les
dénominateurs inutiles D« , D«*, D«3

 5 ; ce qui revient à sup-
poser B * : = I . En effet , on sait 5 et il est d'ailleurs évident que le
coefficient différentiel d'un ordre quelconque de la fonction d'un
binôme *-\-x est le même , soit qu'on la différencie en regardant
s comme variable et oc comme constant , soit qu'on la différencie
en regardant * comme variable y et x comme constant ; on a donc

. d.f(*+a:) , .
o r e n faiSant ^ = o ,dans .onobuent9 d n

371'f*--— =Dnf«. Il est donc démontré que la loi des dérivations est la
âatl *

même que celle des différentiations ; et il s'ensuit ausssi que les
dérivées d'un ordre quelconque ne sont autre chose que les coef-
ficiens différentiels du même ordre , pris relativement à la quantité
constante « , que Von feint être variable.

Il se présente ici naturellement une objection que l'on a faite ,
dès l'origine , contre la notation du calcul des dérivations : c'est que
les opérations dérivatives étant les mêmes que celles du calcul diffé-*
rentiel , il fallait les' indiquer par les mêmes notations. Je réponds
d'abord qu'absolument parlant la ebose eût été possible -, mais que ,
pour Tordre et la précision , et d'après les règles d'une saine lo-
gique , des opérations qui , bien qu'identiques pour la forme , dif-r
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fèrent entièrement pour le fond , doivent être représentées par des
signes différens. Je dis que ces opérations diffèrent entièrement pour
le fond ; car les signes différentiels se rapportent aux variables et
à leurs variabilité de grandeur , tandis, que les signes dérivatifs ne
5e rapportent qu'aux seules constantes , et que les dérivées succes-
sives n'indiquent qu'une dépendance d'ordre et de succession dans
les termes d'un développement. Si Lagrange a été autorisé à introduire
une notation nouvelle , dans le calcul des variations , pour indiquer*
une opération entièrement identique avec la différentiation , et
qui se rapporte aux variables même t seulement parce qu'elle ne
se rapporte pas à leur variabilité de grandeur , mais à leur varia-
bilité de forme ; à plus forte raison sera-t-il permis , ou plutôt
nécessaire , de représenter par une notation particulière une opéra-
tion qui ne se rapporte pas même aux variables , ni à aucune
espèce de variabilité.

Une autre raison t qui suffirait à elle seule pour justifier l'intro-
duction d'une notation particulière pour les dérivations, c'est qu'elles
peuvent se trouver , et se trouvent réellement souvent combinées avec les,
différentielles, dans uue même formule; il faut donc qu'on ne puisse pas
les confondre : ce qui arriverait infailliblement, si elles étaient repré-
sentées par "une même notation.

Quant à la suppression des dénominateurs D* , D*1, D*5 , . . « « ^
leur inutilité seule suffit pour la justifier. Si des personnes habituées
aux considérations d'infiniment petits tiennent à conserver ces d é -
nominateurs , dans le calcul différentiel ; où leur considération abrège
quelquefois les raisonnemens dans des questions de géométrie et
de mécanique , mais où elle peut aussi égarer ; il n'y a pas la moindre
raison de les conserver dans Tanalise pure , ni, à plus forte raison, dans
les dérivations où toute idée d'infiniment petit serait plus que déplacée.

3, Réciproquement , tout polynôme de la forme tf+tfj #-4-^,2*
a?3+.,., (terminé ou _ncn ) , peut être représenté par # + D a . x

où , entre les coefficiens a y at ̂
x.a.o
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a% 1 #f «•••!•• ••' et les dérivées successives de a ] on a les rela-*
tions (3).

En effet ? en supposant , ce qui est toujours permis y

(5) tf+tf^+tf J ; r 2+# î#
3HK*..= f(*+^) *

on a y d'après la définition des dérivées ( n,° ï ) ,

1.2 1.2 5 I,2.d I,2.d

d'où Ton tire les relations (3)*
Si le polynôme est terminé , et n'a qu'un nombre n de termes ,

aH—t s e r a Ie dernier des coefficlens ; et tous les suivans an , aa^t ?
an+t , r ainsi que leurs valeurs correspondantes y en dérivées de a ,
seront égaux à zéro*

4» Remarque. Il est bon d'observer que l'équation (5) peut être
satisfaite d'une infinité de manières , et que » est entièrement indé-
terminé. En supposant »~o 9 on a

fl=fc, ûrj=:Dfo=Ba, ^ 3 L=—D a fo= — D2tf, ^,r=r -D3fo=^ -D3tf?...;
1.2 1.2 * 1.2,0 1.23 '

ce qui donne encore les relations (3)~
5. Proposons-nous maintenant de développer la fonction drun poly-

nôme quelconque , ordonné selon les puissances ascendantes de la
variable ? en une série qui procède selon les mêmes puissances ; c'est-
à-dire, de déterminer les coefficiens du second membre de l'équation
suivante :

(6) fa+ûtX+a t

D'après le n.° 3 , le polynôme sous le signe de la fonction peut
être représenté par f(^+^r) ; le premier membre de cette équation,
peut donc être mis sous la forme ^f^+jr ) . Il suffit donc de substituer p

dans l'équation (4)» Pf ^u lieu de f; ce qui donne

a.x-\- 7 D2.<p a.^2
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<&n observant cependant que , dans ce cas , chacun des signes de
déiivation indique des opérations ultérieures à exécuter, que nous
expliquerons dans la remarque suivante : c'est pourquoi nous avons
mis un point après chaque signe de dérivation , pour marquer cette
différence.

En comparant terme à terme l'équation (7) avec celle (6 ) , on
en tire les valeurs suivantes:

(8) ji = <pa, Jî —

et par conséquent

(9) <pa = A , -ù.(pa=

6. Remarque. Nous avons démontré, dans la remarque du n.° 2?
ànÎA

qu'on a 9 en général, D"f^= j - ^ - ; on a donc aussi

D.ff.:=— , D\ff. = — - , D».ff-«-35-, ; . . . . ;

d(0a) a d2(<?)a) 3 ^ &(<pa) .

Or, d'après les règles ordinaires de la différentiation des fonctions
de fonctions 9 ou des fonctions de variables qui sont elles-mêmes
fonctions de la variable principale , on a

ou , en mettant 7̂ au lieu de

è(<pa) __ d(^fl) da

d̂ t

* d»
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Passant donc aux notations dérivatîves, en supprimant ïes
nateurs , nous aurons

D .?>f* =

et

Le développement de ces deux premières dérivées suffit pour
expliquer la différence qui exisie entre les dérivées sans point et
celles qui sont suivies d'un point ; entre vça, B2ftf , . . . et D <pa , D\<ptf,.*.
Les premières sont les dérivées de ça , en supposant D#= i , B*tf=o r

D 3 ^=o , . . . , et les autres sont les dérivées de ça 7 en supposant que
a est fonction de « , que ses dérivées successives sont B#, D2a , B3# 5 •<.
et qu'elles ne sont pas toutes égales à zéro. En un mot, les dérivées
sans point, T>ça , Ba<pa, » sont les coefficiens du développement de
<P(a-{-x) et les dérivées suivies d'un point B.Va , B* .^ ,.... sont les
coefficiens du développement de ^(âf+B^.jr^-7Ba^^a-+-^B3^.^3«4-...)

7. En exécutant, d'après la remarque précédente , les opérations
indiquées par les dérivées suivies d'un point, on obtient pour les
six premières, en suivant les règles ordinaires de la différenciation *
lorsqu'aucune différentielle n'est constante 1

a=D4>a.D a
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(10)

et ainsi de suite.

En substituant ces valeurs dans les équatîon-s (8) , et remplaçant
les dérivées de a par leurs valeurs (3) , on obtient

A ~<pa ,

et ainsi de suite»
Nous voici donc parvenus au développement complet des sept

premiers termes dé la série (6) , qtû est l'objet fondamental du calcul
des dérivations r sans supposer autre chose que le théorème de
Taylor , et les règles ordinaires de la di/Térentîatîon. En examinant
de près la composition successive de ces termes 9 on en conclut
aisément la règle pratique suivante , pour déduire immédiatement
un terme quelconque de celui qui le précède.

BÈGLE FONDAMENTALES

8. Pour déduire h développement de A« + 1 de celui*de Anv?es
lettres étant disposées d'après leur ordre de succession ;

i.° On ne fera varier > dans chaque terme , que la derniers?
%om. VU IQ
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lettre ou sa puissance, en suivant les règles ordinaires delà dijfè~
rentiation , et en mettant simplement &x pour Da, aa pour DaI9 af

pour Da2 ,...., sans autre coefficient que l'unité ;
2..0 Un fera varier de plus ( d'après les mêmes règles de la diffé~

rentiation ) l'avant-dernière lettre , sa puissance ou sa fonction ,
si elle se trouve être la lettre qui , dans Vordre numérique des
indices , précède immédiatement la dernière du terme ; et comme
la puissance de la dernière lettre augmente alors d'une unité } on
divisera par son exposant ainsi augmenté.

Pour faire une application de cette règle, et1 pour mieux en
faire comprendre l'usage , nous allons déduire le développement d§
A§ de celui de A % [formules (10) ]„

Le premier terme \&a.a $ donne 5 d'après la première partie de
la règle 7 qui seule y est applicable, TtPa tf 6.Le second terme ~D2f#(2#^4

~t-2tf2#3) donne ^ D ^ / ^ ^ ^ + ^ i ^ + ^ j 2 ) ) dont les deux premiers
termes sont dus à la première partie de la règle , et le dernier
à la secondé partie. Le troisième terme ^T^^a(3a^û l"\"5alat

%) donne
^D3<pj(3£fl

8^44-2.3âfI^1^|4-^î
3), dont les deux premiers termes d'après

la première partie de la règle et le dernier d'après la seconde. Le
quatrième terme -^^Qa^a^a % donne ^^Ça^a^a^^—a^a^) ,
dont le premier terme d'après la première partie delà règle et le suivant
d'après la seconde. Enfin, le terme ~D*QaMi* donne ^-fi^^a.Sa^a^^ ,
d'après la première parue de la règle et 77-D6^.^,6 , d'après la
seconde. En rassemblant tous ces différens termes , on obtient exac-
tement le développement de A§ 9 tel cjue nous l'avons donné
[ formules (10) ] .

On voit f d'après cet exemple , que la règle est d'une exécution
très-facile , et qu'elle fournit immédiatement les termes successifs
du développement, tout ordonnés et réduits à leur plus simple ex-
pression , sans qu'on ait , pour ainsi dire , d'autre peine que celle
de les écrire. 11 est vrai que , jusqu'à présent, cette règle n'est qu'une
conclusion d'induction ; mais nous nous proposons de la démontrer
dans un des articles suivant. Nous réservons pout le même article
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la rè^le ptmr former immédiatement un terme quelconque da
loppement, indépendamment de ceux qui le précèdent,

ot+ Remarque 1. On a pu remarquer 5 en examinant la composition
des formules (10) ? que le signe de fonction 9 ainsi que les signes
de dérivation , n'affectent que la première lettre du polynôme dont
il s'agit :de développer la fonction. Arbog&st appelle cette première
lettre origine de dérivations ou premier terme de polynôme , et.
toutes les suivantes quantités polynômiales. Il résulte de cette obser-
vation que la composition des termes successifs du développement,
en quantités polynômiales, reste la même 9quelle que soit la fonc-
tion à développer ; et que toute la différence , dans le dévelop-
pement des diverses sortes de fonctions , consiste dans les valeurs
des dérivées D$a 9 T?$a, D3$a ,...., qui n'affectent que la première
lettre du polynôme* Ainsi on a ? pour

, ï)3$a^m(m~^i)(m

pour e

pour

^t ainsi de suit© ? pour d'autres formes de fonctions.
Si le polynôme sous le signe de fonction était terminé , et CQÏÏH

posé de n termes, on aurait # w = o , ^ + ï = o , ^ / ï - ^ i ^ o , • • , . ; if
suffirait donc alors de rejeter , dans les formules (10) , tous les
termes où il entrerait, comme facteur, «no des quantités polynô-
miales dont l'indice serait supérieure 72— 1 ; e t , dans l'application1

àt la règle du n.° précédent f on s'arrêterait, dans cha que coeiEcient
ffs terme affecté de #„_ , .

ÎO. Remarque IL L'inspection des termes successîfa ( io) du
de Té^uatioia (6) fait aisément ééQQWvfe la loi
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marquable qui y règne. Elle consiste en ce que Ân est composé de
n termes , formés des dérivées successives

dont les eoefficiens se composent de la manière suivante : i.° le

coefficient de est composé de tous les produits de r lettres
»..2.3....r *

qu'on peut former avec les quantités polynômiales #, , a% , #3 ,..*.an,
de manière que la somme des indices de chaque produit soît n t
ckaque lettre étant supposée écrite autant de fois qu'il y a d'unités
dans son exposant; 2.0 les eoefficiens numériques de chaque pro-
duit indiquent le nombre de permutations dont les lettres de ce

produit sont susceptibles* Ainsi > le coefficient de • dans À^ est

composé des trois produits ^axaxa4-|~2.3tf1tfî#^\-a%ataz , qui sont
les seuls qu'on peut former avec tro^s lettres , de manière que la
somme des indices dans chacun soit e^ale à 6 : leurs coeiBciens
numériques indiquent, comme on volt, le nombre des permutations
dont les lettres qui les composent sont susceptibles. *

Celte remarque, traduite en deux règles pratiques, Tune relative
à la formation des groupes de lettres , et l'autre relative à celle
des eoefficiens numériques , d'après la théorie des combinaisons,,
constitue YAnalise combinaioire des géomèires allemands-

11. Si , au lieu de la fonction d'un polynôme ^(^+/7I^r+<72^r2-j-.,.)
on avait à développer la fonction <pi(«HH#) d'une fonction de binôme,.
il suffirait 5 d'après le n.° 5 ? de substituer, dans les équations (10),
ou dans les résultats obtenus par la règle du iu° 8 , pour les quan-
tités polynômiaies a ? al , a % , a^ ?•..*, leurs valeurs (2)..

EnHn , si Ton avait à développer la fonction dune fonction de
polynôme nI/f(#+#Lar+#^3+tf j#3--{-".. .•) 5 on aurait, d'après le
même, n.° &r

et
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et il suffirait de substituer, dans les équations (10) , ou dans les
résultats obtenus par la règle du n.° 8 , pour les quantités poly-
nômiales a, ax 9 a% , a% ,.... les dérivées correspondantes ça , *D.<Pa >
fD2.<Ptf, \lfjPa >..•., qui doivent être elles-mêmes développées selon les
règles du n.° 8.

Il serait même aisé, dans ce cas , d'obtenir immédiatement le
développement de la fonction proposée ; car , en mettant dans l'équa-
tion (7) ->]/$ à la place de <P, on obtiendrait

et au moyen d'une légère extension donnée à la règle du n.e 8 ,
on trouverait

p . ^ ^ =

et ainsi de suite.
Le développement ptdcédent équivaut h celui d'une fonction triple

d'un binôme -fff(#-4-;£). En effet 9 ,pQur avoir le dév^lQppaxnent-de
celte l'onction triple, il suffit de substituer, d^ns les formules pré-
cédentes, pour a 7 ax , ax^a^ ,,...,.•, les valeurs (a) , en
de m.

Nous ne pousserons pas plus loin ces observations , sur le
loppement des fonctions multiples ; ce que nous venons de dire
suffit pour faire apercevoir la possibilité de cette extension, au moyen
du calcul des dérivations.

12. Jusqu'à présent nous n'avons considéré que les fonctions â'un
seul polynôme , et nous avons complètement résolu le problème <ie
leur développenuent,successif : il nops resterait .maintenait >k résoudre
la même question .pour les fonctions de plusieurs polynômes , ainsi
que pour celles des polynômes à double ou à triple entrée ; niais
les limites que nous avons dû prescrire à cet écrit, ne nous

Temc FI* n
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mettent pas d'entrer dans ces détails :; nous nous contenterons d'à?
jouter encore le développement des produits de deux polynômes
et de deux fonctions de polynômes , parce <jue nous en aurons besoin
pour la théorie du retour des suites.

Proposons-nous d'abord de développer le produit

(n) (^+^I^+^1^4-^J^
3-f-...)x (H- 'blx-

en une série de la forme

En effectuant [a multiplication, par le procédé ordinaire, on obtient

A ~ab ,

A,=#

où la loi est évidente.
D'après le n.° 3 ? le problème peut se mettre sous la forme

En substituant donc , dans l€s équations (12) , pour ax , <tx , a% , ..•. ;
#1 » bx> b% ;.... leurs valeurs en dérivées de a et de b 9 d'après le
n.G 3 , on obtient

A =ab ,

Al~T>[ab)z=a.

04)

— lb
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où a et b ( d'après les n.os 3 et 4 ) s o n t supposés être respec-
tivement fonctions de deux quantités arbitraires # et £ , dont les
dérivées sont D«c = i , D ^ r o , . , . , , D/3 = i , D*/B = O , . . -

De la comparaison des formules (12) et (14) résuite la règle pratique
suivante ;

RÈGLE.

Poig- déduire Aa+l de A« [formules (12)] , i.° ne faites carier
dans chaque terme f que b et ses dérivées , en écrivant hî pour
Db , bt pour Db, , bf pour vb,,....; 2.0 âr/w le dernier terme
seulement s qui contient la plus haute dérivée de a 9 faites varier
cette dérivée 9 en écrivant art+ j pour Daw.

i3. Soit maintenant à développer le produit de deux fonctions
de polynômes

D'après le n.° 5 , cette équation peut être mise sous la forme

(16)

qui, étant comparée à celle (i3) , fait voir qu'il suffit de remplacer,
dans celle-ci, a par <pa s b par ^b , et les signes de dérivation
sans points par des signes de dérivation avec points ; on aura donc,
d'après le même n.° 5 , les équations analogues à celles (14) > c'est-
à-dire ,

2.2...T»



76 C A L C U L
où chaque dérivée de Pa et de $b doit être développée comme les
équations (10) • c'est-à-dire, d'après la règle du n.0 8. Les formules
précédentes contiennent donc , au fond , tout ce qu'il faut pour la
solution complète de la question ; mais , pour ne rien laisser à
désirer, nous allons en déduire les moyens d'exécuter immédiatemeut
le développement complet de ces formules.

i4» En exécutant les dérivations indiquées , au moyen de la règle 8,
effectuant les multiplications, et ordonnant le tout par rapport aux
expôsans des dérivées , on obtient

A z~<pa*

%a J)
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axbx*b^a %b *)

et ainsi de suite.
En examinant la composition successive de ces coeffinens P on en

conclut la règle pratique suivante , pour déJuire immédiatement un
.coefficient quelconque de celui qui le prcc«jde.

Pi È G L E.

i5 . Four déduire le développement de A n + I cïc celui de fin; les
dérivées des fonctions étant disposées en colonnes 9 d'après les
dimensions de leurs exposons , et les lettres d'après leur ordre de
succession \

i.° On ne fera .varier 9 dans chaque terme de chaque colonne,
que le,s coefficient composés des quantitéspolynômiaïes a i5 a% , a^ , # .o

b, , hz , b , ,.*.., d'après la règle du n.° 8 ; en observant , pour
çcux^ qui contiennent à la fpis des a et des b , de ne faire varier d apord
eue les b r et ensuite les a ? mais dans le dernier terme seulement
4e chaque coefficient.

2.0 On fera varier de plus , mais dans la dernière colonne seu~
lement , la fonction ^b , dans tous les termes -r et 9 comme /a
puissance de b, augmente alors d'une unité, on divisera par son
exposant ainsi augmenté ;

3.° Enfin , on fera encore varier , mais dans le dernier terme
jde la dernière colonne seulement , la Jonction <pa ; et, comme Jm
puissance de aÂ augmente alors d'une unité * on divisera par ±o&
txptisant aitisi augmenté*

Dormons des exemples de chacune des trois parties de cette règles
-â,° Le coefficient -de j&^fa.&'ïb, dans -^4* ŝ t• ûl

2i-z^2àr£p ? v
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Pour en déduire celui du même terme dans Â% , je fais d'aLord
varier les b , ce qui donne a\*bj+2tf\a2b, ; faisant ensuite varier
les a dans le dernier terme zalatbl , on a , d'après la première partie
de la rçgie du n.° 8 , ^alalb^ et d'après la seconde partie de cette
règle ax

zbx* Rassemblant tous ces termes , on a le coefficient de
^B2(Pa^b dans A$ ,

2.0 En appliquant la seconde partie de la règle ci-dessus aux
cinq termes de la dernière colonne de Aé 9 on obtient les cinq
premiers termes de la dernière colonne de A % ;

3.° Enfin , en appliquant la troisième partie de la règle ci-dessus
au dernier terme — D^tf/Wu/,4 de la dernière colonne de AA , on
obtient le dernier terme —^ça^b.a^ de la dernière colonne de A %>

Cette règle est encore d'une exécution très-facile , et si expédi«
tive qu'on peut écrire de suite , et sans s'arrêter , les termes suc-
cessifs du développement. Elle n'est, jusqu'à présent, de même que
celle du n,° 8 , qu'une conclusion d'induction ; mais nous la. démon«
trerons complètement dans la suite , et nous donnerons aussi une
règle très-simple , pour écrire immédiatement un terme quelconque
du développement, indépendamment de ceux qui le précèdent,

16. Remarque I. En examinant la composition des termes suc-
cessifs (18) du développement de l'équation (i5) , on découvre la
loi remarquable suivante qui y règne* Le terme général An est
composé de n colonnes , ordonnées selon les dimensions des expo-
sans des dérivées de 9a et 4$ , de manière que la m™* colonne
contient les m-\-x termes

Chacun de ces termes a pour coefficient une fonction des quantités
çolynômiales ax , a%% a% ,..»., bx $ b% , b% f .« , dont voici la foiv

mation : en supposant r+s~m » le coefficient du terme « . est
r r i,a...r i.%,.*

composé de tous les produits de ra lettres, dont un nombre r des
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quantités polynôrniales en a et un nombre b des quantités polynô-
miales en b , de manière qua la somme de tous les indices de
chaque produit soit égale à n, Quant aux coefficiens numériques
de chaque produit, on les obtient en multipliant l'un par l'autre
le nombre qui indique celui des permutations qu'on peut faire #

entre les quantités polynômiales en a , et le nombre qui indique
celui des permutions qu'on peut faire entre les quantités poîynô*
miales en b*

Ainsi, le coefficient de • Da<ptf.̂ D3^ , dans Àf est

Zal*blb%
%+Zal

%bl
%b%+Gala%b*b%+zalolbl

l-\-a%
%b* , c'est-à-dire 9

qui contient en eiïet tous les produits possibles de deux quantités
polynômiales en a et de trois en b , cle manière que la somme des
indices soit égale à 7 ; et qui a des eoeiïïciens numériques qui
suivent la loi que nous venons d'indiquer.

On pourrait donc , au moyen de cette loi , qui est d'ailleurs la
même pour une fonction quelconque de deux polynômes indépen-
dans , former immédiatement un terme quelconque du développe-?
ment 9 par la théorie des combinaisons ; ce qui donnerait une exr
tension considérable à Tanalise combinatoire de Hindenburg ; mais
le moyen que nous donnerons par la suite sera à la fois plus simple $

plus direct et plus^analitique.
On remarquera sans doute que la simplicité de l'énoncé de cette

loi , ainsi que de celle du n,° IO , n'est due qu'au choix que
nous avons fait d'indices numériques , pour représenter les quan-
tités polynômiales ; elle n'aurait pu s'énoncer que très-difficilement #

gyec les lettres dans Tordre alphabétique , employées jpar Arbogast
et Hindenburg. Ces lettres à indices ont encore l'avantage d'indiquer f

de la manière la plus caractéristique , leurs relations avec les dérivées

d du polynôme 9 puisqu'on a généralement ^a=s ——%
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tant îi est vrai que souvent Je plus léger changement dans les "no-

tations peut avoir l'influence la plus heureuse sur les méthode*.

17. Remarque II. La theoiie que nous venons d'exposer, con-

tient tout ce qui est nécessa re pour le développement complet des

fonctions d'un polynôme , et même , à la rigueur 9 pour celui d'une

fo£i.Mon quelconque de deux polynômes indépendans ; c r̂ il suffi-

rait, pour le développement de ${a>\-aiX+azx*-\-..., //H-7*,T-+-/J »-**+...) ?

de remplacer , dans les formules ( 18j) 7 les produits tels que

j>rq>a J}*^b , î l ( . , • 11 i ' * i 1 - 7 \

. par les «lenvees partielles du même ordre de <p a , b).
t.z...r 1.2...s r l '

2VJais , nous allons encore envisager cotte tliétrie sous un autrs

point de vue , qui nous facilitera singulièrement l'exposition de celle

du retour Ses fonctions et des séries , à laquelle nous nous propo-

sons de consacrer l'article II.

18. On a , par le n.° 1 9

( 19)

51 Ton suppose

(20) _y~

ôùJlés coeffîciens €tï 9 a2 , a% ?.*.. représentent des quantités quel-

conques et 'indépendantes , et qu'on substitue cette valeur de y dans

Vëquatiôtr (f:c)) ,-sên premier n^êtribre se transformera en celui de

l'é(jiiation (7 ) ; - on aupa d jms

,(21)

Ces detfx yjévtioppomoils ne dilTèrent l'un de l'autre qu'en ce que;

*d'âhsies*d<éfivées du premier , on suppose D^7=i , D2^ = o , D5a=o9...r
"et danŝ  celte "du second , &a=a1 , v2a~2,az , D3tf=6^f »...«. La-
sïniàhiiêre'4de déduire les dérivées suivies d'un point, de celles js

1-expensée aus n.^5 7 et 8V

oi xnoy.cn ,de ; résoudre cette
ÛOll
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lion : y étant une fonction donnée de x > ou un polynôme en x ;
développer , selon les puissances de x , une fonction quelconque
ç>(a-hy) ? En effet , d'après le n.° 3 , l'équation (20) peut être
mise sous la forme

et Ton a

(23) a, = U 9 a1—

c'est-à-dire , que ax doit être considéré comme un premier terme
de polynôme.

En substituant ces valeurs dans l'équation (21) y on obtient

(24) $0+ f̂(«+.z")}=: $

©ù , dans le développement du dernier membre , qu^on exécute
d'après la règle du n.° 8 , il faut substituer, pour a, , a% , ay>..»
leurs valeurs (sS).

19. Si , dans la question du n.° précédent, la valeur de j e t a i t
donnée par l'équation suivante :

(25)

qui , d'après le n.° 5 > devient

(26) j = ^ ^ + D . ^

il faudrait faire , dans le développement du dernier membre de
Féquation (24),

(27) a.—^cc , *,=D.*f#i , a%—\x>*M*> Û4=-6T>3.t£«,..„;

mais , conformément aux principes des n.os 5 et 6 , ces dernières
dérivées doivent être survies- d'un point ? et développées d'après le

n.* 7.
20. Si Ton avait à développer , selon les puissances do x \ la

fonction <p[a-\-z) , z étant donné par l'équation*
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(28) z—

et y par l'équation (22) ; on aurait

(29) ^{a+z) = 9

mais ici , dans le développement des dérivées du dernier membre ,
il faudrait remplacer a^ , az , o% , ..•. par 4^ , D.+Ê 1 f D 2 . ^ , . . . . ,
en observant de mettre , dans le développement de ces dernières
dérivées , f* à la place de D/3 , Df« à la place de ^D3/3 7 ^D3f̂  à la
place de ^D3£ ; et ainsi de suite.

On pourrait aisément pousser plus loin ces substitutions' de fonc-»
tions dans les fonctions, ou de séries dans les séries; et l'on voit
que le principe do leur développement par les dérivations est simple
et uniforme : il ne reste que la complication des résultats , qui est
inhérente à la cliose même.

A R T I C L E IL

Développement des fonctions selon les puissances d'une
Jonction quelconque de la variable , ou retour des
Jonctions et des séries.

2.1. Depuis le n.° 18 de l'article précédent ? nous nous sommes
occupés àe la question suivante : le développement d'une fonction
quelconque , selon les puissances d'une fonction donnée de la va-
riable principale ^ étant supposé connu -, en déduire le développement
selon les puissances de la variable principale ? Dans cet article ̂
noua allons résoudre la question inverse , savoir : le développement
d'une fonction quelconque , selon les puissances de la variable prin-
cipale , étant donné , ainsi que la relation entre celte variable et
une autre fonction ; en déduire le développement selon, les puis-
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sances de cette dernière fonction ? Cette question contient le pro-
Llèrne général du retour des fonctions et des séries.

22. Proposons-nous de transformer le polynôme

(3o) J+J^+J^-t-ÀiX3-^..... ;

procédant selon les puissances de la variable principale x , en un
polynôme

(31 ) B+By+B 2y*+B 3j3+.^

procédant selon les puissances de y } dont la valeur est supposée

donnée par l'équation (ao)

En comparant le polynôme (3o) avec l'équation (21) , et le po-
lynôme (3i) avec l'équation (19) «, on obtient

(32) J = ?a , Ai — Btfa, Jz — \D*.<pa, Jt = 1 D 3 . ^ , . . . ,;

(33) B=-$a, Bt=j}fa, B ^ J D 1 ^ , B\—\ifl*a,

Ici , ce sont les dérivées suivies d'un point qui sont données immé-
diatement -, et la question se réduit à en déduire celles sans points.
On pourrait la résoudre en tirant les valeurs de ces dernières des
équations ( i o ) f par des éliminations successives ; mais , outre que
ce moyen serait trop long , il est peu propre à faire découvrir la
loi qui y règne : il est bien plus simple de les former immédiate-
ment de la manière suivante.

On a , d'après les n.Os 6 et 7 , T)JPa^=-'D<pa.al 9 et par conséquent
T>ça — at~

t'D.9a ; donc, en répétant l'opération indiquée par cette
équation , on obtient

(34)

D ^a"=-
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mais ici il faut observer que la manière dont nous sommes parvenus
à ces relations suppose que al est un second terme de polynôme 5
c'est-à-dire que , d'après le n.° 1 , on a

2 »2«*<7Z

et par conséquent

ainsi, dans le développement des seconds membres des équations (34) i
il faudra substituer pour les dérivées de#j leurs valeurs précédentes.

Mais si, conformément au n.° 18 , on veut considérer ax comme
premier terme de polynôme , on a

1

1.2...»

en substituant ces valeurs dans les développemens des équations (34) »
ce qui re\ient à y écrire 2T>at pour D#J , 3DVÏ pour D1^, , l^ax

pour Blat ,...., m>n'*~lat pour T>*—Îai , on pourra mettre ces équa-
tions sous la forme suivante ; „

(35)

D <pa=Dtl~-l.(al
 nD.<pa) .

En substituant ces valeurs dans les équations (33) , et remplaçant
fa par A9 ou obtient enfin

B=A,

(36)
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où , d'après l'observation du n>° i8 , et d'après l'observation pré-
cédente , ax doit être considéré comme un premier terme de polynôme.

^3. Si Ton fait attention que l'équation (20) peut être mise sous
la forme (^2) % et que le polynôme (3o) , d'après le n.° 3 , peut
représenter une fonction quelconque <p'^+^) ; le problème du n.°
précédent fournit la solution de la question suivante : Plant donnée
la relation y=.rf(«-f-i?) , développer la fonction quelconque $ l\x)
suivant les puissances de y,

D'après cela, si Ton substitue , dans le polynôme ( 3 i ) , les va-
leurs (36) , et dans celle-ci pour A et at leurs valeurs pb et f#,
on aura

(37) ^5+x N

où Ton peut supprimer , si ion veut , les points qui suivent les
signes de dérivation qui affectent <pb-, car , dans le binôme b>\*x f

on a D £ = I - , et par conséquent B.fb=:i)çb.
On aurait de même 9 dans la même hypothèse,

(38)

mais ici les points , après tous les signes d« dérivation , sont in-
dispensables , car on a D 3 = ^ 5 t v%b=-zb% , B^è^Sb^ ,...., et par
conséquent D.çb^=-Dçb.bt ?,....

On aurait encore , de la même manière , et pour la même va-

leur de y ,

(39) ^ c H ^ ^ ^ + c ^ r ' a - ^ ^
où les points , après les signes de dérivation sont encore nécessaires :
parce qu'on a D.-ïçb — Dil/tpb.vçb.

2,4. S i , dans la question du n.° précédent, la valeur de y étaif
donnée par l'équation (a5)

Tem* Vh 14
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M faudrait substituer, dans les équations (36) , pour ax sa valeur

"̂f* , conformément au n.° 19 ; ce qui donnerait , d'après l'observation
faite sur l'équation (37)

(4.0)

Dans le cas particulier où 4, représente la puissance —1 , l'écjua-

tion (a5) devient

et alors l'équation (4o) se change en

(42) $(a4^)=0j+f«.D^&.y+rD.[(f«)»^^

On aurait de même, pour la valeur de y (2 5 ) ,

(43) ¥$$\*x)-¥$h\-{$i«)^n$$b.y^\W

où la même observation n'a lieu qu'après l'équation (3Q).
^5, Proposons-nous enfin de résoudre la question suivante : étant

données les relations

(44) f^xf(«+a;) , z=*

développer la fonction f (£+#) selon les puissances de z 9 sans @

ni y*
En comparant les solutions des n.os préeédens avec la question

dun , ° 2 0 , dont celle-ci est l'inverse, on obtient immédiatement

en observant seulement de mettre ? dans le développement des dé«
rivées de -^s ? f̂  pour D/3 , vï* pour ^D?J3 , iD2f« pour ^D3/3 ? et
ainsi de sfcite.

En se conformant à cette observation 9 on aurait de

- I D.Fp6 .^
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26. Remarque. La question traitée au n.° précédent est une es-

pèce de retour double : on pourrait en former de pareilles sur des
retours triples , quadruples , etc. : le principe de leurs solutions se
déduit aisément de celle du n.° précédent ; et leur développement
par les dérivations s'exécuterait aussi facilement que leur complication
naturelle peut le permettre.

27. Depuis le commencement de cet article , nous n'avons fait
qu'établir les formules générales du retour des fonctions et des
séries ; occupons-nous maintenant de leur développement complet
et effectif. Reprenons , à cet effet , les problèmes du n,° s3 , et
proposons-nous de développer complètement les coeiEciens successifs
B , Bl9 B% , B3 f.... de l'équation (38).

Comme nous avons vu , aux n.os 18 et 22 , que at devait être
considéré comme un premier terme de polynôme , dans l'équation
(20) ou (22), et que d'ailleurs les quantités at , ax 7 a% 9... peu-
vent être quelconques % nous les remplacerons par cJc1^c%ycl^.... ;
afin de conserver la régularité dans les développemens ; ainsi, l'é~
cjuation (20) ou (22) deviendra

(47) y==orf(«+^)=

Au moyen de cette observation , le problème en question se réduit
à développer les termes B , Bx , B2 , B3 ,.... des équations f36),
en y substituant c k la place de ax 9 et de $b à la place de A \
ce qui donne

(48) iBl=c-1LD.(pi , 25a=D.(£-*D.<p£)? 3B%={D\(€-'i>.<pI>).^

En comparant ces termes avec la formule (17) , on voit aisément
que leur développement doit s'exécuter par la même règle, en
observant cependant qu'ici la fonction <pa e$i remplacée par une
puissance négative de c , dont l'exposant est égal à l'indice du terme;
et que la fonction -$>h est remplacée par B.pi. Avec cette attention ^
on aura, en suivant la règle du n.° i5 ? les développemens sui-
Tr.ans ? analogues à ceux (18)
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\2Bt=c\

(4s)

h#,=< C~ *
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H
et ainsi de suite»

Si Ton effectue les dérivations des puissances négatives de c"l
qui ne sont qu'indiquées , ainsi que celles de v% , et qu'on ordonne
selon les dérivées de H , on obtient

(5o)

C"*.2t

-^c~

2.3
-7

~ ^

Tome FI.
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r /

3.3 ^

_5.6.7.8_,

2.3.4

5- 6-7,_ 8 r , ,

I 2 O

et ainsi de suite.
L'examen de la composition successive des ternies fournît encore

une règle pratique 9 pour déduire un terme quelconque de celui
qui le précède.

R È G L E .

28. Pour déduire le développement de ( n+ i^B n + I de celui de
nBM , celui-ci étant ordonné en colonnes , par rapport aux dérivées
successives de $b , les termes de chaque colonne , par rapport aux
puissances de c, et les quantités polynômiales d'après leur ordre
de succession ;

Ï.° On divisera tous les termes de nBfl par n , on multipliera
chacun par Vexposant de c dans ce terme ( abstraction jaite du
signe ) , et Von augmentera cet exposant d'une unité ( aussi abs-
traction faite de son signe ) ;

2.0 On ne fera varier 9 dans chaque ferme de chaque colonne f,
que les coejjïciens composés des quantités polynômiales hx, bt, b%, *..,
ci 5 c i » cf ,.,.., d'après la règle du n.° 8 j en observant 3 pour
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ceux qui contiennent à la fois desb et des c, de ne faire carier d'abord
que les c , et ensuite les b , mais dans le dernier terme seulement
de chaque coefficient*

3,° On fera varier de plus 9 mais dans le dernier terme
seulement de chaque colonne 7 la puissance de c ; et, comme la
puissance de cî augmente alors d'une unité > on divisera par son
exposant ainsi augmenté ;

4° Enfin y on fera varier # , dans le tout dernier terme seu-

lement, en mettant (r t+i) • •• pour n , et augmentant

la puissance de bl d'une unité.
Cette règle est analogue à celle du n«° i5 : dans l'exécution ;

on n'a pas besoin de faire d'avance la -préparation de la première
partie ; elle peut se faire à mesure qu'on opère sur chaque terme.

29. Au moyen de la régie précédente 5 on peut écrire de suite
les termes successifs du développement de l'équation (38) tout
ordonnes et réduits à leur plus simple expression. Si Ton suppose
b^i , ^ 2 r=o, £3=^o,...., on aura le cas de l'équation (37); et
II n'en résulte d'autre changement a la règle précédente qu'une
simplification dans la seconde partie ? parce qu'il n'y a plus que
des quantités polynômiales d'une seule espèce ; ainsi 9 les formules
(5o) deviendront , pour ce cas ( en remplaçant les colonnes par
des parenthèses ) ,
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et ainsi de suite.
Pour le développement de l'équation (89) ; comme on a , d'après

le n.* 5 f

la règle reste la même ; mais , au lieu de <ph , il faut écrire
D<pb au lieu de bx ; \tfqb au lieu de b% , ^<pb au lieu de #f , et
ainsi de suite»

Pour le cas de l'équation (46) , comme 4 / f « = ^ , il faudrait,
en conservant la mêfrie règle, mettre partout $c à la place de e,
jyj'c à la place de cx , ~ D 2 . ^ à la place de c% , ^ D 3 . ^ à la place
de c% ,•...-, en observant que ces dérivées doivent être elles-mêmes
développées selon la règle du n.° § ; que D.^^D^A^^D^fa.pf*, ,« t

et ^ue â dans ces derniers développemens ^ il faut substituer f* pour
c , Df* pour ^Ï , 7Daf«» pour ^2 , ^D3f* pour ^5 ?̂ .**

Pour le cas de l'équation (43), il faudrait tenir compte , \ la
fois , des deux observations précédentes > et écrire F<pfr pour <pfr f

&<pfr pour ^ I î . . . > , et ^c pour c, D . ^ pour ^ , ....
Mais, pour l'équation (42), la règle du n*° précédent Remploie

sans la moindre restriction , parce que cette équation ne diffère de
celle (37) que par le signe des exposans de c ou f*r dont cette
règle est indépendante.

Pour le développement de l'équation (45) , il faudrait remplacer
£-> Ci, c%,.,..<, par $fir 3 D$j^, &*.$? ,....,» en observant que DP=c 9

Enfin,
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Enfin, pour le développement de l'équation (46) , il faudrait

tenir compte de l'observation précédente , et de plus mettre Fçb
p o u r <pb, D<?b p o u r b s y \^<pb p o u r b 1 ? . . .

Au moyen de ces observations, l'application de la règle du n.°
précédent est générale.

3o, Remarque. En effectuant les dérivations de B$b , indiquées
D3Qb jy^çb

dans les équations (49) , on obtient &2<pb , —L-, —7- , . . . . . : nous

avons préféré, dans les équations (5o) et ( 5 i ) , d'écrire , à la place
. , B2<pb T>îéb VKpb 7 , 7

de ces résultats. 2 f 3 —r- , 4 > parce que D#, 7D2# ,
2. b 2.4. * '

D̂3<P<5 , ^D 4 # , ..„ ? sont les coefBciens du développement de ¥^b\x) 5

et que, parce moyen, les coefïiciens numériques sont mis en évidence:
ainsi, pour le problème du n.° 22 , on a

Nous avons déjà remarqué au n.° 27 que ? d'après les n.os 18
et 22 , /7j devait être considéré comme premier terme de polynôme 9

et par conséquent comme indépendant de a ; c'est pourpuoi , dès
le n.° 23, nous avons remplacé partout cette lettre par b , sous
les signes de fonction 7 afin de ne pas induire en erreur ? par une
prétendue dépendance qui n'existait plus. Cette observation deviendra
encore plus claire par la théorie de l'article suivant.

C'est pour la même raison, et penrr conserver la régularité de
la loi des dévelcppemens , que nous avons remplacé , au n.° 27 ,
le polynôme Û1^-Û%X-\~G?#

24-.... par celui c-^fc^^cxJT2+.... Si,

au n.° 18 5 nous ayons préféré la première de ces \-ux formes,
ce n'était que pour mieux faire apercevoir Fidentité des dévelop—
pemens de ^+^ I^r+^r1^3+.. . . ) et de q)\a-\-cc(al'+a%x-\-..*.)\ ? et
pour rendre plus palpable la dépendance mutuelle des coefïiciens
des développemens de ç(a-\-y) et de pfzz+tf^-f-tf^M""....) ; dépen-
dance qui nous a tant simplifié l'exposition de la théorie du retour
des suites. On aura remarqué sans doute que la loi de cette dé—

Tom.FI, n.°IF,i.eT octobre i8i5. 16
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pendance est la même que celle du changement de la variable
principale , dans la différentiation d'une fonction de deux variables.

A R T I C L E I I I .

Démonstration des règles de développement, et règles
pour écrire immédiatement un ternie quelconque des
développemens , tant direct que de retour.

3 i . Les règles des n.os 8 , i5 et 28 ne sont que des conclusions
d'induction , tirées de l'examen de la formation successive des termes
d'un développement ; et , sous ce rapport , elles peuvent laisser

-quelque doute sur l'exactitude des résultats qu'elles fournissent. Il
est donc nécessaire de démontrer ces règles , afin que le calcul de»
dérivations soit non seulement un instrument commode et expédilif 9

mais encore sûr et rigoureux.
Ces mêmes règles n'offrent que le moyen de former successivement

les termes du développement , en déduisant chacun de celui qui le
précède ; de sorte que, pour avoir, par exemple , le vingtième terme
du développement , il faut calculer auparavant les dix-neuf qui sont
à sa gauche. Mais souvent on n'a besoin que d'un terme assez
éloigné de l'origine du développement pour que le calcul préalable
de tous ceux qui le précèdent exig£ une perte de temps aussi
considérable qu'inutile à l'objet qu'on a en vue. Il est donc essen-
tiel d'avoir le moyen de former immédiatement un terme quelconque 9

indépendamment de tous ceux qui seraient avant lui.
Tels sont *̂ s deux objets que nous nous proposons de remplit

dans cet article.
3a. S i , dans le polynôme a*\-alx~\->atx*-}ra5#M-.— , on suppose

dfx = o , tfj=o5...., l'équation (7) deviendra

mais , par la supposition que nous venons de faire , on a [ équa«

txons (3) ] , T>a=zax f D 2 £ = o > D3# = o ,••«•; ce qui donne , d'après
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les n.os 6 et 7 , n.$a = D<pa.al , tf.ça^tfça.aS y tf.i>a=D*pa.at*,,..
En substituant ces valeurs dans l'équation (;>5), on obtient

résultat identique avec celui qu'on aurait obtenu en mettant atx à
la place de x dans le théorème de Taylor.

Supposons maintenant que ax devienne ax-\-a%x : les puis-
sances de ax se changeront en puissances de at^ra7[x qui ,
étant elles - mêmes des fonctions de binôme , peuvent être dé-
veloppées comme les équaiions (82) et (53) ; mais , dans
€e cas , ces formules se termineront , parce que Dat^=:û2

D'^j^O;... donnent, en général, ——-=(D0 ,)"=*, ", etD*+ l^ I
H=:o.

Substituant donc , avec cette attention , at^ra7tx pour a t , dans l'é-
quation (53) , on obtient

En effectuant les dérivations indiquées , d'après les règles ordinaires
de la dlfférentktion , et remplaçant Dû t par a2 , cette équation
devient

En ordonnant cette équation par rapport aux puissances de x
©n obtient

(54) <P

+(7B2^a.2#i0244D3^-âi3)^H-(rD2^û«û23^

Si Ton suppose ensuite que a% devienne ax-\-a%x , l'équation
précédente deviendra, d'après les mêmes principes,
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ou , en effectuant les dérivations indiquées , mettant a 3 pour D#,
et ordonnant par rapport à x ,

(55) ç(a+atx+a tx*+oîx*)=<pa-+-V9a*alx+-(J)$a>o %+\ù*QaMx*xr)x*
+|D3(pa.3afa ,

En comparant les coefHcîens des seconds membres des équations
(53) , (54) , '̂ 55) avec les formules ( I O ) , on voit que les deux
premiers termes de l'équation (53) , les trois premiers de (54) et
les quatre premiers de (55) sont déjà complets. En continuant ces
substitutions, on obtiendrait chaque fois un terme complot de plus,
et Ton arriverait enfin au développement entier de la fonction de
polynôme <p(#+#xx-\~aZX%+Û}#3-K...)• Mais, sans aller plus loin,
nous pouvons déjà observer, i.° qu'on ne fait jamais varier, dans
chaque terme . qu'une seule lettre à la lois, ou sa puissance , et
que celte lettre est la dernière dans l'ordre des indices ; car, d'après
la marche que nous venons de ^suivre 9 dans ces dcveloppemens
successifs , il est évident que les dernières lettres , dans Tordre des
indices , ne proviennent que des variations qu'ont subies les lettres
précédentes-, or , si Ton faisait encore varier celles-ci , il en résulterait
que les mêmes lettres auraient subi plusieurs variations -, ce qui est
contraire a la marche de ces substitutions successives , où l'on ne
fait plus attention aux lettres qui ont déjà subi une variation ; et
il s'ensuit que , dans chaque terme 9 on ne doit faire varier que
la dernière lettre ou sa puissance ; 3.° que , dans ces variations
successives , chaque lettre est considérée comme un premier terme
de polynôme ; c'est-à-dire, qu'on écrit o% pour T*a% , a% pour &a%9

aA pour Btfj ?••••, sans autre coefficient que l'unité.
' Voilà donc les deux conditions principales de la première partie
de la règle du n*° 8 justifiées. Mais examinons de plus près la
formation de chaque terme du développement, en supposant que
toutes les substitutions précédentes, au lieu d'être successives, soient
faites à la fois,

33. Le terme An±% 9 ou le coefficient de xnm¥l
 ? dans le déve-
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loppement de <p[a-iraxx<~it?a%x*~\-a5#

3+...•) ne peut être composé
que des trots parties suivantes : i,° du terme correspondant du dé-
veloppement de $(a-\-axx) , équation (53) , c ' e s t - à - d i r e , de

at
n~*mX , 2.° des termes provenant de la substitution de

ax-\ciiX pour ax , de az^\-aix pour aXf de a^Ara4x pour a% ,
et ainsi de suite , dans les dernières lettres ( ou leurs puissances )
de chaque terme de An ; 3.° enfin , de ceux provenant des mêmes
substitutions , dans les puissances des dernières lettres des termes
de An^x 9 An^.z >•••• 9 e î î remontant. Examinons chacune de ces
trois parties :

ï.° La première partie a toujours évidemment lieu ; car îl faut
qu'elle subsiste quand a% , a % y a4 ,.... deviennent nuls ; nous verrons
tout à l'heure comment la règle du n.° 8 la fournit.

2.° Kn faisant la substitution indiquée f dans un terme de An de
la forme çftf2^4 ? P a r exemple ; on obtient ^^[a4'\-aîoc) 9 et îl
en résulte pour An^.x le terme ^ct^a% ; ce qui revient à faire va-
rier a4 de Ba4 7 et à écrire a$ ? à la place de cette dérivée. Si
le terme avait été de la forme ^a%^aA^, on aurait obtenu ^a1

cù(û4 - } -
D^4

/3.^-4-7D2.^4
/3.^3+....) , et il en serait résulté 9 pour A71^1 , le

terme Ça^.n.a/~P>Ça%
ua/~~la$ ; cela revient donc? encore à diffé-

rencier aj> , d'après les règles ordinaires, et à écrire as à la place
de D#4, C'est ce qui constitue > avec l'observation de la fin du n»°
précédent, la première partie de la règle du n,° 8#

3.# 11 paraîtrait d'abord que , pour trouver les termes de cette
troisième partie , on est obligé de recourir aux termes ou coefH—
ciens antérieurs à celui de An ; mais on peut s'en dispenser , au
ïuoyen de l'observation suivante. Si AnJ^t doit contenir un terme
provenant d'une puissance de quantité polynômiale ? qui a reçu un
accroissement , An contient aussi un terme dû a cette puissance ,
qui en est îa dérivée ijninédiafement inférieure ; par exemple , si

a u: / 'j

Àn+% doit contenir n 1 ^ ! 6 ~ — 7 7 ^f2*7/> ^» contiendra ^D3.^?
e22
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6.54
— r ^ j a4 ' de plus 5 ces termes, dus aux puissances des quantités

polynômiales , sont toujours aisés à reconnaître , en ce que les deux,
dernières lettres se suivent, dans l'ordre des indices , et récipro-
quement; car, on a évidemment ( £ étant un coefficient numérique
convenable ) £a,3#4

2 = £tf,3(Dtf,)2=fDa.tfs
5. Il ne reste donc que de

savoir déduire d'un semblable terme dans An son correspondant dans
Soit donc Za*a^ ce terme dans An; on a

2 A J D

; or, le terme correspondant dans An, . sera1.2 ....5

sa:- D. : = —™D.#/(DazY=. —-—.az
r~~tai

s'*~l : ce qui re-
S-J-I I.2....S J-f-I S-\-l g

vient à différencier Tavant-dernière lettre > ou sa puissance , à
écrire a% pour T>at } et à diviser le résultat par l'exposant de la
puissance de la dernière lettre , qui se trouve augmenté d'une unité*
On ne fait donc autre chose qu'exécuter la seconde partie de la
règle du n.# 8. Cette même partie de la règle , appliquée à la

fonction ça dans le terme .a^ de An fournit le terme-

, dont nous avons parlé au commencement de ce n.*
La règle du n.° 8 est donc parfaitement exacte , et fournit le

moyen le pluŝ  simple pour déduire le développement d'un terme
An*"l de eeluîT du terme An qui le précède immédiatement.

34. Proposons-nous maintenant de développer immédiatement,
et indépendamment des termes qui précèdent, un terme quelconque

A H = —• de l'équation (6) ou (7).

En faisant

(56) ^=/zI+^2# + #5^+tf4#3+— r

cette équation devient , d'après le n.° 32 9 équation (53)

(57) ç(a+ix)=ça+Bça.^x+lB%ça.^a!*+^9a.^+....
Mais 9 Ç étant lui-même un polynôme , ses puissances sont

fonctions de polynômes qui, d'après le n.° 5, deviennent*.
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(58)

où ûx doit être considéré comme un premier terme de polynôme ;

c'est-à-dire , qu'on a Dal=^at f jB*al=^a% , ^Dl*al=a4.... « • • — • • •>-

Substituant ces valeurs dans réquatïon* (Sj), on obtient

(59)

d'où l'on tîro

(60)

_

©û, en écrivant cette fonnuk à rebours,
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( 6 1 )

Les quantités qui restent à développer, dans cette dernière formule,
se succèdent dans l'ordre suivant

Si tous les exposans de ût , sous les signes de dérivation , étalent
les mêmes et égaux à n , on appliquerait immédiatement, au déve-
loppement de ces quantités ? la règle du n.° 8 ; mais , comme ils
vont toujours en diminuant , il est nécessaire ? avant tout , de faire
subir à chaque terme une préparation qui consiste à diminuer
l'exposant de ax d'une unité, d'un terme au suivant , et à mo-
difier en conséquence les coeificiens numériques provenant de ces
exposans.

Pour trouver la règle de cette préparation , observons que les
dérivées (62) se développent elles-mêmes selon la formule (61) ,
et qu'on a , en général 9

Or 5 pour déduire de ce développement celui de • , il. suffît

d*en déduire d'abord celui de ? et d'appliquer à ce dernier

la règle du n.° 8. A cet effet, on changera , dans tous les termes
de la formule (63) , n en # ~ 1 ; mais voyons ce qui en résultera
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pour un terme quelconque. On a , d'après les règles ordinaires de
la différentiation ,

~ W~*r (n—r)(/2—r— i ) ( n r 2 ) . . . ( H 2r$s+2)(n2r+5+i)

1.2... (r—*) 1,2.3.... (r—*

1.2.3... (r~-s J

Ainsi , pour déduire le développement de — de celui de

• , il suffit de diviser chaque terme de ce développement paï*

n—r ? de le multiplier par l'exposant de ax dans ce terme , et de
diminuer cet exposant d'une unité ; ce qui fournit la règle pratique
suivante.

RÈGLE,

Dr-i- i ,ain"rm *
35. Pour déduire le développement de de celui de

i>2 (r+i)
•—— , divisez chaque terme de ce dernier développement par

n—r , multipliez-le par Texposant de aj dans ce terme ( en obser-

vant que 7 dans les termes sans zx , cet exposant est zéro ) , et

diminuez son exposant d'une unité. Après cette préparation 7 suivez

la règle du n*° 8,

Pour donner un exemple de cette r èg le , nous allons l 'appliquer

au développement de Aè > dans l'équation (6) bu (5c)). Les quantité»

a développer, dans ce cas , sont

La première de ces quantités reste ax
% \ la dérivée D^z

5 donne Bal*at ;
pour en déduire celle -D2^,4

 7 il faut la diviser par 5 , multiplier
Tom. VI. 17
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par 4 i exposant de a1 , et diminuer cet exposant d'une unité; ce
qui donne l\ax

la% : appliquant ensuite la règle du n.° 8 à ce terme
ainsi préparé , on trouve l±a x

l a %*\~-^-a x* a x*. Pour déduire de cette
dérivée celle ^D3.#£

3 , il faut diviser le tout par 4 * multiplier res-
pectivement les deux ternies par 3 et 2 , exposans de ax et diminuer
ces exposans d'une unité;, ce qui donne 3ax

Lal-\-3axalt
2' : appliquant

4a règle du n.° 8 ? on obtient 3al
za4+2.oala^i+a1\ Pour déduire

de cette dernière celle ^ D 4 . ^ 2 , il faut diviser le tout par 3 , mul-
tiplier les trois termes respectivement par 2 , 1 , 0 , exposans de alf

et diminuer ces exposans d'une unité; ce qui donne 2axaA-\~2ûta% :
appliquant la règle du n.° 8 , on obtient ia\a5-4-2#za4+tf5

2'. Enfin ,
pour déduire de cette dérivée celle ~J)s.al , il faut diviser tous les
termes par 2 , les multiplier respectivement par 1 5 Q , o , exposans
de at , et diminuer ces exposans d'une unité ; ce qui donne as ,
dont la dérivée est tf6 ^ d'après la règle du n.° 8. En rassemblant
tous ces termes, et les multipliant par leurs coefficiens respectifs (61),
on aura le développement de A§% écrit en sens inverse.

L'énoncé de ces opérations peut paraître un peu long ; mais leur
exécution est très-expéditive. Après s'être exercé a calculer quatre
ou cinq termes , on en a tellement l'habitude qu'il n'en coûte plus^
pour ainsi dire , que la peine de les écrire.

36. Remarque. La règle précédente donne non seulement le moyen
d'écrire immédiatement le coefficient d'une puissance quelconque
de x , dans le développement de ^{a-^a^+a2#*+....) 5 mais encore
une partie quelconque de ce coefficient , sans calculer le reste. Ainsi >

si l'on demande le coefficient de , dans le développement de

4n— •— , l'équation (61) indiquera que ce coefficient est —-
(n-r) '

dont le développement peut s'exécuter immédiatement , d'après la
règle précédente et l'équation (61). Cette observation peut avoir les
applications les plus utiles, dans la théorie des hasards , et dans
celle de la partition des nombres. Nous avons vu au n.° 10 que le
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coefficient de —— dans • —• était eompoôé de tous les produits de
1,2..71 1.2.....72 x r

r lettres qu'on peut .former avec les quantités polynômiales ax f

at , a% * . . . . , de manière que la somme des indices de chaque
produit soit égale à n 9 et que les coefficiens numériques de chaque
produit indiquaient le nombre des permutations dont les lettres de
ces produits sont susceptibles : nous aurons donc immédiatement tous
ces produits , avec leurs coefficiens numériques , en développant la

dérivée — . De plus , le nombre des termes dont ce déve—
1.2....(72 r) k

loppement sera composé indiquera de combien de manières on peut
composer le nombre n 4 avec r nombres ? égaux ou inégaux. Ainsi,
en supposant 72=12 , r = 8 ? on aura y pour le coefficient de

- , dans — ,
1.2....5 1.1 12

Ce coefficient étant composé de cinq termes fi fait voir que le nombre
12 peut être formé de cinq manières.diiïerentes , par l'addition de huit
nombres, savoir : i + iHhi-4~i+2-}-2+2-j-2, i-^-i+i-f I + I + 2 + - 2 + 3 ?

, lesquels sont donnés immédiatement par les
indices et exposans des lettres des produits.

