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SOIT I'équation
xta—b=c ;
on en déduit

x=(~a-4b. (1)

Si, au lieu d’opérer de cette maniére , on retranche de chaque
membre le bindéme (¢—4), on aura

z=c~—(a—0b). (2)

La quantité ¢ restant quelconque , je vais faire successivement,
sur @ et 4 , les deux hypothéses suivantes , >4 et b>a. Soit

Tom, 1V, n> I, 1.°% juillet 1813. 1



2 REGLES
d'abord >4 ou a=j-y ; on aura, aprés la substitution dans les
équations (1) et (2),

résultats parfaitement identiques.
Soit, en second lieu, 6>a ou b=a-+y; les mémes substitutions
donneront

a=c+ty , x=c—[a—(a}d)]=c—(—)).

La derniére expression se présente sous une forme inintelligible,
puisquelle exige qu'on exécute une soustraction impossible, et que
T’on retranche de ¢ le résultat de cette soustraction. La valeur ¢~§
peut servir & linterpréter ; car on l'a obtenue en faisant passer les
quantitds @ et 4 du premier membre dansle second ; ce que 'on est
toujours libre de faire, quelles que soient les valeurs de ces quantités ;
de sorte que l'on pourrait en conclure que

e—(—3)=c+

Quoiqu’il ne manque rien & cette conclusion, du cété de la rigueur,
la marche que I'on a suivie n’éclaire pas assez sur la difficulté en
question , et ne fait point assez bien voir comment on passe de
Pexpression ¢—(—3) a Pexpression ¢y, Afin de le mieux apercevoir,
il faut remonter & I’équation primitive, et y substituer & la place de &
sa valeur @-4-3. On trouve alors

z—y=c.

Ainsi, c’est & tort que l'on avait considéré la suppression du binéme
(a—b) comme une soustraction , puisqu’il est évident qu’il fallait ,
au contraire,, ajouter & chaque membre la quantité 3 pour avoir z.
Lorsqu'on opére sur des quantités numériques , il est clair qu’on
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.ne peut jamais éprouver le moindre embarras; mais, en opérant sur
I'équation littérale

zta—b=c ,

ol @ et b peuvent avoir telles valeurs que 'on veut, rien n’indique
si, pour dégager 'inconnue &, on a réellement une addition ou une

A

soustraction a effectuer. Si l'on suppose donc qu’on en ait tird
x=c—(a—D) ,

c’est qu'on a tacitement regardé @ comme étant plus grand que 5,
et par conséquent cette expression sera en défaut, lorsqu’on aura
a<b; mais alors il* est évident que la proposée aurait pu étre mise
sous la forme

x—(b—a)=c ;
d’o 'on aurait tiré

x=c+4(b—a).

+

Réciproquement , cette derniére expression sera en défaut , lorsqu’on
aura 4<a ; et alors la premitre sera la véritable. On voit donc que,
si I'une des valeurs se présente sous une forme inintelligible par
elle-méme, on est en droit d’en conclure qu'on a opéré dans un
sens inverse de celui suivant lequel on aurait d&t opérer, et que l'on
doit meodifier le résultat, en prenant la différence dans le sens ou
elle peut étre naturellement prise, et I'affectant d’un signe contraire
a celui que le calcul a donné, D’aprés cela, on aura évidemment

e—(a—b)=(mm( =)=+ {b—a, =+ ;

ct(a—b)=cH(—p)=c=(b—t) =cowmp .
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Telle est la maniére dont doivent étre envisagées l'addition et la sous<
traction des quantités négatives isolées.

De l’équation

z—A =ac—-5c-—&a’+5d R 3
on tire

r=AVac—~bc—ad-+bd ,

valeur qui peut, en général , se mettre sous cette forme
r=A~+(a—0b)(c—d). 4)

1.° Je suppose a<d et c>d ou b=a-+y et c=d~+w Il vient;
dprés la substitution dans I'équation (4),

=A+4-(—)(<)-

Clest-A-dire , qu’on aurait & ajouter & 4 le produit d’une quantité négative
isolée par une quantité positive. Or, on peut remarquer que, dans ce cas,
on n’était point autorisé & mettre la valeur de # sous la forme (4), puisque
I'identité de cette forme avec la forme (3) n’a été démontrée (Alg. Mul.)
que pour le cas ot a—b5 et c—d étaient des différences naturelles; mais
alors la valeur (3) , ou @<¥&, et par conséquent ac<bc et ad<bd,
pouvait s’écrire de la maniére qui suit :

x=A—{bc—ac)+(bd—ad)= A—(be—~at~—~bd-4-ad)
=A—[(b—o)c—(b—a)d] = A—(b=02)(c—d)=A—ps ;

d’olt I'on voit qu'on a été conduit & multiplier une quantité négative
isolée par une quantité positive , parce qu’on a regardé comme possible
la soustraction (¢—5%) qui, dans I'’hypothése actuelle est impossible ;
et, dans ce cas, on compense l'erreur qui a été commise , en formant
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le produit , comme si la quantité (—jp) dtait positive, et en affectant
ensuite le produit du signe (—).

2.° Silon avaita>b et d>¢ ou a=5b-5 et d=¢~+-¢; on trouverait,
en substituant dans (4) '

&= d()(~ ).

Mais, par la méme raison que précédemment, on n’est pas alors en
droit de mettre la valeur (3) sous la forme (4); et puisque , dans
le cas présent, on a a>b, d'ot ac>bc et ad>bd, on peut écrire

x=A—(ad—bd)+(ac—bc) = A= (ad==bd—ac--bc)

= A(@==b)(d—0)=A = ja.

On voit ici, comme dans la précédente hypothése , comment on a
été conduit & multiplier une quantité positive par une quantité négative
isolée , et comment on doit effectuer I'opération,

3.° Enfin, en supposant , en méme temps, &b>a et d>¢, c'ests
a-dire, b=a-}y et d=c-+w&, on obtient

F=A+(—3)(—4) 3 .

mais alors, ayant dd>ad et bc>ac , on devait donner 3la valeur
(3), au lieu de la forme (4), la forme suivante

‘e =A4(bd—ad)—(bce—ac)=A~-(bd—ad—bc+-ac)
= A+ (b—o)(d=c)=A4} 4
D’olt I'on conclut que le produit de deux quantités négatives isoldes

est le méme que celui de ces deux quantités prises positivement.
Quant & la division, je considére l'expression
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qui résulte , ou qui, du moins , peut étre censée résulter de I'équation
(#—A)(c—d)=a-—b. )

Or, si (a—b) est négatif et (c—d) positif, il faudra que (w—4),
a—b . L e . . .
-5 soit négatif ; il en sera absolument de méme , si

Cvo—

_ou son égal

(a—0) est positif et (c—d) négatif; enfin, s’ils sont tous deux négatifs,

—b
(x—A) ou son égal -?_—_g devra étre positif.

AN

Réflexions sur le méme sujet;

Par M. GERGONNE.

[a Vo Vi) Vo Vig Vig Vo Vo 9 V1o V]

ON ne saurait disconvenir que la théorie qui vient d’étre développée
ne soit trés—exacte , trés—simple et trés-lumineuse , et peut-étre de
beaucoup préférable a tout ce qui a été dit jusqu’ici sur le méme
sujet; du moins tant qu'on voudra demeurer attaché aux idées qui
sont aujourd’hui généralement en vogue sur la nature des quantités
négatives. Mais ces idées qui, en toute rigueur, peuvent étre admises ,
ont-elles réeliement , sur celles auxquelles on les a substitudes , toute
la supériorité qu’on leur attribue ? Ces derniéres étaient-elles tellement
défactueuses qu’il ¥y ait eu une absolue nécessité A les écarter ? Et,
en les rejetant, n’a-t-on pas fait rétragrader l'algébre jusqu’au point
ou elle était dans son enfance ? N’a-t-on pas ajouté 4 la théorie du
calcul une inutile complication ? N’a-t~on pas ouvert une source féconde
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d’embarras pour le calculateur ? Telles sont les questions que, depuis
longtemps , j’ai le dessein de discuter, dans ce recueil, avec tout le
soin et toute 'étendue que mérite leur importance. Le défaut de loisir
m’en a constamment detourné jusqu’ici ; mais , PUiSqu’enﬁn Poccasion
vient s’en offrir, je veux du moins, au défaut d’une discussion en
forme , hasarder quelques réflexions sur ce sujet, espérant que le
lecteur voudra bien suppléer & ce que les bornes étroites que je suis
contraint de me prescrire , pourront me forcer d’ometire.

Les adversaires de l’ancienne théorie des quantités négatives , je
veux dire de la théorie adoptée par Newton , Euler , d’Alembert, etc.,
conviennent eux-mémes que cette théorie est extrémement commode; et,

s'ils la rejettent, c’est uniquement parce que, suivant eux , il en nait
plusieurs difficultés assez graves ; mais il me parait qu'avant de lui
substituer une théorie nouvelle, il efit au moins fallu examiner, avec
soin, si ces difficultés étaient réellement de nature  ne pouvoir étre
surmontdes , et si on ne courrait pas le risque de ne faire que les
remplacer par des inconvéniens beducoup plus graves encore. 11 me
parait qu’en présentant la doctrine des quantités négatives de la maniere

que je vais expliquer, tous les nuages élevés contre elle peuvent étre
facilement dissipés.

Il n’est pas besoin d’un grand effort d’attention pour apercevoir qu’in-
dépendamment de leur valeur absolue, on a sans cesse A considérer, dans

les quantités leur mode d’existence, c’est-a-dire, 'opposition qui peut se
trouver entre celles qui sont de méme nature. Cette opposition est un fait
évident, prdexistant a tout systéme, a toute convention, et généralement
apercu par tout le monde. Ainsi, par exemple, chacun congoit claire-
ment que 12 francs de dettes ne sont point la méme chose que 12
francs de biens ; qu'un effort de 12 livres , qu'il faut faire pour
empécher un ballon de sé¢lever, n’est point la méme chose que
Veffort de 12 livres qu’il faut faire pour empécher une pierre de
descendre ; que intervalle de 12 anndes, qui sépare 'époque actuclle
d’'un événement passé , n’est point la méme chose que lintervalle
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de 12 années qui sépare la méme époque d’un événement & venir, elc.

La science des grandeurs ne remplirait donc qu’une partie de son
but ou, pour mieux dire, elle deviendrait une source continuelle
d’erreurs et de méprises , si, se bornant A considérer les quantités
sous le rapport unique de leur valeur absolue, elle négligeait d’avoir
dégard a l'opposition qui peut souvent exister entre elles. Il faut donc
que cette science fournisse des symboles , non seulement pour repré-
senter les valeurs absolues, mais encore pour différencier entre cux
les divers modes dexistence qu'une méme sorte de grandeur
peut offrir.

Pour remplir ce but important, il suffit uniquement d’une con-
vention et de deux signes : ¢’est-a-dire, que, lorsque plusieurs quantités
de méme nature entreront simultanément dans une méme question ,
et présenteront, les unes & I’dgard des autres , I'opposition dont il
est question ici, on affectera de I'un quelconque de ces deux signes
toutes celles d’entre elles qui offriront le méme mode d’existence,
tandis que l'autre signe affectcra celles qui présenteront un mode
d’existence inverse de celui-la.

Concevons que l'on applique a cet usage les deux signes = et —3
comme on les appelle respectivement signe positif et signe négatif,
une quantité sera dite positive ou négative , suivant qu'elle se trouvera
étre affectée de I'un ou de l'autre de ces deux signes. Ces dénomi-
nations peuvent étre mal choisies ; mais elles ont cela de commun
avec beaucoup d’autres; et linconvénient n’est point trés- grave,
lorsque le sens qu'on se propose d’attacher aux mots est nettement
déterminé. L’essenticl est de bien se rappeler que , toutes les fois
que , dans une méme question , on a & considérer des quantités
dont le mode d’existence est opposé , il est nécessaire d’affecter de
signes contraires les symboles qui en représentent les valeurs absolues ;
mais que ce n'est que par unc convention tout a fait arbitraire , que
les unes sont positives , de préférence aux aulres ; et cela a tel point
que , daus tout état d’une question , on peut changer la convention
d’abord établie , soit pour tous les élémens dont cette question se

compose ,



NEGATIVES. 9
compose , soit seulement pour ceux d’entre eux qui sont d’une méme
espéce quelconque.

On voit qu'ici je considére les signes —- et — comme originaire-
ment institués , non pas pour indiquer l'addition et la soustraction,
mais uniquement pour différencier entre elles les quantités dites
positives et négatives. 11 n’est pas difficile de faire voir ensuite que
cet autre usage de ces deux signes est une conséquence toute naturelle
du premier. Je sais bien que je m’écarte ici de la marche des inventeurs;
mais c'est que je pense quon doit towjours le faire quand on y
trouve quelque avantage.

On me demandera peut-étre une définition , proprement dite, de
ce que j'appelle ici modes d’existence opposés ? je répondrai a cette
question , lorsqu’on m’aura donné de bonnes définitions de l'espace,
du zemps , des substances , des modes , de Vangle , et notamment
de ce qu’on appelle aujourd'hui guantités directes et inverses. Cette
opposition est manifeste pour qui veut prendre la peine de 'observer;
elle se fait méme remarquer dans les étres purement intellectuels,
comme dans les étres sensibles; et qu'importe , aprés tout, qu’elle
soit définie, pourvu qu'elle puisse étre nettement saisie par les esprits
méme les moins attentifs. A

Voici, au surplus, un caractére propre 4 la reconnaitre ; c’est que
deux quantités entre lesquelles elle existe, s’anéantissent par leur réunion
lorsqu’elles ont d’ailleurs la méme valeur absolue. Ainsi, par exemple ,
parce que des poids égaux , placés dans les deux bassins d’une balance,
se font équilibre , il y a opposition d’existence entre les mouvemens
que ces poids tendent a faire naitre dans le fléau (*).

Plus généralement , si I'on fait un tout de deux quantités de méme
nature , mais de signes contraires, l’effet de celle qui aura la moindre

‘valeur absolue sera de détruire dans l'autre une portion égale a elle-

(* Cest & cela que revient cette expression populaire , il lui manque quatre
liards pour avoir un sou, employée dans quelques provinces , pour dire qu'un
homme n’a absolument riex,

dom, 1V.
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méme ; en sorte qu'il s'en formera un résultat unique; égal & la
différence de leurs valeurs absolues, et affecté du signe de la plus
grande.

D’apres les idées que je viens de développer , lorsque I'expression
~—a se présente a moi, je n’y vois nullement une soustraction impossi-
ble & ¢ffectuer , et je 0’y vois pas d’avantage une forme algébrique
inintelligible par elle-méme. Cette expression —a m’annonce simple~
ment quil a été fait, sur les quantités de la nature de @, une
convention formelle ou tacite, en vertu de laquelle on a différencié,
par les signes , celles dont le mode d’existence était opposé, et que
a appartient & la classe de celles qu’on est arbitrairement convenu
d’affecter du signe —. Clest ainsi que les quantités négatives isolées
regoivent , dés l'origine , une interprétation simple et naturelle.

A cette maniére d’envisager les choses, répondront des locutions
qu’'il faudra bien se garder d’employer dans le langage vulgaire , mais
qui pourront étre utilement introduites dans la langue de la science;
-ainsi, par exemple, on dira d'un événement qu’il arrivera dans —4 ans,
pour dire qu'il est arrivé il y a -}-4 ans ; ou, au contraire , qu’il
est arrivé il y a —4 ans, pour dire qu’il arrivera dans -4 ans;
et ces locutions n’auront rien de plus étrange que celles , générale-
ment admises , qui consistent & dire qu’on répéte un nombre % de fois,
pour dire qu’on le divise par 4, et qu'on partage un nombre en 3 de
parties égales, pour dire qu'on le multiplie par 4.

On me demandera maintenant si je considére les quantités négatives
isolées comme plus grandes ou comme moindres que zéro ? Avant
de répondre a cette question, je distinguerai d’abord deux sortes de
zéros : savoir , le zéro absolu , symbole d’un pur néant, et au-dessous
duquel conséquemment rien ne saurait se trouver , et un zéro limite
ou point de départ, qui est de pure convention , ct auquel se rapportent
constamment les quantités considérées comme pouvant &tre positives
et négatives. G’est, par exemple , le zéro du thermometre ; c’est le
plan de niveau duquel on part pour estimer les élévations et les
abaissemens ; c’est I'époque de laquelle partent les chronologistes
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pour fixer la date des événemens , soit antérieurs soit postérieurs ;
et c’est encore l'origine des coordonnées dans la géométrie analitique,
Présentement , lorsqu’on me demandecra si une quantité peut étre
moindre que zéro, je répondrai simplement qu'unc quantité, considérée
absolument , ne pouvant étre ni positive ni négative , ne saurait jamais
étre moindre que le zéro absolu ; mais que, deés lors qu'on a égard
au signe de cette quantité, on annonce par la méme qu’il existe,
pour les quantités de méme nature qu'elle , un zéro limite ; et
qu’ainsi, si elle est négative, zéro doit se trouver entre elle et les
quantités positives.

Si, pour fixer lcs idées, on imagine toutes les quantités possibles,
d’'une méme nature quelconque , disposées par ordre de grandeur et
de haut en bas, depuis Dinfini positif jusqu’a linfini ndgatif, sur
une méme ligne verticale , ainsi qu’il arrive pour la graduation du
thermoméire; on pourra fort bien dire alors que, de méme qu’une
quantité positive plus petite est au-dessous d’une autre quantité positive
plus grande , une quantité négative plus grande est, au contraire ,
au-dessous d’une quantité négative plus petite , ct, & plus forte raison,
au ~ dessous de zéro et des quantités positives. Mais il faut bien
remarquer que ce n’est ici qu'une pure fiction de Pesprit, et qu’aux
idées de dessus et de dessous on pourrait, tout aussi bien, substituer
cclles de droite et de gauche, ou encore celles de devant et de
derriére.

La question des quantitds au-dessous de zéro correspond exacte-
ment A celle des quantités au-dessous de l'unité ; car, de méme
quil y a deux sortes de zéros, il y a aussi deux sortes d’unités ;
savoir , une unité absolue , au-dessous de laquelle rien d’existant ne
saurait se trouver, puisque , pour exister, il faut au moins étre uz,
et une unité conventionnelle , qui admet indistinctement des quantités
au-dessus et au-dessous d’elle. De méme donc que I'on dit que 3 est
au-dessous de cette derniére unité , et que = est an-dessous de ;3
pourquoi craindrait-on de dire, dans un sens analogue, que —4%
est au-dessous de zcro, et que —4 est inférieur 3 —3 7 En général,



12 QUANTITES

si —a est une simple forme algébrique ou une soustraction impossible
. I - . .
a effectuer , pourquoi — ne serait-il pas aussi une autre forme algé-

brique ou une division impossible 3 effectuer ? il est aisé de voir
en particulier que tous les raisonnemens que M. Cach vient d’appliquer
au calcul des quantités —y et —w, pourraient étre également appliqués

. I I . . . .
aux quantltés-}- et = et , pmsqu’on ne juge point ces raisonne-

mens nécessaires , pour établir les régles du calcul de celle-ci, pourquoi
les jugerait-on tels & I'dgard du calcul des autres?

En.résumé , je ne vois point pourquoi les géometres , adoptant
un systtme tout pareil 4 celui de la double doctrine des anciens
philosophes , aujourd’hui tant etsi justement décrié, professeraient exté-
rieurement des principes différens de ceux qui les dirigent eux~
mémes dans leurs recherches ; principes qu’ils ne pourraient abandonner;
dans la pratique , sans le plus grand embarras, et dont l'extréme
lucidité est d’ailleurs de nature a frapper tous les esprits ¥ N'entendent-
ils pas répéter tous les jours autour d'eux que el komme a moins que
rien, et cette locution triviale, si fréquemment employée, ne leur

annonce - t-elle pas que le vulgaire lui-méme semble appeler des
notions que l'on se figure étre inaccessibles pour lui?

Tout ce qui préceéde ne concerne encore que les quantités concrétes;
mais que dirons-nous présentement des nombres abstraits ? Pourront-
ils aussi offrir, les uns par rapport aux autres , quelque opposition
dans leur rhaniére d’exister ? en quoi cette opposition consistera-t-
clle ? et & quels caractéres pourra-t-on la reconnaitre ? Je n’ignore
pas que des géométres dont je respecte les lumiéres ont établi, en
principe, que Zout nombre abstrait est essenticllement positif ; mais,
3 ce compte , je ne vois plus , dans les puissances des nombres négatifs,
que des é/res de raison ; car enlin, dans toute multiplication , encore
faut-il bien que I'un des facteurs au moins soit abstrait ; d’ailleurs;

" ces mots nombre abstrait , ne sont au fond que des mots, et
peuvent, comme tels, ére employés a signifier tout ce qu’on voudra.
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’»
Ecartons-nous , toutefois’, le moins quenous le pourrons, des no-

tions communes , et voyons quels sont les cas out ce qu'on appelle

vulgairement nombres abstraits , se présente 3 nous. Jen remarque

deux principaux : le premier a lieu lorsque nous cherchons } assignes
le rapport entre deux quantités de méme nature, et on peut dire,
dans ce sens, que le nombre abstrait exprime combien de fois une
quantité donnée doit étre répétée pour former , une autre quantité,
aussi donnée, de méme nature gu'elle.

Le second cas a lieu lorsqu’il s’agit d’assigner les rangs entre
une suite de grandeurs dérivées les unes des autres , suivant wune
loi queleonque: on peut donc dire, sous ce nouveau point de vue,
que Je nombre abstrait exprime le rang qu'occupe un objet parmi
plusteurs autres. ‘

Ces notions ainsi admises, et elles le sont universellement; si 'on
nous demande, par exemple, quel est le rapport entre 12 francs
de biens et 4 francs de biens ? nous répondrons, sans hésiter , que
¢’est le nombre abstrait 3, et nous ferons exactement la méme réponse,
si I'on nous demande quel est le rapport entre 12 francs de dettes
et 4 [rancs de dettes ; puisqu’il faut répéter 3 fois, soit 4 francs
de biens pour faire 12 francs de biens, soit 4 francs de deties pour
faire 12 francs de dettes.

Que si l'on nous demande ensuite quel est le rapport, soit entre
12 francs de biens et 4 francs de dettes , soit entre 12 francs de
dettes et 4 francs de biens ? nous pourrons nous trouver d’abord
embarrassés , et méme la question pourra, d’'une premiére vue, nous
sembler absurde ; attendu que des biens répétés font toujours
des biens , et que des dettes répétées font toujours des dettes :
cependant , en y réfléchissant mieux , nous ne tarderons pas i
apercevoir qu'il existe un moyen de faire, soit 12 francs de biens
avec 4 francs de dettes, soit 12 francs de dettes avec 4 francs de
biens ; et que ce moyen consiste & répéter d’'abord 3 fois les 4 francs,

soit de biens soit de dettes, et & changer ensuite le mode d’existence
du résultat obtenu,
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Or, tr¥s-certainement , rien n‘empéche d'indiquer , tout d’un coup ,
cette double opération , en faisant précéder du signe — le nombre
abstrait 3, pourvu qu'on éecrive ou qu'on sous-entende le signe —=
devant le méme nombre abstrait, lorsqu’il répondra au premier des deux
cas que nous venons de considérer. On dira, en conséquence , que
prendre une quantité 4-3 fois, c’est la répéter 3 fois , en lui conservant
son mode d’existence ou son signe ; et que, prendre une quantité
—3 fois, c'est la répéter 3 fois, en changeant son mode d’existence
ou son signe: il y aura donc, dans ce sens, des nombres abstraits
négatifs aussi bien que des nombres abstraits positifs ; et Yon pourra
établir, en principe , que le nombre abstrait qui exprime le rapport
ntre deux quantités de méme nature , est positif ou négalif , suivant
g:e ces deux quantités ont le méme mode d’existence ou un mode
d cxistence opposé , c’est-a-dire , en d’autres termes , suivant que
ces deux quantités ont le méme signe ou des signes contraires. Ainsi
se lrouveront expliquées, par unc convention toute simple et toute
naturelle, lesrégles des signes pour la multiplication et pourla division.

Quant A la seconde sorte de nombre abstrait ; concevons qu’apreés
avoir derit une série dont on connait la loi , on ait numéroté ses
termes , de gauche & droite, 1, 2, 3,..... Rien n’empéchera, i
Vaide de la loi connue de cette série, dela prolonger vers la gauche,
tout aussi bien que vers la droite ; et, d’apres les idées développées ci~
dessus, on sera tout naturellement conduit & numéroter successivement
les termes nouveaux, iritroduits sur la gauche, o, —1, —2, —3,...;
auquel cas il deviendra nécessaire d’écrire ‘ou de sous—entendre le
signe —~ devant les indices des termes déja numérotés 1, 2, 3....

On aura donc encore ici des nombres abstraits positifs et des nombres
abstraits négatifs ; et les différens signes dont ils se trouveront affectés ,
annonceront qu’ils .indiquent les rangs de termes situés de part et
d’autre de celui qu'on sera arbitrairement convenu de numéroter zéro.
On voit par 14 que ces nombres abstraits doivent étre soigneusement dis-
tingués de ceux de la premiére sorte. Ceux-ci sont positifs ou négatifs
intrinséquement , ou du moins en vertu d’'une convention géndrale
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qui , une fois établie, ne saurait plus étre changée; tandis que les
autres ne sont tels que par la situation du zéro, qu’on peut déplacer
a chaque question nouvelle que l'on traite , et par la convention libre
que Pon a faite sur le sens positif et sur le sens négatif du numé-
rotage. En un mot , les nombres abstraits de cette dernitre sorte
rentrent absolument dans ce que j’ai déja fait remarquer des nombres
concrets , considérés comme positifs et comme négatifs.

Ce que je dis ici n'est , au surplus , que ce que les géomitres
pratiquent tous les jours. En est-il un seul, en effet, qui ignore
ce qu’il doit trouver, lorsque, dans le terme général d’une série
il substitue , pour lindice, un nombre négatif ? En est-il un seul
qui hésite sur le rang que doit occuper un terme dont il trouve
Vindice négatif ? Que devient donc alors la maxime : fout nombre
abstrait est essentiellement positif ? Faut-il donc que la maxime
contraire demeure une sorte de mystére, entre les seuls initiés 7 Et
n’ai-je pas eu raison de dire, tout a I'’heure , que les théories modernes
avaient entrainé les géométres , involontairement sans doute, dans
lIe systtme de la double doctrine. (*)

Les principes que je viens d’exposer sont, & quelques modifica-
tions et &4 quelques développemens prés, ccux qui ont été généra—~
lement professés jusqu'a ces derniers temps. Une expérience assez

longue m’a prouvé que non seulement ils dtaient toujours nette=
ment saisis par les commengans , mais qu’en outre ils imprimaient

a toutes leurs recherches une marche ferme , exempte de toute
méprise et de toute hésitation ; avantages que ne me semblent pas
réunir, au méme degré, toutes les diverses autres théories.

Il me resterait présentement & répondre aux objections, tant et si

.

s

(" L’inconvénient n'est point encore tres-grave & présent, parce que les deux
doctrines sont généralement connues, et que l'une d’elles n’est que de pur apparit;
mais , si celle-ci venait enfin & éire seule enseignée , nous pourrions fort bien en

revenir , dans quelque temps , aux racines vraies et aux racines fausses des contem-
porains de Descartes, ,
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souvent rebattues , qui ont été opposées & ces mémes principes; mais ;
dans la nécessité d’abréger , je m’arréterai seulement au petit nom-
bre de celles d’entre elles qui m’ont paru les plus spécieuses.

1.° On demande pourquoi le produit de deux quantités de signes
contraires a le privilége d’dtre négatif plutét que positif , et sil ne
devrait pas étre l'un et l'autre ; puisqu’en changeant d’hypothése ,
sur les quantités multiplides , —><— devient —X<—4, et devrait
alors donner un produit de signe contraire ¥ On demande , en se
fondant sur les mémes motifs, pourquoi , si +X-+=-, on na
pas, en changeant d’hypothése —><—=—7?

La réponse i toutes les difficultés de ce genre est simple et facile;
Dans toute multiplication , 'un des facteurs est essentiellement un
nombre abstrait de la premiere sorte , et le produit est de la nature
de lautre facteur. Si donc on change dhypothése sur les quantités
négatives, cela entrainera uniquement le changement des signes du
multiplicande et du produit; or, c’est la une condition a laquelle
satisfont en effet les régles connues. (*)

Cette difficulté est , au surplus, du genre de eelle que se propose
Lacaille , dans les premiéres éditions de ses élémens , lorsqu’il se
demande pourquoi 12 deniers , multipliés par 12 deniers, ne donnent
pas la méme chose que 1 sou multiplié par 1 sou ? Et la réponse
a cette derniére est tout  fait analogue i celle que je viens de faire
ala premiére. On -peut bien changer d’hypothdse , relativement 3 la
grandeur de l'unité de mesure du multiplicande, et cela entrainera
nécessairement un pareil changement dans l'unité de mesure du produit;
mais le nombre des unités du multiplicateur étant un nombre abstrait,
est indépendant de toute hypothése, et ne saurait conséquemment
&tre modifié dans aucun cas.

2. On demande aussi pourquoi, si les quantités ne sont positives

-

(") On pourrait m’objecter que le multiplicande , comme le multiplicateur, peut
souvent aussi étre abstrait et cela est vrai; mais ces deux nombres abstraits n’en
seront pas moins de nature différente. Le multiplicande, comme le produit , est
wn nombre de choses; le multiplicateur seul est up nombre de fois, .

(3
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et négatives que par convention, y/==g: est imaginaire , tandis que
v/ Fa» est réelle ? Cette difficulté rentre dans la précédente. v/ =52
est imaginaire , parce que —&>, ne pouvant provenir que de la malti+
plication de -+a par —a, ou de —a par }-a, n’est point un quarré,
Au contraire , 3z est réelle , parce que , soit qu’on, suppose
~a*=-taX-a ou —a*=—a>X—a , celle quaniité est, toujours
un quarré. ) ‘

3.° Tout le monde admet , comme vraie, la proportion =1 :—1 ::
—1:-4-1; or, dii-on, si les quantiiés négatives sont moindres que les
quantites positives , il s'ensuivra cette conséquence absurde que , dans
une tcile proportion , tandis que le prenier couscquent sera surpassé
par son antécédent, le second conséquent, au contraire, surpassera
son antécédent. ! .

Je répondrai & cette difficulté en observant qu’en principe on mne
doit jamais chercher dang un objet que des propriétés qui résultent
inévitablement de son essence , c’est-i-dire, de sa définition. Or ,
Iessence d’une proportion géométrique est uniquement que le quo-
tient des deux premiers termes soit égal au quotient des deux derniers ;
et c'est parce qu’ils satisfont & cette condition primordiale que les
quatre termes que l'on vient de citer sont reconnus pour élre ceux
d’une telle proportion. 1l arrive bien quelquefois , en effet, que,
le second terme étant moindre que le premier, le quatriéme_est aussi
moindre que le troisiéme; mais cctte propriété , essentielle aux pro-~
portions arithmétiques , n’est. qu’aceidentelle & 1'égard .des auu'e_s;,ict
ne s’y fait remarquer que lorsque: tous leurs termes ont'le: méme signe.

Nous venons de rencontrer une proportion géométrique dans laquelle
le premier terme surpassant le second de deux unités, le troisiéme
terme est au contraire surpassé de deux unités par le quatricme, Voici,
- linverse , une proportion ari_thfnétique dans laquelle le premier terme
contenant deux fois le second , le troisiéme est au- gontraire contenu
deux fois dans le quatriéme : c’est la proportion -3.1:—1.—2; et
cette proportion est exacte , parce qu'elle satisfait .2 Ia condition de
définition , et que toute aulre propriété , -si elle n’est pas essentielle~

Tom. IV, 3
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ment renfermde dans celle-1d , ne saurait lui &tre qu’accidentelle;

4° On cite enfin , dans les problemes de géométrie , des valeurs
d’inconnues qui , bien qu'affectées de signes contraires , doivent

néanmoins étre portées du méme c6té, Clest

, dit-on, ce qui arrive ,
en particulier,

dans le probleme ou il est question de mener & un
«cercle , par un point extérieur, une sécante telle que la corde inter=-
ceptée soit d'une longeur donnde. Mais, on a négligé d’observer
quen résolvant le probléme par rapport au cercle donné, on le
résout aussi pour un autre cercle , symétriquement situé avec lui
“par rapport au pomt donné, et que c’est & ce dernier qu appartxent
‘]a soldtion mégative.

Je ‘crois devoir; a cette occasion , relever une fausse interprétation
que Pon rencontre dans I'algebre de Bezout. L’auteur suppose que 175 ‘
frarics , devant étre distribués , par égales portions , entre un certain
nombre de personnes, 'absence de deux d’entre elles augmente de 10
francs la part de chacune des autres. En prenant pour inconnue
le nombre des persennes qui devaient d’abord entrer en part, il
.trouve-'==5 -pour l'une des solations du probléme, et il dit que
cette solution répond au cas ol , au contraire , deux nouveaux sur-
venans auraient diminué de 10 francs la part de chacun,

Mais ‘cette mterpretanon ne me parait pomt exacte. Ce ne sont
-point, en effet, ni-les 10 francs ni le nombre des personnes absenles
gm sont devénus negatlfs » €1 jainals les ‘données ne sauraient eprouver

:ane semblable métamorphose ; c’est uniquement-le nombre total des
.rpefsonnesqui’a subi ee changemént. Puis donc que ,'dans le' premier
« cas ;i il était question de pler'éo;niles ‘recevant , il devra étre question
oici de peréonnes donnant ; cest-i-dire, que le nombre —5, pris en <,
- xépendra & la question ol ; des personnes devant -se- cotiser potr
- fairesun fonds de 175 francs, Pabsence de deux d’entre elles aurait
- augmenté de. 10 francs la portion & fournir: par chacune d'elles.

1l est. possible , au surplus , que “cette inexactitude , ainsi que
plusieurs. autres , ait déja éié relevée , .par quelqu’un des nombreux

#ditcurs et commentateurs du Cours -de Bezout ; ouvrage excellent
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sans doute, pour Pépoque ou il a paru, mais qu'il serait peut-étre
temps enfin de laisser reposer en paix , 4 coté de la Caille et de
tous ceux du méme temps.

Avant de terminer, je dois dire quelque chose des difficultés que
présente fréquemment aux commencans l'ambiguité des signes des
radicaux pairs. Quelques auteurs, au lieu de mettre ces difficultés
bicn en évidence, et d’enseigner a les surmonter, semblent au contraire
avoir apporté tous leurs soins & les ¢éluder; c'est-a-dire, qu'ils se sont
appliqués a disposer leurs calculs de telle sorte qu'en extrayant les
racines sans aucun dgard au double signe, on tombe précisément
sur le résultat qui convient au probleme. '

Mais on ne doit jamais perdre de vue que toute racine paire porte
inévitablement lec double signe =, sans qu'on puisse dire , dans
aucun cas, ni sous aucun rapport , que l'un de ces signes lui soit
plus naturel que l'autre. A la vérité , il arrive fréquemment que,
par la nature individuelle de la question dont on s"‘occupe , I'un de
ces signes doit étre rejeté ; mais, c’est tout aussi souvent le signe =
que le signe ——3; et c’est 'précisémellt de 14 que nait embarras. Le
moyen le plus simple et le plus uniforme de le dissiper me parait
étre de traiter le double signe 7~ comme l'on traite les constantes
arbitraires, dans le calcul intégral; c’est-d-dire, d’en lever I'ambi-
guité par quelques suppositions particulitres qui ne fassent pas
évanouir les termes radicaux, et pour lesquelles on sache bien , &
Pavance , quel résultat on doit obtenir.

Jai essayé , dans cette dissertation , de ramener la théorie des
quantités négatives & des notions qui me semblent plus claires, et’
sur-tout incomparablement plus commodes pour le calculateur, que
celles qu’on leur a substitudes depuis quelques années, et j’ai montré ,
par divers exemples , que les difficultés opposées & ces mémes notions
ne sont pas aussi sérieuses qu'on pourrait I'imaginer. St j’ai pu paraitre
avoir quelquefois en vue l'introduction de la Géométrie de position,
<’est uniquement parce que je ne connais aucun autre €crit ol
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I'ancienne théorie soit attaquée et la mnouvelle défendué d'une manidre
aussi compléte et aussi supérieure. Je prie donc mes lecteurs de
croire que je men suis pas moins pour cela pénétré de la plus
haute estime pour la personne et pour les productions de Iillustre
auteur de cet ouvrage; mais je pense que la Géométrie de position
ne perdrait absolument rien de ses avantages réels, et qu'elle gagnerait
peut-étre méme , du c6té de la clarté et de la brieveté , si elle

était ramenée aux notions que je viens de chercher 3 établir, ou
plutét A rappeler de l'oubli.

ALGEBRE ELEMENTAIRE.

Démonstrations élémentaires du théoréme de d’ ALEMBERT

sur la forme des imaginaires ;

Par M. pu BourcueT , professeur de mathématiques spéciales
au lycée impérial.

ANV V NN

D’ALEMBERT a démontré le premier , mais par les calculs diffé-
rentiel et intégral, que toute quantité imaginaire

(atdy SymEN= '
peut toujours étre ramenée 4 la forme
P9y = ;

( Voyez le Calcul intégral de Bougainville, page 42 ). (%)

At

(*) Voyez aussi la Résolution des éguations numériques de Lagrange , note IX,
J, D\ G,
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Il § a environ onze ans qu’ayant vainement cherché, dans les
auteurs les plus estimés & cette époque , une démonstration élémen-
taire du méme théoréme , je m’occupai & en trouver une , soif
algébrique soit géomdtrique ; j’en obtins, en effet, une fort simple de
cette derniére sorte ; c’est celle que j’annoncai en 1802, dans un ouvrage
d’algebre que je publiai & cetie époque. Mais , depuis ce temps,
L. Garnier ayant donné une démonstration semblable , dans un
ouvrage qu'il a publi¢ en 1804 , sous le nom d’'Analise algébrigue,
yai cru devoir reprendre mes recherches pour obtenir du méme
théoréme une démonstration purement algébrique. Voici celle que
J'ai obtenue, et qui me parait préférable & -l'autre ; car, outre qu’elle
est fort simple, il me parait trés-convenable de ne faire dépendre
la démonstraiion du principe général que Zoute fonction de quaniités
Imaginaires est réductible & la_forme p+gy/ =1, de la scule branche
des sciences exactes dont ce principe fait partic,

On sait que , quels que soicnt 2 et &, on a

(@) EN T =

am-_*_-n —-1{I+nzin\/—1_1’_+m_—_l-_n\/:—_;.m—1:5:n\/—x(f_)zj:"z
- I Q I 2 a

H
on aura donc, en changeant 5 en 5y/—=:,

(ady = EN " =

(1) am:",:n\/:glimtrl\/: (b\/:.f)__mtn\/—:'m-—l ﬁnﬁ(i)zi‘.g‘

a I 2 aQ

Or, toutes les puissances paires de (/= étant égales & "1 , et
toutes ses puissances impaires étantégales & /=y, il s’ensuit qu’en
exécutant toutes les multiplications , entre les aceolades du second
membre de I'équation (1), en obtiendra une suite de termes réels,
dgnt Pensemble pourra étre représenté par g, et une suite de termcs
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affectds de —+y/=7 , dont Pensemble pourra &tre représentd par
=%/ =1 ; en sorte que I'équation (1) deviendra simplement

() ("ibt/:\m;’:"\/:‘ =am:"\/:—1(gj-_;l‘/:-l-)'

Mais, par la théorie des quantités exponentielles, théorie indépen'danté
de Iexposant de la base , on a,en désignant par la le logarithme

naturel de 2,
am "_':n\/—-l___

@) 1 OENTD ) VD (ENED gy
1 1.2 1.2.3

. . . . h1
qui , pour les mémes raisons que ci-dessus, pourra étre réduit a
la forme

“+=n\/—
am__n Izcid\/: ;
substituant donc cette valeur dans Péquation (2) , il viendra, en
développant, et posant pour abréger

cg—dh=p clz—-]jg:q R
(atby = =N =

ey ) g by =3)=(cg—dh)F(cht-dg)y —i=pLqy/ —1 }

commme nous l’avions annoncé.

Voici présentement la démonstration géométrique du méme théoréme,
que j’avais annoncée , dans louvrage d’algtbre publi¢ en 1802,
Soit posé

a
‘Z' =Cot.o >

il viendra

a:‘/a”-l—-b”.Cos.,, y b=y a*+b*.Sin.y ,

done

a by =i=(Cos.oy/ =iSin.e)y/ 2o 4:
et

Ka s b\ =1)=11(a2-b=)41(Cos.w == \/—1 Sin.a)= 1 1(a2f-b2) == o\J—1.
Multipliant les deux membres de cette dernitre équation par m¥ny/ =1,
il viendra
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Letdy =2 =V T = (@0 —nd il (@48 Fmaly =T
posant alors, pour abréger
ml(@* by —no=g , Inl(a>4-b>+4me=20 ,
et repassant des logarithmes aux nombres , il ‘viendra
(aib\/:)m::"\/—’=eg.eih\/—’=egCos]zj\/:I}'chinﬁ ;
posant donc enfin

eECos.i=p , eSink=gq ,
on aura, dc nouveau

@by = EN T = pgy T ()

Réflexions sur le méme sujet ;

Par M. GERGONNE,

[a ¥ia o Y Vi =g Vo Vo Vo “ia Vo V]

LA forine
(amtby SV

>

est loin, ce me semble, d’étre la plus générale que puissent affecter

Jes fonctions d’imaginaires, D’abord un radical imaginaire peut excéder

le second degré. A la vérité , dans ce cas , il peut toujours étre
' . 20, e . ) N

‘ramené au second degré , puisque Y/ =gi==y/ 4y —; ; mais c’est l3

une observation qui vaudrait bien la peine d’¢tre faite aux commencgans,

4 qui on ne parle jamais, dans les élémens, que de la racine QUARREE
de moins un.

(*) Dans le vrai, cette derniére démonstration est tout aussi analitique que la
premiére ; puisque les fonctions circulaires ne sont, au fond , que des transcen~
dantes d'une espéce particuliére, dont la théorie peut étre présentée d’une maniére
-tout & fait indépendante des considérations géométriques. C'est ainsi, en particulier,
gwelles ont été envisagées par M. Suremain-de-Missery , dans sa Théorie des
quantités imaginaires ( Paris, F. Didot, 1801, in-8.20). On trouve, au surplus,
dans cet ouvrage ( pag. 72 ), une démonstration du théoréme de d’Alembert qui
différe trés-peu de celles ¢e MNL. Du Bourguet et Garnier, 7. DG

. . .

.



24 FORME DES IMAGINAIRES.
E 1 s2 bornant méme aux seuls imaginaires de la forme a*+5y/ =7,
ne peut-on pas considérer des fonctions telles , par exemple , que
* Sin. Sin. Sin........ (etby=x)
Co05.C05.C0800 0 0uvnn (aibv’:-_x—) R
Log.Log.Log.......(a+by/5)
le nombre des sinus, cosinus ou logarithmes’ étant quelconque, fini
ou infini, positif ou négatif, entier ou fractionnaire,, commensurable
ou incommensurable, et ‘pouvant méme étre imaginaire de la forme
mny/—1? Ne peut-on pas également considérer des fonctions de¢
la forme '
(atary/mhym EMN=IrENT
Ne peut-on pas aussi considérer des fonctions de la forme

P e 270 e =)

ou de la forme :
am=in/—1
— N a1
— =TNVT ek bin—1
C_dv 1+cl:’:d/\/-—l- +C”+d’/\/:_l+-

les a, a’,a”,....8, 0", b/ ,....c, ¢/, ¢ ,....d, d, d’,...:
étant liés par une lei connue quelconque, et leur nombre pouvant
étre indifféremment fini ou infini, positif ou négatif, entier ou fraction-
naire , commensurable ou incommensurable, ou méme encore imagi-
naire .de la forme mt-ny/=:? Ne peat-on pas enfin considérer des
fonctions d’imaginaires, composées de toutes celles-la et de beaucoup
d’autres encore , telles que seraient, par exemple, des différentielles
ou intégrales dont l'ordre serait imaginaire de la forme m=tny/ =37?

Il me semble que , dans tous les cas , la voie la plus simple
pour parvenir , s'il est possible , 4 la démonstration du théoréme,
est celle que voici. B

Soit posée I'équation :

w=ol AT, BEST. CUT ...

et supposons, cn premier lieu , que la fonction ¢ soit algébrigue.

On
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On pourra toujours, en chassant les dénominateurs ct les radicaux,
ramener cette équation a la forme

ax" b2 .....+gx+/z:0 ; N
or , il est démontré , par les élémens , que tout.es les racines d’une telle
équation sont de la forme pF-¢gy/ =1, sans en excepter méme les racines
réelles , puisqu’elles-répondent & g==0 ; puis donc que la fonction
o est du nombre de ces racines, elle doit &tre aussi de cette forme.

Supposons, en second lieu, que la fonction ¢ soit transcendante ,
mais développable en une suite de termes qui soient algébriques ou
du moins développables eux-mémes cn séries , et ainsi de suite,
jusqu'a ce qu'on n’ait plus qu’uhe suite de termes algébriques ; ces
termes, d’apres ce qui préceéde, seront tous de la forme ptgy/ =1
donc leur somme, c’est-d-dire, la fonction ¢ sera aussidé la méme forme,

Toute la.difficulté est donc maintenant réduite % savoir si vrai-
ment toute fonction non algébrique est développable en série. Je
regarde la chose comme extrémement probable ; mais je ne crois pas
qu’elleait encore été jusqu’ici généralement et rigoureusement démontrée.

ANALISE ELEMENTAIRE.

Démonstrations du principe qui sert de fondement ay
calcul des fonctions symétriques , et de la formule
du Binéme de Newton ;

Par M. Brer, professeur & la faculté des sciences de
‘ Tacadémie de Grenoble.

[a Vo VB W N Vb VL Vi Vo ¥

L SOIT représenté le produit des m facteurs simples 2=, z-|-¢,
Ty ,0000e, par

D . Lk I By v L R Ny (1) ,
Tom. IVo 4
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et celul des mémes facteurs, excepté le premier x--«, par
xm"+B1xm-z+B:xm-’+"'"+Bm—x- (2)

1l est évident qu'en divisant le polynéme (1) par #~-« , on produira
le polynome (2), et que, réciproquement, en multipliant le poly-
néme (2) par Z-«, on aura le polynéme (1). De la résultent les
équations

Bu-—1=An~x""‘“An—z+“2An—;—""') (3)
An:Bu-‘_“Bn-l' (4)

L’équation (4) démontre que tout ce qui multiplie « dans A, est
B,_, ;or, daprés la composition des coefficiens 4, , 4,, 4, ,...,
en «, B, v,...s, st dans A, on prend tous les termes multiplids
par «, puis successivement ceux multipliés par g, ¥, §,...., et
qu’on les ajoute, on aura nA,; donc

ﬂAn=S(“Bn—x) > (5)

le signe S indiquant la somme des produits «B,_, que I'on obtient
en permutant successivement « avec chacune des autres lettres.

Cela posé, dans I'équation (5) substituons & B,_, sa valeur (3),
il viendra

nAd,=S(ed,_y=—u*A,yt.o.. T,

ou

nAdAA4, S(—a)+A4,. ,S—a)~4.....F8(—e)=0 ; 6)
et, comme —«, —B, —y,.... sont les racines de l’équation (1) 5
il s’ensuit que la formule (6) détermine les sommes des puissances
semblables de ces racines, savoir : S§(—u&), S(—«)*, S(—a)®,. ...
jusqud S(—«)™ On peut méme pousser plus loin le calcul de ces

sommes , en multipliant 'équation (1) par 27, et en appliquant ensuite
la formule (6) A I’équation résultante. (*)

(*» On trouve un aricle sur le méme sujet & la page 238 du IIL.° volume
de ce recucil J. D. G.
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11 L’équation

ndy—d,_ Set-A, Swim..7..=0,
devient, en supposant e=—=g=y=y=.....,
ndy—~md, otmd, ,i*~md, 4
Changeant n, en n—1, on aura
(n—1)4,.,—mAd, ,otmA, ;et=—.....=o0.

Multipliant cette dernidre équation par «, et l’a}outant 4 la prdcé=
dente ; il viendra

eeeey ==0,

nd,—(m—n41)4,.,s=o0 ;
ce qui établit une relation entre deux coefliciens consécutifs du polynéme
a" A 2™ A Ay = (2™

d’ot 'on déduit la formule du binéme.

On peut encore démontrer cette formule d'une manidre plus directe;
il suffit pour cela d'observer que , dans I'équation

nd,=S(B,.,) ;

le nombre des preduits de n lettres du premier membre est dgal
au nombre des produits de 7 lettres du second membre ; désignant
donc par N™ le nombre des produits différens de n lettre qui sont
comptés dans 7 lettres ,nous aurons 2N =mIV;' " , et par conséquent
la suite d'équations '
nN® =m Nt
(n—l)N", : —(m'—l>le—
(ne—2) N7~} =(m—2)N"}

LN+ = pt-1,

Effectuant le produit de ces équations , et omettant les facteurs
tommuns , nous obtiendrons

-3

., vl

-
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m m=—1 Mmoo ——
J\vm= _ . [ERY) z n+l -
» b ¢ 2 3 n

Si l'on fait maintenant «=g=,=3=,.,.. on aura
—_ N,
AH——-ZV"& ’

done
777 e 1

(z4-a)m= 2™~ 2:— az™ == -?- . @™ i,

2

- QUESTIONS PROPOSEES.
Problémes dc Géomeétrie.

1. UNE droite mobile parcourt le plan d'un triangle de maniére
que le produit des segmens qu’elle détermine sur deux de ses cotés,
vers leur point de concours , est conctamment égal au produit des
deux autres segmens des mémes cétés. On propose d’assigner la
courbe A laquelle , dans son mouvement , cette droite sera perpé-

tuellement tangente ?
. H. Un plan mobile coupe un tétratdre de telle manitre que le

produit des segmens qu’il détermine, du ¢6té du sommet du tétraédre,
sur les trois arétes qui y concourent, est constamment égal au produit
des segmens des trois mémes arétes qui se terminent & la base , et
qu’en outre , le produit des aires des triangles qu'il intercepte du
coté du sommet , sur les trois faces qui y concourent, est cons-
tamment égal au produit des aires des quadrilatéres qui, avec ces
triangles,, complétent ces trois. mémes faces. On propose d’assigner
la surface courbe & laquelle , dans son mouvement , ce plan sera
perpetueliement tangeat ?
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MATHEMATIQUES APPLIQUEES.

Solution des deux problémes proposés & la page 243
du II1° volume des Annales (*) , avec quelques appli-
cations a la construction des thermoméires métalliques
en forme de montre;

Par M. Arcann.

[o.%a Ya Vo VoVl Mo " 4

1. SOIENT AT (fig. 1) latangente commune, BAD la perpendiculaire
3 AT sur laquelle se trouvent les centres des arcs tangens, C un
point pris, 2 volonté, sur BD. Que de ce point, comme centre,
et du rayon CA=z on décrive 'arc AM=¢, la longueur donnée
étant =24. Qu’on abaisse sur AC la perpendiculaire MP , et soient

AP=zx, PM=y ,

. a
y=28Sin. pal

x:z(x-—-Cos.-:j ) .

. . e e . . @ a
on tire de ces deux équations , par I'élimination de Sin.— et Cos.— ,
z z

On aura (1)

. . e a
au moyen de celle-ci : Sm.”;—-}—Cos.’ — =1,
z

(*) Voyez aussi la page 377 du méme volume.

Tom. 1V, 5
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2= y~+x .
2x

En substituant cette valeur de z dans chacune des deux premidres

équations , on obtient celle de la courbe cherchée , sous ces deux
formes

2xy . 2ax yre—=—x? 2ax
=Sin. =Cos. .
yota yoar 7yt yia

Ces deux équations différent non seulement par la forme , mais
encore par l'étenduc de leur signification. La premieére n’appartient
qu’a la courbe qui nait des arcs AM tracés dans le sens des ordonnées
positives. La seconde comprend , en outre , la courbe semblable formée
du c6té des ordonnées négatives : car on voit qu’elle ne change
pas en mettant —z au licu de 2. C’est donc cette dernitre équation
seule qui résout le probléme tel qu'il est énoncé, en y supprimant
toutefois la condition que les arcs touchent la droite donnée du
méme c¢d1é ; car, par cette restriction, on n’aurait qu'une moitié de
la courbe ; savoir : celle qui est tracée du c6té des abscisses positives ,
et la courbe se terminerait brusquement & la ligne AT.

2. Quant a la surface courbe qui fait le sujet du second probléme ;
c’est une sphére dont le centre est le point de contact commun

A , et dont le rayon =V L4 , b étant la surface constante des
w

calottes , et = la demi-circonférence appartenant.au rayon 1. En
effet , la figure 1 peut représenter une section perpendiculaire au
plan tangent , et passant par le point A, Qu'on décrive le cercle

MN d’un rayon AM=V.£’. . Ce cercle sera la section de la sphére

dont il s’agit. Qu’on prenne ensuite , comme ci-dessus , AC & volonté,
et quon décrive I'arc AM, qui sera la section d’une demi-calotte. Per

—_—
’ ! ‘i\/
les élémens , la surface de la calotte ==2#AP.AC ¢t AP= At\(l:, ;
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donc en substituant et réduisant, cette surface =4. Cn doit ici, comme
dans le probléme précédent, et par une raison semblable, retrancher de

Pénoncé du probleme la condition que les calottes touchent le plan
du méme coté.