37. La règle du n.° i 5 n'est qu'un corollaire de celle du n.° 8
et de celle du n.° 12 , qui est une suite évidente des équations
(12) : en effet, si dans l'équation (i5) on suppose # x = o , tf?=o,...#
iz=o 9 ^ } = o , , . , . , elle deviendra

(64) <f

ort le premier membre de cette équation devient, d'après l'équation
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(65)

Ce produit étant développé, d'après l'équation ( i 3 ) , donne

(66) ?(a+a1x)X.*(b+blx)zzt

A rMi* -\-J1x* +Ais
i

h-\-ipa.D^b.bl )
, x

fD*fa.D^b.a

4-. ..-

l.2...(n—2)

I.2.,.(«—3)" '

I.2...(«—I)

1 I.2....»

Ici les colonnes qui forment les coefficient de x ne sont autre chose
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que les dernières colonnes des équations (i8). O r , le produit (65)
s'e/Fectuant comme le produit ( i 3 ) , avec la seule différence qu'à
la place de a et de b, il faut écrire ça et 4>b, et D.ça~D<pat ,
D.4'3n=D'W.#I f à la place de Va, T)b ,.,.. ; il s'ensuit que ? pour
déduire la dernière colonne de Àn+l de celle de Jn [ équations (18) ] 7

il faut faire varier ^b dans tous les termes de cette colonne , et

de plus faire varier ça dans le dernier terme M.afûe cette
* 1.2*..,»

même colonne. Les deux premières parties du n,° i 5 se trouvent
donc démontrées.

Les n autres colonnes qui composent Àn+l ne peuvent donc
provenir que de la variation des quantités polynômiales ax, a% , a^ ,.•..•
&t9 bt, bs ,.,..; c'est-à-dire, de la substitution de ax-\-axx pour/?!,
de az~\~a%x pour ax ,•..., de bl-\-b1a! pour bx , de bx*\-b^êc pour
bt, •.,., dans les termes précédens. Il faut donc appliquer ici la règle
du n.° 8 , modifiée par la coexistance de deux polynômes indé-
pendans , c'est-à-dire, par la règle du n.° 12; ce qui constitue la
première partie de la règle du n.e i 5 . Cette règle se trouve donc
entièrement justifiée.

38. Passons maintenant au développement immédiat, et indépendant
des termes qui précèdent, d'un terme quelconque de l'équation ( i 5 ) #

ou du terme gênerai An^=. .
I»2....tt

En effectuant complètement le développement indiqué par la der-
nière des équations (17) , d'après les n.05 34 et 35 > et l'ordonnant
selon la somme des exposans de dérivation , relatifs a ça et 4"b,
on peut le mettre sous la forme suivante :

(67)
I.2...7Î I«2... .« T ' 1.2... (72 —

1 — l ) 1.2...(
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1,2...(?2 2) I .a.., (rt ^

II n'y a plus, dans cette formule r dont la loi est très-élégante,'
que des fonctions de quantités polynômiales à développer ; et elles
se succèdent par colonnes dans Tordre suivant :

(68)

I.2...(?î— 2)
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Si tot2S les exposans de a1 , sous le signe de dérivation, étaient

les mêmes que dans les termes correspondons de la première co-
lonne , on pourrait appliquer immédiatement au développement de
ces quantités la règle du n.° i 5 ; mais, comme ces expo&ans vont
en diminuant d'une unité, d'une colonne à l'autre , comme au n.° 34>
îl est nécessaire de faire subir à chaque terme la même préparation que
dans ce n.° ; c'est-à-dire , qu'il faut soumettre chaque terme à la
règle du n.° 3 5 , et ensuite y appliquer celle du n.° i 5 . Par ce
moyen , on peut développer immédiatement un terme quelconque

' : de Péquation (i5) , indépendamment de ceux qui le pré-

cèdent.

39. Remarque. On peut faire ici une observation analogue à
celle du n.° 36. Par le procédé du n.° précédent , on peut aussi

calculer immédiatement un terme quelconque de —•—-—- , indé-
1.2. .Jt '

pendamment des autres : ainsi le coefficient de •-- . ~¥.i> sera
i.2.«,r 1*2...s

——^ , dont le développement s'exécutera par le n.^ préeé-
1 . 2 . . , ( 7 2 — r — J ) L L * r

dent, en remplaçant n par n—r—s , ça par ax
r et $h par bt

s
9 et

considérant ax et bx comme des premiers termes de polynômes.
Supposant donc « = 1 2 9 r=y , s = z, on aura^ pour le CoeiBcient de
• « ' m C l a l l b ————

1.2...7 1.2 I.2...Ï2

D <7I-.iD
1JI

m.*.*»M-

1.2.3 1.2
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D'après la remarque du n.° 17 , qui s'applique également Ici ,
le procédé du n.° précédent donne aussi le moyen de calculer Im-
médiatement un terme quelconque du développement d'une fonction
quelconque de deux polynômes îndëpendans <PKa-\-a1x-\-azx

2-\- ,
b-\-iïlx~\~b1x

2-\~:..) ; il suffit pour cela de remplacer, dans la for-
mule (67) les produits des déritées de ça et $b par les dérivées
partielles correspondantes de Qsa, #) ; et le n.° précédent fait voir
avec quelle facilité le calcul des dérivations fournit la solution de
ce problème compliqué , et intraitable par les méthodes ordinaires,

4o. La règle du n.° 28 est un corollaire bien simple de celles
des n.Os i5 et 3 5 ; en effet, la forme du terme général

; j = , étant comparée a celle (17) y?7I-I = — f

fait voir qu'on obtient la première , en remplaçant, dans celle-ci A'b
par r""1", et $a par D.?$* Les règles de développement doivent donc
être les mêmes pour Tune et l'autre formes, sauf les différences
suivantes ; i.° l'exposant de c diminuant d'une unité d'un terme à
Vautre , il faut faire subir à chaque terme ? avant d'en déduire le
suivant, la préparation du n.° 35 ; 2.0 $a étant remplacé par B.(Pb>

il s ensuit quon a, en général , = = ( r + i )

et = ( r + i ) — - ; ce qui produit les coefltciens numériques

égaux aux exposans de dérivation ; 3.° enfin, nous avons ordonné
différemment les termes des équations (5o) , en transformant les
lignes horizontales des équations (18) en colonnes , et réciproque-
ment : il en est résulté que les dernières colonnes des équations (18)

devenues les derniers termes de chaque colonne des équations
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(56), en transformant les lignes horizontales des équations (18) en
colonnes , et réciproquement : il en est résulté que les dernières
colonnes des équations (18) sont devenues les derniers termes de
chaque colonne des équations (5o) ; ce qui a produit les modifications
des 2.me et 3.m e parties de la règle du n.° i5.

4i . En tenant compte des observations du n.° précédent, la for-
mule (67) fournit le moyen de développer immédiatement un quel-
conque des termes (48) , indépendamment des précédens : on a ,
en général >

^
-^rr»^^

-h

M— 2 Ĉ —«

.O^T
1.2. . . («—1)

33M—î J3 3 J

v J i.a....(n—3)

ri.
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où les quantités qui restent a développer sont de la même forme
que celles (68), du n.° 38 , et doivent être développées de la même
manière.

4^. Au moyen du n.° précédent, nous sommes donc en état de
calculer immédiatement un terme quelconque d'une fonction de po-
lynôme , ordonné selon les puissances d'une fonction ou d'un poly-
nôme donné ; ce qui constitue le problème général du retour des
fonctions et des séries , étendu aux fonctions de polynôrnes. De
plus, d'après la remarque du n.° 3 9 , qui est applicable à ce cas,
nous pouvons aussi calculer immédiatement une partie quelconque
d'un terme , sans calculer le reste de ce terme. Mais, ce qu'il y
a de plus remarquable , c'est que cette question difficile est résolue
d'une manière si simple qu'on n'a, pour ainsi dire , que la peine
d'écrire le résultat.

CONCLUSION.

43, Résumons , en deux mots , l'objet et l'esprit du calcul des
dérivations , tel qu'il résulte de ce petit écrit. Le théorème de Taylor
donne le développement d'une fonction simple d'un binôme, selon
les puissances ascendantes de la variable principale , ou selon les
mêmes puissances d'une fonction quelconque donnée de cette va-
riable. Le passage du théorème de Taylor au développement des
fonctions de polynômes , ou des fonctions de fonctions , selon les
puissances ascendantes de la variable , n'est autre chose que le
passage de la difFérentiation d'une fonction , en regardant la dif-
férentielle de la variable principale comme constante , à la diffé-
rentielle de la même fonction , en ne regardant aucune différentielle
comme constante. Quant au passage du développement d'une fonc-

- tion , selon les puissances ascendantes de la variable à celui selon
les puissances ascendantes d'une fonction donnée de cette variable ;
( ce qui constitue le retour des fonctions et des séries ) ; il n'est
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auîre chose que celui de la différentiation d'une fonction , en chan-
geant de variable principale ou indépendante.

44' Me voici parvenu au terme que je m'étais proposé : celui
de déduire la véritable théorie du calcul des dérivations du seul
théorème de Taylor , sans l'emploi d'aucun principe nouveau. J'es-
père que les géomètres verront avec plaisir ce beau corollaire d'un
the'orème qui a déjà été si fécond. Le cadre étroit dans lequel
j'ai resserré l'essence de ce calcul les engagera sans doute à donner
quelques momens à la lecture de ce petit écrit ; et j'ose pre'sumer
qu'elle les réconciliera avec le calcul des dérivations , dont l'ouvrage
d'Arbogast a pu les éloigner. Mon but n'a pas été d'épuiser la
matière, mais d'éveiller l'attention des géomètres sur l'utilité, trop
méconnue ? des 'dérivations ; et de leur éviter la recherche pé-
nible de nouveaux moyens de développement , en leur présentant
ceux qui sont, à la fois , les plus simples et les plus expéditifs
qu'on puisse trouver.

Les géomètres auxquels YÀnalise comlinatoire est familière
verront, par nos remarques des n.os 10, 16 et 36^ que le calcul
des dérivations contient ? non seulement les véritables sources des
règles de cette analise , et leur extension à des fonctions de plu-
vsieurs polynômes indépendans, mais encore les moyens d'exécution
les plus commodes et les plus rapides.

Metz ; le 5 de mai i8x5.



LIMITES DES RACINES

ANALISE ALGÉBRIQUE,

Théorèmes nouveaux, sur les limites extrêmes des racines
des équations numériques ;

Par M. BRET , professeur de mathématiques à la faculté
des sciences de l'académie de Grenoble,

A OUR rendre la théorie que je vais développer plus facile à saisir,
je crois convenable de l'appliquer à un exemple particulier. Rien
ne sera plus facile ensuite que de l'exposer d'une manière générale.

Soit donc l'équation du 9-me degré

*—kx-hl~ o, (i)

dans laquelle les signes sont supposés en évidence ; et proposons-
nous d'obtenir une limite supérieure de ses racines.

INous remarquerons d'abord que ? quels que soient A et 772 9 on a

rAxm—A{xm— i)+A=A(a>— i ) ( ^ ~ I + ^ m ~ 2

o u , en posant pour abréger x—1 =y d'où ^r=

(2)

Cela posé > appliquons la transformation (2) à tous les termes

positifs de l'équation (1) , et nous aurons
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x^ -]-byx

hyx

t :t ces développemens dans l'équation ( i ) , rassemblant les
ternit > d i c t e s des mêmes puissances de ÛC , et écrivant les premiers
ceux de ces termes dont le coefficient renferme une partie négative?

on obtiendra la transformée

+y{ax ̂ ^a+b)x^+{a+b+e)xz+ia^b+e+h)}+ia+b+e+h+ll=^ . (3)

Or, il est clair que ? pourvu qu'on ne prenne pas y négatif ou,
ce qui revient au même, x positif plus petit que l'unité , les termes
de la seconde ligne donneront toujours un résulsat positif quelque
autre valeur qu'on puisse d'aillenrs prendre pour x ; donc, pour
que toute autre valeur y mise pour x dans Féquation (i) y ne donne
point un résultat négatif , il suffit uniquement qu'elle ne rende point
négative la première ligne de l'équation (3) , ce qui arrivera infail-
liblement si elle ne rend négatif aucun des termes qui la composent.

Cette condition sera évidemment remplie ? $i l'on fait en sorte
que les binômes

soient positifs ; or , c'est ce qui arrivera nécessairement , si l'on ne
prend pas y ou x—i moindre que la plus grande des fractions
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. * à S S k

a+b' a+b' a+b+e' a+b+e' a+b+e+h '

ou , ce qui revient au même a si Ton ne prend pas œ moindre que
le plus grand des cinq nombres

c_ . à

ce qui fournit la règle suivante.
THÉORÈME I. En ajoutant successivement à l'unité une suite

de jractions ayant pour numérateurs les coejfficiens négatifs d'une
équation proposée , pris positivement , et pour dénominateurs la
somme de tous les coejfficiens positifs qui les précèdent respective-
ment , le plus grand des nombres résultans pourra être pris pour
limite supérieure des racines de cette équation*

II e«t entendu au surplus que , dans la pratique , il suffira de
considérer le plus grand coefficient dans chacune des séries de termes
négatifs.

Appliquons cette règle à la recherche d'une limite supérieure de$
racines de l'équation

sera le plu$ grand des deux nombres

° U

348 , 3 4 8

ainsi 5 cette limite sera 4*
Si l'on veut obtenir la limite inférieure des mêmes racines J en
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remarquera qu'en changeant les signes des racines de la proposée f

elle devient

1 IX*—

or, par la règle ci-dessus, on pourra prendre pour limite supérieure
des racines de cette dernière le plus grand des nombres

ou, a, ~ ou x + ;

ainsi, cette limite sera 7 ; d'où il résulte que toutes les racines
réelles de la proposée sont comprises entre + 4 e^ —- 7»

La méthode vulgaire , indiquée par M. Lacroix dans ses clémens f

donne pour ces limites -{-175 et —116; la méthode plus parfaite
de Lagrange , adoptée par M. Francœur , donne + 2 0 et —116,
on voit par là combien la nôtre leur est préférable. Je ne dis rien
de la méthode des dérivées successives , attribuée à Mac-Laurain i
laquelle n'est qu'un tâtonnement assez laborieux»

Reprenons la transformée (3)« En vertu de la formule (2) on a

ax%=

Mais , en vertu de la même formule les termes ayx* et ayx9 peuvent
être développés comme il suit :

= . ; * - . . , ; ay*x+ay*+-ay ;

ce qui donnera, en substituant et ordonnant ;
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aï

Mais on aura encore, en vertu de la même formule (2),

(2,ay*-{-ay)x* = zay* x-\-zay3 -\~zay*

ay ay%
ay ;

ce qui doririeya J en substituant de nouveau

x*+ay*

+ay

#34- ays

-\~2ay2

rh aY

x+ ay3

+3#f

+ a

Par de semblables transformations ; on trouvera

Mp+tyy l +2(^

-e)** =5 (a+l+é)yx+(a-\-h+e)y

En ajoutant ensemble tous ces résultats , îl viendra
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substituant cette valeur dans l'équation (3) 7 elle prendra la forme
que voici :

(4)

— k\x

Or, il est clair que, pourvu que y soit positif , ou que x soit plus
grand que F unité, la dernière ligne de cette équation sera toujours
positive ; il suffira donc , pour que tout son premier membre le
soit y de donner à y une valeur positive qui ne rende négatif aucun
des coefficiens des termes en oc ; or r comme tous les termes qui
composent chacun de ces coefficiens sont positifs excepté le dernier,
il suffira ? pour satisfaire à cette condition 5 de prendre y tel que
dans aucun de ces coefficiens le premier terme ne soit moindre

le dernier , ce qui revient à faire

. VI.
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le signe > n'excluant pas l'égalité ; or , cela se réduit évidemment
à prendre x au moins aussi grand que le plus grand des nombres

ce qui fournit cette seconde règle :
THÉORÈME IL Si, après avoir divisé successivement chacun

des coejficiens négatifs d'une équation par le coefficient du premier
terme , on extrait de chaque quotient une racine dont le degré soit
le nombre des termes positifs qui précèdent le coefficient négatif
dont il s'agit, le plus grand'des nombres qu'on obtiendra en aug-
mentant chacune de ces racines d'une unité pourra être pris pour
limite supérieure des racines de l'équation proposée.

Il est entendu au surplus que , dans l'application de cette règle,
comme dans celle de la précédente , il suffira d'avoir égard au plus
grand coefficient négatif xle chaque série de termes consécutivement
négatifs.

En faisant l'application de cette règle à l'équation déjà éprise pour
exemple , on trouvera , pour la limite des raeines positives le plua
grand des nombres y

et pour la limite des racines négatives, prise positivement f le plus
grand des nombres

c'est-à-dire5 que ces deux limites seront -t-5 et —7. On voit que
cette règle rentre dans celle qu'indique M* Francdeur.
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Àu Heu de faire abstraction des termes intermédiaires des poly-
nômes en y qui multiplient les diverses puissances de x > dans l'é-
quation (4) > on peut y afoir égard > et chercher à rendre ces
polynômes tous positifs par l'application du Théorème 1 ; on verra
sur-le-champ qu'il faut pour cela prendre y au moins égal au plus
grand des nombres

ce qui revient à prendre x au moins égal au plus grand tîes nombres

*b+ia ' 2 ' 7]

é*est-à-dire ^ qu'on peut prendre pour limite supérieure des racines
le plus grand des nombres qu'on obtient en ajoutant à deux unités
une suite de fractions ayant pour numérateurs les divers coefïicîens
négatifs pris positivement , et pour dénominateurs la somme des
produits des coeiïiciens positifs qui les précèdent respectivement,
et de droite à gauche , par les puissances successives de deux , à
partir de sa puissance zéro, ou de l'unité.

Mais , de même que nous avons appliqué le Théorème I à l'é-
quation (4) > pour en conclure ce dernier , nous pouvons également
lui appliquer celui-ci, et nous en conclurrons qu'en y prenant pour
y le plus grand des nombres
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a + - c

I - | 7 1 _x I ~.f~~ I Z,\ I / ^. I

= 2+

ou , ce qui revient au même J en prenant pour x le plus grand
des nombres

; 3+

on auTa une limite supérieure des racines de cette équation ; c'est-*
à-dire qu'on peut prendre pour limite supérieure des racines d'une
équation proposée le plus grand des nombres qu'on obtient en ajoutant
à trois une suite de fractions ayant pour numérateurs les coeffîciens
négatifs de la proposée , pris positivement , et pour dénominateurs
la somme des produits des coefficiens positifs qui les précèdent
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respectivement ; de droite à gauche , par les puissances successives
de trois , à partir de sa puissance zéro , c'est-à-dire , de l'unité.

On peut pareillement appliquer cette dernière règle à rendre
positifs les coeiïiciens fonctions de y de l'équation (4) ? et Ton
trouvera que tout se réduit à ne pas prendre x moindre que le
plus grand des nombres

4+ J

4+

et ? comme rien ne limite ce raisonnement 9 on pourra dire géné-
ralement qu'on rendra positif le premier membre de l'équation (4) *
et conséquemment de Péquation (1) , en prenant pour x le plus
grand des. nombres

72

n étant un nombre entier positif quelconque» De là résulte cette
nouvelle règle.

THÉORÈME 11L En ajoutant successivement à un nombre entier
positif arbitraire une suite de fractions ayant successivement pour
numérateurs les coeffîciens négatifs d'une équation proposée , pris
positivement 9 et pour dénominateurs la somme des produits des
coeffîciens positifs qui les précèdent respectivement 9 de droite à
gauche , par les puissances successives du nombre arbitraire , à
partir de sa puissance zéro ou de Vunité y le plus grand des nombres
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rèsulians pourra être pris pour limite supérieure ies racines âê
cette équation.

Observons , i .°qae ce théorème renferme le Théorème I , comme
cas particulier : c'est celui où le nombre arbitraire est l'unité •, 2.*
que ? dans son application , comme dans celle de celui-là , il suffit
de faire entrer en considération le plus grand des coeiïiciens que
renferme chaque série de termes consécutivement négatifs 9 de sorte
qu'on n'a pas plus de nombres à calculer qu'il n'y a de ces séries ;
3.° qu'enfin t en prenant successivement pour le nombre arbitraire
i , 2 ? 3?«.^. on trouvera Souvent une limite minimum 9 inférieure
à celle que donnerait l'application du Thèorèipe I.

GÉOMÉTRIE DES SURFACES COURBES.

De la génération des paraboloïdes elliptique et
hyperbolique ;

Par M. BÉRARD , principal et professeur de mathématiques
du collège de Briançon > membre de plusieurs sociétés
savantes.

X OTJTE parabole , rapportée à deux axes quelconques ? formant
entre eux un angle y , est f comme Ton sait ? exprimée par une
équation de la forme

:o • (2)

Supposons que 9 par une transformation de coordonnées ^ on soît
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parvenu a rapporter la courbe à son diamètre principal , pris pour
axe des *, et à la tangente à son sommet, prise pour axe des u;
supposons de plus que , par suite de cette transformation, l'équation
soit devenue

u2=zzPt , (2)

P étant conséquemment le demi-paramètre.
Si Ton désigne par a, b , respectivement les coordonnées de l'origine

primitive rapportée aux axes de / et des u , et par * , /3 les angles
que font respectivement les axes des x et des y avec Taxe des /,
on repassera , comme l'on sait 7 du système transformé au système
primitif , en posant

En faisant la substitution dans l'équation (2) , on obtiendra la
transformée

laquelle ne devra différer au plus de l'équation ( Î ) que par un
facteur commun à tous ses termes \ désignant donc ce facteur par
A% on aura

équations auxquelles il faudra joindre Féquation de condition
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Or , de ces six équations la cinquième est la seule qui renferme

u et C , d'où il suit que les cinq autres sont suffisantes pour dé-
terminer les cinq quantités a , b , * , £ ? P , et que ces quantités
sont des fonctions de A , B , A/

1 Bf seulement.
Observons en outre que ? dans le système transformé , l'équation

du diamètre principal étant z/ = o , Péquatîon de ce diamètre sera 3

dans le système primitif (3) ,

puis donc que cette équation ne renferme point a , la détermination
des constantes qu'elle contient sera indépendante de C.

Il est donc établi, par ce qui précède, que si , dans Véquation
d'une parabole ? rapportée à deux axes obliques quelconques , on fait
seulement carier le dernier terme 9 on fera simplement glisser son
sommet le long de son diamètre principal, considéré comme droite
indéfinie y sans changer aucunement la position de ce diamètre ni les
dimensions de la courbe.

Les mêmes considérations établissent que réciproquement si, sans
changer aucunement les dimensions d'une parabole ni la situation
de son diamètre principal, on fait simplement glisser son sommet
le long de ce diamètre ; à quelque système d'axes que la courbe
sait d'ailleurs rapportée * on pourra toujours amener sa nouvelle
équation à ne différer de la première que par son dernier terme.

Il en irait absolument de même si l'on faisait glisser un point
quelconque de la courbe le long d'un diamètre passant par ce point f

puisqu'alors le sommet de cette parabole parcourrait aussi son dia-
mètre principaL

Cela posé , soît un paraboloïde quelconque , elliptique ou Ryper-
Bolique. Par l'un quelconque de ses points menons-lui un diamètre
et un plan tangent -, menons-lui ensuite un plan seeant parallèle a ce plaa
tangent ; la section sera une ellipse ou une hyperbole ; menons à
cette courbe deux diamètres conjugués quelconques ; et menons *

sur



DES PAR A BOLOIBES.
sur le plan tangent, deux parallèles à ces diamètres. Soient prises
ces deux parallèles pour axes des x et des y, et le diamètre du
paraboloïde qui passe par leur intersection pour axe des zj l'équation
de cette surface sera , comme l'on sait

Â et B étant de mêmes signes ou de signes contraires , suivant
que le paraboloïde est elliptique ou hyperbolique.

Or, présentement ? soit qu'on donne à x ou à y une suite de
valeurs particulières , on obtiendra toujours une suite d'équations
de paraboles ne différant uniquement que par le terme tout connu,
et qui répondront conséquemment, d'après ce qui a été dit précé-
demment , à des paraboles égales , ayant toutes un môme point de
leur périmètre sur le plan des xz ou sur celui des yz. On peut
donc de cette observation déduire les conséquences que voici :

L Les sections paraboliques faites à un paraboloïde 9 elliptique
ou hyperbolique , par des plans parallèles quelconques 9 sont des
paraboles égales entre elles., ayant leurs points homologues situés
sur d'autres paraboles aussi égales entre elles et comprises dans"
des plans parallèles»

IL Réciproquement, tout paraboloïde, elliptique ou hyperbolique,
peut être conçu engendré par le mouvement dune parabole, de
grandeur invariable , demeurant constamment parallèle à un même
plan f et dont Vun quelconque des points décrit une autre para-
bole , fxée de grandeur et de situation dans l'espace.

La différence entre le paraboloïde elliptique et le paraboloïde
hyperbolique ne consiste donc uniquement qu'en ce que la parabole
génératrice et la parabole directrice ont leur concavité tournées dans
le même sens pour le premier , et en sens inverse pour le second.

Le cylindre parabolique et le plaa ne sont que des cas parti-
culiers de cette génération ; le premier a lieu lorsque la parabole
génératrice ou la parabole directrice dégénère en ligne droite ; le
second répond au cas où cela arrive à la fois à toutes les deux.

Jom. VI. 20
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QUESTIONS RÉSOLUES.

Solution du problème de dynamique proposé à la
page 220 du V.e volume de ce recueil ;

Par M, J. F. F R A N Ç A I S , professeur à l'école royale
de l'artillerie et du génie.

JLROBLÈME. On donne la sous-tendante de Varc que doit dé-
crire Textrémité inférieure d'un pendule simple ; et on demandé
quelle langueur doit avoir ce pendule, pour que la durée de ses
oscillations soit un minimum ?

Solution. Soient 2a la longueur de la sous-tendante donnée , 21c
l'amplitude d'oscillation qui lui répond , r la longueur inconnue du
pendule , 0 l'angle que fait sa direction avec la verticale à une
époque quelconque / ; en supposant nulle la vitesse initiale et déd-
aignant la gravité par g=9m,8o88 environ 5 il est connu qu'on aura

(0

on aura de plus

au moyen de quoi , éliminant r de ( i ) , il viendra



RÉSOLUES. I 2 7

intégrant entre $=* et 0=o et désignant par s T la durée d'une
oscillation entière , on trouvera (*)

g Dlïl,C6

les coefficlens Ax, Az , A% , .*.• étant donnés par la loi suivante

En considérant T comme fonction de *, diiFérentiant Féquation (4)

sous ce point de

Onctions faîtes,

dT
sous ce point de vue et égalant — à ze'ro ? on trouvera, toutes ré-

équation dans laquelle les coefEcîens 27,, B% , Bf ,.... sont donnée
par la loi suîvante.

+8»—i
(7)

L^équatîon (6) n'est point susceptible de résolution exacte ni di-
recte 5 en la traitant par le retour des suîtes, on trouve à peu près

f et r = ~ =^i,a56823^; Té-
5in«

quatîon (4) donne ensuite 2.T~-BÊ/ — . I , I 2 6 I O 5 = M/

Maïs cette valeur de zT est-elle bien réellement un minimum ?
Pour répondre à cette question nous remarquerons d'abord que >

(*) Voyez , pour les détails de l'intégration ? le Traité de mécanique de M»
POISSON ; tome I , page 4i5.
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soît que nous fassions #=o ou <«=i8o° , nous trouverons également
2T=£=oo ; de sorte que la valeur en question se trouve comprise
entre deux maxima ; ce qui est déjà le caractère d'un véritable
minimum ; mais ce n'est guère que par le calcul des valeurs par-
ticulières que Ton peut s'assurer , avec certitude , qu'il n'en existe
point d'autres entre ces deux limites. En supposant successivement

*=7i° et « ^ I O . I D ' , il vient 2r=^J> / / ±. i î i36394 5 e t2T=:^ l^ / / ' l .
r 8 r ë

1,136376; d'où i'on voit que la valeur trouvée ci-dessus, moindre
que ces deux là , est comprise entre elles.

Remarque. Ce problème trouve son application dans la Théorie
des ponts : il sert à déterminer la longueur du cable , ou cordage
d'ancre , d'un pont volant (*) , de manière que le trajet de la ri-
vière se fasse dans le moindre temps possible. II faut cependant
observer que cette application suppose que la vitesse du courant est
uniforme , sur toute la largeur de la rivière ; circonstance qui n'a
pas généralement lieu ; mais le résultat du problème peut toujours
servir de première approximation , que Von corrige ensuite d'après
l'expérience.

< Le pont volant offre encore à résoudre une autre question inté-
ressante dans la pratique : c'est de déterminer la longueur du cable
de manière que la vitesse du pont volant # dans la position 0=0,
soit un maximum*

(*) Un pont volant est un petit pont , isolé et mobile , ordinairement établi
sur deux bateaux, et attaché à l'une des extrémités d'un cable dont l'autre ex-
trémité est fixée par une ancre, soit au bord du fleuve soit entre ses deux rives,
lie choc du courant de l'eau sur ce pont , faisant ici un effet analogue à celui
de la pesanteur sur le pendule , le fait osciller d'une rive à l'autre autour de l'ancre,'
L'application que fait ici M. Français de sa théorie suppose que le cours d'eau
est rectiligne et d'une largeur constante , et que l'ancre est fixée dans son inté-
rieur, à égale distance de ses deux bords, %a est supposé la largeur du fleuve
çt r la longueur du cordage d'ancre.

J. D, G.
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Représentons par 9 la vitesse du pont volant dans cette position.
L'équation (3) donne pour la vitesse, dans une position quelconque,

— = X/MSin.*(Cos.«—Cos..) ; (8)
àt pf a

qui, en faisant ê=zo , devient

i—Cos.*) . (9)

En difFérentiant cette équation , et faisant — = o , on obtient

(i—Cos.«)(i+2Cos.#6)=o . (10)

Le premier de ces facteurs égalé à zéro donne *=o , pour la va-
leur minimum de <> , qui répond à r=j[=o©. Le second donne
Cos.#=—7, d'où «=i2O° pour la valeur maximum de 9 ; ce qui
résout bien la question abstraite d'un pendule simple , mais ne peufc
pas convenir au pont volant , pour lequel « ne peut pas excéder
900. Ainsi , pour cette question ? il faut rejeter toutes les valeurs
négatives de Cos.«. D'après cette observation , la seule inspection
de l'équation (9) prouve que v aura sa seule valeur maximum ad-
missible dans la pratique, lorsqu'on aura Sin,*=i et cos.<«rro »
d'où *=go° ; ce qui donne , pour la longueur du cable, r~a*

Solution des deux problèmes de géométrie proposés S
la page 556 du V,e volume des Annales ;

Par M. TÉDÉNAT , correspondant de l'institut, recteur dq
l'académie de Nismes.

PROBLÈME L Déterminer les trois côtés d'un triangle ; en
fonction des perpendiculaires abaissées sur leurs directions du centre
du cercle circonscrit ?
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Solution, Soient X9 Y, Z les trois angles du triangle; x^y>%

z les côtés respectivement opposés; et enfin, a,b, c les perpen-
diculaires abaissées sur leurs directions du centre du cercle circonscrit.

La droite qui joint le centre à l'une quelconque des extrémités
du côté z est Thypothénuse d'un triangle-rectangle dont les deux
côtés de l'angle droit sont \z et c 9 et dans lequel l'angle opposé
a {z est Z ; d'où il suit qu'on duit avoir

©u , en quarrant et transformant la tangente en fonction du cosinus

4^ = (4^4-<2^Cos/Z . (i)

Les pieds des perpendiculaires a 5 h étant les milieux respectifs
des côtés x , y , il s'ensuit que la droite qui les joint est paral-
lèle à z et égale à \z ; et , comme d ailleurs l'angle de ces deux
droites a $ b est supplément de Z , il s'ensuit qu'on doit avoir

ou
z*—4(a%W=%al>Cos.Z . (2)

Si , entre les équations (1) et (2) f on élimine z*, II viendra

ou encore
c*SecJZ~(a*±b*+c*)Sec.Z~~2al> = o ,• (3)

ëquatlon du troisième degré , sans second terme , qui est dans le
ca- irréductible ; et on aura deux autres équations analogues pour
déterminer X et Y. X , Y, Z étant ainsi connus , on mènera par
ua même point trois droites égales II a y b , c formant autour de
ce point des angles supplémens de ceux-là ; menant ensuite à ces
trois droites par leurs extrémités des perpendiculaires , terminées à
1 ur rencontre commune , le triangle demandé se trouvera construit»

Si l'on voulait avoir immédiatement l'équation qui donne le côté
2 , il ne s'agirait que d'éliminer CosJ? entre les équations (1) et(2)?

ce qui donnerait



RESOLUES- i3x

et Ton aurait des équations analogues pour x et y. Le dernier terme
de cette équation étant positif, il s'ensuit que , si le problème est
possible, il n'admettra que deux solutions au plus,

PROBLÈME H. Déterminer les trois côtés d'un triangle } en
Jonction des droites qui joignent le centre du cercle inscrit à ms,
sommets ?

Solution. Soient encore ici x, y , z les trois côtés du triangle ;
X, Y$ Z les angles respectivement opposés; et soient a7 h > €
les droites qui joignent le centre à leurs sommets.

La droite c est Thypothénuse commune de deux triangles-rec-
tangles , dont un des côtés de l'angle droit est le rayon r du cercle
inscrit, et dans lesquels l'angle opposé est JZ j d'où il suit qu'on
doit avoir

r^cSm.iZ . (i)

Les droites ay b forment avec le côté" £ un triangle % dans lequel
l'angle opposé à z est (j\\Z\ <] désignant l'angle droit ; Taire de
ce triangle est donc

maïs<, comme sa hauteur est r , son aire aura aussi pour expression
\rz \ donc

rz^abGos \Z i

ou, en éliminant r , au moyen de l'équation(i)

D'un autre côté, le même triangle donne

>\Z . (3)

En éliminant z s entre les équations (2) et (3) et transformant
le cosinus en sinus, il vient
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encore

équation du troisième degré 7 sans second terme qui est dans le cas
irréductible ; et on aura deux autres équations analogues pour dé-
terminer X et Y. X, Y y Z étant ainsi connus ; on mènera , par
un même point trois droites , égales à a, b, c , formant autour de
ce point des angles q+\X, <]Y-Y, (j-^\Z. En joignant leurs extré-
mités par trois autres droites, le triangle demandé se trouvera construit.

Si Ton voulait avoir immédiatement l'équation, qui donne le côté
Z , il ne s'agirait que d'éliminer S in .^ du quarré de l'équation (2) ,
au moyen de l'équation (3) ? après y avoir transformé le cosinus
en sinus 7 ce qui donnerait

et l'on aurait des équations analogues pour $ etjy% On voit encore^
Li que le dernier terme de l'équation étant positif, le problème,1

lorsqu'il sera possible, n'admettra que deux solutions au plus.

QUESTIONS PROPOSÉES.

Problème cFAnalhe.

U N E équation de forme quelconque , entre tant de variables qu3on
voudra , étant donnée ; assigner a ces variables des valeurs telles
que la plus grande de toutes soit la moindre possible , au que la

i d de toutes $oit la plus grande possible ?
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ASTRONOMIE.

Mémoire sur les éclipses de soleil ;

Par M. le professeur KRAMP , doyen de la faculté des
sciences de Strasbourg.

( Première partie. )

i. PROBLÈME. Soient (fig. i ) S te centre du disque du soleil,
çu de la terre ? dont le centre doit consèquemment se trouver sur
la perpendiculaire menée au plan de ce disque par le point S ;
et soit CG/ le diamètre du même disque. On suppose que deux
observateurs > situés en deux points de la surface de la terre,
voient au même instant le centre du disque lunaire sur le disque
solaire 9 l'un en L et F autre en XJ ; et on demande la relation
générale entre les diverses quantités que le problème donne lieu
de considérer ?

2. Solution* Les quantités données cfu problème sont: les demt-
diamètres du soleil , de la lune et de la terre ; nous nommerons
le premier a, le second b et le troisième c ; ensuite les distantes
des centres du soleil et de la lune à celui de la terre ; nous les
désignerons par A et B ; cela rend les demi-diamètres apparens des

a b
deux astres respectivement égaux à — et — , et leurs parallaxes

horizontales égales à — et — . Toutefois , dans cette analise , nous

ne ferons aucun usage des parallaxes. •
Tom. VI, n.° V, i.ev novembre i8x5. 21
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3. Il faudra fixer les trois axes rectangulaires auxquels nous

assignerons le centre de la terre pour point d'Intersection commune,
et auxquels nous rapporterons tant le centre de la lune que les
deux points de la surface de la terre où les deux observateurs sont
placés. En désignant par w, y 7 z les coordonnées de l'un , et par
ccf

 9y
f i z1 celles de l'autre ,ce qui donne ^2+y*+£:ari:a;/2+y/a-4-z/2=£3 *

nous supposerons Taxe des x dirigé du centre de la terre vers celui
du soleil \ Taxe des y sera mené dans le plan de Fécliptique , pa-
rallèlement au diamètre CC/ du soleil , c'est-à-dire , vers la partie
orientale du ciel ; Taxe des z , perpendiculaire au plan des deux
autres , sera dirigé vers le pôle de Féeliptique.

4. Nous nommerons P 9 Q , R les coordonnées du centre de la
lune , respectivement parallèles aux % , y , z , et prises dans le
même sens ; ce qui donne P2~\-Q2-+-R2 = B2. Comme près de la
conjonction le quarré B* l'emporte considérablement sur la somme
Q*-\-Rz , la différence B—P sera presque nulle ; et , à plus forte

raison , sera-t-il permis de faire P = 3 .

5. La position du point L sur le disque solaire sera déterminée
par les deux coordonnées SN et NL ; et celle du point L^ par les
deux coordonnées $W et N ;L'; elles seront respectivement paral-
lèles aux axes des y et des z. Nous ferons

N L = r - N / L / =r / .

6. Nous avons exposé . dans le tableau suivant, pour chacun des
deux observateurs , les coordonnées des trois points par lesquels
passe le rayon visuel , savoir :

1. Le lieu de l'observateur ;
2. Le centre de la lune ;
3. Le lieu apparent de ce centre sur le disque solaire.



D E S O L E I L . ,3

i.er Observateur. 2.me Observateur.

1. . . . . . x , y , z , x' , y' , *' ,

* B, Q, R, B , Q9 R ,

3* A, </ 9 r ; A , f' , r' .

Nous en déduirons les quatre proportions

A— x : B—x =q —y : Q—y ,

A—x : B—x =r —z : R—z ,

A—x'iB—x' ~ç/—y/: Q—y' ,

A—x': B—x' — r'—z' : R—zJ .

7. En éliminant ici les deux coordonnées Q > R du centre de la
lune , on en fera deux autres , auxquelles nous donnerons la forme
suivante , pour en faire ressortir la symétrie

A—oa A—x1

—xf

Elles font connaître la relation entre le déplacement de Fobservateur
et celui du lieu apparent du centre de la lune , et contiennent
ainsi la solution du problème.

8. Elles deviennent beaucoup plus simples, si on suppose Pun
des deux observateurs au centre même de la terre. Il en résulte
Te'clipse par laquelle le calculateur doit commencer dans tous les
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cas , et que nous nommerons éclipse géocentrique. En plaçant au
centre de la terre celui des deux observateurs à qui se rapportent
les lettres accentuées x!

 7 y/
 > zf, de même que qf , r* , on aura

x/=o , y/=o , z' = o ; les coordonnées q1, r ' pourront être Immé-
diatement déduites des tables , et regardées comme des quantités
donne'es. Les équations deviendront

A(A—B)y=(A—x)Bq'—Aq(B—x) ;

g. En divisant par {A—x)B , et en faisant ? pour abréger

on aura
y : z=q/—72q : r!—nr •

Le maximum de x n'est qu'un soixantième de B , qui n'est lui-
même qu'un quatre centième de A ; la fraction n diffère donc très-
peu de l'unité ; ainsi, dans tous les cas 5 les deux rapports y : z et
q1—q : rf—r sont presque égaux entre eux,

io. Le quarré de la distance du lieu de l'observateur au centre
de la lune est égal à (P_^)*4-(Ç_y)>4-(JÎ—z)* , ou a B*—zPx
—zQy—zRz-^-c* ; ce qui rend cette distance presque égale à B—x.
Si Ton veut tenir compte de l'erreur , très-peu sensible 9 que cette
formule laisse subsister , on fera cette distance égale à B—x—• ;
et Ton aura

2 < » .
B—oc

11. PROBLÈME IL Le lieu apparent du centre de la lune sur
le disque solaire étant L 7 , dans le cas de Véclipse géocentrique ;
on demande dans quel endroit de la terre cette éclipse paraîtra
centrale , dans le même instant ?

12. Solution. Lçs quantités données sont ici q/ , r; ; les inconnues
sont x , y y z -, il faut les déterminer de manière que q~o , r^=o>
Les équations du n.° 8 fournissent
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A{A—B)y~ (A-x)Bq';

- c'est-à-dire ]
Bq' _ Br'

après quoi on trouvera x 9 en vertu de x2=c2—y2—z2» Cette solution
nous aidera à trouver 9 sur le gl@be , la courbe de l'éclipsé centrale.

i3 . PROBLÈME 1ÏL Déterminer, dans la même supposition ,
Yendroit du globe , où l'on observe , dans le même instant , le
centre de la lune sur un point donné du disque solaire ?

i4' Les quantités données sont ici q , r ; q* , r1 ; les inconnues
ce , y 9 z ? seront fournies par ces mêmes équations du n.° 8. En
y supprimant B dans A—B et x dans A—x et 2?—x 7 on trouve

ce sont là les premières valeurs approchées des deux inconnues y
et z ; elles font connaître x à l'aide de x*=cz—ya—z*. Donc si,
pour abréger, on fait xa = (^/—y)a+(r'—r)3 ; ce qui rend * égal à
la distance des deux lieux apparens du centre de la lune sur le
disque solaire ? on aura le quarré de la troisième ordonnée x 9 égal

à £3— x3 ; quantité que , pour abréger , nous désignerons par h*>

et qui, pour exprimer la valeur rigoureuse de x%, a besoin d'être
corrigée encore.

i5. A cet effet, on fera x-=zli—» y et sachant d'avance que & sera
une quantité très-petite , on s'arrêtera 9 dans les développement à
sa première puissance. Faisant donc , pour abréger

— Br')h ;

en trouvera
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On peut remarquer qu'une erreur commise dans oc influe peu sur
les coordonnées y , z ; de sorte qu'après avoir déterminé a:, et en
avoir déduit y et z P à l'aide des équations du n.° 8 ; on aura une
nouvelle valeur de oc , très-approchée , et beaucoup plus exacte que
la précédente 9 en faisant x= \/c2—y2—z~2+

16. PROBLÈME IF. On demande Véquation delà courbe , tracée
sur la surface du globe, où l'éclipsé paraît d'une grandeur donnée ;
c est-à-dire , où le centre de la lune , observé gèocentriquement
en \J paraît partout éloigné de celui S du soleil d'une même quan-
tité % que nous désignerons par f5 tellement que f2 = q2-+-r2?

17. Solution. On aura donc, en vertu des équations du n.° 8 ,
rA*fXB—xf~{{A—x)Bqt~ A(A—B)yY+{(A-x)Br>—A{A--B)z}\

Combinant cette équation avec celle du globe , saroîr : ,z2+y3+.22=£2 ,
on pourra en tirer celles des trois projections de la courbe demandée,
faites sur les trois plans principaux , et dont la forme , très-com-
pliquée f nous annoncera d'abord une courbe à double courbure»

18. Le cas le plus simple serait celui où les centres de ces trois
astres seraient sur une même ligne droite ; ce qui ferait du centre
du soleil le lieu géocentrïque de celui de la lune. Ayant alors
<^=o , r ^ O j les deux équations du n.° 8 deviendront

ÇB—oc)q~—Ay f (B—$)r=—Az ;
d'où il résultera l'équation

(B—#)2/2 = (A—By(c*<-x*) ,

qui ne renferme plus que la seule inconnue se. Effectivement 5 dans
ce cas , la courbe demandée est un petit cercle du globe perpen-
diculaire à la ligne des centres , et dont il reste à déterminer la
distance au centre de la terre } moyennant l'équation qu'on vient
de trouver.

ig* Faisant, pour abréger ,
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la solution de notre équation du second degré donnera

Pour que la solution soit possible, il faut que B.* soît yne quantité
positive ; il faut donc qu'on ait

ou bien , en supprimant B dans A—B et c1 dans 5*—£' ,

conclusions évidentes d'ailleurs.
20. Pour donner une solution , au moins approximative , du pro-

blème général, supprimons, dans les deux équations du n.° 8 9 B
dans A—B , et ce dans A—x et B—x ; elles deviendront

Bq — Bg/—Jy , Br~Br'~Az *%

d'où l'on tire > en ajoutant les quarrés de part et d'autre

équation de la projection de la courbe demandée, faite sur le plan
mené par le centre de la terre, perpendiculairement à la ligne des
centres.

21. Cette équation appartient à un cercle ayant pour rayon

— , et dont le centre est éloigné de Taxe des x, de —- dans le

Brf

sens des y , et de — dans celui des z. La courbe en question

#st donc celle qui résulte de l'intersection de la sphère et du cy-
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lindre droit. Tant que l'axe du cylindre passe par le centre de la
sphère y cette intersection est un cercle, perpendiculaire sur Taxe;
c'est le cas que nous avons examiné précédemment. Dans tous les
autres cas , ce sera une courbe à double courbure.

22. Des trois axes principaux auxquels nous avons rapporté jus-
qu'ici le lieu de l'observateur, celui des x était dirigé vers le centre
du soleil ; celui des y était perpendiculaire au premier , dans le
plan de Fécliptique ; et celui des z perpendiculaire aux précédens*
était dirigé vers son pôle. Pour nous rapprocher des longitudes et
des latitudes géographiques, nous introduirons trois nouveaux axes
rectangulaires, ayant encore leur intersection commune au centre
de la terre 9 afin d'y rapporter nos trois nouvelles variables que
nous désignerons par les lettres majuscules X, Y% Z. L*axe des
X sera dirigé vers le point d'équinoxe du printemps ; Taxe
des Y sera dans la colure des solstices et dirigé vers le 9o.me

degré de l'équateur ; enfin ? Taxe des Z sera dirigé vers le pôle
de ce grand cercle.

2,3. Le triangle sphérique trï-rectangle que j'ai nommé orthoèdrey

est le représentant de tout système de trois axes rectangulaires entre
^ux. Leur point commun d'intersection est le centre de la sphère ,
dont la surface comprend huit orthoèdres. Si d'un point I , pris
dans l'espace , on mène au sommet commun une droite que nous
prendrons pour unité, et qui fasse avec eux les angles * , £ , y ,
on aura trois triangles-rectangles, dont les bases, Cos.«, CGS./3 ,
Cos.y, seront les coordonnées du point I , rapporté à nos trois axes
rectangulaires. Ces angles seront remplacés dans Torthoèdre , dont
nous supposons les trois sommets A , B , C , par les trois arcs de
grands cercles AI , BI , CI , menés du point I aux trois sommets
de l'orthoèdre ; ainsi les trois lettres x , y, z, employées pour dé-
signer les coordoBnées de I , seront équivalentes à Cos.« , Cos.£,
CoS.y.

24. En regardant Torthoèdre k^WO (fig. 2) , comme le repré-
sentant du système des trois axes rectangulaires que nous avons

employés
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employés jusqu'Ici , on pourra prendre le coté A'B' pour le plan
de l'écliptique, le troisième sommet C' pour le pôle de ce plan, et le
sommet À' pour le Heu apparent du soleil , vu du centre de la terre, qui
est le même que celui de Torthoèdre» Prolongeant le côté A'B7 jusqu'au
point avaries qui est ici désigné par A , et menant sur la surface de la
sphère Parc AB 9 faisant avec AA'B' un angle égal à l'obliquité de Té-
cliptique , le grand cercle dont AB fait partie pourra représenter Fé-
quateur. Il ne restera donc plus qu'à prendre Tare AB égal à un
quart de circonférence y et assigner la position du point C , pôle de
cet arc, pour avoir, dans le nouvel orthoèdre ABC , le représentant
du nouveau système de coordonnées que nous avons désigné d'avance
par les lettres majuscules X> Y, Z.

z5. Soit g l'obliquité de Pécliptique t et « l'arc AÀ/ , longitude
du soleil au moment de l'observation. Menons des trois sommets de
l'un des deux orthoèdres aux trois sommets de l'autre des arcs de
grands cercles , qui ne sont pas exprimés dans la figure, mais qu'il
est aisé d'imaginer ; on aura

ÀÀ/=* i £0,y.BÀ/=Cos,gSïn.# , Cos.CÀ'—Sin.tSin.* *

36» En vertu du n.° 24 , on aura , pour nos deux

y—Cos.Wl , Y

z^Cos.C/t , Zz

Reste donc à passer , avec facilité 7 de l'un de nos deux systèmes

de coordonnées à l'autre ; ce qui sera l'objet du théorème suivant :
27. THÉORÈME. Désignant par p , q , r , les coordonnées d'un

point quelconque A d'une surface sphérique 7 et par p7
 ? q

/ , r; , celles
d'un autre point quelconque B de la même surface ; le cosinus de

Tom. VI* 22-
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Varc de grand cureté ÂB, compris entre ces deux points, sera
Cos.ÀB = pp'-f-qq'+rr'.

28. En combinant ensemble les formules des trois derniers n.os
 f

on aura pour résultat les six égalités qui suivent , lesquelles ren-
ferment la solution du problème qui nous occupe ,

et réciproquement

Z = #Sin.sSin»*+ySin,sCos,#+zCos.s .

29. L'angle que fait, dans un instant donné, le méridien d'un lieu
avec le colure des équinoxes , est ce qu'on appelle ascension droite
du milieu du ciel, ascension droite du méridien, ou angle horaire
de Vêçjuinoxe \ e t , comme, dans toute cette analise , l'un de ses deux
côtés sera toujours le colure des équinoxes , nous le nommerons
simplement angle horaire. Au moment du midi vrai, l'angle horaire
sera donc égal à l'ascension droite du soleil. Et si Ton désigne par
A l'ascension droite du soleil au midi yrai d'un certain jour, et
par A; ce qu'elle sera au midi vrai du jour suivant, l'angle horaire
aura augmenté , pendant cet intervalle de 3 6 o ° + ^ — A \ quantité
que, pour abréger , nous désignerons par *. Comme de plus cette
augmentation sera proportionnelle au temps , il s'ensuit qu'en pre-
nant pour unité la. durée entière d'un jour solaire , l'angle
horaire , au bout du temps / s considéré comme une fraction quel-
conque du jour sera égal A~\~*t.

So. Si de plus on désigne par D la différence angulaire entre le
méridien dont nous parlons et un autre méridien du globe situé à
son orient ; l'angle horaire au moment du midi vrai étant A pour
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le premier des deux, il sera pour le second, «fans le même instant,
égal à A-\-D ; et , après une fraction4 de jottr exprimée par i, il
sera A-j-D-r-erf , en conservant à « sa signification s^=:A/—^-f-36o°*
Ainsi , désignant généralement l'angle horaire par ^ , on aura

3x. L'autre angle qui sert à déterminer la position du lieu de
l'observateur, par rapport à nos trois plans principaux , c'est la la-
titude du lieu : nous la désignerons par X. L'angle A est une quantité
constante pour chaque lieu de la terre ; l'angle ^ est une quantité
variable qui?pendant sa rotation , varie proportionnellement au temps.

32. La tangente de l'angle horaire est, dans tous les cas ? égale à
Y
-—; e t , dans la vsupposition d'une terre sphérique ; la latitude À a

z
pour sinus — 5 II en résulte f

Moyennant ces formules , on aura , pour chaque instanf, les coor-
données X9 Y y Z de tout lieu dont on connaît la latitude. Les
formules du n.°; 28 nous aideront à en déduire les coordonnées 3;,
y , z 9 qui se rapportent immédiatement à la phase de l'éclipsé ,
et qui pourront servir dans l'application des formules du n.° 8.

S3 . L'applatîssement de la terre 5 si toutefois on veut y faire
attention ? dans les calculs sur les éclipses , apportera quelques lé-
gères modifications à nos formules. En conservant la lettre c pour
désigner le demi petit axe BC du globe (fig. 3) : et en nommant
a le grand axe AC , la latitude du point M ne sera plus l'angle
ACM ; ce sera l'angle ARM que fait le grand axe AC avec la
normale MR., En supposant de plus aux méridiens une forme ellip-
lïque , on aura
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PM'=-

La ligne PM est toujours la même que l'ordonnée Z , tandis que
CP est identique avec s/X2+Y*.

34. Si , en faisant a — c^tr* , on s'arrête, dans les développemens,
aux premières puissances de *, on aura

et , en mettant ces deux expressions à la plaee de ^Cos^ et de
tfSin.x, on pourra encore employer les trois formules du n.° 33 ,
même dans la supposition d'une terre sphéroïdlque.

35. Le calcul de l'éclipsé géocentrique n'a aucune difficulté. Il
faudra déterminer , pour chaque instant proposé , les coordonnées
S N 7 ^ ^ , W\J — rf (fig. 1), du lieu géocentrique du centre de la
lune sur le disque solaire. Ayant déjà désigné par L la longitude
du soleil, soit n la longitude de la lune , et è sa latitude ; on aura

ç'zzATmg.(n—a) r/=^TangJ :

ce sont là les valeurs absolues de ces coordonnées. Pour avoir leurs
valeurs angulaires , exprimées en minutes et secondes du cercle dont
le rayon est un ? il faudra diviser par A \ on aura ainsi

36. Dans l'intervalle d'un midi à Tautre , la longitude du soleil
croît proportionnellement au temps. Dans la connaissance des temps ,
-année 1816 , je trouve, cette longitude «.

Pour le 18 novembre , a midi. i8o°+56°.4/- ^lf 9
Pour le 19 novembre , à midi i8
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Comme les deux différences du 18 au 19 et du 19 au 20 sont

rigoureusement égales , la simple progression arithmétique suffit j
ainsi , la longitude du soleil ? au bout du temps / > comptée depuis
le midi vrai du 18 ; en prenant pour unité la durée d'un jour solaire ?

sera «r= i8o°4-56°.4'.2'M-364o"/.
37. Il n'en est pas de même de la lune , dont les inégalités ,

pendant ce même intervalle de temps , sont déjà très-sensibles. La
longitude de cet astre est égale à sept signes, plus

Le 18 à midi i3°. 8'. 9 "= 47289" ,

Le 18 à minuit. . . . . . 20 %32 .^9 ^ 73969 ,

Le 19 à midi 27 .54 «45 = ioo485 9

Le ig à minuit. . . . . . 35 . i3 . 6 =126786 •

Le premier terme de la colonne est 47289// ; sa première différence
est -4-2668o// ; sa seconde différence est —164// ; et sa troisième
différence est —5i / ; . Ces deux dernières sont très-sensibles encore.
Les quatre valeurs sont comprises dans la formule

il faudra s'en servir pour trouver, avec précision , les valeurs de§
longitudes intermédiaires*

38. On trouve de même la latitude de la lune

Le 18 à midi . » 2°. 4/«36//=7476// ,

Le 18 à minuit. . . . .f. ï .25.54 = 5 i 5 4 9

Le 19 a midi ^45 «58 =2758 ,

Le 19 à minuit 5 .34 = 334

Le premier terme de la colonne est 7476/y ; sa première différence
est —2322"; la seconde est —74" ? ^ troisième est +467 / . Elles
nous font connaître les valeurs exactes des latitudes intermédiaires,
au moyen de la formule
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#= 46

3g. Po^ur n&us débarrasser de l'emploi de ces polynômes, il fau-
dra resserrer les limites du temps. L'éclipsé est comprise , pour l'ob-
servateur de Berlin , entre huit heures du matin et midi , temps
vrai de Paris. On trouve , à l'aide de nos formules , qu'à huit heures
du matin, la longitude de la lune sera i8o°~\-5i°*2,r]/.48//

 7 et sa
latitude 5Q/.22//. A midi vrai du même jour , sa longitude sera
i8o°+57°.54 /.45 / /, et sa latitude i3/.24//. Pendant cet intervalle de
quatre heures , sa longitude aura donc changé de 2°.26/«57//, et sa
latitude de \V\^^f. Aces mêmes huit heures du matin 3 la longitude
du soleil aura été I 8 Q ° + 5 6 ° . 5 4 / . 3 5 / / , elle aura done changé r jusqu'à
midi vrai du même jour, de io7^77 -, ce qui nous permettra d'ex-
primer nos trois quantités angulaires par de simples binômes, de la
forme A-{-Bt. On aura donc alors , en prenant l'intervalle de quatre
heures pour Punité du temps / , lequel sera compté depuis huit
heures du mâtin 9 temps vrai de Paris ,

•=i8o*+56°.54'.35"+ 6o7"/ >

donc

T'~ Ô = + 3 562"— 804^/ .
r4o. Il nous sera donc permis de supposer , en ge'néral, q—

r=iSr+/z/ ; les facteurs numériques M, N, m 7 n , étant immé
diatement donnés par les tables. Dans le cas de Péclipse de
on aura donc

^—$207" ; 772=4-8210"
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Le temps / , exprime en fonction de l'intervalle de quatre heures ,
sera compté depuis huit heures du matin , temps vrai de Paris.

4r* Le moment de la conjonction est indiqué par ^=o5 d'où il résulte
M

4 t— . Dans l'éclipsé géocentrique dé 1816 , on aura / = o , 634226 ;

la conjonction arrivera donc à iofe.32/.i3// du matin ; la latitude de

la lune sera alors • ce qui fait,dansle cas actuel, 3o52;/ou 5/.5o//

m
42. La plus courte distance apparente des centres , vue de celui

de ]a terre , indiquera le milieu de l'éclipsé géocentrique ; elle répond
Mm+Nn Mn—Nn _ ^ .

a/=—• ; elle sera égale a • -. .. Dans 1 éclipse de 1016*
on aura /=o ;67O286 ; ce qui répond à iofe.4°/'52// ; et elle sera
égale à 3o37"=5o'.37".