3. Les applications pratiques étant propres a jeter de I'intérét sur
les questions de théorie , auxquelles on reproche quelquefois de n’étre
que des objets de curiosité, il ne sera peut-étre pas hors de propos
de recueillir ici , & Voccasion de la courbe du premier probleme,
quelques considérations utiles dans la construction des thermométres
métalliques en forme de montre , instrumens dont plusieurs artistes
se sont occupés dans ces derniers temps. ‘

Le mécanisme de cet instrument est porté sur une platine et
emboité comme un mouvement de montre. La figure 3 en représente
les parties principales. Q est un pied ou talon, fixé sur la platine,
auguel est attachée une lame d’acier QTUA , dont la forme et la
position sont assez semblables a celle de ces ressorts qui, depuis
quclques années , ont remplacé les timbres des montres & répétition.
ABCD est la piece destince d donner le mouvement thermométrique.
Elle est composée de deux lames fort minces de métaux differens,
comme acicr et cuivre , soudées I'une & l'autre par leurs faces, de
maniére a4 ne former qu’un seul et méme corps. Les deux lames
QTUA et ABCD sont réunies en A: i I'extrémité D de cette dernitre
est adaptée une troisi¢me lame fort mince abed, qui en forme, en
quelque sorte, le prolongement. Le systtme QTUABCDad¢d ne tient
a la platine que par le pied Q ; tout le reste est porté en Tair et
se trouve éloigné de la platine de la distance requise pour le passage
des roues RS et FG. p est le pignon du centre dans lequel engrene
la roue RS. L’axe de cette roue porte le bras ou levier L qui appuye
contre 'extrémité & de la lame abcd. FG est une roue auxiliaire,
engrenant de méme dans le pignon P: 4 la tige de cette roue est
adapté un ressort spiral s, dont ’effort tend A faire tourner de droite
3 gauche les rouages FG et RS. Cet effort maintient le bras L contre
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le bout & de la lame. L’axe du pignon porte une aiguille , du c6té
du cadran , c'est-3-dire , du coté de la platine opposé a celui que
représente la figure.

En vertu de la différence de dilatabilité entre le cuivre et lacier,
la lame ABCD se resserre ou s’ouvre , par les variations de tem-
pérature , de maniére qu'étant fixée par une de ses extrémités,
Pextrémité libre acquiert , par ces variations , un mouvement thermo-
métrique trés-sensible. On peut I'évaluer d environ 5 millimetres ,
dans les limites de la température atmosphérique , pour une lame
d’un demi-millimeétre d’épaisseur etde 10 & 12 centimeétres de longueur,
et dont la courbure est celle d’un cercle de 25 millimétres de rayon.

La lame ABCD étant suppesde avoir le cuivre en dehors et Vacier
en dedans, lascension de la tempdrature produira une contraction ,
le ressort & agira alors contre le bras L , et la roue RS tournera
de gauche a droite, ainsi que le pignon P, vu du cété du cadran.

On voit que l'arc AM (fig. 1) de longueur constante , mais de
courbare variable , peut représenter la lame thermométrique ; le point

A est Uextrémité fixe , et le point M I'extrémité mobile. Cette derniére
décrira donc une portion de la courbe n.° 1.

4. Voici maintenant les questions auxquelles on ‘est achemind en
cherchant 4 amener ce mécanisme i toute la régularité dont il est
susceptible. Il faut d’abord donner & la lame ABCD le plus grand
mouvement thermométrique possible. On y parvient en 'amincissant ,
mais il faut lui laisser la force suffisante pour résister aux secousses
auxquelles l'instrument peut étre exposé. La forme de la lame étant,
comme on le voit, celle d’une portion de cercle, il ne reste qu'a
en déterminer la longueur.

Sl sagissait d’'une lame droite, il est évident qu'une plus grande
longueur donnerait un plus grand mouvement thermométrique ;5 mais,
pour un arc de cercle, la question ne saurait étre décidée au simple
coup d’eil. Comme le mouvement thermométrique est fort petit,
relativement a la longucur de la lame, la portion de courbe décrite
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par U'extrémité mobile peut étre sensiblement regardée comme I'éiément
ds=1/dxig-dy* de cette courbe.

Or, par les équations (1), on trouve
a2 a- a
ds":-dz’S 2~ — —2Cos, = —2— Sin. _a_§ .
! 2 z3 Z z z
Il s'agit donc de déterminer la valeur de ¢ qui rend ds un mazimum,
en regardant z et dz comme constans.
On trouve le résultat simple

a
1=Cos. = ou a=2f» ,
z

en prenant le rayon z de la lame pour unité, et en dénotant par
% un nombre entier quelconque. Dans la pratique, on ne peut prendre

que k=1, ce qui donne g==2%. On peut méme et on doit, pour

faciliter la distribution des pidces du mdcanisme , réduire 2 & ~—

comme on le voit dans la figure. Ce qu'on perd sur le mouvement
ds, par cette rédaction , est peu de chose ; en effet , les valeurs

.. 3=
de ds , dans . les deux suppositions de a=2% et g= — , sont

entre elles
214w/ geidioadd » OU A& peu prés ::13:iz.

5. Aprés avoir ainsi fixé la longueur de la lame , il faut

déterminer la direction de ds & laquelle le bras L (fig. 3)

doit étre perpendiculaire. On trouve , pour la sous - tangente

au point D, la valeur -——(1—-}-—)5 >=-——5,7 ; ainsi , la direc—
10° avec le diamdtre AQ ,
qui répond & la ligne AD de la figure 1.*°, On voit par la pourquoi
il a fallu donner au ressort abcd une forme rentrante et a inflexion.

On vient de dire que le bras L. doit é&ire perpendiculaire & la
direction ds ; mais , ce bras étant mobile , il faut entendre que

tion cherchde fait un angle d’environ
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cette perpendicularité doit avoir licu au degré de température moyen ,
entre les limites des variations atmo<pheriques.

La détermination ci-dessus fournit d'abord un 4-peu-prés, pour
obtenir la situation requise; mais il couvient daveir un moyen d’y

mettre plus de précision. On peut y parvenir , par observation,
de la maniére suivante,

6. Soient ¢, ¢/, ¢/, trois hauteurs observées sur un thermométre
de comparaison, et m , m’, m" , les degrés correspondans, observés,
en méme temps , sur le cadran du thermomeltre metallique. On réduira
d’abord m, m’, m”, en degrés angulaires, en les multipliant par
360°

T
est divisée la circonférence du cadran.

, T étant le nombre de degrés thermométriques dans lesquels

Soient ensuite (fig. 2) C le centre autour duquel tourne le bras,
AD/ la direction ds sur laquelle se meut l'extremité de la lame ,
D, D/, D/ la position de cette extrémité au moment des obser—
vations , et par conséquent CdD, C&/'D’, Cd”D’ , les situations
correspondantes du bras.

Prenons la perpendiculaire CA pour unité , et faisons 'angle
ACD=uz. o

Le mouvement de la lame étant sensiblement proportionnel aux
variations de la température , on aura d’'abord

D'D:D"D:: ¢/—c:c’—c.

La marche de laiguille fera connaitre les angles &/Cd, 4/Cd. En
effet, le mouvement angulaire de I'aiguille est au mouvement angulaire
du bras, comme le nombre des dents de la roue est & celui des dents du
pignon. Dénotant dans ces nombres par r et p, on aura

6 36
dCi= 2 (m—m)L s @Ci==Z —m) L ;

angles que, pour abréger, nous appellerons n/ et 2.
Or,
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D’ D=AD’ —AD=Tang.(x+n’ )—Tang.z ;

b

(8%}
(&

D7D =AD/—~AD=Tang.(#~-n/)—Tang.z .

En substituant ces valeurs, la proportion ci-dessus donnera , pour
déterminer Tang.z, I'équation

(¢"—c){ Tang.(x+4-n/)—Tang.x | =(¢/—~c){ Tang.(x+n")—Tang.z}.

En développant Tang.(z~}-»/) et Tang.(x-4n"') , les deux membres
deviennent divisibles par 1-4Tang.’x, et 'on trouve

(M) Tang.n/=—(c'—c) Tang.n"

Tang.x=

(¢!'=—c"YTang.n/Tang.n/

Pour employer plus commodément les logarithmes au calcul de Tang.x,
on peut prendre un angle auxiliaire ¢, donné par I'équation

(¢/==c)Tang.n"

Tang.¢= -

¢/lemg ?

on aura ensulte

Tané.x= (c!'=c) Sin. (n/==¢)

(c!'w=c!) Sinn/Tang.n/'Cos.@ )

Soient maintenant M et CmM la position de la lame et du bras ,
3 la température adoptée comme oyenne , » cette température
exprimée en degrés du thermometre de comparaison, et soit fait
angle ACM=g; on aura, comme ci-dessus

DD :MD::¢/—c: y—c

s

: : Tang.(w-}-n/)—Tang.x : Tang.x—Tang.s ;
d’ot on tire
(y—0)Tang.(x4-n')—(y==c") Tang.x

C/a——c

Tang..=

. oye o ’
ou, en employant, comme ci-dessus, un angle auxiliaire v,
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—cYTane.,
Tang.#’:-——_w ¢) ang.x ,
Y—C

puis
(=) Sin.(x~f-n/==])

Tang.p= ;
(¢/==c)Cos.(x~4-n")Cos. ¥

L’angle ; ainsi déterminé , fera connaitre la quantité dont la
position de lextrémité & (fig. 3) doit étre avancée ou reculée. Cette
‘quantité sera BSin.x, en dénotant par B la longueur de la partie
utile du bras, c’est-d-dire , la distance entre le centre de la roue
et I'extrémité du ressort, mesurée i la tempéralure moyenne.

Si, comme on le verra plus loin, cette opération peut se faire,
Pinstrument étant monté, on observera la marche de laiguille qui

T
devra parcourir -3%; degrés de Péchelle du cadran.

En prenant pour ¢/ le degré le plus élevé et par ¢ le plus bas ,
de mani¢re que ¢, ¢/, ¢/ suivent Pordre de la température ascen=
dante, il faudra, si Tang.. est positive , accourcir le ressort abed
ou faire reculer I'aiguille. Ce serale contraire , si Tang.x est négative.

7. La maniére dont le mouvement de la lame se transmet au
rouage, a l'avantage d’occasioner le moins de frottement possible
et de donner beaucoup de facilité¢ pour régler le thermométre ,
ainsi qu’on va le voir ; mais elle a cependant un défaut qui frappe,
au premier coup d’ceil. En effet, les angles décrits par Vaiguille,
3 partir de la température moyenne , sont proportionnels , non aux
lignes AD, AD’, AD” (fig. 2) parcourus par I'extrémité mobile ,
comme il le faudrait, mais aux arcs dont ces lignes sont les tan-
gentes. Il en résulte donc une erreur qu’il faut évaluer; mais, avant
d’examiner cette question , il convient de faire ici deux observations,

1.* La marche de Vaiguille ( supposée d’ailleurs réguliére ) est
en proportion inverse de la longueur dénotée par B au n.° précédent,
Or, cette marche n’est pas arbitraire ; elle doit correspondre a la
division du cadran , qui est supposé donnée. Il faut donc , pour

obtepir
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“obtenir cette correspondance , pouvoir faire varier , & volonté ,
la distance B. Clest dans ce but qua été imaginé le ressert
subsidiaire abcd (fig. 3) , maintenu par la vis de pression ¢. Par
le jeu de cette vis , on peut ouvrir ou refermer le ressort abed :
mouvement qui approche ou éloigne Uextrémité & du centre de L, et
produit ainsi la variation demandéde.

2.° Cette correspondance obtenue , Iindication de Vaiguille peut
n’étre pas d’accord avec celle du thermoméetre de comparaison, de
méme qu'une montre bien réglée peut étre en avance ou en retard.
Pour établir I'accord , on ne peut point, comme dans une montre
quon met & I'heure, faire tourner l'aiguille sur la tige du centre ;
car ici le rouage n'offre point de résistance ; il faut donc enlever
Paiguille de dessus son axe , et I'y replacer dans la situation con-
venable. Cette opération , toute simple qu’elle parait , ne saurait
néanmoins s’effectuer avec une précision suffisante. Il est donc néces-
saire de pouvoir obtenir une plus grande approximation. Le moyen
suivant remplit cet objet.

La platine est emboitée de maniére que le poussoir P se trouve
vis-a-vis d’un point M de la lame extérieure QTUA, tel qu'en
exergant sur ce point une pression dirigée vers le centre p, il en
résulte a lextrémit¢ & un mouvement dans la direction ds; ce paint
se détermine facilement par l'expérience. Le poussoir étant traversé
par une vis V, dont le bout vient appuyer contre le point M, on
peut, par le jeu de cette vis, faire avancer ou reculer lextrémité
d, sans rien déranger au reste du mécanisme , et achever ainsi de
rendre I'indication dc {’aiguille concordante avec celle du thermométre
de comparaison. On doit observer ici que l'emploi de cetie vis V
doit étre mis & profit pour obtenir une derniére approximation ,
dans D'opération du n° 6, laquelle doit précéder celle dont on vient
de parler. A la vérité , ectte dernicre dérangera la position prescrite
par le n.° 6; mais tout ee qui en résultera , ¢’est que le bras L
qui devrait étre perpendiculaire & la directien ds, 4 la température
moyenne y , ne le sera véritablement quwa la température » 1 un

Jom. 1. (37
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ou deux degrés , ce qui ne présente aucun inconvénient sensible.

8. L’effet des vis » et V étant ainsi expliqué, on voit qu’il peut
dtre assimilé 4 deux constantes arbitraires au moyen desquelles on
peut faire en sorte que I'indication de Vinstrument soit exacte & la
température moyenne » et 4 une autre température y—=+n. On voit
aussi que l'accord étant obtenu dans ces deux cas, il aura égale-
ment licu A la température y—n2. En général , on peut ne s'occuper
que de ce qui se passe en supposant 7z positif , car les mémes cffets
seront produits , mais en sens contraire, » étant négatif.

Soient maintenant (fig. 4) MN la direction ds, CM, perpendicu-
laire & MN, la direction du bras & la température moyenne 5, CN
cette direction a la température »—}-n. Faisons CM=1 et Ang.MCN =g,
et prenons un autre angle indétermind MCX==x. Pour que l’accord
demandé edit licu lorsque le bras est en CX ; il faudrait que 'on et

MN:MX:: Ang.MCN: AngMCX ,

c’est-a-dire ,

: aTang.x
Ang.VICX— m ’

puis donc quon a réellement
Ang MCX=x ,
il s’ensuit que l'erreur est -

aTang.x

Tang.a '

Le maximum de cette erreur a lieu , lorsque Cos.*z=

ce
Tang.a
qui donne

— L _4_ s 26 s :
x—\/gﬂ—l—45\/3.a+1575\/3a +000'l

Lerreur elle-méme est alors
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9\/0 a+....,

série dont 1l suffit de conserver le premier terme.
Maintenant on doit prendre pour 2 la moitié de la distance entre

les températures cxtrémes de I’atmosphére. On peut donc faire z=25°

2725
. b
centigrades ; l'angle ¢ sera = T en conservant & T, r, p les

valeurs du n.° 6.
L’erreur au maximum , rapportée a I'aiguille ct exprimée en degrés
thermométriques , sera ainsi

8.25%.m%p>  79146p>
E T T

Soit donc ¢ la plus grande erreur qu'on veuille se permettre ; il

1 ) T 8
faudra avoir 79 <e ou ——r- =

Soit , par exemple = (::;°. Réaumur ) , on devra avoir
Tr
-;}562. Les valeurs de 7 et de p sont limitées par la nature de

Pinstrument. On ne pourrait guére faire r plus grand que 100,
Quant A p, il faut bien se garder de le prendre trop petit. On ne
peut nullement employer ici, comme dans les montres, des pignons
de 6 ou 7 ailes. En [aisant p=10, on aurait T=56 ; mais, comme
il y a une certaine ¢légance & avoir pour T une partie aliquote de
Vunité thermométrique , on pourrait encore prendre p=q , ce qui
permettrait de faire 7=5o.

9. Il ne faut point omettre de faire mention ici d’un défaut qui
parait inhérent & tous les instramens ou le corps thermométrique
est solide : defant qui tient & un fait physique sur lequel M. Laplace
a appelé lattention des observateurs ( Eaposit. du syst. du monde,
liv. I, chap. XII). Il s’agit de la résistance que les corps, en
changeant de température, opposent & leur changement de volume
et de figure : resistance qui parait étre due au frotement interne
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entre les molécules et a Délasticité de ces mémes molécules. Cet
effet est trés-apparent sur linstrument dont nous nous occupons.
Si on le met en action de maniére que l'aiguille ait un mouvement
sensible et qu'on lui fasse subir un léger choc, pour lequel il convient
d’employer un corps dur , on verra laiguille faire un saut, dans
le sens de sa marche, puis rester stationnaire pendant tout le temps
qu’il lui aurait fallu pour parcourir l'espace qu’elle a franchi. Et
ce qui prouye que cet effet ne provient pas, au moins en totalité,
du frottement externe, comme on pourrait d’abord le penser, c’est
la régularité qu'on y observe. L’espace dont il sagit parait étre
de > & ;° centigrade , pour la lame dont les dimensions sont données
au n.° 3. Ces limites scraient beaucoup plus écartées , si une cause
anssi variable que le frottement externe exercait la principale in-
fluence dans Veffet en question.

On peut ajouter que la méme résistance a lieu relativement au change-
ment de figure qui provient d’une autre cause que la variation de la tem=
pérature, par exemple, de la propre pesanteur du corps. En effet, si, en
maintenant le thermométre dans un plan vertical , on le fait tourner au-
tour de l'axe de I'aiguille , la température demeurant constante , la pesan-
teur des parties mobiles de l'instrument, particulitrement celle de la
lame, produira un changement de figure d’out naitra un mouvement dans
_ Yaiguille. Pendant ce mouvement, on pourra faire 'expérience dont
nous venons de parler, et on obtiendra le méme effet. Cette variation
dans lindication de laiguille , suivant la situation du thermométre
est, au reste , un défaut qu'on doit corriger , atin que linstrument
soit comparable & lui-méme dans toutes les positions. On y parvient
facilement, en adaptant sur l'axe de la roue RS (fig. 3) un petit
contre-poids , semblable au bras L. On observera la position dans
laquelle 'action dont il s’agit de corriger I'effet est & son maximum.
La direction du contre-poids devra alors étre horizontale , et dans
le sens ou laction de la pesanteur contrarie celle de la lame.

Le poids de cette petite correctrice se détermine facilement pan
Iexpérience,
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10. Il y aurait encore plusieurs préceptes de pratique a indiquer
ici, mais on se bornera au point lc plus essentiel. Comme la force
qui agit sur le mdcanisme est proportionnelle 3 la variation de la
température , et qu'un frottement , quelque petit qu'il soit, demande
une force finie pour étre surmonté, on veit qu’il y aura toujours,
dans la machine , une inexactitude d’autant plus grande que la résis-
tance 4 vaincre le sera elle-méme. On doit donc s’attacher , avec
un soin extréme 3 diminuer toutes les causes de frottement. Donner
au rouage la plus grande liberté , alléger les roues et laiguille,
réduire la grosscur des pivots, employer un ressort spiral trés-faible ;
éviter tout contact entre l'aiguille et le cadran ou la glace qui le
recouvre , tels sont les principaux moyens de parvenir a ce but.
On voit que la construction des thermométres métalliques exige
des considérations dont les résultats ne pourraient pas toujours étre
connus par l'expérience et le tdtonnement ; ce qui explique pour-
quoi des artistes, habiles d’ailleurs, n’ont obtenu, dans ce genre,
que des produits imparfaits quant 4 I'exactitude. Quelques essais
dirigés sur les principes qu’on vient de présenter ont été plus satis-
faisans ; ct on croit pouvoir assurer quavec un peu de soin , les
artistes obtiendraient une précision, sinon assez parfaite pour des
expériences trés-délicates , du moins suflisante dans bien de cas,
et pourraient ainsi offrir aux observateurs une nouvelle espéce de
thermométre que sa forme portative leur rendrait trés-commode en
voyage, et dans les excursions ol le transport des instrumens est
souvent un sujet d'embarras.
Paris , le 27 février 1813.
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GEOMETRIE DES COURBES.

Essai sur lexpression analitique des courbes , indepen=
damment de leur situalion sur un plan;

Par M. GERGONNE,

(o %a Y Vi Vo Vi VL Vo Via 7]

IL a été souvent remarqué que, si l'usage des coordonnées paral-~
léles & deux droites fixes, dans la théorie des courbes, réunit générale-
ment en sa faveur un trés-grand nombre d’avantages ; il est ncanmoins
certaines courbes , ou certaines recherches rclatives a toutes les courbes,
pour lesquelles d’autres systtmes de coordonnées semblent mériter
la préférence. On en voit un exemple remarquable & I'égard des
spirales qui, rapportées a des coordonnées polaires , ont , pour la
plupart , des ¢quations trés-simples et souvent méme algebriques.
Les lignes du second ordre en offrent un autre exemple; puisque,
rapportées aux mémes coordonnées , elles ont leur rayon vecteur
exprimé sous une forme rationnelle, et quen particulier I'cquation
du cercle prend alors la forme trés-simple r=Const. qui met en
évidence sa propriété fondamentale.

Jinclinerais assez A penser, d’aprds ces réflexions , que , dans
les livres destinés & I'enseiguement, il conviendrait, peut-étre, d’in-
sister un peu plus sur ce sujet qu'on ne le fait communément. Je
sens fort bien qu'on ne saurait exiger des auteurs de tels ouvrages
quils traitassent , en détail , de toutes les transformations de coor=
données , dont le nombre est illimité, et dont la plupart n’cffriraient
d'ailleurs qu’'une complication qui ne secrait rachetée par ancun
avantage, Mais il faudrait du moins que 'on mit bien ceux qui
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étudient sur la voie des recherches de cette nature , qu'on leur
montrat bien que, toutes les fois qu'on élimine & et y, entre trois
équations telles que

Flz,y)=o0,
¢>:x,y=l‘,u)=0 ’
Ya,y,t,u)=o0,

on fait une véritable transformation de coordonnées , quelle que
soit d’ailleurs la forme des fonctions ¢ et ¥, et qu'on les exergit
assez sur cette matiere pour les mettre en dlat de découvrir la
transformation analitique qui répond 4 une iransformation géomé-
trique donnée , et gice versd , du moins lorsque ces transfor-
mations ne sont pas trés - compliquées (*). En particulier , on
pourrait , relativement aux lignes du second ordre , demander de
rapporter ces courbes , soit & deux points fixes, soit & un point et
a une droite fixes , tels que, # et z représentant les deux coordonnées ,
Téquation prit la forme z+tu=Const., ou cette autre z=w. Celte
maniére de chercher les foyers me semblerait, i la fois , plus naturelle
et plus analitique qu’aucun des procédés employés jusqu’ici & leur
détermination ; et clle pourrait, en outre, conduire 4 la découverte
de quelques points remarquables, dans les courbes des degrés su-
péricurs.

Mais , soit qu’on rapporte une courbe & deux droites, ou 4 une

(*) Ce serait une question assez intéressante , mais qui ne parait pas facile 2
traiter générvalement, que celle de savoir quelle devrait étre la forme de deus
fonctions @ et ¢, pour qu'en éliminant x et y entre I'équation donnée

¥, y)=o ,
et les deux équations
Px,y,t,u)=0 , (e, y,t, u)=0,
Péquation résultante fit une équation donnée

ot , u)=o.
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dro'te et 4 un’ poiat , ou 4 deux points , ou enfin & tout autre
systeme de données invariables ; toujours la forme de son équation
dépendra de sa situation par rapport a4 ces donndes ; toujours cette
équation renfermera des arbitraires, exprimées ou sous -entendues ;
en un mot, elle n'exprimera point , si je puis m’exprimer ainsi,
la nature Znirinséque de la courbe, indépendamment de sa situation,
et de toutes dounnédes extéricurcs et immobiles.

Cette observation , faite depuis long-temps, a conduit divers géo-
metres & rechercher quel serait le systtme de coordonnédes le plus
propre a rendre lexpression analitique d’une courbe indépendante
de tout terme de comparaison , de toute convention étrangtre 3 la
nature de cette courbe. M. Lacroix a proposé l’équation entre le
rayon de courbure et I'arc correspondant, compté depuis un certain
point de la courbe (*): et ce moyen serait, en cffet, trés-propre
2 rendre I’équation d’une courbe indépendante de sa situation dans
L’espace ; mais M. Lacroix remarque lui-mémne que , dans ce sys-
téme , le point de départ des arcs serait nécessairement arbitraire. A
la vérité, on pourrait choisir celui pour lequel le rayon de courbure
est le plus petit ; mais, outre qu’il est un grand nombre de courbes
dont la courbure est la méme en divers points , P'usage d’un tel
systtme de coordonnées , supposant la courbe deji tracée , en son
entier , ne pourrait conséquemment servir a sa description. On peut
remarquer encore que , dans ce systéme , les courbes rectifiables
exceptées , les équations de toutes les autres courbes seraient inéyi-
tablement différentielles.

M. Carnot qui, dans un ouvrage trés-remarquable , a préséiﬁé
sur la transformation des coordonnées, des reflexions du plus grand
intérét (*), a proposé, pour exprimer analitiquement la pature d’une
courbe , le moyen que voici 8!, par I'un quelconque des points

") Voyez son Traité de ealcul différentiel et de calcul intégral , tome I,
page 418 de la premiére édition, et page 484 de la seconde,
(") Géométrie de position , page 473,

d’une
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d’une courbe, on lui méne une tangente , et qu'aprés avoir mené
3 la courbe une corde quelconque, paralltle a cette tangente, on
joigne le point de contact au milieu de cette corde par une droite,
cette droite fera avec la tangente un angle dont la grandeur varicra,
généralement parlant , avec la situation de la corde. Si 'on congoit
que cette corde, toujours paralléele a la tangente , s'en rapproche
sans cesse , I'angle dont il s’agit tendra continuellement vers une
certaine limite qu’il atteindra enfin, lorsque la corde et la tangente
coincideront ; c’est la relation entre cet angle limite et le rayon de
courbure que M. Carnot propose d’employer pour caractériser les
courbes ; et l'on doit convenir , en effet, que cette relation gst bien
indépendante de toutes données fixes , de toute supposition arbi-
traire et conséquemment trés — propre , & beaucoup d’égards, a faire
bien connaitre la nature des courbes. On voit en particulier que,
toutes choses égales d’ailleurs, plus l'angle sera aigu et plus aussi
la courbure de la courbe devra varier rapidement d’un pbint a l'autre;
tandis qu’au contraire plus il approchera d’étre droit et plus Ia courbe
tendra .a prendre une courbure uniforme, comme cclle du cercle.

Il parait que M. Carnot a eu principalement en vue, dans le
choix de ces deux coordonnées , la simplicité de Péquation trans—
formée ; et , en effet, l'application qu’il fait de sa méthode a la
parabole le conduit & une équation 4 peu prés aussi simple que
I’équation ordinaire de cette courbe ; mais , outre qu’il peut paraitre
peu naturel de faire entrer cn conside’ration, dans I’expressiop d’une
courbe , une droite qui passe par deux points qui se confondent,
et dont l'un appartient & une corde évanouissante, et conséquemment
insaisissable pour les sens; on ne voit pas trop comment on pourrait
d('éduire de cette expression une construction graphique approchée
de la courbe i laquelle elle est relative : objet qui, comme je Iai
déja dit, me parait ne devoir pas étre négligé dans cette recherche.

Dans un mémoire présenté i linstitut en 1803 (*), M. Ampere,

(*) Voyez le Journal de Pécole polytechnique, Xiv cahier, page 159,
Tom, 1, 7
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qui s'est aussi occupé de la méme question , a proposé , pour la
résoudre , l'usage des Paraboles osculatrices ; c’est-a-dire, que,
pour un point pris arbitrairement sur une courbe donnée , il cherche
quelle devrait étre la parabole qui aurait avec cette courbe, en ce.
point , un contact du troisitme ordre, et qu’il prend, pour équation
de la courbe proposée , I'équation entre les coordonnées ordinaires de
cette parabole. On ne peut disconvenir que, déterminé i exprimer
toutes les courbes par leur relation avec une méme courbe, choisie
arbitrairement, M. Ampére ne pouvait faire un choix préférable &
celui de la parabole ; mais, enfin, ce choix a toujours quelque chose
d’arbitraire ; il exige, en outre , la considération de deux courbes
au lieu d’une seule ; et la méthode qui en résulte, moins simple

que celle de M. Carnot, ne parait pas, plus qu'elle,, propre & fournir
une construction,

Il y a fort long-temps que j'ai congu l'idée d’un mode d’expression
absolue des courbes qui , d’une premitre vue , m’a semblé devoir
of;frir Aquelques,avantages sur tous ceux que je viens de rappeler;
mais diverses distractions m’avaient toujours détourné jusqu’ici de le
soumettre & DUépreuve du calcul, et & présent méme je ne puis
qu’en ‘dq-nner une simple esquisse. C’est, au surplus, tout ce quon
_peat raisonnablement désirer de rencontrer dans un recueil du genre

de celm-cn, destme Plutot mettre sur la voie, des méthodes qua
en offur de 1orrgs devdoppemens. :

Une courbe étant donnée , et un point étant pris arbitrairement
sur son périmétre ; elle a nécessairement, en ce point, un certain
rayon de courhure R, dont la grandeur et la direction sont déter—
mindes, tant par la nature de la courbe que par ]a situation , sur
son perlmétre , du point particulier que l’on considére. - L'extrémité
de ce rayon R est un point de la devcloppee , lié essenncllcment
" au point pris sur la ‘courbe » et variant avec lui. Or, comme, lors-
qu'une courbe est donnée , sa développée est aussi_ donnée , non
'seulement despéce , mais encore de situation par rapport a elle;
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il s'ensuit que le rayon de courbure de cette développée, en chacun
de ses points , doit aussi étre donné de grandeur et de situation. Done,
en particalier , le rayon de courbure R/ de la développée , qui
répond a Plextrémité du rayon de courbure R de la courbe primi-
tive , et qui est perpendiculaire & ce dernier , doit étre lié avee
lui par une relation qui , étant indépendante de tout objet fixe
étranger & la courbe que l'on considére , ct par conséquent a la
situation de cette courbe dans lespace , ne doit renfermer, outre
les deux rayons B, R’ , que les élémens nécessaires a la déter—
mination absolue de cette méme courbe.

C’est I’équation de relation entre ces deux rayons R, R’/ que jai
d’abord cu en vue de substituer & ’équation ordinaire des courbes ;
et l'on voit, en effet quen méme temps qu’elle est trés-propre a
les caractériser, clle ne renferme rien d’arbitraire, rien qui ne soit
absolument inhérent 4 la nature intime de ces courbes. Il est méme
ais¢ de prevoir que telle courbe dont Péquation ordinaire sera com~
pliquée et méme transcendante , pourra souvent, dans ce sysiéme,
étre exprimée par une équation algébrique trés-simple. On en voit
des exemples remarquables pour la Cycloide et la Développante du
cercle , dont les équations deviennent alors respectivement A*—-R/
=16a* et [i/=a, a étant, pour I'une et l'autre, le rayon du cercle
générateur.

Le seul embarras que j’éprouvais , dans I'adoption de ce syétéme,’
dtait de savoir comment je deduirais de I'équation d’une conrbe une
construction approchée , telle que celles quon déduit des équations
différentielles entre des coordonnées paralléles & deux droites fixes.
Je songeai done & substituer aux rayons H , I/ d’autres variables
plus propres a remplir ce but , que je ne perdais jamais de vue ,
et j'en trouvai, en effet, de telles; mais, je ne tardai pas d’aper=
cevoir que ce que je considérais comme deux modes distincts d’exprimer
les courbes , n’en faisaient au fond qu’un seul, et pouvaient facile-
ment étre déduits 'un de Vautre. La considération du dernier m’a
méme permis de simplifier considérablement les procédés relatifs 3
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la recherche du premier , ainsi qu’on va le voir tout-4& - 1'heure,

Soit MN (fig. 5) une droite prise arbitraircment pour 'un des
rayons de courbure d’une courbe connue, M étant un point de la
courbe. On sait qu'un tres-petit arc de la courbe se confend sen-
siblement avec 'arc de cercle MM/, décrit du point N comme cenire,
et avec NM pour rayon; en prenant donc cet arc MM/ pour larc
de courbe, sil'on connaissait, en général , pour un rayon de cour-
bure donné MN , quel est I'accroissement de ce rayon qui répond
au petit angle MNM/, dont varie sa direction ; en portant cet accrois—
sement sur le prolongement de M/N, de N en N/, la droite M/N/
pourrait sensiblement étre considérée comme un nouvean rayon de
courbure , répondant au point M/ de la courbe , et le point N/
comme le point correspondant de sa dévcloppée ; opérant donc sur
M/N’/ de la méme maniére qu'on l'aurait fait sur MN , on déter-
minerait un troisitme rayon de courbure M”N/ et conséquemment
un troisitme point N de la développée ; on parviendrait donc,

>
en poursuivant continuellement de la méme maniére , & tracer la

courbe proposée , & peu prés comme on trace les anses de paniers,
et 'on obtiendrait , en méme temps, sa développée , qui scrait donnée
par les intersections .consécutives de ses rayons de courbure. Tout
se réduit donc & aveir une déquation de relation entre le rayon de
courbure , son accroissement et l’angle qu’il décrit pour acquérir
cet accroisscment. Or , cette équation , lorsque du moins on considére
le rapport de Dangle a l'accroissement du rayon de courbure dans
sa limite , est trés-facile 4 obtenir , comme nous lallons voir dans
un instant; et elle est en méme temps trés-propre a caractériser la
courbe A laquelle elle est relative.

Présentement , tout étant supposé d’ailleurs dans la figure 6 comme
dans la figure 5, soient menées NP, N/P/, respectivement perpen-
diculaires & MN, M/N’ ; NP sera sensiblement le rayon de courbure
de la développée , pour le point N, et P son centre de courbure
pour le méme point, Soient faits , comme ci-dessus, MN=ZR,
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NP=PR’; on aura NN/=AR. Soit en outre désigné par ¢ l'angle
que forme MN avec une droite fixe quelconque, I'axe des z, par
exemple ; on aura AngNPN/'=Ang MNM/=A¢; et, en vertu du
triangle NPN/, rectangle en N/, on trouvera NN/=NPCus. I NN’
=NPS/2NPN/; cest-d-dire , AR=R'Sin.A¢, ou encore

, AR
T Sinag”

Cette équation n’est qu'approcheée ; mass, & la limite, elle devient
rigoureuse , et l'on obtient alors exactement

R=S2. (A

Si donc on a une équation entre B ct R/ ; au moyen de la

. . . dR .
précédente, on en déduira facilement une équation entre R et FrRd
¢

. . dR .
et réciproquement , d’'une équation entre A et 0 on déduira, par

le méme intermdédiaire, une équation entre R et B/; c’est méme
ce dernier parti que nous prendrons , comme élant le plus facile.

Nous avons donc ici deux questions & résoudre ; car d’abord on
peut avoir I'équation d'une courbe , rapportée a des coordonnées soit
rectangulaires , soit obliques, soit polaires, et on peut demander d’en:

. . . dR . .
déduire son équation , soit en R et—(ﬁ, soit en R et R’/; ou bien

. . . . dR .
on peut avoir, au contraire, son équatlon soit en R et— , soif
2 > d(’ b

en R et I/, et demander d’en déduire son équation en coordonnées
soit rectangulaires , soit obliques , soit polaires; la solution de cette
dernitre équation , qui dépend évidemment de la premitre dont elle
est I'inverse , ne conduit, généralement parlant, qu’a une équation diffé-
rentielle qu’on ne saurait toujours intégrer sous forme finie et algé-
brique ; et les constantes de son intégrale , lorsque cette intégrale
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est possible , servent a hixer la situation des axes. La premiére question
ne présente pas les mémes difficultés.

De quelque systéme de coordonnées que on parte , il est clair

. . dR .
que, pour une méme courbe , I'équation , soit en R et TR soit en

R ct I/ doit demeurer constamment la méme. Mais , si la nature
des coordonnées primitives n’exerce aucune influence sar le résultat
definitif ; elle peut rendre le calcul plus ou moins pénible. Nous
supposerons , dans tout ce qui va suivre, que les coordonnees sont
rectangulaires, d’autant que la question peut toujours étre amende
4 ce cas; x sera la variable indépendanie, et mous poserons, sui-
vant l'usage
dy dp dg

dx =P E—:q’ do =

En conséquence, nous mettrons ’équation (A) sous la forme

do _ dR

R/ T -(:c- . (B)

Cela posé, lexpression du rayon de courbure est

=000 g
q
d’odx
_d_Ii _Bpgr—r(i4pr)

dx 9* Vi s

d’un autre c6té, en appelant ¢, comme nous en sommes convenus,

Yangle que fait la normale ou le rayon de courbure avec laxe
des z, on a

d¢
¢=—Arc. (Tang.: z ) , dot — = . ;
4 dx 1~-p>

substituant donc dans léquation (B}, elle deviendra
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R, 2 4y

T 14p2 g2 Vit
ou
B/ = 3pqr—r~+p? . (14-p*)2 )
q° q
ou enfin

3pg2eamp 2)
R=XCTCH) b
qz

(D)

Soit donc
x,y)=o0 , M

équation en coordonnédes rectangulaires d’une courbe quelconque,

Par trois différentiations consécatives , on en tirera les trois nouvelles
équations '

o(x,y,p)=o , (11)
oz, y,pyq)=o0 , (Hr)
¢///<x7y:/0:7’r)=07 (IV)

auxquelles on joindra encore les deux équations (C) et (D) qu'on
pourra écrire ainsi

qzﬂz=<[+pz)3 s (V)
g = [B3pg—r(1+p*)]R ; (VD)

et, en éliminant entre ‘elles les cinq quantités #, y,p, ¢, 7, on
obtiendra , pour résultat final, I'équation cherchée , en 72 et et R/,

. . dR | . :
dans laquelle on pourra ensuite substituer - @ R/, si on le juge

convenable.
Si, au contraire, I'dquation proposée était
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fp, am)_ —o
WA, d9§—¢(R,B)__o,

en y joignant les équations (V) et (VI), pour en éliminer R et
A/ , I’équation résultante’, en x, ¥ , p, g, r, scrait I'équation
differentielle du troisiéme ordre de la courbe en coordonnées rectan-
gulaires ; équation qu’il faudrait ensuite intégrer , soit exactement
soit par approXimation.

Pour pfemier exemple , proposons-nous de trouver Yéquation de

Pellipse en R et B/, 2a et 25 étant les deux axes ; les équations
du probléme seront

bxr ety =ab* (1)
batapy=o , (2)

b ef-a*(p*~gy)=o0 , 3
Spg-try=o , (4)
FR=0+4p") , ()
g*R'=[3py—r(1-+p*)] A. (©)

L’dlimination de 7 , entre les équations (4) et (6) donnera d’ahord
gy B =3p[1+(p*~gn) ] R ; V)

I'édlimination de ¢ , entre les équations (3) , (5) et (7) donnera
ensuite

(ap*4-5")B'+-3p(a*>—b") R=0 , (8)
(@p*+b* P Rr—a'y*(14p*)’ =0 ; ()

dliminant encore p entre ces dernitres et équation (2), on aura,
en ayant égard & I'équation (1), et en transposant et quarrant dans

Véquation (8)

ﬂ:
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0’563/2—_-9(0’ z\z/bz__y )y--ﬂ’ ((0)
a*b*R 2=§<az__5=>'y3+54§3 ; (r 1)
la derniére donne

2

2 .2 b ————
C—VFTE) , Poy=t =Ly 7T,

3 —
‘y - -CI—.bZ

Substituant ces valeurs dans l'équation (10) , on obtiendra enfin
Péquation demandée , laquelle pourra étre mise sous la forme suivante.

()P TP e ®

Cette équation met parfaitement en évidence la propriété dont
jouissent les rayons de courbure de Vellipse , d’étre constamment

compris entre les deux limites E}; et lia:- , et montre en outre que,
lorsqu’ils atteignent 1’une ou l'autre de ces limites, le rayon de cour-
bure de 1a développée devient nul. Cette équation peut sembler un
p:u compliquée ; mais jobserverai que celle & laquelle parvient
M. Ampere , ne l'est pas moins (*). Si 'on y change b enby/ =1, on
la rendra propre a 'hyperbole dont le premier et le second axes sont
respectivement 22 et 25 ; elle deviendra ainsi

oH > VRN
(3Ii>+l[_V(bz) {I+V(a_) §_° -
et l'on voit ici que le rayon de courbure, qui n’a point de limite

. . b* . .
en grandeur, ne saurait étre moindre que —,ct que, lorsqu’il atteint
- a

cette limite, le rayon de courbure de la développée devient nukl
Si, pour l'une et Pautre courbes, on désigne le paraméire par
p » leurs équations pourront étre comprises dans la formule unique,

(P @l =

e

(*) Voyez au bas de la page 170 du volume déja cité,

Iom. 1V, 8
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le signe supérieur répondant a Iellipse et linférieur & I'hyperbole.
Si l'on veut passer de la & la parabole, il suffira de supposer que
@ est infini, ce qui donnera, pour I'équation de cette courbe ,

R’ \2 3 M.zﬁ
(“gﬁ‘)—ng—VC..);:o. ®)
P
~ 8i, dans les équations (E) et (H), on fait 2=a, elles deviendront
respectivement propres au cercle et & I'hyperbole équilatérale ; il

viendra ainsi :
’ n )z RN 2
e e L Ly §'=o
30 p ?
B/ \2 R 3 " ’
(§E>+§1_7V _a_§=o ;

et I'on voit que la premiére revient a ces deux-ci

R=a , R'=o0 ,
ainsi que cela doit étre

. dR
En mettant , dans toutes ces équations , pour R’ sa valeur TR
et tirant ensuite de I'équation résultante la valeur de dR, en fonction

de R et de, on aura des formules qui pourront servir commodément
4 tracer les lignes du second ordre , 4 la maniére des anses de paniers
le tracé approchera d’autant plus d’étre exact qu'on fera croitre angle ¢
par des degrés plus petits.

Pour second exemple, proposons-nous de déterminer I’équation;
en coordonnées rectangulaires, de la courbe qui a constamment son
rayon de courbure égal a4 celui de sa développée ; les équations du
probléme seront

R'=R ,
gR =(+4p?)
g B'=[3pg*—r(14p")]R ;
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d’'olt, par I’édlimination de R et R/, on conclura sur-le-champ
3pgr=—r(i4-p?) _
—_—qz“— =1

en mettant successivement cette derniére équation sous les deux formes

g-2pg—r4r?) _ —p qlg4p?)4p.2pgl—p14p>)r

=1-p,
g? ’ g* P
on verra aisément que deux de ses intégrales premitres sont
14-p2 (14p?)
S =ryd, =y
d’ott, par I’élimination de ¢, on conclura l'intégrale seconde
x B . d x
= T +B , ou simplement L ;
x—y~-A de  x=—y

attendu que, par un changement d’origine , on peut toujours faire
disparaitre les deux constantes 4 et B. L’intégrale de cette derniére
équation est

C+-Arc, (Tang. = -i-; ):Log.\/m s

ou, en passant aux coordonnées polaires, et faisant commencer les
arcs avec les rayons vecteurs,

t=Log.s ;
équation de la spirale logarithmique , comme on pouvait bien s’y
attendre.
Je terminerai par observer qu’avec des modifications convenables,

il serait possible d’étendre aux surfaces courbes et aux courbes &
double courbure la théorie qui vient d’étre développée.
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CORRESPONDANCE.

Lettre de M. Du Bourcuer , professeur de mathématiques
spéciales au lycée impérial,

Au Rédacteur des Annales ;

En réponse & la lettre de M. Bret , insérée a la page 369
du 3.:° yolume de ce recueil.

[a 2a Vo i Tia o o Yl V]

MONSIEUR ET TRES-CHER CONFRERE ,

LA nouvelle difficulté quéléeve M. Bret , contre la démonstration
que j’ai donnée A la page 338 du 2.° volume des Annales, et qui
aest plus celle qu'il avait élevée & la page 33 du 3.° volume, et
a laquelle j’ai complétement répondu, a la page 94 du méme volume ,
s'applique généralement & tous les renversemens d’équations indéter-
mindes entre deux variables, et a par conséquent déja di étre ex-
pliquée (*). Mais , comme il m'est beaucoup plus aisé , dans ce
moment , pour répondre & M. Bret , de donner moi- méme une
explication de la difficulté en question , que de feuilleter , peut étre
inutilement , un grand nombre d’auteurs , je ferai remarquer & ce

(" En effet, si cette légére difficulté n’avait déja été expliquée , il s’ensuivrait,
par exemple , qu'on serait encore dans le doute sur l'identité des courbes respectives
des équations y=0x et x==¢’y , lorsque cette derniére équation est le renverse-
ment de la premiére.
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glométre que, si, en s’exprimant comme il le fait 2 la page 369
du 3.° volume, on représente par b une des couples de =, y,
non comprises dans celles g, «/#’, «/3/,.... de l'équation

a=¢(4,B,C,....¥) , (=)
ee couple ne satisfait pas i I’équation
AamBam = Ca™ - =y, (1)

dont celle (2) est le renversement; il s’ensuivra que, pour y=5,
dans léquatl’ 1), on devra avoir '

A(a+9)"+B(a+9™ *4-Clato)™ ... =5 ;

renversant cette dernitre équation , il est clair , d’aprés les éqbations
(1) et (2), qu’il viendra

aty=¢(d, B, C,...0) ;
mais , par hypothése ,
a=¢(4d,B, C,....0) ;

donc y=o, et, par conséquent, @b est aussi une couple de z, y,
dans V’équation (1) ; donc toutes les couples qui satisfont a l'équation
(2) satisfont aussi @ I'équation (1), Cela démontré, je pense que
M. Bret admettra cette conséquence , et peut-ttre alors cessera-t-il
de croire qu'il soit zrés-difficile de ramener la démonstration du
principe qui sert de fondement 4 la théorie des équations, a des
notions purement élémentaires.
Agréez , etc.
Paris , le 2 juin 1813.
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Lettre de M. BERARD, principal du collége de Briancon.
Au Rédacteur des Annales ;

En réponse a la lettre de M. BRrgT , insérée & la page 369
du 3.° volume de ce recueil.

[a Va Vi Vi o Vb V3 Vo Vg ¥

MONSIEUR ,

PERMETTEZ—-MOI, je vous prie , quelques observations trés-courtes
sur la lettre de M. Bret que vous avez insérée 4 la page 369 du 3.°
volume de votre intéressant recueil.

Le procédé de M. Bret et le mien, pour construire la parabole ;
renferment deux points distincts,

1.° Il sagit d’abord de déterminer deux tangentes MO, M/O;
paralléles aux axes des coordonnées , ainsi que les points M, M/
ol elles touchent la courbe. Pour cela M. Bret et moi employons
les mémes équations. Mais, tandis qu’il construit leurs intersections,
moi je les combine par élimination. Jusque-la le but est le méme ,
et la différence des moyens peu importante.

2.° Les deux tangentes étant trouvées , ainsi que leurs points de
contact M, M/ avec la courbe, il s’agit de construire cette courbe.
M. Bret remplit ce second objet en déterminant d'abord le sommet;
tandis qu’au contraire je commence par chercher le foyer F, en
menant les deux rayons vecteurs MF , M/F.

M. Bret remarque, avec raison , que , lorsque les coordonnées
sont rectangulaires, les droites MF , M/F , se confondant avec la
corde MM/, ne sont plus propres a déterminer le foyer , par leur
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intersection ; mais, dans ce cas particulier , la construction devient
beaucoup plus simple ; le foyer étant alors le pied de la perpen-
diculaire abaissée sur la corde MM/, du point O de concours des
deux tangentes,

Ainsi ma construction ne souffre pas plus d’exception que celle
de M. Bret; et elle se simplifie méme, dans le cas particulier ou
elle’ semblait étre en défaut. Je laisse , au surplus, au lecteur a
juger de cc que ces deux constructions peuvent avoir de commun;
et je crois devoir me borner i observer qu'ayant communiqué le
manuscrit de mon ouvrage a M. Bret, en aott 1808, il n'est pas

surprenant que depuis lors il ait oubli¢ les détails de ma cons-
truction.

Agréez , etc.

Briangon, le 18 de juin 1813.

QUESTIONS PROPOSEES.

Problémes de Geométrie.

1. A.U systtme de trois cercles ‘donnds , tels que chacun d’eux
touche les deux autres , circonscrire un triangle de maniére que
chacun de ses cotés touche en son milien I'un des cercles donnés?

II. A un triangle donné, inscrire le systtme de trois cercles tels
que chacun d’eux touche les deux autres et touche, en outre, en
son milieu, 'un des cotés du triangle ?

Probléme d Hydro-dynamique appliquée.

Une roue est composée de deux plateaux égaux , en forme de
couronnes circulaires , ayant leurs plans paralléles et leur axe commun.
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Ces plateaux sont unis l'un a l’autre par des ailes brisdes, unifor~
mément réparties sur leur contour , formant des angles diedres dont
les faces sont rectangulaires et perpendiculaires aux plans des deux
plateaux. Ces plateaux sont d’ailleurs solidement unis 3 l'axe de la
roue , par un nombre suffisant de pitces d’assemblage.

La figure 7 représente 'un des plateaux , vu en dedans, sur
lequel sont marquées ses intersections avec les ailes ; on a aussi
indiqué dans cette figure , les pitces qui unissent le plateau 4 Paxe
de la roue , et dont la forme et les dimensions peuvent d'ailleurs
étre varides d’un grand nombre de maniéres diverses.

On s'est assuré qu’une telle roue , entiérement plongée soit dans
I'eau ‘soit dans un courant d’air, de maniére que son axe soit fixe
et vertical , y prend un mouvement de rotation.

Cela posé ; on suppose donnés 1.° le rayon extérieur des pla-
teaux ; 2.° l'intervalle qui les sépare ; 3.° la vitesse du fluide ; et
lon demande . quels doivent étre le nombre, les dimensions et la
situation des ailes, pour que la roue produise, en tournant, le plus

grand effet possible ?
Théoréme de Geéomeéltrie.

M, M/ étant deux points quelconques d’une parabole , O le point
de concours des tangentes en ces points , et I le foyer , on propose
de démontrer que

Mo’ _ Mo’

MF  MF
d’oti il suit que, si F tombe sur MM/, le sommet de I'angle O, qui
devient droit, est placé sur la directrice , et la ligne OF est per—
pendiculaire sur la corde MM/,
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PHILOSOPHIE MATHEMATIQUE.

Nouveauaxe principes de geéometrie de position , et
interprétation géomelrique des symboles imaginaires,

Par M. J. F. Frangais , professeur a I'école impériale
de Yartillerie et du génie,

A% L VLV, VL V. V. V)

IL est si naturel de considérer , & la fois , en géométrie, la grandeur et la
positiondeslignes, que, dés qu'on a commencé & cultivercette science, on
a dt avoir besoin d’exprimer des rapports de grandeur et des rapports
de position , entre les différentes lignes composant une figure quelconque.
Jose dire qu'il est surprenant, d’aprés cela , que les premiers principes
de la Géométrie de position ne soient pas encore complétement
établis. Cette assertion, elle-méme , pourra, au premier abord, sembler
exagerée et paradoxale ; mais j’espére que sa vérité sera mise hors
de doute, par les détails qui vont suivre.

Notation 1.*%. Nous représenterons ici la grandeur absolue d’une
droite par une simple lettre, comme @, &, ¢ ,.e.c.2, ¥, 2,....;
et, pour indiquer , & la fois, la grandeur et la position d'une droite,
nous affecterons la lettre destinée & désigner sa valeur absolue d’un
indice exprimant l’angle que fait cette droite avec ume droite fixe
et indéfinie, prise arbitrairement, et qui pourra étre considérée comme
Paxe des abscisses positives. Ainsi, par exemple, a,, bg, ..., Zys Yy
représenteront des droites dont les grandeurs absolues sont 2, 4,...,
Xy % ,e-0., et qui font, respectivement avec 'axe des & positives,

Tom, IV , n.° Il , 1.°% septembre 1813, 9
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des angles «, #,...., £, v,.... Gette distinction est nécessaire ,
atin de ne pas confondre une idée composée avec une idée simple,
une grandeur donnée de position avec une grandeur absolue.

Définition 1.7°. Nous appellerons Rapport de grandeur le rapport
numérique entre les grandeurs de deux droites , et Rapport de position
Iinclinaison des deux droites 'une vers l'autre, ou l'angle qu’elles
font entre elles. Pour comparer entre elles deux droites données &
la fois de grandeur et de position , il faut considérer non seulement
le rapport que leurs grandeurs ont entre elles, mais encore comment
ces droites sont placées l'une relativement a l'autre ; c’est ce quex-
prime notre rapport de position,

Définition 2. Nous dirons que quatre droites sont en proportion
de grandeur et de position , lorsqu’entre les deux derniéres il y
aura méme rapport de grandeur et méme rapport de position qu’entre
Jes deux premieres. Ainsi il ne suffit pas, pour qu’il y ait proportion
de grandeur et de position entre quatre droites, que le rapport dit
géoméirique , entre le second antécédent et son conséquent, soit le
méme que celui qui existe entre le premier antécédent et son
conséquent ; il faut, en outre , que le rapport que nous avons appelé
rapport de position, soit aussi le méme.

Exemple. Ainsi, pour avoir la proportion de grandeur et de position
a,:bg::c, 1 dy,il faut qu'on ait, A la fois, -ba-: -:—z- et fema=)—y.

Corollaire 1.7, 11 suit de 1a que, dans une proportion de gran-
deur et de position , les grandeurs absolues des droites sont en
proportion géométrigue , tandis que les angles que font ces mémes
droites avec 'axe des abscisses positives sont en proportion arithmé-
tique.

Corollaire 2. 11 s’ensuit encore que, dans deux figures semblables ,
disposées d’'une maniére quelconque sur un méme plan, les cétés homo-
logues sont en proportion de grandeur et de position ; car les grandeurs
absolues de ces cOtés sont en proportion géométrique, et les angles
quiils forment deux a deux sont égaux.
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Remarque. 1)idée de proportionnalité , en géométrie , est fondée

sur la similitude des figures ; notre définition 2.° repose donc sur

un principe fondamental de la géométrie ordinaire , et nous ne faisons
qu’exprimer, d’'une maniére eaplicite , la double circonstance de la
proportionnalité des cétés homologues et de Végalitd des angles
compris entre ces cotés,

Définition 3. Lorsque , dans une proportion de’grandeur et de
position , le conséquent du premier rapport devient en méme temps

Vantécédent du second , la proportion de grandeur et de position

est dite continue ; et une suite de termes , dont trois consécutifs

quelconques forment une proportion continue de grandeur et de
position , est une progression de grandeur et de position. Ainsi,
une suite de droites en progression géométrique ordinaire ne forme une

progression de grandeur ct de position que lorsque les angles que
les droites consécutives font entre elles sont égaux.

Exemple 1.°". Pour avoir la proportion continue de grandeur et

de position @, :8g::08: ¢, , il faut qu'on ait, i la fois, —i—: —Z— et
p—a=y—_8.