43. Le jour de l'éclipsé , les deux demi-diamètres apparens du
soleil et de la lune seront respectivement 973 ; / et 787^ y ce qui
donne pour leur somme ie)6o//. Comme cette somme est beaucoup
plus petite que la moindre distance géocerrtrique des deux centres,
on voit qu'il n'existera pas d'éclipsé géocentrique -, le centre de la
terre ne pouvant entrer ni dans l'ombre de la lune , ni même dans
sa pénombre. Cela n'empêchera pas de déterminer , pour chaque
instant, les deux coordonnées q1 , rf \ mais, quelque valeur qu'on suppose
\ t , le lieu apparent du centre de la lune sera toujours beaucoup
au-delà du disque solaire ; l'éclipsé , en effet, ne sera visible que
pour une partie de l'hémisphère boréal du globe.

44* On trouve 5 dans la connaissance des temps , et en employant
une interpolation convenable 9 que le 19 novembre , à 10 heures
du matin , temps vrai de Paris , le demi-diamètre apparent du soleil
est de 973^4 » et celui de la lune 987 ; /. En supposant le rayon
de la terre égal à l'unité, celui du seleil sera 111,48, et celui de
la lune O3273 ( LALANDE , abrégé d'astronomie ).v*"Divisant les
premiers nombres par les derniers, on aura les parallaxes horizontales
au moment du milieu de l'éclipsé géocentrique , pour lequel il faut
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prendre ici celui de la plus petite distance apparente des centres.
elle sera 8^,7345 pour le soleil et 3617" pour la lune. Passant de
là aux distances réelles ? on aura

La première A=z 23615 ; Log.^=4,373i879 ;

La seconde 5=57 ,0765; Log.Z?= 1,7860767 •

45. Les ascensions droites du soleil, aa midi vrai du 1S et du
19 novembre 7seront ? d'après les tables,

Au 18 A =i8o°+53°.44 / .28" ,

Au 19 . . . . . ^ = i 8 o ° + 5 4 -47 . 2!' •

La différence est i°.2 /.34 / /, ou 3754". On aura donc «:=36oô4-
3754^, ce qui rend l'angle horaire ^=233*.44/.28//+(36oôHh3754//>;
le temps étant compté depuis le midi vrai du 18 novembre, et
exprimé en fraction d'un jour solaire» Pour établir de la conformité
entre nos formules , il vaudra mieux prendre l'intervalle de quatre
heures pour unité de temps, et compter depuis huit heures du matin.
On aura alors ^== i740-36/.36//-+>2i6626/7/. Pour tout autre obser-
vateur , placé a l'orient de Paris , il faudra ajouter à cette formule
la différence angulaire des méridiens , que nous avons désignée par
D. Pour Berlin, on aura D = I I ° ^ /

5 . faisant en temps 44/«8//.
46* Pour donner une application de nos formules f poursuivons

l'éclipsé du 19 novembre d'heure en heure, depuis huit heures du matin
jusqu'à midi ? en suppo5ant l'observateur placé à Berlin , qui a pour
hauteur du pôle * ^=52°.3i /.45 / /. La lettre t se rapportera toujours
au temps vrai de Paris,. Il faudra commencer par qf

 7 r ' , coordonnées
$u centre de la lune r observé du centre de la terre. Elles formeront
deux progressioas arithmétiques , ayant pour leurs premiers termes^

Celle de q' . . . . . —5207" >

Celle de r ' . . . * * +356a" -T

*t pour leurs différences *
«elle
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Celle de q' -+-2o55" y

Celle de rf — 20i / / .

Les longitudes du soleil et les angles horaires formeront aussi deux
progressions arithmétiques , ayant pour leurs premiers termes;

Celle de la longitude * 236.°54/.35/' ,

Celle de l'angle horaire p. . . . i859°3&36" ;

et pour différences

Celle de la longitude #, . • . . 2/.32// ,

Celle de l'angle horaire & . , • ï5.°2/.36// »

tVoîcî la table ;

Temps.

8*.

9-

IO.

1 1 .

1 2 .

- 5 2 o 7 "

—3i54

— I IO2

+ 95°
4-3oo3

T<

4-3562"

+3361

+3i6o

4-2959

4-2758

56

56

56

5?

= i8o°4-

o.54^

.57

.59

. 2

• 4

.35"

• 7

.3 9 ;

. 1 1

.43

, =

5°

2 0

35

5o .

65

.38'.36"

• 4l -12

.43 .48

46.24

,4g • O

47. La latitude connue de Berlin , et les angles horaires qu'on
vient de déterminer, conduisent aux coordonnées X, Y\Z y moyennant
les formules du n.° 3z j ensuite de quoi celles du n.° 28 feronl
connaître 5 sans difficulté , les coordonnées OP , y f z , dont la valeur
numérique est changée à chaque instant * en vertu de la rotation

Tom. VI, 23
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du globe f ainsi que des mouvemens propres du soleil et de la lune.
En voici la table :

Temps.

8*

9-

lo.

ii.

12.

X

O;1II7452

O?2IO7286

0,2772901

0,8068908

0,297 5o57

y

— o,649789^

— 0,5418849

— 0,4087702

— 0,2595157

— 0,1042659

z

0,7580235

o,8i36o55

0*8694922

0,9156797

0,9490080

48. Les coordonnées x , y, z , mèneront immédiatement à celles
que nous avons désignées par q , r > et qui détermineront le lieu
apparent du centre de la lune sur le disque du soleil, moyennant
les formules du n,° 8, savoir ;

Comme la plus grande valeur de x de la t»J>le n'est encore qu'un
quatre-vingt millième de A, nous pouvons supprimer x dans A—x >
ce qui réduit nos formules à
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Ces formules font connaître les valeurs absolues de q , r. Pour les
réduire en secondes , il faudra diviser A—B par ^Taug.i"; il en
résultera le quotient 206767 ; et , en désignant ce quotient par
n y on aura

Ces formules nous feront connaître les grandeurs apparentes des
coordonnées q , r7 vues de l'observatoire de Berlin et exprimées en
secondes. Nous avons ajouté, dans la troisième colonne de la table
ei-jointe , la distance apparente du centre du soleil à celui de la
lune, c'est-à-dire, y/q*-\-r*.

Temps.

8.*

9-

1 0 .

1 1 .

1 2 .

—2868"

—1204

+ 375

+1897

4-3396

r

4-85o"

4-4^7

— 2.1

- 3 4 7

—67O

2991"

1278

376

1928

3461

49» Pour rendre cette table plus complète , en la construisant
ëe quart d'heure en quart d'heure ? il faudra employer l'interpo-
lation; on aura
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Temps.

8.* o'

8. i5

8. 3o

8. 45

9* °

9- l5

g. 3o

9- 45

IO. O

io, ï5

io. 3o

io. 45

ii« o

I L Ï5

j 11. 3o

ii. 45

12. O

—2868"

-2443

—2oa3

—1611

— I2o4

— 8O2

— 4o5

— i3

+ 375

+ 759

+1141

+x5ig

+ 1897

+2272

+2646

+3O2I

+3396

r

+85o"

+743

+637

+53a

+427
+323

-j-222

+121

— 23

- 73

—167

—258

—347

-432

—5i5

~594

—670

Distances des centres.

299 \"

2565

2121

1701

1278

876

461

123

376

756

ÏÏ53

1928

2313

/696

3o79

346i



D E S O L E I L . i53
La méthode d'interpolation que nous avons employée , pour cons^
truire cette table , sera Fobjet du problème qui suit :

5o. PROBLÈME IF. Soit y une fonction de x , telle que

Pour s=o , i , 2 , 3 , i j , • >

On ait y = a ? b ? c } d , e , ;

on demande de comprendre toutes ces valeurs particulières dans une
seule formule , telle que y=^+j&#+C#2+2?.#3+ ...* ^ et de faire
connaître la loi générale des coejficiens ? À, B , C , D,....?

4 i . Solution. Désignons par A^7 zùfa ? 6A3# ^ 24AV5...... les
première , seconde , troisième , quatrième } ».••. différences du premier
terme de la colonne ; tellement que

A a~b—a ,

on aura alors

5a. Les cociEciens numériques de ces suites sont les mêmes que
ceux des facultés des divers degrés, La faculté de & à exposant cinq,
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qui est le développement du produit # ( # +
ou #s+io#44~35#3+5o#a+24#, a pour ses coefficiens i , 10, 33, 5o,
24 ; et tels sont aussi les nombres de la colonne verticale des A5#. La
série est d'un grand usage , sur-tout dans les cas où les différences
A# , A*a , ù?aP ÙJ*a 7 .... vont rapidement en décroissant; ce qui
rend la suite A-\-Bx-+-Cxx-\-.;. très-convergente ; mais le défaut
même de cette circonstance n'ôte rien à sa généralité.

53. L'application de ces formules a la table dû n.° 48 donne

2/~ 645/M- 38/3+ 3/* ,

=-+-10800

54. Une interpolation analogue r faite dans la table du n.° 49 »
nous apprendra que la moindre distance des centres , qui indique le
milieu de l'éclipsé , aura lieu à 9*.46/.44//> temps vrai de Paris ;
ce qui équivaut à icASc/.Sy7 , temps vrai de Berlin. Une déter-
mination générale et plus rigoureuse , sera l'objet du problème
suivant.

55. PROBLÈME V. On demande la relation générale qui existe t

au moment du milieu de l'éclipsé y ou de la plus grande phase ,
entre le temps et la position géographique du lieu de Vobservateur ?

56. Solution. L'épaisseur de la partie éclipsée est généralement
égale à la somme des deux demi-diamètres du soleil et de la lune r

moins la distance de leurs centres \ le moment de la plus grande
phase est donc celui de la moindre distance des centres. Le quarré
de cette distance est y a +r 2 ; on aura donc , pour le cas du 772/-
nimum, l'équation ^dy+rdr=o* Or , nous avons n.° 8 les deux
équations qui suivent :

Sous avons de j>lus
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> d'où ?

Les coordonnées géocentriques <jf, r' sont fonctions du temps seul ;
mais les coordonnées x, y, z 9 sont fonctions du temps et de la
position géographique du lieu de l'observateur ? c'est-à-dire , de sa
longitude et de sa latitude. Elles doiyent donc, toutes les trois, être
considérées comme variables.

57. En différenciant, sous ce point de vue , les deux équations
du n.° 8 9 et y introduisant mdt et nàt, en place de dy7 et àr* ,
il vient

)+(x)Bn àt

Mais , les équations du problème donnant

{B—x){Ar—Br')-{A—B){BT'—Az) ,

ehangent les dernières dans les suivantes

—A(A—B)(B—x)dy

—A(A—B)(B—x)àz

58. Il ne reste plus qu'à prendre la somme des produits respectifs
de ces deux équations par ç et r, pour former la fonction ^d^-J-rdr
qui, égalée à zéro s doit donner la plus courte distance des centres.
En posant, pour abréger ,
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il en résultera l'équation

(̂ —B)Pdx=A(A->-B)(B—x)tydy+rcb) — C^—x)(B—x)B(mq+nr)dt .

5g. L'équation de la sphère x*+y*-$-z*=:o, donne, en différen-
ciant xàx-Jryày-^-zàz—o. On pourra donc éliminer la différentielle
àx de l'équation précédente • il viendra ainsi

B{A—x) (B—x) (mq+nr)xdt=iA—B)lPy+A(B—x)qx}df

+(A—B){Pz-\-A(B—x)rx]dz .

60. En conséquence y si Ton suppose que le moment d'une plus
grande phase est donnée d'avance , ce qui rend d/=o , et qu'on
demande l'endroit de la terre où l'observateur doit se placer 5 pour
voir cette moindre distance apparente des centres sous un angle donné ,
il faudra égaler séparément à zéro les deux coefficiens de dy et Az.
Il en résultera les deux équations qui suivent :

o=Py-\-A(B~x)qx , o=Pz+A(B~x)rx .

61 • Ces équations donnent immédiatement — = — ; de sorte qu'on

peut faire y~kq , z-=kr. Les équations du n.° 8 deviendront alora

de sorte qu^en faisant, pour abréger

on aura

ainsi donc t au moment de la plus grande phase ? quelle que soit

d'ailleurs sa grandeur absolue ; on a toujours — = ~ = : — . d ^

' résulte le théorème qui suit 1
62.
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61. THÉORÈME. Les lieux apparent du centre de la lune sur
le disaue solaire , eus de drfferens points du globe 7 au même moment
d'une plus grande phase , sont situés sur une ligne droite , qui

passe par le centre du disque.

GEOMETRIE ANALIT1QUE.

Construction géométrique des équations du deuxième
degré à deux et à trois variables;

Par M. BÉRARD , principal et professeur de mathématiques
du collège de Briançon , membre de plusieurs sociétés
savantes.

juin sujet dont je me propose Ici d'entretenir le lecteur a déjà été
tant de fois rebattu, qu'il n'est plus, pour ainsi dire, permis d'y
revenir de nouveau, sans bien préciser d'abord ce qu'on se propose
d'ajouter aux théories déjà connues.

On n'avait encore 9 pour la recherche des grandeur et direction
des diamètres principaux, dans les lignes et surfaces du second ordre T

que des méthodes indirectes et compliquées, lorsqu'en I 8 I Q je pu-
bliai, dans m^s Opuscules, l'équation dont les racines sont les quarrés
des demi-diamètres principaux des lignes du second ordre , rapportées
à des axes rectangulaires; équatioa que j 'y déduisais de la méthode
de maximis et minimis.

M. Gergnnne , ignorant sans doute ce que j'avais fait sur ce
sujet, y revint peu après, par des procédés analogues ( Annales 9

tom. I I , pag. 335 )
Tome VL 24
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Auparavant ( Annales , tom. II, pag, 33 ) , M. Bret avait donné,

par la transformation des coordonnées , appliquée d'une manière in-
génieuse qui lui est propre , l'équation qui conduit à la détermi-
nation des diamètres principaux , dans les surfaces du second ordre,
rapportées à des axes rectangulaires.

En octobre i 8 i 3 ( Annales , tom. I I I , pag. i o 5 ) , je donnai,
pour la première fois , l'équation aux quarrés des demi-diamètres
principaux des lignes et surfaces du second ordre, rapportée à des
axes obliques quelconques. Cette équation remarquable , ainsi que
les théorèmes que j'en ai déduits 9 ont été reproduits par M, Binet
( Journal de l'école polytechnique , XVI. e cahier 7 pag. 321 ) v par
M. Hachette ( Traité des surfaces du second degré , Paris i 8 i 3 ) ,
et par M. Garnier ( Géométrie analitique , pag. 372 ).

M. Bret ( Annales , tom. IV , pag. g3 ) , étendit ensuite ses
méthodes au cas général des axes obliques.

Je rassemblai tout ce que j'avais fait sur ce sujet dans un mémoire
que je publiai en 1814 ( voyez l'annonce , Annales , février 1814 ) 9

et dans lequel je m'occupai également des lignes et surfaces du
second ordre dépourvues de centre , dont il n'avait pas encore été
traité jusqu'alors.

M. Gergonne (Annales, tom. V , pag. 61 ) , a donné une mé-
thode très-simple et très-remarquable , pour la discussion géométrique
des équations du second degré à deux et à trois variables, dans l'hypo-
thèse des axes obliques ; mais on peut raisonnablement regretter que
Fauteur n'ait point été aussi heureux dans la recherche des longueurs
des demi-diamètres principaux.

Enfin , M. Bret ( Annales 7 tom. V , pag. 357 ) , a donné une
méthode nouvelle , assez; briève, et dégagée de toute application du
calcul différentiel , pour parvenir , dans les lignes et surfaces qui
ont un centre , et , quelle que soit la direction des axes , à Péquation
dont les racines sont les quarrés des demi-diamètres principaux.

Il est certes bien loin de ma pensée de revenir ici de nouveau
sur le mode de discussion employé par M. Gergonne 7 et qui paraît
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laisser Bien peu de choses à désirer ; mon dessein est seulement ,
en admettant comme déjà connues toutes les vérités que ce mode
de discussion, ou tout autre équivalent, peut faire découvrir, de
montrer comment on peut facilement construire la ligne ou la sur-
face dont l'équation est donnée , du moins lorsque cette ligne ou
cette surface a un centre ; car je ne dois pas dissimuler que , pour
le cas où elle en est dépourvue , je n'ai encore rien trouvé d'assez
simple, d'assez élégant et d'assez symétrique pour oser ici en occu-
per le lecteur. Orj trouvera au surplus , dans le mémoire rappelé plus
haut ê ce que j'ai pu faire de mieux à cet égard.

§> i.

Construction des lignes du second ordre.

Lorsqu'une ligne ou portion de ligne du second ordre est tracée
sur un plan, la méthode la plus simple que l'on puisse employer
pour en déterminer le centre est la suivante : on y trace, sous une
direction quelconque , deux ou un plus grand nombre de cordes
parallèles, dont les milieux déterminent la direction d'un certain
diamètre ; on répète la même opération pour d'autres cordes pa-
rallèles , d'une direction différente de celle des premières ; et on
obtient ainsi un second diamètre. Si ces deux diamètres se coupent,
la courbe a un centre, lequel n'est autre que leur Intersection;
s'ils sont parallèles, tous les autres diamètres que Ton pourrait
construire leur seraient également parallèles , et la courbe est dépourvue
de centre, ou, en d'autres termes, elle a son centre situé à une
distance Infinie*, si enfin ces deux diamètres se confondent, tout
autre diamètre se confondrait avec eux , et la courbe a une Infinité
de centres, situés sur une même ligne droite^

Imitons ce procédé par l'analîse. Soit

Q , (i)
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l'équation de la courbe dont il s'agit -, l'angle des coordonnées

étant supposé = y ,
Soit x—a l'équation d'une corde quelconque parallèle à Taxe

des y ; en combinant cette équation avec la propesée, celle-ci
deviendra

r + 5 =o.

les deux valeurs de y déduites de cette équation seront les ordonnées
des extrémités de la corde dont il s'agit. Mais le coefficient du
second terme d'une équation du second degré , pris avec un signe
contraire, étant la somme de ses racines, il en résulte que, pour
le milieu de cette corde , on aura

_ Ca+B'
y— j — ;

en changeant donc a en x, dans cette dernière équation, l'équation
résultante

sera celle du lieu géométrique des milieux de toutes les cordes
parallèles à l'axe des y; c'est-à-dire, l'équation du diamètre qui
coupe toutes ces cordes en deux parties égaleŝ

On peut remarquer que cette équation n'est autre chose que la '
dérivée de la proposée ( i ) , prise par rapport à y seulement ; et en
conclure que la dérivée de la même équation, prise par rapport a
& seulement > sera l'équation du diamètre coupant en deux parties
égales les cordes parallèles à Taxe des #.

Il suit de là que les équations des diamètres coupant en deux parties
égales les cordes parallèles aux deux axes sont

Jx+Cy+J'—o , )
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En thèse générale ces deux diamètres se couperont : ils seront pa-
rallèles si l'on a

C*—AB=.o d'où C=\/ÂB ;

enfin ils se confondront, si l'on a en outre,

CB'=BA' ou CA'^AB'
d'où

A-C — , B-C~.

Dans le premier cas, la courbe aura un centre; dans le second,
elle en sera dépourvue , enfin dans le troisième , elle en aura une
infinité, tous situés sur une droite dont l'équation sera

AfBl

occupons-nous uniquement du premier de ces trois cas*
Nous venons d'observer que ? lorsqu'une ligne du second ordre

a un centre, ce centre est déterminé par l'intersection de deux
quelconques de sts diamètres. S i , de ce même centre et d'un rayon
quelconque, on décrit un cercle , ce cercle coupera , en général,
la courbe en quatre points, lesquels seront les extrémités de deux
diamètres égaux, symétriquement situés par rapport aux dia-
mètres principaux ; de sorte que la droite qui divisera en deux parties
égales l'angle de ces deux diamètres, indiquera par sa direction
celle de Fun des diamètres principaux. Si donc on prend le rayon
du cercle de telle manière que les deux diamètres se fconfondent^
l'un des diamètres principaux se confondra aussi avec eux, et le
rayon du cercle sera la moitié de ce diamètre.

Imitons analitiquement ce procédé. D'abord la combinaison des
équations (2) donne , pour les équations du centre

_ BA'—CB' _ AB'—CA' _
*~ &—AB ' V*~~ C*~AB # ^ ^
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En y transportant l'origine, et posant, pour abréger

ABD—AB»—BA'*—DC'+zA'B'C
(4)

l'équation (i) devient

Ax*+By*+zCxy~E . (5)

L'équation du cercle ayant son centre à la nouvelle origine, et
son rayon égal à r est

^2+y2+2^yCos.y=ra . (6)

Soit donc y~mx l'équation du diamètre passant par Tune des
intersections des deux courbes, il viendra, en substituant dans les
équations (5) et (6),

Bm*+%Cm)x*z=sE , )
(7)

; )

d'où, on conclura, par l'élimination de x*,

(Br*—E)m*~>rï{Cr*—ECos><y)m+(Jr*~JE) = o • (8)

Telle est donc l'équation qui donnera les directions des deux dia-
mètres qui passent par les intersections de la courbe avec le cercle
dont le centre coïncide avec le sien, et dont le rayon est r.

Si nous supposons ce rayon r indéterminé , nous pourrons profiter
de son indétermination pour faire coïncider les deux diamètres,
lesquels auront alors pour direction commune celle de l'un des.
diamètres principaux ; et la valeur qui en résultera pour r sera
la moitié de la longueur de ce diamètre.

Il faut pour cela que l'équation (8) ait ses deux racines égales;
c'est-à-dire ^ qu'il faut que son premier membre soit un quarré, ou
du moins puisse le devenir , à l'aide d'un multiplicateur convenable,
indépendant de m. En la multipliant par Br2—E9 elle devient

E) = o .



DU SECOND ORDRE.
Or , sous cette forme , on voit qu'elle sera un] quarr£ si l'on a

c'est-à-dire ,

(C*—JB)r<+E(A+B—2CGos.y>a—£3Sin.V=o ; (9)

et qu'alors la racine de ce qùarré sera

(Br2—J?)/72+(Cr2—,£Go5.y):=o . (10)

La première de ces deux équations fera connaître les deux valeurs
de rz, et on en conclura, au moyen de la seconde , les valeurs
correspondantes de m. Il est difficile de penser qu'aucune autre voie
puisse conduire aussi brièvement à la détermination des grandeurs et
directions des demi-diamètres conjugués.

Construction des surfaces du second ordre.

Lorsqu'une surface ou portion de surface du second^ ordre est
donnée dans l'espace , la méthode la plus simple que Ton puisse
employer pour en déterminer le centre est la suivante : on lui mène,
sous une direction quelconque, trois ou un plus grand nombre de
cordes parallèles, non comprises dans un même plan, dont les
milieux déterminent la position d'un certain plan diamétral ; on
répète la même opération pour deux autres systèmes de cordes
parallèles, d'une direction différente de celle des premières; on
obtient ainsi deux autres plans diamétraux. Si les trois plans se
coupent en un point, la surface a un centre , lequel n'est autre
que leur intersection ; s'ils se coupent tous trois , suivant une même
droite , la surface a une infinité de centres situés sur cette droite ;
s'ils se confondent, elle a une infinité de centres situés sur l'un deux;
enfin s'ils sont parallèles, ou si seulement leurs intersections deux
à deux sont parallèles, la surface est dépourvue de centre ou, en
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d'autres termes, elle a son centre situé à une distance infinie.

Imitons ce procédé, par Tanalise; soit

l'équation de la surface dont il s'agit > les angles des coordonnées
étant * , £, y.

Soient x = a , j = 3 les équations d'une corde quelconque, paral-
lèle à l'axe des z ; en combinant ces équations avec la proposée 7

celle-ci deviendra.

Z+

Les deux valeurs de z f déduites de cette équation , seront les coor-
données, parallèles aax z , des d"ux extrémités de la corde dont
il s'agit. Mais le coefficient du second terme d'une équation du second
degré, pris avec uu signe contraire, étant la somme de ses racines,
il en résulte que, pour le milieu de cette corde , on doit avoir

A'b+B*a+C"
z = = c ;

en changeant donc a en ^ et h en y , dans cette dernière , l 'é-
quation résultante

sera celle du Heu géométrique des milieux de toutes les cordes
parallèles à Taxe des z r c'est-à-dire , l'équation du plan diamétral
qui coupe toutes ces cordes en deux parties égales.

On peut remarquer que cette équation n'est autre chose que la
dérivée de la proposée ( i) , prise par rapport à z seulement ; et en
conclure que les dérivées de la même équation ?* prises successivement
par rapport à oc et y seront les équations des plans diamétraux
coupant en deux parties égales les cordes respectivement parallèles
aux axes des ic et des y*

11
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II suit de là que les équations des plans diamétraux coupant en

deux parties égales les «ordes parallèles aux trois axes sont

By+A'z+C'x+B»= o ,
Cz+B'x+A'y+C»zxo ,

En thèse générale ces trois plans se couperont en un point : Us
se couperont suivant une même droite , lieu des centres > si l'on a j
^ la fois ,

A (A^—B'CO+B (B'*—C'A')+C

îls se confondront en un seul, lieu des centres § si Von a , à la

BB'—CW-o ,

enfin , ils n'auront aucun point commun , et conséquemment
surfaee sera dépourvue de centre ? si l'on a

Occupons-nous uniquement du cas où les trois plans se coupent
en un point.

Nous venons de voir que , lorsqu'une surface du second ordre a
un centre ? ce centre est déterminé par Fiatersection des trois quel-
conques de ses plans diamétraux. Si de ce môme centre ; et d'un
rayon quelconque, on décrit «une sphère, cette sphère coupera en

Tom. VI. z5



i66 L I G N E S E T SURFACES
général la surface suivant une courbe à double courbure , aux dif—
férens points de laquelle menant des rayons, ces rayons seront les
élémens rectilignes d'une certaine surface conique ayant même centre
que la sphère. Mais , si Ton prend le rayon de la sphère de telle
manière que tous ces élémens se confondent en une seule droite ,
cette droite indiquera , par sa direction celU de l'un des diamètres
principaux , et le rayon qui remplira cette condition sera la moitié
de la longueur de ce diamètre.

Imitons analitiquement ce procédé.D'abord, en posant pour abréger

BB'—C'A'=b' ,

il viendra (2) , pour les coordonnées du centre f

» (3)

Z ~ —r-

En y transportant l'origine , et faisant encore pour abréger

l'équation ( i ) deviendra simplement

y=E . (5)
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L'équation de la sphère ayant son centre à la nouvelle origine
et son rayon égal à r } est

x*-)ry*~\~z2+2yzCost*+2ZxCos,fi+2xyCos,y=r3 . (6)

Soient donc zzzmz, yz=mz les équations du diamètre passant par
l'un quelconque des points de l'intersection des deux surfaces ; il
viendra f en substituant dans les équations (5) et (6) ,

~E , )

d'où on conclura par l'élimination de zx

5(8)
*~-ECos.<y)mn—o J

Telle est donc la relation qui doit exister entre m et n pour que
fa droite > dont les équations sont &=mz et y~nz f soit située sur
la surface du cône. On voit qu'à chaque valeur de l'une de ces
quantités répondront deux valeurs de l'autre ; qe qui revient à dire
que tout plan conduit par l'origine perpendiculairement, soit au plan
des xz soit au plan des yz f coupera la surface conique suivant
deux de ses génératrices.

Mais > si l'on suppose que le rayon r ait été choisi de manière
que toutes ces génératrices se confondent entre elles et avec un des
diamètres principaux ; il devra arriver que, soit qu'on résolve l'é-
quation (8) par rapport à m ou qu'on la résolve par rapport à n f

la valeur de Tune ou de l'autre de ce* quantités sera unique ou ,
ce qui revient au même, se réduira uniquement à sa partie ration-
nelle. En exprimant cette double condition , c'est-à-dire > en sup-
primant le radical dans cette équation résolue successivement par
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rapport a m et à n , et chassant ensuite le dénominateur , on ob
tiendra , en transposant, les deux équations

r*—ECos.fi—o ,

r*—ECos.«)—o ;
(9)

lesquelles ne sont, au surplus ? que les dérivées de (8) » prises succes-
sivement par rapport à 772 et par rapport à 72. Telles sont donc les
équations qui feront connaître les valeurs de m et de n qui con-
viennent aux diamètres principaux, lorsque toutefois r sera déter-
minée conformément à la présente hypothèse»

Au moyen de ces équations, Féquation (8) se simplifie ; en en
retranchant en effet la somme des produits respectifs de celles-ci
par m et n, elle devient

*~ECo$.u)n+(Cr*~~E)~o . (10)

Eliminant donc m et n de cette dernière , au moyen des équa-
tions (9) , et faisant encore usage des abréviations déjà employées
ci-dessus il viendra

— Cos,«Cos./3)

(11)

Cette dernière équation fera connaître les longueurs des demi-dia-
mètres principaux ; on en conclura ensuite leurs directions , au
moyen des équations (<))• On conviendra encore ici qu'il n'est guère
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présumable que tout autre procédé puisse conduire au but d'une
manière tout à la fois aussi simple et aussi élémentaire.

Ceux qui désireront plus de développemens sur ce «ujet, pourront
consulter l'ouvrage déjà cité sur la Discussion et la construction
des lignes et surfaces du second ordre ; ouvrage dans lequel je me
suis principalement attaché à faire connaître les caractères et la cons-
truction des huit cas que présente l'équation à deux variables , et
des quinze cas que présente celle qui en renferme trois.

QUESTIONS RÉSOLUES.

Solution du IlLe problème de géométrie proposé à la
page 28 de ce volume;

Par M, J. B.

JLROBLEME. Des trois quarrès qui peuvent être inscrits à un
même triangle scalène, quel est le plus grand et quel est le
plus petit ?

Solution. Il est évident que ce problème se réduit au suivant :
Des deux quarrés inscrits qui reposent sur deux côtés inégaux

d'un même triangle, quel est le plus grand et quel est le plus
petit ?

C'est donc sous ce point de vue que nous allons le résoudre.
Soient a , b , c les trois côtés d'un triangle ; a/ , fr les per-

pendiculaires abaissées respectivement sur les directions de a et h
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des sommets opposés», et x , y les côtés des quarrés inscrits, re~
posant respectivement sur a et b comme bases, Soient enfin r le
rayon du cercle circonscrit , et t Taire du triangle.

Il est d'abord évident que x et y seront détermine's par les

proportions

af : a : : (af—%) : x 9

V \ h \ \ (jh^-^y) • y '

desquelles on tire

a a+af > y 'b+

Or , on a

d^où

T . »- T ••

donc encore , en substituant ,

<y I I

Enfin on a ( Àpplicat. de Valg. à la gèom* de LACROIX )

abc abc
r = — , d'où 2 / = — ;

donc enfin
abc abc

zar+bc * ^ zbr+ca

Ces deux valeurs ayant le même numérateur, nous jugerons de
leur grandeur relative en comparant leurs dénominateurs ; or*
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et , comme c ne peut jamais surpasser 2r , il s'ensuit que cette
différence suivra le signe te a—b ; si donc on suppose a>b^ on
aura aussi

zar-\-bc> zbr+ca P

et conséquemment

ainsi , des quarrés inscrits qui posent sur deux côtés d'un triangle ,
le plus petit est celui qui pose sur le plus grand de ces deux
côtés.

Il est aisé de conclure de là que des trois quarrés inscrits à un
même triangle scalène , le plus grand pose sur le plus petit côté f

le moyen sur le moyen et le plus petit sur le plus grand.
Si Ton demandait dans quel cas deux de ces quarrés sont égaux f

on exprimerait cette condition en posant

(2r~~c) (a—b)—o ;

ce qui donne a=b ou c~zr ; ainsi cela a lieu, i.° lorsque les
côtés sur lesquels reposent ces quarrés sont égaux ; 2.® lorsque ces
côtés sont perpendiculaires l'un à l'autre. Dans ce dernier cas f les
deux quarrés se confondent.
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QUESTIONS PROPOSÉES.

Théorèmes de Géométrie sphérique.

I. &ï trois cercles se coupent sur une sphère ; les trois arcs de
grands cercles qui joindront leurs points d'Intersection deux à deux
concourront en un même point.

IL Si on mène à trois cercles d'une sphère , pris deux à deux,
des arcs de grands cercles tangens ? tant extérieurement qu'inté-
rieurement ; les trois points de concours des arcs tangens extérieurs
serent situés sur un même grand cercle ; et les trois points de
concours des arcs tangens intérieurs seront deux à deux sur ua
même grand cercle avec l'un des premiers.

Problème de statique.

TST ; ( fig. 4 ) es* u n levier coudé , rectiligne , de forme inva-
riable et sans pesanteur, ne pouvant se mouvoir que dans un même
plan autour du point fixe S, AB ? A /B / sont deux droites fixes et
indéfinies , données de position dans ce plan. Efâfin C, C sont les
centres de deux cercles pesans et homogènes de rayons et de poids
connus , assujettis à poser à la fois , et respectivement sur ÀB et
A'B' et sur les bras de levier ST et ST/ , et libres d'ailleurs de
tout obstacle. On demande les conditions d'équilibre de cette ma-
chine , abstraction faite du frottement ?



Tom.Vl,Plan. H, -173.





DÉCLINAISON DES PLANÈTES. i73

ASTRONOMIE.

Sur la déclinaison des planètes ;

Par M. le professeur KRAMP , doyen de la faculté des
sciences de Strasbourg.

I. J-JES déclinaisons des planètes , consignées dans nos éphémérides ,
forment des séries très-irrégulières , et dont il paraît fort difficile
de déterminer la loi. Prenons pour exemple les années 1811, 1812,
i 8 i 3 , 1814, I 8 I 5 , qui sont les cinq premières de la décade
actuelle*

Pendant ces cinq années , la déclinaison à'Uranus a été constam-»
ment australe; et on peut remarquer que, pendant une partie de
Tannée, elle a passé sans cesse de sa plus grande valeur à la plus
petite, et que pendant l'autre, elle a repassé de la plus petite à
la plus grande. Les plus grandes déclinaisons étaient renfermées
entre les limites I7*.6/ et 2i°.22 /; celles des moindres déclinaisons
ont été i5°.45 / et 20*. fa'9 la planète s'est donc écaFtée du plan
de Téquateur.

La déclinaison constamment australe de Saturne a fait des os-
cillations semblables ; ses plus grandes [déclinaisons ont diminué de
&3°S/ à IQ0.^'; les plus petites ont diminué de même depuis
ai^SaJ/ jusqu'à i7*.45/; la planète s'est donc rapprochée de
l'équateur.

La déclinaison de Jupiter a été boréale pendant les quatre années
I181 f, 1812, I 8 I 3 , 1814. Le 16 novembre de cette dernière année,

Tom. FI9 n.° FI, i.e r dècemlre I 8 I 5 . 26



i74 DÉCLINAISON
la planète a traversé le plan de Féquateur; le 9 avril i 8 i 5 ; elle
Ta repassé une seconde fois ; et le 9 juillet de cette même année;
elle est redescendue de nouveau dans l'hémisphère australe,

Mars a traversé cinq fois le plan de l'équateur; savoir, le i.f*<
février et le s5 octobre 1812-, le i.e* janvier et le 7 octobre 1814*
et le 10 juillet I 8 I5« Les intervalles de temps de l'un de ces passages
à l'autre ont été successivement 266, 433, 280, 276 jours; nombres
dont l'inégalité ne saurait dépendre de l'ellipticité de Foirlnte.

Venus a traversé le même plan douze fois ; et 9 en exprimant en
jours les intervalles de temps d'un passage h. l'autre, on trouve les
nombres qui suivent: 181, i4^> ^65 , 148, M4» i54 , 45 , 5a f

149? ï4^> i53. L'excentricité presque insensible de l'orbite de
Yénus n'a rien de commun avec l'inégalité de ces nombres.

Ces mêmes intervalles sont encore beaucoup plus inégaux pour
Mercure qui 7 pendant ces cinq années , a traversé seize fois le plan
de l'équateur. La recherche des lois qui lient entr'eux les termes
de ees séries irrégulières dépend du problème suivant?

2. PROBLÈME. Connaissant les èlèmens de Vorbite d'une pla-
nète, on demande l'expression générale de sa déclinaison, pour un
temps quelconque proposé ï

Solution. Soient EZT Técliptique ( fig. 1 ) S le soleil; T la
terre ; SE la ligne des équinoxes ; SNQ la ligne menée du soleil
au nœud ascendant de l'orbite de la planète : cette dernière étant
supposée en M, élevée au-dessus du plan de i'écliptique. Abaissons
de M sur ce plan la perpendiculaire ML, et sur la ligne des
nœuds la perpendiculaire MN. Menons de plus, dans le plan
même de I'écliptique, la ligne TL dont le prolongement rencontre
en Q la ligne des nœuds et la ligne LN ; ensuite les deux rayons
vecteurs SM, S T , et enfin la ligne TM -, de la terre T à la
planète M. Quant aux lignes auxiliaires , remarquons que S Z est
parallèle à TLQ ; que TO est parallèle à LN , et conséquemment
perpendiculaire comme elle à la ligue des pœuds S Q \ et qu'enfin
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L H est parallèle à cette même ligne des nœuds, et conséquemment
perpendiculaire à TO.

3. Cela étant, soient

fi,.*, l'angle LNM , inclinaison de l'orbite ;

£.... l'angle E S N , longitude du nœud ascendant ;

*.... Pangle E S T , longitude héliocentrique de la terre ;

««..* l'angle MSN que fait le rayon vecteur de la planète avec

la ligne des nœuds ;

a»,., la ligne ST ? rayon vecteur de la terre /

r.... la ligne. SM 9 rayon vecteur de la planète/

Z..., l'angle E S Z , longitude géocentrique de la planète;

Z'.... l'angle M T L , latitude géocentrique de la planète;

j*—Z.... l'angle NSZ que fait la ligne des nœuds avec SZ, ou avec
sa parallèle TLQ.

4- Les élémens xle l'orbite de la planète étant supposés connus,
les deux rayons vecteurs a, r , de même que les angles p 7 $>, êf

a, seront donnés de même. Par leur moyen , on exprimera les angles
^—.jr e t JJ |Je la manière suivante

aS'm.(ô—^>

rCos.a—aCos.(ê—&

— L)
Tang.Z/=

5, Pour abréger, désignons par R* la somme des quarrés du nu-
mérateur et du dénominateur de la première de ces deux fractions f

de celle qui exprime la tangente de Pangle j — Z , On aura ainsi ;

j>—Z)=tfSïn.(#—^)—rSin.^Cos./s ,

Î>7-Z) —rCos««—aGos.($—^) .

On trouvera de même, à cause de •Z=^—(}•—Z) ,
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RCo$.L=rCQï4Cos«—rSîn^Sin^Cos^—aCosJ ;

et enfin

€. Çoit, en second lieu , f* la somme des quarrés des deux termes
ûe la seconde fraction t qui exprime la tangente de la latitude géo-
centrique U , ou i!a+r3Sin.2«Sin.2/î. On trouve 7 en développant,

la lettre / désigne donc U ligne TM 7 distance de la terre à la
planète. Il en résulte

7. Nous avons fait connaître ailleurs les formules par lesquelles
on trouve l'ascension droite et la déclinaison d'un astre , dont on
connaît la longitude et la latitude. Soient ( fig. 2 ) EX l'équateur,
EY l'écliptique , S un astre quelconque ; soit de plus 1 l'obliquité
de l'écliptique , A l'ascension droite EA. , A* la déclinaison SA , L
la longitude EL , IJ la latitude SL ; cette dernière étant supposée
boréale. On aura

8. Il ne reste qu'à développer cette expression , pour avoir celle
de la déclinaisoa , au bout d'un temps donné \ on trouvera (4» 5 , 6 )

= 1 ,

9. On simplifiera cette expression, en ïatroduisant un angle
tel que

on aura alors

' rSîn. ISîn.
. Sin.g .

10. Le soleil étant rapporté au centre de la spbère ^ soit FS le
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grand cercle de cette sphère déterminé par l'orbite de la planète y
ce grand cercle coupant Péquateur en F et l'éeliptique en B , et par
conséquent BS élant l'argument de la latitude ES la distance à Pé-
quinoxe et B le nœud ascendant; Tare BF sera ce que nous avons
désigné par A , et l'argument de latitude BS sera * ; on aura donc

rSin.BESin.FS—aSinJBFSin.0

11. Comme l'angle £ , ou l'inclinaison de l'orbite vers l'écliptique,
est un angle très-petit, pour toutes les planètes de notre système
solaire , on voit que Parc A OU BF ne saurait différer beaucoup de
Parc £ ou BE, qur est la longitude du nœud. On trouve effecti-
vement Tang.(j—x) égale ,. à peu près , à Sîn.jsSin.̂ Cos.g ; ce qui
rend cette différence angulaire sensiblement proportionnelle au sinus
de l'inclinaison de l'orbite. Si la planète se mouvait entièrement dans
le plan de Pécliptique, on aurait exactement x = ^ f et le sinus de
la déclinaison de la planète, ou Sin.-^/

 9 se trouverait êtrô

rSin.(£-f-*)—aSin.0
Sm./l 's "— . Sm.g .

j

12. Dans le cas d'une planète infiniment éloignée , et qui ren*
trerait ainsi dans la classe des étoiles fixes , la distance r ferait dis-
paraître a y et il viendrait par conséquent

Sin.BJESin.F*SSin.s
SinJSF

Cette expression est un« quantité constante, et indépendante dm
temps; et on voit qu'elle ne veut dire autre chose que sin. SA;
Parc SA étant effectivement la déclinaison de l'étoile.

i3. Le moment du passage de la planète par le plan de Téquateur
est celui où la déclinaison A* est nulle ; on a alors

«équation dans laquelle les angles t et * > de même que les deux
payons vecteurs a et r, sont des fonctions très - connues , mais
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transcendantes du temps , et qui ne peuvent être développées qu'en
séries infinies. Le problème est donc insoluble, dans le cas des
orbites elliptiques ; et dans la supposition môme d'un mouvement uni-
forme et circulaire, il exige l'emploi de la règle de fausse po-
sition.

14. En nous bornant au calcul des mouvemens moyens, essayons
de déterminer (9) la déclinaison des planètes de notre système, telle
qu'elle doit avoir été le i.er janvier de l'année 1815, à midi.
Le logarithme de la distance de la terre au soleil était alors
9,9926660; et la longitude du soleil était 280°. i67. 3o/x; on aura
donc Log.tf=9.gg:>656o et é=ioooa6 / .3o / / . De plus , du i .e r

janvier 1801 à minuit jusqu'au i.er janvier 1815 a midi il s'est
éconlé 5 i i 3 jours et demi.

15. Il faudra connaître les mouvernens moyens journaliers de la
terre , de la planète et du nœud de celle-ci. Soient donc

772.... le mouvement moyen journalier de la terre,

n.... le mouvement moyen journalier de la planète,

h.... le mouvement moyen journalier du nœud.

Les trois moyens mouvemens seront exprimés en degrés et parties
de degrés. Le mouvement h sera une fraction très-petite , et qui
ne deviendra bien sensible qu'au bout d'un siècle,

16. Il faudra connaître aussi les longitudes héliocentriques moyennes
de la terre, de la planète, et du nœud de celle-ci; à l'époque dont
on veut partir. Soient donc ? pour cette époque ?

Jfef.... la longitude de la terre ;

' JV.... la longitude de la planète,

i/..«. la longitude de son nœud.

Ainsi, les mouvemens étanjt supposés «informes et circulairesJ on
aura ;
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EL = N+nt ,
EB = #— ht .

'17. Il en résultera

ainsi,

La lettre / désigne ici le nombre des jours écoulés depuis Fépoque
fixe jusqu'à celle pour laquelle on veut déterminer la longitude de
ïa planète. Comme l'angle £ est très-petit 9 pour toutes les planètes
de notre système 9 excepté Mercure , on aura sensiblement Cos./s=i f

ce qui donne

Ï 8 . Les mouvemens moyens et journaliers des planètes sont ex«*
primés dans la table qui suit t

Mercure. « * . . 4°aO92377o6 5

Vénus. . » , - . ! 360^17653 ,

Terre. . . • . . o ,98564716 ,

Mars . • . • a . o ,̂62407126 a

Jupiter • 9 . • • o 8 O83Î2QI6 J

Saturne. . , • . o 3o334s8S3 3

Uranus, • • • • o ^oi s 76895 »

La troisième dt ces valeurs est celle de m 1 ïea autres âppartienneist
aux n des différentes planètes de notra système*

ÎQ. Voyons présentement quelles erreurs pourra entraîner* cîaut
le calcul des latitudes au commencement de i8i5 % remploi i
moyens mouvemens, On a d'abard les distances moyennes
dire 3 r } ainsi qu'il suit :
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Mercure. . . ; . # 0,3870981 f Log.r=9.58782io ;

Vénus 0,7^33323 , 9.8693399 ,
Mars. . . i?5236935 , 0,1828978 ,

Jupiter 5,202794. , o,7iÔ2365 ?

Saturne. . - . . . 9,53877.. , 0,9794924 ,
Uranus 19,1833... ; 1,2829233 •

20. Les arcs décrits pendant 5 n 3 jours f, en rejetant les cir-
conférences entières, seront respectivement (18)

Mercure 46°.22/.i2// ,

Vénus. . . . . . 272 .43 .48 y

Mars. . • . . • • 169 .56.16 ,

Jupiter . . • • • €5 . 4 *5i »

Saturneé . » . • 271 1̂7 .37 ,

Uranus. . • • . 60 «io .5o ;

Mais, au commencement de 1801 , les longitudes étaient

Mercure i63°.56'.27" ,

Vénus. . . . . . 10 .44 «3i ,

Mars • 64 • 7 • «2 ,

Jupiter . . . . . 102 .12 .36 ,

Saturne i35 .20 .32 ,

Uranus 177 .47 .18 ;

ajoutant donc ces arcs aux précédens , en rejetant encore les circon-*
férences entières , on obtiendra pour les longitudes, au commencement
de I 8 I 5 ,

Mercure. . . . . aio*.i&.3tf' ,

Vénus 283 .28.23 ,

Mars. . . . . . . 223 .5*] .28 9

Jupiter;
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Jupiter. . . . . 167 .17 .2*7 j

Saturne . . . . 3o6 .38 . 9 9

Uranus . . . . 237 .58 . 8 .

a i . Le mouvement séculaire rétrograde du nœud de chaque pla-
nète et le mouvement de ce nœud pour 5 n 3 jours \ sont ainsi
çiu'il suit :

Mercure. • . . . 7Ô2// , i / 4 9 / / r

Vénus 1870 y 4.11 ,

Mars 23^9 , 5.26 ,

Jupiter. . . . . 1578 , 3 .41 #

Saturne 2260 , 5 .16 ,

Uranus. * . . • 35g8 , 8 .23 ;

niais la longitude du nœud f au commencement de 1801 , était

Mercure. . . . . 45°.57 / .3i" ,

Mars 48 . 1 .28 ,

Jupiter . • . . . 98 .a5 .34 ,

Saturne 111 .55 .47 >

Uranus 72 .51 A4 /

cette longitude $ devait donc être, au commencement de 1815,

Mercure <£= 45*.55/.47// ,

Vénus 74 48.20 ,

Mars 4l -56 . 2 ,

Jupiter . . . . . . . 98.21 .53 ,

Saturne n i . 5 o . 3 i r

Uranus 72 4% .51 ?

étant donc cette dernière longitude de celle de la planète pour la
Tarn. FL 27
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même époque de i8i5 , on obtiendra pour Tare B t , base du

triangle sphérlque rectangle BLS ,

Mercure BL=i64#.23'. o" ,

Vénus. . . . . • • • . 208 «4° • ° *

Mars 1 7 6 . 1 .16 $

Jupiter • 68 .55 .34 9

Saturne. . . . . . . • 194*47 «38 ,

Uranus i65 . 6.54 ;

mais , les inclinaisons 0 des orbites sont respectivement

Mercure j3=5°. o'. o ; / ,

Vénus. , 3 ,23 .35 ,

Mars 1 .5i . o ,

Jupiter 1 .18 .52 ,

Saturne. 2 .29 .38 ,

Uranus. . . . . . . o .46.25 .

Divisant donc par le cosinus de cette inclinaison £ la tangente de
de BL , on obtiendra pour quotient la tangente de BS ou * qu'on
trouvera être ainsi

Mercure « = I 6 4 ° . I 6 / . 2 9 / / ;

Vénus 208 .42 .36 ,

Mars. . . . . . . 176 .1 . 9 9

Jupiter 68 .55 *24 ?

Saturne 194 .48 .3o %

22. On a d'ailleurs, pour le commencement de 1815, le loga-
rithme du rayon vecteur terrestre ou Log.#=g?992656o , la longitude
héliocentrique de la terre ou è=z ioo o . i6 / .3o / / , et l'obliquité de l 'é-
cliptique «=23°.27/»5o// \ d'après quoi on trouvera #—£ ainsi qu'il
suit ;
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Mercure #—j>= 54°.2o/.48// ,

Vénus. . . . . . s5 .28.10 ,

Mars. . . . . . . 52 .20 .28 ,

Jupiter 1 .54 .37 ,

Saturne. 348 .24 . o ,

Uranus . . . . . 27 .33 .39 5

23. Avec toutes c^s données , et à l'aide des formules du com-
mencement de ce mémoire , on trouvera, pour la distance f de la
terre à la planète et pour l'angle x ,

n Mercure / = 1,173566 , *=s 3 8 O . I 4 ' . I 4 " ,

Vénus 1,705748 , 67 .35 .20 ,

Mars 2?2o8i5o , 4° ^3^ .54 ,

Jupiter 4>9°3223 , 95 .59.14 ,

Saturne /. 9,676540 ^ 107 .29.48 ,

Uranus. . . . . . I9>919737 > 7* «̂ 3 . o ;

et on aura enfin pour la déclinaison A/ , que nous mettons en
regard avec celle des éphémérides ?

Suiv. not. cal. Suiv. les éphém. Diff.
Mercure. . . . . 22°.44 /.37 / /^

Vénus 23 .38.20 .A

Mars . . . . . . 19 .35.4o *B

Jupiter . . . . . 1 .5o . o .A

Saturne . . . . . 2 1 . 1 6 . 0 . - ^

Uranus 19 .58. o .A

Suiv. les éphém.

23°.i3

23 .38

19 .34

2 .29

20 .28

21 . 1

— o .20 ,

— 1 .40 ;

+29 . o 9

—48 . o ,

—63 . o .

24» En comparant successivement ces différences arec la plus
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grande équation du centre de la planète > on trouve qu'elles en
sont respectivement, du moins à peu de chose près , les fractions
suivantes

5 O » X S O y 1 8 4 » 8 > 8 > S >

Ces résultats, et sur-tout celui qui répond à Mercure, îa plus ex-
centrique de toutes les planètes, conduisent à conjecturer, avec
beaucoup de vraisemblance , que Pellipticité des orbites inilue moins
qu'on ne le croirait sur la déclinaison des planètes, que cependant
Terreur qui résulte du simple emploi des moyens mouvemens,
dans le calcul de cette déclinaison, augmente avec les dimensions
de l'orbite.

25. La condition du passage de la planète par le plan de l'é-
quateur est renfermée dans l'équation rSin4Sin.(x+<»)=aSin.A
Sin.0 , (i3). L'état insoluble de cette équation , dans la suppo-
sition du mouvement elliptique , nous oblige à nous contenter de
Temploi des mouvemens moyens.. Encore serons-nous obligés de
profiter de la circonstance favorable que nous présente l'inclinaison
des orbites qui, dans notre système solaire , est partout assez petite
pour qu'on puisse , sans erreur sensible, supposer Cos. £ = x , ce qui
donne simplement (17)

26. L'extrême lenteur du mouvement des nœuds nous permet
en outre , du moins pour un nombre d'années limité, de supposer
h nulle; il résultera de la *>=zN—//+«/. Dans cette même sup-
position , l'angle * deviendra une quantité constante, et indépen-
dante du temps. Ainsi désignant par L ce que devient x lorsque
dans l'expression générale de Tang, x (9) , on remplace la lettre
£ par H (17), ce qui donnera

Sin HS'm.î
a n g ' "" Cos.HSin.i+Cos.iSiu./J *

l'équation finale du problème sera
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27. Cette équation ne renferme que la seule inconnue / : c'est
le nombre des jours comptés depuis l'époque fixe jusqu'à l'é-
poque où se fera quelque passage de la planète par le plan de
Téquateur. Les quantités m, n, a> r seront liées entr'elles par la

loi de^Képlerf — )2 = ( — ) 3 • Mais, comme les rapports —, -sont

incommensurables, l'équation , malgré sa simplicité apparente, sera
transcendante, et exigera, pour sa résolution l'emploi de la règle de
fausse position. On sait de plus que la série que forment les racines
de cette équation n'a rien de commun, même dans les cas les plus
simples , avec les progressions arithmétiques , géométriques , récur-
rentes , etc.

28. La simplicité de l'équation finale (26) rend au moins l'emploi
des fausses positions très-facile ; et on pourra s'en servir avec avan-
tage , pour trouver les valeurs approchées des passages d'une planète
par le plan de Téquateur , pour une année quelconque qui ne serait
pas trop éloignée.

29. Après avoir discuté les cas où la déclinaison devient nulle f

examinons les époques où elle parvient à son maximum ou mini-
mum. Les notations précédentes seront conservées ; nous supposerons
toujours h sensiblement nul, ce qui donnera ^ = H et nous ferons
la longitude de la planète EL ou N-\-nt~x,.

30. Le quarré de la distance de la terre à la planète ou f% a
été trouvé (6),

En faisant Co$./3=i, cette formule deviendra

ou bien

et, en difFérentiant,
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fàf= ar {m— /2)Sin .(*—j—«>)àt.

3i . L'expression générale du sinus de la déclinaison a été trouvée
(g). Pour remplir la condition proposée, il faut égaler à zéro la
différentielle de cette quantité. En y regardant a, r , ^ , A comme
constants, nous n'y aurons que les trois seules variables $, *, f,
qui toutes dépendent du temps ; nous aurons ainsi

et nous venons de trouver àf (3o).
Zz. Nous parviendrons ainsi à une équation composée de huit

termes , et qui a au moins l'apparence d'être compliquée. On y
reconnaît bientôt les deux facteurs suivans

et l'équation devient ainsi

f2G=arF(m—n)S\n.(ê—*) .

33. Pour en tirer l'inconnue / , voyons ce qu'elle deviendrait dans
le cas d'une planète dont l'orbite serait couchée dans le plan de
Pécliptique. L'angle /3 alors serait égal à zéro ; la différence angu-
laire x —^ s'évanouirait ; et toute Téquation serait divisible par
Sin ^=Sin.x. Supprimant ce facteur commun , on aurait

F=rSin.*—aSin.ê , G — nrCos**-—maCosJ •

L'équation serait alors décomposable dans les deux facteurs qui
suivent

rCos.*—aCos.t ,

nr%—ar

34. En égalant le premier facteur à zéro , on obtient l'équation

elle répond naturellement à l'équation trouvée (26) qui dans la
même hypothèse, se réduit à
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et fait connaître les passages de la planète par le plan de l'équateur.
35. Le second facteur égalé à zéro donne

Cos.(#-*)=Cos.[Af-A+(OT—»)/] = " *

Cette formule est connue ; c'est celle qui détermine l'époque où
la planète devient stationnaire* Ainsi donc , en supposant le mouve-
ment de la planète uniforme et circulaire, et son orbite couchée dans le
plan même de Péclîptîque , elle parviendra à sa plus grande ou à sa
moindre déclinaison au moment même où elle deviendra station-
naîre.

36. On sait que le cosinus de tout angle A est aussi celui des
angles 2™—A , z-sr+A , 4^—^ 7 /±-&+A > etc. En conséquence f

. A - i l • 772Û+Wr

en désignant par A le moindre des angles qui aura — pour co~
sinus, et par / , / ; , / ; /,.«.. les valeurs consécutives de l'inconnue tf

on aura

)t — A

»'=fa—A—M+N ,

—«)f=6^-A—M+N ,

Ces racines formeront ainsi deux progressions arithmétiques ayant

pour différence commune ; c'est la durée d'une révolution sy-
4 m—n J

nodique.
37. Donc, en supposant la planète mue dans le plan dere'cliptique ;

d'un mouvement uniforme et circulaire, les époques des plus grandes
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et des moindres déclinaisons forment trois progressions très-distinctes.
La première comprend les racines de l'équation rCos.{N-hnt)=a
Cos.(;t/+/72/). Les déclinaisons que cette équation fait connaître sont
toutes du genre des maxirna ; elles précèdent et elles suivent les
passages de la planète par l'équateur, et elles sont ainsi alternative-
ment boréales et australes. Les deux autres forment deux progres-
sions arithmétiques , indépendantes de cette première , qui ont pour
différence commune la durée de la révolution synodique , et dans
lesquelles la différence de deux termes correspondans *//—i;

 9 i
ut—/", .„

sera partout la même , savoir .
1 m—n

38. Nous avons rassemblé dans les deux tables qui suivent les
plus grandes et les moindres déclinaisons , de même que les passages par
l'équateur, de la planète de Mars, pendant les cinq années 1811,
1812, I 8 I 3 , 181^, i8i5. Les jours sont comptés d'une série con-
tinue , depuis le i .er de Tan 1811.

39. La première table contient les passages de Mars par l'équateur,
ainsi que les plus grandes déclinaisons dont ils sont précédés et
suivis; ces dernières, qui résultent de l'équation rCos.* = #Cos.0 ,
sont alternativement désignées par les lettres A et B ; les passages le
sont alternativement par AB et BA, suivant que l'astre entre dans
l'hémisphère boréal ou dans l'hémisphère austral.

Plus grandes déclinais.

et ^nssages par Vètjuat. Jours. Différence

2 6 0 . x ' A 2 6 5

A B 3 9 4 . . . . . . . . 1 2 9

2 4 ° . 2 2 / B . . . . . 5 2 4 . . . . . . . . l 3 o

BA £66 142

23°.38'A 810 i49

AB ÎO96 -282

24Ô.36/.B ..... 1235 . . i38
Cea
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BA Ï377 142

*3*44'. A. . . ; ; . i 5 n . 1 3 4

AB 1652 . 141

La plupart de ces différences varient ? il est vraî > entre des limites
assez resserrées 129 et 1^9 ; mais la différence 282 suffit seule pour
exclure tout soupçon d'une presque égalité qui pourrait exister entre
elles.

La seconde table contient les époques où la planète parvient à
sa plus grande ou à sa moindre déclinaison , sans traverser le plan
de Péquateur, conformément aux formules (35 , 36) ; ces époques
sont celles qui suivent :

Plus grande A • . ; . . i36 jours»

Moindre. . . . . . . . A 17$

Plus grande, . . • . . A . • . . • 891

Moindre A . . . . . 962 -

Plus grande B . . . . . 1718

Moindre « . B . . . . . 1770

Les plus grandes déclinaisons ont lieu aux époques i 3 6 , 891, 1718
jours, et les plus petites aux époques 175, 962 5 1770. Les diffé-
rences des premiers nombres sont 755 et 827, dont la moyenne est
791 ; les différences des derniers sont 787 et 808, dont la moyenne
est 797. Le milieu entre ces deux moyennes 794 ? et la durée de
la révolution synodique est seulement 780 ; la différence de 14 jours
doit être rejetée sur rellipticité de l'orbite et sur l'angle d'environ

Tom. VI. 28
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deux degrés que fait le plan de cette orbite avec celui de l'éclip-
tique.

4o. On peut remarquer que les plus grandes et les moindres lon-
gitudes géocentriques ont lieu aux jours qui suivent ;

Plus grande. . . . n o jours.

Moindre 176

Plus grande. . . . Q Î S

Moindre. . . • . • 978

Plus grande. . . . 1717

Moindre. • . . . . 1780

Ainsi les jours des plus grandes et des moindres longitudes ne sont
pas éloignés de ceux des plus grandes et des moindres décîinaisons ,
conformément à la remarque déjà faite '35). Les plus grandes et les
moindres déclinaisons, tirées de l'équation rCos.(iV+/2/)=^Cos.(ilf-+772if)?

n'ont rien de commun avec les plus grandes et les moindres longi-
tudes géocentriques , ce qui nous apprend à les distinguer facilement,
par la simple observation des longitudes, de celles qui répondent à
l'autre équation

4 i . Pour déterminer, d'après les tables ou les observations, le
jour et même l'heure où les plus grandes ou moindres déclinaisons
ont dû avoir lieu , on peut employer la méthode qui suit. Soient
& le temps et y la déclinaison qui y répond 7 aux environ du
maximum ou du minimifm*\ il sera permis de supposer
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La déclinaison y parviendra à son maximum ou minimum , lorsque
B

zz-— —— : on aura dans ce cas

4^* Pour déterminer les ccefficîens A 7 B ^ C 9 on emploîra
les déclinaisons , calculées ou observées ? a , £ , y , répondant
respectivement aux temps.... # , b, c, de manière que la déclinaison
moyenne p soit plus grande ou moindre que chacune des extrêmes
m f y. Alors on aura les trois, équations

desquelles on tirera

ib—c) (c—a) (a—b)

—c) *+(tf—a) £-\-(a—b) y

Le temps au bout duquel la plus grande ou la* moindre déclinaison
aura lieu sera

et cette déclinaison sera

(a-b^^¥*~ï(b-cytc-ayùi&-2.{c-ay^^^
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Si.Ton prend les temps en progression arithmétique, ce qui per-
mettra de supposer # = — i ? £ = o , £=-{~i, ces formules deviendront

43. Les formules qui ont été l'objet de ce mémoire , fondées sur
ce que l'orbite de la planète était supposée dans le plan de Féîîp—
tique , subissent quelques modifications lorsqu'elle est hors de ce
plan ; ce qui sera l'objet d'un autre mémoire.

GEOMETRIE ELEMENTAIRE.

la recherche du rapport de la circonférence du
cercle à son diamètre.

Par M. GEEGONKE.

XJANS un petit traité élémentaire de géométrie plane, publié à Nancy eu
2 813 , par M. SCHA^VÀB, on trouve, entre autres choses intéressantes %

le théorème que voici :
Soient deux polygones réguliers de même périmètre , ïun de

m et Vautre de 2111 côtés ; soient respectivement r, R les rayons
des cercles inscrit et circonscrit au premier, r ; , R/ les rayons
des cercles inscrit et circonscrit au dernier , on aura

Cet élégant théorème se démontre très-simplement comme il suit :
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Soit SMC (%. 3) un triangle, rectangle en M ; soît prolongé le

côté MC au-delà du point C , de manière que son prolongement
CC soit égal à l'hypothénuse CS. Soit menée C'S , et soit abaissée
du point C sur cette droite la perpendiculaire CS/ ; enfin soit menée
S'M' parallèle à SM. Yoici ce qui résulte de cette construction :

Le triangle SCC7 ayant ses deux côtés CS et CC7 égaux, doit aussi
avoir les angles opposés égaux 5 et conséquemment C/ l'un d'eux
est égal à leur demi-somme ; cet angle C; est donc aussi moitié de
Pangie extérieur SCM. En outre , le point S' étant le milieu de
SC7 9 il s'ensuit que S/M/ est la moitié de SM ; ainsi , on a en
même temps

S'M'=fSM ,

Il résulte de lh que 9 si l'on suppose que MS soit un demi-côté
d'un polygone régulier de m côtés , dont C soit le centre , M'S'
sera un demi-côté du polygone régulier de sm côtés , de même
contour 5 dont C' sera le centre. Or , il est clair que CM et CS
seront les rayons des cercles inscrit et circonscrit au premier; et
que C/M/ et C/S/ seront les rayons des cercles inscrit et circonscrit
au dernier : ainsi l'on aura

CM=:r ;

Or, le point M/ étant le milieu de C M , on doit avoir
= C/M=:CM-f-CC/ = CM+CSi et de plus le triangle CS'C,
tangle en S/ donne c ^ f = C / M / x C / C = C / M / x C S i donc zr'—r
et R'*=sr

/Ili c'est-à-dire,

~r.r'Jl i JLr?iR';R ;

comme nous l'avions annoncé.
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Cette proposition peut encore être démontrée trigonométriquement

ainsi qu'il suit :
On a d'abord évidemment

- r=RCos. — » (0 r*=R'Cos.— 5 (2)
m 2771

de plus , les périmètres des deux polygones étant 2tf2rTang»

, 4/72^/Tang. — , on doit avoir
m

rTang, — = 2r'Tang. — . (3)
m

Si Ton élimine r , Tf de cette dernière équation 5 au moyen des
deux précédentes ; il viendra

ou bien

& '3F rat

ou en réduisant

m

RCos. -—=/î/ ,

équation qui, combinée par multiplication avec l'équation (2) donne

Rr>=R>* , (4)

qui est la seconde de nos deux propositions^
On a en outre

2COS.2 — =I+COS. — :
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<Toù éliminant les cosinus, au-moyen des équations (i) , (2) , il
vient

mettant dans cette dernière pour R/z sa valeur (4) ? îl viendra enfin

qui est la première des deux propositions annoncées»
Cela posé , concevons un polygone régulier quelconque, de m côtés,

dont on connaisse le périmètre p , ainsi que les rayons r et R des
cercles inscrit et circonscrit ; si Ton forme une série , dont les
premier et second termes soient respectivement r et R , et dont

Jes suivans soient alternativement , à partir du troisième , moyens
par différences et par quotiens entre les deux qui précèdent immé-
diatement chacun d'eux ; il suit de ce qui vient d'être démontré ,
que les termes de rangs impairs de cette série seront successivement
les rayons des cercles inscrits aux polygones réguliers de m 9 2 m 9

4#2 , 8/72 5... côtés, ayant leurs périmètres constamment égaux à/?,
et que les termes de rangs pairs de la même suite seront succes-
sivement les rayons des cercles circonscrits aux mêmes polygones»

Mais, lorsque, le périmètre d'un polygone régulier demeurant
constant , le nombre de ses côtés croît continuellement, le rayon
du cercle inscrit croît aussi sans cesse 9 tandis qu'au contraire celui
du cercle circonscrit décroît; le premier est toujours moindre et le
second plus grand que le rayon du cercle dont la circonférence serait
égale au périmètre du polygone ; mais ils tendent sans cesse , l'un
et l'autre , vers cette limite commune.

Ainsi, dans la série dont il vient d'être question, tandis que les
termes de rangs impairs croîtront sans cesse, ceux de rangs pairs,
au contraire , décroîtront continuellement ; mais de manière que les
uns et les autres tendront, de plus en plus 7 à devenir égaux entre
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eux ? et au rayon du cercle dont la circonférence serait p ; c'est-a-^
dire , que ces termes convergeront perpétuellement vers la valeur

Voilà donc un procédé t aussi simple qu'élégant, pour obtenir du
nombre «r une valeur aussi approchée qu'on pourra le désirer; il

(*) Soient rt , rt , r ? ,.,.. rx les rayons des cercles inscrits , et RT , B t ,
Hj ,.... R^ ceux des cercles circonscrits; nous aurons les deux équations avis
différences

x+ i x ^ r x » •" #~t- i — RX

nous aurons pareillement, en changeant x en x-\-i ,

Si 9 entre ces quatre équations t on élimine successivement Rx , JÈ^-j, t >
et ensuite rx > r^- j . l y r^4,x , on obtiendra ces deux-ci

La première de ces équations exprime , entre les termes de rangs impairs , une
relation in dépendante des termes de rangs pairs , et la seconde entre les termes
de rangs pairs, une relation indépendante des termes de rangs impairs. On voit
en outre que , dans le cas de #:=ao , l'intégrale commune des ces deux équations

€St -E_ pourvu seulement que — soit le cosinus d'un sous-multiple de la circon-
2.7T H

férence ; et Ton a alors p =

Si TT était le cosinus d'une fraction rationnelle et irréductible — de la cir*
i l , 771

conférence , on tomberait alors sur les polygones étoiles de M. Poinsot , et la

série convergerait continuellement vers .

ne
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ne s'agira, en effet , que de déterminer r et R P avec un nombre
suffisant de chiffres décimaux, et d'en conclure ensuite , comme il
vient d'être dit, les autres termes de la suite, avec le même degré
d'approximation, jusqu'à ce qu'on soit parvenu à deux termes con-
sécutifs qui ne présentent plus aucune différence dans Tordre de
décimales adopté. Divisant \p par l'un d'eux, le quotient qu'on
obtiendra sera une valeur approchée du nombre w . On en connaîtra
le degré d'approximation en divisant de nouveau \p par le même
diviseur , augmenté ou diminué d'une unité décimale du dernier
ordre j et on ne conservera dans le résultat que les chiffres décimaux
communs aux deux quotiens. On se rappellera au surplus que, dans
les extractions de racines quarrées , dès quron a obtenu plus de la
moitié des chiffres de la racine , on peut obtenir les suivans par une
simple division.

Ce procédé est déjà bien simple , mais il est encore susceptible
de quelques simplifications assez notables. Et d'abord , l'inégalité
des termes de la série diminuant continuellement, à mesure que
ces ternies seront plus avancés vers la droite, on parviendra bientôt
à deux termes consécutifs qui , abstraction faite de la virgule , se
ressembleront, vers la droite , dans plus de la moitié de leurs chiffres :
or, lorsqu'on en sera parvenu là , on pourra, sans erreur sensible ,
dans le degré d'approximation qu'on aura eu en vue , substituer des
demi-sommes aux racines quarrées de produits ; de sorte que le
calcul des termes ultérieurs de la série se poursuivra , d'une manière
tout à fait simple et uniforme, en prenant constamment, pour chaque
terme , la demi-somme des deux qui le précéderont immédiatement.
Cette remarque , qui n'a point échappé à 1VL Schwab ? peut se jus-
tifier comme il suit»

Tout se réduit évidemment à prouver que la demi-somme de
deux nombres entiers , qui ont plus de la moitié de leurs chiffres
pareils vers la gauche , ne diffère pas de plus d'une demi - unité
de la racine quarrée de leur produit. Or f soient en effet À le plus-
petit de ces nombres et A-±a le plus grand; il à'a^ira de prouver que

Tome VL 29
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ou, en transposant et multipliant par 2 f

2A+(tf—1)< V/A 2 +ÛA .
En quarrant et réduisant, cette inégalité devient

4

Or , puisqti'on suppose que # n'a pas la moitié du nombre des
chiffres de A , a% et à plus forte raison (a—i)2 n'aura pas autant

de chiffres que A , d'où il suit qu'en effet - /.— sera une vérita-

ble fraction 7 comme l'exprime l'inégalité ci-dessus.
Voilà donc déjà notre procédé devenu bien simple ; mais, quelque

facile qu'il puisse être de prendre la demi-somme de deux nombres ,
si Ton faisait le calcul avec beaucoup de chiffres décimaux , on
pourrait se trouver entraîné à répéter un grand nombre de fois cette
opération , avant d'être parvenu à anéantir totalement la différence
entre deux termes consécutifs : voyons donc si nous ne pourrons
point encore nous épargner ce travail.

Soient a , b respectivement , deux termes consécutifs d'une suite
dont chaque terme est la demi-somme des deux qui le précèdent
immédiatement ; les termes subséquens de cette suite seront

a-\-b

et il s'agira de connaître le dernier terme de cette suite 5 prolongée
à l'infini. Pour le découvrir, donnons à ces termes cette autre forme

(a*~ b)

O.2. 34

on verrd alors que son terme général est

3 vi> - r ? •
Ot , dans le cas de n infini p la seconde partie de cette valeur
s'évanouit ; d'où il suit que le dernier terme de la série est ^(#+2$),
On pourra donc , des qu'on sera parvenu à deux ternies consécutifs
différant dans moins de moitié de leurs chiffres décimaux } calculer
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de suite le dernier terme de la série , sans passer par le calcul des
intermédiaires. (*)

II n'est plus question présentement que de fixer le choix du po-
lygone primitif devant servir de point de départ. Ce choix pourrait
être fait d'une infinité de manières différentes ; mais de tous les
polygones réguliers , le plus simple est , sans contredit , le système
de deux droites qui se confondent : c'est un polygone de deux côtés ,
ayant deux angles nuls-, dans lequel le cercle inscrit a un rayon
nul et le cercle circonscrit un rayon égal à la moitié de l'un de
ses côtés ou au quart de son périmètre ; de sorte qu'en prenant ce

rayon pour unité , ce périmètre sera 4 î e t — deviendra — .

Ainsi, la suite dont les deux premiers termes sont o et i , et dont
les autres sont alternativement , à partir du troisième, moyens par
différences et par quotîens entre les deux qui les précèdent immé-

diatement , converge sans cesse vers la valeur de — (**)• Voici le

calcul de ces termes , avec sept chiffres décimaux , et en ayant égard
aux observations précédemment faites,

(*) Ce qui précède revient à dire que , si l'on a ]'e*quation aux différences

il s'ensuivra

d'où résulte encore ce théorème de géométrie.
THÉORÈME. Soient marqués arbitrairement , sur une droite indéfinie deux

points i et i y puis , sur la même droite , soient marqués successivement un
point 3 également distant de i et $ , un point 4 également distant de i et 3 5

un point 5 également distant de 3 et ^ ^ et ainsi de suite» Cette opération ,
continuée à Vinfini , conduira à un point Jïnal qui se trouvera situé aux deux
tiers de Vintervalle entre i et 2, y à partir de 1.

(**) De là résulte ce théorème.
Théorème. Soit CMS (fîg. 4) u n triangle isocèle , rectangle en M. Soit prolongé

MC, de sorte que CC/=CS , et soit menée SQ , dont & soit le milieu ; soit
fait C'CfeC'S', et soit menée S'C", dont S"soit le milieu; soit fait C"C"'=
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( i ) = . . . . • =o,oooopoo; (10) =
=1,0000000; ( . I ) = H , 9 ) + ( I O ) } =o,636.o83

(3)=&'»H(2)1=o,5oooooos (12)=
(4)= t/ôOT) = o,7Q7'o6S; (»3)^
( ) ^ ) ( 4 ) j /ÏÏ«*û3> =»o,
(6)=' ^(4^(57=0,6532815; (i5)=j[(

; (16)=
= O , 6 3 6 6 I I 7

On a donc ——0,6366197 d'où — =0,3183098-, résultat exact à

sept chiffres décimaux.

oQUESTIONS PROPOSEES,
Problèmes de Géométrie.

I. U À N S la vue de boucher un trou polygonal > fait dans une étôfFe qui
a un envers9 on a taillé une pièce polygonale de la même étoffe. Cette
pièce bouche exactement le trou \ mais c'est en mettant Venvers à
Vendroit. Ne serait-il pas possible de la découper en plusieurs autres
pièces qui ? assemblées entre elles, formassent une nouvelle pièce qui
bouchât encore le trou , mais sans offrir cet inconvénient ?

IL Deux polyèdres étant symétriques l'un à l'autre, c'est-a-dîre }

égaux mais non supcrposables ; décomposer l'un d'eux en parties qui ,
assemblées d'une autre manière, forment5 paF leur réunion , un po-
lyèdre identique avec Fautre ? (*)

et soit menée S^C" , dont S;/f soit le milieu ; et ainsi de suite. Les droites
GC/ , C'C" , QtQw,. .. convergeront sans cesse vers le rajon du cercle dont la
circonférence serait 4^S.

(*) M. Lcgendre a démontré , dans ses Elémens de géométrie, que deux po-
lyèdres symétriques sont des sommes de parties superposabïes ? moins d'autres
sommes de parties superposables. Ceii sulEt bien pour constater l'équivalence
des volumes , mais non pour exécuter la superposition effective.
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PHILOSOPHIE MATHÉMATIQUE.

Doutes et reflexions sur quelques principes fondamentaux
de la mécanique /ationnelle ;

Par M. DUBUAT , chevalier de l'ordre royal et militaire
de St-Louis, professeur à Técoie royale de l'artillerie
et du génie»

J ' A I déjà insinué, dans le précédent volume de ce recueil (pag, 2i5) 5

qu'il y avait une sorte de contradiction , du moins apparente ,
entre certaines applications du principe des momens et le principe
qui permet de transporter le point d'application d'une force en un
lieu quelconque de sa direction. Je me propose de revenir ici sur
ce sujet d*une manière plus spéciale ; et je commencerai par me
proposer le problème suivant r

PROBLÈME. Des forces quelconques , appliquées à diffèrent
points d'un corps solide et ayant une résultante unique , étant
données de grandeur et de position ; on demande le point d'appli-
cation de leur résultante?

La solution de ce problème , qui ne présente aucune difficulté r

seraït absolument sans intérêt , si l'auteur d'un traité de statique
très-répandu n'avait fait la remarque que le problème est indéterminé ,
et que le calcul se borne à donner les équations de la droite qui
représente la direction de la résultante , et sur laquelle se trouve
le point demandé. C'est à la page 119 de la statique de M. Poinsot
qu'est faite cette remarque , fondée sur ce que les valeurs des eoor-

Tom. VI % n,.° VU\ i . e r janvier 1.816* 3a
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données du point d'application de la résultante se présentent sou&
la forme £ , lorsqu'on veut les déterminer par les équations aux-
quelles conduit la recherche de cette résultante. Cela doit en effet
être ainsi , suivant M. Poinsot, parce que la résultante pouvant être
supposée appliquée à un point quelconque de sa direction , il est
impossible que le calcul détermine l'un de ces points de préférence
à tous les autres (*).

Si ce raisonnement était exact, il s'ensuivrait que le calcul ne
pourrait donner le point d'application de la résultante .de deux forces
parallèles, ni de deux forces qui agissent suivant une même droite,
ni même de deux forces qui concourent en un point • car la résul-
tante pouvant être supposée appliquée à un point quelconque de
sa direction , il serait impossible que le calcul déterminât l'un de
ces points de préférence à tous les autres (**).

Sans pousser plus loin ces conséquences absurdes , il est facile
d'apercevoir le défaut du raisonnement de M. Poinsot. Le principe 9

supposé vrai, qu'une force peut être censée appliquée à un point
quelconque de sa direction n'empêche pas que la résultante d'un
certain nombre de forces, agissant sur un corps solide , n'ait un
point d'application déterminé (***) ; et , si d'ailleurs les équations

(*) M. Poinsot n'a t'ait, ce me semble , en ceci , qu'e'noncer d'une manière un
peu plus positive ce que tous les géomètres qui ont écrit dans ces derniers temps
ont implicitement admis. Aucun d'eux n'a songé , plus que lui , à assigner le
point d'application de la résultante. J'avouerai que moi-même j'ai constamment
jusqu'ici professé la même doctrine qu'eux,

J. D. G.
(•*) J'ai aussi constamment pensé jusqu'ici que le calcul ne pouvait proprement

donner le point d'application de la résultante , soit de deux forces parallèles , soit de
deux forces qui agissent suivant la même droite ? soit enfui de deux forces qui
concourent en un même point. J. D .G*

(***) II me paraît, au contraire, que ces deux choses s'excluent formellement ;
qu'est-ce en effet qui distinguerait, autrement , le point d'application eileetif de
la résultante de celui où, on peut ia supposer appliquée ?

J. Z>. G,
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qui doivent déterminer la résultante donnent des valeurs ^ , poi t
les coordonnées de son point d'application ; au Heu de dire 9 avec M.
Poinsot , que cela doit être , parce que la résultante est censée ap-
pliquée à un point quelconque de sa direction ; on dira que cela
doit être, par la raison bien simple que les équations d'une droite
ne déterminent pas l'un des points de cette droite plutôt que tout
autre ; et on en conclura qu'il faut, outre les équations de la ré-
sultante , une autre équation entre les coordonnées de son point
d'application , pour la détermination complète de ce point.

Solution. Soient donc X/ Y/ Z*\ X"\ Y", Z">....Us composantes,
parallèles aux axes, des forces P ' , Pu

 y ..•, appliqués à dliTérens points
(xf, yf *z') t {p°/f 5 Vu > z//) -> ™ d'un système solide libre. Soient X, Y,
Z les composantes parallèles aux axes de leur résultante P, dont
(x, y , z) soit le point d'application; on aura, comme l'on sait (*), pom?
l'intensité de la résultante >

O 2 > (0
et sa direction sera donnée par les trois équations

dont chacune est comportée par les deux autres 9 au moyen de la
condition

^=o , (3)

qui exprime que la résultante est unique. Ces équations se réduisent
donc ainsi à deux, et ne peuvent eonséquemment déterminer autre
chose que la direction de la résultante, et non les coordonnées # ,
y 9 z de son point d'application. Il s^agît donc de trouver une nouvelle
équation entre les mêmes coordonnées.

(*) Voyez, Prony ? Francœur # Poinsot , Labej ou Poisson»
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Soient u , fi , y 5 respectivement, les angles que forme là direction

de la résultante P avec les axes des x , y , £ ; ces angles seront
connus par les équations de cette résultante , et Ton aura

PCos.*=2.X' , PCos./î^S.r/ , PCos.y=2.Z' . (4)

Cela posé , si Ton imagine un plan normal a la direction de la
résultante , et passant par son point d'application ; en désignant
par a , b , c les coordonnées de ce point, la perpendiculaire abaissée
sur ce plan du point ( xf, yf, zf ) aura pour longueur

{xf—*)Cos.«+(y'—QCos.jS+C^—^)Cos.y . (5)

Si ensuite on décompose chacune des forces X/ , Y/, Z* en deux
autres , l'une perpendiculaire et Tautre parallèle au plan dont il
s'agit, les composantes de la première sorte seront

s** 5 pour le force X/ ,

s.jS , pour la force Y/ ,

Z'Cos.y , pour la force Z/ ;

d'où il suit que

X'Cos.oH-r'Cos./s+^Cos.y (6)

sera la composante totale de P/ parallèle à la résultante , et qu'ainsi
son moment par rapport à notre plan normal sera (5)

'j(X/Co5.ift4-Y'Cos.i8+Z'Cos.y){(ap'—û)Cos.«+(y—£)Cos.iS+(s'—OCos.y} > (7)

pu f en développant ,

(3)
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Si l'on exe'cute la même décomposition pour les autres composantes
pu ^ p / / / ? d u système, on en déduira des résultats analogues.
On aura donc , au lieu des puissances P/, T?/f",.„. du système,
d'autres puissances ; dont les unes seront parallèles k la résultante ,
tandis que les autres lui seront normales ; ces dernières devront donc
5e détruire ; et la somme des momens des premières 9 par rapport
à notre plan normal devra être nulle , puisque CB plan est supposé
passer par le point d'application de la résultante. En exprimant donc
que la somme des formules semblables à (8) , relatives à toutes les
forces, est nulle * remarquant que les quantités constantes a, b, c,
Cos.« 7 Cos./s, Cos.y et leurs fonctions peuvent être placées hors du
signe S , et qu'enfin

(9)

il "viendra

s (» )

ou enfin , en remettant [pour Cos.*, Cos.fi , Cos.y les valeurs données
par les dcjuations (4) »

Or 5 puisque a , 19 € sont les coordonnées du point d'application
de la résultante , on doit avoir (2)
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En combinant deux quelconques de ces trois équations avec l'équa-
tion ( I I ) , posant pour abréger

%a'Y'—Z.y'X'^

Y<%.Z'-2t{y'Zl-\-z'Yf)

=5 ,

tt ayant égard aux équations ( i et 3 ) , il viendra

a-

CZZ

telles sont donc les coordonnées du point d'application de la r<î-
sultanteP. Si ï'on supposecette résultante parallèle à l'axe des z, on aura

%.X'=io , S.r=o , t.Z'=P ;
d'où
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K^P*2.z'Z' , 5=O ;

ee quî donnera

e'est-à-dire,

Sî en outre on supposait que les puissances primitives P/
 f P

/f^ P7^,,..,
^ont parallèles à cet axe des Z , ces puissances ne seraient autre
chose que les composantes Z' , Zff

 9 Znt, ..•* ; tandis que les autres
composantes X', X", X'".... V , Y" , F", .... seraient nulles; on
aurait donc alors simplement

^ ^ ' • (i7)

formules qui vont nous servir à constater une erreur , dans la théorie
actuelle de la pression des fluides sur les corps flottans (*).

(*) Serait-ce trop hasarder que de dire qu'en calculant les formules (16) , M,
Dubuat n'a peut-être fait autre chose qu'assigner un point de la direction delà
résultante , lié par une loi géométrique ou analitique tout à fait arbitraire , aved
d'autres points , pris arbitrairement sur les directions des composantes ? Qu'est-
ce en effet que le moment d'une force ? Peut-il être quelque chose indépen-
damment d'une définition ? Et, quelque définition qu'on en veuille donner, le$ momens
peuvent-ils avoir, à priori, quelques propriétés non renferme'es, du moins implicite*
ment, dans la définition qu'on aura voulu en donner ? J'ai déterminé la ré-
sultante de plusieurs forces parallèles ( et je n'ai eu nullement besoin pour cela
de connaître leurs points d'application ) $ je cherche la distance de cette résul-
tante à un plan fixe , parallèle aux directions des forces ; je trouve que cette
distance est égale à la somme des produits èes composantes par leurs distancée
à ce plan 9 divisée par la somme de ces mêmes composantes 9 c'est-à-dire , par
la résultante ; j'en conclus que le produit de la résultante par sa distance à un
plan fixe , parallèle à la direction commune des forces , est égal à Ja somme
de* produits des composantes par leurs distances au même plan \ je prévois qui
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On sait que les pressions exercées par un fluide pesant sur les

divers points de 4a surface antérieure d'un corps flottant ? ont une
résultante unique et verticale , égale au poids du volume de fluide
déplacé , et passant par le centre de -gravité du volume de la ca- .
rêne, supposée homogène» À l'égard du point d'application de cette
résultante, il est le même , suivant tous les auteurs d'Hydrostatique,
que le centre de gravité du volume de la carène ; cependant , si
on, le détermine par les formes que nous venons d'exposer, on
trouvera , en le comparant à ce centre , que la verticale comprise

je serai souvent dans le cas de rappeler cette proposition ^ cette pense'e me fait
désirer d'en pouvoir abréger Penoncê : dans * celte vue ? je conviens d'appeler
MOMENT d'une force le produit de cette force par sa distance à un plan paraU
lèle à sa direction; et dès-lors ma proposition se réduit à dire simplement que
2e moment de la résultante est égal à la somme des momens des composantes»
Tout est , dans ce cas , clair et intelligible ; mais , du moment que je comparer
une force à un pian non parallèle à sa direction , je n'aperçois plus de moment,
du moins d'après le sens que je viens tout-à-i'heure d'attacher à ce mot. A la
yérité , je pourrais bien , en généralisant la définition , appeler MOMENT d'une force
Te produit de cette force par la distance de son point d'application à un plan
quelconque ; xnais , s'il est admis que ce point peut être pris arbitrairement suc
sa direction f il s'en-suivra , comme M. Dubuat L'a fort bien observé lui-même
i Annales , tom. Y , pag. 2 i 5 ) , qu'excepté le cas du parallélisme au plan, le
ïnomemt d'une force est tout ce qu'on voudra*.
- En vain objectera-t-on, contre cette doctrine ? que tous les géomètres recon>-
jaaissent l'existence d'un centre, des forces parallèles ; qu'est-ce , en effet, que ce
centre ? le voici : on prend arbitrairement, sur les directions de plusieurs forces
parallèles , des points que l'on suppose fixes ; on imagine ensuite que les forces 9

toujours appliquées à ces points f changent d'une manière quelconque leur direc-
tion commune ; on trouve que r dans ce changement, la résultante est toujours
dirigée vers un même point fixe r et c'est ce point qu'on nomme le centre des

forces parallèles* Mais , outre que rien de semblable ne saurait plus exister, lors*
gué les forces cessent d'être parallèles ; qui ne voit que ,. même dans le ca* où.
elles sont telles f ce qu'on appelle centre des forces est tout aussi arbitraire et

que les points pris arbitrairement sur les directions de ces forces?
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entre le point d'application de la résultante des poussées du fluide
et le plan de flottaison est double de la verticale comprise entre
ce même plan et le centre de volume de la carène. C'est donc une
erreur de dire que ces deux points se confondent en un seul. Ce-
pendant cette erreur serait assez indifférente , si le principe déjà cité,
quune force peut être censée appliquée à vn point quelconque de
sa direction , était vrai généralement et sans exception ; car , en
vertu de ce principe, le centre de volume de la carène, qui est
toujours sur la direction verticale de la résultante des poussées du
fluide , pourrait être pris pour le point d'application de la résul-
tante. Il en serait de même à l'égard d'une résultante ou même d'une
force quelconque-, il suffirait t dans tous les cas, de connaître sa
direction , et la recherche de ŝon point d'application serait tout à
fait inutile. Or , nous avons déjà eu occasion de remarquer ( An-
nales , tom. V , pag. 2 i 5 ) , qu'il n'est pas toujours permis de dé-
placer le point d'application d'une force, et de le porter sur un
autre point de sa direction (*). En revenant ici sur cette remarque,
nous allons essayer de dérelopper ce que nous n'avions fait qu'in-
diquer en l'endroit cité.

Le principe dont il sagtt n'est plus aujourd'hui réputé une simple
hypothèse ; c'est .une proposition démontrée T ou du moins que l'on
croit l'être , et dont l'énoncé est :
, » On ne change rien à l'action d'une force , en transportant son

*» point d'application en un peint quelconque de sa direction, pourvu

(*) II est permis , je crois , de déplacer le point d'application d'âne force ,
lorsque cette force doit conserver invariablement la même direction ; mai*, si elle
doit changer de direction par rapport au sjstème auquel elle est appliquée ou,
ce qui revient au même , si ce système doit changer de situation par rapport
à elle , on ne jouira plus de la même faculté ; le point d'application de la force
sera alors celui par lequel sa direction ne cessera de passer , malgré le change-
ment survenu. C'est , en particulier , le cas des corps pesans ; c'est également
celui des corps solides flottant sur des fiuides»

Tom. f/. 3!
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» que ce second point soit censé lié au premier , par une droite
» inflexible, et que l'intensité et la direction de la force soient
» restées les mêmes. »

Admettons d'abord la proposition, et voyons quelles en seraient'
les conséquences.

i.° La condition de stabilité d'un corps solide, flottant sur un
fluide pesant, est que le centre de gravité du corps soit inférieur,
dans la position d'équilibre, au centre des pressions du fluide; ou,
si le premier de ces deux points est supérieur au second, il faut,
pour la stabilité de l'équilibre,que leur distance verticale soit moindre
qu'une longueur donnée par le calcul y et dépendante de l'étendue
et de la figure de la flottaison , ainsi que de la masse du corps.
Maïs, en se permettant de déplacer, à volonté, le point d'applica-
tion des forces, tout cela se simplifie , et l'équilibre est toujours
stable ou, si l'on veut, ne l'est jamais. Veut-on que l'équilibre soit
stable ? On déplace le point d'application de la résultante des pous-
sées du fluide, dans la position d'équilibre, et on le porte , sur la
direction verticale de cette résultante , au-dessus du centre de gra*
vite du corps ; cela suffit, comme nous venons de le dire , pour
|[ue l'équilibre soit stable. Veut-on , au contraire , qu'il ne le soit
pas? On porte le centre de pression, sur la même verticale assez
au-dessous du centre de gravité pour qu'il en soit ainsi. En faisant
ces déplacemens, on a soin de dire que le point d'application de
la, force et le point de sa direction auquel on le transporte sont
censés liés entre eux par une verge inflexible et inextensible (*).

3.° La durée des oscillations d'un pendule dépend , non seule-
ment de l'amplitude des oscillations et du moment d'inertie du pen-
dule, mais encore de la distance verticale de son centre de gravité

(*) Po\ir parvenir à la condition de stabilité de l'équilibre d'un corps flotlani,
ipn e,st oblige de comparer sa position d'équilibre à une aulre poskian qui en
soit très-voisine» 11 y a donc lieu , dans ce cas , à l'exce|>,tioft ra^ntkmrige
la note précédente* J, D. G.
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au centre ou à Taxe de rotation 9 dans la position d'équilibre. Or f

le centFe de gravité d'un corps est le point d'application de la
résultante des actions exercées par la gravité sur les molécules ma-
térielles de ce corps (*) ; le eentre de gravité peut donc être déplacé
sur sa verticale, tout comme le point d'application de toute autre
force peut l'être sur sa direction (**). Ce déplacement étant fait ,
dans la position d'équilibre du pendule 9 le centre de gravité
étant transporté au centre de rotation , la durée des oscillations est
nulle» On pourrait lui donner une valeur quelconque, en déplaçant
convenablement le centre de gravité (***).

3.° Ce que nous venons de dire convient > avec quelques modi-
fications, à tous les systèmes , "et 5 en particulier , à un système de
corps pesans. La distinction des équilibres stables et non stables da
système suppose que la hauteur du eentre de gravité est variable,
et la détermination de la durée des oscillations, que le système périt
faire sur unfr position d'équilibre stable, dépend de la valeur de
l'ordonnée verticale du centre de gravité, dans la position d^équilibre.
En vertu du déplacement des forces^ le centre de gravité n'est pas
en un point plutôt qu'en un autre de sa verticale; d'où il suit qu'il
ne devrait être question ni de la distinction des équilibres stables
et non stables , ni de la durée des oscillations d'un système de corps
pesants, dans tout traité de mécanique où on a démontré, dès les
premières pages f qu'une force peut ^tre supposée appliquée en Tua
quelconque des points de sa direction (****)„

La démonstration de ce principe est fondée sur plusieurs autres
propositions 9 dont la première est celle-ci t

<c Deux forces égales et contraires appliquées aux deux extrémités

(*) Dans toutes les situations que ce corps peut prendre dans l'espdfce^
(**), Oui, dans le cas d'équilibre ; non , dans celui d» mouvement.
(***) Cette seconde objection me paraît devok se résoudr€ comme fe
(****} Même réponse encore que ci-dessus^ J» D* G»,
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» d'une droite Inflexible., et agissant dans la direction de cette droite,'
» sont en équilibre, »

II est certain que l'équilibre a lieu entre les deux forces ; mais'
la preuve que l'on en donne, et qui consiste à dire qu'il n'y a pas
de raison pour que le mouvement naisse d'un doté plutôt que de
l'autre , n'est peut-être pas aussi claire qu'elle, pourrait d'abord le
paraître. En rappliqtiant aux Couples de M. Poinsot ; composés de
deux forces égales, parallèles et contraires, on en conclurait que
les deux forces d'un même couple sont en équilibre ; car on pourrait
dire aussi qu'il n'y a pas de raison pour que le mouvement naisse
plutôt dans le sens de Tune de ces forces que dans le sens de
Tautre (*). Si Ton objectait que les momens des forces , par rapport
au centre de masse du corps solide auquel on les suppose appli-
quées pouvant être inégaux, cette inégalité détruit Pindentité entre
les actions des deux forces , nous objecterions à noire tour que la
même inégalité de momens peut exister dans le cas de deux iorces
égales et contraires , appliquées aux extrémités d'une droite faisant
partie d'un corps solide , et agissant dans la direction de cette droite (**).
Les momens des forces , par rapport à un plan normal à leur
direction , et passant par le centre de masse du corps, peuvent
être inégaux -, ce qui détruit aussi l'identité parfaite que suppose la

(*) C'est aussi là ce qui arrive ,• le système n'est alors entraîné dans le sens
d'aucune force , ou plutôt il l'est également dans le sens de Tune et de l'autre ;
car c'est à cela que revient au fond le mouvement de rotation que ces forces
tendent à faire naître.

(**) L'une et l'autre objections me sembleraient être tout au moins prématurées ;
on ne peut guère savoir ce que c'est que des momens , ni de quelles propriétés
ils jouissent, lorsqu'on n'en est encore qu'à la démonstration du principe dont
il s'agit ici. D'ailleurs , encore une fois , loin que la mécanique doive recevoir
ses lois *de la théorie des momens , cette théorie me semble au contraire devoir
être absolument subordonnée aux principes de cette science ; principes au défaut
desquels les momens sont et ne peuvent être que des fonctions tout à fait in-*
signifiantes. , J. B> G.
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preuve. Maïs laissons là cette preuve # et voyons la suite de la dé-
monstration.
. La seconde proposition dont on y fait usage peut être énoncée

de la manière suivante.
« Si des forces appliquées a un système sont en équilibre , elles

£ se détruisent, et sont à l'égard du système, comme si elles n'exis-
>> taient pas; en sorte qu'il est permis, dans tous les cas , de faire
» abstraction de ces forces, lorsqu'elles sont appliquées au système,
» ou.de les y supposer appliquées lorsqu'elles ne le sont pas réel-
» lement. »
. C'est principalement sur celte proposition , admise jusqu'à présenjfc
sans preuve, qu'est établie la démonstration du théorème relatif au
déplacement du point d'application des forces. Il importe donc
d'examiner si cette proposition est vraie en général 9 ou s i , au con-
traire ? elle admet des exceptions dans quelques cas particuliers.

Or , les équations de l'équilibre et celles du mouvement d'un système
étant respectivement

Si on ajoute aux forcesX, Y, Z% ou si Ton en retranche d'autres
forces en équilibre, et satisfaisant par conséquent à la première équa-
tion , il est évident que ces nouvelles forces ne changeront rien à
l'expression ^{Xdx-\-YàyArZdz) f commune aux deux équations ;
d'où il semblerait permis de conclure que des forces en équilibre se
détruisent et s'évanouissent également , soit dans les formules de la
Stalique soit dans celles de la dynamique. Mais on sait que, pour
obtenir certaines conditions ou pour parvenir à certains résultats
du mouvement d'un système , il faut difFérentier la seconde équation ,
et évaluer la différentielle à%*%.mn% , dans une position d'équilibre.
Cette différentielle devient alors une fonction des forces en équilibre,
talle que ces forées ne s'y évanouissent plus; ce qui suffit pour
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pio&ver que ûes forces en équilibre ne se détruisent pas toujours
et ne sont pas toujours, à l'égard d'un système, comme si elle*
n'existaient pas.

Cependant, lorsqu'il ne s'agît que des conditions de Féquîlïbre ou *
plus généralement , lorsque la dotation d'un problème n'exige pas
que la formule à%rnn* $ml différenciée et évaluée dans une posi-
tion d'équilibre, nous venons de voir que des forces supposées en

e se détruisent-, et peuvent être regardées comme nulles; il
donc permis alors de changer le point d'application d'une force,

et de le porter en un autre point de sa direction , pourvu ( et
ç*est la condition énoncée dam tous tes traités ) que le second point
Soif lié ou censé Hé, c'est-à-dire ; regardé comme lié au premier, par
lane verge inflexible et inextensible.

Ici se pr-ésentent naturellement deux questions.. Que signifient ces
expressions : censés Mes ou regardes Comme liés? Si le point au-
quel on tFa&sporte la* forcé fait pasrte d'an système, sa liaison avec
le point .d'application est déterminée parla nature du système; eîlfc
est par conséquent indépendante de tout ce qu'on peut imaginer en
disant que les deux points sont liés ou censés liés entre eux par
une verge inflexible et inextensible. Si-, au contraire, le second point
est pris hors du système 9 sa liaison avec le premier est tout à fait
vârbiîTâîr&, et toujdtirë tefle qu'oti voudra le supposer. La fiction
èxpronêe par ces termes : censés liés ou regardés comme liés, est
donc inutile dans le second: cas et contradictoire dans le premier (*).
<3n éviterait ce double inconvénient, en réduisant la condition; du
déplacement des forces à ce que le second point, s'il fait partie

(*) Quelques auteurs, pour démontrer les conditions de l'équilibre du polygone
funiculaire , transportent d'un nœud au nœud voisin les points d'application des
forces ou de leurs résultantes. Ces nœuds sont donc cense's liés entre eux par
une droite inflexible. Cependant ? d'après la définition du polygone funiculaire 9

donnée par les mêmes auteurs , les nœuds sont assemblés par des cordes flexibles £
il y a donc ici contradiction*

^ Note de ÊC. Buhuah
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du système y soit tel que sa distance au premier soit, par la nature
même de ce système, constante et invariable. Mais, cette condition
est-elle absolument nécessaire ? et ne peut-il exister qu'une seule
espèce de liaison entre deux points , dont l'un est le point d'ap-
plication d'une force , et l'autre celui auquel il est permis de trans-
porter ce point d'application ? telle est la seconde question qu'il s'agit
de résoudre (*).

Or, la propriété en vertu de laquelle un point situé sur la direc-*
tion d'une force peut être pris pour le point d'application de cette
force, consiste en ce que deux forces égales et contraires , appliquées
aux deux points , suivant la direction de la droite qui les pint , sont
en équilibre. Il faut donc, après avoir posé les équations de l'équi-
libre } en conclure les équations de condition qui peuvent avoir
lieu entre les coordonnées de ces deux points.

Soient donc # , y , Zj x', y/, z/ ces coordonnées; X9 T9 Z%
~ X , —JT, —Z les forces égales et. opposées, appliquées aux dejuuf
points ; soient aussi

(*) Voici comment j'ai cru devoir entendre jusqu'ici la faculté de déplacer le
point d'application d'une force. One force étant appliquée k un point d'un sys-
tème , je prends arbitrairement un second point sur la direction de cette force»
Si ce point est un point du système qui , par sa nature, soit invariablement lié
avec le premier, je suppose que la force lui est appliquée j si c'est, au contraire, un
point de l'espace , tout à fait étranger au système ,, je ne guis y transporter la
force sans imaginer , au préalable, une liaison de ce point avec le premier. Il
m'importe peu , au surplus , que la condition de distance invariable entre le*
deux points soit nécessaire \ tout ce qu'il faut pour mon but, c'est qu'elle soit
sufïlsaHte.

Dans la statique, il doit être permis , en outre , de transporter une force d'un
point d'un système à un awtre point du système non lfé'avejp,. hii d'une manière
invariable ; car, lorsque J'équilibre existe dans un sjslème, cet équilibre doit sub-
pister; à plus forte raison^ si l'on conçoit que le système se soit tout-à-coup
solidifié. On peut donc , dans le polygone fu&ijculake ên.èqyiU&ïe 9 supposer tout
les nœuds liés entre eux d'iine manière invariable,

J. D. G,
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les équation de condition , entre le# coordonnées ; les équations de
l'équilibre seront

x et ^ étant deux indéterminées. En nommant i? la résultante des
forces X, Y, Z et désignant par s la distance entre les deux
points on a

X~R» , Y=^JRm > ZzzzR. ;
s s s

àyoù il est facile de conclure

> C'=—,. ™ '

f et * étant des indéterminées dépendant des premières. Substituant
ces valeurs dans la première équation de condition ? il vient
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ou simplement

On trouverait le même résultat en prenant les valeurs de D, J5T, JF ,
D', Ef

y F/, et les substituant dans la seconde équation de con-
dition. Donc il ne peut y avoir qu'une seule équation de condition
entre les coordonnées des deux points; et cette équation exprime
que la distance entre ces deux points est constante et invariable.

Il suit de tout ce qui a été dit ci-dessus que le théorème relatif
au changement du point d'application des forces est sujet à des
exceptions, dans plusieurs cas connus ; que, hors de ce cas, le
théorème ast, démontré , ainsi que la condition à observer dans la
manière de déplacer ce point. Maïs il se présente encore ici une question
à examiner ; c'est la suivante %

Le théorème relatif au déplacement du point d'application des
forces, peut-il être démontré au commencement d'un traité de mé-
canique ; et peut-il conséquemment être considéré comme devant servir
de fondement à cette science ï

En réduisant la question au seul cas de l'équilibre , pour lequel
le théorème est vrai, généralement et sans exception , et en l'énon*-
çant de la manière suivante ; Lorsqu'il s agit d'exprimer les con-
ditions de l'équilibre d'un système , il est permis de transporter les
points dapplication des Jorces à des points quelconques de leur
direction t pourvu que ces points , s'ils font partie du système soient
à des distances fixes et invariables des points réels d'application (*) ;

£*) J'avoue que je n'ai jamais bien compris ce que pouvait être , en statique r

le point réel d'application d'une forGe- Loin que je eroie difficile d'admettre
Tome VI. 3a
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en renonçant , disons-nous , de cette manière , sa démonstration
dépend , comme nous l'avons déjà remarqué , de celle d'une autre
proposition , laquelle , réduite aussi au cas de l'équilibre , est : Si,
parmi les forces appliquées à un système, il s'en troupe qui soient
d'elles-mêmes en équilibre, leur existence dans le système ne chan-
gera rien aux conditions de Véquilibre entre les autres forces qui
lui sont appliquées.

C'est donc cette dernière proposition qu'il faudra démontrer , à
moins pourtant qu'on ne veuille l'admettre comme évidente d'elle-
même. La difficulté de trouver une démonstration antérieure a toute
théorie, et fondée uniquement sur la définition des forces en équilibre,
fera probablement qu'on s'en tiendra à ce dernier parti (*). Mais
alors il conviendra d'expliquer pourquoi cette proposition , vraie sans
exception en statique , ne l'est point toujours en dynamique (**)•
Quoi qu'il en soit, en l'admettant comme un théorème démontré
ou comme une proposition évidente d'elle-même, il est facile d'en
conclure la formule générale de l'équilibre entre de&* forces quel-
conques, appliquées à un système aussi quelconque.

Soient en effet X, Y,Z9 X/
9 Y1, Z ' , .... des forces en équi-

libre , appliquées aux différens points (#, y, z), (# ' , y/
 f z'), .•.. d'un

eystème -, et supposons la condition d'équilibre exprimée par l'équatioa

(qu'une force peut être transportée suivant sa direction ; il me semble au contraire
que toute la difficulté consisterait plutôt ici à bien établir qu'il n'est pas permis
de transporter une force parallèlement à sa direction ( Voyez Annales , tom. I f

pag. i^5 , à la note ).
(*) Ce serait assez mon avis, et cela précisément parce que la proposition dont

il s'agit me semble résulter évidemment de la définition de l'équilibre,
(**) J'ai quelquefois pensé que les forces, considérées indépendamment du

mouvement qu'elles peuvent faire naître , n'étant que des êtres de raison , on avait
peut-être tort de vouloir isoler la science de l'équilibre de celle du mouvement,
îîe serait-ce pas a cette cause que tiendraient en partie les difficultés théorique*

l'on rencontre dès l'entrée de la mécanique ?
J. D. G.
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F(X, r,Z ,X', Y', Z' ,....xty,z,*' ,y' 9z>,..J=o-. (1)

Soient P, Q,R, P/, Q', R/,.... d'autres forces, indépendantes des
premières , appliquées aux mêmes points ; la condition de l'équilibre
entre les forces totales X-hP , Y+Q , Z+R , X'+Pf , Y'+Qf,
Z'-\-Ri, sera

ou , en supprimant dans le développement la partie détruite par
l'équation (i) , et désignant par F^5 F^ , F ? , les fonctions dé-
rivées de F , prises successivement par rapport à X9 Y., Z 9 ...»

PFX(X ,Y,Z, ...)+QFy[X ,Y,Z, ...)+RFî{X ,Y,Z, ...)+...=o .

En vertu de [la proposition mentionnée plus haut, les forces en
équilibre X, Y\ Z, .,.* doivent a'évanouir , et il ne doit rester dans
le premier membre de l'équation que les forces P f Q f R , j
donc les fonctions dérivées sont des dimensions nulles , et la fonc-
tion primitive F est linéaire ; ce qui change l'équation (i) en celle-ci

JX+BY+CZ+Â'X'+B'Y<+C'Z'+.....~ o 5 (2)
rA , B y C , Af , B' y O 9 ..„] étant des coefficient encore inconnus %
mais indépendans de l'intensité des forces* ;

Cela posé, lorsque la résultante des forces XrY}Z , qui agis-
sent le point (x y y, z) , est perpendiculaire à la surface courbe
sur laquelle ce point est assujetti à se mouvoir > c'est-à-dïre r

lorsqu'on a l'équation de condition Xdx-i-Ydf+Zdz — o r les forces-
Xr Y, Z sont en équilibre ? et la somme des termes qui contiennent
ces forces doit s'évanouir ; donc l'expression linéaire AX-hBY-jrCZ
doit être de la forme p(Xàx-^-Ydy-\-Zdz) , p étant Indépendant
des forces. Par une raison semblable A'X'-J-B'Y'-^-C'Z' doit être
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de la forme (t'ÇK'àz'+T'dyf+Z'àz) -, et ainsi de suite ; de sorte
que l'équation (2) devient

De plus, lorsqu'il y a ? entre les coordonnées des deux points (se, J , z )
( # ' , y / , z') ., ainsi qu'entre les forces qui leur sont appliquées , la
réaction exprimée par

les forces X, Y, Z, X'], Y', ^considérées ensemble sont en équilibre §

et doivent conséquemment /évanouir , et il en serait de même pour
deux autres groupes de forées quelconques (*) ; d'où il suit qu'on
doit avoir p==p/:=={t//=:....; ce qui réduit l'équation (3) à

dans laquelle le facteur ^ , indépendant des forces, ne peut donner
une condition d'équilibre en l'égalant k zéro ; donc enfin l'équation
générale de l'équilibre doit être simplement

C*) Cette proposition étant facile à établir , nous en [supprimons la démons-
tration , pour abréger»

Note de M. Dubuat.
(•*) M. Dubuat voudra peut-être bien me pardonner la manière franche dont

J*ai hasardé de combattre quelques assertions répandues dans le cours de son mé-
moire. Si même il considère la liberté avec laquelle j'en aitusé à son égard comme
tin témoignage de l'estime que je lui porte, il ne fera que me rendre une justice
rigoureuse. Loin que je regarde son travail comme inutile ou déplacé 3 je pense
au contraire que c'est à des dissertations <Ju genre de la sienne que ce recueil
doit être principalement consacré ; et je me ferai toujours un devoir d'accueillir
avec empressement toutes celles qui auront pour objet d'éclaircir et de perfectionner
les doctrines fondamentales qui constituent proprement la philosophie de la i

J . D. G.
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Solution des deux problèmes de géométrie proposés à
la page 60 de ce volume.

Solution du premier problème ?

Par un ABOKKE.

JLJE problème proposé revient évidemment à celui-ci :
PROBLÈME. Déterminer ? en fonction des trois angles plans d'un

angle trièdre, i.° l'angle générateur du cène droit inscrit \ 2* l'angle
générateur du cône droit circonscrit ; 3.° enfin , l'angle que forment
entre eux les axes de ces deux cônes ?

Ce problème se trouvant implicitement résolu dans un article
inséré à la page 829 du précédent volume des Annales ; je n'aurai
pour ainsi dire ici d'autre tâche à remplir qu'à en faire ressortir la
solution démandée ; et je serai conséquemment dans le cas d'y renvoyer
fréquemment (*).

(•) L'auteur de cet article , en le rédigeant, devait ne point connaître, ou du
moins avoir totalement perdu de vue un article de M. Français ? inséré dans la
Correspondance sur Vécole polytechnique ( tom. i*cr , n.° 9 , janvier 1808, pag. 3S7 ).
Ce sont exactement les mêmes résultats et la même manière de procéder. Au
surplus, ces formules de M, Français avaient déjà paru, antérieurement, dans Iç
XIV.e cahier du Journal de l'école polytechnique (pag* 182)1 mais alors sa
marche , pour 7 parvenir , était un peu différente.
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Solution* Soient a , b , £ , les trois angles plans de l'angle

trièdre dont îl s'agit -, r l'angle générateur du cône ^droit inscrit -, R
l'angle générateur du cône droit circonscrit, et D l'angle que forment
les axes de ces deux cônes. Soient faits > pour abréger ,

Si, dans le mémoire cité , on suppose que les trois axes sont les
arêtes de notre angle trièdre , on aura

(y , z)=a , (*)

I. Sî , dans l'équation (R), ( Annales, tom. V , pag» 331 ) , on
substitue pour a9b, c9 les valeurs données par les équations ( i3 ) ,
( pag. 337 ) , en ayant égard aux conventions ci-dessus, il viendra

, r)

, r)

, r)

Si Fon suppose ensuite que la droite désignée par r , dans cette
équation est l'axe du cône droit inscrit, lequel doit conséquemmenl
faire, avec les trois faces de l'angle trièdre, des angles égaux entre eux
et à l'angle générateur r de ce cône f on aura

par suite de quoi notre équation donnera

C*) II faut bien remarquer que nos a, £ > c ne sont point ceux du mémoire citl»
H en est de même de r*
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II. Si, dans la formule (7), (tom. V , pag. 334 ) # o n prend peur
r Taxe du cône droit circonscrit, lequel doit faire avec les trois arêtes
de l'angle trièdre des angles égaux entre eux et à l'angle générateur
'R de ce cône , on aura

en conséquence, cette formule donnera

A*
0S'S =

III. Si enfin, dans Péquation (19), (tom: V , pag, 338) , on
substitue pour Sin.(yz, ^r), Sin.(z^rf

 fy) 9 S\n.(xy 9 z) les valeurs
données par les équations (i4) > ( tom. V, pag, 337)P il vi

Î
, r)Co8.(r*f %)

+Sin^Sin9(z^, r)Gos.(r^, y)

(r'9 z)

prenant alors pour r Taxe du cône Jinscrit, et pour rf celui du cône
circonscrit 9 ce qui donnera, à la fois,

#ette équation donnera

(3)
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formule dans laquelle il ne sera plus question que de substîtuef pouï
A, Sin.r ? Cos.iî les valeurs trouvées ci-dessus (la II). (+)

IV. De l'expression (1) de Sin.V on conclut aisément
4Sin.a,?

Cos.Vs= — — ; (4)
&\n*a)2Sin0bincLQSM

et par suite

4
or, on trouve aisément

A* = 4Sin.jSÎEu(j—-a)S\n.(s-~4)§m.(s—c) ;
donc enfin

m „ „ „ . . y Sin..sSin.(s—d)Sîn.(s—

lang.r _ - . _ ,

formule commode pour le calcul par logarithmes.
Si dans cette dernière formule % on suppose le rayon de la sphère

infini, il viendra

s
expression connue du rayon du cercle inscrit .au triaagle rectilignet

«n fonction de ses trois eôtés.
LV, De Pexpression (2) de Cos**R on conclut aisément

Sin.2^—2(Cos.a—
-+ Sin.2^—2(Cos.#—Cos.^Cos à)
-4-Sin. V—2(Cos.^—Cos«tf Cos.&)

et, par suite-;

(*) II serait intéressant de de'couvrir si , pour Le triangle sphérique , comme pour
le triangle rectiiigne , D est simplement fonction de r et il ( voyez Annales ,
tom. I I I , pag. 347 ). Le moyen de s'en assurer serait d'éliminer, entre les e'qua-
tîons ( i , 2 , 3} , deux quelconques des trois angles a, £ , c, afin de voir si la
troisième disparaîtrait aussi de lui-même y mais ce moyen ne paraît pas être d'une-
fxécutionlrès-facile* J . B. G.
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©u, en mettant pour A2 sa valeur eî-dessus > et extrayant la racine
quarrée,

Tang./?=: , - • (10V
° V/SinjSîn(j—a)5in.(j—b)S'm.(s-c) ' K J

formule commode par le calcul par logarithmes.
Si ? dans celte dernière formule, on suppose le rayon de la sphère

infini, elle deviendra
_ abc

/? ; ( i l )
bXs—c) K '

expression connue durayon du cercle circonscrit au triangle rectiligrie,'
en fonction de ces trois côtés.

Solution du deuxième problème ;

Par M. BERARD , principal et professeur de mathématiques
du collège de Briançon , mçmbre de plusieurs sociétés
savantes.

s. 1.
Trouver le rayon de la sphère inscrite à un tétraèdre?