Corollaire 1.*. Donc, pour qu'une droite &5 soit moyenne pro-=
portionnelle de grandeur et de position entre 2 et ¢,,, il faut quon
ait g=7;(a+vy); en sorte que Jp partage en deux parties égales
JYangle formé par les droites @,, ¢

Y
Exemple =. Pour avoir la progression de grandeur et de posi-

. . . , N R ¢
tion -:a“:bp:cy...l}‘:m‘“,ll faut qu'on ait, & la fois, - ...

= et p—a—y—B= ..., = p—2Ae

Corollaire 2. Donc , dans une progression de grandeur et de
position , les grandeurs absolues des droits sont en progression
géométrique , tandis que les angles qu'clles font avec laxe des
abscisses positives croissent en progression arithmétique.

Nozation 2. Nous pouvons maintenant séparer, dans Ja notation,
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ce qui est relatif & la grandeur absolue d’une droite de ce qui
est relatif 3 sa position. D’abord on a, par la premitre notation
dy=a, 1,=1; et ensuite on a, par la définition 2.°, 1:1,::a: @,
d’ou l'on tire @,—a.1,. Ainsi, nous pourrons représenter , de gran-
deur et de position, la droite @, par a.i,, ol @ est la grandeur
absolue, et 1, le signe de position.

Définition 4. Nous appellerons Droites positives celles qui, étant
paralleles & Taxe des abscisses, sont dirigées de gauche a droite ,
et Droites négatives celles qui, étant paralléles & 'axe des abscisses ,
sont dirigées de droite & gauche. Nous appellerons , de méme , Angles
positifs ceux qui sont compiés depuis l'axe des abscisses positives,
en montant , et Angles négatifs ceux qui sont comptés depuis le
méme axe , en descendant. Cest Ja la définition ordinaire des quan-
tités positives et des quantités négatives en géomdtrie; mais , il s’en
faut de beaucoup qu’on en ait tiré toutes les conséquences qu’elle
est susceptible d’offrir. En combinant cette définition .avec les pré-
cédentes , nous allons en déduire une maniére simple , uniforme et
féconde de représenter les lignes de grandeur et de position.

Corollaire. 1.°*. 1l suit de cctte définition et de nos notations
quon a =1=1,, et —1=1_, _, et par conséquent +z=aX(+41)
=a,, et —a=aX(—1)=0.1 4 ..

Corollaire 2. On sait , d’un autre cété , que -1 =eoea\/:; y
et ~—1I :eiﬂ\f:; on a donc aussi -+a=a><(+x)=a.e°w-‘
:twv—.——x.

>

et —a=aX(=1)=a.c
Remarque. 11 est yrai qu'on a plus généralement , -{-1~=e=t2””\/"I

et —1 == (ant-1)ay=1 ,  étant un nombre entier quelconque ; mais,
dans le géométri'e de position , on n’a besoin‘que d’'un seal tour
de circonférence, pour dcterminer la position d’une droite, ce qui
suppose =0 , et réduit ainsi les expressions de -1 ct de —1 A
celles du corollaire précédent.
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Théoréme 1.t*. Les quantités imaginaires , de la forme Fay/ =7
représentent, en géométrie de position , des perpendiculaires & l'axe
des abscisses ; et réciproquement les perpendiculaires & l'axe des
abscisses sont des imaginaires de la méme forme.
Démonstration. La quantité +ay/ 1 est une moyenne propor-
tionnelle , de grandeur et de position, entre —+a et —gz, cest—
a-dire, entre ay €t donc , d’aprés le corollaire r.cr de 1la

définition 3.°, la valeur de cette moyenne proportionnelle , de gran-
deur et de position, est @ = ; cest-a-dire , qu'elle est perpendi-

culaire & I'axe des abscisses, et dirigée soit en dessus soit en dessous
de cet axe ; et l'on a +a\/—1=a+g_r, et —ay/ —1=a_ =. Réci-
2 z

proquement , toute perpendiculaire A I’axe des abscisses est représentée,
d’aprés nos notations, par @ = :elle est, par conséquent, d’aprés
=

le corollaire 1.2 de la définition 3, une moyenne proportionnelle entre
a, et a_ ., ou enire ~+a et —a: elle est donc une quantité ima=,

ginaire de la forme —+ay/ .

Corollaire 1.°. 1l suit de 1 que /=7 est un signe de position
qui est identique avec 1 =,
2

ve——
Corollaire 2. De plus, puisqu’on a -—1=xiw=é'—”v-',on
. —_— o el pr
a aussi /=1 m=eT VT
15‘1

Corollaire 3. Les quantités dites zmaginaires sont donc tout aussi
réelles que les quantités positives et les quantités négatives , et n’en
different que par leur position qui est perpendiculaire 4 celle de
ces derniéres.

Remargue générale. Cette théorie des signes de position est une con-
séquence nécessaire el irrécusable des premiers principes. Elle est plus
conforme aux régles d’une saine logique que la théorie ordinaire ot
I'on admet, un peu gratuitement ou du moins sans nécessité , deux
especes différentes de quantités positives , et autant d’especes de
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quantitds négatives ( les abscisses et les ordonndes ); car, d&s qu'on
admet la définition 4.° des quantités positives et des quantités négatives,
il n’est plus permis d’en introduire d’autres qui ne soient pas comprises
dans cette définition; et l'on est obligé forcément d’admettre toutes
les conséquences que cette méme définition entraine. Ces conséquences
heurtent , & la vérité, les idées regues ; mais c’est que ces idées sont
fondées sur un défaut de dialectique , qui consiste & admettre deux

principes , et deux principes incompatibles , l4 ot un seul serait
suffisant.

Théoréme 2. Le signe de position 1, a pour valeur N ; Ceste
a-dire , que 1¢=e“\/:;

Démonstration. Supposons que la demi-circonférence décrite d’un
rayon =1 soit divisée , dans le sens des angles positifs , en m parties
égales , et qu'on mene des rayons aux points de division ; ces rayons
formeront, d’aprés la définition 3.°, une progression de grandeur
et de position : or, les denx termes extrémes de cette progression

dtant r,=w1 et Ip=—1=¢"V *

, les termes intermédiaires

= XN
aV—1 2\—I
Yoy 127, 137, 4400 I(m-1)z auront pour valeurs e ,em

 J
Tie m m m

Loy —

iz (GETPL N mry na =7
em 3eeel m ; de sorte qu’en général on aura 1ra= V=1 ;
: m

n=z= »
et , comme oy peut representer un ang!e quelconque , on aura finale=
\f—1
ment 1 =t \/ .

Corollaire 1.°* Si I'on prend les logarithmes naturels des deux

membres de I’équation I,L=e”\/—I , on aura «y/—1=Log.(1,): ce
qui fait voir qu’en géométrie de position les arcs de cercle sont les
logarithmes des rayons correspondans. Ces arcs de cercle sont, comme
on le voit, affectés du signe de position /=7, ce qui parait trés—

naturel , puisque leur direction est dans un sens perpendiculaire a
Vaxe des abscisses.
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Observation. Le corollaire précédent contient le germe d’une
théorie trés-simple et trés-lumineuse des logarithmes naturels, et
de leurs rapports avec la circonférence du cercle. Il explique ex-

pression énigmatique » les arcs de cercle imaginaires sont des
logarithmes «; il donne enfin un sens raisonnable et intelligible &

. . ;. a D — m—
I'équation symbolique et mystéricuse e v/ —1=Log.(yy ).
Corollaire 2. Puisque , d’aprés la notation 2.°, on a o,=a.1,;
il suit du théoréme précédent qu'on a aussi a,:a.e“\/_l.

Corollaire 3. Comme on a e“\/—‘=Cos.¢+Sin.¢.\/:, il s'en—
suit que @, =aCos.«~+aSin.«y/ =1 c'est-ia-dire que , pour exprimer
une droite de grandeur et de position , il faut prendre la somme de ses
projeciions sur deux axes de coordonnées rectangulaires : bien entendu
qu'on prendra chaque projection avec son signe de position.

Corollaire 4. 11 suit de la qu’a une droite quelconque , donnée de
grandeur et de position , on peut substituer tant d’autres droites
qu'on voudra , pourvu que la somme de toutes les projections de
ces derniéres soit égale 2 la somme des projections de la droite
donnée ; c’est-a~dire , qu'ad une droite x, on peut substituer les

droites @, , &g, €5 ,...s7m, , pourvu qu'on ait , entre ces quantités,
la relation '

x.e‘g\/"‘=a.e“\/“l+b.e'e\/—l+c.e°'\/_'+....-l-m.e”V—l; (A)
ou, & cause de l'indépendance du signe /=7,
2Cos.t=aCos.ub5Cos.8-4¢Cos.4=o o oo . FmCos.p ;
| (®)
#Sin.z = aSin. « }-4Sin.g4-cSiny 4o v o o FmSin.ge
On voit que toutes ces droites a,, dg, €, ,.... peuvent étre prises
arbitrairement , A l’exception d’une seule, dont la grandeur et la
position doivent étre déterminées par 1’équation (A) ou par ses
équivalentes (B).
Réciproquement, on peut substituer 4 tant de droites, données



.68 GEOMETRIE
de grandeur et de direction , qu’on voudra une droite unique , poutvu
que les projections de cette derni¢re , sur deux axes rectangulaires,
soient respectivement égales aux sommes de projections des premitres
sur les mémes axes; et alors sa grandeur et sa position se trou-
veront déterminées par les équations (B).

Corollaire 5. Si les droites Zyy @us bgy €y,...cmy du corollaire
précédent forment un polygone fermé , les équations (B) sont
évidemment satisfaites. Donc, on peut substituer & une droite quel-
conque donnée une suite d’autres droites , formant un polygone
fermé avec la droite donnée ; et réciproquement , & une suite de
droites formant un polygone non fermé, on peut substituer la droite
qui fermerait le polygone.

Application & la mécanique. Les trois derniers corollaires sont
immeédiatement applicables 4 la composition et & la décomposition
des forces. En effet, une force, donnée d’intensité et de direction,
peut toujours étre représentée par une droite donnée de grandeur
et de position, qui est le chemin parcourn , en vertu de cette
force , dans l'unité de temps. En substituant donc, dans les trois
derniers corollaires, les mots « force donnée d'intensité et de direc—
Zion » & ceux-ci « droite donnée de grandeur et de position » ,
on aura immédiatement les théorémes connus sur la composition et
sur la décomposition des forces. Cette théorie , qui était toujours
sujette & quelque difficulté, se trouve donc réduite & une question
de géométrie de position.

Remarque. 11 est bon d’observer qu’au moyen du signe de posi-
tion /=, les abscisses et les ordonnées se trouvent aussi indé-
pendantes, en géométrie de position, que le sont, en mécanique,
les forces perpendiculaires entre elles. Cette conformité seule éta-
blirait un argument non équivoque en faveur de notre théorie ,
si dailleurs elle ne sc justifiait pas d'elle-méme.

[
——

Théoréme 3. Le signe de position 1, a aussi pour valeur 137 ;

o
c'est-d-dire , que 1,=1%=,
Démonstration.
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Démonstration. Si I'on divise la circonférence décrite d’un rayon
=1 en m parties égales, et qu'on mene des rayons aux points de
division , ces rayons formeront, d’aprés la délinition 3.¢, une pro-

gression de grandeur et de position, dont les deux termes extrémes
’ 2

s 14T ==1m,..ss
m

I

seront également I'unité. On aura donc 1:3=1

“m
n 2n= n T«
1275 = 1m. Supposant donc —=w, on aura —= — , et par con-

= m m 2@

o
séquent T,==17=. ]

Corollaire 1. 1l suit de ce théoréme, 1.° que les rayons qui
partagent en 2 parties égales la circonference dont le rayon est 1,
représentent les 72 racines m.™¢ de D'unité ; 2.° que toutes ces racines
sont égales entre elles et & 'unité, et qu'elles ne different les unes des
autres que par leur position ; 3.° qu’enfin elles sont toutes ¢égale-
ment réelles , puisqu’elles sont représentées par des lignes données
de grandeur et de position.

Corollaire 2. En comparant ce théoréme avec le précédent, on obtient
immédiatement les valeurs eonnues des racines de 1’unité , qu’on peut
exprimer, en général , par im=em VT = Cos.f;lf—}—Sin.z—:;f- y/ =1

Remarque 1.7¢ En combinant entre eux les théorémes 2.° et 3.5
ainsi que leurs corollaires , on peut faire les rapprochemens les plus
curieux et les plus intéressans entre les arcs de cercles, les loga—
rithmes naturels et les racines de I'unité , et rattacher ces trois branches
de calcul a une seule et unique thcorie.

Remarque 2.°. On voit , par cette théorie” des signes de position ,
qu’a %a rigueur on pourrait se passer, en géométrie, des signes -+,
— et /=, comme signes de position ; et que nos signes 1,,

ST P les remplacent, avec avantage, en conservant la liaison
w =3

de ces signes avec le signe général de position Ty Il en résul-

terait encore cet autre avantage que les signes ~}- et — ne serviraient
plus désormais qu’a indiquer I'addition et la soustraction ; de sorte

Tom. IV. 10
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que ces signes n’auraient jamais qu'une méme signification ; ce qui
éviterait bien des embarras , et serait en méme temps beaucoup plus
conforme aux régles d’une saine logique.

Théoréme 4. Toutes les racines d’une équation d'un degré quel-
conque sont réelles , et peuvent étre représentées par des droites
données de grandeur et de position.

Démonstration. 1l est démontré que toute équation d'un degré
quelconque est toujours décomposable en facteurs réels , soit du
premier soit du second degré ; et conséquemment il suffit de faire
voir que les racines d’une équation du second degré peuvent étre
représentées par des droites données de grandeur et de position. Or,
les racines d’une équation du second degré étant de la forme
x=p=t/7 , sont immédiatement constructibles , par les corollaires 3.°
et 4.° du théordme 2.°; car 1.° si ¢ est positif, 2 sera la somme
ou la différence de deux quantités positives ou négatives , comptées
sur Paxe des abscisses; 2.° si g est négatif, x sera une droite partant
de lorigine et dont les coordonnées de l'autre extrémité seront p

et /4.

Telle est I'esquisse , trés-abrégée , des nouveaux principes sur
lesquels il me parait convenable et méme nécessaire de fonder la
géométrie de position , et que je soumets au jugement des géometres.
Ces principes étant en opposition formelle avec les idées admises
jusqu’ici , sur la nature des quantités dites imaginaires , je dois
m’attendre A des objections nombreuses ; mais j'ose croire qu'un
examen approfondi de ces mémes principes, les fera trouver exacts,
et que les conséquences que jen ai déduites, quelque étranges qu’elles
puissent paraitre d’ailleurs , au premier abord , seront néanmoins
jugées conformes aux régles de la dialectique la plus rigoureuse.

Je dois, au surplus, & la justice de déclarer que le fond de ces
idées nouvelles ne m’appartient pas. Je Tai trouvé dans une lettre
de M. Legendre & feu mon frére, dans laquelle ce grand géometre
lui fait part ( comme d’une chose qui lui a été communiquée , ct
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comme objet de pure curiosité ), du fond de mes définitions 2.°
et 3.¢, de mon theoréme 1.°% , et du corollaire 3.¢ de mon théoréme 2.°;
mais ce dernier n’était avancé que gratuitement , et n’était justifié
que par lexactitude de quelques applications. Ce qui m’appartient
en propre s¢ réduit donc & la maniére d’exposer et de démontrer
ces principes , 4 la notation , et 4 lidée de mon signe de posi-
tion 1. '

Je désire que la publicité que je donne aux résultats auxquels
je suis parvenu, puisse déterminer le premier auteur de ces idées
4 se faire connaitre, et & mettre au jour le travail quil a fait lui-
méme sur ce sujet. (*)

Metz , le 6 de juillet 1813,

™ Il y a environ deux ans qu'écrivant 2 M. de Maiziére , au sujet de son
mémoire inséré 4 la page 368 du 1.°¥ volume de ce recueil, je lui mandais qu'on
avait peut-étre tort de vouloir comprendre toutes les grandeurs numériques dans
une simple série ; et que , par leur nature, elles semblaient devoir former une
table & double entrée qui, bornée aux seuls nombres entiers, pourrait étre figurée
comme il suit :

wery =22\ T ) 1o/ =1, o/ =1, F1d2\/ =1 , F2foV =1, e
oy =2 V=T, =1 V=1, A V=t i VT, e VT
oy —2 , -1, +o, 41, 42, e
oy =2 =1, =1 V=1, = =1 = VT, 2 VT
ooy =22\l 5 = pema\J 1y =2\ T y r1—2\ =1, Fa—aN =1 e

I I R I I I I A I L I I S I

en sorte que déja, comme M. Frangais, je supposais les nombres de la forme

n\/—x situés dans une ligne perpendiculaire a celle qui renferme les nombres
de la forme n; et que, comme lui encore, je représectais les nombres étran-~
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ANALISE TRANSCENDANTE.

Intégration , sous forme finie , de quelques JSonctions
differentielles circulaires ;

Par M. Du Bourcuer , professeur de mathématiques
spéciales au lycée impérial,

[a Ta Vi Vig Vi Wo o VL V)

ON rencontre souvent , en mécanique , des fonctions différentielles
de la forme

gers & ces deux lignes par la somme de leurs projections sur lune et sur l'autre.

Le méme M. de Maiziére , au sujet de quelques difficultés que j'avais opposées
au mémoire que je viens de citer , me manlait , dés le mois d’avril 1811 : ce
que j'avance ici sur les imeginaires est une idée hardie que je suis bien aise
de jeter en avant, et dont, jen suis sir, vous aurez déja reconnu lexactitude;
et,, un peu plus loin : ce paradoxe cessera d’en éire un, lorsque jaurai prouyé
que les imaginaires du second degré , et par conséquent de tous les degrés,
sont tout aussi peu imaginaires que les quantités négatives, ou les imaginaires
du premier degré; et que nous sommes exactement , & l'égard des uns , dans
la situation o étaient nos algébristes du Xxv11® siécle & l'égard des autres.

En rappelant ces circonstances , il est certes loin de ma pensée de chercher
4 dépouiller M. Frangais , non plus que le géométre dont il a si bien su mettre
les indications A profit , de la priorité de leurs idées ; mais je veux montrer que
ces idées ne sont point tellement étranges que le fond n’en ait pu germer dans
plusieurs tétes & la fois. 1l faudra sans doute faire heaucoup encore pour parer
toutes les objections, pour éclaircir toutes les difficultés , pour dissiper tous les
nuages , pour étendre et perfectionner la nouvelle théorie et en rendre bien évidens
Pesprit, le but et les avanlages; mais, on ne peut espérer ces résullats que du
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z"dzCos."z , 2"dzSin."z,

Aucun auteur, du moins que je sache, n’ayant donné les intégrales
sous forme finie , de ces deux formules, jai pensé que l'on ne
serait pas fiché de les rencontrer ici.

L’intégration de ces deux formules pouvant toujours , comme
nous le verrons tout 4 'heure , étre ramenée & celle des formules

(az)"d.Sin.(az) ,  (az)"d.Cos.(az) |
lesquelles reviennent &
2"d.Sin.x 2"d.Cos.x ,

c'est par celles-ci que nous commencerons. A la vérité , nous pourrions
en déduire les intégrales de notre équation générale (432) [ Traizé
de calcul différentiel et de calcul intégral, tome 1I , page 236,
art. 425 ], en y faisant X=2a", a=o0 etb=1; inais nous croyons
devoir , dans ce mémoire, les intégrer immédiatement.

Intégration de 2"d.Sin.z. . :
On a

d(a"Sin.z)=2"d.Sin.x—na"~*d.Cos.z ,

done

temps et des efforts réunis de tous ceux qui voudront bien ne pas rejeler cetle
théorie avec dédain , sans lavoir sérieusement examinée,

Ce qui me parait résulter, bien clairement, du mémoire quon vient de lire;
ce qui peut en Ctre regardé comme le résumé , est la proposition suivante : Lorsque
cherchant , sur une droite indéfinie, une longueur déterminée , mais inconnue ,
guon croit étre d'un certain cbté d'un point fixe pris sur cette droite, il arrive
que cette longueur est réellement du cété opposé de ce point fixe , on trouce
pour la longupur cherchée , une expression négative ; et si cette longueur n’est
pas méme situde sur la droite donnde )\ son expression se présente alors sous
une forme imaginaire,

J. D. G.
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JSz"d.Sinz = #"Sinz-nfz"~*d,.Cos.x ; (@
or,
d(z"~ " Cos.z)=2"~*d.Cos.x+(n—1)2"-2d.Sin.z ;

donc

Jam=* d.Cos.x=a"""*Cos.x—(n—1) /2"~ *d.Sin.z. )

De ces équations (@) et (4), on conclura aisément les valeurs
de fz"~*d.Sinz , fz"~3d.Cos.z , /2""4d.Sin.z ,.,.. et, par des subs-
titutions successives, 4 partic de I'équation (e), on parviendra au
résultat que voici : ‘

(1 Jx"d.Sina= { B e (1 1) 22 (e 1) (e 2) (e 3) 67t A s } S04
{nxﬂ"—n(n-—l)(n-z) &3 41 (2==1) (n==2) (w3 (e ) 0¥~ S==e 0 § COS. X

dont les séries , régies par une loi trés-simple 4 apercevoir, sont
finies , lorsque ~ est un nombre positif et entier. Il est d’ailleurs

ais¢ de voir que le coefficient de Cos.z est égal 2 la différentielle
de celui de Sin.z, divisée par da.

Intégration de z"d.Cos.x.

Suivant la méthode des intégrations réciproques ( Art. 217 de
Vouv. cité ), on a

J2"d.Cos.z=2"Cos.x—n/2"-*d.Sin.x , ©)
Ja"'dSinz=2"=*Sin.x 4 (n—1) [z"~ *d.Cos.x. ()

Mettant successivement n—2, n—4 , .... dans les équations (¢) et (d) ;
on forme une suite d’équations qui ont chacune leur dernier terme
affecté d’un facteur intégral qui est le premier membre de I'équation
qui suit immédiatement ; donc, par une suite de substitutions suc-
cessives , & partir de 1’équation (¢), on parvient aisément a celle
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(2)  fx"d.Cos.x={x"m=n(n em1)x" tefn (ne==1) (n==2) (ne=3) X" hom=iss, }Cos )
{ nxn= f—n (n—1) (n—2) 2"~ 31 (N 1) (1) (1= 3) (o ) T § ==0se } SILE

dont les séries sont les mémes que dans I'équation (1).
Intégration de z"dzCos.™z.

Des équations, connues en trigonométrie , qui donnent respective—
ment les valeurs des puissances paires et impaires du cosinus d’'un
arc, en fonction des premiéres puissances des cosinus de ces arcs,
et que j’ai rappelées, sous les lettres (@) et (4), a la page 411 du
premier volume de mon Traité de calculs différentiel et intégral,
on tire pour le cas de /2 NOMBRE POSITIF ET PAIR,

SzrdzCosMz= — § fz"dzCos. mz-{- -r—;l- - /z"d2Cos.(m—2)z-

2m—l

n .T-Z:-!_fz"dzCos.(m-4)z+....+?- ot _m;‘-m+zfznd2Cos.2z§+
2

T
) § cm=1

13500000 (m""l) z"+‘ ;
2,4.6 sev e lm(n+x)

et, pour le cas de 7z NOMBRE POSITIF ET IMPAIR,

SzrdzCos.mz= ;:— {/2"d.2Cosmz+ - fz"dzCos.(m=—2)z-
I

m me—r _ m m=—1 Fm35) .,
- — - [2"dzCos.(m—4)z4 et - — ...i(m+3)fz dzCos.3z4~
— L(m43
-'—:- 'mz e : E::t!))fz"dz(]os.z}.

Multipliant et divisant, dans ces deux équations , chaque terme

du second membre par la (n~41)™° puissance du coeflicient de z
sous le cosinus, en observant qu'en général
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kdzCos.kz=d.Sin.kz ,

il viendra, pour le cas de 7, NOMBRE POSITIF ET PAIR ,

(3) Jz"dzCos.z= ;,;,L; %ﬁl_,_—, S(mz)"d.Sin.(mz) 4~ Z;”_:’E)"?. / [(m=—2)2]"d.Sin.[(m-—g)z]

m=—1 Imfa 1 N . 1 3 me=—1
crenes _ cevelt 2z)"d.Sin.(2z —_— e —, g
+ i S Im—I 2"+‘f( zy'd Sin.(22) (+ 2 4 m n+x

et pour le cas de 72 NOMBRE POSITIF ET IMPAIR ,

4 Jz"dzCos.™ = { —i/ (mz)"d Sin.(mz)-}- ey e [(m—-'))z]"d Sin.[(m—=2)z]

M me—1 Tm5y 1 (. m m—1 1 (m+4-3) #d.Sin.z
+.o...+ 2 T d) -3u+x./(3‘z) 'd.Sin.(3z; + ""'xl(m——z)/z .

Or, les valeurs de tous les termes intégraux des seconds membres
de ees équations (3) et (4) sont données , sous forme finie, par
I’équation (1), en y faisant successivement z=mz, (m—2)z,....;
donc on aura aussi, sous forme finie , les intégrales demandées.

Intégration de z"dzSin."z.

Des équations, connues en trigoriométrie , qui donnent respecti=
vement les valeurs des puissances paires et impaires du sinus d’an
arc simple , en fonction des premitres puissances des lignes trigo-
‘nométriques, soit sinus soit cosinus, des multiples de l'arc Simple,
et que jai rappelées sous les lettres (@) et (4) , & la page 4o7 du
premier volume de mon 7Traité de calculs différenticl et intégral ,
on tire, pour le cas de 7, NOMBRE POSITIF ET PAIR ,

tF

(e) Jz"dzSin"z=+ -—,,;; § /2"dzCosimz— ﬁl fz"dzCos‘.(m—z)z,—!—,

m
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() Sfz"deSinMz=1t { — =/ (mz)d Sin.(mz)— (‘:;7:;‘.] [(m—-2)z]"d.Sin.[(m—z)z]

m me==1

DES FONCTIONS CIRCULAIRES. 77

m m—1 —_m m=—1 im
— J/z"dzCos.(m—4) 2.0~ — , e J%"dzCos.2z -
1 2 1 2 }m—x

=. 2o i

2 4 m n41 >

et, pour le cas de 7, NOMBRE POSITIF ET IMPAIR,

() Jz*dzSinmz= ;—r;_—l{fz"szin.mz—- i J2"dz8in (m—z)z-

/z"d2Sin.3z+

m m— m me—I I (m=4-5)
1

n
f z"dzSin, Py

= (m+ )fz"szm.z3
!

2

Multipliant et divisant chacun des termes des seconds membres de
ces deux équations affectés du signe d’intégration, par la (n--1)™me
puissance du coefficient de z sous le signe de cosinus , équation (¢),
et sous celui de sinus, équation (f) , en remarquant quen général
kdzCos.kz=d Sin.kz , kdzSin.fkz=-—d.Cos.kz , en trouvera, pour
le cas de 7 NOMBRE PQSITIF ET PAIR,

—m M= Im-f-2 t

= 4)n+,f [(m—4)z]"d Sin.[(m—A)e] o 52 = o= v T g [ (2274 Sin.(22)

2 4 m-—1 H

les signes supérieurs devant é&tre pris lorsque 72 est un nombre dou=
blement pair et les inférieurs dans lc cas contraire.