Soient ABCD le tétraèdre donné ;

4ireBCD=A , AireGDK—B , AireDkB^C , AireABC=zD •

T le volume du tétraèdre ; r le rayon de la spbère inscrite •
AT)=a , BD=^ , CD=^ , BC=d , CA = e 9 A B = / ;

o le centre de la sphère inscrite , a/ , hf, cr ses coordonnées res-
pectivement parallèles à a, h, c , le sommet D étant l'origine ;

g, h 9 Je les perpendiculaires abaissées des sommets À , B v C
sur les plans des faces opposées A7 B> C )

Enfin , * 9 /3, y les angles que forment deux à deux les aFetes
a } h % c*

Tom. FI, 33
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En concevant le tétraèdre comme composé de quatre autres ayant

leur sommet commun au point o , et ayant pour bases les quatre
faces A , B, C , D du premier ; leur hauteur commune sera le
rayon cherché r , et l'on aura eonséquemment

d'où on tire

Do est la diagonale d'un parallélipipkde , dont les arêtes concourant
en D sont égales à af

 y b1, c4 ; et dans lequel les distances entre
les faces opposées sont toutes égales a r# En conséquence , les triangles-
rectangles semblables donnent

ar br cr

*'=7 • h==T • £'=T ' &
Voilà donc les coordonnées du centre déterminées. On sait d'ailleurs que

= , Cos./3=
—Cos.a

D = ;
3 T

au moyen de quoi r , a' > bf, c4 peuvent > sans difficulté , être ex-
primés en fonction des six arêtes.

Les équations de Do sont

x y s

ou
gx hy fi£

^ a à c

OU
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» _ Y _ z

ou enfin
$int# Sin»/3 Sin.y

§. IL

Trouver le rayon de la sphère circonscrite à un tétraèdre ?

Tout étant d'ailleurs comme ci-dessus , soient de plus O le centre
et R le rayon de la sphère circonscrite \ en désignant par an\ bft, cff

les coordonnées du centre de cette sphère , respectivement parallèle*
aux arêtes a, b 7 c , son équation sera

(4)

Pour exprimer que cette sphère passe par les quatre sommets À >
B , C , D , il faudra écrire que son équation est également satisfaite
par chacun des quatre systèmes de valeurs

Cela donne
//a + ^ V ' C ^ ^ V / C / i / / C = J S * , (5)

^ 0 Cos.

Retranchant l'équation (5) de chacune des équations (6), celles-ci de-
viendront , en divisant la première par a , la seconde par b et la
troisième par c,
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En se rappelant que

—Cos.2*—Cos.£a—Cos.v4-2Cos.*Cos,/3Cos.y——-— , (7)

, / 3 ) — c ( C o s . f i — C o s . }

7 ^Sîn.2 i3—^(Cos.«—COS.ACOS.^)

in.V—û?(Cos.i3 — Cos.yCos**)

on en tîre

a/;=- -—-

J2.T2

substituant ces valeurs dans l'équation (5) , et ayant toujours égard
à l'équation (7) , il viendra

tf^Sin.1*—2,bc(Cos.*—Cos./sCos.y)

< +^Sin.^^^(Cos./âGos.yGos.«) . (8)

§. III.
Trowet la distance entre les centres des sphères inscrite et cir-

conscrite à un même tétraèdre ?

En représentant par D cette distance, et conservant d'ailleurs les
mêmes dénominations que ci-dessus , on aura

(9)

formule dans laquelle il n'est plus question que de substituer pour les
coordonnées des deux centres les valeurs trouvées ci-dessus, et qui se
simplifierait peut-être ? en y introduisant les rayons R et r . (*)

(*) Ii serait sur-tout intéressant de savoir si D peut être exprimé uniquement',
tu fonction de 21 et r* * J* !>., G*



THÉORÈMES NOUVEAUX.

GÉOMÉTRIE ANALITIQUE-

Théorèmes nouveaux sur les lignes et surfaces du
second ordre ;

Par M. FREGIEK , ancien élève de l'école polytechnique.

;Ai annoncé , dans le III.e volume de la Correspondance sur Vécole
polytechnique ( n.° 3 , janvier Ï 8 I 6 , page 3Q4 ) » un théorème en
vertu duquel on peut construire , avec un équerre* pour tout ins-
trument 7 la normale et par conséquent la tangente à une ligne du
second ordre , indépendamment de la connaissance des diamètres
principaux. Je me propose ici de démontrer ce théorème, ainsi que
plusieurs autres théorèmes analogues , sur les lignes et surfaces du
second ordre, 4

Une ligne du second ordre étant donnée , et un point fixe étant
pris arbitrairement sur cette courbe ; si Ton prend la tangente en
ce point pour axe des oc et la normale qui lui répond pour axe
des y y en désignant par N la longueur de la normale , mesurée
depuis l'origine jusqu'au point où elle rencontre de nouveau la
courbe, par

l'équation de la tangente à cette dernière extrémité de la normale,
et enfin par P le rayon de courbure qui répond à l'origine ; l'é-
quation de la courbe dont il s3agit , sera

Tom.VI, n.*rilIfii.
eTfévrier 1816. 34
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Nx*-^2Py(y—Ax—2V) = o . ( 0

Soit D une droite menée arbitrairement pat l'origine s et formant
respectivement avec les axes des x et des y des angles dont les
cosinus soient a et b , ce qui donnera

a*+b*=i ; (a)

Téquatlon de cette droite sera

ay—bx ; (3)

en la combinant avec l'équation (i) , on obtiendra, pour les coor-

données de l'intersection de D avec la courbe

(4)

Pour une nouvelle droite D ; , passant également par l'origine, et
formant avec les axes des x et des y des angles .dont les cosinus
soient respectivement af

 7 b' 9 ce qui donne

*'*+£/* = i , (5)

on aura semblablement

(6)

On trouvera aisément d'après cela que l'équation de la corde G
qui joint les extrémités des deux droites D , D7 est 5 en divisant
par ah1—baf

 % . ^

{N(aV+la>)—2APbb<)x-k-{zPbb'--NGÛ')Y= 2NPbb' . (7)

Si ? pour savoir en quels points la corde C coupe la normale et
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la tangente ; on fait successivement x dans cette équation , ce et
y~o, il viendra

(8)

* = — (9>

d'où Ton voit que , pourvu que —- soit constant , la corde C cou-

pera toujours la normale au même point ; et que , pourvu que

— - + — soit constant, cette même corde coupera toujours la tan-

gente au même point 7 quelles que puissent être d'ailleurs les di-
rections des droites D et D'.

Parmi les divers cas où —• est constant, l'un, des plus simples est.

sans contredit; celui où Ton a

aa'+hh' — o ,, d'où — =: — 1 ;
bbf

les droites D , D ; sont alors perpendiculaires Tune à l'autre ; et le1

point fixe de la normale par lequel passe la droite C est donnée (8),
par la formule

De là résulte ce théorème r

THÉORÈME L Si Von inscrit à une ligne du second ordre'
une suite de triangles-rectangles ayant tous le sommet de tangle
droit situé en un même point de cette courbe ; leurs hypothènuses
concourront toutes en un même point de la normale menée par
le sommet commun à tous ces triangles-, d'où il suit encore,par
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la thèotie des pèles (*) , que les points de concours des tangentes
aux extrémités de ces hypothénuses seront tous situés sur une
même droite.

Si donc , n'ayant d'autre instrument qu'un équerre , on veut cons-
truire la tangente et la normale en un point quelconque d'une lign*
du second ordre , il ne s'agira que de construire , arec I equerre , deux
triangles rectangles ayant le sommet de l'angle droit au point dont il
s'agit; la droite menée de ce point à l'intersection des hypoihénuses
des deux triangles sera la normale , et conséquemment la perpen-
diculaire menée à cette droite , par le même point de la courbe,
en sera la tangente.

Cette construction fournit en outre un moyen assez simple d'ob-
tenir le rayon de courbure, et conséquemment la situation du centre
du cercle osculateur. Si , en effet , Ton désigne par K la distance
de l'origine au point fixe de la normale par lequel passent toutes
les hypothénuses , point que nous venons d'enseigner à déterminer;
on aura (10)

d'où PzzL.—— .

Il résulte clairement de notre analise qu'il y aurait une infinité
d'autres cas où les droites C se couperaient en un même point de
la normale* Nous nous bornerons à signaler celui où l'on aurait

aaf a bf

— = i , ou aa/^=bb/ , ou encore — = — ;

c'est celui où les droites D , D ' feraient d'un même côté, soit avec
la tangente soit avec la normale ? des angles complément l'un de
l'autre. Le point fixe serait alors donné par la formule

-2NP

O Voyez Annales , tome III , page
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Parmi les différens cas où j + p " est constant , Fun des plus

remarquables est celui où cette fonction est nulle» Les droites D ?

J)/ font alors , de differens côtésy des angles égaux soit avec la tangente
soij, avec la normale,• c'est-à-dire, en érautres termes 5 que la nor-
male divise en deux parties égales l'angle formé par ces deux droites,
Le point fixe de la tangente où concourent alors les droites C est
donné (9) par la formule

N

ce point est donc celui où concourrent les tangentes aux deux extré-
mités de la normale. De là résulte ce théorème :

THEOREME IL Si Von inscrit à une ligne du second ordre
. une suite de triangles , ayant tous un sommet commun , et dont
Vangle à ce sommet soit divise en deux parties égales par la nor-
maie qui lui répond ; les côtés opposés de ces triangles iront tous
concourir au point de la tangente où elle est coupée par la tan-
gente à Vautre extrémité de cette normale ; d'où il résulte encore,
par la théorie des pôles > que les points de concours des tangentes
aux extrémités de ces troisièmes côtés de triangles seront situés
sur une même droite , laquelle ne sera autre ici que la normale
elle-même»

La vérité de ce théorème s'aperçoit au surplus immédiatement,
en remarquant que l'équation du système de deux droites qui, pas-
sant par l'origine, font de part et d'autre des angles égaux ayec la
normale 5 est de la forme

x*=Ky* , (11)

dans laquelle A est une constante qui détermine l'angle des deux
droites. Or, en éliminant a? entre cette équation et l'équation (1)^
îl vient, en divisant par y ,
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équation d'tme droite qui , quel que soît X , coupe toujours l'axe

des a: au point pour lequel on a # = •

II est aisé de voir , d'après cela , que si 9 par le point de la
courbe que l'on considère, Ton mène deux cordes divisant en deux
parties égales les angles que forme la normale avec la tangente,
la droite qui joindra les extrémités de <;es cordes déterminera , sur
la normale et sur la tangente ,. les points fixes relatifs à nos deux
théorèmes*

Une surface du second ordre étant donnée , et un point fixe étant
pris arbitrairement sur cette surface ; si Ton prend les deux tangentes
conjuguées rectangulaires de ce point pour axes des x et des y et
la normale qui répond au même point pour axe des z ; en dési-
gnant par N la longueur de la normale terminée à la surface ,
supposant que l'équation du plan tangent à la seconde extrémité,
de- cette normale est

et représentant respectivement par P et Q les rayons de courbure
des sections suivant les plans des ocz et des yz ; l'équation de lai
surface dont il s'agit prendra la forme

N(Qx*+Py*)+2PQz(z-~Jx—By~N) = o (*). ( i)

Soit D une droite menée arbitrairement par l'origine ^ et formant
respectivement avec les axes des ce, des y et des z des angles dont
les cosinus soient a , h f c , ^e qui donnera

a2+b2+c* = t ; (3)

les équations de cette droite seront

€&z=:az % cyzzbz ; (3)

en les combinant avec l'équation (1) ^ on. obtiendra ^ pour les coor-
données de l'intersection de D avec la surface courba 9

£l Vojes. Annales y tom». IV > pages 3j2 et
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--Aa— Bb} ' .

zNPQhc
(4)

Pour deux autres droites D ; , D v passant également par Tongine,
«t formant ^vec les axes des x, des y et des z des angles dont
les cosinus soient af

 7 b;, cf
 7 pour Tune, €t au, hff

 P cu, pour
l'autre , ce qui donne

= i f " (5)

= = i j (6)

on aura semblablement

zNPOb'c'

PQcf{cr—Aaf--Bbf) y (l)

y = : (8)

On trouvera aisément , d'après cela * que l'équation du plan G
qui joint les extrémités des droites D > D7 , D7/ est

x
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4- +c/c/Xc/a//—a/c//)(NQa*-hNPb*--2BPQb c)

ce'(al*— c">)

^ , (9)

Cela posé , supposons que chacune de nos droites D 9 D ; , D / ; ,
soit perpendiculaire aux deux autres , nous exprimerons cette cir-
ionstance par les trois équations

aaf

a'a"+b'5"-hc'c"=o,

a"a *\-b"b -+-c"c = 0 ;

(10)

lesquelles , combinées avec les relations ( 2 , 5 9 6 ) , donneront
entr'autres (*)

Ici

et par conséquent

cat ^ a c / -z

—af/c—bt , a//b—b//a=c'

= a{J>'c"— cfb")-\-af{b»c<~c»b) 4- a^ijbc^—c ( 12)

En conséquence , l'équation (9) deviendra simplement

(*) Voyez la Correspondance sur Vécole -polytechnique 7 tome III 9 n.° 3 f

janvier 1816, page 3oja»

{NQ
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Si , dans la vue de savoir en quel point le plan C rencontre
Taxe des z , c'est-à-dire , la normale , on fait x et y égaux à zéro,
cette dernière équation donnera

résultat entièrement indépendant de la situation des droites D, IV,
X)7'. De là résulte le théorème que voici :

THÉORÈME 111. Si, à une surface du second ordre > on ins-
crit une suite de tétraèdres rectangles , ayant tous le sommet de
leur angle droit trièdre situé en un même point quelconque de cette
surface ; leurs faces hypothénusales concourront toutes en un même
point de la normale menée par le sommet commun de tous cas
tétraèdres ; d'où il suit encore ? par la théorie des pôles , que les
surfaces coniques circonscrites qui auront pour lignes de contact
avec la surface dont il s9agit, ses intersections avec les plans des
faces hypothénusales de ces tétraèdres 9 auront toutes leurs sommets
situés sur un même plan.

On voit par là que l'inscription à une surface du second ordre
de trois tétraèdres rectangles, ayant tous le sommet de leur angle
droit trièdre situé en un même point de cette surface , suffit pour
déterminer la direction de la normale et conséquemment du plan
tangent en ee point.

Concevons présentement une surface conique ayant son centre à
l'origine, dont Taxe soit Taxe des z , c'est-à-dire, la normale, et
dont les sections parallèles au plan tangent , elliptiques ou hyper-
boliques , aient leurs diamètres principaux respectivement propor-
tionnels aux racines quarrées des rayons de plus grande et de moindre
courbure au point que nous considérons; l'équation de cette surface
conique sera de la forme

Tom. FI. 35
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A étant une Indéterminée qui fixe la grandeur de cette surface conique;
En combinant l'équation (i5) avec l'équation (i) , pour en éliminer
Ç^r2+Pj2 , il vient 9 en divisant par z y

(Nx+2PQ)z-zPQiJx-i-By+N)=o ; (16)

équation linéaire , qui nous montre que ? quel que soit X , l'inter-
section des deux surfaces est toujours une courbe plane.

Si, dans la vue de connaître suivant quelle droite le plan de cette
courbe rencontre le plan tangent , on fait z=o> dans Péquation (16) >
elle deviendra

Jx+By+N=o; (17)
résultat tout a fait indépendant de x ; ce qui donne lieu au théo-
rème que voici :

THÉORÈME IF. Si une suite de surfaces coniques ont respective-
ment pour centre et pour axe commun un point pris arbitrairement sur
une surface quelconque du second ordre et la normale à cette sur-
face en ce point ; et si en outre les sections de ces surfaces coniques
par des plans parallèles au plan tangent , lesquelles auront leur
centre sur la normale } ont leurs diamètres principaux proportionnels
aux racines quarrèes des rayons de plus grande et de moindre
courbure de la surface à leur sommet commun ; toutes ces surfaces
coniques couperont la surface du second ordre suivant une série
de courbes planes , dont les plans viendront tous passer par la
droite intersection des plans tangens aux deux extrémités de la
normale ; d'où il suit , par la théorie des pèles, que les surfaces
coniques circonscrites 7 ayant ces courbes planes pour lignes de
contact avec la surface du second ordre , auroht toutes leurs sommets
situés sur une même droite (*).

(*) Donc aussi les cônes de révolution qui ont respectivement pour sommet et
pour axe commun un ombilic d'une surface du second ordre et la normale qui
lui répond, coupent cette surface suivant une série de cercles.

J . D. G.
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II est clair que , quelles que soient d'ailleurs les directions de

nos trois droites D , D' , D / /
 ? pourvu qu'elles se trouvent situées

toutes trois sur l'une quelconque de nos surfaces coniques > le plan
C 9 passant par leurs extrémités , coupera toujours le plan tangent
suivant une même droite , puisque ce plan ne sera autre que celui
de la courbe plane intersection de la surface du second ordre avçe
la surface conique sur laquelle les trois droites seront situées,

Mais , pour exprimer que la droite D est sur la surface conique,
il faut éliminer x , y , z entre les équations (3) et ( 15). Expri-
mant ensuite la même condition pour les droites D; , D/; , il en
résultera les trois équations

Qa 2

(18)

entre lesquelles éliminant ? et Q y ce qui fera aussi disparaître A ,
on arrivera à la condition.

(i9)

laquelle , jointe aux trois- autres

a *

a1 * (20)

donnera le système complet des conditions sous rinfîuenee desquelles
les droites D , D / , DJ/ peuvent varier de direction % sanŝ  que le plan
que déterminent leurs extrémités &esse de passer par la section
commune des plans tangens aux deux extrémités de la normale*.
A\x surplus* la condhîoa (19) peut être remplacée par la suivante-1
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que Ton en déduit en prenant la somme des produits des équa-
tions (20) par a'*b//2—b/2a//2 , a//2b2—b//2a2 , a2b/z—£ V 2 , et ayant
égard a cette même équation (19).

La démonstration anali tique du Théorème III pouvant paraître
un peu compliquée , il ne sera pas hors de propos de montrer , en
terminant, comment ? par des considérations purement géométriques,
on peut le dédaire du Thèorime I.

Soient SABG et SÀ/B/C deux tétraèdres rectangles en S , insdrits
à une surface du second ordre, et ayant l'arête SC commune -, les
plans ASB, A'SB' étant tous deux perpendiculaires à SC coïncide-
ront et détermineront dans la surface une section qui sera "une
ligne du second ordre, à laquelle seront inscrits les deux triangles-
rectangles de même sommet ASB, A/J^B/. Soit P l'intersection des
hypothénuses AB , A/B/ de ces triangles 5 SP sera ( Théorème I )
la direction de la normale à la section au point S ; et le point P
sera, sur cette normale , un point tout à fait fixe et indépendant de
la situation respective de nos deux tétraèdres. Soit T la tangente
au point S de la section , laquelle est située sur le plan tangent
à la surface courbe ; si Ton mène ÇP, le triangle CSP sera rectangle
en S-, mais SC 9 étant perpendiculaire au plan de la section , doit
aussi être perpendiculaire à la tangente T , qui est dans ce plan •
donc cette tangente T est à la fois perpendiculaire à SC et SP ;
et conséquemment elle est perpendiculaire au plan du triangle ; le
plan tangent à la surface courbe en S , qui contient cette tangente
T sera donc aussi perpendiculaire au plan CSP , et conséquemment
ce dernier contiendra la normale à la surface courbe en S , laquelle
coupera CP en quelque point Q , par lequel passeront également
les deux faces hypothénusales ACB , A^B' ' , puisqu'elles se coupent
suivant GP qui contient ce point Q.

Il est donc établi par là qu'en faisant tourner notre >angle trièdre
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tri-rectangle DO*!)" , autour de l'une quelconque de ses arêtes > le
plan G déterminé par les extrémités de ces mêmes arêtes ne cessera
pas de couper la normale à la surface courbe en un même point
fixe Q. Or7 il est connu que tout changement de situation d'un
angle trièdre tri-rectangle , autour de son sommet , revient à trois
rotations successives autour de ses arêtes (*) ; donc , quelle que soit
la situation de cet angle trièdre, le plan G coupera toujours la nor-
male au même point.

(*) Cette proposition , qui revient à dire que l'on peut toujours faire coïncider
sur une sphère deux triangles sphériques tri-rectangles ABC , Af/Bf/Cff , au moyen
de trois rotations successives du premier autour de ses sommets , peut se démontrer
assez simplement comme il suit.

Soit B' le point où se coupent les arcs de grands cercles BC et À^B" ; si l'on
conduit un arc de grand cercle AB' et un autre AC ; /, coupant BC en C' 9 lç
point B ' , étant distant d'un cadran des points A et C" 1 sera le pôle de l'arc
AC' ; et , puisque d'ailleurs le point À est le pôle de WQJ, il s'ensuit que le
triangle AB'O sera tri-rectangle comme ABC , et pourra être conside're' comme
résultant de la rotation de celui-ci autour de son sommet A-

Soit A' le point d'intersection des arcs de grands cercles KO et À^B" , si
Ton, conduit l'arc de grand cercle B'C" ; B' étant le pôle de l'arc C'A et C".
celui de l'arc A'B' ; il s'ensuit que le triangle C^B'A' est tri-rectangle , comme
îe triangle G'B'A , et peut conséquenimeiat être considéré^ comme re'sultant de
la rotation de celui-ci autour de son sommet B'.

Enfin , le triangle A^B^C" ayant le sommet Qff commun avec le triangle A'B'C".
peut pareillement êlre considère comme résultant de la rotation de celui-ci autour
$e ce sommet comniun Qf ; ce qui démontre complètement la proposition an*
nonpég,

J. D. G.
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ANALISE.

Application de la méthode des moindres quarrês â
Vinterpolation des suites ;

Par M. GERGONNE,

XJORSQU'UNE fonction d'une seule variable est donnée , on peut
toujours déterminer rigoureusement et directement les valeurs ? tant
de la fonction que de ses divers coefficiens différentiels, répondant
à une valeur donnée de la variable indépendante -r tout comme s lors-
qu'une ligne courbe est donnée , on peut toujours , pour l'une quel-
conque de ses abscisses , construire l'ordonnée , la tangente P le
cercle osculateur f etc.

Mais , de même qu'au lieu de donner une courbe , on peut donner
seulement un certain nombre de ses points, on peut aussi , au lieu
de donner une fonction d'une variable 9 donner seulement les valeurs
que prend cette fonction pour un certain nombre de valeurs de la
variable indépendante , et demander ensuite d'assigner les valeurs,
tant de cette fonction que de ses divers côefficiens différentiels ,
pour une autre valeur quelconque de cette variable ; tout comme
on pourrait demander quelles sont , pour une abscisse donnée , l'or-
donnée % la tangente > le cercle osculateur, etc. , d'une courbe dont
on connaîtrait seulement un certain nombre de points. C'est en cela
que consiste le problème de Y interpolation des suites*

Ce problème se réduit évidemment à remonter aes valeurs données
à celle de la fonction à laquelle elles appartiennent, ou des points
donnés au tracé de la courbe sur laquelle on les supposer situés t
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o r , par là même îl est indéterminé; car , par des points donnés,
non consécutifs , môme en nombre infini , on peut toujours faire
passer une infinité de courbes différentes (*).

Ces courbes pourront fort bien 7 dans certaines parties de leur
cours , différer les unes des autres d'une manière notable ; et la même
différence devra se faire remarquer aussi dans les ordonnées , tan-
gentes , cercles osculateurs , e'tc. , qui répondront à une même abs-
cisse. On conçoit pourtant que , si les points donnés sont, assez voisins
les uns des autres, les courbes qui les comprendront ne pourront
différer notablement, dans l'intervalle embrassé par ces points , du
moins si aucune d'elles n'a dans cet intervalle une asymptote paral-
lèle à Taxe des ordonnées ; on conçoit même que ces points pourront
toujours être supposés assez multipliés, e t , en même temps , assez
voisins les uns des autres , pour que les différences entre ces courbes
deviennent pour ainsi dire insensibles. Les ordonnées qui répondront
à une même abscisse , comprise dans les limites de ces points f seront
donc sensiblement égales ; mais la différence entre les tangentes pourra
être plus sensible, celle entre les cercles osculateurs encore d'avan-
tage , et ainsi de suite.

Concluons de là que , si des fonctions de formes diverses prennent
les mêmes valeurs, pour certaines valeurs déterminées, et voisines
les unes des autres , de la variable indépendante , sans devenir in-
finies pour aucune valeur comprise entre celles-là ; ces fonctions
prendront des valeurs peu différentes , pour d'autres valeurs de
cette variable , comprises dans les limites qu'embrassent les premières ;
jnaîs il n'en sera plqs de même des coefïîciens différentiels successifs
qui j d'une fonction à l'autre , pourront différer de plus en plus >
à mesure que Tordre en sera plus élevé.

On pourra donc , sans erreur sensible , adopter indistinctement e£
arbitrairement l'une des fonctions pour la fonction cherchée ; tout

(*) On peut consulter sur ce sujet une dissertation qui se trouve à la page 25a
du V.e volume de ce recueil.
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comme ? lorsque plusieurs courbes qui passent par les mêmes points
ne présentent entre elles que des différences insensibles , on peut
en regarder une quelconque comme étant réellement celle dont ces
points font partie.

La courbe et la fonction pouvant ainsi être choisies d'une infinité
de manières différentes , il sera convenable de s'arrêter aux plus
simples, e'est-a-dire , à la courbe parabolique et à la fonction ra-
tionnelle et entière qu'elle représente graphiquement. Ce choix sera
d'autant mieux fondé qu'il est connu que toute fonction qui ne devient
infinie pour aucune valeur finie de la variable dont elle dépend ,
est toujours développable en série procédant suivant les puissances
ascendantes de cette variable.

Le procédé auquel nous venons d'être conduit est aussi celui qu'on suit
communément ; on suppose que l'ordonnée de la courbe cherchée est
une fonction complète, rationnelle et entière de l'abscisse , dans laquelle
on admet autant de termes qu'il y a de systèmes de valeur donnés %
les coefficiens de ces termes sont inconnus 9 et on les détermine
en exprimant que la courbe passe par les points donnés. Ces coefficiens
une fois déterminés , rien n'est plus facile ensuite que d'assigner
l'ordonnée et les coefficiens différentiels qui répondent à une abscisse
quelconque ; mais on ne peut compter sur les valeurs que la formule
leur assignera qu'autant qu'on n'en fera l'application qu'à une abscisse
comprise entre celles des points donnés , et même ne se rapprochant
pas trop de la plus grande ni de la plus petite.

Cette méthode qui , en particulier, a été employée par M. Laplace,
dans son mémoire sur la Recherche des orbites des comètes (*) ,
renferme une source d'erreur , dans la supposition, tout à fait gra-
tuite , d'une courbe du genre parabolique. Néanmoins , si l'on p©uvait
compter en toute rigueur sur les valeurs données de la fonction 9

et si ces valeurs étaient très-multipliées et très-voisines , ce que

C) Voyez les Mémoires de Vacadémie des sciences de Paris, pour 1780.
nous
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nous avons dît cî-dessus, montre assez que Terreur résultant de cette
supposition ne serait jamais bien considérable.

Mais il n'en va pas ordinairement ainsi ; les valeurs discontinues
de la fonction, sur lesquelles OQ s'appuie pour construire la formule,
sont communément déduites d'expériences ou d'observations suscep-
tibles d'une exactitude assez bornée ; et il arrive alors 5 comme M.
Legendre Ta fort bien observé (*), que les erreurs qui les affectent
peuvent avoir d'autant plus d'influence sur la formule finale et sur
les résultats qu'on en déduit , que ces valeurs sont en plus grand
nombre.

Concevons, en effet} qu'on ait tracé une courbe quelconque , et
qu'on lui ait mené plusieurs ordonnées peu distantes les unes des
autres ; si Ton vient à faire subir à ces ordonnées des altérations,
très-légères d'ailleurs, tantôt en plus et tantôt en moins , et qu'en-
suite on tente de faire passer une courbe continue par les extrémités
de ces ordonnées ainsi altérées, on s'apercevra aisément que ? si les
altérations qu'elles ont subi n7ont qu'une faible influence sur Ta
grandeur des ordonnées intermédiaires, il n'en est plus ainsi à l'égard
de la direction de la tangente qui souvent pour une même abscisse
aura pu subir un changement très-notable *, la différence pourra être
plus sensible encore à l'égard de la grandeur du cercle osculateur.

Ces aperçus graphiques peuvent facilement être confirmés par le
calcul. Supposons, en effet, un nombre impair d'ordonnées données,
toutes équidistantes , et dont la distance commune soit prise pour
unité. Soient o l'abscisse et b l'ordonnée du milieu , 1 5 2 , 3 , ......
les abscisses et b' , b;/ , bn/,..... les ordonnées qui les suivent ; ~ i ,
—2 ç — 3 , . . . . les abscisses et hf> bu , £ / / /5.... les ordonnées quf les
précèdent ; et cherchons les coefHciens différentiels qui repondent à
l'ordonnée du milieu ; nous trouverons, pour le cas de trois ordonnées
seulement f

(*) Vojes ses Nouvelles méthodes pour la détermination des orbites des comètes*
Paris, 1806 , ( pag. i9 )

Tarn. Vh 36
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ht

•

p o u r le cas de cinq ordonnées

ày ^80'—&,)—(&"—*„) à
~d^"~" Tz ' à

pour le cas de sept coordonnées

6o

et aînsl de suite.
Or , supposons que , toutes les autres ordonnées étant d'ailleurs

exactes, l'ordonnée b1 seule soit en erreur d'une quantité /s , et dé-
<3v d^v

signons par E . — , E . les erreurs qui en résulteront sur les
v ax àx% ^

eoeJBFiciens différentiels ; il est aisé de voir qu 'on aura , dans le cas
de trois ordonnées ,

dans le cas de cinq coordonnées

dans le cas de sept ordonnées

de sorte que les erreurs sur le coefficient différentiel du premier
ordjre croissent comme les nombres 7 > 7> |* 7 ?•••• et tendent ainsi
sans cesse à devenir égales à l'erreur même commise sur l'ordonnée hf ;
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et que Terreur commise sur le coefficient différentiel du second ordre
est constamment double de celle-là.

M. Legendre a donc été fondé à dire qu'en multipliant les données
çn s'exposait à faire croître aussi les erreurs dans la même propor-
tion. Il est pourtant juste de remarquer que c'est en supposant qu'il
n'y a qu'une seule ordonnée fautive , ce qui exclut toute possibilité
de compensation d'erreurs ; et en supposant de plus que l'ordonnée
fautive est précisément celle dont la valeur, exacte ou non ? exerce
l'influence la plus notable sur nos deux coeffieiens différentiels.

Quoi qu'il en soit, cette source d'erreur parait n'avoir point échappé
à l'attention de M. Lapîace. Voici , en effet , comment il s'exprime
( Mécanique céleste , tom. I , pag. 201 ) : « Ces expressions sont
» d'autant plus précises 5 qu'il y a plus d'observations, et que les
» intervalles qui les séparent sont plus petits • on pourrait donc
» employer toutes les observations voisines de l'époque choisie 5 sî
3» elles étaient exactes ; mais les erreurs dont elles sont toujours
» susceptibles conduiraient à un résultat fautif; ainsi, pour diminuer
» V influence de ces erreurs, il faut augmenter l'intervalle des obser-
» cations extrêmes , à mesure que Von emploie plus d* observations. »

II serait peut-être plus exact de dire qu'il faut employer des obser-
vations de plus en plus distantes entre elles , à mesure qu'on en
emploie un plus grand nombre ; et nous allons voir, en effet, qu'avec
cette attention , on peut , à volonté , atténuer les erreurs. Soit a
l'intervalle , supposé constant , qui sépare les valeurs consécutives
de x ; intervalle que, ci-dessus, nous avions pris pour unité. Nos
résultats deviendront alors

Jrour 0 observations. I l ,—• = - — , xL ~— --- — ;

Pour 5 observations, E. — —7 — * & ~r:2 ~"% ~ »

Pour 7 observations, E. ~- =^— , T
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Pourvu donc que nous prenions pour a des nombres qui croissent
plus rapidement que ceux de la suite 7 , 7 , 7 , —• nos erreurs iront
continuellement en décroissant, à mesure que nous aurons recours
à un plus grand nombre d'observations. Supposons, par exemple,
que nous fassions croître les valeurs de a suivant les nombres de la
suite naturelle \ et prenons pour unilé la valeur de cette quantité
qui répond au cas de trois observations , nous aurons alors

Po*ir 3 observations , E.^p , E. | / j ;

Pour 5 observations , E . ^ , E.^/3 ;

Pour 7 observations , E , ^ , E , ^ ;

d'où l'on voit qu'alors les erreurs sur les coefficiens différentiels
du premier ordre décroîtront comme les inverses des nombres na-
turels , et que celles qui affecteront les coefficiens différentiels du
second ordre décroîtront suivant la progression, plus rapide encore,
des inverses des nombres triangulaires. La méthode de M. Laplace
est donc , du moins de ce côté , tout à fait à l'abri du reproche.

Mais 5 supposons qu'on ait ? enîre deux limites fixes données, des
observations assez nombreuses pour rendre très-petite la différence entre
les valeurs consécutives de oc. Suivant ce quL vient d'être dit , on
devra rejeter un d'autant plus grand nombre de ces observations

qu'on en voudra employer davantage dans la recherche de —• et -— .

Or ? c'est là un inconvénient assez grave, sur-tout si l'on n'a aucun
motif de suspecter plutôt les données que l'on rejette que celles dont
on se propose dé faire exclusivement usage ; puisqu'on se prive ainsi
des compensations d'erreurs sur lesquelles on pourrait compter en
les employant toutes.

En réfléchissant sur ce sujet , il m*a paru qu'il était possible de
tout concilier ? au moyen de la méthode des moindres quarrés (*),

(*) On sait que la méthode des moindres quarrés repose sur ce principe que
ia valeur moyenne ? la plus probablement voisine de l'exactitude , d'une quantité
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et d'arriver par elle à toute la précision qu'il est possible d'espérer
dans la recherche qui nous occupe.. Voici pour cela de quelle ma-
nière je conçois qu'on en doit faire usage.

Soient a , af
 9 alt, •..» des valeurs de x 9 en nombre quelconque,

et soient b 9 b1
 7 b11 ,.... les valeurs données et correspondantes de y.

Soit pose

^ ; (0
en prenant dans cette fonction autant de termes seulement qu'on
en admettrait si , suivant ce qui vient d'être dit ci-dessus, on ne
se proposait d'employer qu'une partie des valeurs correspondantes
de a et de y ; il s'agira de déterminer les valeurs des coeffîcïens
A% B , C, D ...... Si leur nombre était égal k celui des obser-
vations ? on pourrait leur assigner des valeurs qui rendissent les
erreurs tout a fait nulles ; mais la chose sera [impossible dans le cas
actuel y et il faudra se contenter de rendre minimum la somme de
leurs quarrés.

Ces erreurs étant respectivement

A+Ba +Ca 2+Da 3+,,....—h 2-

A+Ba1 +

il faudra faire

dont on a plusieurs valeurs approchées, est celle qui , étant supposée tout à fait
exacte , rendrait minimum la somme des quarrés des erreurs dont les autres seraient
alors affectées. Le premier ouvrage imprimé dans lequel il ait été fait mention
de cette méthode est le mémoire de M. Legendre , déjà cité dans une précé-
dente note ( 1806), Dans un ouvrage publié eu 1809, M. Gauss a déclaré faire
usage d'une semblable méthode depuis 1795 ; et M# Laplace a démontré posté-
rieurement que cette méthode est rigoureusement conforme k la doctrine de*
probabilités.



(A+Ba
INTERPOLATION

*+ —p y

H-

—minimum y

e'est-à-dire , en difFérentiant par rapport à A , B , C 9 JD,....,

(A-i-Ba ~{-Ca *+....«—3 )(d^-j-^ diJ-^-^ 2dC-4*..,,)

= o

A cause de l'indépendance entre A , B , C s .+.,. les multiplicateurs
de àA , dB, dC,.... devront séparément être nuls; faisant donc
en général, pour abréger ?

on aura cette suite d'équations

Sû b ,
(0

en nombre pré 'sérnent e*ial à celui des coefficiens A , B 7 C, /),-..".»
qu'il s'agit de déterminer ; et , tandis que les méthodes ordinaires
donnent pour y et ses eoefficiens diffère miels des valeurs d'une pré-
€ÎMon toujours un peu inférieure à celle des données d'après les-
quelles on les calcule , on pourra le plus .souvent espérer ici de
l'emporter en précision sur ces données elles-mêmes.

Le cas le plus simple , et en mèrne temps le plus fréquent , est
eelui oà les valeurs de x sont en piogressidii par différences; il est
alors permis de substituer à celte progression la suite naturelle des
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nombres. Soït 272-J-i le nombre des valeurs connues et correspon-
dantes de 3C et y > on pourra nutnéroter o la valeur de x qui se
trouvera occuper le milieu ? de manière que le numérotage soit

—», —(n—\) ,....—3,—2, —i , Iflo, + 1 » +2 ,+3,. . . .+(»-0>+*

si alors on désigne par %nm la somme des /72.naes puissances des
nombres de la suite naturelle , on aura -,

au moyen de quoi les équations ( i ) deviendront

ainsi, outre que les sommes de puissances semblables des nombres
naturels sont données par des formules connues et générales , ou
aura ici l'avantage de pouvoir calculer séparément les coefficiens de
rangs pairs et ceux de rangs impairs ? ce qui simplifiera le travail
d'une manière notable.

Dans le cas même où ni les valeurs de ce ni celles de y ne
marcheraient en progression par différences, on pourrait encore profiter
de ces simplifications 7 en procédant comme il suit : on supposerait
que x et y sont toutes deux fonctions d'une troisième variable z,
dont les valeurs , tout à fait arbitraires , pourraient être numérotées
comme nous l'avons dit ci-dessus à l'égard de x \ on chercherait

dx âj d2x d2y
par notre procédé, les valeurs de — , — , - j — * -—->•••*; e*

on aurait ensuite par les formules connues, relatives au changement
de la variable indépendante ,
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iy àz d2f àz àz* àz àz2

àx àh 5 dx* f dxàx \ 2

àx \ dz

cette méthode me semblerait préférable à celle qui consiste I inter-
poler entre les observations ? afin de les rendre équidistantes ; attendu
qu'il peut être dangereux f dans un problème d'une nature aussi
délicate , de dénaturer les données avant d'en faire usage.

Il nous parait que l'introduction. des procédés que nous venons
d'indiquer , dans la méthode de M. Laplace , pour la détermination
des orbites des comètes , ne peut qu'ajouter beaucoup à sa précision ,
du moins dans le cas où Ton peut disposer d'un grand nombre d'ob-
servations ; mais cette méthode , comme beaucoup d'autres, aura
toujours le grave inconvénient de n'être , au fond ? qu'un tâtonne-
ment bien dirigé.

Il resterait ici au surplus un autre problème à résoudre 5 lequel
pourrait être énoncé comme il suit : On sait que des points donnés*
en nombre quelconque, sont a peu près situés sur une courbe para-
bolique d'un degré déterminé , mais inconnu ; et Von demande de
découvrir quel est le plus probablement te degré de cette courbe?
La solution de ce problème lèverait complètement l'incertitude du
calculateur qui , voulant appliquer la methcde de M. Laplace % se
trouve pouvoir disposer d'un grand nombre d'observations»

TRIGONOMÉTRIE



RELATION ENTRE 4 POINTS SUR UNE SPHÈRE.

TRIGONOMÉTRIE SPHÉRIQUE.

Recherche de la relation entre les six arcs de grands
cercles qui joignent ? deux à deux ? quatre points de
la sur/ace d'une sphère ;

Par TVL BÉRARD , principal et professeur de mathématiques
du collège de Briançon , membre de plusieurs sociétés
savantes.

1VJL Bref a dorme ? dans ce recneil (+) , et MM. Français (**) et
Carnot (***) avaient donné avant lui l'équation de relation entre les
six arcs de grands cercles qui joignent , deux à deux , quatre points
de la surface drune sphère ou , ce qui revient au même , l'équation
de relation entre les six angles que forment, deux à deux , quatre
droiîes parlant d'un même point et non situées dans un même plan.
Je suis parvenu , de mon rôté 5 à cette équation , par les considé-
rations suivantes qui m'ont paru assez simples pour mériter d êtra
rendues publiques.

Soient OA , OB , OC , OD quatre droites indéfinies , partant d'un
même point O , et ayant d ailleurs des directions quelconques dans
l'espace. Soient faits

(*) Tome V , page 334.
(**) Voyez la page 221 <1e ce volume.

(••*) Mémoire sur la relation mire cinq points dans l'espace , page 35-
2 orne VL 3j
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Ang.COK-h ,

AngAQB=c ,

Par OA , OB ? OC prises deux à deux soient conduits trois
plans. Soit prise sur OD une partie GR=r , et par le point R
soient conduits trois nouveaux plans respectivement parallèles aux
premiers ; ils formeront avec eux un parallélipipède dont r sera la
diagonale; désignons par # , y 9 z respectivement, les arêtes de ce
parallélipipède qui répondent à OA , OB , OC ; nous aurons ainsi

Àng.(y , z) = a y Ang.(r , #) = # ' ;

, x)~b , Ang.(r ,y)=&' ;

Âng.(r, z)=c'

Or , il est connu que la pfojection d'une droite sur une autre
est le produit de cette droite par le cosinus de son inclinaison sur
Fautre ; en considérant donc les divers quadrilatères gauches que forment
les arêtes consécutives x v y , z avec la diagonale r , il viendra

( i )

zQos.h ,

Des trois dernières on tire
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—Cos.br(Gos.c— Cos.aCos.5)—Cos.c'CCos.S—»Cos.eCos.#)

i^—Cos.^CCos.o—Cos^Cos.c)—COS.

*• • * • T*
Sîn.2cCos.c'—Cos.a'cCosi—Cos.cCos.o)—Cos.^(Cos.a—Cos.

i—.Cos,2a—Cos,s^—Cos.2

substituant donc ces valeurs dans l'équation (i) , divisant par r et
chassant le dénominateur commun, on obtiendra

ï (3)

qui est précisément la relation donnée par MM. Bret, Çarnot et
Français.
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QUESTIONS PROPOSÉES.
Problème de Géométrie.

CONSTRUIRE un quadrilatère dont les quatre côtes soient donnes ,
tant de grandeur que de disposition consécutive 5 et qui 6oii équi-
valent au quarré construit sur une droite donnée ?

Problème de statique.

La démonstration des conditions dYqnilibre sur la vis 5 que Ton
trouve dans tous les traités élémentaires do statique, suppose essen-
tiellement que le point de l'en ou que Ion considère tend à des-
cendre suivant une tangente à l'hélice directrice du filet de la vis.
Mais cette supposition , vraie pour la vis dans laquelle la section
du filet par un plan passant par l'axe est rectangulaire , cosse de
Tèîre lorsque cette section est un triangle ou un segment de cercle.

On proposerait donc 9 d'après cela , de dégager la recherche de
l'équilibre dans la vis de toute supposition sur la figure du filet
dont elle est revêtue ?
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ASTRONOMIE.

'Examen de Vhypothèse d'un mouvement rectiïïgne et
uniforme , considérée comme moyen de parvenir à
la détermination des orbites des corps célestes j,

m

Far M, GERGONNE,

I« u i un point mobile parcourt dans l'espace , d'un mouvement
varié quelconque , une courbe plane ou à double courbure , et sh
l'on n'a à considérer les circonstances de son mouvement que durant*
un intervalle de- temps assez court ; il sera permis de supposer,
sans crainte d'erreur sensible , que, durant cet intervalle de tempsr

le point dont 'û s'agit parcourt, d'un mouvement reciiligne et uni-
forme , la tangente à la trajectoire qu'il décrit réellement. Cette
supposition , admise par tous les géomètres , et sur laquelle ils ont
même fondé la méthode des tangentes, ne pourrait souffrir d'objec-
tion que dans le seul cas où la partie de trajectoire que Ton considère
offrirait quelque point singulier 9 ou bien dans celui où la vitesse
du mobile , entre les extrémités de cette portion de trajectoire #

éprouverait quelque changement brusque et fini.
En admettant donc cette hypothèse , concevons que Ton ait trois

observations complètes d'une planète, embrassant un intervalle de-
temps peu considérable- ; ces fàrois observations feront connaître la
situation de trois rayons visuels , dirigés de l'observateur vers l'astre ^
ainsi que les temps qui leur correspondent ; et, généralement parlant,
ces trois rayons visuels ne seront point dans le nvême plan* Dans

Tom, VI, n.° IXf i ** mars 1816. 3&
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l'hypothèse que nous admettons ici , la droite supposée parcourue
par l'astre , d'un mouvement uniforme, se trouvera donc assujettie
à cette double condition, i.° d'être coupée à la fois par les trois
rayons visuels ; 2.0 d'être coupée par ces rayons en parties propor-
tionnelles aux intervalles de temps écoulés entre les observations.
Or , en vertu de cette double condition , la droite dont il s'agît
se trouve déterminée et unique , et peut même être assignée par
une analise fort simple.

Cette droite ainsi déterminée , le plan conduit par elle et par
le centre du soleil peut être considéré comme le plan de l'orbite ;
les points où il est' percé par les rayons visuels sont les lieux de
l'astre aux époques des trois observations. On peut donc obtenir
facilement , pour les mêmes époques 7 les trois rayons vecteurs ?

ainsi que les angles qu'ils forment deux à deux ; or ? il n'en faut
pas davantage pour assigner les dimensions de l'orbite et la situation
de la ligne des apsides (*). Ainsi, par un calcul tout à fait élé-
mentaire , on obtiendra tous les élémens de Pastre , sauf cependant
l'époque du périhélie , pour laquelle il faudra nécessairement recourir
aux lois de Kepler.

Voilà à quoi reviennent a peu près f pour le fond , une multi-
tude des méthodes indiquées , à diverses époques , comme propres
à la détermination approchée des élémens des astres , à commencer
par celle que NEWTON a donnée , dans son Arithmétique universelle*
A la vérité, aucune d'elles n'a réalisé , dans les applications , l'espoir
qu'en avaient conçu leurs inventeurs ; mais on a pu croire que leur
non succès, dans la pratique , devait tenir ou au trop d'intervalle
entre les observations , ou aux erreurs dont elles se trouvaient en-
tachées ; erreurs d'autant plus influentes que l'intervalle qu'embrassent
les observations est moins considérable.

A la vérité , dans l'un de ses mémoires sur les comètes ., LÀGRAKGE

(*) Ce problème a été élégamment résolu par M. le professeur Kramp, à la
page ijjj du IV.e volume de ce recueil.
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a. fait; TOIE que , m-eroe dan& l'infiniment petit, c'est-à-dire , à la
limite , Fhypothèse d'ua mouvement reetiligne et uniforme ne peut
être adrm&e ; mais, soit que les motifs sur lesquels s'est appuyé cet
illustre géomètre n'aient point frappé également tous les espTÏts ;
soit que l'idée qu'il a cherché à repousser ait paru trop séduisante
à quelques-uns pour devoir être abandonnée y soit enfin que l'autorité
de Fauteur de l'Arithmétique universelle ait exercé en ceci plus d'as-
cendant qu'il ne convient dans des matières de géométrie et de calcul;
on a continué , bien postérieurement, à la publication des mémoires
de Lagrango , et dans des ouvrages très-recommandables d'ailleurs ,
à indiquer la méthode de Newton comme propre > tout au moins,
à fournir une première approximation,

Des géomètres trôs-distlngués 7 sans admelire proprement Fhypo-
thèse d'un mouvement rectiligne et uniforme * ont pourtant fait à
peu près l'équivalent ; c'est-à-dire , qu'après avoir d'abord attaqué
le problème de front y par les principes de la gravitation , ils ont
cherché, chemin faisant, à le simplifier, par diverses suppositions
qui rentrent, pour le fond,, dans l'hypothèse qu'ils semblaient vouloir
éviter. Ils n'ont fait ainsi qpe parvenir , à travers les pénibles calculs
que nécessite l'emploi des méthodes légitimes, à des résultats équivoques r

qu'ils auraient pu se procurer directement à bien moins de frais (*).
Je pense donc qu'il pourra n'être pas tout à fait inutile de revenir

de nouveau sur l'examen de l'hypothèse d'un mouvement sensible-
ment rectiligrie- et uniforme durant un intervalle die temps peu con-
sidérable , considérée Gomme moyen de parvenir aux. élément du
mouvement des astres. Mais voyons d'abord quelles sont les formules
analiriques qui résultent de celte hypothèse.

(*) II importe aussi de remarquer que , dans les procéde's approximatifs , il
ne suffit pas de s'assurer que les quantités que l'on se permet de négliger sont
fort pelîtes, mais qu'il faut de plus qu'elles ne soient pas d'une petitesse eompa*
r?tble à celle des quantité* vis-à-vis de qui on les néglige ; et c'est là une.
à laquelle on ne fait pas toujours assez d'aUenûon,



260 R E C H E R C H E
IL Soient prises respectivement pour axes des x , f i z positifs

les droites menées du centre du soleil à l'cquinoxe du printemps t

au solstice d'été et au pôle boréal de Técliptique. Soient alors res-
pectivement

Pour les époques // , t , tf,

ry , r , rf les rayons vecteurs de la terre,

*, , *, u/ ses longitudes ,

fi/ ? fi i fi/ les longitudes géocentriques d'un astre f

y/ » y y y? s e s latitudes géocentriques*

x,,x,x>
Y/ , Y , Y/ ses coordonnées ;

Z, , Z, Z'

D/, D p D/ ses distances a la terre*
BOUS aurons d'abord

Z = D Sin.y , } (i)

nous exprimerons ensuite que les trois lieux répondent aux trois
rayons visuels, en écrivant

et tout cela aura lieu indépendamment de toute hypothèse sur la
nature du mouvement de l'astre et sur la nature de la trajectoire
qu'il décrit*

Si présentement on suppose que l'intervalle qui sépare les obser-
vations extrêmes // , i1 est assez court pour que , durant cet inter-
valle , on puisse considérer le mouvement de l'astre comme sensible-
ment rectiligne et uniforme , on aura



X—X, _

t—tj

c'est-à-dire,

DÉS ORBITES.
?—X Y—Y, Y'--Y Z—Z> Z'—l

a 6».

t'—t t— t, t'—t t—e

(3)

Mettant dans ces dernières équations les valeurs données ( 2 et 3 ) 9

«Iles deviendront

—(^_/y)Cos.i8Gos y .D —(//—t

= 0 ,

desquelles il s'agira de tirer les valeurs de Df, Z), D''*
On simplifie un peu ces équations en posant

(5)

(4)

/—.//)OCos.y = A

elles deviennent ainsi

in.^—/>Sin.«+/»/Sin.^)=o J (6)

On en tire la valeur de A/ en prenant la somme de leurs produits
respectifs par

Sin./sTang.y'—Sin.*Tang.*, Cos./^Tang.y—Cos.^Tang.v/> Sîn.(/i—il) ;
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on en tîre celle de A , en prenant la somme de leurs produite
respectifs ]>ar

Cos./s/Tang.y/-Cos.is/Tangy, Sin,(y*^)^

on en tîre enfin celle de A/ , en prenant la somme de leurs produits
respectifs par

En posant ensuite , pour abréger ,

—(*'—O^^ , ) (7)

)
(8)

il vient

JP - ^ (9)

Ces valeurs étant calculées.* les équations (i et 2) feront con-
naître les coordonnées des trois lieux de Pastre. Considérant ensuite
le plan de Forbite comme un plan passant par l'origine et par les-
deux lieux extrêmes 9 on aura ; pour son équation

ce plan se trouvera donc entièrement déterminé j et ©p achèvera là
solution comme il a été dit ci-dessus.

On pourra aussi poser, pour l'époque / £
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X'—X,

—r,
àt

— 7 dz — Z'~Z'

et avec ces sîx quantités on déterminera complètement les élémens
ée Fastre suivant ce qui a été dit ( Annales, tome I I , page 8 )•

III . Voyons présentement ce que deviennent ces iésultats à la
limite , c'est-à-dire , lorsque l'Intervalle de temps qui sépare les
observations extrêmes est infiniment petit ou nul. Posons d'abord ,
pour abréger,

iri.*=A , Cos./3 Cot.y —m , Sin.jQ Cot.

Nous aurons conséquemment

Sin.(/»'—fi ) = (77j n>—m'n )TangVTang.y ,

— ̂ )=(m^n —m
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Supposons en outre que les observations soient équidistantes et

posons

if—/=/—/,=:* , d'où tf-~i;—%i ;

en substituant toutes ces valeurs dans les formules ( 7 et 8 ) , elles

deviendront

f—m'a)—

de sorte qu'en posant

(m—m,) (n'—n)—(m'—m) (n

et substituant dans (g) ? il viendra

zKS'm.y

, __ (m—my) (ftr-

et par suite ( i )

ee qui donne encore

fet l5on a ensuite

/ ; ( Î 6 )

=K ; (17)

(18)

fi ; (ao)

(ai)
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Présentement, g, h , m , n , Z étant des fonctions de t , les-

quelles deviennent g,, hf , m, t n, %.Z, ou g', h1 , m.1 ,, nf, Z' t

lorsque t devient /—/ ou t-k-i , il s'ensuit qu'on doit avoir

àt I ^ dt» . . J d^ I.2.3
dft i d'-A r> d3^ i*

' df I df» i.2 d*3 1.2.3

, , , dh i ,• d*h i* , Aih il

dm i d 2 m z> à5m z3

ât i ' dP i.a dt$ i.a.3

. dm Z d3/72 Za d3772 Z5

an £ à2n iz d$n fi

n/^n - . _ T + _ . - _ _ _ — •+W ,
an £ d2M i2 d3»

d( i di= 1.3 diî i.z.3

àZ i d*Z i*

àZ i à*Z i* â3Z fi
~~ d* i dt* 71 àtf I.2.;

Gn & ,R,% Bf , M, , M' 9 N,, iV>, & , g étant des fonction*
de / qui ne deviennent pas> nulles lorsque i est zéro.

On déduit de tout cela

d2^

~~ d^

/-±*,̂
~ d̂

Tom. Vh 3g
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à2n
—

dm z d2m z2 d*m z*3
 fl^ ,

772—772/= — ' -r— h 7 7 • X — M ^
di i dia i.2 d^3 1.2.3

dn £ d2?î ia , à?n z3 __ l
/ è d̂  d£3 5

dm z d 2m £2 d3m z3

7+dF ^+d^ 3

^ " = aT 7 + ^ 7; + ailaT 7 + ^ 7; + ail 7X3

d'après quoi, en posant pour abréger
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il viendra

( àt dt* d#

dn

En conséquence, on aura (18 et 19)

(dm àzh an d

d?7? dn d2

dZ

ar—dr;F>+^
résultats sur lesquels nous reviendrons tout à l'heure.

Si présentement on suppose que les observations* coïncident r

e?est-à-dire , si l'on suppose que l'intervalle de temps i qui sépare
l'observation moyenne des deux observations extrêmes est nul, il
viendra > en adoptant, pour plus de simplicité les notations de Lagrange

~~ """
<a3)

IV. Si nous n'eussions eu en vue que de parvenir à ces derniers
résultats, nous aurions pu les obtenir d'une manière incomparable-
ment plus> simple , ainsi que nous Talions voir ; et il en serait
résulté une nouvelle méthode qui 9 si l'hypothèse qui noua occupe
pouvait être admise ,. paraîtrait devob l'emporter de
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coup sur la précédente , sous le rapport de la rigueur et de la
brièveté.

Soient toujours, pour une époque quelconque t , r le rayon vecteur
de la terre 5 <& sa longitude ou celle du soleil augmentée de six
signes , £ la longitude et y la latitude géocentriques d'un astre ; eu
posant, pour abréger, comme ci-dessus 9

t .y= n ;

g , h 9 m j n seront des variables fonctions de / 7 et les équations

des rayons visuels seront

or , en conservant toujours la notation des fonctions, l'hypothèse d'un
mouvement rectiligne et uniforme revient à supposer à la fois

différentiant donc deux fois consécutivement, sous ce point de vue %

les équations (24) > on en tirera

Les deux dernières donnent sur-le-champ
mfh"—n'g» t (28)

On a ensuite , par les équations (26)

inm"—zm'n'W—{nn"—?,

%t enfin , par les équations (20) 5

^1;=:̂  /^. , y = ^ — / 2 - • (00)
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Yoîci comment on tirerait parti de ces formulas. Au moyen de

plusieurs observations peu distantes , au nombre de trois au moins ,
mais qu'il serait utile d'avoir en plus grand nombre , on se pro-
curerait une suite de valeurs de r9 #> 9 fi, <y , t et conséquemment
de g , h ? m 9 n. Par les méthodes connues d'interpolation ? oa
déterminerait ehacune de ces quatre dernières quantités en fonction
de / , de manière qu'elles soient amenées à cette forme

g =G0+G1t+Gtt*+Gît
3+.... ,

(30

n =

Les coefficie-ns numériques une fois déterminés , on aurait

n' =

(3a)

Prenant alors pour t une époque qui soit à peu près moyenne
entre celles des observations extrêmes , les formules ci-dessus feraient
connaître, pour cette époque , les valeurs numériques de g , g/, g/f

 f

h 7 hf ^ hN
 5 m 9 mf, mtf

 9 n , n? 7 n/J , et on en conclurait, par
les formules (28 , 29 ̂  3o) , les valeurs numériques de x , $' 9 y , y' %
z , zf, desquelles enfin on déduirait ( Annales ? tom. I I , pag, S )
tous les élémens du mouvement de l'astre.

On pourrai*} au surplus, s'épargner la peine de deux interpola-
tions en profitant des circonstances connues du mouvement de la
terre pour exprimer g , g/

$ g/;
 9 h , hf , hN en fonction de r et »,

comme Ta fait M. Laplace ? dans sa méthode pour les comètes.
On pourrait aussi , à l'exemple du même géomètre , dans le cas
où l'on saurait que l'orbite est parabolique > ou à peu près ; pro-
fiter de l'équation de condition
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pour éliminer de nos formules celle des deux quantités mn , n/r

que Ton soupçonnerait être déterminée de la manière la moins r i -
goureuse , à raison des variations trop peu sensibles des valeurs
consécutives de m ou de n. Ainsi ? sous tous les rapports , cette
méthode ne le céderait à aucune autre , sous le double point de
vue de la rigueur et de la brièveté f ainsi que sous celui de la
simplicité et de l'élégance de la théorie qui y aurait conduit, si
Ton pouvait faire quelque fond sur l'hypothèse qui lui sert de base.
Voyons donc, d'une manière plus particulière , ce qu'on doit penser
de cette hypothèse-

V. Nous avons déduit les formules (23) des formules (22) , en
supposant que l'intervalle de temps /^jui sépare les observations était
tout à fait nul ; mais y nous serions encore parvenus aux mêmes
résultats ? si nous eussions seulement supposé cet intervalle de temps
assez petit pour qu'il fût permis d'en négliger les puissances
supérieures à la première ; car tous les termes négligés dans les
formules (22) , pour parvenir aux formules (23) 5 sont affectés de î*
au moins;, donc, si les formules (28) étaient rigoureuses, dans le
cas d'observations infiniment voisines y les formules (22) , et consé-
quemment les formules (9) , devraient s'éloigner peu de l'exactitude ,
lorsqu'on les appliquerait à des observations qui ne seraient point
séparées les unes des autres par un intervalle de temps trop con-
sidérable ; si donc alors elles conduisent à des résultats tout à fait
défectueux , il faut en conclure qu'elles ne sont pas exactes 7 même
à la limite , et qu'ainsi elles sont en défaut dans l'application 9 moins
par le trop d'intervalle entre les observations , que par le principe
même sur lequel elles reposent.

SI tout mouvement varié et curviligne peut, durant un intervalle
de- temps assez: court, être considéré , sans erreur sensible f comme
uniforme et rectiligne y nous pourrons supposer tel la mouvement
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de la ferre s dans l'iatervalle qu'embrassent les observations. On
peut même remarquer que souvent cette supposition s'éloignera
moins de la vérité pour la terre que pour Pastre observé, et c'est
par exemple ce qui arrivera lorsque cet astre sera une planète in-
férieure ou une comète passant fort près du soleil. Voyons donc ce
que deviennent nos formules dans cette hypothèse*

Si Ton pose , pour abréger ,

les formules (7 et 8) deviendront , au moyen des transformations
(i3 et 14),

(34)
/ '=>' .ff-«/G)Tangy .

(«_W/)_(ra_TO/)(»/_n)}Tang.y/Tang.vTang.y/ -, (35)

en conséquence de quoi les formules (9) deviendront

* / «^ •* X T _ _ r~ f .« ^ /^

(36)

(772—772/)!?— (72—i

{n—Wy)—(772—nij)(jif—72)]Sin.y

Cela posé, pour exprimer que le mouvement de la terre est rec-
tiligne et uniforme , il faudra écrire

c'est-à-dire,
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cette supposition rend donc nuls les numérateurs des formules (36);
nous allons voir qu'elle anéantit également leurs dénominateurs.

On a , dans le cas actuel t

X-g+mZ , Y=h+nZ , (39)

X'=g'+m'Z'

au moyen de quoi les équations (3) deviendront, en ayant égard
aux équations (38) ,

Or ^ sî, entre ces trois dernières équations, on élimine, comme
inconnues 5 deux quelconques des trois quantités (f—t^Z' v {tf—t/)Z 7

{if—t)Z/ , la troisième disparaît aussi, et il vient pour résultat final
m—m, / N

Il est donc certain que , dans Thypotlièse où le mouvement de
la teire et celui de l'astre sont, Turi et l'autre , rectilignes et uni-
formes, les valeurs de Df^B% D;

 r et par suite celles des coor-
données de cet astre ,. se présentent sous la forme indéterminée ^ ;
mais on sait que quelquefois cette forme n'est qu'une sorte de masque
que prennent certaines formules très-déterminées % lorsqu'on les ap-
plique à des cas particuliers pour lesquels elles n'avaient point été
calculées ; il e3t donc nécessaire -de faire voir que f dans le cas qui
nous occupe , les valeurs de D, , D 9 D; , doivent nécessairement
être indéterminées ; et c'est là une chose extrêmement facile.

Soient, en effet , a 9 h 7 c trois lieux consécutifs de Fastre 9 et af 7

h;
 5 c

f les lieux correspondans de la terre ; de manière que les
rayons visuels dirigés de l'une a l'autre soient afa , h*b > de. Sî
l'on suppose les mouvemens rectilignes et uniformes , on devra avoir

al ; a'V \\bc\ lfcf- .
Pela
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Cela posé f concevons par a;a et b*b deux plans parallèles A, B,
ce qui est toujours possible ; par le point c concevons un troisième
plan C , parallèle aux' deux premiers ; et soit d/ le point où ce
nouveau plan coupera la droite a/b/c/ ; par la propriété connue- des
droites coupées par des plans parallèles, on aura

abxa'b'wbtxb'd' ;

proportion qui, comparée avec îa précédente 9 prouve que le point
d/ n'est autre chose que le point cf lui-même , et qu'ainsi le plan
C contient la droite cfc. Il demeure donc établi par la que ? lorsque
deux points parcourent , d'un mouvement uniforme , deux droites
non comprises dans un même plan , la droite qui va de l'un à l'autre
demeure perpétuellement parallèle à un même plan fixe.

Or, soit présentement une droite quelconque aNbh'cn , autre que
atb'c? et abc, posant à la fois sur les trois rayons visuels a1 a , b;b,
c*c y et les coupant respectivement en an, bn, cN ; ces trois points
seront aussi ceux où cette droite percera nos trois plans parallèles
A t B ? G y on devra donc avoir

donc, si un point se meut sur cette droite de manière h parvenir
en an, bff, c/f , respectivement , en même temps que Tastre par-
vient réellement en a! , bf, c1, et la terre en a , b , c, ce point
sera mu aussi d'un mouvement rectiligne et uniforme ; donc enfin,
en admettant le mouvement rectiligne et uniforme de la terre 9 la
supposition que l'astre observé se meut uniformément sur une ligne
droite, assujettit simplement cette droite à poser à la fois su* les
trois rayons visuels , sans en fixer aucunement la situation.

Le calcul différentiel confirme parfaitement cette conclusion , et
même d'une manière fort simple. Nous avons déjà vu (24) que les
équations du rayon visuel variable étaient

or , dans l'hypothèse du double mouvement rectilîgne et uniforme
de la terre et de l'astre observé ? on doit avoir
- Tome VL 4o
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«"=0 , y / / =o- f z"=o , # "=0 , ^ = 0 ; (39)

difFérentîant donc deux fois consécutivement les équations (38) > en
ayant égard à ces conditions , il viendra

-m/z , o—2m/z/-i-?n//z , )
(4o)

nfzy
Or , les deux dernières équations ne suffisent plus alors pour déter-
miner z et z/ -, et elles ne peuvent plus subsister ensemble que
sous la condition

qui, jointe aux deux conditions g//=o, h//=^o , réduisent en effet
les valeurs (28 , 29 , 3o) à £.

Que doit-on donc penser de la validité d'une hypotlièse qui , appli-
quée , dans une même question , à deux cas tout à fait semblables,
donne , comme absolument indéterminées , des quantités qui , dû
leur nature, sont déterminées et uniques. En vaia dirait-on que,
du moins en n'appliquant cette hypothèse qu'à un seul des deux
cas , on doit se promettre d'approcher mieux du but ; dès lors , en
effet , qu'elle est défectueuse , on perd , en n'y recourant qu'une
seule fois , la chance des compensations d'erreurs qu'on aurait pu du
moins se promettre de son double emploi.

Mais voici de nouvelles considérations qui nous paraissent de
nature à mettre dans le plus grand jour tout le vide de l'hypothèse
dont nous cherchons à écarter l'usage. Considérons l'ensemble des
rayons visuels dirigés sans cesse de la terre en mouvement vers un
astre aussi en mouvement -, ces rayons visuels , considérés comme
indéfinis, engendreront dans l'espace une certaine surface gauche, dont
la nature dépendra de celle du mouvement simultané des deux
astres. Soient tracées sur cette surface tant de courbes continues
qu'on voudra, de manière que ces courbes, d'ailleurs quelconques,
ne présentent , dans leur cours , aucun point de rebroussement.
Soient alors une suite d'astres fictifs parcourant ces différentes courbes
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de telle manière qu'ils parviennent tous, en même temps que l'astre
réel ? sur chacun des élérnens rectilignes de la surface gauche ;
c'est-à-dire, de manière que ? pour l'observateur , ils cachent sans
cesse cet astre réel ou soient sans cesse caches par lui. Les données
fournies par l'observation seront constamment les mêmes pour tous.
Or, s'il était permis, du moins pendant un intervalle de temps peu con-
sidérable ? de supposer le mouvement de l'un d'eux sensiblement
rectiligne et uniforme , ou devrait incontestablement jouir de la
même liberté à Tégird de tous les autres. Or , en soumettant cette
hypothèse au calcul , et ayant d'ailleurs égard au mouvement varié
et curviligne de la terre, on trouverait que, pour un instant quel-
conque , ces astres sont tous siîoés au même point de l'espace , et
qu'ainsi ils suivent perpétuellement la même route. I/hypothèse d'un
mouvement sensiblement rectiligne et uniforme, pendant un temps
très-court, ne saurait donc être admise, puisqu'elle tend à faire juger
égales des quantités qui peuvent être d'ailleurs fort différentes.

Quelques géomètres ont pensé pouvoir du moins admettre cette
hypothèse danŝ  la recherche du plan de l'orbite , sauf ensuite à pro-
céder d'une manière plus rigoureuse dans la recherche des dimen-
sions de cette orbite et de sa position sur ce plan. Mais , ces der-
niers élémens étant inévitablement subordonnés au premier , cela
revient à peu près à achever, avec beaucoup de soin et de pré-
cision, tin calcul entrepris sur de fausses données.

D'autres ont cru faire une moindre erreur, en* supposant seule-
ment le mouvement de l'astre rectiligne sans le supposer uniforme;
mais cette hypothèse , se trouvant en contradiction formelle avec le
principe des aires , semble devoir être plus fautive encore que la
première. Si l'on faisait l'inverse , c'est-a-dire , si l'on supposait le
mouvement uniforme , mais raon rectiligne , cette hypothèse , com-
binée avec le principe des aires , reviendrait à attribuer à Pastre un
mouvement circulaire autour du soleil ; et Ton sent qu'excepté dans
le voisinage des apsides , cette hypothèse serait tout à fait insou-
tenables
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Les équations du mouvement d'une planète ou d'une comète sont /
comme Ton sait,

or , on voit que l'hypothèse d'un mouvement rectiligne et uniforme
revenant à supposer #/{=o , yf/z=.o , zN~o , cette hypothèse ne
pourrait être admise , en toute rigueur , que pour le seul cas de
r = o o . Nous ne disconviendrons donc pas que cette hypothèse ne
puisse être tolérable , pour une comète ^encore fort éloignée de son
périhélie , et nous pensons que dans ce cas il serait bon de ne
point faire usage d'observations trop rapprochées ; mais , comme
d'ordinaire ce n'est point dans ces circonstances que les comètes
peuvent être observées, la méthode ne pourrait être alors appliquée
que dans des cas extrêmement peu fréquens.

GEOMETRIE DES SURFACES COURBES.

Démonstration et application d'un théorème relatif à
Vintersection des surfaces du second ordre ;

Par M. BÉRÀRD , principal et professeur de mathématiques
du collège de Briançon , membre de plusieurs sociétés
savantes.

X HÈQRÈME. Si deux surfaces du second ordre se coupent ? suivant
Je système de deux lignes courbes , isolées Vune de Vautre, et si
l'une de ces courbes est une courbe plane , l'autre sera également une
courbe plane*
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Démonstration. Imaginons que l'on projette l'ensemble des deux

intersections sur un plan quelconque , non perpendiculaire à celui
de la section supposée plane ; le système des deux projections pourra
être exprimé par une équation unique qui sera du 4-e degré au
plus; mais la section supposée plane étant du 2.e degré aura pour
sa projection une équation de ce degré , laquelle devra diviser l'équa-
tion du 4** degré, et donnera pour quotient une équation du 2 /
degré au plus , laquelle appartiendra à la projection de l'autre in-
tersection ; cette intersection ne saurait donc être elle-même une
courbe d'un degré supérieur au second ; elle est donc l'intersection
de Tune des surfaces dont il s'agit par un plan , c'est-à-dire > une- *
courbe plane*

Application. Soit un vase , figuré en portion de surface du second
ordre , dont le bord soit déterminé par la section de cette surface
par un plan. Si ce vase est exposé soit aux rayons du soleil soit
à ceux d'une lumière voisine, son bord formera dans son intérieur
une ombre dont la limite sera l'intersection de la surface de ce
vase avec une surface cylindrique ou conique , dont les élémens
rectilignes passeront constamment par le bord du vase. Or, ce bord
est une ligne du second ordre , puisqu'il est l'intersection d'une
surface du second ordre avec un plan ; donc le cylindre ou le cône
est une surface du même ordre, coupant celle du vase suivant deux
courbes dont Tune est le bord même de ce vase et l'autre la limite
de l'ombre projetée par ce bord dans son intérieur ; puis donc que
la première de ces deux lignes est une caurbe plane P l'autre doit
en être une aussi.

Remarque. En général, deux surfaces de l'ordre m se coupant
réciproquement, suivant le système de deux courbes isolées , l'équa-
tion de la projection de l'ensemble de ces deux courbes sur un
plan quelconque sera du degré 772*. Si Tune des intersections
est plane , sa projection sera du degré m ; l'autre ne sera donc géné-
ralement plane qu'autant qu'on aura m*—m~lft PU 02=2, comme
ci-dessus.
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QUESTIONS RÉSOLUES-

Solution des deuœ problèmes de géométrie proposés à
la page 356 du Vf volume des Annales j (*)

Par M. J. B, DURRANDE*

JLROBLÈME I. Construire un triangle dans lequel on connaît
seulement les distances des sommets au centre du cercle inscrit ?

Solution. Tout se réduit évidemment à trouver le rayon du cercle
inscrit. Soit donc R ce rayon ; soient A , B , C les sommets du
triangle et a} b , c leurs distances respectives aa centre du cercle;
«n aura

mais on sait que , A 5 B 5 C étant les trois angles d'un triangle? on a

in.f ASïn iBSin^C+Sin.^A+Sîn.a£B+Sih.4C— i = o ;

substituant dans cette dernière équation les valeurs données par les
équations (i) , il viendra, toutes réductions faites 9

(*) Ces problèmes ont ctéjà été résolus à la page 12g de ce volume ; niais
les solutions- que Ton va lire nous ont paru différer, assez: des premières pour
mériter d'être mentionne'es,.
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En mettant cette équation sous la forme

et considérant — comme l'inconnue - elle sera sans second ternie.
il

PROBLÈME IL Construire un triangle dans lequel on connaît
seulement les distances des cotés au centre du cercle circonscrit ?

Solution. Tout se réduit encore évidemment ici à trouver le rayon
du cercle circonscrit. Soit donc R ce rayon; soient A , B , C les
sommets du triangle et a > b7 c les perpendiculaires abaissées res-
pectivement du centre du cercle sur les côtés qui leur sont respec-
tivement opposés ', on aura

RCosA^a , RCos.B^b , RCos.C-c ; (1)

on aura de plus

1—Cos.3Â-~ Cos.2B—Cos.*B—2Cos.ÀCos.BGos.C===o ;

substituant donc , dans cette dernière équation, les valeurs données
par les équations (1) > elle deviendra , toutes réductions faites ,

équation du troisième degré sans second terme.
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QUESTIONS PROPOSÉES
Problème de Géométrie*,

sections coniques coexistant d'une manière quelconque sur
un même plan ; on demande , i.° quel est le lieu des pôles de
chacune qui correspondent à toutes les tangentes à l'autre ? 2.0 à
quelle courbe sont tangentes toutes les droites qui , considérées par
rapport à chacune , ont^ leur pôle sur l'autre ?

Problème d'Hydi^o-dynamique.

Un vase , en* forme de cône tronqué à bases parallèles , ayant son
axe vertical , est rempli d'un fluide pesant et incompressible. On
pratique à la surface de ce vase une fente latérale dont les côtés,
supposés rectilignes , vont concourir au sommet du cône, et qui
s'étend sur toute la longueur du vase. Le liquide s'écoule de tous
les points de cette ouverture , avec des vitesses proportionnelles aux
racines quarrées des hauteurs de la surface de niveau au-dessus de
chacun de ces points. On demande d'après cela quelle sera la loi
d'abaissement de cette surface de niveau ?
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ANALISE TRANSCENDANTE.

Formules nouvelles , pour Vintégration approchée de
toute/onction différentielle dune seule variable, entre
deux limites données quelconques ;

Par M. le professeur KRAMP , doyen de la faculté dei
sciences de l'académie de Strasbourg»

XJ'OBJET que nous nous proposons dans ce mémoire est d'enseigner
à déterminer , entre des limites données quelconques , l'intégrale
de toute différentielle de la forme Xàx , quelle que puisse être
d'ailleurs la forme de l'a fonction de % désignée par X. La mé-
thode que nous allons faire connaître a cela de particulier qu'elle
est , en quelque sorte , étrangère aux principes du calcul intégral
et à la notion des infinimens petits ; elle ne suppose que les prin-
cipes connus de l'algèbre élémentaire ; elle s'étend à toutes les fonc-
tions quelconques , à celles même qui se sont constamment refusées
jusqu'ici à tous les moyens d'intégration connus ; elle donne l'intégrale
demandée ? moyennant un nombre très-limité de termes, avec une
précision bien supérieure à tout ce qu'on pourrait se promettre de
l'usage des suites infinies^

i. On sait que l'intégration de toute formule Xàx , entre àes
limites données , x—a et x^=^af, par exemple , revient à quarrer
l'aire mixtiligne terminée d'une part par la courbe dont Téquation
serait-y~X, d'une autre par l'axe des x , et enfin par les ordonnées

t n.°X^i.ex ami 1816. 4*
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h 7 h

f de cette courbe répondant respectivement aux abscisses a et a'9
C'est même de là que ce problème a été appelé problème des
quadratures , et c'est sous ce point de vue que nous l'envisagerons
constamment 9 dans tout ce qui va suivre,

2. Soit fait , pour abréger af—a = c ; e t , pour fixer les idées,
imaginons que Ton ait divisé l'intervalle c en douze parties égales ;
désignons par ao 9 ax , az ? . . . . . # I 0 > aiX , alt les abscisses qui
répondent aux treize points de divisions ; au moyen de l'équation
y—X, nous pourrons calculer les ordonnées qui leur correspondent ;
représentons-les respectivement par bo 9 bx , bz ,,... bl0 5 blT , btl ;
nous connaîtrons ainsi treize points de la courbe qu'il s'agit de
quarrer entre les limites x=aQ et %~al% , pour lesquelles on a
respectivement y=^bQ ? y~bl z.

3. Soient joints les deux points extrêmes (ao , 30) , ( # I Î 5 btl)
par une corde ? cette corde , avec sa projection c et les deux or-
données extrêmes formera un trapèze ; en désignant son aire par
SJZ 9 et posant

nous aurons

4. Soient joints consécutivement les trois poînts*(#o , h0) , (#6*, ^Ô)»
( j n , bl7) par deux cordes; ces cordes formeront , avec c et les
trois ordonnées bQ , 3 6 , bx x ? J^z/^ trapèzes -, en désignant la somme
de leurs aires par 56 , et posant

nous aurons

5. Soient joints consécutivement les quatre points (aQ, bo) ? (a4, h4),

(az * ^ s ) ? ( « n ? J n ) P a r ^row cordes ; ces cordes formeront ,

avec c et les quatre ordonnées b0> bA,bz , blt> trois trapèzes j

en désignant la somme de leurs aires par S4 , et posant
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nous aurons

6. Soient joints conse'cutîvement les cinq points (a0 9b0) , {a% , b3)f

(^65^0)? (ûg- ^9)5(^11 ? ^ 12 ^ p a r quatre cordes; ces cordes formeront ,

avec c et les ^Vzy ordonnées b0 9 b5 , $6 , ^ 9 , blt ? quatre trapèzes }
en désignant la somme de leurs aires par S% , et posant

2 9

nous aurons

S, =££:*/, •

7. Soient joints consécutivement les sept points (a0 , b9) , (a2

(a4 > # 4 ) » (*e * h), (^s > ^ s ) 5 (^10 » ̂ 10); ( f l n ; i n ) par « > cordes;
ces cordes formeront ? avec ^ e t les sept ordonnées bo , bz 7 b4 5 b& f

&i > ^10 > ^21 > « ^ trapèzes j en désignant la somme de leurs aires*
par 5 2 9 e t posant

nous aurons

S *={*:&, .

8. Enfin t soient jointe consécutivement tous les treize points de
la courbe par douze cordes ; ces cordes formeront , avec c et les
treize ordonnées t douze trapèzes ; en désignant la somme de leurs
aires par S1 y et posant

nous aurons

9. Aucune des aîres St % , S& 5 S4 t $3 , 5 2 , St n'est Faire de-
mandée \ maïs il résulte évidemment de notre procédé que ces aires
convergent de plus en plus vers celle-là- Donc aussi la ligne par
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laquelle il faut multiplier £c pour avoir Taire demandée n'est aucune
des lignes b1

 x 2 , b\ , £ '4 , £'f , 3 ^ , b\ , mais une ligne vers la-
quelle celles-là convergent de plus en plus.

10. Portons les ordonnées bl\ % , b's» b'A > b'', , b\ , £', sur leurs
correspondantes £ I Z , b6 , b4 , b% 9 bz >bx ; et imaginons une courbe
située au-dessus de la première , passant par les six points {a^ % b\) ,
(fix9 & ' t ) , (fi* > & ' i ) . (fi A ^ b ' 4 ) , ( û 6 i b ^ ) , (a l%, b t t ) ; c e t t e c o u r b e
prolongée rencontrera le prolongement de l'ordonnée bQ en quelque
point ? en désignant par bf

o son ordonnée qui répond à celle-là ,
et conséquemment à Pabscîsse ao les ordonnées bf

 l% , b\ , ^ 4 ,
^ î ? ^ ;

z y bf\ tendant continuellement vers la ligne par laquelle il
faut multiplier -~c pour avoir l'aire cherchée 9 en désignant cette
aire par SQ 9 nous pourrons prendre sensiblement

et tout se réduira à trouver b;
o ; problème qui rentre dans les

méthodes connues d'interpolation. Par la nature môme de ces mé-
thodes , et de l'espèce d'arbitraire auquel elles sont inévitablement
assujetties 9 la valeur que nous trouverons pour b;

o ne sera poiut
proprement la véritable ; mais sa différence avec elle sera compa-
rable a celle qui existe entre le rayon et le sinus-verse d'un très-
petit angle , tel que serait , par exemple , celui d'une minute ou
même d'une seconde. Effectivement nous verrons bientôt que , dans
tous les cas ordinaires d'intégration 3 celte différence n'est sensible
qu'à la dixième ou à la douzième décimale. D'ailleurs on peut la
diminuer à volonté , en augmentant le nombre des parties égales
de c qu'on pourra porter à i8 , 24 , 3o , 36 , 48 ou 60 au lieu
de 12.

11. Il est facile de voir, par la nature de la courbe dont les
ordonnées sont bf

 x % 5 LU , VA , b/
% ? b!

2 , bf
t, qu'elle doit couper

perpendiculairement l'ordonnée b;
o , c'est-à-dire , en d'autres termes 9

qu'en prenant yf pour le symbole général des ordonnées de cette
courbe ? et faisant répondre l'origine à l'ordonnée l'Q , on doit avoir
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dy'

en même temps # = o , -r~ = o ; ce qui exîge que l'expression de yf

ne renferme point la première puissance de x. Pour plus d'uni-
formité, nous en exclurons également toutes les autres puissances
impaires, et nous poserons simplement

il s'agira donc de déterminer le coefficient A, auquel se réduit y*
lorsque # = 0.

12. En prenant ~c pour unité , il faudra donc qu'aux valeurs
i , 2 ? 3 ? 4 > 6 , i l de x 9 répondent pour y/ les valeurs b\f

V% ; b\ j b\ j b\ ? b x t y ce qui donnera

Vx ~À+ B+ C+ D+ E+ F ;

et , en éliminant , entre ces six équations , les cinq coefïiciens B $

C 5 D ? E 5 -F, la valeur de ^ que l'on tirera de l'équation finale,
en fonction de b\ , b1

 %A b1
 % , ^ 4 , ^ 6 , ^ , , , sera, pour ^ = 12 ?

l'intégrale demandée • nous avons vu d'ailleurs qu'on a

z J

,+3*6+3*9+1*1» »

*4+4*8+2* l l ,
=3^+6*6+3*. z ;

(*) Je dois l'idée , très-ingénieuse % qui sert de fondemenl à cette nouvelle
méthode d'intégration à M. R'OBENHEIM , ancien sous-directeur des fortifications
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i 3 . Les équations qu'il ŝ agit de résoudre étant au nombre dé

six, nous allons les présenter sous la forme plus générale que voici

Les quantités a' , bf, c', d;, e/, f, de même que a , b 9 c, d ̂  e9f,
sont regardées comme données , et il s'agit uniquement d'obtenir la
valeur de A ; de sorte que les cinq autres quantités B , C % D ^ E , F
sont tout à fait indifférentes au problème qui nous occupe* Or ,
on trouve

bede/a?

(b—a) (c—a) (jd—a) (e—a

edefab*

' (c—b)(d—bKe—b)(f—b) (a

defabrf

"(«*—c)(f—O(/— c)(a—i

efabcd'

(e~d) (f—d) {a—d) (b~d) (c— d)

fabcder

ijmmmme) (a—c) (b—-e) (LT—e) (d—-e^

- abcdefr

' <fi-fXb—/Kc-JXd-/Xe—f>

professeur de mathématiques à l'école d'artillerie de Strasbourg. Jl l'a exposée
dans un ouvrage qu'il vient de publier sous le tilre de BALISTIQUE OU Indication
de quelques expériences propres à compléter la théorie dà mouvement des pro-
jectiles de Vartillerie ; mais je croîs pouvoir en revendiquer les développement
et applications qui vont suivre 7 lesquels sont entièrement mon ouvrage.

( JSote de M.
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La loi que suit cette expression générale est évidente , et on peut
aisément l'étendre au cas où l'on aurait un plus grand nombre
d'équations.

i4« J'appellerai diviseur général le nombre des parties égales
dans lesquelles on aura divisé l'intervalle c qui sépare les ordonnées
extrêmes qui terminent l'espace mixtiligne qu'il s'agit de quar-
rer ; nombre qui a constamment été supposé 12 dans ce qui
précède. Le choix de ce nombre n'est point indifférent ; et à
grandeur à peu près égale , on doit donner la préférence à celui
qui a le plus grand nombre de petits diviseurs , tel que 6 , 1 2 ,
18 , 24 , 3o , 36 , 4§ 7 Go ,.*„. Nous allons Yoïr, au surplus ,
que , dans les applications pratiques, il doit être à peu près superflu
d?aller au-delà de 24 ; attendu qu'en se bornant à ce nombre , on
p e u t , dans les cas ordinaires , obtenir les intégrales avec douze.
chiffres décimaux exacts, au moins.

15. Le diviseur général étant choisi, le nombre et la nature des
parties aliquotes à employer sont enepre arbitraires. Il convient de
ne jamais donner l'exclusion aux aliquotes 1 , 2 , 3 ; et le plus
exact sera de les employer toutes ; mais il en résultera nécessaire-
ment plus de peine pour le calculateur ; d'ailleurs en n'allant pas
même au-delà de 6 , on peut obtenir des résultats qui , pour la
précision , excèdent déjà les besoins ordinaires de Tanalise.

16. Première formule. Prenons d'abord pour diviseur général
le nombre 6 9 en employant tous les aliquotes 1 , 2 , 3 , 6 / nous
aurons simplement ici

v/—. hcdaf . câah1 àobe" , abcd

Q>-a)(c-a)(d-a) l (c-b)(d-bXe-&) (d-c)(&-c)(b-c) * (a-d)(,a~d)(c-d)

Or, on a , dans le cas actuel, 0 = 1 , £r=4>£==9; É ? = 3 6 , ce qui
donne , en substituant ,
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et , en prenant pour unité l'intervalle entre deux ordonnées con-
sécutives ? ce sera là l'intégrale demandée.

17. Pour plus de simplicité , appelons les sept çrdonnées du cas

actuel * , j & , y , £ , ! , < > * / n o u s aurons

qui donnera ; en substituant,

En prenant donc Fintervalle entier qui sépare les ordonnées extrêmes
« et ^ pour unité ; on aura finalement pour l'intégrale cherchée

. (1)

Si ^ dans cette dernière formule, on fait « = /â:r:yr:£:=r*:==£—9r= Ï 7

elle devient J"Xàx~ 1 , ainsi que cela doit être.
18. Exemple premier. On demande le logarithme naturel de deux ?
Le logarithme d'un nombre quelconque n est l'intcgrale de

— * depuis # = 1 jusqu'à cc=m. En divisant donc en six parties
oc

égales l'intervalle compris entre un et deux ? et remarquant qu'ici

X=s — , nous aurons drabord
3Q

*£T: J := I;O0OO0O00 > «-|-Jfrr I^SoOOOOOO ^

ii=1=0.85*714286 , H - £ = 1,40309740 ?

= | =-0)66666667 i ^=1,33333333 .
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t = £ = o,6ooooooo ,

Ces valeurs étant substituées dans la formule (I) , on aura

Log.2 = 0,69314806 +

La valeur rigoureuse est

Log.2=o 693147^8 .

La différence est donc -f-o,ooo00088 , moindre qn'im mUlionilmei
19. Exemple IL On demande la longueur du demi~quadran$

4 *
La longueur de Parc dont la tangente est t est l'intégrale de

d«#" , st
, prise depuis x=o jusqu'à ^r=/ / celle de Tare — sera dbne

cette même intégrale , prise entre zéro et un ; divisant donc cet in-

tervalle en six parties égales, et remarquant qu'ici JS^——, il viendra

«r= t =T T,00000000 , «e-f-^—

y=r 1^=0,90000000 y y-f-i = 1,59230769 ,

^ = 1 - = : O,8OOOOOOO r 2 £ = I?6OOOOOOO •-

f = 7 7 = 0 , 6 9 2 3 0 7 6 9 r

valeurs étant substituées dans la- formule (TyP oa aura

La valeur rigoureuse est
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^=0,78539816 • "
4

Ainsi Terreur est —o,ooooo545 , moindre que un cent millième*
20, Cette première formule (17) est la plus simple et la plus

aisée de toutes ; c'est celle quï exige le moins de calculs ; maïs
c'est aussi c^Ile qui donne les résultats les moins approchés. Celles
qui vont suivre seront beaucoup plus exactes.

21. Deuxième formule. Prenons 12 pour diviseur général, maïs
n'admettons d'abord que les parties aliquotes 1 , 2 , 3 * 4 * 6 ;
cela donnera

bcdea* cdeabf de abc1

£ JL JL
a)(e~-a)

enbcdf abcde1+
Or , nous avons ici # = 1 , ^ = 4 , ^==9 , J = i 6 , ^==36 , nous
aurons donc , en prenant pour unité l'intervalle entre les deux ordon-
nées extrêmes 9

12600

mais on a, dans le cas actuel,

ce qui donnera , en substituant,

2100
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22. Exemple I. On demande de nouveau le logarithme de deux ?
En divisant en douze parties égales l'intervalle entre un et deux >

nous aurons

« = ^ = 1,0000000000 , «+»=i,5ooooooooo ,

£=^=0,9230769231 , £H-vt=i?4448i6o535 ?

7=77—0,85714^8571 ? y-4-x= 1,4026974026 >

^=77=0,8000000000 , ^4-*= 1,3714^85714 9

1 = 77=0,7500000000 , g+*= i,35oooooooo s

^-^=0,6666666667 , 2H = 1.3333333333 f

«=H = °^3l5789474;
* = ^=0,6000000000 ,

«=~=O,57l42857l4 ;

^=11 = 0,5454545455 ,

ce qui donnera f en substituant dans la formule (II)

Log.2=o.6g31471816 1

la taleur rigoureuse est

Log.a =0,6931471806 j

Terreur est donc
0,0000000010 %

c'est-à-dîre , que cette valeur est exacte dans les huit premiers

©bîffres décîmaux,
â3* Remarque. Avec le seul logarithme de deux on peut fasile*.
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ment trouver tous les autres- Soit m un nombre absolument quel-
conque dont il faille chercher le logarithme. Soit 2" la puissance
de deux qui lui est immédiatement Inférieure ; et soit i+Â le quo-
tient qu'on obtient en divisant le premier de ces deux nombres par
le second. Comme h sera certainement un nombre moindre que
l'unité 7 la formule (I) suffira pour déterminer le logarithme de

divisant donc h en six parties égales on aura * = | , £:=

6 6 6 6 6 i
Il fau-6+4/* ' * 6+5/* *

dra multiplier par A l'intégrale obtenue par la formule ; on aura alors
le logarithme de i-J-A , auquel ajoulaut n fois celui de deux , on
aura celui de m avec une erreur qui ne tombera pas au-dessus de
la huitième ou même de la neuvième décimale.

24» Exemple IL On demande le logarithme naturel de 10000?
La puissance de deux immédiatement inférieure à 10000 est

8ig2 = 2 l3. On aura ainsi 7/2=10000, / 2 = i 3 # I « + Â = ^ J - ^ =

£ £ = 1 + ^ ; on aura donc

Log.ioooo=i3Log.2+Log(i-J-7rf) -
Pour trouver ce dernier logarithme , on fera

On trouvera ensuite

4i(*-H}= 74,58720000 ,
39o,78i45oo8 ,

= 48,68667706 ,
^72 ^ =24496745680 .

La somme 759.02278444 de ces quatre nombres, divisée par
et multipliée par h~~ donne pour le logarithme de i-^-k ou ~ ,
0,1994^70243. La valeur rigoureuse est 0,199^270243 ; la différence
est donc seulement de quatre unités décimales du dixième ordre.

s5. D'un autre côté , ayant trouvé Log 2 = 0^93147 1816 % on
aura i3Log.2=99oio9î336o8. Ajoutant celui qu'on vioiitde trouver,
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il en résultera le logarithme de ioooo égal k 9?3TO34O385Î, Ln
prenant le quart de ce logarithme, on aura , pour le module de nos
tables vulgaires

Log.i0 = 2,3025850963 .

La valeur rigoureuse étant

on voit que l'erreur est au-dessous de quatre unités décimales du
neuvième ordre.

26. Exemple Uh On demande la longueur de tout arc dont on
connaît la tangente ?

I/arc dont la tangente est / est l'intégrale de , prise depuis

# = 0 jusqu'à x=t. En se servant de la formule (II) les quantités
qu'il faudra y substituer pour a , /s , y ,.....* , /*, * seront des frac-
tions ayant pour numérateur commun i44> et pour dénominateurs
respectifs les nombres 144 f i44~W% *44+4'% i444"9*% 1444-16/*;
I 4 4 4 - I O O / % j444~i2i/a , I 4 4 4 - Ï 4 4 ^ * ; et. Tare cherché sera la
valeur qui en résultera pour A , multipliée par /. L'exemple sui-
vant nous fera juger du degré d'exactitude de ce procédé.

27. Exemple IF* On demande, suivant la formule précédente^

la longueur de l'arc — ?

Les dénominateurs de nos quantités «9 /a, y,.... x, pf * sont ici
i44 , i45 , 148 , i 5 3 , 160, 169 180^ 193 , 208, 225, 244 ,
266 , a88 ? ce qui donnera

* + v = T ^ + ri!=s r =Ï,5OOOOOOGOO ;

= 1 ^ + ^=77^7=^5811764706 f

~
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2 n = ^ i + i f i = i = 1,6000000000 .

d'où an conclura finalement

j =0,7853981727 .

Ijâ valeur rigoureuse étant

îl s'ensuit que l'erreur tombe au-dessous d'une unité décimale dû
huitième ordre.

28. Exemple V* Rectification générale de l'ellipse.
Ce célèbre problème qui exerce , depuis plus d'un siècle, le

génie de nos plus grands analistcs, rentre de lui-même dans nos
formules générales, dont il ne présente qu'un cas très-particulier.
Soient a , b les deux demi-axes , et proposons-nous de rectifier l'arc
compris depuis l'extrémité .de a jusqu'au point dont la normale fait
avec a un angle A; la formule à intégrer sera

depuis x = o . Si Ton veut se contenter de la première formule f on
remplacera successivement la lettre h, dans

in.>\)ï' *

d'abord par zéro et ensuite par \ , \ , \ , £ , £ , f de x On aura ainsi les
valeurs de * , /a, y , j , •< ^5 *, d'où on conclura celles de ^ , b', c\
d'\ et par suite celle de A q u i , multipliée par l'are entier X,
exprimé en parties du rayon , fera connaître la longueur de Par&
eherché.

29. Supposons } par exemple p qu'il soit question d'assigner la



0

longueur du quart de l'ellipse ; x sera un angle droit , et devra
conséquemment devenir successivement o° f i5° ? 3o° t 450

 # ôo*^
?5Ô , 90°. Or , on saît que

Sin.a o = 0 ^ * 9 0 ° = 0 ,

Cos.a O = Sin.a9o°= 1 ,

II viendra donc , en posant pour abréger le quarré a%-~&* de
cen incité szé* 9

a

fi=~

Ayant oLtemi la valeur da A$ on la multipliera par — sa 1*5708 , et

Ton aura ainsi une valeur du quart d'ellipse qui, dans les cas
ordinaires $ ne &era pas fautive d'un cent-millième.
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. 3o, Exemple Fî. On demande l'intégrale de e~**ài, depuis

jusqu'à / = 3 T % ,

L'intervalle étant divisé en douze parties égales , on aura

Pour/=osoo 9 k fonction <?"""**= r,oooaooo r

o,25 0,9094332 ,

o,5o o,7788oo9 r

©,75 0,5697828 r

ï ;oa 0,3678794 r

i}2S 0,2096113 r

i,5o 0,1053992 ^

Ï ? 7 S 0,0467706 ,

2,00 oroi83i56 /

3,25 0,0063297 ,

;a,5a 0,0013904 ;

3,OO O;C'OO 12.34 -

En employant la formule (II) , on trouve r pour le numérateuî* dfev
Fintégraîe 62o,3635s33 ;

et pour son dénominateur . . . . 2100 ;
mais, à cause de l'intervalle 3 , il faudra diviser par 700 seulement,
ce qui donnera finalement

3t. Dans mon AnaHse des réfractions astronomiques , j'ai donne

une table des intégrales de £—f*d/, prises jusqu'à Tlnfini. J'y trouver

Depuis / = a , • • • • • 0,88622692 t

Depuis / = 3 , . » . * * . o9c 0001988 ;

ElTe «st donc de o à 3 , 0*88620734 ;

la différence avec la précédente n'excède guère un quarante~miîliemê
â * i

Si,
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3z. Exemple VII. On demande l'intégrale de . } depuis a=. i

jusqu'à une valeur quelconque de x ?
ex

La courbe dont l'équation est yzz — n'a aucun de ses points sitee
X

dans les angles des coordonnées de signes contraires ; mais elle a ,
dans chacun des angles des coordonnées de mêmes signes, une partie qui
présente deux branches infinies. Les axes sont les asymptotes de la
partie située dans l'angle des coordonnées négatives ; quant à l'autre
partie , elle n'a qu'une seule asymptote qui est l'axe des y ; elle
a une ordonnée minimum qui répond au point pour lequel on a
# = i , et conséquemment y^=ze ; et % à partir de ce point jusqu'à
l'origine 7 l'accroissement de l'ordonnée est très-rapide ? et s'élève à
mn ordre d'infini qu'il n'est pas même possible de déterminer -, de
sorte que cette branche ne peut approcher indéfiniment d'aucuns
courbe connue, à moins peut-être que ce ne soit la branche cur-
viligne de la Logistique ordinaire.

33. Cherchons, par la première formule> l'aire de la courbe, d'abord
entre i et 7 , puis entre 7 et i3 ; et nous chercherons ensuite,"4

par la seconde formule, l'aire totale entre 1 et i 3 , laquelle doit
être rigoureusement égale à la somme des deux premières. La dif-
férence que nous trouverons entre les deux résultats nous mettra, à
même d'apprécier l'erreur que notre méthode laisse subsister , dans
le cas particulier de ce problème».

34. On trouve , clans les Tables logarithmiques de ScHULZE
( Berlin , 1778 ) , une table des puissances de £ = 2,71828... r
depuis la première jusqu'à la vingt-quatrième. Divisant donc les-
treize premiers par leurs exposans respectifs , nous aurons nos
treize ordonnées ainsi qu'il suit :

*== 2,718282 ,

<%-=: 6,690178
Tarn. FZ
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• = 29,682632

= 156,661880 ,

~ 372,619748 ,

= 2202,646579 ,

^=13562,899285 ,

> =34031,769385 .

35* On aura d'abosd ; par la formule (I) f pour Taire comprise
1 et 7 ,

140

et potir Faire comprise entre 7 et i3 ,

On trouvera ensuite, par la formule (II) > pour Taire totale 9 com-
prise entre 1 et i3 ,

36» On aura ainsi ,

Pour Taire entre 1 et 7 ; ; . ; . 189,6494° * t

Pour Taire entre 7 et i3 , , . . . 37015,696762 7

Pour Taire entre 1 et i3 , . . . . 37198,442648 .

Cette dernière est un peu moindre que la somme des deux autres;
et elle doit naturellement être réputée plus exacte -, la différence
est 8;go2Di5 ; c'est environ la 4 2 O°m e partie de l'intégrale entière.
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Cette différence est un peu plus sensible que celles de tous les
problèmes précédens ; mais il faut considérer aussi à quelle inté-

* exâx
grale on avait à faire. Celle de tient une des premières places

parmi ces intégrales éminemment réfractaires ? qui se sont constamment
jusqu'ici montrées rebelles à tous les moyens d'intégration connus ,
sans même en exclure l'emploi des séries infinies. Hinc ergo natura
hujus functîonis transcendenîis parum cognoscitur , dit EuLER
( Cale, intég., vol. i , n.e 228 ).

87. Egalant entre elles la somme des deux formules qui nous ont
donné les aires partielles et celle qui nous a donné Faire totale ,
on est conduit à cette nouvelle égalité très-remarquable

C'est l'équation de condition ; pour que le point du milieu , ou
bien tout autre de nos treize points, se trouve sur la courbe déter-
minée par les douze autres. Elle est rigoureusement satisfaite , dans
le cas où nos treize ordonnées sont égales entre elles : elle est
rigoureusement remplie encore dans une infinité d'autres courbes
dont il serait trop long de faire ici rénumération. Elle est remplie ,
quoiqu'avec une différence presque insensible 7 lorsque la portion
de courbe qui est comprise entre les limites de l'intégrale , est sans
asymptote, sans imaginaires, sans point d'inflexion ni de rebrous-
sement ; lorsqu'enfin elle ne s'écarte pas trop de quelque courbe
rentrante ; telle que sont les ellipses de diflerens degrés. Ces sortes
d'équation de condition , nouvelles dans l'analise , sont essentielles
dans la théorie de l'interpolation ; elles pourront être le sujet d'un
mémoire particulier.

38. Troisième formule. En conservant le diviseur général 12,
ajoutons aux cinq premiers aliquotes 1 , 2 ? 3 , 4 > ̂  , le nombre
J2 lui-même. Nous aurons alors a=zi > b—4: * €:=:9 9 d~i6 , ^=^36 *

J^i44 9 e* ensuite (i3)
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21621600^=298098 fa'—16679023/

- j - 585728^— io4z4'jdf

^ 2288e'— f .

ce qui donnera

1801800^= 4i833(«+0+a4883(

—2916o(H-x)+395a64(H-*)

Le calcul d'après cette formule est beaucoup plus compliqué, maïs
aussi elle réduit à peu près au quart l'erreur de l'autre.

3g. Quatrième formule. En prenant pour diviseur général 18 ,
et pour ses parties aliquotes 1 , 2 , 3 , 6 , 9 , ^ ' o u a== l » ^ = = 4 »
c=ç) j c?c=36, c = 8 i , on obtient d'abord (21)

277200^=

et ensuite

4o. Cinquième formule. En prenant pour diviseur général 24 ?
et pour ses aliquotes 1 , 2 , 3 , 4 , 6 ? d'où âf=i , ^ = 4 ? ^ ^ Q »
^ = 1 6 ? ^=:36 , on obtient d'abord

Cette formule paraît être 9 au dénominateur près, qui est double 9 iden-
tique avec notre seconde formule -, elle ne l'est pourtant pas ; parce
que le nombre des ordonnées étant double, les lettres af , b;, cf,
df , ef

 9 en acquièrent des valeurs entièrement différentes. On trouve,
^n effet, en désignant par * la 25.* ordonnée
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L'erreur que cette formule laisse subsister dans le calcul de Tare

— , laquelle est soustractive , n'est sensible qu'à la onzième décimale.

4i* Sixième formule* Le diviseur général étant encore ^4 ; sî
Ton emploie les parties aliquotes i , 2 , 3 , 4 > 6 , 8 ; c e qui
donne a=i ? ^ = 4 , £ = 9 > * / = i € , ^ = 3 6 , f~G4 / o n a u r a

d'abord ( i3)

970200.4=67584a'—388o8S'+i4336c'—2772^+88^—3/ ;

et ensuite

L9usage de cette formule réduit au quart l'erreur que la précédente
-avait laissé subsister,

42. Septième formule. Le diviseur général étant toujours 24 *
prenons ses aliquotes 1 , 2 , 3 , 4 7 6 , 8 , n ; ce qui donnera

d'abord

15765750^=26542080^—15567552^+5963776^

—1216215^+45760^—2xo6/>+7^ j
et ensuite

Par l'usage de cette formule Terreur du calcul de — ne devient

sible que sur la douzième décimale.
43, Huitième J or mule. Prenons pour diviseur général 6 0 , et pour

ses aliquotes 1 , 2 , 3 , 4 » 5 ; à'oxi # = 1 , ^ = 4 > ^ = 9 t ^ = ï 6 ?

£s=2D; cela donnera d'abord
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Comme nous avons Ici 61 ordonnées > nous représenterons

Les vingt premières par * > p 9 y 5 • * . . <r , * r »

Les vingt suivantes par */ 9 ^ , y/ » • • • • ** > r/ >> vf

Les vingt autres par « " , £f/
 9 y " 9 . . * . « " , *" f »"

Et enfin la dernière par * w . Il viendra ainsi

Nous n'avons point mis. cette formule à l'épreuve ; mais on peut

présumer que dans le calcul de -- , Terreur qu'en traînerait son usage:

tomberait au-delà de la vingtième décimale»
44« Nous ne craignons pas d'avancer qu'à l'aide de ces diverses for-

mules, toute Intégrale quelconque, de la forme/Xd^?, peut-être évaluée
numériquement > entre les limites données, moyennant un nombre fini et
très-limité de termes , indépendamment du calcul intégral , et de toute
notion d'infiniment petit, par les seuls moyens que fournit l'algèbre
élémentaire 7 et avec toute la précision que Ton veut donner à son
calcul ; pourvu seulement que la fonction X ne devienne ni infinie
ni imaginaire f dans L'étendue de l'intégration. Toute fonction inté-
grale d'une seule variable , telle que fXàx, doit donc être comprise
désormais dans la classe des quantités entièrement connues,
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Jiéflexîons sur la méthode qui sert de base au précédent
mémoire9'et applications diverses de cette méthode ;

Par M, G E R G o N K E.

A-/A méthode dont M. Kramp vient de faire usage 5 dans le précédent
mémoire , pour résoudre le problème des quadratures ? est extrême-
ment remarquable , et nous paraît tout-à-fait digne de l'attention
des géomètres. Elle semble devoir être très-féconde en applications
curieuses et utiles ; et nous n'hésitons pas à la regarder comme une des
plus belles et des plus ingénieuses inventions d'analise qui aient
eu lieu dans ces derniers temps.

L'esprit de cette méthode consiste proprement à chercher , à dessein,
des résultats moins approchés que celui dont on est déjà en pos-
session , et à les employer à perfectionner celui-là. C'est exactement
prendre de ïélan ; c'est reculer pour mieux sauter. Les détails dans
lesquels nous allons entrer pourront faire entrevoir de combien d'ap-
plications variées cette méthode peut être susceptible ; Us montreront
en même-temps que l'approximation qu'elle est capable de fournir,
dans tous les cas ? n'a pour ainsi dire d'autre limite que celles de la
patience du calculateur. Mais , avant d'entrer en matière , arrêtons-
nous encore un moment sur le problème des quadratures.

I, Quelque rapide que puisse être un procédé approximatif, ce
procédé doit être jugé imparfait ? s'il ne renferme pas en soi quelque
moyen d'apprécier Terreur à laquelle son usage peut exposer. Or,
telle serait la méthode des quadratures ? développées dans le précédent
mémoire ? si on ne lui faisait pas subir une légère modification. Cette
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modification consiste à substituer successivement aux trapèzes des
rectangles inscrits et des rectangles circonscrits. Cela conduira à deux
résultats , l'un plus grand et l'autre plus petit que le véritable ,'el
dont la différence donnera conséquemment la limite de Terreur dont
chacun d'eux se trouvera affecté. A. la vérité , toutes choses égales
d'ailleurs , ces résultats seront moins approchés que ceux qu'on
déduirait de l'usage des trapèzes ; 'mais il nous paraît qu'on ne doit
pas balancer à sacrifier quelque chose du côté de la précision et
de la rapidité , lorsqu'il s'agit de remplir une condition sans laquelle
aucun procédé approximatif ne saurait être employé avec quelque
sécurité» Nous verrons d'ailleurs bientôt que cet Inconvénient disparaît
presque totalement 7 par un emploi convenable de la méthode.

Ceci suppose 7 au surplus , qu'entre les limites de l'intégrale , les
ordonnées de la courbe qu'il s'agit de quarrer sont toujours crois-
santes ou toujours décroissantes ; mais on sait que , dans le cas
contraire, ©n peut toujours décomposer l'Intégrale en plusieurs parties
telles que , pour chacune d'elles , cette condition se trouve remplie*

Nous appliquerons uniquement ces réflexions au cas où le diviseur
général est 6 , et ses aliquotes i , 2 , 3 , 6. Soient * , £ , y r

à 7 * ? i ? * 1 les sept ordonnées équidistantes que , peur fixer les
idées ? nous supposerons perpétuellement croissantes -, prenons de
plus pour unité , comme dans le précédent mémoire ^ l'intervalle
qui sépare les ordonnées extrêmes. En considérant les rectangles
inscrits dont les bases sont successivement ~, 7, \ v 1 , nous aurons,,
pour la somme de leurs aires r

Bases ~\ 9 6 rectangles

Bases = } , 3 rectangles. . . . .

Bases =^ ^ 21 rectangles

Bases = 1 5 1 rectangle. .....!*:= ^ ,.

Si nous passons ensuite aux rectangles circonscrits , nous trou-*
serons les sommes d'aires ainsi qu'il suit

Basse:
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Bases = £ , 6 rectangles. . . . ! ( * + * + * + « + £ + « ) = : i f l ' ,

Bases = ^ , 3 rectangles. . . . K ^ + s - H ) : ^ ' ,

Bases = f , 2 rectangles,. . . ;(^+*) = ̂ / ,

Base = 1 , 1 rectangle. . . , . ^—-JL* .

Nous aurçns toujours d'ailleurs la formule

_ 1296^—567&4-I1 *c
A

en y faisant donc successivement les deux substitutions , il viendra

840

84o
L t différence

4^o

est la limite de l'erreur que pourra entraîner l'emploi de Tune o»
de l'autre de ces deux formules , dont la demi-somme est précï-
se'ment la formule de M. Kramp' s ainsi que ce cela doit être.

Si l'on applique ces formules aux deux exemples de l'auteur T

e'est-à-dire , à la recherche du logarithme naturel de 2 ; et à cella

du nombre ~ ; comme, dans- l'un et dans l'autre cas , on à «=ST

et ^r=o?5 , on aura »—* = —| ; de sorte que la limite de Terreur
est —;; ou environ ~ . Nous allons voir au surplus que la résolution
du problème des quadratures peut encore être présentée sous une
autre forme qui , sans exiger un grand nombre de divisions de
ï'étendue d& l'intégrale , ̂ st néanmoins susceptible d'une approximation
presque illimitée.

Supposons toujours qu'il soit question d'obtenir — ou , ce qui

Terne FÂ 44
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revient au même } l'intégrale de entre o et x en posanty^

et divisant d'abord l'intervalle en cinq parties égales seulement;
nous aurons

Pour # = o , 7 , 7

i , rz

> s >

5 16 > 19 ' U

Comme ici les ordonnées sont continuellement décroissantes , les
rectangles inscrits , auxquels nous nous bornerons , et qui, ayant 7 pour
base commune, auront successivement pour hauteur les cinq der-
nières ordonnéesT seront

Premier. . . .

Deuxième. . .

Troisième. • .

Quatrième . .

Cinquième • . * 7

75 = 17=0,1923077 ,

^ =-L = 0,1000000

somme =

En multipliant ce résultat par 4 ? o n obtiendra pour première
valeur approchée du nombre ZJ-

^•=2,9349-60=^ .

Pour obtenir une valeur plus approchée , cherchons-en une suite
d'autres qui le soient moins. Soit d'abord divisée l'étendue de l'in-
tégrale en quatre parties égales j nos quatre rectangles inscrits seront
alors tels qu'il suit ;

Premier.

Deuxième. « . .

Troisième. . . .

• £ = £ = 0,335*941 >

somme =0,7202941
;£=£ = 0,1600000 ,

Quatrième. . . .

Ce résultat, multiplié par 4 ; donnera pour seconde valeur moins
approchée de «•
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Divisons le même intervalle en trois parties égales seulement ? les
rectangles inscrits' résultans seront

Premier. . . .

Deuxième. • . .

Troisième. . . .

7.£== 7^0,3307692,

7.̂  = 7=0,1666667.

somme =0,6974309 ,

Ce résultat, multiplié par 4 , donnera pour troisième valeur , moins
approché que la précédente } du nombre ^

^3-^1:2,7897436= C .

Divisons ensuite cet intervalle en deux parties égales seulement r
les deux rectangles inscrits correspondans seront

Premier. . . . . 7.7=7=054000000 ? )
> somme =o,65ooooo ;
)Deuxième.

résultat qu i , multiplié par 4* donne , pour quatrième valeur encore
moins approchée du nombre w ?

Considérant enfin l'intervalle entier , nous aurons pour le rec-
tangle inscrit 1.7 = ^ = 0,5000000 qui, multiplié par 4? donnera,
pour la dernière valeur, la moins approchée de sr,

^ = 2,0000000=:E .

Il est évident qu'aucune des quantités A > B , C, D, E n'est
la valeur de w, et qu'elles sont toutes plus petites que cette va-
leur ; mais , si on les considère comme répondant respectivement
aux indices 5 P 4 » 3 , 2 , 1 , il est clair que la valeur de w répondra
à l'indice 00 ; puisque , pour cet indice > on sera dans le même
cas que si Ton avait considéré une infinité de rectangles inscrits
infiniment petits. Donc , à» l'inverse , si l'on considère respective—



3oS NOUVELLE MÉTHODE
ment A , B , C , D t E comme une suite de termes répondant

aux indices 7 , i , 7, ; , i ; le terme de cette suite répondant

à Flndice ~ ou zéro sera la valeur exacte de *r ; el, comme il en

sera encore évidemment de même en rendant tous les indices 60

fois plus grands ; il s'ensuit que ? si l'on construit une courbe telle

qu'aux abscisses 12 , i5 , 20 , 3o * 60 répondent respectivement

les ordonnées A ., B, C , D, E , la valeur dp w sera l'ordonnée

de cette courbe repondant à l'absolsse zéro.

Ox , on a vu, dans le précèdent mémoire , qu'en supposant , pour

plus de simplicité , que cette courbe est parabolique , et que son

équation ne renferme que des puissances paires de l'abscisse , si

a , b 9 c , d, e représentent les quarrés des abscisses qui répon-

dent respectivement aux ordonnées A , B , C , D , E , on doit

avoir sensiblement

bcdeA cdeaB âeabC
(b-*-Ct){c—a) ( d—a) Ce—a) (c—b) (d—b) Ce—b) (a—b) {d-c) (e-c) (a-c) (b-c)

eabcD abcdE

iedXa—d){àd)(cd) iae)(£-e) (c—e) (^—e) ' ^

Faisant donc , dans cette formule , ^ = i 4 4 * b^22,5 , ^ = 4^° ?

Jc=goo , £ = 36oo , elle deviendra , toutes réductions faites

_ ig5311$A—-2097152^+531441 C—24576D-K2E V / .

7.8.8.9.9.10

formurle dans laquelle il n'est plus question que de substituer les

pâleurs ci-dessus. On trouve ainsi

1953125^=5732277,3437500 ,

4945,47 2 2 7 7-6

42JE= 84^0000000 ;

2007152 Z?— 60422 64 ?84Q6 * ^8 ? )
, - e n c^o r 610616^4496^8 .

24370!/=: bv5o97>ooooooo ; )

Donc 7.8.8.9.9 i o»= 1108788,0226648 ,
d'où
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Cette valeur est encore peu approchée ; mais on doît en être peu
surpris , si l'on considère que d'abord nous avons substitué des
rectangles aux trapèzes 7 et qu'en autre nous n1en avons employé
que cinq au plus.

On se tromperait toutefois sî Ton se figurait que c'est là tout
le degré d'approximation auquel il soit possible de parvenir , avec
d'aussi faibles moyens.-On peut , en effet , traiter ce nouveau résultat
Af comme nous avons traité le premier A ; c'est-à-dire 7 chercher
des .résultats moins approchés que l-ui et les employer à le perfec-
tionner.