Tom. IV. Ix

|
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Et, pour le cas de m NOMBRE POSITIF ET IMPAIR ,

1 —_1 ___.__..I “n
O JsSinme =T e e s A Cos ()= —— (s} Cos [im—2)2)
m m—1 Y . R
— . e (m—4)z]"d.C — ), ! m— I(m45) 1 "
— = @P%y,fﬂ $)z]"d.Cos [(m—4)z] T e Ty e (32148 32)

m  me=—1 T (m4-3)
+ - LD !,
— 1 2 ;’-(m-—l)‘/“ d.COS.zS H

les signes supéricurs devant étre pris lorsque m—1 est un nombre
doublement pair, et les signes inférieurs dans le cas contraire.
Or, les valeurs des termes du second membre de I'équation (5)
affectés du signe d'intégration , sont données, sous forme finie ,
par Uéquation (1) ; et celles des termes du second membre de Iéqua-
tion (6) sont également données , sous forme finie 4 par ’équation (2);
donc, quelles que soient les valeurs entiéres et positives de m et z,

on a cxactement , et sous forme finie , I'intégrale demandée de
2"dzSin"z.

GEOMETRIE DE LA REGLE.

Application de la doctrine des projections a la démons-
tration des propriétés des hexagones inscrits el
circonscrils aux sections coniques ;

Par M. GERGONNE.

'

[o Vi Vi Vo Vig Vi Vio Vi Vo ¥

ON connait déja diverses démonstra:ions des théorémes relatifs aux
hexagones inscrits et circonscrits aux sections coniques (*). En

(*) Voyez , entr'autres , la note de la page 335 du premier volume de ce recueil.
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voici d’autres que- je crois nouvelles et qui me paraissent assez
simples pour permettre d’introduire dans les élémens deux théorémes
si féconds en belles applications.

?-
L. Hexagone inscrit,

1. Par les élémens de géométrie, il est facile de démontrer que, si deux
cltés consécutifs d'un hexagone inscrit au cercle sont respectivement
paralléles & leurs opposés , les deux autres cotés opposés de cet
hexagone seront aussi paraliéles Iun & [lautre. (*)

2. Il résulte de la que, si deux cotés consécutifs d'un hexagone
inscrit a lellipse sont respectivement paralléles a leurs opposés
les deux autres cotés opposés de cet hexagone seront aussi paralléles
lun & lautre. Que l'on congoive en elfet , qu’aprés avoir rendu
le petit axe de [Dellipse parallele a un plan fixe on fasse tourner
son plan autour de cet axe , jusqu'a ce que la projection orthogonale
du grand axe sur le plan fixe soit égale & ce méme petit axe,

(* Soient 4, B, C, D, E, F les sommels conséculifs de I'hexagone , et suppo-
sons que 4B, BC soient respectivement paralleles 2 DE, EF ; on aura

Arc.BC4Arc.CD=Arc.EF4Arc.FA ,
Arc.FA4-Arc. AB=Arc.CD+-Arc.DE ;
d'olt, en ajoutant et réduisant -
Arc.AB+4Arc. BC=Are.DE-4Arc. EF ,
ou, plus simplement
Arc.ABC=Arc¢.DEF ,

ce qui établit le parallélisme des cétés opposés CD , FA, du moins lorsque ,
comme nous le supposons ici, ces cOtés ne se coupent pas dans le cercle.
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La projection de toute la figure sur ce plan sera alors un cercle auquel
sera inscrit un hexagone dont deux cotés consécutifs seront respec-
tivement paralléles & leurs opposes , puisque les projections de
paralléles sur un méme plan sont elles-memes paralleles. Done (1)
les deux autres cotes opposes de l'hexagoune inscrit an cercle sont
aussi paralleles. 1l en doit donc cire de méme de leurs correspondans
dans lellipse , puisque les projections sur un plan de deux droites
situées sur un aotre plan ne sauraient étre. paralleles , si celles-ci
ne le sont elles—-memnes.

3. 1l suit de & que, dans tout hexagone inscrit au cercle , les
points de concours des prolongemens des cotés opposés sont tous
trois situés sur une méme ligne droite. Que V'on fasse, en cffet, une
perspective de la figure , de telle maniére que cette perspective soit
une ellipse a laquelle soit inscrit un hexagone dont deux cotés
consécutifs soient respectivement paralleles a leurs opposés (*) ; les
deux autres cOtés opposés de cet hexagone seront également (2)
paralléles I'un a Tautre. Donc les droites menées .de I'eeil aux points
de concours des prolongemens des c6tés opposés de I'hexagone inscrit
au cercle sont toutes trois paralleles au tableau, et conséquemment
dans un plan passant par P'ceil ; les points de concours sont done
dans ce plan; et, puisqu’ils sont aussi dans le plan du cercle, ils
sont sur une méme droite intersection de ces deux plans.

4. Comme toute section coniqué est la perspective d'un certain
cercle , et comme , d’un autre coté , la perspective d’une droite
est, elle-méme une ligne droite ; on peut conclure de ce qui précede
que, généralement , les points de concours des directions des cdiés
opposés de tout hexagone inscrit @ une section conique, sonit tous
trois situés sur une méme ligne droile.

™ 1l suffit pour cela de mener des droites de P'ceil & deux quelconques des
points de concours des prolongemens des cotés «pposés de I'hexagone inscrit au

cercle , et de disposer le plan du tableau parallélement a celui de ces deus
droites,
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I1. Hezxagone circonscrit.

1. Par les élémens de géométrie , on démontre facilement que,
si deux des diagonales joignant des sommels opposés d'un hexagone
circonserit au cercle se coupent a son centre , la diagonale joignant
les dewux autres sommels opposés passera aussi par le centre du
cercle. (%)

2. 1l résulte de 1a que, i deux diagonales joignant des sommets
opposés d'un hexagone circonscrit & une ellipse se coupent & son
centre, la diagonale joignant les deux autres sommels opposés pas—
sera aussi par [ centre de Uellipse. Que I'on projette, en effet, la figure
sur un plan tel que la projection de ’ellipse soit un cercle ; la projection

(*) Soient 4, B, C, D, E, F les sommels consécutifs de l'hexagone et O
le centre du cercle; supposons que les diagonales AD , BE se coupent en ce
point , et soient menées les droites OC , OF ; les deux triangles A0OB , DOE
ayant un angle égal en O, on aura

Ang.0AB+4-Ang. ABO=Ang.ODE-+Ang DEO ,

ou en doublant
Ang.FAB+Ang.ABC=Ang.CDE-+Ang,DEF.
On a dailleurs A ‘
Ang AFO=Ang. EFO , Ang BCO=.4ng.DCO ;

en ajoutant ces trois- derniéres équations” membre & membre , on verra que la
somme de quatre angles du pentagone OFABCO est égale & la somme de qualre
angles du pentagone OCDEFO ; on en conclura donc que leurs angles en O
sont aussi égaux ; puis donc que leur somme est quatre angles droits, chacun
d’eux doiten valoir deuxz, ou, en d’aulres termes , les droites OC , OF n’en forment

réellement qu'une seule , laquelle est la troisibme diagonale CF qui passe consé-
quemmeat par le centre O.
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de son centre sera le centre du cercle ; deux des diagonales joignant
des sommets opposés de I'hexagone circonscrit au cercle passeront donc
par son centre ; la troisiéme y passera donc aussi (1), et consé-
quemment la correspondante dans l'ellipse passera dégalement par le
‘centre de cette courbe,

3. Ul suit de 1a que, dans tout hexagone circonscrit au cercle,
les diagonales joignant les sommets opposés se coupent toutes trois
en un méme point. Que U'on fasse , en effet, une perspective de la
figure , de telle manitre quela perspective du cercle soit une ellipse
‘ayant pour centre la perspective de lintersection de deux quelconques
“des trois diagonales de l'hexagone circonscrit a ce cercle. (*) Deux
des diagonales joignant les sommets opposés de I’hexagone circonscrit
a lellipse se couperont & son cenire; ces trois diagonales se couperont

done au méme point (2) ; il en scra donc de méme pour leurs
correspondantes dans le cercle.

4. Comme toute section conique est la perspective d’'un certain
cercle , et comme , d’un autre c6té, les perspectives de droites qui
se coupent au méme point sont des droites qui se coupent au
méme point , on peut conclure de ce qui précéde que, géné-
ralement , Jes diagonales qui joignent les sommets opposés de
tout hexagone circonscrit @ une seclion conique se coupent au
méme point.

111. Généralisation de cette théorie.

Dans les raisonnemens que j'ai faits ci-dessus, j’al supposé taci-
tement, 1.° que I'hexagone inscrit au cercle était tel que la droite

(*) Soient menées de l'ceil trois droites, Pune & intersection des deux diagonales
dont il sagit et les deux autres aux deux extrémités du diametre qui contient
cette intersection. Par un point pris arbitrairement sur la premitre de ces trois
droites , soit menée , dans leur plan , une droite, se terminant aux deux autres,
dont ce point soit le milien ; le plan du tableau devra passer par cette derniére
droite et étre perpendiculaire au plan des trois premiéres.
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joignant deux des points de concours des directions des cotés opposés
était extérieure a ce cercle; 2.° que I'hexagone circonscrit était tel
que deux au moins de diagonales joignant des sommetss opposés se
coupaient dans l'intérieur du cercle.

Mais, lorsque les cotés de I’hexagone, soit inscrit soit circonscrit,
se coupent les uns les autrcs, entre leurs extrémités, il est des
cas nombreux ou ces conditions ne peuvent plus étre satisfaites ,
de sorte qu’il semblerait manquer quelque chose aux précédentes
démonstrations ; mais on peut les compléter a 'aide des considérations
suivantes.

On sait que l’équation générale des lignes du second ordre ren-
ferme cinq cocfliciens nécessaires et indépendans , dont on peut
disposer pour faire passer la courbe par cinq points ou la rendre
tangente a cinq droites données.

Si Pon veut au contraire assujettir la courbe & passer par six
points ou a toucher six droites données , on obtiendra entre les données
qui déterminent ces six points ou ces six droites une certaine équation
de relation, laquelle demeurera invariablement la méme, quelle que
soit la situation respective de ces points ou de ces droites , puis-—
qu’on peut parvenir a cette équation de relation, sans savoir aucunement
de quelle maniére les points ou les droites sont situés.

Mais , si l'on supposait leur situation telle que les exceptions
que je viens de mentionner n’eussent pas lieu, I'équation de rclation
ne pourrait étre que Dexpression analitique de I'un ou de lautre
de nos deux théorémes ; puisque , dans le cas contraire , on se
trouverait avoir deux équations de relation au lieu d’une.

Puis donc que cette équation de relation est invariable dans sa
forme , nos deux théorémes doivent étre vrais dans tous les cas.

Le tour de raisonnement par lequel ces deux théorémes viennent
d'étre démontrés peut s'appliquer & la démonstration du suivant qui
renferme la propriété des poéles des sections coniques ;

Deux hexagones étant Pun inscrit et lautre circonscrit & une
méme sestion conique , de manilre que les sommets de l'inscrit
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coincident avec les points de tangence du circonscrit, siles diagonales
joignant les sommets opposes de Uinscrit se coupent enun méme point,
les points de concours des directions des cbtés opposés du circonserit
seront tous irois sur une méme ligne droite , et réciproquement.

On ne doit pas perdre de vue, dans tout ceci, que le systéme
de deux droites tracées sur un méme plan forme une véritable ligne
du second ordre , et doit censéquemment en avoir toutes les propriétés.

Coneevons que le centre d'une surface conique quelconque , du
second ordre , coincide avec celui d’une sphére ; le systéme total
des courbes 4 double courbure résultant de lintersection des deux
surfaces jouira, par rapport aux arcs de grands cercles , des mémes
propriétés dont jouissent les lignes du second ordre par rapport
aux lignes droites.

En général , tout probléme qui se résout , sur un plan, en
n’employant que la régle seulement, peut étre résolu sur la sphére,
A laide d’une ouverture de compas constante et égale & l'aréte de
Poctatdre régulier inscrit.

CHRONOLOGIE.

Cal{zndrier perpétuel ;

Par M. SErvois, professeur aux écoles d'artillerie. (*)

[a Ta Vi Vi Vi V1 Vo Vo V)

LE calendrier dent je vais expliquer les usages peut servir & résoudre
ectte question générale , qui en renferme quatre particuliers : De

(" Ce nlest qua la pritre du rédacteur des Annales que M. Servois, qui
lui avait communiqué cet ingénieux calendrier , sans y attacher la moindre impor-
tance,, a bien voulu permettre qu'il parut dans ce recueil, ol Yon a pensé quil
ne serait point du tout déplacé, J. D. G.

CEs
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ces quatre choses , une année de lére vulgaire , le nom d’'un mois
de cette année, un quantiéme de ce mois et le nom du jour de
la semaine gqui répond & ce quantiéme , trois quelconques étant
données , déterminer la quatriéme ?

Des exemples , toujours beaucoup plus clairs que des explications,
vont faire connaitre le parti que l'on peut tirer de ce petit calendrier

( Poyez la Planche ).

PROBLEME I. Déterminer & quel jour de la semaine répond
un certain quaniiéme d’un mois désigné , dans une année donnée?

Exemple. On veut savoir & gquel jour de la semaine répondra
le 28 de janvier 1821 ? '

Cherchez dans la table la colonne qui renferme le nombre 21 qui
termine 'annde ; vous trouverez que c’est la premiére a gauche.
Cherchez dans la méme colonne le mot janvier, que vous trouverez,
en téte , suivi d'octobre. Marchez alors horizontalement sur la pre-
miére ligne , jusqu’a ce que vous vous trouviez verticalement au-dessus
du dernier des médaillons inférieurs, lequel renferme seul la date
donnée 28. Le mot dimanche , que vous trouverez dans le cercle
auquel vous vous serez arrété , vous apprendra que Ie 28 de jan-
vier 1821 sera un dimanche.

Remarque. Si Pannde est bissextile , c’est-a-dire , si le nombre
formé par ses deux derniéres chiffres & droite est un multiple de 4,
il faudra , durant les deux premiers mois , janvier et février, faire
usage de la colonne qui précédera immédiatement & gauche la colonine
qui en contiendra l'indication ;et de la dernitre si cette colonne est Ia
premiére. Cette remarque est générale. '

Ainsi , par exemple , sl s'agissait du jour de la semaine qui
doit répondre au 28 de janvier 1824; comme 24, qui appartient
A la 5. colonne , est un multiple de 4, et comme janvier est un
des deux premiers mois, il faudra se servir de la 4.° colonne ; on
y trouvera jancier suivi d’octobre dans le quatridme cercle en ,
descendant. Suivant donc horizontalement & droite jusqu’a Ia derniére

Tom. IV. 12
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colonne , au-dessous de laquelle se trouve le quantiéme 28 , le mot
mercredi , que l'on trouvera dans le cercle auquel on se sera arrété,
annoncera que le 28 de janvier 1824 doit étre un mercredi.

PROBLEME II. Déterminer quels jours d'un mois désigné, dans
une année donnée, correspondent & un certain jour de la semaine ?

Ezemple. On veut savoir quels sont les jours de février qui seront -
des dimanches , dans I'année 1836 ?

Comme 36 qui est dans la 6.° colonne est un multiple de 4,
et comme féorier cst un des deux premiers mois, je me sers de
la 5.5, Jy cherche le mot jféorier qui est en téte, suivi de mars
et novembre , et je file horizontalement jusqu'au mot dimanche ,
qu"x af)part'\ent 3 la dernidre colonne; ou bien je cherche le mot
dimanche dans la 5.° colonne, ct je file encore horizontalement,
jusqu’d ce que je rencontre le mot féorier; je tombe de nouveau

sur la derniére colonne, et je lis au bas que les dimanches de février
1836 seront les 7, 14, 21 et 28.

PROBLEME III. Déterminer quels sont les.mois dune année

désignée , dans lesquels un certain jour de la semaine répondra &
une date donnée ? :

Ezemple. On veut savoir quels sont les mois de ’année 1825
qui commenceront par un lundi?

25 se trouve appartenir 2 la 6.° colonne dans laquelle je cherche
le mot Jundi, je file horizontalement d gauche, en partant de ce
mot, jusqu'a la premiere colonne, au-dessous de laquelle se trouve
le quantitme 1, et je lis dans le cercle qu’il n’y a que le seul
mois d’aott de l'année 1825 qui doive commencer par un lundi.

Sl s’agit de 'année 1828, qui est bissextile , on cherchera d’abord
le mot /undi dans la 2.° colonne , qui précéde immédiatement celle
qui renferme le nombre 28 ; filant alors horizontalement 4 gauche
jusqu’d la premiére colonne , au-dessous de laquelle se trouve le
quantieme 1, on trouvera d’abord les mois d'avril et de juillet,
qu’on rejetteré , attendu qu’ils tombent au-dcla des deux premiers,
et quon a employé la colonne qui précéde l'année; prenant ensuite
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le mot Jund:i dans la troisitme colonne , et filant horizontalement
jusqu’a la premiére , on rencontrera les mois septembre et décembre |
quon admettra tous deux , puisquils tombent au-deld des deux
premiers, et qui sont conséquemment les seuls de I’année 1828 qui
commenceront par un lundi.

PROBLEME 1V. Déterminer quelles sont les années dans les—
quelles un certain jour de la semaine coincidera avec une date
donnée d'un mots désigné?

Exemple. On veut savoir quelles sont les années ou le 1.¢* d’avril
sera un dimanche.

Le nombre 1 se trouvant au bas de la premitre colonne et avril
se trouvant dans le cercle le plus inférieur de cette colonne, lequcl
renfcrme aussi le mot dimanche ; on en conclura que les anndes
ou le 1.°* d’avril doit étre un dimanche sont 1804, 1810, 1821,
1827, 1832, 1838, 1849, 1855, 1860, 1866, 1877, 1883,
1888, 1894 , etc.

Sl s’a;gissait de 'un des deux premiers mois de I'année; si, par
exemple , on voulait savoir quelles sont les années dans lesquelles
le 7 de février sera un samedi; le nombre 7 se treuvant dans la
derniére colonne , ol le mot jféerier est dans le 3.° cercle; en
filant & gauche horizontalement ;jusqu’a celui qui renferme le mot
samedi, on trouverait qu’il est dans la quatriéme colonne. Mais il
faudrait rejeter toutes les bissextiles de cette colonne et substituer
aux astériques qu'on y rencontrerait les bissextiles de la colonne sui-
vante ; ce qui donnerait 1801, 1807, 1818, 1824, 1829, 1835,
1846 , 1852, 1857, 1863, 1874, 1880, 1885 , 18gr1 , etc.

Remarque. Ce calendrier n’est vraiment dressé que pour le sidcle
actuel , mais on le rendra vraiment perpétuel, par une simple trans-
position des nombres qui expriment les années, d’une colonne 2
I’autre , de maniére que le nombre oo se trouve dans la 7.¢, dans
la5.2, dansla 3¢ ou dansla 1.7 colonne, suivant que la division par
quatre du nombre & gauche des deux derniers chiffres donnera pour
reste o, 1, 2 au 3, en sorte qu'avec quatre tableaux seulement,
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on aura. un calendrier qui pourra servir pour tous les sitcles passés
et futurs ; du moins tant que lerreur , aujourd’hui insensible , ne
sera pas devenue, par l'accumulation des siécles, assez considérable
pour commander une nouvelle réforme. (*)

M. Gauss a donné, dans lc 2.° volume de 1802 de lexcellent -
journal ‘/4sir0nomico—Géograp/zl'que de M. le Baron de Zach, une
méthode pour calculer, pour chaque année , I'dpoque de la féte de
paques. Jen ai déduit la table suivante qu’il serait facile de pro-
longer, et qui, pour chaque année du Xix.° siccle, donne I’époque
de la p1eine June de mars.

ol 1l 2|3} 41|65 ] 6171819
=== o s ot e el oo
80| 9 |29 | 17| 6 |26 13| 2 | 22| 10} 30
181 184 7 27‘ 151 4 | 24112 1 219 |
182] 29 | 17 _:3— 26 | 13 2 | 22} 10} 30 { 18
83 7 L2y 13| 4 | 24)12] 1 .;_I— 9 |29
—:-g./: —;7_-(;—- 26 {13} 2 | 221 10 ;)- —:; 7
1851 =27 _I_E')— 4 124 [ 12] 1 |21 —; 29 | 17
ool 6 ||| = |an 0|20 || 7 o
-;37-:5—7 24 | 12 | 1 :x_ 9 —;_1_7-_-‘-5_
58| 26 | 23 | 2 |z |10 |30 | 18| 7 |27 |5
:—;; 4 :/:_ 12 T 21 —;_ 29 | 17| 6 :E

(*) Je ne sais s'il a déja été remarqué que Pintercalation persanne, je veux dire
celle de 8 jours sur 33 ans, un peu plus exacte que lintercalation grégorienne,
pouvait étre répartic d'une manicre tout A fait remarquable par sa rigueur et son
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Les dixaines d’annédes sont i la gauche de la table et les unités
au-dessus , 3 peu prés comme dans les tables de logarithmes. Les
dates inférieures & 20 appartiennent au mois d’avril , et les autres
au mois de mars. La loi de cette table est fort simple : en écrivant
en cercle toutes les 3o dates, depuis le 21 mars jusqu'au 19 davril
inclusivement, ces dates prises de dix-neuf en dix-neuf, dans l'ordre
direct, formeront les lignes horizontales , et prises alternativement de
neufl en neuf et de dix en dix , elles donneront les colonnes verticales.

Si, 4 laide de cette table , on veut connaitre 'époque de la
pleine lune de mars pour I'année 1854, on trouvera, sur-le-champ,
que c’est le 12 d’avril ; et si, au contraire , on veut savoir en quelles
anndes la pleine lune de mars doit tomber le 4 d’avril , on trouvera
que cela doit avoir lieu les années 1814, 1833, 1852, 1871ct 18go.

Et, comme la féte de piques est fixée au dimanche qui suit immé-
diatement la pleine lune de mars, il est facile , au moyen de la
combinaison de cette petite table avec notre calendrier, de déterminer
Uépoque de paques pour chaque année , et d’assigner réciproquement
les années auxquelles cette féte arrivera & une époque désignée.

Si, par exemple, on veut connaitre I'époque de paques pour 1852;
comme on vient de trouver que, pour cette annde-ld, la pleine
lune de mars arrive le 4 d’avril, et, comme on trouve d’ailleurs,
par le calendrier , que ce 4 d'avril est un dimanche , on en con-
clut qu'en 1852 la féte de paques tombera le 11 d’avril,

uniformité ; il faudrait pour cela ajouter un jour, tous les quatre ans, le supprimer 5
tous les siécles , le rétablir, tous les quatre sitcles , le supprimer, tous les dix
mille ans, le rétablir , tous les quarante mille ans, et ainsi de suite ; cela don=
verait en effet, pour la longueur de l'année moyenne,

11U R SR S ST SOUUIE S SO S

300 400 100e0 do0o00
ou

365 4 (L sz mwhma b eeee )= ks msies o 50)
ou
365) o 55— 5 =365 28 =365 4 :
J.D. 6.
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Si , 3 l'inverse , on demande en quelles années paques tombera
le 1.7 avril ; on a déjd vu que ce jour n’était un dimanche quen
1804 , 1810, 1821, 1827, 1832, 1838, 1849, 1855, 1860,
1866, 1877, 1833, 1888, etc.; d’'un autre coté , pour que paques
tombe le 1.7 d’avril , il faut que la pleine lune de mars arrive
du 26 mars au 1. avril inclusivement , ce qui n’a lieu que pour les
années 1801 , 1804, 1809, 1812, 1817, 1820, 1823, 1828, 1831,
1836, 1839, 1842, 1847, 1850, 1855 , 1858, 1861, 1866,
1869 , 1874, 1877, 1880, 1885, 1888, 1893 , 1896, 1899,
etc; donc paques n’arrivera le 1.°% avril que dans les anndes 1804,

1855, 1866, 1877, 1888, etc.

CORRESPONDANCE.

Lettre de M. Brer , professeur & la faculte des sciences
de lacadémie de Grenoble,

Au Rédacteur des Annales j

En réponse aux lettres de MM. Du BourcueT et BErarD,
insérées aux pages 56 et 58 de ce volume.

(g Vi Wl VL VL W ¥, VL V)

MONSIEUR ET TRES-CHER CONFRERE ,

JE crois devoir répondre encore aux lettres de MM. Du Bourguet
et Bérard ; je le ferai brievement , et de maniére & n’étre plus
obligé d’y revenir.

Je ne disconviens nullement que le théortme que M. Du Bour-
guet a voulu démontrer ne soit évident , pour qui est habitué
la marche de l'analise algébrique ; mais je n’en persiste pas moins
hY

3 regarder comme trés-difficile d’en donner une démonstration en
forme, qui ne péche par aucun cété ; et voila sans doute pourquoi
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M. Du Bourguet ne peut défendre la siennc qu’a I'aide d'un cercle
vicieux., Supposer, en effet, que , si I'équation
Axm4Bax™  H=-Cax™ 4~ .......=b (1)
ne donne pas x=a, elle donnera tout au moins =gy, c’est bien
supposer, ce mc semble, que toute équation est résoluble , ce qui
est précisément la thése a établir. (*)

(*») On démontre que toute équalion
AxM4-Bam-1f-Cx™ 2d=, ..., Gx—H=0 , (1)
dont le dernier terme est négatif , admet toujours au moins une racine que lon
peut représenter comme il suit :
x=¢(A, B, Cyur..G,—H) ; (2)
or, pour qui est familier avec la marche de lalgtbre, il est clair que, si la
valeur (2) rend l'édquation (1) identique, la valeur

x=¢(4,B,C,.....G, H) 6))
produira le méme effet sur Péquation
Ax™Bxm= Ve Cx™= 2t o o o = Gax4-H=0. )

Cette assertion pourrait , au surplus , se prouver comme il suit : soit mis le
résultat de la substitution de (2) dans (1) sous la forme
@b H4-cH2mad H34-c Hbwmm , o, ., . =<0 ; )
«,b,¢,..... étant des fonctions de A4, B, C,..e.. G ; cette équation (6)
devant se vérifier d’elle-méme, sans aucune détermination de H , on doit avoir
a=0, b=0, =0, d==0 ye.e:s} ¥))

mais , si (6) est le résultat de la substitution de (2) dans (1) , celui de la
substitution de (3) dans (4) sera incontestablement

at+bHA4-cH>~4-dHi4-eHid0 ey ... =0 ; ®)
or, en vertu des équation (7), I'équation (8) est identique; donc, en effet, (3)
résout (4).

La difficulté de cette théorie se trouve donc encore , comme celle de tant
d'autres , ramenée 3 ceci : Toute fonction peut-elle légitimement étre supposée
développée suivant les puissances entiéres et positives de l'un des symboles qui
la composent ?

Au surplus , si Pon ne trouvait rien & objecter contre la théorie développée
par M. de Maiziere, 4 la page 368 du premier volume de ce recueil , on en
pourrait peut-étre déduire une démonstration du théoréme de M. Du Bourguet.
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Quant 3 M. Bérard , j'ai dit que la méthode de construction de
la parabole qu’il croyait que je lui avais empruntée était différente
de la sienne , et c’est une chose dont il convient aujourd’hui. Jai
ajouté que, tandis que la mienne était générale, la sienne souffrait
une exception, et cela est si vrai que, pour le cas des axes rec-
tangulaires , il est obligé de recourir & un nouveau procédé , dont
il n’est fait aucune mention dans son ouvrage.