Supposons donc que nous n'ayons pas été au-delà de quatre di-
visions ; c'est-à-dire , faisons abstraction de la valeur À ; nous pour-
ions alors considérer B, C, D , E , comme repondant respective-
ment aux Indices \9 j - , \^ i , OJI , en multipliant par 12 9 comme
répondant aux indices 3 ; 4 ? 6 , 12 ; nous aurons alors à employer
la formule

câeB debC . ebcD _ bcdE
4 4 I

dans laquelle il faudra faire #=-9 ? £ = 1 6 , dzzZQ 9 ^ = 144 j cô
.qui donnera

_ 81923—6561C+896D—7E
W~~ «.7.8.9 '

En substituant donc nous aurons

81925 = 23602,5970688 ,

8g6Z)^= 2329,6000000

656i Cz=z 18303,5077596 ,

;l
18317,5077596 ;

= * i4»ooooooo ,* 1

J)onc 5.7.8.9 w = 7614,689309a ;

d'où * • = 3,O2
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En n'allant pas au-delà de trois divisions ; c'est-à-dire » en faisant

abstraction des valeurs À } B > nous pourrons considérer C y D7 E
comme répondant respectivement aux indices ^ , \ , i » ou , en
multipliant par 6 7 comme repondant aux indices 2 , 3 , 6 j nous
aurons alors à employer la formule

deC ecD
:+ •

cdE
(III)

£j—£)(<>—c) Ce—d)(c—d) (c~e)(J—e) ?

dans laquelle il faudra faire # = 4 > ̂ = :9 > £ = i 6 ; ce qui donnera

(ino
4.5.6

En substituant donc , nous aurons

^ = 677,9076948,

'== 10,0000000 ;
687,9076948

332,8000000

Donc 4*5.6 »•=

d'où.

355,1076948

~ 2^592308 — C/ ..

En ne faisant ensuite que deux: divisions 9 nous aurons

e—d d—e

ce qui donnera

eD dE , K t^n—E
1 9 (H) ou - = ~ ~ -, (MO

=: IO,4OOOOOO

J E = 2,0000000

d'où 3^=: 8;4oooooo

et ^r= 2,8000000i=D; .

En ne considérant enfin qu'un seul rectangle inscrit , nous au-
rons de nouveau , comme ^i-
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Nous pouvons présentement traiter les valeurs de moins en moins
approchées Af , B/ , C; , D/ , Ef , comme nous avions traité les
valeurs A , B , C , D , E P c'est-à-dire , les substituer dans la
formule

/—24576^4-42^'
7.8.8.9.9.10

ce qui donnera

T9o3i25^=5967790,6250000 ?

556,57 55828 ,

84,0000000 ;

> 64o5782;24i28oo ;
'== 68812,8000000 ; \

Donc 7.8.8.9.9.10 w= 1134748,9593028 5

d'où «•= 3>i2'jo63c)=iA// .

Voilà présentement une valeur un peu plus approchée que les
valeurs Ay et A ; or^ de même que nous avons déduit Af , Bî ,
O , D; , E' àe A , B } C , D , E f nous pourrons déduire A",
B" C" D» E" de Af , B/ , C , D' , JE' ; et, en continuant
toujours ainsi , nous parviendrons à des valeurs de plus en plus
approchées ; à la vérité , le procédé peut paraître un peu long j
mais il l'aurait été beaucoup moins, si nous ne nous étions ; dès
l'abord ? bornés à dessein à cinq divisions de l'intégrale.
En procédant, comme il vient d'être dit , on aura

^"==3,1270639 ]

£"=3,0891090 ,
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0^=3,0666667 ,

Eu=2.0000000 ;

d'où on conclura , par la formule (V') , une nouvelle valeur de »v
Si , ne connaissant pas , à l'avance , la valeur exacte de *r , on.

voulait juger du degré d'approximation obtenu après un certain
nombre de pareilles opérations , il ne s'agirait que de faire un> semblable
calcul sur les rectangles circonscrits. On n'adopterait alors dans la
valeur de -& que les chiffres décimaux communs aux deux résultats.
Nous allons voir, au surplus, qu'en suivant toujours l'esprit delà
même méthode on peut se procurer bien plus rapidement une va-
leur approchée du nombre «•, et ce sera Ta notre première application.

II . Supposons, pour un moment, que la géométrie n'offre absolument
aucun moyen de calculer , même par approximation , les périmètres
des polygones réguliers au-delà de six côtés. Nous allons voir que,
tandis que les procédés ordinaires , étendus jusqu'au polygone de-
96 côtés > donnent une valeur qui n'est exacte que dans les deu&
premiers chiffres décimaux , notre méthode , au contraire , bornée
à l'hexagone , donne un résultat qui n'est fautif que dans la sixièma
décimale seulement. '

Observons auparavant que deux diamètres quf se confondent ,,
dans un cercle dont le rayon est un , forment un véritable poly-
gone régulier inscrit de deux côtés, dont le périmètre est quatre.
En conséquence , nous aurons les de mi-péri mètres dès polygones
réguliers inscriis aa cercle dont le rayon est un ainsi qu'il suit 1.

De deux côtés. . * . 2, =2 ,0000000= E ̂

Da trois \\/1 =2 ,5980762 = !? ,

De quatre . . . . . . ^s/^- =258284272— C 9

De cinq, *-\/10--2.^=2,9389265 = /? 9

De six • 3 =^^^0000000= A ^
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Si l'on considère les demi-périmètres A , B 9 C , D>•, E comme

répondant respectivement aux indices | , 7 , ~ > 7, 7 , le nombre w
devra répondre à l'indice ^ = 0, et il en sera encore de même,en prenant
les indices 60 fols plus grands 10, 12 , i5 9 20 , 3o. Faisant donc ,
dans la formule (V) a~ioo , $ = i 4 4 ; £=225 ? J = 4 ° ° > #=900 t

elle deviendra

6.6.6.7. io. i l

ce qui donnera, en substituant y

1469664^=44o8992?°°ooooo ,

720966^=2039001,85477*2 ,

io562T= 21 Ï 2,0000000 ;

> 5927696,5757427 :

Donc 6.6.6.7.10.11 *• = 5225og?279O285

d'où w = 3,i 4i5gO2=s-^f/ J

résultat qui "ne commence à être fautif qu'à la sixième décimale*
Si 7 ne connaissant point à l'avance la valeur exacte du nombre

•25-, on voulait juger du degré] d'approxiqnation de ce résultat, il
suffirait de faire un semblable calcul relativement aux polygones
circonscrits ; et Ton n'admettrait ensuite , dans la valeur approchée
du nombre «•, que les chiffres décimaux communs aux deux ré-
sultats.

On aurait tort de penser au surplus que l'approximation à laquelle
nous venons de parvenir est toute celle que peut donner la consi-
dération des cinq premiers polygones réguliers j si ? en effet y nous
nous arrêtons successivement au 4*e > a u 3.e , au 2.e et au i . e r *
en désignant respectivement par B/, C1' y D

1
 $ S

/ les valeurs approchées
de 7F résultant de leur considération^ nous pourrons-considérer Af

 %

fom. FI, 45.



3i4 NOUVELLE MÉTHODE
B; , Cf, ZV, JE', comme des termes répondant respectivement aux
indices 7, j , 7 , i_, 1 . e t , en cherchant , comme ci - dessus , le
terme qui répond à l'indice ~ ou o , ce sera une valeur plus ap-
prochée de *••

II I . Notre deuxième application aura encore pour objet la re-
cherche du nombre w , mais nous y procéderons de manière à faire
voir comment la mélhode dont nous cherchons ici à étendre l'usage
s'applique à la sommation des séries convergentes , dont on connaît
seulement unN petit nombre des premiers termes, sans que même
il soit aucunement besoin d'en connaître la loi.

Prenons la série connue de Leibnilz.

en réduisant chaque terme de rang pair avec le terme de rang im-
pair qui le précède immédiatement , elle deviendra

Nous allons essayer de la sommer au moyen de ses six premiers
termes seulement.

On a

;i.f* terme ^7=o,3333333 , x.w =o,3333333^i?,

2* . . . . 777 = 0,0285714, Som, des deux i.c r s =0,3619047 = E,

3-e • • • 7777 = 0,0101010, des trois i . t r s =0,3720057=!) ,

4.* . . . 77^ = 0,0051282, des quatre i.crs =0,3771339 = ^ ,

S.e . . . 77775=0,0030960, des cinq i.erS =0 ,3802299=5 ,

6.c . . . — 7 = 0,0020704-, des six i.erS =o,38a3i;o3=^ ;

Si nous considérons ces nombres À , B , C , D, E , F comme
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répondant respectivement aux indices ^ 7 7 , L > - , - , 1, il est

évident que — devra réppndre à l'indice s-p=o et qu'il en sera encore

de même pour les indices 60 fois plus grands 10 , 12 , i5 , 20
3o , 60. Faisant donc, dans la formule du n.° i3 du précédent
mémoire, a—100 , £ = 1 4 4 , £=225 , J=4oo , £=900 , / =
on aura

181398528^—2441406255+922 74688^

ce qui donnera en substituant

181398528^=69348711,6739584 ?

92274688^=34799912,9567232 , \ 104209772,0487936 f

168960^= 6 u 4

9743o85Z)= 3624483,1555845 , } 96454070,5852720 v

66F= 22,0000000 5

Donc 4^7-9-9'io.io.ii ^ ^ 7755701,4635216 ;
d'où w=s 3 ,1087468=^.

On ne sera pas surpris du peu d'exactitude de cette valeur , si
l'on fait attention à l'extrême lenteur de la série 7 qui tend sans
cesse à n'être plus convergente.

Il est d'ailleurs aisé ici , comme dans les préeédens exemples r

de se procurer une valeur plus approchée, en en cherchant d'autres-
qui le soient moins ; si , en effet , on désigne respectivement par
Bf * C/

 f D- , E1 , P les valeurs qu'on obtient , en se bornant
successivement à cinq, quatre, trois > deux et un termes, oa aura
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£'=3,0985080 f

^=3,0815390 ,'

£'=3,9714280 ,

2^=2,6666666 .

En substituant ces valeurs dans la précédente formule à la place
de A , B , C, D , E ^ F et divisant le résultat par 8 , attendu

qu'elles n'expriment plus ici — ? mais * lui-même , on obtiendra

valeur plus approchée que la précédente , et de laquelle il serait
facile ? par les mêmes moyens , d'en déduire d'autres qui le soient
davantage encore. Ainsi 7 malgré le peu de convergence de la série ,
il ne faudra qu'un peu de patience pour obtenir, à l'aide de ses
six premiers termes seulement, des valeurs de plus en plus approchées
de îa somme de tous ses termes.

Si, ne connaissant pas à l'avance la valeur rigoureuse du nombre
«• ? on voulait juger de la précision des résultats successivement ob-
tenus , on remarquerait que la série de Leibnitz peut aussi être
mise sous cette autre forme

faisant donc le calcul du nombre « par cette nouvelle série f comme
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par la première , on n'admettrait 7 dans sa valeur définitive 7 que
les chiffres décimaux communs aux deux résultats.

IV. Pour troisième application > nous choisirons le problème important
et délicat de l'interpolation des suites ; mais ici les formes de l'ap-
plication de la méthode pouvant être variées d'une multitude de
manières différentes ; nous insisterons principalement sur quelques
procédés , en nous bornant par rapport aux autres à une briève
indication.

On sait que le problème qui nous occupe se réduit à former
l'équation d'une courbe parabolique passant par un certain nombre
de points dont on connaît les coordonnées, ou du moins s'éeartant
le moins possible de ces points, que Ton peut supposer n'être qu'à
peu près sur la courbe qu'on cherehe. Supposons donc , en premier
lieu , pour suivre exactement l'esprit du procédé de M. Kramp ,*
que Ton ait sept ordonnées équidistantes * , £ , y ? ^ , $, £? ^ ; on
pourra chetcher successivement l'expression générale de l'ordonnée
de la parabole i.° du sixième degré ? passant par les extrémités
de ces ordonnées ; 2.0 du troisième degré 5 passant par les ex-
trémités des mêmes ordonnées prises de deux en deux seulement ;
3.° du deuxième degré , passant par leurs extrémités > de trois en
trois ; 4*° enfin du premier degré ? passant uniquement par les ex-
trémités des deux ordonnées extrêmes.

Désignant alors respectivement ces expressions par A t 2?, C,D
et les considérant comme répondant aux indices respectifs J , 7, 7, 1 ,
ou , ce qui revient au même , aux indices 1 , 2 , 3 , 6 ; le terme
qui répondra à l'indice zéro équivaudra sensiblement à la valeur
générale de l'ordonnée qui répondrait au cas où on aurait fait entrer
en considération une infinité d'ordonnées intermédiaires entre les or-
données extrêmes ; et sera conséquemment une expression plus exacte
de l'ordonnée générale que celle qu'avait fourni la considération des
$ept points donnés.

L'application de ce procédé exige que le nombre des points donnes
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diminué d'une unité ; ait le plus grand nombre possible de diviseurs.
Voici un autre procédé qui n'est point sujet à cette limitation.

Lorsque les ordonnées données sont équidistantes et en nombre
împair , on peut toujours , pour plus de simplicité, prendre leur com-
mune distance pour unité , et supposer en outre que l'ordonnée
moyenne repond à l'origine. Supposons donc qu'on ait les cinq
ordonnées consécutives fi// f fi/ , fi , fi' , fin > répondant respective-
ment aux abscisses *—2 , —1 , I4I0 , + 1 , + 2 ; et proposons-
nous de trouver l'ordonnée y qui doit répondre à l'abscisse quel-
conque x.

i«° Ne considérons d'abord que l'ordonnée fin 7 et posons

2.0 Considérons en second lieu les deux ordonnées fiu 7 fit ; en
désignant par D l'ordonnée générale de la droite qui joint leur$
extrémités supérieures , nous aurons

3.° Considérons ensuite les trois ordonnées &it , fiê , fi ; en dé-
signant par C Tordonnnée générale de la parabole ordinaire qui
joint leurs extrémités supérieures , nous aurons

4° Appelant de même B l'ordonnée générale de la parabole du
troisième degré qui joint les extrémités supérieures des quatre 01*
données fi// > fi/ * fi y fi' 7 nons aurons

5.a Appelant enfin A l'ordonnée générale de la parabole du
trîème degré qui résulte de l'emploi total de cinq données fi//, fi/
£? & $ &' 1 on aura

A = fi^(P''-&fi'+8p/-fi//)a;-ï; ?''—*/»+14P-^/+^/>%
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Sî présentement on considère les valeurs successives À , B , C ,

D , JE comme répondant successivement aux indices 7 , 7 , 7 , 7 , 1 ,
o u , ce qui revient au même, aux indices 60 fois plus grands 12 f

i5 , 20 , 00 , 60 , le terme répondant à l'indice o sera sensible-
tnent ce qu'on obtiendrait pour y , en ayant égard à une infinité
d'autres ordonnées qui seraient censées suivre fi" suivant la loi qui
régit les premières ; on trouve dans ce cas , comme nous l'avons
déjà vu ,

^ ~ 7,8.8.9.9.10 '

et il ne restera plus que les substitutions à exécuter.
On pourra ensuite procéder d'une manière inverse 5 c'est-à-dire ,

prendre successivement une , deux, trois, quatre et cinq ordonnées
en allant de £u vers Pff ; on obtiendra ainsi une nouvelle expression
de y j, qui ne différera au surplus de la précédente qu'en ce que
%ff et & y seront respectivement changés en Z3,, et £, , et réciproque-
ment. Cette nouvelle sera relative à l'hypothèse où Ton aurait eu
égard à une infinité d'ordonnées précédant £//. La demi-somme de
ces expressions donnera l'expression la plus convenable à employer*
Leur différence qui sera nécessairement très-petite fera connaître
sensiblement Terreur dans laquelle l'emploi de chacune d'elles peut
entraîner.

Mais de toutes les manières d'appliquer la nouvelle méthode à
Tinterpolation des suites la plus exacte paraît devoir être la suivante*
Soient ra-J-i le nombre des valeurs données et correspondantes de
& et de y. Soient A , B , C 9 D, les fonctions des degrés n 9

n—ï , 72—*2 , 72 — 3.... représentant le plus exactement possible les

râleurs données ; ces fonctions étant obtenues par la méthode des

moindres quarrés , ainsi qu'il a été expliqué dans ce volume ( pag. 242

et suiv. ). On considérera A 9 B , C , D,.... comme répondant res-

pectivement aux indices — , —L- • et cherchant.
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comme ci-dessus ,1e terme qni doit répondre à l'indice zéro, on prendra
ce terme pour la valeur de y

Nous n'entrerons point actuellement dans plus de détails à ce sujet;
sur lequel nous pourrons peut-être revenir une autre fois. 11 nous
suffit pour le présent d'avoir montré que Fanalise possède , dans la
méthode développée par M. Kramp , un nouvel instrument, suscep-
tible sans doute de perfectionnement ; mais qui , tel qu'il est , peut
déjà y dans un grand nombre de circonstances , devenir d'un usage
très-précieux.

QUESTIONS PROPOSÉES.

Frobîème physico-mathématique*

OOIT un globe > d'un rayon connu , également lumineux dans toute
sa surface. Soit de plus, dans le voisinage de ce globe ? un très-
petit corps que , pour plus de simplicité , nous supposerons réduit
à un point. Si Ton imagine un cône circonscrit au glcbe , dont le
sommet soit le point dont il s'agit ; sa ligne de contact ,, qui sera
un cercle , partagera la surface du globe en deux calottes sphériques
inégales , dont la plus petite seule éclairera le petit corps ; et cette
calotte x d'autant plus petite que ce corps sera plus voisin du globe ,
ne pourra devenir une hémisphère qu'autant que le même corps
sera infiniment éloigné.

11 est aisé de concevoir , d'après cela que , soit que le corps dont
il s'agit soit très-voisin du globe , soit qu'au contraire il en soit
très-éloigjné , ce globe , dans l'un et dans l'autre cas, ne pourra l'é—
clairer que faiblement»

II y a donc une certaine distance a laquelle îe petit corps recevra
du globe la plus grande lumière possible ; et ce que nous proposons*
ïcl, c'est d'assigner cette distance Z



THÉORÈMES NOUVEAUX.

GEOMETRIE ANALITIQUE.

Théorèmes nouçeaux sur les lignes et surfaces du
second ordre;

Par M. FRÉGIEE P ancien élève de l'e'cole polytechnique,

J 'AI démontré , à la page 229 de ce volume , quatre théorèmes
assez remarquables , relatifs aux lignes et surfaces du second ordre»
Mais j'ai remarqué postérieurement que le premier et le troisième
n'étaient que des cas très - particuliers de] deux autres théorèmes
Beaucoup plus généraux. Ce sont ces dernrers ^que je me propose
ici de démontrer*

On a tu ( pag. 1B0 ) qu'en prenant respectivement pour axes
des x et des y la tangente et la normale en un point quelconque
d'une ligne du second ordre , désignant par N la longueur de la
partie de cette normale interceptée par la courbe , par P le rayon
de courbure ; et supposant que Péquation de la tangente à l'extrémité
de la normale opposée à l'origine fut

MOUS ayons vu, dîs-je , que l'équation de la courbe était alors

—Ax—2V) = o . (1)

ISons avons vu , en outre, qu'en menant par Forigine deux droites*
, D7 , ayant respectivement pour équations , savoir :

Tarn. VI, n.°XI, iJT mai 1816, 46'
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D , ay~bx ; W , a'y^Vz ? (2)

ce qui permet de supposer

**+£»= i , a"4-J ' a=ï , (3)

l'équation de la corde C qui joint les points de rencontre de ces
droites avec la courbe est

{Niab'-\-ba')—2APbfr\x+(2Pbh/--Naa')y = 2NPbb/ ; (4)

d'où nous avons conclu que cette corde rencontre l'axe des y} c'est-
à-dire ? la normale , en un point pour lequel on doit avoir

Cela posé 5 concevons une seconde ligne du second ordre dont
les axes des coordonnées soient les diamètres principaux ; et concevons
de plus que D , Dx soient deux diamètres conjugués quelconques
de cette seconde courbe ; nous exprimerons cette circonstance par
l'équation

uaa'-^-fibb' — o ; (6)

dans laquelle u et £ sont deux constantes , no dépendant que des
dimensions de la seconde courbe.

Or , si Ton élimine bb' de la formule (5) ? au moyen de la re-
lation (6) , aa1 disparaîtra de lui-même , et il viendra

2.CCÏNP

y=7^^> (7)
quantité constante* De là résulte ce théorème :

THÉORÈME L Si Von conçoit,'sur un même plan, deux lignes
quelconques du second ordre , telles que le centre de la seconde
soit un point quelconque du périmètre de la première , et que ses
diamètres principaux soient dirigés suivant la tangente et la nor-
male à cette première courbe au point dont il s'agit ; de quelque
manière que Von mène deux diamètres conjugués à Ictseconde courbe,
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la corde de la première qui joindra leurs points de rencontre avec
elle coupera constamment la normale au même point ; d'où il suit
encore , par la propriété connue des pèles , que les tangentes aux
extrémités de cette corde concourront toujours sur une même droite.

La forme du résultat^) prouve, en outre, que, pourvu que la seconde
courbe demeure constamment semblable à elle-même ? elle pourra
varier de grandeur ; sans que la corde C cesse pour cela de couper
la normale au même point.

Ce théorème est sur-tout remarquable , lorsque la seconde courbe
est un cercle ; tous les diamètres conjugués sont alors rectangulaires,
et il en résulte notre théorème de la page 281 , duquel nous avons
déduit le moyen de construire ? avec un équerre pour tout instru-
ment ; la tangente et la normale en un point quelconque d'une ligne
du second ordre..

Nous avons vu ( page s34 ) qu'en prenant respectivement pour
axes des oc y des y et des z les deux tangentes principales et ta
normale en un point quelconque d'une surface du second ordre ,
désignant par N la longueur de la partie de cette normale inter-
ceptée par la surface ? par P et Q les deux rayons de courbure
principaux 5 et supposant que l'équation du plan tangent à l'extrémité
de la normale opposée à l'origine fût

nous avons vu , dis-je ? que l'équation de la surface était alors

Nous avons vu } en outre } qu'en menant par l'origine trois droites*
D ? D' r J}/f , ayant respectivement pour équations , savoir :

cfyz=.liz ;: ( cuy=-h/fz ;;

ce qui permet de supposer.*
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a *
(3

l'équation du plan C qui joint les points de rencontre de ces droites
avec la surface est

c»c {c"a —a"

c c' {ah'—l a>

/a//—cb'a/') ; (4)

ëCoh. nous avons conclu que ce plan rencontre l'axe des z , c'est-
à-dire , la normale , en un point dont on obtient la distance à l'origine f

en posant, dans cette équation x=o et y=o .
En posant , pour abréger ,

l^c^^^b^—^a^^b^c^c^a^b—b^a^b^cc^a^^ba^^e 5 (5)

fd&HaH"— b/a//)+c/*c/c/\a»b~b"a)+c"*cc\ab/—ba/)=~f ;

cette distance sera donnée par la formule

ifNPQ

Cela posé ; concevons une seconde surface du second ordre dont
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les axes des coordonnées soient les diamètres principaux ; et con-
cevons de plus que D , D / , W; soient trois diamètres conjugués
quelconques de cette seconde surface ; nous exprimerons cette cir-
constance par les trois équations de condition

(7)

dans lesquelles *, Ê, y sont trois constantes ne dépendant que des
dimensions de la seconde surface.

Si l'on prend successivement les différences deux à deux des
produits respectifs de ces équations d'abord par b , b;

 ? bl/, puis
par a, af

 7 aff , il viendra

*a"(fi b* — b a^yc'\b cf—c V) ,

*a (afb»~b>a»)-yc (b*c"—cfb")

*a' {a"b —b»a )=yc' (b"c —c"b )

fib"(a bf ~b af)-yc
f\c a* —a c<)

fib {af b»—bf a")-yc (cf a"—af cff)

fib'(a»b ~b"a )=zyc
/(c//a —a"c )

En prenant la somme des produits respectifs des équations (8)
a11 ce* , acfc!/

 ? a'c^c, et la somme des produits respectifs des équa*
tîons (9) par bnccf, bcfcu

 ? b
fcffc ? et ayant égard aux équations (5) %

il vient simplement /

ad—yf , $e-<yf ; (10)

éliminant enfin d et e de la formule (6) , au moyen de ces deux
dernières équations, y disparaîtra aussi de lui - môme > et il viendra

(9)

quantité constante. De là résulte ce théorème :
THÉORÈME IL Si Von conçoit 7 dans Vespace, deux surfaces

quelconques du second ordre , telles que le centre de la seconde
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soit un point quelconque de la première , et que ses diamètres
principaux soient dirigés suivant les deux tangentes principales tt
la normale à cette première surface, au point dont il s'ûgit ; de
quelque manière que Von mène trois diamètres conjugués à la se~
conde surface , le plan qui contiendra leurs intersections avec la
première coupera constamment la normale au même point ? d'où
il suit encore , par la propriété connue des pôles , que le cône
circonscrit à la première surface de manière qu'il la touche suivant
son intersection avec le plan dont il s'agit , aura toujours son
sommet sur un même plan^

La forme du résultat (11) montre en outre que , pourvu que
la seconde surface demeure constamment semblable à elle-même,
elle pourra varier de grandeur sans que le plan C cesse pour cela
de couper la normale au même points

Ce théorème est sur-tout remarquable, lorsque la seconde surface
est une sphère \ tous les systèmes de diamètres conjugués sont alors
rectangulaires , et il en résulte notre théorème de la page 287 9

parfaitemeut analogue à celui de la page 281.

QUESTIONS RÉSOLUES.
Démonstration des deuco théorèmes énoncés à ïa

page 172 de ce volume , et de quelques attires
théorèmes analogues j,

Par M. J. B. DURRANDE.

a >b, c les cosinus des angles que forme avec trois axes
rectangulaires» Taxe d un cône droit qui a son sommet à. l'origine , e t
dont L'angle générateur est r 3 ce qxû donnera.
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£ 3 =i . (i)

les ëquatîons de cet axe seront

cx~az , cy=bz : (2)

Soient

CXTZAZ y Cy-Bz , (3)

les équations d'une génératrice quelconque A%B, C étant les cosinns
des angles que forme cette génératrice avec les mêmes axes ; c&
qui donne

^H-£2+6*=i . (4)
A , B, C, seront indéterminés ; et le cosinus de l'angle de la géné-r
ratrice avec Taxe sera , en ayant égard aux conditions (1 et 4) >

aA+bB+cC ;

mais cet angle doit être constant et égal à r ; donc

aA+bB+cC=Cosx . (5)

D'un autre côté , les équations ( 3 et 4 ) donnent

substituant donc dans l'équation (5), quarrant et chassant le dé-
nominateur, il viendra finalement pour l'équation du cône dont il s'agit

(ax+by+cz)2 = (*2+j*+z2)Cos.2r . (C)

Désignons ce cône par C. Pour un autre cône O, de même sommet
que le premier, l'équation sera

(a/^+h/y+c'zy=(cv2+y2+z2)Cos.^ , (O)

la condition

a'*+b'*+c'*=i . (6)

Nos deux cônes C , C se coupent, en général; suivant deux droites
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passant par l'origine ; et toute combinaison de leurs équations doît
être l'équation d'une surface passant par ces deux droites : telle est
donc , en particulier , l'équation qu'on obtient en multipliant celles-
là en croix, et qui devient, par la suppression du facteur commun
et l'extraction de la racine quarrée

Celte équation appartient , comme on le voit , à deux plans passa»!
l'un et l'autre par l'origine 7 et dont l'un seulement contient les
intersections des deux cônes; on le reconnaîtra facilement* en sup-
posant pour un moment que les deux cônes deviennent égaux et
coïncidens • l'équation doit alors se réduire a 0 = 0 ; ce qui ne peut
avoir lieu qu'en prenant le signe supérieur* Ainsi 7J il est certain
que l'équation du plan qui contient les deux intersections des deux
cônes est

Cette équation est aussi celle de leur plan tangent commun 5 lors-
qu'il se touche ; et on voit 9 en outre , que dans le cas où-, n'ayant
que le sommet commun , ils sont tout-à-fait extérieurs ou intérieurs
l'un à l'autre , le plan (k//S) n'en existe pas moins. Nous nomme-
rons ce plan (fi") , à l'avenir, le Plan radical des deux cônes C et Cf.

Concevons un troisième cône Cn ayant même sommet que les
d'eux autres et ayant son axe dans Taxe des z -, ce nouveau cône
aura aussi des plans radicaux (fi1 et k) avec C et Cf \ et on déduira,
Les équations de ces plans de celle du plan (fi//S) , en supposant
successivement, dans celle-ci, que Cf et ensuite C devient Cn ; c'est-
à-dire , en y supposant d'abord # / = o , 37=o ^ ^ / = i , r/=r// ^
puis ensuite #=0 , b = o ,c—t 9 r = rf/. Cela donnera

(a x-\-h Y+C z)Cos.r"=zCos.r , (A>);

^+^ /y+^)Cos.r^=zCos,r / . (fi)

Toute combinaison de ces deux équations appartiendra a uir
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plan qui contiendra l'intersection des plans (k et £') ; et puisque ,
par l'élimination de rn entre elles 5 on retombe sur l'équation (h/J),
il en résulte le théorème suivant :

THÉORÈME I. Les plans radicaux de trois cônes droits de
même sommet % pris deux à deux , se coupent tous trois suivant
une même droite.

Nous appellerons à l'avenir cette droite Vaxe radical des trois cônes.
Corollaire. Donc si l'on conçoit que l'un des cônes seulement 9

ayant toujours d'ailleurs son sommet commun avec les deux autres ,
varie de grandeur et de situation dans l'espace , l'intersection de ses
plans radicaux, déterminés par rapport aux deux autres, variable
comme lui, ne sortira pas néanmoins d'un même plan , lequel sera
le plan radical de ees deux-ci.

Si Ton conçoit une sphère qui ait son centre au sommet commun
des trois cônes , leurs Intersections avec elles seront de petits cercles ;
tandis que les intersections des plans radicaux avec elle seront de
grands cercles , que Ton pourra appeler axes radicaux des deux
cercles auxquels chacun d'eux sera relatif. L'axe radical de deux
cercles sera en particulier Tare de grand cercle qui passera par leur
leur intersection ; lorsque ces deux, cercles se couperont ; et l'on
aura ce théorème :

THÉORÈME IL Les axes radicaux de trois cercles quelconques
d'une même sphère 7 pris deux à deux, se coupent tous trois erv
un même point. (*)

Nous appellerons à l'avenir ce point le centre radical de troî&
cercles.

Corollaire. Donc > si l'on conçoit que l'un des cercles seulement
varie de grandeur et de situation sur la sphère > le point de con-
cours de SGS axes radicaux 5 déterminés par rapport aux deux autres 9

variables comme lui ,, ne sortira pas néanmoins d'un grand cercle 7

lequel sera l'axe radical de ces deux-ci.

C) C'est le premier des deux tiie'orèmes de la page 172
Tom. VL * 47
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De là résulte un moyen facile d'obtenir Taxe radical de deux

cercles d'une sphère , lorsque ces cercles ne se coupent pas. Il con-

siste à décrire d'aboid un Ccn:1e qui coupe ces deux-là; en conduisant

deux grands cercles par leurs intersections avec lui , ces grands

cercles se couperont en un point de Taxe radical cherche ; renou—

vêlant donc l'opération pour un autre cercle différent du premier

et coupant encore les deux autres t on obtiendra un second point

de cet axe radical , et il ne sera plus question que de faire passer

un grand cercle par ces deux points (*). On peut donc aussi faci-

lement obtenir le centre radical de trois cercles d'une sphère.

Tout ce que nous venons de dire , relativement à la sphère, étant

(*) On demandera peut-être comment on peut faire passer un arc de grand
cercle par deux points donnés sur une sphère ? il est aisé de voir que cette
question se réduit à déterminer l'un de ses pôles ; et il est tout aussi facile de
voir que ce pôle est à l'intersection de deux arcs de'crits de ces deux points
comme pôles, et avec une ouverture de compas égale à l'hypothe'nuse d'un triangle-
rectangle isocèle, dont les deux côtés de l'angle droit sont égaux au rayon de
la sphère.

Mais , dira-t-on , ceci suppose que Ton connaît le rayon de la sphère ; et comment
pourra-t-on le déterminer ? Voici la méthode , très-simple , que THEODOSE indique
pour cela, dans ses Sphèriques ; elle porte avec elle sa de'monstration :

Décrivez sur la sphère un cercle quelconque , en gardant en réserve l'ouverture
ûe compas qui aura servi à le décrire. Marquez sur la circonférence de ce cercle
trois points arbitraires , dont vous prendrez , avec le compas, les distances deux
à deux. De ces trois distances faites , sur un plan, les trois côte's d'un triangle
rectiligne , auquel ensuite vous circonscrirez un cercle , dont le rayon sera évidem-
ment égal à celui du cercle trace' sur la sphère. Construisez ensuite un triangle-
rectangle dont l'hypotliénusc soit votre ouverture de compas, mise en réserve, et
l'un des côtés de l'angle droit le rayon de votre cercle. Prolongez l'autre côté de
l'angle droit, jusqu'à sa rencontre avec la perpendiculaire menée à l'hypothénuse
du sommet opposé. Vous formerez ainsi un plus grand triangle - rectangle dont
le premier fera partie , et dont l'hypothénuse sera le diamètre de la sphère.

On a lieu d'être surpris qu'un problème aussi majeur et d'une construction si
facile ne soit traite dans aucun de nos livres élémentaires.

J. D. G.
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indépendant de son rayon , doit être vrai aussi pour le plan , qui
n'est autre chose qu'une Sphère dont le rayon est infini ; on a donc
le théorème suivant t

THÉORÈME 11L Les axes radicaux de trois cercles tratès sur
vn même plan } et pris successivement deux à deux 9 se coupent
tous trois en un même point.

Corollaire. Donc , si l'on conçoit que l'un seulement des trois
cercles varie à la fois de grandeur et de situation sur le plan, le
point de concours de ses axes radicaux 5 déterminés par rapport aux
deux autres 7 variable comme lui, ne sortira pas néanmoins d'une
ligne droite , laquelle sera Taxe radical de ces deux-eu

On peut donc , en opérant comme il a été dit pour la sphère 9

construire facilement Taxe radical de deux cercles qui ne se cou-r
pent pas.

Si Ton conçoit que Ton fasse tourner le système de deux cercles
et de leur axe radical autour de la droite qui joint leurs centres ?

les deux cercles engendreront des sphères, et Taxe radical engendrera
un plan qu'on pourra appeler le plan radical dé ces deux sphères.
Or, de là et de ce qui précède, résulte le théorème suivant :

THÉORÈME IF. Les plans radicaux de trois sphères, considérées
successivement deux à deux 7 se coupent tous trois suivant une même'
droite.

Cette droite , évidemment perpendiculaire au plan qui contient
les trois centres, est ce que nous appellerons à l'avenir Y axe radical
des trois sphères».

De là il est encore aisé de conclure ce théorème-ci :
THÉORÈME V> Les six plans radicaux qui naissent de lu

considération de quatre sphères prises deux à deux, et les quatre
axes radicaux qui naissent de la considération des mêmes sphères
prises trois à trois 9 concourent en un même point.

Ce point est ce que nous appellerons le centre radical des
quatre sphères.

Corollaire. Donc ? si Ton conçoit que l'une seulement de ces»
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sphères varie à la fols de grandeur et de situation dans Pespace %

le point de concours de ses plans radicaux, déterminés par rapport
aux trois autres ? variable comme elle , ne sortira pas néanmoins
d'une ligne droite 9 laquelle sera Taxe radical de ces trois-ci.

Retournons présentement à nos trois cônes. Supposons que C et
CN soient tangents l'un à l'autre ; leur plan radical {kr} deviendra
leur plan tangent commun , dont l'intersection avec le plan des axes
déterminera la ligne de contact des deux cônes. Mais, l'équation .de
œ dernier̂  plan ebt

et sa combinaison avec l'équation (Je*) donne

s.r—cCos.r») ;

ainsi , voilà les deux équations de la ligne de contact <îes deux cônes
C et C/f. ^Mais , l'angle de leurs axes devant être égal à la somme
ou à la différence de leurs angles générateurs ? on doit avoir

r devant être pris positivement ou négativement , suivant que les
deux cônes se touchent extérieurement ou intèrieurefnent. On a
d'après cela

au moyen de quoi nos deux équations deviennent

On trouvera semblablement ; pour les équations de la ligne de contact
de C" et a

aVTang.r" _ 5rTang.r

$1 Von conduit un plan par ces deux droites ? son équation sera
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ou, en développant

/5/Sin.r)Cos.r'/+(3Cos.r/—£'C

D'un autre côté^ 1*équation du plan qui contient les axes de C et
C e&t

(^—^0^+(^ /—acOy+iafr—ba'jz^o ; (7)

laquelle, à cause de

*=Cos.(r"+r) ; i:>=Cos.(r"-Hl/) *

devient , en substituant et développant,

(bCosr'—PCQ$.r)Cos.r/']x
s.r^—a'Cos.r)Cos.r''}jr

Ces deux plans se coupent, en général ; et, toute équation déduite
de la combinaison des leurs doit appartenir à une surface qui contient
leur intersection : telle sera donc , en particulier celle qu'on obtiendra
en ajoutant à l'équation (T;/) le produit de cette dernière par Tang,r/;}
cette équation est

(£Sin.r>—i^Sin.r)o?=(tfSin.r/—• a'Sm.r)y ; (8)

c'est donc celle d'un plan qui concourt en une même droite arec
les deux autres , et dont conscquemment la ligne d'intersection est
déterminée par cette dernière équation et par l'équation (7) -, or ? elles
ne contiennent , ni Tune ni l'autre ? rien de relatif au cône Cif

 y

et seraient encore les mêmes si rN était infini ; on a donc ce théorème :
THÉORÈME VI. Si un cène variable de grandeur est constam-

ment tangent à deux autres cônes , de grandeur et de situation
invariable 9 le plan qui contiendra ses lignes de contact avec eux,
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variable comme lui y coupera toujours néanmoins le plan de leurt
mes suivant une même droite 7 laquelle ne sera autre que l'inter-
section de ce dernier plan avec le plan tangent commun aux
deux cônes*.

Nous appellerons à Tarcnir cette droite Vaxe de similitude des
deux cônes fixes.

En considérant le sommet commun des trois cônes comme le
centre d'une sphère d'un rayon quelconque ? on obtient cet autre
théorème :

THÉORÈME VIII. Si un cercle tracé sur une sphère 9 variable
de grandeur, est constamment tangent à deux autres cercles delà
même sphère, de grandeur et de situation invariable r Parc de grand
cercle conduit par ses points de contact avec eux , variable comme
lui, coupera toujours néanmoins tare de grand cercle qui joint
leurs pôles en un même point 9 lequel ne sera autre que Vinter-
section de cet arc de grand cercle avec Varc de grand cercle tangent
à la fois aux deux cercles*.

Ce point y que nous appellerons à l'avenir le centre de similitude
des deux cercles f est facile à assigner y lorsqu'on peut conduire un
arc de grand cercle qui les touche tous deux. Dans le cas contraire *
en décrivant un petit cercle qui les touche l'un et l'autre > et
conduisant ensuite un grand cercle par les deux points de contact,
ce grand cercle contiendra le centre de similitude ; en répétant donc
la même opération pour un autre petit cercle } touchant encore les
kleux cercles dont il s'agit , on obtiendra un nouveau grand cercle,
dont l'intersection avec le premier donnera le point cherché. On
doit seulement remarquer qu'ici on aura deux centres de similitude-
places aux deux extrémités d'un même diamètre de la sphère-

Tout ceci étant indépendant de la grandeur du rayon de la sphère
devra être vrai aussi lorsque ce rayon sera infini ? e7est-à-dire , lors-
que la, sphère deviendra un plan ; on a donc ce théorème :

THÉORÈME VI1L Si un cercle variable de grandeur sur un
plark est constamment tangent à deux autres cercles , de grandeur;
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et de situation invariaile, tracés sur le même plan ; la droite con-
duite par ses points de contact avec eux , variable comme lui %

coupera toujours néanmoins la droite (jui joint les centres en un
même point 9 lequel ne sera autre que celui où cette droite est coupée
par la tangente commune aux deux cercles.

Ce point 7 que nous appellerons à l'avenir le centre de similitude
des deux cercles > peut être déterminé , lors même qu'on ne peut
mener à ces deux cercles une tangente commune, en suivant exacte-
ment ce que nous venons de dire pour deux cercles d'une sphère.

De ce théorème il est encore facile de déduire le suivant :
THÉORÈME IX. Si une sphère çariable de grandeur est cons-

tamment tangente à deux autres sphères , de grandeur et de sir

tuation invariable 9 la droite conduite par les points de contact r

variable comme elle , coupera toujours néanmoins la droite qui
joint les centres , et la coupera toujours en un même point 9 lequel
ne sera autre que le sommet du cône circonscrit à la fois ûux
deux sphères Jixes.

Nous appellerons à l'avenir ce point le centre de similitude des
deux sphères.

Revenons encore a nos cônes. D'après ce qui a été dit ci-dessus 5

en obtiendra Taxe de similitude des deux cônes C > C7, en com-
binant entre elles les deux équations ( 7 et 8 ) 7 ce qui donnera

ûSin.r'—a'Sin.r £Sin.r;¥&in.r
cSin.r'—c'Sin.r ' J cSin.r'—c'Sin.r # V J

Mais il faut remarquer que tout ceci est relatif à l'hypothèse où
le cône Cn touche les deux autres extérieurement. Ces formules
conviennent également au cas où ce même cône les enveloppe tous
deux 5 car elles ne changent pas par le changement simultané des
signes de r et rf. En conséquence ? la droite (e/;) est celle suivant
laquelle le plan des axes de C et Cf est coupé par leurs plans
tangens extérieurs. Pour obtenir celles suivant lesquelles le même
plan est coupé par leurs plans tangens communs intérieurs 9 il
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suffira de changer, dans ces formules , le signe de l'un quelconque
des deux angles r , r ; , ce qui donnera également

sr t...
il I

Pour distinguer ces deux axes de similitude l'un de l'autre , nous
appellerons le premier axe de similitude externe, et le second axe
de similitude interne. Nous admettrons des dénominateurs analogues,,
soit pour deux cercles tracés sur une même sphère ou sur un plan,'
soit pour deux sphères dans l'espace.

En considérant ensuite successivement le système des deux cercles
C , C° et celui des deux cercles Cf ,'C/;

 5 on devra trouver également
à chaque système un axe de similitude externe et un axe de similitude
interne. Désignons respectivement ces axes par (#') et (zv) pour le
premier système, et par (e) et (2) pour le second.

Ou conclura les équations de (e/S) et (J#/) de celles de (V7) et (i//y) %

en supposant , dans celles-ci, que C; devient CN'; c'est-à-dire , en
supposant af=o , fr^o , ^ = 1 , r 7 ^ ^ . On conclura semLlable-
ment les équations de (e) et (/) de celles de (e") et {i/;) , en sup-
posant 5 dans celles-ci , que C devient Cu ; c'est-à-dire 5 en supposant
a = o ? b~o. 7 ^ = 1 , r=r/;. Il viendra ainsi

aSm.r"
t*-Sin.r

,r * J cSin.r^-fSin.r ?

ô'Sin.r" b'Sm.r"
* 5in.r^—Sin.r' c'S'm^1—Sin.r'

Si L'on fait passer un plan par les droites (e) , (V) son équatioa
sera
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(E)

5Ï Ton veut savoir suivant quelle droite ce plan coupe celui des axes
des cônes C , Cf, il faudra combiner son équation avee celle de ce
dernier plan , qui est, comme nous l'avons déjà vix

'--ba')z=o ; (7)

mais en retranchant de la première le produit de cette dernière par
Sin.r / /, elle se réduit simplement à

Ç&Sin.r'—^/Sin.r)o?=(tfSin.r'—-a'&inrfy ;

équation qui a évidemment lieu en même temps que les équations
{e/y) , d'où il suit que cette dernière droite est sur le plan (2?)

Mais , puisque (f) , (zv) , (//;) se déduisent respectivement de (e) ,
(e;) , (eN) y par le seul changement du signe r ou de r7, on doit
en conclure que les trois équations qu'on déduira de l'équation (JE)
par les ehangemens successif et simultané de ces signes , sont les
équations de trois plans (/) , (/') , (/") f dont le premier contient
00 1 0v) » 070 f le second (/) , (*>) , (^) et le troisième (J) 9 (i<) ,
{e;/). On a donc le théorème que voici :

THÉORÈME X Les axes de similitude externes de trois cônes*
de même sommet ? considérés successivement deux à deux ; sont tous
trois sur un même plan : chacun dfeux est sur un même plan avec
deux des axes de similitude internes ; de sorte que ces six axes*
sont sur quatre plans.

On peut appeler les quatre plans qui contiennent les six
Tonw VI. 48
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de similitude de trois cônes les plans de similitude de ces trois cônes.
Un seulement est externe 9 et les trois autres sont internes.

En considérant le sommet commun des trois cônes comme le
centre d'une sphère, d'un rayon quelconque 7 on obtiendra cet autrç
théorème :

THÉORÈME XL Les centres de similitude externes de trois
Cercles d'une sphère , considérés successivement deux à deux , sont
tous trois sur un même arc de grand cercle : chacun d'eux est sur
un même arc de grand cercle avec deux des centres de similitude
internes ; de sorte que ces sioo centres sont sur quatre arcs de grands
cercles. (*)

On peut appeler ces grands cercles les axés de similitude des
trois cercles dont il s'agit -, un seul est externe, et les trois autres
sont internes*

La vérité de ce théorème étant indépendante de la grandeur du
rayon de la sphère , il sera vrai encore lorsque ce rayon sera infini \
un a donc cet autre théorème :

THÉORÈME XII. Les centres de similitude externes de trois
cercles tracés sur un même plan , et considérés successivement deux
à deux , sont tous trois sur une même ligne droite : chacun d'eux
est en ligne droite avec deux des centres de similitude internes ;
de sorte que ces six centres sont sur quatre droites.

On peut appeler ces droites les axes de similitude des trois cercles ;
tin seul est externe et les trois autres sont internes.

De là il est encore aisé de déduire les trois théorèmes que voici:
THÉORÈME XIII. Les centres de similitude externes de trois

sphères , prises successivement deux à deux 9 sont tous trois situés
sur une même ligne droite , contenue dans le plan de leurs centres :
chacun d'eux est en ligne droite avec deux des centres de similitude
internes, de sorte que ces six points ? tous situés sur le plan des
centres , sont sur quatre droites tracées sur ce plan.

£*) C'est le deuxième théorème de la page 172.
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On peut appeler ces quatre droites les axes de similitude des
trois sphères-, un seul est externe, et les trois autres sont internes.

THÉORÈME XIV, Si une sphère variable de grandeur dans
tespace est constamment tangente à trois sphères de grandeur et
de situation invariable ; le plan conduit par ses points de contact
avec elles , variable comme elle , coupera toujours néanmoins le plan
des centres suivant une même droite, laquelle ne sera autre que l'axe
de similitude des trois sphères.

On doit remarquer que l'axe dont îl s'agit est externe, lorsque
la sphère variable touche extérieurement ou enveloppe à la fois les
trois sphères fixes ; et qu'au contraire il est interne lorsque la sphère
variable touche l'une des sphères fixes extérieurement et enveloppé
les deux autres , ou encore lorsque > touchant ces deux-cî extérieure-
ment ? elle enveloppe la première.

THÉORÈME XV. Les six centres de similitude externes de
quatre sphères considérées successivement deupe à deux, et consé-
quemment les quatre axes de similitude externes de ces mêmes sphères
considérées successivement trois à trois sont situés sur un même
plan : chacun de ces axes est dans un même plan arec trois des
six centres de similitude internes ; de sorte que les douze centres
sont sur seize droites qui sont elles-mêmes situées sur cinq plans*

On peut appeler ces plans les plans de similitude des quatre sphères;
»n seul est externe tandis que les quatre autres sont internes*

Les théorèmes que nous venons d'énoncer sont connus , pour 1#
plupart; mais il n'était pas inutile de faire voir comment, en éta-̂
biissant entre eux une subordination convenable , on parvient faci-
lement à les démontrer. Ce qu'on trouve à la page 3^9 du IV.*
volume de ce recueil suffira pour en faire sentir l'importance et
Futilité.
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Solution des deux problèmes proposés à la page 200
de ce çolume ;

Par M. J. B. DURRANDE»

I. X-/EUX figures planes 5 tracées sur deux plans différens , et d'un
seul côté dje chacun de ces plans seulement? peuvent être égales de
deux manières que, dans une multitude de circonstances, on est
obligé de bien distinguer. Il peut arriver, en effet, que , pour faire
coïncider les deux fgures, il faille appliquer les deux plans l'un sur
l'autre de manière "que ces figures soient toutes deux en dessus ou
toutes deux en dessous , ou , ce qui revient au même 9 de manière
que X endroit de Tune soit appliqué contre Y envers de l'autre ; ou
bien il peut se faire que , pour les faire coïncider, il faille au contraire
appliquer les deux plans où elles sont tracées l'un contre l'autre de telle
sorte que les deux figures soient l'une et l'autre en dedans ou Tune et
l'autre en dehors de ces deux plans. Une gravure et la planche d'où on l'a
tirée sont dans le dernier de ces deux cas : deux épreuves d'une
morne gravure sont dans le premier.

Pour distinguer ces deux cas par des dénominations différentes ,
nous dirons que deux figures égales , tracées sur un même plan ,
sont identiques 9 lorsqu'il suffira de faire glisser ou tourner l'une
d'elles sur ce plan, sans \e quitter, pour l'amener à couvrir exacte-
Tnent l'autre. Nous dirons au contraire que deux figures égales, tracées
sur un même plan sont symétriques , lorsqu'on ne pourra les amener
à coïncider qu'en renversant préalablement l'une d'elles, de manière
que la face qu'elle montrait d'abord extérieurement soit appliquée
contre le plan. Il est aisé de voir, u° que deux figures identiques
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ou symétriques par rapport à une troisième sont identiques entre
elles; 2.0 mais que si , de deux figures , Tune est identique et Tautre
symétrique par rapport à une troisième , elles seront symétriques 1 une
h l'autre,

II importe de remarquer qu'il y a des figures égales qui sont
3 la fois identiques et symétriques Tune à Fauîre : ce sont celles
qu'une droite partage en deux parties égales symétriquement dis-
posées par rapport à elle ; de telle sorte que cette droite soit per-
pendiculaire sur le milieu de toute droite qui joindra deux points
homologues des deux parties ; c'est , par exemple , le cas du triangle
isocèle , et c'est encore le cas d'un quadrilatère formé de deux
triangles isocèles , opposés base à hase. Le dessein géométral de la
façade d'un édifice tout-à-fait régulier est également dans ce cas :
répreuve d'un tel dessein ne diffère aucunement de la planche d7où
elle est tirée. Nous dirons à l'avenir qu'une figure est symétrique
pc r rapport à elle-même, lorsqu'elle se trouvera dans ce cas.

11 importe encore de remarquer que , si Ptm décompose deux
polygones égaux en triangles , par des diagonales homologues;
suivant que les polygones seront identiques on symétriques , les
triangles homologues seront eux-mêmes identiques ou symétriques.

D'après cette dernière remarque le premier des deux problèmes
proposés peut être réduit à ce qui suit :

PROBLÈME* Décomposer un triangle donné quelconque en parties
symétriques par rapport à elles-mêmes ?

Solution. Du centre du cercle inscrit au triangle soient abaissées
des perpendiculaires sur ses côtés 9 ces perpendiculaires seront égales;
et les pieds de deux quelconques seront également distants du sommet
de l'angle sur les côtés duquel elles tomberont.

Ces perpendiculaires diviseront donc le triangle en trois quadri-
latères dont chacun sera formé de deux triangles isocèles 9 opposés
base à base, et qui conséquemment seront symétriques à eux-mêmes?
le problème sera donc complètement résolu.

Lorsque le triangle dont il s'agit est rectangle , le problème peut
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être fort simplement résolu, en joignant le sommet de l'angle droit
au milieu de l'hypothénuse par une droite qui divise le triangle
en deux triangles isocèles ? et conséquemment symétriques par rapport
à eux-mêmes.

Si le triangle est acutangle ; en joignant le centre du cercle cir-
conscrit aux trois sommets par des droites ; ces droites le diviseront
en trois triangles isocèles , et conséquemment symétriques par rapport
à eux-mêmes.

Si enfin le triangle est obîusangle ; la perpendiculaire abaissée
du sommet de l'angle obtus sur le côté opposé le divisera en deux
triangles rectangles dont chacun pourra ensuite être ultérieurement
divisé en deux triangles isocèles et conséquemment symétriques par
rapport a eux-mêmes. On aura donc en tout quatre de ces triangles.

Maïs la première solution que nous avons donnée a l'avantage de
s'appliquer uniformément et sans distinction à tous les cas.

On voit, par ce qui précède, que , deux polygones symétriques,
chacun de m cotés f étant donnés , on peut toujours décomposer l'un
d'eux en 3(/TZ — 2) parties au plus qui, différemment disposées entre
elles , forment un polygone identique avec l'autre.

IT* Etendons présentement cette théorie aux figures tracées sur
une sphère ; elles présentent exactement les mêmes distinctions r

mais avec cette circonstance particulière qu'ici deux figures syme'~
triques ne peuvent, en aucune sorte, être superposées, du moins
en général. La raison en est que, lorsqu'on veut tenter la super-
position de deux pareilles figures , elles opposent leur convexité ou
leur concavité Tune à l'autre ; de sorte qu'elles ne peuvent se convenir
que dans leurs sommets ou dans un point de leur intérieur.

Mais il est sur la sphère , comme sur un plan , des figures
symétriques à elles-mêmes ; ce sont celles que le plan d'un grand
cercle divise en deux parties égales , tellement disposées par rapport
à ce plan qu'il se trouve à la fois perpendiculaire sur le milieu
de toutes les droite* qui joignent leurs points homologues,
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nombre est, on particulier , le triangle sphèrîque îsocele ; et de ce
nombre est encore le quadrilatère spbérique formé de deux triangles
sphériques isocèles , opposés base à base.

On peut remarquer de plus que , si Ton décompose deux polygones
sphériques égaux en triangles sphériques , par des diagonales homo-
logues ; suivant que les polygones seront identiques ou symétriques ,
les triangles sphériques homologues seront eux-mêmes identiques ou
symétriques.

En conséquence , le problème où l'on demanderait de couvrir
un polygone sphèrique avec les parties d'un autre polygone sphé-
rique qui lui serait symétriques se réduit au suivant :

PROBLÈME. Décomposer un triangle sphèrique quelconque en
parties symétriques par rapport à elles-mêmes /*

Solution. I-jâ solution de ce problème est tout-à-fait analogue à
celle que nous avons donnée relativement au triangle rectiligne. On
voit en effet que ? si l'on abaisse du pôle du cercle inscrit des arcs
de grands cercles perpendiculaires sur lès trois côte's du triangle ?

ces arcs le partageront en trois quadrilatères sphériques symétriques
à eux-mêmes 5 comme étant tous trois formés de deux triangles sphé-
riques isocèles , opposés base à base.

On pourrait encore chercher à imiter ici les autres solutions que
nous avons données relativement au triangle rectiligne ; mais on
ignore dans quel cas le pôle du cercle circonscrit au triangle sphè-
rique tombe dans ce triangle ? sur l'un de ses côtés ou hors de lui,
et il n'est pas démontré que , dans ce dernier eas 9 le triangle puisse
toujours être décomposé en d'autres pour lesquels le pôle du cercle
circonscrit ne soit point extérieur.

Il résulte de ceci que deux polygones de m côtés , syme'triques
l'un à l'autre , étant tracés sur une même sphère , on peut toujours
décomposer l'un d'eux en 3(/72—2) parties au plus qui ? disposées
convenablement , couvriront exactement l'autre.

III. 11 est presque superflu de faire remarquer que tout ce que
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aous venons de dire (II) s'applique , sans restrictions , aux angles
polyèdres égaux , lesquels peuvent aussi être tantôt identiques et
tantôt symétriques. Nous aurons seulement à observer ici que les
déVeloppemens àe deux angles polyèdres symétriques sont toujours
superposables , soit par un côté soit par l'autre ; de sorte que deux
tels angles polyèdres ne diffèrent uniquement que par la partie de
leur développement qui en a formé la surface intérieure > lorsqu'on
a plié ces développemens pour les former.

Ainsi , en résumé , il y a des angles polyèdres symétriques à eux-
mêmes ; et ce sont ceux qu'un plan passant par leur sommet par-
tage en deux parties égales tellement situées , que ce plan est à
la fois perpendiculaire sur le milieu de toutes les droites qui
joignent leurs points homologues» Tels sont, en particulier , l'angle
tiièdre isocèle et l'angle tétraèdre formé de la réunion de deux angles
trièdres isocèles , opposés base à base. Enfin , si l'on décompose deux
angles polyèdres égaux en un même nombre d'angles trièdres , par
des plans diagonaux homologues ; suivant que ces angles polyèdres
seront identiques ou symétriques , les angles trièdres résultant de leur
décomposition seront eux-mêmes identiques ou symétriques.

On voit d'après cela que , si Ton veut remplir un angle polyèdre
avec les parties d'un autre angle polyèdre qui lui est symétrique,
tout se réduira à savoir décomposer un angle trièdre en parties sy-
métriques à elles-mêmes. Pour résoudre ce dernier problème il suffit
de conduire par l'axe du cône inscrit des plans perpendiculaires aux
faces ; ces plans partageront l'angle trièdre en trois angles tétraèdres
symétriques a eux-mêmes, par ce qui précède-

On pourrait aussi recourir ici à la considération du cône circonscrit ;
mais il faudrait savoir auparavant dans quel cas l'axe d'un tel
cône tombe dans l'intérieur de l'angle trièdre sur l'une de ses faces
ou extérieurement; et il faudrait en outre qu'il fût démontré que,
dans ce dernier cas 5 l'angle trièdre est toujours decomposable en
d'autres tels que ? pour aucun d'eux, l'axe du cône circonscrit
u'e&t extérieur
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II résulte de ceci que, deux angles polyèdres symétriques de m

faces chacun étant donnés 5 on peut toujours décomposer l'un d'eux
en 3(m—2) parties au plus qui , convenablement disposées entre
elles p remplissent exactement l'autre.