Je tiens trés-peu, au surplus, & la propriété de ma construction,
que tout bon écolier aurait pu trouver comme moi, et dont je n’aurais
certes pas fait bruit, si un travail plus étendu ne m’avait conduit

3 la mettre en ceuvre ; mais je dois tenir beaucoup & ne point étre
injustement accusé de plagiat.
Agréez , etc.

. Grenoble, le 10 d’aotit 1813.

QUESTIONS PROPOSEES.

Théoréeme de Geométrie.

LES rectangles qui ont respectivement pour diagonales deux dia-
metres conjugués d’une ellipse ou d’une hyperbole , et dont les cotés
sont paralltles aux axes de la courbe sont équivalens.

Probléme darchitecture.

La base et la montée d’une anse de panier , dont le nombre des
centres est 2n-+1 étant données ; construire la demi-anse, dont par
conséquent le nombre des centres sera n—1, avec la condition que
tous les arcs de cette demi-anse soient semblables et que leurs rayons
forment une progression géométrique ?

Faire une application de la solution générale au cas particulier ol
m=2, et ol par conséquent chacun des arcs de Ja demi-anse serait

de 30.° ? .
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GEOMETRIE ANALITIQUE.
Meémoire sur les surfuces du second ordre ;

Par M. Brer , professeur & la faculté des sciences de
Tacadémie de Grenoble.

[ Yo Via Vi Vo Vig V1a Vo V]

J’AI donné , dans les Annales de Mathématiques , ( tome II;
page 144 ) , Péquation qui détermine la grandeur des diameétres
principaux , dans les surfaces du second ordre , rapportées a des
axes rectangulaires. Je me propose ici de revenir de nouveau sur
ce sujet, pour le traiter d’une maniére plus générale et plus compléte;
mais auparavant je donnerai, sur la ligne droite et le plan, quelques
notions dont j’ai besoin pour parvenir & mon but.

Dans tout ce qui va suivre, je supposerai constamment aux axes
des coordonnées des directions quelconques , et j’adopterai les notations
que voici.

Ang(y ,z)=«, Ang(z, z)=g, Ang(z,y)=»
§. 1. Equations du plan et de la ligne droite.

Concevons que, de lorigine, on ait abaissé une perpendiculaire
p sur le plan dont on veut obtenir I'équation ; et soient x, ¥, z
les coordonnées courantes de ce plan; il est visible que la somme des
projections des coordonnées z, ¥, z d’un point quelconque du plan
dont il s’agit sur la perpendiculaire p , en determine exactement la

longueur. Si donc on dénote respectivement par « , g7, 3/ les angles
Tom. IV , n.° IV , 1.°% octobre 1813, 13
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que forme cette perpendiculaire avec les trois axes , I’équation du
plan sera

(A) 2 Cos.a’+yCos.p'+2zCos.y/=p.

On exprime communément une droite , dans I'espace, en écrivant
les équations de ses projections sur deux quelconques des plans
coordonnés ; mais il est souvent plus commode et plus édlégant de
s’y prendre ainsi qu’il suit: soient 2/, ¥/, z/ les coordonnées fixes
d’un point déterminé de la droite , et soit 7 la distance variable

de ce point & un autre point quelconque de cette méme droite ,
dont les coordonnées courantes sont supposées &, ¥, z; on éerira
(B) x=wa'4ar , y=y/+br , z=z'4-cr ;

@, b, cétant des fonctions angulaires , non susceptibles de devenir
‘infinies , et qui demeurcnt constantes pour toute \’étendue de la

droite ; élimination de r , entre ces trois équations, conduirait aux
équations ordinaires de la ligne droite.

§. . Du centre , du plan diaméiral et du plan tangent , dans les
surfaces du second ordre.

Soit posée, pour I’équation générale des surfaces du second ordre,

(C) Ax>+4By*~-Czid2A'yz-t2B za+4-2C'xy~4-2.4"x~-2B"y~2Cl"z4-D==0,

Si, dans cette équation , on substitue , pour x, ¥, z,les valeurs
données par les équations (B), en posant, pour abréger,

M=Aa*+-Bb*+Cc*+-24'be++2B/ca+2C'ab
(A2/'4-B/2/'A-Cly'+A")a
M'= { d~(By/+Cla/ Al 4B
+(Ca/~-A'y'-B/ 2/ 4-C")c,
M= A/ *4-Bys-C/ioua Aly e/ 4o B /' 42 Clly e AV /42 By 42 oD |

la transformée sera

») MritaM/r4-M"=o.
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Dans cette équation , 7 est la distance entre le point fixe a7, y/, 2/
et celui o la droite (B) rencontre la surface (C); elle est du sccond
degré , parce quen géneral la droite (B) rencontre la surface (C)
en deux points.

Il peut étre intéressant de discuter ce qui arrive, lorsque quel-
ques—uns des coefficiens M, 3/, M/ deviennent nuls, ou lorsque
I'équation (D) a ses deux racines égales. Je bornerai cette discussion
aux seuls cas qu’il m’est neccessaire de considérer.

1.° Si le coetficient M’ est scul nul, les deux valcurs de 7 seront
égales ct de signes contraires, quels que soient d’ailleurs 27/, ¢/,
2/, a, b, c; et alors on pourra distinguer deux cas :

Si d’abord on suppose que 2/, y/, z/ sont les coordonnées d’un
point fixe, mais inconnu , tandis que @ , &, ¢ sont indéterminds ,
ce point fixe sera le centre de la surface (C); et on le déterminera
en exprimant que léquation M/=o0 a lieu indépendamment de toute
détermination des quantités @, b, ¢; ce qui conduira aux trois
équations

Az' 4B/ 2/ 4-Cly/4A" =0

(E) By/4+C'2'4A'2'4-B"=o0 ,

Cz/+A'y'-B/a/C"=0 .
Si , au contraire, @ , &, ¢ sont constans , et 2/, ¥/, z/ indéterminés,
I’équation M/=o0 exprimera que le plan dont les coordonnées cou-
rantes sont #/ , y/ , z/ contient les milieux de toutes les cordes

paralleles a une certaine droite [ixe, et est conséquemment un plan
diamétral ; I'équation générale du plan diamétral est donc

(F) (Ada+DB/e+-Chjx4-(Lb+Clad-A'c y=+(Cc+A'b+-B'a)z
~+A"u-B"l4-C"c=o0.
2.° Si, outre I’équation M’/=o0, on a encore M=o , cette der=
nidre équation exprimera dabord que le point &/, 5/, 2/ est sur
la surface (C); et, puisqu’alors les valeurs de 7 seront toutes deux

Y

nulles, la droite (B) sera une tangente a cette surface. Or, comme
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le systéme des équations M'=o0 , M=o laisse encore les quan-
titds @, b, ¢ indétermindes , il Sensuit que , par un méme point
a/, y/, z/ pris sur (C), on peut lui mener une infinité de tan-
gentes. L’équation du lieu de toutes ces tangentes s’obtiendra en
éliminant @, &, ¢ de I'équation M/=o, au moyen des équations
(B). Ce lieu, qui est le plan tangent par le point 2/, ¥, 2, a
donc pour équation
(A2/~4B/ 2/ 4= Cly! A1) (2!
A (By'+C'zx/+-A'z/4B") y—y') ) =o.
-+-(Cz’+A’J‘/+B/x/+C’/)(Z—-z’)
En simplifiant cette équation , au moyen de I’équation de relation
M'’=o0, elle prend la forme
(Aa'Bl2/4-Cly'4- A"z
(G) +( B}‘/+ C'z'+-A'z'-B") ¥
=o.
+(C/4-Aly! Bl a/ 4 C)z
- A ! A Byt 4GV 2/ 4D
Il est ais¢ de voir que I'dquation M=o seule exprimerait que
la droite (B) ne rencontre la surface (C) qu’'en un point , lequel
- serait le point z/, y/, z/, si l'on avait en outre M”=o0. On voit
aussi que, si I'on avait, & la fois, M=o, M/=o0, I'équation (D)
et conséquemment I’équation (C) seraient absurdes, 4 moins qu’on n’edit
en méme temps M=o , auquel cas r demeurerait indéterminée ;
on pourrait donc, par chacun des points de la surface (C) , mener
au moins une droite qui y fit entierement contenue; cette surface
serait donc une surface gauche ou une surface développable. Enfin,
si I'équation (D) avait ses deux racines égales ou, ce qui revient
au méme , st Uon avait I'équation M>—MM/"=o , les équations (B)
deviendraient celles d’une tangente par un point extérieur &/, y/, 2/,
laquelle tangente demeurerait indéterminée ; on parviendrait donc &
Iéquation du lieu de toutes les tangentes menées par ce point,
¢est-d-dire , & Iéquation de la surface conique circonscrite , ayant
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ce méme point pour centre ou sommet, en chassant 2, b, ¢ de
I'équation M"*—MM/""=0 , au moyen des équations (B).

§. NIL Transformation générale des coordonnées.

Pour établir les formules qui servent a passer d'un systéme rec—
tangulaire ou oblique de coordonndes # , ¥, z 4 une autre systéme
quelconque de coordonnédes a/, y/, 2/, il suffit de remarquer que
chacune des grandeurs z, ¥, z doit étre une fonction enti¢re du
premier degré en 2/, y/, z’; on est dés-lors fondé & écrire , l'origine
¢tant la méme pour les deux systémes,

x=ax'4a'y'~+a'z’ |
(H) y=bat by

En faisant successivement , dans ces formules , les trois hypo=

théses suivantes ‘

y'=o0 , z/=0 , z/'=0 ,
z/=0 ; xr’'=o0 ; y/'=0 ;

on trouvera, pour les édquations respectives des axes des 2/,y’, 2/
rapportés au systéme primitif

(%) r=a r , y:ré r, z=cr,
(%) x=a'r , y=br, z=dr,
(&) x=a'r , y=b'r, z=c'r.

§. IV. De la sphére et de son plan tangent.

Si l'on suppose que x, ¥, z désignent les coordonnées rectan—
gulaires des points d’'une sphére qui a son centre d.lorigine et son
rayon égal 4 r, on aura évidemment

2y Az =r.
D’aprés les formules (H) I'équation de la méme sphére, rapportée
A des coordonnédes obliques z/, y/, 2/, sera
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(a 3+5 2_‘_6 2)x/2+2(a/a//+5/b//+c/c//>y/z/
(a/ >V e )y -2{a"a -b"'b 4=c"c )2/x! ) =1*
(a//2+6//2+0//2>z/2+2<a a/+b b/+c cl)x/y/
si , dans cette dernitre équation , on fait successivement les trois
hypothéses a/=o0 , y/=o0 , z/=o0, on obtiendra pour les équations
es traces de la sphere sur les trois plans coordonnés
d de la sphe les t p! d
(@’ 24-b 2o/ 2)y 24 (a2l 22 2 22 (al @ BB el Yy 2P =2
(a//2+b//z+c/lz)zlz+(a 2+b 2+C 2)x/2+2_(alla+bl/b +L‘”C Yz!x!=r2 ’
(e 2+[, 24 2) %/ 2f(a/ z+bl 2+¢;I 2)y’2+2(a al+[, b’+c cl)x{y/=rz H

mais on sait d’ailleurs que, «, B, ¥ désignant les angles des eoor=
données a/, y/, 2/, les équations de ces traces doivent étre

g2~z H-2y/z/Cosca=r? ,

z2/*~4-x/*422/2/Cos.p=1* ,

a4yt 422"y’ Cos.y =1* :

comparant donc respectivement ces équations aux précédentes , il
viendra

a *+b 4 *=1 , a'a’-p'b!' ¢/ c!’=Cos.a

@b e/ =1, a"’a 4-b""b 4c'"¢ =Cos.p

arA-b"rrYcr =1 a a/+4b b/'4c ¢/=Cos.y

]

we

et conséquemment V'équation de la sphere rapportée a des coordonnées
obliques sera

(L) x4y +z*~4-2y2Co0s.0-4-2z2Cos.p+22yCos.y =12,
Cette équation donne aussi la distance r de lorigine & un point
dont les coordonnées sont x, ¥, z.

Si le centre, au lieu d’étre situé a lorigine , se trouvait en un

point ayant pour ses coordonnées &/, y/, 2/, I'equation de la sphere
deviendrait
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(w—a'y-2(y—y/)(e—z")Cos»
(M) +(y—y/y42(z—z/)(w—a’)Cos.6 ) =T
~(z—2’)* 42 (x—a)(y—y’)Gos.y
Si, dans I'équation (G), on fait
A’=Cos.x , A'’=o0 ,
B/'=Cos.e , B'=o , D=—r
C’'=Cos.y C'=o ,
elle deviendra celle du plan tangent 3 la sphére qui a son centre

a lorigine. Ainsi 2/, y/, z/ étant les coordonnées du point de
contact , P'équation de ce plan tangent est

N) (2'4y'Cos.y4-z'Cos.g)x~(y'+2/Cos.ata’Cos.y)y=4-(z/4x'Cos.p4y'Cos.e)z=r1,

§. V. De la perpendiculaire & un plan.
Soit

(0) Azx4By-+Cz=D ;

Véquation d’un plan, et soient
¢} x=ar , y=br , z=cr,

les équations de la perpendiculaire abaissée de l'origine sur ce plan:
Si l'on congoit une sphére ayant lorigine pour centre et cette
perpendiculaire pour rayon , le plan (O) devra lui étre tangent ;
et, en désignant par 2/, y/, z’ les coordonnées du point de contact,
les équations (N) et (O) devront coincider , 3 un facteur pres,
pouvant affecter tous les termes de I'une d’elles. Exprimant donc
que leur coincidence a lieu, il viendra

D{z’4y/Cos.y=}2/Cos.p) =Ar* ,

D(y'4-z/Cos.e+a'Cos.y)=Br* ,

D(z/4-2/Cos.g4y/Cos.a) = Cr* ;
mais , comme le point de contact doit se trouver , & la fois, sur
la droite (P) et sar la sphére, on dait avoir
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x/=ar , y'=br zZ/=cr ,
a/rpy/* A=z 4-2y/ 2/ Cos.a—4-22/2/ Cos.g=-22/y/Cos.y =r2.
En éliminant 2/, y/, 2z’ entre ces équations, il viendra
D a~+b6Cos.y4cCos.g,=Ar ,
D(b~4cCos.e~+aCos.y)=Br ,
D(c+aCos.e+41Cos.e)=Cr ,
a*b*-c:4-2bcCos.e~2caCos.p+2abCos.y=1.
En éliminant 7 entre les trois premiéres équations , on obtiendra °
les deux suivantes
A(c+bCos.a~+aCos.p)= Ca-4-bCos.y~+cCos.¢) ,
Q)
B(c45Cos.«~4-aCos.8)= C(b-+cCos.a+aCos.y) ,

lesquelles expriment que le plan (O) et la droite (P) sont perpen-
diculaires I'un i lautre.
Si, entre toutes quatre , on élimine 2, &, ¢, la longueur r
de la perpendiculaire abaissée de l'origine sur le plan (O) se trouvera
donnée par l'équation
‘A>Sin.2a—2BC(Cos.«—Cos.8Co0s.4)
®) { 4BSin-*g=—=2C.A(Cos.p—Cos.y Cos.«) r==(I—COS.ﬂx—-Cos.zﬁ—Cos.’y+2Cos.xCos.ﬁCoS.'y)D2.
~+-C18in,2yy==2.4B(Cos.y=—Cos.4Cos.8)

Si le point duquel on veut abaisser une perpendiculaire sur le
plan (O) a pour ses coordonnées 2/ , ¥/, 2/, il suffira de transporter
Vorigine en ce point ; ce qui reviendra & changer #, ¥, zen 42/ ,

¥y’ , 242/, respectivement , ce qui donnera , pour la nouvelle
équation da plan.

Az+By~-Cz4-(Ax'+By'+Cz/~D)=o0 ,

et partant , pour la longueur de la perpendiculaire , celle qu’on
déduirait de I'équation (R) , en y changeant simplement D en
Azx/'+4By'+Cz/'—D.

'équation
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L’équation

(S) a*+-b*Fc*425cCos.at-2caCos.e4-2abCos.y=1 ,
A laquelle nous sommes parvenus tout & l'heure , exprime la relation
qui doit exister , dans les équations (B), entre les trois coefliciens
a, b, c, etles angles 2, g, 5 des coordonnées.

Si on prend sur les axes des x , des y et des z, respective-
ment, trois longueurs &, e, f, il sera facile d’assigner le volume
du parallélipipéde qui aura ces trois longueurs pour arétes. En effet,
d’aprés la formule (R), la longueur de la perpendiculaire abaissée
de I'extrémité de f, sur le plan des zy, sera

-571{-;‘/ 1==C08.20==C05.28~—C05.2y~42Co0s.«Cos.8Cos.y 3

mais , en considérant cette perpendiculaire comme la hauteur du
paralldlipipéde, l'aire de sa base sera deSin.y; d’ou il résulte que
son volume sera

def\/ 1 —Cos.*a—Cos.?g— Cos.?y=-2Cos.2Cos.8Cos.7-

Les conditions analitiques qui expriment le parallélisme, soit de
deux droites , soit de deux plans, soit d’une droite et d’un plan,
étant indépendantes des angles que funncot entre eux les axes des
coordunmdes , nous we nous arréterons pas & leur recherche,

§. VL. De la perpendicularité de deux plans.

Soient deux plans passant par l'origine , et ayant respectivement
pour équations

() Ar+By+Cz=o0 ;

(Ty A'z+Bly~+C'z=o0 .
On exprimera qu'ils sont perpendiculaires I'un a l'autre si l'on ex~
prime qu’une droite

x=ar , y=br , z=cr ,
perpendiculaire au premier , se trouve sur le second. Ainsi, par le
précédent §, on aura les équations

Tom. 1V, 14
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A(g+aCos.13+Z)Cos «) = C(a--0Cos.9+cCos.g) ,
B\c—l-aCos £+4Cos.a)=C(b+cCos.a4-aCos.z) »
A’a-’;—B’é—l—C’c_
Si Von élimine 2 et & entre elles, ¢ disparaitra de lui-méme, et
Ion obtiendra, pour condition de:perpendicularité des deux plans

(T), (T%), l'équation suivante : «
AA'Sin. a—(BC’-v}-GB’)(Cos «—Co0s.8Cos.y)
U) ~}-BB’Sin. ﬁ—(CA’+4C’)(Cos g—Cos.5Cos.«)
+CC'Sin*y—(AB/+B A’ Cos.y—Cos.«Cos.£)
§. V1. Dela perpendicularité de deux droites , et de I'angle qu'elles
forment entre elles.

=o0.

Soient deux droites passant par Vorigine et ayant respectivement
pour équations

V) x=ar, y=br, z=cr ,
V) z=ar, y=br, z=er .

On exprimera qu’elles sont perpendiculaires 'une & I’autre , si l'on
exprime qu’un plan

Ax+By—l—(’7=0 .

perpendiculaire 3 la premwre , contient la seconde ; ainsi, par le
§. V, on aura les équations

A(c+4aCos.4-5Cos.a)=C(a-+bCos. y—l-cCos 8) 5
B(c4-2Cos.4-5Cos.2) =C(b+4cCos.a~4aCos.y) ,
Aa’—i—-Bb’—l—Cc’:o.

Si Yon élimine 4 et B entre elles, € disparaitra de lui-méme;
et on obtiendra, pour condition'de perpendicularité des deux droites

V), (V) , Péquation suivante
aa/4~(bc'-4-cb’)Cos.«
(X) +-bb/4=(ca’+ac’)Cos.p ) =0,
~cc/'4(ab/4ba’)Cos.y
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Généralement , on peut trouver le cosinus de l'angle formé par
les deux droites
x=ar , y=br , z=cr ;
a'=a'r’ , y'=br, zZ/=cr .
car, en joignant les extrémités des distances 7, 7/ par une droite,
et appelant ¢ I'angle cherché, la longueur de cette droite aura d'un
c6té pour expression

r*=-r/*— 2rr’Cos. ,
et de lautre, parle §. 1V,
(@-x") - (y-y") 24-2(2-2") 22 (y-y") (2-2") Cos.a-2 (2-2") (x-2") Cos.f+-2 (2-2") (y-y/)Cos.9
ou, en substituant,

(>8> 4c*~4-2bcCosat-2caCos.p-4-2abCos.o )r*
+-(a”*+-b/*~c*+-2b/c/Cos.a2c'a’Cos.p--2a’b/Cos.y )r/?
=2 { aa/4-bb'-cc'4-(be'4-cb') Cos.at(ca'-ac’) Cos.p4-(ab'-ba’) Cos.y } rrt
égalant donc cette expression a la premiére, et exprimant que leur

égalité laisse r, 7/ indéterminds ct indépendans, on obtiendra d’abord
les deux relations déja connues

o *+b *~4-c *+25 ¢ Cos.ad-2¢c a Cos.t+2a b Cos.y=1,
a/*==b"*~c"*~-2b/c’Cosa~2c'a’Cos.p+42a’b/Cos.y =1 ,
et ensuite la formule
aa’+(bc’4-cb’)Cos.«
) Cosb= { ~+bb/~+-(ca’+ac’)Cos.p
~-cc/ +(ab’+ba’)Cos.y.
Au moyen de cette formule il sera facile de déterminer, soit le
sinus de I'angle de deux droites , soit les sinus et cosinus de I'angle

de deux plans, ou de l'angle d’une droite et d’un plan,

-
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§. VIIL. Recherche des diamétres principauzx dans les surfaces
du seconde ordre , rapportées & des axes quelconques.

Reprenons léquation générale des surfaces du second ordre
(1)  Ax*~4-By4-Czi42.A'yz4-2B za4-2C xy4-24"x4-2B"y+42C" z--D=0.

Nous avons déja dit que, pour passer du systéme des coordonndes
&, ¥, z au systtme des coordonnées 2/, y/, 2/, de méme origine

que celui-la, il fallait poser
= ax’+a’y’+a//z’ ’
(2) y=bzx'by' b2
z=cal4-cly! +c'z
et qualors les équations des axes des #/, y/, 2/, rapportés au
systtme primitif , étaient respectivement

3) g=ar, y=br, z=cr,
(4) x=d'r, y=br, z=dr,
) z=a'r , y=blr, z=c'r.

Si Ton substitue les valeurs (2) dans I'équation (1), on obtiendra
une transformée, du méme degré en 2/, y/, 2/, que l'on pourra
ensuite simplifier , en disposant des quantités arbitraires qui déter-
minent les directions des nouveaux axes.

Faisant donc disparaitre tous les rectangles des coordonnées , noug
aurons les dquations

‘6) ( Aa”+B’c”+C’b”)a’+(Bb”+C’a”+ Alc!hy b/+(C‘;H+ A’b”—{-B'a")C’:o N
() (Aa/+Bc4-C'b"ya - (Bb4-Clal' 4 Alc! Yo (Co/'p=A'b"=-Bla’)c =0 ,

®B)  (Aa 4-Blc! 4-Cb’ Ya 4 (BY +4-Cla/4A'c Yo4-(Cc' +A'b! 4Bla’ )c =o «
Cela posé, en éliminant ¢, &, ¢ entre les équations (3) et I'dqua-
tion (7), on tombera sur 'équation d’un plan

@ {Aa/' 4Bl 4-C'b")x4-(Bb/~4-Cla/' 4 Alc! )y} ( Cc/'je A" 4-Bla"yz=0 ,

tel que , Paxe des 2/ y étant situé, d’une manitre quelconque ,
I'équation de la surface du second ordre se trouvera délivrée du terme
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en 2’z’. Parcillement si, entre les équations (4) et (6), on éliminc
@', b, ¢, on obtiendra I'dquation d’un plan tel que, l'axe des y
y étant situé, d’une maniére quelconque , I’équatien de cette surface
se trouvera délivrée du terme en y/z’. Mais , par la forme des
équations (3), (4), (6), (7), ces deux plans doivent se confondre ;
donc, en écrivant seulement les équations (G), (7), on aura, pour
un axe quelconque des z/, un plan unique des 2’y tel que I’équation
transformée , en a/, y/, z/ , se trouvera privée, a la fois , des
rectangles 2/z/, y/z/ ; et, comme il est toujours facile , I'axe des
z/ édtant constant , ainsi que le plan des a/y/, de donner aux axes
des a/ et des y/ des directions telles que le troisiéme rectangle /y’
disparaisse aussi; il s'ensuit qu’il y a une infinité de systémes d’axes

transformés pour lesquels I'équation générale des surfaces du second
ordre prend la forme plus simple

(10) Pa/24-Ply24 Pz 342 Qut/ -2 Qly'4-2 Q' 2/}~ D==0.
Parmi tous les systtmes d’axes pour lesquels I'équation prend
cette forme, il n’en est généralement qu'un seul qui soit rectan-
gulaire. En effet, assujétissons la droite (5) A étre perpendiculaire
au plan (9); en employant les équations (Q) du §. V , nous

trouverons

(Aa/'+4-B'c'4-C'5'") (c"'4-5" Cossa-f-a""Cos.B)==(Cc/'4A'b"'4B'a/’) (a/'4-b/ Cos.y4-c""Cos.8) ;
[¢8))

(Bb/'~Cla/'=4-A'c!") (c!'4-b/"Cos.a--a"Cos.8)==(Cc/4A'b/4-B'a") (b4-c" Cos.a~}-a/'C05.%) §

RO a’ .
Si Yon proctde & I'élimination de — entre ces deux équations,
. .

on parviendra , en définitif , 3 deux équations de la forme

u a
(5 )+ur=o,

b \3 B’ \2 3%
ORICOTECHEN

(12)
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" .
dans lesquelles M , M/ renfermeront iT , mais o0 N, N/, N/,
N/ ne seront fonctions que de « , 8, v et des coefficiens de
Iéquation (1).

Or , comme toute équation du troisidme degré a toujours au moins
une racine réelle, il sensuit qu’il existe , pour toutes les surfaces
du second ordre , un axe des 2/, perpendiculaire 4 un plan des
'y’ , de maniére que V'équation générale de ces surfaces ne renferme
plus les rectangles a’/z/, 4/z/; ct, comme on peut toujours chasser
le rectangle a/y/ qui reste encore dans l'équation , on en conclut
que, non sculement on trouve un axe des z/, perpendiculaire au
plan des x’/y/, qui prive la nouvelle équation des rectangles a/z/,
y/z/ , mais encore qu’il existe un axe des 2/, perpendiculaire au
plan des 472/, et un axe des y/, perpendiculaire au plan des a’z/,
jouissant des mémes proprietés, Or, si l'on écrit que Paxe (4) des
y/ est perpendiculaire au plan

(Aa'4B/c'+C' ) x4-(Bb/~4-Cla’4-A'c" )y +4-(Cc/4-A'b/~+B'a’) z=0
qui contient les axes des 2/ et z/, on parviendra aux mémes équa=
tions (11) , en y changeant o/, 0", ¢/ en a’, ¥, ¢/; dou il

al

. , . . 14 .
suit que les équations (11) déterminent —- ¢t — ,en méme temps

o al .
que — , — ; on prouvera de méme que le troisiéme systeme de
o cll

. . , . b a
racines , tiré des équations (12), est — et -
c

1l résulte de ce qui précéde que, dans le cas ot les axes qui doivent
priver léquation de la surface des trois rectangles a’y’, y’/z/, 2’2/
doivent étre rectangulaires , leur direction est absolument déterminée
et unique, et qu’alors les coefficiens de l’équation (10) sont réels
et déterminés.