IV. Passons enfin à la considération des corps égaux et appelons
encore corps Identiques ceux qui sont superposables , et peuvent consé-
quemment être conçus comme ayant été coulés dans un moule commun.
Appelons au contraire corps symétriques , ceux qui , malgré leur
parfaite égalité , ne sauraient être superposés , ni conséquemment
conçus coulés dans un moule commun. On peut citer nos deux mains
comme l'exemple le plus commun des corps de ce dernier genre ;
quelque parfaite égalité qu'on suppose exister entre elles ? jamais
une main droite ne saurait être convenablement remplacée par une
main gauche ; aussi le gant d'une main ne peut-il servir à l'autre
qu'en le retournant , le dedans en dehors.

Observons encore qu'ici un corps peut être symétrique à lui-même;
c'est*ce qui arrive toutes les fois qu'un plan le divise en deux parties
égales y tellement disposées l'une par rapport à l'autre, que ce plan
est à la fols perpendiculaire sur le milieu de toutes les droites qui
joignent leurs points homologues. C'est, par exemple , le cas d'un
téttaèd/e dont deux faces sont des triangles isocèles ayant leur base
commune ; et c'est encore le cas d'une pyramide quadrangulaire qui >

ayant pour base un quadrilatère symétrique à lui-même , serait cté-
eomposable , par un plan diagonal , en deux semblables tétraèdres.

Observons enfin que , si l'en décompose deux polyèdres égaux
quelconques en un même nombre de tétraèdres , par des plans
diagonaux homologues ; suivant que les deux polyèdres seront iden-
tiques ou symétriques, les tétraèdres résultant de leur décomposition
seront eux-mêmes Identiques ou symétriques.

Il résulte évidemment de là que la question qui consiste à dé-
composer un polyèdre quelconque en parties qui , disposées entre
elles d'une autre manière , forment un polyèdre symétrique pas

Tom. VU 49
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rapport au premier , se réduit, en dernière anallse , au problème
suivant :

PROBLÈME. Décomposer un tétraèdre donné quelconque en parties
symétriques par rapport à elles-mêmes ?

Solution. Soient A , B , C , D les sommets du tétraèdre, et O
le centre de la sphère inscrite; de ce centre soient abaissées sur les
faces des perpendiculaires dont les pieds soient respectivement A / ,
B / , C' , D / -, par ces perpendiculaires , prises deux à deux ? soient
fait passés six plans \ ces plans diviseront le tétraèdre en quatre
txaedres octogones à faces quadrilatères. Bornons-nous à considérer
l'un d'eux : celui qui contient le sommet D , et dont conséquem-
nient les trois arêtes de l'angle opposé sont O À ' , OB' , OC/.
INommons a > b 9 c les trois sommets non encore désignés ; en sorte
que les arêtes Ua , Diï 5 De soient respectivement opposées à celles
que nous venons de nommer.

Menons la diagonale DO , ainsi que les diagonales des faces D A ' ,
DB' , DC ' -, par la première et par chaeune des autres soient con-
duits trois plans ; ces plans diviseront l'exaèdre en trois pyramides
triangulaires ayant leur sommet commun en D , et ayant pour bases
les trois faces de l'angle O. Bornons-nous à considérer Tune d'elles:
celle dont la base est OA'dB'.

A/ et W étant les points de contact de la sphère inscrite avec
âeux des faces du tétraèdre, il s'ensuit d'abord que O A / = O B / ;
il s'ensuit en outre que D A / ~ D B / , comme tangentes menées à une
sphère d'un même point extérieur 5 e t , comme d'ailleurs les deux
triangles Dr A ' , DrB' ? qui ont le côté D^ commun , sont l'un et
l'autre rectangles en c ; il s'ensuit que ^B / =^A / .

Ainsi notre pyramide quadrangulaire se trouve être du genre de
celles que nous avons signalées plus haut comme étant symétriques
\ elles-mêmes; et , comme on prouverait la même chose des deux
autres, il s'ensuit que notre exaèdre est composé de trois parties
symétriques à elles-mêmes ; et , attendu qu'on en peut dire autant
des trois autres exaèdres , 11 en résulte finalement que notre tétraèdre
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est décomposable en douze pyramides quadrangulaires symétriques
à elles-mêmes.

Ou pourrait, à l'exemple de M. Legendre , recourir aussi à la
considération de la sphère circonscrite , laquelle , dans certains cas ,
offrirait II* moyen de décomposer le tétraèdre en douze autres, symé-
triqutîs à eux-mêmes ; mais on ne sait pas dans quel cas le centre
d'une telle sphère est intérieur au tétraèdre , à sa surface ou hors
de lui, et il n'est point démontré que , dans ce dernier cas ? le
tétraèdre puisse être décomposé en d'autres pour chacun desquels
le centre de la sphère circonscrite ne soit point extérieur ; tandis que
notre procédé ne souffre absolument aucune sorte d'exception.

Il est aisé de conclure de ceci que tout polyèdre est décomposable
en douze fois autant de parties symétriques à elles-mêmes qu'il peut
fournir de tétraèdres par sa décomposition.

Remarque L Au moyen de la théorie quî précède, on pourrait t
en géométrie , démontrer l'égalité des triangles sphériques , angles
trièdres et tétraèdres par la superposition ; sauf ensuite à prouver ,
comme ci-dessus , que , lorsque cette superposition ne peut avoir lieu,
en masse , on peut du moins l'effectuer par parties.

Remarque IL De même que Ton distingue deux sortes d'égalité" f

on peut aussi distinguer deux sortes de similitude ; elles donnent
exactement lieu aux mêmes considérations.

QUESTIONS PROPOSÉES.

Problèmes de Géométrie.

1. JLJÉTERMINER dans quels cas le pôle du cercle circonscrit \ un
triangle sphérique donné est intérieur au triangle , dans quel cas il
$e trouve sur l'un de ses côtés ; et dans quel cas il lui est extérieur.
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Démontrer en outre , s*ii est possible , que 9 dans ce dernier
le triangle sphérique est toujours dé^omposable en d'autres tels que #

pour aucun d'eux, le pôle du cercle circonscrit ne lui est extérieur?
IL Déterminer dans quels cas le centre de la sphère circonscrite

à un tétraèdre donné est intérieur au tétraèdre , dans quel cas il
se trouve sur sa surface, et dans quel cas il lui est extérieur. Dé-
montrer en outre, s'il est possible , que , dans ce dernier cas , le
tétraèdre est toujours décomposable en d'autres tels que, pour aucun
d'eux , le centre de la sphère circonscrite ne lui e$t extérieur ?

Théorèmes de Géométrie.

On sait que , lorsque deux golygones semblables sont semblable-
ment situés sur un même plan, c'est-à-dire , lorsqu'ils ont leurs côtés
homologues parallèles , les droites qui joignent leurs sommets homo-
logues concourent en un même point, qu'on peut appeler le centre
de similitude des deux polygones. On peut de plus appeler axe
radical des mêmes polygones la droite qui joint les intersections
de deux qu8lconques des côtés du premier avec leurs homologues
dans le second.

Ces démonstrations admises ? on propose de démontrer les deux;
théorèmes suivans :

Trois polygones semblables étant semblablement placés sur un même
plan ; i,° les trois centres de similitude qui résultent de leur combinaison
deux à deux sont situés sur une même ligne droite ; 2.° les trois axes,
radicaux <jui résultent de la même combinaison se coupent en un même
point.
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ASTRONOMIE.

Mémoire sur les éclipses de soleil ;

Par M, le professeur KRÀMF , doyen de la faculté des
sciences de Strasbourg.

( Deuxième partie* ) (*)

62. XJ'ÉQUATIÔN différentielle complète, entre djr, àz 9 d/ ,
fait voir que tous les problèmes concernant les éclipses, dans les-
quels le moment d'une plus grande phase, ou d'une phase quefeon-
que , de grandeur donnée est au nombre des inconnues , ne sauraient
admettre aucune solution directe, attendu qu'ils mènent à des équa-
tions très-compliquées-, et de plus éminemment transcendantes. La
solution directe est restreinte aux cas où le temps est au nomBre
des quantités données, ce qui permet de supposer d/=o. La question
deT déterminer l'instant de la plus grande phase , pour un endroit
dont la position géographique est connue, ne peut être résolu qu'ea
employant les fausses positions. Nous allons en donner un exemple ;
en déterminant l'instant de la plus grande phase ? pou£ l'observaloire*
de Berlin.

Nous avons déterminé la distance des centres pour les trois mo-
mens de gfr.3c/ , 9/l.45/ , icAo' , temps vrai à Paris, égale à 46r;
122, 376. On pourra les représenter par un trinôme , tel que

<*) Voyez la page i33 êe ce volume.

$om.VI, n.° XII, i . e r juin 1816V 5c*
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en comptant le temps t depuis ^.oo7 , et en prenant un quart d'heure
ou i5 ' pour unité de temps; de manière que

pour / = o , i , 2, ,

on ait la distance =461 9 122 5 076 ;

ce qui donne A~<{Ç>1 > %B =—1271 , 2C=593. La moindre dis-

tance répondra à / = ——- = ~ = i6/4//» Le milieu de F éclipse

arrivera donc à c ^ ^ M " ? temps de Paris; ce qui équivaut à io&.3o/.ia//
>

temps de Berlin. La moindre distance des centres sera A JT ? ce qui,

dans le cas actuel ? fait I2o;/ ou 2 ; de degré.
On aura une approximation encore plus parfaite, en comprenant dans

cette interpolation les cinq ordonnées 876 , 461 * 122 , 3^6 , 756 ,
qui répondent aux époques 9 ,̂15X , cf.oo' 9 9ft-45; , io^.o', 10l i5y.
En désignant par t le temps exprimé en quart d'heures , et compté
depuis ^.4^ > t a n t e n avant qu'eu arrière , on trouve la distance
des centres égale à

782—28o/+2O25*24-2^3—246^4 ;

en conséquence , le temps / auquel appartient la moindre distance
des centres , sera la racine de l'équation

Elle donne / = — d'un quart d'heure , ou ~ d'une minute ^ ou
enfin x'.z". Le milieu de l'éclipsé arrivera donc à tf./fit^1

 7 temps
vrai de Paris, équiva!ant à io^.So^io^, temps vrai de Berlin; ce
qui rie diffère que de deux secondes de l'approximation déjà employée.
Le temps t de nos formules , depuis le n.° 3g , sera donc o,44I8 ;
et, si l'on emploie cette fonction numérique pour déterminer les
coordonnées, on trouvera les trois rapports q : r , q1 : rf', y : z ,
rigoureusement égaux entre eux.

G3. PROBLÈME VUL On demande la position géographique
du lieu où Véclipse doit paraître centrale dans un instant donnée
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64. Solution. L'instant donné fera connaître les deux coordonnées

tjf , rf , moyennant les formules (j*—M-\-mt , r'^zN+nt* La con-
dition d'une éclipse centrale donne ^>=o ? r = o : on aura donc ( 8 \
en supprimant x dans À—x 7 ce que la nature du problème nous

. „ . Bgf Br* . .

permet de faire, y=—-— ? z-=- , et ensuite #=: yV—j*—^
Nous avons donné les valeurs numériques de M , iV > m 7 n , en
secondes d'un cercle dont le rayon était la distance A du centre
de la terre à celui du soleil ? savoir ; (40)

3I=— 5207" , ro =

iV=4-3563 , n = — 804^ .

II faudra exprimer de même le rayon C de la terre , lequel par
conséquent deviendra égal à 8//,7345 qui constitue (44) ^a parallaxe
horizontale du soleiL

65. Le commencement'et la fin de l'éclipsé centrale sont marqués
par les deux limites extrêmes au-delà desquelles la coordonnée x
n'a plus de valeur réelle. On aura donc, pour ces deux instans ,

c*=zy*+z2* Ainsi, en faisant, pour abréger, -— — i ~ h , ce qui

rend /^=4i3?io56 (44) r o n a u r a l'équation ^ V =
(JS+nty 5 ou biem

Donc , si j pour abréger , on fait

que de plus on désigne par t le commencement de Péclipse , par tr

sa fin , et qu'on en fasse autant pour les coordonnées y et z qui
s'y rapportent , on aura

__ (Mm+Nn)+R f __

n(Mn—Nm)— mR
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II en résulte que ny—mz , aussi bien que ny/—mz/, est égal à
Mn—Nm

h

66. Les quatre dernières formules font connaître les coordonnées
y et z , en parties décimales de la parallaxe horizontale ; et , pour
les réduire en parties décimales du rayon de la terre , il faut encore
les diviser par B,*y345. Le temps t est compté depuis huit heures
du matin , ayant pour unité l'intervalle de quatre heures,

67. Dans l'éclipsé de 1816, on trouve

—456i33i8 ,

—25057592 >

J? = +16062648 5

qui donne

. ^=+0,906326

^=+058904171 ; z / = +

ce qui fixe le commencement de l'éclipsé à c^J^.iy, et sa fin à
si>l.37/.3//, temps vrai de Paris j d'où résulte , pour sa durée totale ,

68. Des coordonnées x , y 1 z J dont la première est zéro, il
faut passer aux coordonnées X , Y , Z , moyennant les formules
du n.° 28 j> lesquelles deviennent ici



DE S0LE1C, 353
Les longitudes u et *? , calculées d'après les formules du ri>* 36 r
savoir

donnent, pour les deux époques du commencement et do la
de l'éclipsé ;

On en tîre ? pour le commencement et pour la fin de l'éclipsé $

X~— 0,3816174 ; ^=4-0,5196770 ;

r=—0,1270458 ; r'=:-—

69. Des coordonnées X , JT' , Z et X/
 > Y/

 y Z/ , on pasâTe aux
latitudes x } ^, ainsi qu'aux angles horaires ^ , fj, a Faide des

formules Sin.A = ^ , SIntA
/=Z/ , Tang,t«=; —

d'où il résulte

L?expression de l'angle horaire ^ ^ compté depuis huit heures dil
tnalîn , en prenant l'intervalle de quatre heures pour unité de temps J
est (45) ^i740 .36/.36"+2i6626 / / /+Z). On aura donc , pour le
Je cas actuel ,

70» On aura donc, pour les latitudes ;

*=65°.47 / ; *'=35-.3> t

Pour les angles horaires, il faudra prendre f

donc
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£-—Ï° .55 ' .9" ; X>/=8i°.9/.24// ̂

Le commencement de l'éclipsé centrale aura donc lîeii 9 a près de
deux degrés, à l'occident de Paris 7 sow> la latitude de 65°.47/ 5 e t

sa fin à 8i° environ , à l'orient de Paris , sous la latitude de 35°.S7.
71. En poursuivant la courbe de l'éclipsé centrale , de quart d'heure

en quart d'heure 7 on trouvera
Commencent X.= —0,3816174, r = — o , 1270458, ^=+0,915547î*

9fc.45/ —o,4243338y —0,0996840, +o,883ai8o

10 . o —0,4597629, — o54836834, +o,74476o7

10.15 . . . . . . *-o,3983856, —o,6310864r +o,G65596a

10 .3o — 0,3059972, —0,7347272, -f-0,6054293

^Q^fâ — 0,19129011 — o?8o68382y +0,55894%

n . o —o,o554i73, —0,8490128, -+-0,5254575

11 .15 . . . . . .+0,1068099, —0,8549988, 4-0,0076834

Ï I . 3 O +o ;3i35564, —0,7956789^ +o55i8244r

fin* • • • • . . . .+0,51967709 —o,62i5o34^ +o5586233S

72. De ces coordonnées on passera aux latitudes x , aux angles

horaires p , et de là aux différences de méridiens D. On aura , de

quart d'heure en quart d'heure , les angles qui suivent %

Commencem.lA=:66oa7^ o;/
 f ^=ig8°.24 /.48 / /

7 D—— i°.55/. Q/r

9*.45' . . . . . 62 . i .59 , 2 o 5 . i 2 . 3 , + 4 .i5 .54

10 • a • . • . . 4 ^ - 8 .19 , 226 .27 . 8 y + 2 1 .45 .20

10 .iS 41.43.41 , 237.44.13 , +29.16 .46

io .3o • . . . . S7.15.37 , 247.23.22 r + 3 5 . i o a 6

io .45 33.58.58 , 256 .3 9 .44 , + 4 0 .40 .59

n . o • ; . . . 3 I . 4 I .56 r 266 .45 .56 , + 4 6 .3i .32

ix .i5 . . . . . 3o.3o.35 f 277 . 7 a 5 ; +53.37 .12

" *3^ 3i .12.52 T 2QI .3o .29 , +64. i4-47

fin. . . * : . . . 35 ,53 4z , 3o9 .54 . 4 > +8x . 9 M
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Ha courbe fraceFe d'après ces données sera conforme \ celle des
Ephèmèrides de Berlin. ( Année 1816. )

73. PROBLÈME IX. Déterminer la position géographique du
•point du globe d'où Von peut voir > dans un instant donné, quelque
plus grande phase dune grandeur donnée ?

74. Solution. Le but du problème est de tracer sur le globe les
courbes -des plus grandes phases , ainsi que des attouchemens des
bords du soleil et de la lune qui indiquent les progrès successifs de
l'éclipsé. Les quantités données du problème sont les coordonnées
qf , rf du centre de la lune , vu géoeentrîquement sur le disque
solaire, et qui sont des fonctions connues du temps / , et de plus/ ,
distance apparente des centres au moment de la plus grande phase.
Les inconnues sont les coordonnées q , r du centre de la lune, vu
sur le disque solaire,- d'un point de la surface du globe dont on
demande les coordonnées x , y f z.

75. Les cinq équations seront; savoir, les deux premières (8)

A(A—B)z =(A-*-x)Br'—Ar(B—x) :
la troisième

équation de la sphère ; et la quatrième

qui exprime la relation entre la distance des centres et les coordonnées.
La cinquième résulte de l'égalité des rapports y : r } q

/ : r/
 7 y : z >

qui indiquent l'époque du milieu de l'éclipsé ou celle de la plus
grande phase.

76. Cette égalité nous permet de supposer

f = mç' > y=nq' ;

r—rnr' , z

JYisant de plus , pour abréger, /?2=^ / 2+r / a ; ce quï rend p égal
à la distance apparente des centres du soleil et de la lune 7 vus géo-
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ee-ntriquement; et ce qui en fait ainsi une quantité entièrement connue^

ainsi que le facteur ^ t = - il ne reste plus que les deux inconnues

fc et & $ four lesquelles nous avons les deux équation^

77. Voici les formules qui contienneut la solution finale du
blême» Faites

R=Af—BP ,

et alors les coordonnées inconnues du problème ; savoir ] #?$**%

feront exprimées comme il suit :
_ PH—Qn

PQ+nn £

_ PQ+Rn r'

On a d'ailleurs

P 9 "* P '
AÎnsi, le problème est résolu.

78. Le commencement et la lin d'une plus grande phase de
grandeur donnée , et telle que la distance apparente des centres soit
fz=i\/q^JtT^> est encore indiqué par les deux limites au-delà des-
quelles l'ordonnée a; n'a plus de valeur réelle. On aura, dans e&
cas, PR^zQU; d'où l'on tire

P =
pu aura de plus
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7 QP

Pr'

Qp

p

cr'

P <

B(p—f)ç {

E(p—f)r __ (

{A—B)p

hP >

hp

J4.
en conservant la notation à=z — ~-i ; ce qui ? dans le cas actuel

(44) » rend ^=413,1056. La solution (17) sera applicable au
problème plus général que nous traitons ? en remplaçant simplement
h par hc-\-f.

79. Le quarré que nous avons désigné par R2 (65) deviendra ainsi
(kc+f)2(m%-hn*)—{Mn—Nmy-y et , à l'aide du radical R, on dé*
terminera , par les formules qui suivent, les inconnues / , y w z ?

de même que V , y/, z/, dont les unes se rapportent au commen-
cement et les autres à la fin de la plus grande phase. Les temps
seront exprimés en parties décimales de l'Intervalle de quatre heures;
et les coordonnées en parties décimales du rayon du globe terrestre.

y 72(2kfn— 2Vm)—mR yr __ n(M?i—Nm)+mR

6

80. La grandeur de Féclipse 3 ou la largeur de la partie éclipsée-
du soleil 5 est égale à la somme des deux demi - diamètres moins
la distance des centres ou , dans- le cas actuel , à igGo^—f. OQ
l'exprime ordinairement en douzièmes du diamètre entier du soleil,
dont chacun prend le nom de doigt ; si on en exprime le nombre
par n , on aura jfcrïgGo"—• lAJJJln, ou y = i960—162,25. Le pro-
duit hc étant ?&<&*' , on aura la table qui suit :

Tom. Vi: Si
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v 3

o doigts , / = i 9 6 o "

III . . . . . . i4?3

V I , • . . . . 987
IX ...... 5oo

XII i3 , 362i

—IX 474* > 3i34
8x. Passant de là au radical R > et aux temps / et tr, qui In-

diquent 1G commencement et la fin de la phase, on aura cette
autre table

III 336ÎOO 9 7 , . . o,3a33365 t . . I , 3

VI . . . . . . . . 28441820 , . . 0,3992842 9 . . 1,2351873 ;

IX 22814787 , * • 0,4819732 , . . i,i524g83 p

XII 16269486 , . . o,5783o32 , . . I , O 5 6 I 6 8 4 ,

—IX • . ; 6364441 * • • 0,7237105 , . . 0,9107610 î

82. Le radical R s'évanouît 5 et les deux valeurs de / qui se
rapportent au commencement et à la fin de la plus grande phase

Mn—Nm
se confondent en une seule , lorsque /i£-ty== y - -. -9 ce qui fait

7ic-\-f—Zo3$*On en t tre/=—570. Otant cette quantité de la somme
des deux demî-dîamètres apparens qui est i960, on aura la largeur
de la partie éclipsée égale à 1390 ; et 9 si Ton compare cette largeur
au diamètre apparent du soleil , qui est ig47 > on trouvera que la
phase est, dans ce moment, de 8 doigts 34 ; ; chaque doigt étant
supposé , selon l'usage , divisé en €o/.

83. Les coordonnées y et z de chaque point de la courbe de
la plus grande phase , au lever ou au coucher du soleil , se trouvent,
à l'aide des formules (79)? qui deviennent v pour le cas particulier
de l'éclipsé de 1816 ,
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733 % J ^ 4

7—R

On aura ainsi , pour la branche occidentale,

o doigts* . . * . y=—0,7809997 „ . , . z = o,6245312 r

III. • • • . . . • . . —0,73964^5 . . . . . . 0,67^9998 ?

VI —0,68^3358 , o,73io387 ,

IX — 0,5979688' , 0^8015192 ,

XII * . -— O Î45Q9799 , . . . • * 0,8879292 ,

—IX . «—o?i5o54o2 , . - „ • . . 0,9886007 9

Coïncidence. . . . . —0,0974631 , 0,9952392 ;

et pour la branche orientale ,

o doigts, . • . . f=o,88732or , zt=o,46ïi537 ?

IÏL O , 8 5 6 I 5 I 5 , . . 0,5167-47 , .

VI. . . . . . . . . . 0,8111929 , . . 0,0847784. ,

IX. . O,742IOI9 , . .. O;6O72869 9

X I I . 0,6204979 , . . 0,78182^9 ,

IX . . . . . . . . . 0,3394676 , . .

Coïncidence. . . .—0,0974681 , . .

84. Le moment de coïncidence est celui où, parla position géo- *
graphique du lieu , le moment du lever et celui du coucher du
soleil sont confondus ensemble , ce qui ne peut arriver que dans
quelque point de l'une des deux zones glaciales. Le temps / qui
indique ce moment, compté depuis huit heures du matin , temps
vrai de Paris , en fraction de l'intervalle de quatre heures est exprimé

Mm+Nn , , .
par tzzzpzzz, 5 ce qui, dans l'exemple actuel tait 0,67028,
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ou %K^ofSzn. Ce moment arrivera donc k i o ^ o ' . f e ' ' , temps rrai
de Paris y ou n h . 28 /

? temps yraî de Berlin. Les coordonnées de
cet endroit seront

n __ m

ce qui fait, dans l'exemple actuel
y=y'=-—0,0974601 , z - ^=+0,99523921 ;

85. Des coordonnées y , z f on passera aux coordonnées X 9 Y p

Z, moyennant les formules

La longitude « est égale à i8o°+56°.54/.33//4-6o7/</; et on
les valeurs numériques de / déjà calculées (81). On a ainsi

o doigts. X=—0,6546446 , r=4-o,ï42O239 , Z—-\-\

III —0,6200787, +0,1024262, +0,7778471

y i . . . . . —0,0721055, 4-o,o5oo345, 4-o,8i865i7

IX . . ^ . «—0,5014467, —0,0203208 , 4-o,864949^

XII. . . . . —o,3858o32, —0,1237846, 4-0,9142386
i—ix . . . . * —0,1262989, —0,3184869, 4-0,93^4753

Coïncidence. —0,0817834, —0,3476458, 4-0,9340527

—IX 4-0,2849049, —o55438384, 4-0,7893480

XII 4-0,5234290, —0,6220665 , 4-o,582s844

IX . . . . . 4"°>G23ino, —0,6066098, 4-0,4543796

VI. . . . m . +o568i23o3, —0,6358336, 4-o,36io662

III • 4-0,7190900, —-o563f97g2, 4-0,2889810

o . • . . . , 4*0,7453713, -—0,6252237, +o ;23i3369
Y

66. On a de plus (3i) Siu,xn=^ ^ Tang.«= — . Ces deux for
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nulles feront eormaitre , pour chacune de ces plus grandes phases,
la latitude h , et l'angle horaire ^ , où elle peut être observée. De
ce dernier angle on parvient à la différence D àes méridiens , moyen-
nant la formule (45). On trouve

o doigts, A = 4 7 * . 5 6 ' . 3 4 " , ^=i67°.45 / .34 / / > D=—2i°-$7'M/\

III 5i . 3 .5o , 170.37 .14 , —23 ' 2 6 ' 4 5 >
L V I . ^ . . . . 54.57- o , 1 7 5 . 0 . 7 , — 2 3 . 3 8 . I I ,

I X . . . . . . 59 .52 , 3 7 , 183 .19 .12 , —21 .17 *32 $

XIL 6 6 . 5.52 f 197 .47 .20 , — " -37 *11 >

—IX 69 .57 .49 , 248 .22 . 7 , 4-3o .12 .37 ,

Coïncidence m 69 . 4 .32 , 256 .45 4 3 , + 3 2 .58 .33 ,

—IX. . . . . . 52 . 7 .28 , 297 .38 .57 , + 6 8 . i4- 7 *

XII . 3 5 .36 .41 , 3 i o . 4 - 4 2 , + 7 1 . 5 4 . 4 3 , -
IX 27 . 1 .3o , 3i4 .aS.io , + 7 0 .25.33 ,

VI 21 . 9 .56 , 3i6 .55 .45 9 + 6 7 .59 .35 ;

I I I . . . . . . 16 .47 49 , 3 I 8 4 I -2i , +64 .10 .59 ,

o . . . . * . . i3 .22 .33 , Sao . o .35 5 ^62 .10 .32 ^

87. La courbe des plus grancLes phases qui peuvent avoir lieu au
lever et au coucher du soleil , commencera donc , dans sa branche
occidentale , située dans l'océan atlantique 7 à quelques degrés au-
dessus des Isles Açores ; elle suivra la direction du premier méridien #

jusqu'à la latitude de l'Isle d'Islande ; elle traversera cette Isle -, elle
passera au nord au continent de la Scandinavie, traversera la mer
blanche à l'est d'Archangel 7 traversera ensuite tout le continent de
l'asie , du nord au sud , et passera à l'ouest de Diu* Sa branche
orientale sera terminée dans l'océan Indien , près des Isles Lakedives.

88. Le point de la courbe où la branche orientale se réunit à
l'occidentale , et qu'on peut considérer comme constituant le sommet
de cette courbe , ou comme celui de tous ses points qui approche
le plus da pôle boréal ; est celui où le soleil, pendant son mou-
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vement diurne , ne fait qu'effleurer l'horizon , et où par conséquent
les deux momens du lever et du coucher de cet astre coïncident
ensemble. Ce point diffère de celui où le radical R s'évanouit, et
que nous avons déterminé (84) par les deux coordonnées

Pour déterminer sa position , pour Inquelle la latitude x ? ainsi que
son sinus , ou la coordonnée Z devient un minimum } il faut prendre
l'expression de cette coordonnée ou

et en égaler à zéro la différentielle , prise en regardant p^=.
comme la variable du problème. Cette ligne est fonction du temps/;
la longitude * du soleil en dépend aussi ; et la solution rigoureuse
du problème exigerait qu'on eût égard à cette variation^ Mais 5 comme
alors on aurait à faire à une équation finale entièrement transcen-
dante ; comme d'ailleurs cette longitude y dans l'intervalle de deux
ou de trois heures , ne varie effectivement que de quelques minutes ,
quantité que la nature du problème nous permet de négliger, nous
assignerons à cette longitude, pour valeur constante et moyenne,
celle qu'elle a au moment où le radical R s'évanouit, et qui a lieu
à n f t .25 / , temps vrai de Berlin j on aura ainsi <*=:570.2/.5i//,

o n » i i Sin.sCos.et

% og. raisons, pour abréger , — ou Tang,sGos.*=/ \ et consi-

dérons ce produit comme la tangente d'un nouvel angle ç> ; tellement

que Tang.ç>=Tang.gCos.*. Alors , égalant à zéro (88) la différentielle

de Z, on aura l'équation fort simple o = /dy-4-dz, qui, après avoir

été duement développée , conduit à la formule finale
Mn—Nm

Dans l'éclipsé de 1816, on trouve <p=z — \Zor/.^f/\ d'oui il résulte-
/* E t , comme / ^ :H36QS / / , on aurajf; ou la dis-
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tance clés centres dans ce même moment , égale à 543'^ Cela donne f

pour la largeur de la partie éclipsée , 1417// , et pour la grandeur
de l'éclipsé 8 doigts 44'-

90. PROBLÈME X. On demande de tracer , sur la surface du
globe f la courbe des plus grandes phases, vues dans un même
instant, des dfffiérens points de cette surface ?

91. Solution. Le moment de ces observations 7 étant le même pour
tous , est supposé donné ; les coordonnées ql

 f rf
 ? de même que la

racine de la somme de leurs quarrés , que nous avons désignée par/?, et
qui est la distance apparente des centres du soleil et de la lune,
vue de celui de la terre, et de plus la longitude *. du soleil , au
moment <ïe toutes ces observations , seront les quantités connues du
problème. Les inconnues sont au nombre de cinq : ce sont les
coordonnées q , r , du centre die la lune , vu sur le disque du
soleil, des différens endroits de la terre , dont les coordonnées sont
X, y 7 z. Le problème ? en effet, ne diffère du précédent que par
les moyens approximatifs que sa nature nous permet d'employer.

92. La nature des plus grandes phases nous permet de faire encore

T—mr1 , z~nrf *

f i f i d mOn aura ainsi £2rr:#a~}-/22/?* , et f=mp , ce qui fait encore de
une quantité entièrement connue. D'ailleurs , en supprimant co dans
i?—x y et à plus forte raison dans A—x f l'autre équation deviendra

p*—f; d'où il résulte

7 2 = ^ • = ( p — ^ •

hp hp\ * **
et enfin

On a d'ailleurs
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amsï le problème est approximativement résolu. D'ailleurs, comme
les coordonnées ç* et rf sont ici des quantités constantes , la pro~
portion y :z~qf irf nous fait voir que la projection de la courbe
demandée, sur le plan mené par le centre de la terre, perpendicu-
lairement au rayon dirigé vers le centre du soleil , est une ligne
droite qui passe par le centre de la terre, et qu'ainsi la courbe
elle-même est un grand cercle du globe terrestre.

g3. Pour montrer l'application de nos formules , essayons de
déterminer les points du globe où Ton pourra observer toutes les
plus grandes phases qui devront avoir lieu au moment du midi vrai,
temps de Berlin 9 équivalant à n\ i5 / .5:a / / , temps vrai de Paris.
Ce temps, compté depuis huit heures du matin 7 et exprimé en
parties décimales de l'intervalle de quatre heures , donnera £=0)816111 ;
d'où il résulte

?=+29o5 ,85 ;
et par conséquent p = . . • . • ^3^6"] ,o8s .

La quantité /?—-f doit être regardée comme variable , parce qu'elle
dépend de la grandeur de la phase. Tirant les f % ou les distances
apparentes des deux centres ^ des formules (80) ,, on aura la table
Mirante :

o doigts» 7 . . . p—•/= 13o7//-
 y

III • • • • 1794 r
VI 2281 r

IX 2767 ,

XII 3̂ 54 „
—IX.

On a d'ailleurs àz=^4i3,iO36 ; donc

^5 = 134-9649

- £ - = <
chp
rf
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II en résulte la table suivante des coordonnées x , y , z , désignant
la position géographique des endroits qu'on demande

o doigts, . . x=zo,$$2o83 , . . j = o ; 1655699 , . . *=o,322i93r

III. . . ^ . . . . 0,867668 , . . . • 0,2272273 , . . . . 0,44*21762

VI . o?774934 0,2888847 , . . • . o,562i593 ,

IX 0,641718 , • . . .o?35o542i , . . . . 0,6821424 i

XII » - 0,43*904 ? • • • .Q;4i2i995 , . . . «0,8021255 ?

—IX . • . „ • • Imaginaire . . . . o,473856g , . . • .0,9221086 *

€̂ 4- A l'aide des formules déjà connues j savoir :

X—xCos.» —ySin.« ,

r

on passera de là aux coordonnées JC, Y, Z* On aura ^ au moment
demandé, q̂ ui est celui du midi vrai de Berlin f

Long, du soleil =<*=i8

d'où on conclura

o doigts. . X=— 0,3680712, J=—0,9283573, Z=—^o,o5i73oo ,.

III —0,2812956, —o;g573i4i* -4~o;o665ooi %

VI . . . . . . . —0,1791135, —0,9644726,- +0,1941914 ,

IX . . • . . , . -—0,0549145? — 0,940480s, Hho,3354o86 ,

XII. . . . . . . —0,1109516, —0,8575093, +o,5o22i83 .

95. De là il n'y a qu'un pas à faire pour déterminer la latitude h,
Fangle horaire ^ et la distance D des méridiens 5 pour les endroits
qu'on demande, et par lesquels notre courbe doit passer , D étant
comptée depuis le méridien de Paris. On trouve

Tarn* FL 5a
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III + 3 .48 .46 , ^53 .37 .3o , 29 .54.23 ,

,VL . . . . . + 1 1 .11 .5i , ^ 5 9 .28.45 , 35 .45 .38 ,

IX. . . . . . + 1 9 .35 .5o , 266 .3o .3o , 42 47 - 2 3 »

XII -h3o . 8.48 , 277 .22.20 , 53 .3g .i3 •

96. La courbe se termine vers le nord ? au point qui est indiqué
par # = 0 ? au-delà duquel cette limite n'a plus que des valeurs
imaginaires. On a alors p—f~ch> ou f^p—ZGoW; e t , comme
^ = 3267 / /, il e n résulte y=—-3417/* La largeur de la partie éclipsée
sera donc IQGO*7—34i/7:=i6ig// ; ce qai donne, pour la grandeur
de l'éclipsé , la fraction —^ ou 10 doigts environ. Les coordonnées
y et z de l'endroit du globe qui est le dernier de tous ceux où Ton
puisse voir quelque plus grande pbase d'éclipsé , qui sera ici celle
de dix doigts5 au moment du midi vrai de Berlin, deviendront dans

cgf cr1

cecasy= — , JS= — \ on aura de plus, pour les coordonnées
X} Y, Zy les formules suivantes:

=—cg'Sin.* ,

d'où 11 résulte
S i C c'Cos.sCos.*^Sin.fC

Sm.x=
P

ce qui donne finalement

^=3 i5 .29 .45 ,

D= 91.44.S8 ,

à l'orient de Paris.
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97. En appliquant au Problème IX la méthode approximative
qui a été employée ici , et en supprimant x dans B—x , et, à plus
forte raison , dans A—x , l'équation nA{A—B)p=AB(p—j ) - * r

(Af—Bp)x deviendra nhp—p—f\ ce qui donne

n=v—t; d'où
hp

il =^-

p '
et on a de plus

98. PROBLÈME XL Connaissant la latitude du lieu et l'heure
de la plus grande phase, on demande la longitude du premier et
la quantité de Vautre ?

99. Solution. DIONIS DU SÉJOUR (Mém* de Vacad. des scienets
de Paris 9 176$ , pag. 3o6 ) , a attaché quelque importance à ce
problème qui , sans aucun emploi de nouveaux principes 5 se résout
facilement à Paide de nos formules. Le temps étant donné, la lon-
gitude (A du soleil devra être considérée comme donnée aussi. Il
faut en dire autant des lignes qf

 yr
f
 f coordonnées du centre de la

lune , vu géocentriquement sur le disque solaire, ainsi que de la.
ligne p y distance géocentrique des centres du soleil et de la lune r

égale à
100. On a de plus les deux équations

qui ne renferment que des quantités inconnues , à l'exception' du
seul rayon c de la terre. Il faudra d'ailleurs (8) se rappeler (8) les
deux équations
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ior. La condition de la plus grande phase donne ç:r~$/i Tf<^y : *.'

J£ en résulte

p
substituant ces valeurs dans les deux dernières équations (ioo), on
obtiendra celle-ci :

elle ne renferme plus que les deux seules Inconnues f et
102, On a de plus les équations déjà connues

de même que celles-ci :

— ySîn,* ;

s.êCos.*̂ —z Sîn.t

Substituant dans les trois dernières les valeurs de y et z ( I O I )
elles deviendront

io3. Comme la latitude du Heu est au nombre des quantités
connues , la troisième de ces équations ne renfermera que la seule
inconnue x. II faudra donc résoudre celte équation *, mais , pour
présenter l'Inconnue $ sous la forme la plus simple , faisons , pour
aaréger ?
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B~p Sîn.sSin.* j

C =/? Sîn.x ;

et enfin, J?a=^2+J52— C\ On aura alors

On pourra remarquer que

ÏO4. De la coordonnée # en passera facilement aux deux autres
y y z (101). On aura de même la distance des centres f, qu'on
tirera de Péquation

En supprimant ici x, dans A—x et 2?—y, ce que la nature du
problème nous permet défaire, on aura, pour valeur suffisamment
approchée de J\ celle qui suit :

^=p .

ÎO5. Reste donc à déterminer Tangle horaire p, duquel dépend
ensuite la longitude du lieu. En reprenant les trois équations (102),
et en divisant la seconde par la première , on trouvera

p
Tang.^n

ÏO6. Pour présenter encore les deux termes de cette fraction sous
la forme la plus simple , employons les nouvelles notations a9 h 9 c,
pour designer les quantités qui suivent



37o ÉCLIPSES

d'où il résulta

conséquence

107. A l'aide de ces notations, l'angle horaire pourra être détermine
l'aide de Tune des trois formules qui suivent :

Le problème sera résolu*
108. EXEMPLE. On demande y sous la latitude de 5o° , la position

de Vendroit où Von verra le milieu de Véclipse au moment du midi
vrai de Berlin y qui répond à 1 ife.i5/.52//, temps vrai de Paris?

10g. On trouvera Ici (93), / ^ O ^ S I U H I I , compté depuis huit
heures, du matin ; d'où il résulte

^=+3267^,08 .

La longitude du soleil sera , au même instant, en vertu des formules-,
connues,. «= i8o°+57e.2/.5o//

e

IIOK Oa tire de ces données les valeurs numériques suivantes des
que nous, avons désignées par A? B 9 C$ H (io3)
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J5=—1091,57 , JR»=

^ = + 2 5 0 2 , 7 3 , J B = 643 , 066 .

m . Passant de là à celles que nous ayons désignées par a ,
ç (106) , on trouyera

^ + ^ = 6677174 ,
=— 855,353 ,

j44
c-— 2438,354 ,

La latitude A = 5O° , en vertu de l'énoncé du problème,
112. Il en résulte pour Tang.^ les deux valeurs

Log.Tang.^=:8,4463652 ; donc ^= i°.36'. 3 " ; '

ou Log,Tang.iw=o;2i2on2 ; ou /w=58ô.27/.4o// .

Il faudra s'attacher à la seconde des deux valeurs qui, augmente'e
de 1800 , deviendra iu=238°.2 7 /4° / /-

n 3 . Le même angle horaire est, en vertu de la formule générale j;
^r=i74O '36 /,36 / /+2i6626 / //4-J9; ce qui fait, dans le cas actuel ,
^m223°.43/.7//+Z?« La différence des méridiens deviendra ainsi
J9= i4°*44/«33//. L'endroit demandé sera donc à près de i5 degrés
à l'orient de Paris , sous la latitude boréale de 5o°. C'est à très-
peu près le méridien de BRESLAU en Silésie, L'éclipsé de soleil , au
moment du midi vrai à Berlin , sera donc totale à l'endroit qu'on
vient de déterminer , et qui se trouve à un degré au nord de
Breslau»
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ANALISE TRANSCENDANTE.

Deuxième recueil de formules , serçant à intégrer
toute différentielle quelconque proposée ;

Par M. le professeur KRAMP , doyen de la faculté des
sciences de Strasbourg.

i . J U E problème indéterminé d'intégrer numériquement, par appro-
ximation, une différentielle quelconque, entre des limites données,
admet plusieurs solutions. Celle que nous avons donnée , dans un
précédent mémoire (*) 7 était fondée sur la simple considération des
trapèzes rectilignes. La solution que nous donnerons actuellement
sera établie sur banalise des lignes courbes ; et l'on sent bien qu'en
précision elle doit l'emporter sur l'autre.

2.. PROBLÈME. Une ligne courbe n'étant connue que par les
grandeurs d'un certain nombre d'ordonnées équidistantes , et par
f intervalle qui les sépare -, on demande Paire mixtiligne comprise
entre cette courte P les deux ordonnées extrêmes et Vaxe des x ?

3. Solution. Comme par des points donnés on peut toujours faire
passer une infinité de courbes différentes , le problème , pris à la
rigueur 9 est indéterminé et ne peut cesser de l'être qu'en assignant
"une relation générale , mais arbitraire , entre l'abscisse ce et l'ordonnée
y. Celle qui se présente le plus naturellement est y = AJcBx^Coo*

-^. • • ». Alors, en prenant pour unité l'intervalle constant qui

i*)- Yojea la page 281 de ce
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sépare les ordonnées, supposant que la première se confond avec

Fax* des y , et les représentant consécutivement par a,6 9c9d9 .... t
notre hypothèse nous fournit , pour déterminer les coefficiens A

B f C 9 D, ..•• 9 les équations suivantes

a=A ,

l=A+ B+ C+ Z?-K,., ,

en nombre égal à celui des points donnés»
4- Il est d'ailleurs connu , comme nous l'avons déjà observé 9 dans

un précédent mémoire (*) 9 qu3en représentant respectivement pat
Aa 9 %A2a , 6A 3 ^ ,o . . . les premières, secondes ? troisièmes,....,
différences des ordonnées; c?est-à-dïre, en posant

a ?

on aura

2—5oA5tf+--

J3^= ù?a—

ee qui donne

(*) Vojez la pa§e iS3 de se volume,
Tom, VU 53
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formule dont la loi est évidente.
5. En conséquence t Taire demandée qui , en général est

$era l'intégrale de

c'est-à-dire ,

ou bien

A afxdx

H- • . • .
ce qui donne également en développant

+ ••
6. Cette intégrale, qui s'évanouit avec x, doit être prise jusqu'à

cette même quantité x 7 qui désigne le nombre des divisions de l'axe
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des X qui se trouvent comprises entre les limites de l'intégrale , et
qui est ainsi arbitraire. Il est entendu d'ailleurs que , dans la dernière
formule ci-dessus ; si Ton fait oo~n 9 que nous appellerons le diviseur
gênerai, ou simplement le diviseur , il faudra s'arrêter à la différence
An<7. Enfin, comme nous avons pris jusqu'ici pour unité l'intervalle
constant entre les OÏ données $ s i , comme il paraît plus convenable
de le faire, on veut prendre pour unité l'intervalle entier entre les
limites de l'intégrale -, *i faudra diviser le résultat obtenu par h *
sauf ensuite, dan^ T h applications, à multiplier par ce même intervalle,
lorsqu'il re trouvera différent de l'unité.

7, 'Voici présentement , d'après toutes ces attentions ? la série des
formules finales qu'on obtient , en prenant successivement pour diviseur
tous les nombres de un à douze.

Première formule ? diviseur un 9

ifXàx—a+h .

7/.e Formule , diviseur deux y

2//.e Formule , diviseur trois,

IV* Formule f diviseur quatre ,

+ I2C

Vf Formule, diviseur cinq f
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Formule, diviseur six ;

£d#=4n
+216^+/)

Formule , diviseur sept ;

J#=75i (a+h)

Y11L*. Formule, diviseur huit,

989(0+/)

— 928 (c+g)

+10496^+/)

ï»Y.e Formule , diviseur neuf,

89600/Xd* =s

+5778 (*+/) :
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X.* Formule, diviseur dix.

^ 16067

+272400(^4-^)

Formule , diviseur

87091

— 9595542c

JCII." Formule, diviseur douze,

4-

4-2846 i

—2770278^ .

8. Il est clair qu'en supposant toutes les coordonnées a ,b , c,d, „'„
égales entre elles et à l'unité, l'aire demandée devieodra un simple quarré,'
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égal lui-même à l'unité; ainsi ? dans ce cas , les valeurs de fXèx,
déduites des formules précédentes 7 doivent toutes se réduire à l'unité ;
ce qui peut servir , au besoin, à vérifier simplement l'exactitude des
coefficiens de nos formules.

€). Faisons l'essai de ces formules à quelques cas connus ; et cher-
chons 5 par le moyen de Tune d'elles 5 le rapport du diamètre à la

circonférence. On sait que l'intégrale de ; est l'arc qui a pour

tangente le nombre désigné par / , et qu'en y supposant / égala
l'unité , cette intégrale doit faira connaître la longueur de Tare de 45°

ou — . Prenant , par exemple 7 sept pour diviseur général ? on aura

!> = %> é - = n .
r 49 r A9

L~71 9 J —72 >

ce qui donna

£.] t f ££1111 6t il

donc

)= ii26,5ooooooooo ,

= 5567,4952941176 ,

1323(^4/) = 2099,1914809368 ,

= 4778,4358090186 .

17280^=15571,6225870730 ;

d'où f = o?7853948256 .

Sa longueur réelle est 0,7853981634 ;

Terreur est donc: *—o>ooooo33378 P
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c'est-à-dire ; moîns de trois unités décimales du sixième ordre
10. En employant successivement toutes nos douze formules et

Tnettant en regard de chaque résultat l'erreur doat il se trouve affecté f

on obtient le tableau suivant :

Erreur ==—O,o353g8i634 ,

—-0,0020648001 ,

—0,0007827788 ,

«+0,0001312484 ,

-[-0,00007144IX >

—0,000005449^ ;

I. f
II.

III.

IV.

V.

VI.

VII.

VIII.

IX.

X.
XI.

= 0,7500000000 ,

0,7833333333 ,

0,7846153846 ,

O,7855294tl8,

0,7854696045 ,

0,7853927139 ,

0,7853948206 ,

0,7853981685 ,

0,7853981740 ,

0,7853981874 ,

0,7853981785 ,

*-}~o;oooooooo5i ,

-J-0,0000000106 9

•4-0,000000024° ,

+0,000000015i 7

XII. 0,7853981630 , —-0,0000000004 .

11. La série de ces erreurs est beaucoup plus irrégulière que la
nature du problème , et les moyens de solution que nous y avons
appliqués , ne sembleraient devoir le comporter. On pouvait présumer
que, plus on emploîrait de points pour y faire passer la courbe,
et plus on la ferait coïncider avec la valeur rigoureuse de ce qu'on
cherchait, et qu'ainsi la série des erreurs serait constamment décrois-
sante. Cependant le calcul fait, et répété plusieurs fois avec soin,
prouve îe contraire; les diviseurs neuf9 dix, onze donnent des ré-
sultats moins exacts que le diviseur huit qui ne laisse qu'une
erreur d'environ une demi-unité décimale du 8.e ordre. Cette Irré-
gularité nous met dans l'impossibilité d'appliquer ici l'ingénieuse
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méthode d*appî*ôximation dont nous nous sommes Servis avec succès
dans le mémoire cité au commencement de celui-ci. Il y avait alors
une limite asymptotique ? rigoureusement assignable par le calcul,'
tandis qu'ici la série de valeurs à laquelle nous venons de parvenir
ne permet guère de rien soupçonner de semblable (*).

12. Heureusement la nouvelle méthode que nous proposons es t ,
toutes choses égales d'ailleurs ? susceptible de fournir d'elle-même >

et sans auxiliaires quelconques , des résultats beaucoup plus^ exacts
que ceux qu'on déduit de l'autre. Pour le prouver, du moins pat
des exemples , cherchons encore ? d'après les deux méthodes , la
longueur de Tare de 45O==;:J> e n n e prenant d'abord pour diviseur
général que huit avec ses aliquotes i , 2 , 4 » 8. En suivant la
marche indiquée dans le précédent mémoire , on trouvera , en général,

= 21

p r ? on i ïc&

<Z=Ï : izzz

5—

e='r.>
en conséquence ? on aura

t 7g
777 »

(*) Les mêmes considérations n'infirmeraient-eiles pas ce que nous avons dit
sur l'interpolation des suites ( page 3ip de ce volaqie )? ce serait là une chose
isxtére^ante à examines*

J, D. G.
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il en résultera

La valeur rigoureuse étant . . . 0,7853981684 ,

l'erreur sera —0,000001717$ ;

tandis que , par notre 8.me formule , Terreur est simplement

"f-o;oooooooo5i •

c'est-à-dire , environ 338 fois moindre.

Î 3 . Faisons encore, sur le même arc f , l'essai du diviseur
nénil 12 , avec ses aliquotes 1 , 2 f 3 , 4 , 6 t la. Wou^
d'abord

rr 41

29160^+/)

Or, dfans le cas présent j

= t

^ = 77 >

7 —l±*

Jom. VL 54



38a FORMULES

— 7^; » " —

Achevant le calcul , on trouvera finalement

î 44.

771

valeur exacte = 0,7858981634 $

erreur +0,0000000094 •

L'erreur de noire douzième formule est seulement

—o,ooooooooo3 ;

c'est-à-dire , environ trente fois moindre.
14. Dans le calcul des formules générales (7), je me suîs arrêté

jau diviseur 12. J'aurais désiré de pouvoir continuer cette table jusqu'au
diviseur 24 *, mais l'immensité du travail m'a effrayé. Il doit sans
doute y avoir quelque méthode beaucoup plus abrégée que celle que
nous avons suivie; mais jusqu'Ici, au moins, je Tai cherchée vainement.
Nous allons voir , au surplus, qu'à l'aide de ces formules (7) , on
peut aisément parvenir à d'autres , beaucoup plus approchées , en
partageant l'intervalle entier qui sépare les deux ordonnées extrêmes ?

en plusieurs autres intervalles égaux entre eux.
i5. En continuant de désigner les ordonnées , séparées les unes des

autres par des intervalles égaux entre eux, par les lettres a , h 9

c , d , se succédant constamment suivant l'ordre alphabétique,
sans omission d'aucune lettre intermédiaire ; on voit qu'une portjon
quelconque de notre aire curviligne sera clairement désignée par les
deux ordonnées extrêmes qui la comprendront. Convenons donc ,
par exemple , que le symbole (DN) représentera l'aire curviligne
terminée par les deux ordonnées d et n ; en employant des lettres
majuscules de préférence aux autres, pour prévenir l'équivoque, et
renfermant le tout entre deux parenthèses,
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16. En conséquence de cette notation , on aura ( Formule 1 )

d'où > par addition , en prenant I intervalle entier pour unit4

(b+c) ,

ainsi qu'il résulte de la simple addition des trapèzes rectilignes.
17. La formule II donne ensuite

i'où , par addition, en prenant l'intervalle entier pour unité ,

formules fort simples , dont la loi est manifeste ; elles supposent
nécessairement un diviseur multiple de deux , et se recommandent
par l'exactitude des résultats qu'on en déduit.

18. En opérant d'une manière semblable sur la formule III 9 on
obtiendra successivement
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formules applicables au seul cas où le diviseur est multiple de trois.
ig. La formule IV donne de même

,

formules applicables à tout diviseur multiple de quatre.
20. De la formule V , on tirera semblablement

o

2i . En employant consécutivement les lettres *>, w ? la formule
VI donnera

7̂ (c+e+i+l+p+r)

22. La formule VIII donne
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s3. On pourra continuer ainsi pour les formules IX, X , X I ,
jusqu'à la douzième qui donnera finalement

373oi

—2770278^ ,

cette dernière se trouve ainsi composée de 24 trapèzes curvilignes;
24. On volt que, pour rédiger en assez peu de temps un gros recueil

de ces formules intégrales , il n'en coûterait presque que la peine
d'écrire. Nous allons faire l'application de celles que nous croyons
les plus remarquables , pour déterminer la longueur de Tare de
45°=~, dont la valeur rigoureuse , calculée a douze décimales , est

fno,7853 9816 3397 :
àt

Nous avons déjà vu que cet arc est l'intégrale de • a 9 prise de-

puis /=o jusqu'à / = r . En supposant cet intervalle divisé en 24

parties égales, et désignant par a7 b> c ,..,.z les valeurs numériques
correspondantes de la fraction , depuis la première 1 , jusqu'à

la vingt-cinquième. o;5 j on aura la table suivante ;
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3386 6073 ,

9967 4691 *

?= i,55og 8706 6o3i ,

>:=: I?563I 36QO 739g ,

-u—1,5731 3o5i 7086 ,

/=i,58ii 7647 o588 ,

= 1,5874 9595 3757 >

= 1,5928 0769 23o8 ,

i345 2363 ,

7+^=1,5981 8499 5 5 54 >

272-4-0=1,5995 532i 4640 >

zn s=i96ooo 0000 0000 »

2,5. Essayons d^bord la division de l'intervalle entier en sîx parties
égales. Nous pourrons employer la troisième formule (17) ? la deuxième
(18) ou la première (21). Voiei le tableau des résultats qu'on eu
obtient et des erreurs qui les affectent, rapportées à la douzième
décimale comme unité.

i . r e 0,7853 9794 5^34 > •••••• •—• 2^ 8 i63 ;

2.me o ;7853 g586 2445 , — 23o 0952 ,

3 . m e o,7853 9271 3917 , -^544 9480 •

Tje premier de ces résultats , qui répond à la très-simple formuïe
(17) , est donc exact dans les six premieis chiffres décimaux.

26. Essayons, en second lieu , la division de l'intervalle en douze
parties égales. Les aliquotes 2 , 3 , 4 > 6 , 12 nous permettent
d'employer les formules qui suivent ; savoir: ]a sixième (17)? ^
quatrième (18) 9 la troisième (19), ^première (21) et la première (23).
11 en résulte les cinq valeurs approchées qui suivent, vis à-vis de quelles

avons placé * comme ci-dessus, les erreurs qmi les affectent^
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!*• 0,7853 9816 0076 , „.,.. _ 3321 ,.

3 .m e o57853 9814 8470 , ...... ^14927 ,

3 .m e 0,7853 9817 4399 , +11002 $

4.m e 0,7853 9815 0574 , —13823 ,

5.me o,7o53 9816 3o64 , — 333 .

On volt qu'Ici encore le premier résultat , qui répond à la formule
(17) est plus exact que les trois qui suivent ; mais le plus exact
de tous est le dernier, qui répond à la formule (23). L'erreur ne
s'y manifeste qu'à la dixième décimale seulement.

27. Employons enfin la division de l'intervalle entier en ^4 parties
égales. La considération des aliquotes 12 , 8 , 6 , 4 > ^ , 2 nous
permettra d'employer par voie d'addition les formules II , III , IV ,
VI , VIII , XII ; il en résulte , pour Tare 2T les valeurs approchées
qui, suivent ? affectées des erreurs placées en regard de chacune d'elles

,i. re 0,7853 9816 3346 , •••••• —* 5a ^

2.me o?7853 9816 3i64 , .iMM — 34 t

3.m e o,7853 9816 3563 , + X 6 6 ;

4-me o ;7853 9816 3 3 9 7 , + o ;

B.ml o,7853 98x6 3398 ; + 1 f

6.m! a»7853 9816 3397 , ...... — 1 .

Notre deuxième formule maintient donc encore sa supériorité parfhi
les trois premières , sous le rapport de l'exactitude ,• mais on voit
en même temps que la quatrième est exacte dans les douze pre*
îïiières décimales*
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QUESTIONS PROPOSEES.

Problème d'astronomie.

JL OUS nos annuaires nous donnent l'heure du lever et celle du
coucher du soleil et de la lune pour Pobservatoire de Paris ; mais
les indications qu'ils" fournissent sont fautives, pour les autres points
de la France, et cela d'autant plus ? qu'ils se trouvent plus éloignés
de la Capitale, L'erreur est sur-tout sensible pour la lune , à raison
de la grande déclinaison dont elle est susceptible.

Cependant comme il serait trop pénible de calculer en entier i
jour par jour , les heures du lever et du coucher de ces astres pour
chaque localité, on peut désirer de mettre à profit les calculs déjà
faits pour Paris , en appliquant à leurs résultats les corrections con-
venables. Cela donne lieu au problème générai que voici ;

Connaissant la déclinaison d'un astre , ainsi que l'heure de son
lever ou de son coucher, pour un point déterminé du globe terrestre,
déterminer la correction qui doit être appliquée à l'heure indiquée
pour la reudre propre à un autre point déterminé du globe peu
distant du premier ?

FIN DU SIXIÈME VOLUME.
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