Il reste présentement & faire connaitre , pour les surfaces du
second ordre qui ont un centre, I'dquation qui détermine les gran-
deurs des diamétres principaux. La chose se réduit a calculer les
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cocfliciens P, P/, P” de l'équation (10). A cet effet , dcrivons les
résultats des substitutions des valeurs (2) dans I’équation (1), en
ayant égard aux équations (G), (7), (8); nous trouverons

(Aa *~+-Bb *+-Cc *4-2A'b ¢ +2Bc a +=2C'a b Ya*
~+(Ada’ *+-BY *4-Cc' *~H-2A'Y ¢/ ++2B'c! a’ +=2C'a’ b/ )y
+(Aa//’+35//’+C’c”’-—{—zA/ZJ/"c//+2B/c/’af“+2C’a”&”)z“
~+(2 Q 22 Q/y/__l_z Q// z/_.l_ D)

et partant

(13) Pl'=Aa/*+-Bb/*+ C!* 2 A/4//c/ S-2 B e/ al 42 Clal B!
si donc on élimine @/ y b, ¢/ des équations (11) , (13) et de

I'équation de relation formée d’aprés I'équation (S) du §. V, on
trouvera 'équation qui doit déterminer P/ ; mais , comme ces équatiens ,
ont lieu, de la méme manitre , en changeant a”, 4/, ¢/, P/ en
a,b,c,Pouena,b, c, P,ilsensuit que P, P/, P" sont
donnés par une méme équation du troisitme degré.

Il s’agit donc actuellement d’effectuer le calcul qui vient d’éire
indiqué ; mais auparavant débarrassons @, &, ¢ des accens qui les
affectent dans les équations (11) et (13), et joignons-y l'équation
(S), ce qui donnera

(14) (Aa4-Bc4Cb)(c4aCos.f+4-bCos.c)=2(Cc-A'b-}-B'a) (a~4-5Cos.+cCos.8) ,
¢ 5) (Bb4-Cla4-A'c) (c4aCos.p+4-bCos.e)=(Cc4-A'0~4B'a) (b4cCos.«44Co0s.9) ,
6)  Aa?4-Bb>~4-Ce2fe2A'bc4-2B/cad-2C'ab=P ,

(17  af-bdc24-2bcCos.af-2caCos.ff-2abCos.y=1.

Posons ensuite
Aat+B/c+Cb=L |,
(18) Bb+-Clat-A'c=L" ,
Ce+A'V+Bla=L1" ;

les trois premiéres deviendront alors
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'L (c}-aCos.8+5Cos.«) = L/(a~+bCos.,~4-cCos.s) ,
(19) I/\¢+aCos.p+4-bCos.a) = L/ b4-cCos.e+aCos v) ,
La+-L'b+L/'c=P.
Si I'on chasse successivement de ces équations deux des trois quan-
tites L, L/, L, en ayant égard 4 l’équation (17), il viendra
L =P(a+4-5Cos.y4-cCos.g) ,
(20) L/ = P(b~+cCos.«+aCos.y) ,
L/’ = P(¢+}aCos.p+45Cos.«) ,
et, en comparant aux équations (18) .
(P—A)a+4-(PCos.y—C")o-(PCos.e—B')e=0 ;
(21) (P—B)b+4-(PCos.«—A")c4-(PCos.y—Ca=o ,
(P—C)c+-(PCos.p—B’)a-+(PCos.a—ANb=o0 .

Eliminant ¢ et 5, entre ces équations, ¢ disparaitra de lui-méme;
et il viendra

(P—A)P—B)P—C)+42(PCos.a—A")(PCos.6—~B')(PCos.,~—C")
F(P-A)(PCos.u~A"y*4~(P-B)PCos.g~B’)*=~(P-C)(PCos.y-C')*=0 ,
ou, en développant et ordonnant

‘ (x—"Cos.“u--Cos.‘p-—Cos.‘y+2Coa.aGos.pCos.y)P’

ASin.*a —2.A4/(Cos.«=—Cos.8Cos.y)
¢ =BSin.?g —2B/(Cos.6—Cos.,Cos.«) ) P2
~-CSin.?y— 2C/(Cos.y—Cos.xCos.s)

BC—A"*+4-2(B/C'—~AA")Cos.«
+{ +-CA—~B"*~+2(C'4’—~BB/)Cos.p ) P
~++AB—C"*~4-2(A4’B'—CC')Cos.y
--(ABC-—AA”——BB/’—CC/*+2A’B/C/)::0 :

. a b .
et les quantités — » 7 seront déterminées par les équations

{ (P—A)
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{(P—AYP—B)—(PCos.,— C'y} —

- {(P=B)(PCos.p~B/)—(PCos.a—A"YPCos.,—C")} =0 ,
(23)
{(P—AYP—B)—(PCos,—C/y} -

~+{{P—A) PCos.a—.A")—(PCos.c— B/')(PCos.y—C} =o0.

Si l'on joint & ces deux équations I'équation (17), on aura tout ce
qu’il faut pour determiner @ , 4, ¢; et partant, on pourra calculer,
dans l'équation (10), les coeflicicns @, @/, Q”.

Il est maintenant facile de conclure des équations précédentes,
quelles modifications il faut y apperter , pour qu’elles fassent con-
naitre les grandeurs des diamétres principaux , dans les surfaces du
second ordre qui ont un centre. On sait en effet que, pour ces
surfaces , si I'on transporte l'origine des coordonnédes au centre , les
termes affectés des premiéres puissances de z, ¥, z disparaissent
de son équation. Ainsi, I’équation (1), aprés y avoir fait disparaitre
les premitres puissances de &, y, z, deviendra

Ax*+4-By* 4+ Cz*~-2Ad'y 2B za+2C/xy=H ;
d'ot il suit que I'dquation (10) prendra la forme
P/~ Ply*-Pz* = H,

. 1 T .. 4
Représentant donc par 7™ le quarré d’un demi-diaméire principal ;

H H .
on aura 71*= 7 dout P= T substituant cette valeur de P dang

les équations (22) ef (23), on trouvera les équations qui déterminent
la situation et la grandenr des diameétres principaux. On doit observer,
au surplus, que l’équation qui a pour racines les trois valeurs de
T* a nécessairement ses racines reelles , comme nous I'avons déja
démontré , en fairant voir que P, P/, P/ sont des quantités réelles.
Nous discuterons ici quatre cas différens des surfaces du second ordre.

Premicer cas. Si lequation (22) n'a aucune racine nulle , on

Tom., 1V. 15
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pourra toujours faire disparaitre les premitres puissances de z, ¥, z,
dans Déquation (1), et par conséquent réduire l'équation (10) a la
forme
Px/*4-Plyr-4-PrlizP=H ;

donc 1.° on aura Vellipsoide , un point ou une surface imaginaire ;
lorsque les racines de I'équation (22) seront toutes de méme signe.

2.° On obtiendra les Ayperboloides 4 une ou a deux mnappes,
on une surface conique, lorsque les racines de Véquation (21) ne
seront pas toutes de mémes signes.

Deuziéme cas. Supposons que l'équation (22) ait une seule racine
nulle ; I'équation (10) prend alors la forme

Pu* Pyl 42Qu/t-2Qy'+2Q/z2/4+D=o0 ;
donc 1.° on aura le paraboloide elliptique, ou une surface imagi-
naire , lorsque les deux racines de l’équation (22) seront de méme
signe , sans que @’/ soit zéro.

2.° On aura le paraboloide hyperbolique ou le systtme de deux
plans , lorsque les deux seules racines effectives de I'équation (22)
seront de signes contraires.

3.° Dans le cas particulier ou Q/=o0, quels que soient d’ailleurs
les signes des deux racines effectives de l'équation (22), la surface
est un cylindre; or, comme l'équation (=0 est satisfaite , lors-
qu'en particulier on a A4/=o0, B/=0, C”=o0; il sensuit que
Yéquation

ABC—AA”*»—BB*—CC"*~424'B'C'=o0 ,
suffit pour exprimer que la surface représentée par I'équation
Ax*+By*4-Cz*d2A'yz+-2B zo4-2C'vy4-D=0
est cylindrique. Il est remarquable que cette équation de condition
est indépendante de «, g, 4.

Troisiéme cas. Si deux des racines de I'équation (22) sont nulles,

I'équation (10) prendra la forme

Palrd-2Qa’2Qy'4-20Q"2'4D=0 ;
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elle représente une surface cylindrique , deux plans paralleles ou ure
surface imaginaire.

Quatriéme cas. Supposons 1.° que la surface (1) soit sphérique,
il y a alors une infinité de systtmes de diamétres principaux; et,
comme les équations d’un diameétre principal sont

x=ar , y=br, z=er ;
il s'ensuit que @ , & , ¢ seront quelconques. Exprimant donc que
les équations (21) laissent @, &, ¢ indcterminés , on aura
A=B=C=P
A’=PCos.. , B'—=PCos.z , C/=PCos.y.

2.° Supposons que la surface soit simplement de révolution autour

de 'un des axes, alors les équations (21) devront étre les mémes

a un facteur prés; d’out I'on déduira les équations

P—A PCos.o—C/ PCos.p==B/

’

PCos.p—B’ T PCosie—dA! T P—C
(24)

PCos.yy—C’ P—B PCos.com A"

PCos.s—B' PCos.a—A'— P—C ?

on trouvera la racine P commune 3 ces équations par la théorie
du plus grand commun diviseur. Ega]ant ensuite les valeurs de P,
on aura deux équations de condition, qui exprimeront, si elles ont
lieu , que la surface proposée du second ordre est de révolution
autour d’un axe.

On obtient aussi Iéquation du plan qui eoupe la surface de ré-
volution suivant un cercle , en éliminant @, &, ¢ entre les équations
(3) et l'une des équations (21); on a pour résultat

(25) (P—A)x~+(PCos.y— C’)y~+(PCos.e—~B)z=o0,
Pour donner un exemple de cette théorie, supposons
¢e= B, = un ang]e droit ;

les équations (24) et (25) deviendront
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g PO _p O, 4w
P =iy =

B/Cx+C' A'y+A'B'z=0 ,
égalant les valeurs de P, deux & deux , on obtiendra les équations
A' B A—B)4-C{A*—B*)=o0 ,
(26) B'C/(B—C)+A/(B*—C")=06 ,
CA(C—A)+B/Cr—A4A")=0 ,
dont deux comportent la troisieme. Elles expriment que I'équation (1)

appartient & une surface de révolution. L’equation (22) devient, en
vertu des équations (20)

BC) - CA AR
gP-—-—A-—-—-—E gP—-—-A-—-—-——-—:—} =o.
A B C

1l nous resterait & examiner ce qui arrive dans ces résultats, lorsque
un , deux ou trois rectangles des coordonnées manquent dans ’équa-
tion (1) ; mais nous renvoyons, pour cet objet, & notre mémoire qui

traite de ces mémes équations ( page 144 du 2. volume des Annales
de Mathématiques. )

On peut déduire des théories précédentes d'autres conséquences
trés-importantes ; ainsi, par exemple, on démontre trés-facilement,
au moyen de l'équation (22) , trois théorémes principaux sur les
surfaces du second ordre ( voyez, pour cet objet, un mémoire de
M. Bérard , page 105 du 3.° volume des Annales de Mathématiques ).
Nous discuterons seulement le cas particulier oti les surfaces du second

ordre dégénérent en deux plans paralléles , et également distans de
Vorigine des coordonnées. L’équation

Az*-By*4-Cz*2d'yz4-2B/za+4-2C'zy=H ,
prend alors la forme

(ma~ny=pz)*—1=0
st I'équation en T* devient
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mSSiﬂ.3x—2np(C084n—COS.ﬁCOS.7)
—~+-n°Sin.?g—2pm Cos.s—Cos.»Cos.«) y T*
~+-p*Sin.?y — 2mn(Cos.y—Cos.«Cos.8)
= 1—Cos.22a—Cos.28—Cos.?y42Cos.«Cos.2Cos.5.

Cette équation donne la longueur d’une perpendiculaire abaisséc de
Vorigine des coordonnées sur le plan

mx~nytpz=1 |
et elle coincide parfaitement avec Iéquation (R) du §. V.

Nous terminerons, sur cette théorie, en observant que la méthode
que nous avons employée, pour les surfaces du second ordre, est
exactement applicable aux lignes du méme ordre, rapportées & un
systtme primitif quelconque de coordonnées. Mais on peut, pour
ces lignes, obtenir de suite I'équation qui détermine les quarrés des
demi-diamétres principaux. En effet, soit posée I'équation

Az*++By*~+2Cxy=D ,

et soit y==mux cclle d’'un diametre de la courbe. Si T'on cherche
Pintersection du diametre avec la courbe , puis la distance r de
Porigine & ce point d’intersection, en se rappelant la formule

r*=z>+y*~-22yCos.y , ol ,=Ang.(x,y)
on aura l'équation

D(1-+m>~amCos.y) =r*(Am*+B+2Cm)

ou '
(Ar* = DYm*~-2(Cr*—=DCos.ym--(Br*~D) =0 ;
qui sera telle qu'en donnant une valeur a 7, il en résultera deux
valeurs correspondantes- pour m ; c’est-a-dire , que, généralement,
il existe toujours deux diamétres de méme longueur qui ont des direc-
tions différentes. Si maintenant on suppose que 7 désigne la lon-
gueur d’un demi-diametre principal , alors les deux diamétres égaux
qui répondront i cette hypothése se confondront en un seul ; les
valeurs correspondantes de 7 devront donc étre égales. Ecrivant dong
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la condition d'égalité des racines de I'équation en m , on trouvera
que les quarrés des longueurs des demi-diametres principaux sont
déterminés par I'équation

(AB—C?)r+D(A-+B —2CCosy)r*-+D*Sin.>,y=o.

De semblables considérations pourraient étre appliquées & la recherche
des longueurs des diametres principaux , dans les surfaces du second
ordre qui ont un centre.

Généralement , on peut parvenir aux équations qui déterminent les
diamétres principaux , soit dans les lignes soit dans les surfaces du
second ordre , en partant d’une propriété quelconque qui ne puisse
convenir qu'a cux seuls ; ainsi la propriété des maximis et minimis.
dont ils jouissent exclusivement se préte trés-aisément a cet usage,
et c'est d’elle, en effet , que M. Bérard est parti , pour parvenir
aux formules dont la recherche a fait le sujet du présent mémoire
et de l'autre que nous avons déja rappelé. Mais, nous ferons & ce
sujet la remarque que voici: c’est que, comme on ne démontre
les propriétés des lignes et surfaces du second ordre , relatives a
leurs diamétres principaux, quaprés avoir ramené leurs équations
aux formes respectives _

Py*+-Py:=H , Pzx*+Ply*+Plz*=H ;
il s’ensuit qu'on ne peut employer ces propriétés, dans la recherche
de P, P/, P/, quaprés avoir démontré , a prior: , que ces
équations donnent toutes les lignes et surfaces de cet ordre qui ont
un centre. Les démonstrations des mémes formules, par MM. Monge
et Hachette , ‘qui*'se trouvent dans la Correspondance sur lécole
polytechnigue -( 2.* vol. , n.° 5, janvier 1812 ), sont aussi sujettes
aux mémes inconvéniens. 1l me parait donc plus convenable ct: plus

.

direct d’élablir'd*abord, par la transformation des coordonnées , les
équations qui font connaitre la situation et la grandeur des demi-
diametres principaux ; et cest ce que j’ai cherché a faire , dans
ce mémoire, de la manitre la plus simple, et en méme temps la
plus générale. ' ‘ o
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ANALISE.

Détermination i nombre des termes dune équation
compléte d'un degre quelconque , entre un nombre
quelconque d'inconnues.

HRecherche des principales formules de la théorie des
nombres figures.

Deémonstration du principe qur sert de fondement &
la méthode publice par M. Bupan, pour la résolu-
lion des €quations numeriques ; ‘

Par M. GERGONNE.

[a %a Vo Sia Via Vo STVl V)

JE réunis ici , dans un méme article , diverses théories qui , A
raison de la liaison étroite qui existe entre elles , ne peuvent que
se simplifier beaucoup par leur rapprochement.

§ L

Détermination du nombre des termes d'une équation compléte dun
degré queléonque , entre un nombre quelconque d'inconnues.

Soit m le degré d’une équation compléte entre 7 inconnues ; le
nombre des termes de cette équation sera une fonction de m et
de 2 quil s’agit de déterminer , et que nous représenterons par
'Am,n' .

Pour plus de simplicité , concevons que les coefficiens de tous
Jes termes de cette équation soient positifs et égaux a l'unité: ce
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qui ne changera rien A la nature du probléme. I'équation proposée
devant renfermer tous les termes de I'équation complete du (m—1)™¢
degré , entre 2~ inconnues, plus la totalité des termes du m.™¢ ordre,

entre les mémes inconnues ; en désignant par ¢ le nombre de ces
derniers , on devra avoir I'équation

'Am,": m—-l,n+"- (1)
Il s'agit présentement de déterminer .

Pour cela, concevons que 'on multiplie chacun des termes d’ordres
inférieurs & m par une somme de puissances semblables des z in-
connues , dont les cxposans soient tels que ces multiplications donnent
toutes des produits de l'ordre 2 : ce qui exigera que l'on multiplie
le terme tout connu 1 par &™4yM4-z74....., Uensemble des
termes du premier ordre par a™" g™~ f4-zm ... .., et ainsi
de suite ; il est clair que le nombre total des termes de ces pro-
duits , abstraction faite de toute réduction, sera #.4,, ., -

Or, je dis que ces mémes termes ne seront autre chose que les
termes du m.™° ordre de la proposée, écrits chacun m fois. En
effet , en représentant généralement.I’un de ces derniers par a%yPz?...,
avec la condition e--g-»-+.....==m , on voit qu'il aura ét¢ formé
autant de fois qu'il y a de maniéres de diminuer successivement
chacun de ses exposans de toutes les unités qu’il renferme; c’esty
3-dire , de 7 maniéres différentes.

On a donc, d’aprés cela

n
nApy_y y=mp , dou p= - Y (2)
et par conséquent (1)
n mef-n
-Am,n-:' m--t,n+ ';;’ Am-l,n::TAm—h'l }
ou enfin
mA,,,,,,= (m-tn)Adp,_, r (3)

En changeant successivement, dans cette équation, m en m—rx,

m—2,
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m=—2, m=3,....2, 1, et remarquant que A,,,A=n+x , il viendra
mAm),,=(m+n)Am_,‘,, 5 ’
(=)A= (mtn—2)dp.,
(m=2)d s p=(mn—x)dp_, . ,
24, ,=(+2)4,,,
A, =41 ;
ce qui donnera, en multipliant , supprimant les facteurs communs
aux deux membres de 1’équation produit, et tirant la valeur de

Any (%) 5

Am,n-‘: ”+I."+2."'*3'3' ““"_i‘z ) (4)
2 m

formule qui résout le probleéme.
Cette solution, la plus simple que je connaisse , m’a été commu-
niquée par M. G. Fornier , éléve trés-distingué du lycée de Nismes.
Si I'on multiplie, haut et bas, la valeur de A4, par 1.2.3...77,

clle devient
12300000 .. {m—-n)

1.2.3v00mX 12300

myn =

ou, en adoptant les notations de M., Kramp (**),
’ (m~fn)!
A= = -
m:n.
On voit alors que 4,, est une fonction symétrique de m et 2, et
qu'ainsi on doit avoir
A=Ay 3 )

ce qui revient & dire qu'iZ y @ aufant de termes dans une équation
compléte du n™¢ degré entre m inconnues qu'il y en a dans ung
équation compléte du m.™° degré entre n inconnues.

(") Voyez la note de la page 200 du second volume de ce recueil
¢*") Voyez la note de la page i.re du 3.e volume de ce recueil.

Tom. 1V, 16
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§ 1L

Recherche des 'principales jformules de la théorie des nombres
Sfigurés.
T
Parce que A,,,’,, est une fonction symétrique des nombres m et n,

nous emploirons, & l'avenir , pour représenter cette fonction, la no-
tation plus simple

App=(m , n).
En conséquence , nous aurons
(m ,n)=(n ,m), (6)
et, quels que soient p et ¢
(0,7)=(0, 9)=(p, 0)=(g, 0)=1. 4]
Cette notation admise , I'équation (3) , dans laquelle on peut
permuter entre eux les nombres m et n, donnera
m(m , n’ =(m-n)(m—1 , n} ,
nm, n)y=(mA-n)m,n—1) ;
la somme de ces deux équations, divisée par m-tnz, sera
(m s my=(m—1, m)H(m, n—1) 3 ®)
or, en se rappelant les équations (7), on voit que cette derniére

exprime la construction du triangle arithmétique ; et qu’a'msi (m, n)
est la formule générale des nombres figurés.

L’équation (6) exprime donc que Ze (n4-1)™° nombre figuré du
m.™° ordre est égal au (m--1)y™°¢ nombre figuré du n™° ordre;
et 'équation (8) exprime que /e (m~~1)™° nombre figuré du n.>®
ordre , ou le (n4-1)™° nombre figuré du m™¢ ordre, est la somme

du mX™°® nombre figuré du n™¢ ordre et du n™° nombre figuré
du m.™¢ ordre,

De cette derniére on tire
(m , n)—(m—1, n)=(m ,n—1i) ;

substituant successivement pour 7, dans celle-ci, les nombres 1,
2, 3,e.0..m, il viendra
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(1,7)— 1 =(1,n—1),
(2, n)—(1,n)=(2, n—1) ,
G,n)—(2,n)=(3, n—1) ,
(m , n)—~(m—1 , n)=(m , n—1)
ajoutant ces dernidres et réduisant , on aura

(m,n):(n,m)':.(o,n-—-x)+(I,n-——l)—-l—(z,n—-l)+....+(m,n-—-1); (9)
et I'on aurait pareillement

(m,n) =(nyn)=(0,m~—1)+(1,m—1)+(2,m—1)4..(n,m—1) ;
c’est-a-dire , que le (n=4-1)™¢ nombre figuré du m.™¢ ordre, oule
(m~4-1)™¢ nombre figuré du n™° ordre , est égal & la somme des
n™¢ nombres figurés de tous les ordres jusqui’au m™° ordre inclu-
sivement ; ou encore & la somme des m—-1 premiers nombres
figurés du (n—1)™° ordre.

Je terminerai par donner , d’aprés M. Lhuilier (*), la sommation
des Znverses des nombres figurés. 11 est aisé de se convaincre, par
le développement et les réductions , que Déquation suivante est
identique

1 - (n—1)f m! (m=-1)!
(m—frnm—z)! - (m4-n—1)! } (I °)

Si l’'on y substitue successivement pour 72 les nombres 0, 1,2,.:.m,

1 (n-—-l)! 1 1!
o — o}

(m 3 n—1) -2

il viendra

©,n=—1) n=2 {(@=—2)! (n—1)!
I (n-—l)‘ 2!
(a,n—1) %(n-—x)‘ nl } ¢
: n—n's 2 __._2_.§~
(2,71——1) z n! (n~1)!

@ + 8 o e 2 @ ¢ o & o & o o o e &+ o o g

£ Voyez ses Elémens raisonnés dalgibres
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1 _ (p=1)! m! __ (4 )

m,n—1) n—2 ((m4n—2)! (nfn—n!§’
d'ol , en ajoutant et réduisant , -

1 1 1
©, n=i) + (1, n—1) + (2 5 n=—1) +‘+ @n ,n—1)
_ (n=—1)! g b4 (m—4-1)!
T s ((—2)! (m+n—l)1} >
ou encore )
1 1 2
(0 ,n=—1) (1, n—I) (2,n-—1)+m'+ (m , n—1)
N1 1
- n--zg = (m—-1, n—z)% ’ <II>

Si, dans cette dernitre formule , on suppose 2= oo , elle deviendra
simplement ,

I I I 1 71

(o, n-—-1)+ (1, n—1) + (2, n=1) + 3,n—1) o= n—z ’ (l

\
2)
c’est-a-dire ,

+ "i“— 1 +_ 2 3 4 R

a0 s — .

n 72+l n.n+ n—2 n-1 n+z'n+3‘ n=——2
. L

Démonstration du principe qui sert de fondement a la méthode

donnée par M. BUDAN , pour la résolution des équations nu-
mériques.

Soient P, o , Poyy Poy s PojyoeeieePoyer s Popsarvens les
termes de la premlére lngne hornz,ontale d’une table 3 double entrée,
dont la loi soit telle qu'un terme quelconque de cette table soit égal
a celui qui le précéde immédiatement & gauche, augmenté de celui
qui est immédiatement au - dessus de lui. En désignant par P, ce
terme quelconque, on aura

Pow=Pyy Py (13)

Pour connaitre ce terme P, ,, il est clair qu'il sera nécessaire et

suffisant de connaitre les termes de la premiére ligne horizontale,

jusquau terme P, , inclusivement ; d'ot on peut conclure que si
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on trouve une expression de P,, qui, renfermant la totalité de

A

ces termes , satisfasse & léquation (13), elle en sera la valeur
compléte.
Or, l’expression
Pyw=(k—1,n)P, ;A-(k—1,n—1)P A (k—1,1)P, ., F(hk—1,0)P,, , (14)
satisfait d’abord & la premitre de ces deux conditions; elle satisfait
en outre & la seconde. On en tire en effet

Pk-n,l=(/[_2”2)Po,o+(/f'—2?n__l)Po,t+"'+(l£-—'2?t>Po,u-l+<kf210>‘p.,u 1 4

Pkl,,_l=(/{-——I,ﬂ—]>P°J°+(/f—l,fl—2>Po,!+...+(/f—T,O)Po’,,_‘ ’

d’oll on conclut, en ajoutant, et ayant égard a I’équation (8),
Pk_l’,,—[-Pk’,l_,==<lf——1,n>P°,°+<k-—-I,Il—l)Po,,—i—...—i—(il—I,I)PQJH-‘-F(;[—I,O)PO‘,,:Pk,,,;
ce qui est précisément l'équation (13).

Si, dans I'équation (14) , on change % en m—n--1 , clle deviendra
Py i p=m—n,n)P, +m—nn—1)P, 4..~4(m—n,0)P, ,; (15)
équation qui va nous servir tout & I’heure.

Dans la table 4 double entrée dont il sagit ici , les termes de
la seconde ligne sont dits les sommes premiéres de ceux de la

premiére ; ccux de la troisi¢éme en sont dits les sommes secondes ,
et ainsi de suite,

Soit présentement 1’équation quelconque
P, 2" P, 3" P, 2" e P g Py 2P =0, (16)

Soit pos¢ z—1=y , d’od #=y-}1. En substituant, et conservant
toujours les mémes notations , il viendra

P oy " (m—1,)P o |y rd-(m—n , n)Po, 'y P, | =0 5 (17)
A-(m—1,0)P, |  —AeeA-(m—nn—1)P, “+...4-P,,,
~+itd-(M—n,n—2)P, , ~+.ed-P, .,

P B Syt

~+.wt-(m—~n , 0)P,, ...

+
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équation qui, en vertu des formules (7, 14 et 15), devient simplement
Pm+ 5,50 ‘.'ym+Pm,x 'ym.l+Pm'l,1 '.ym-z+"+Pm-n+l,n 'ym."+"+Pl ym=0e (18)

Ainsi, les coegfficiens successifs , de gauche & droite , des termes
de l'équation dont les racines sont celles d'une équation proposée
diminuée d’une unité , sont, & partir du premier terme , la pre-
miere somme (m-41)™¢, /o scconde somme m.™® , /g troisiéme
somme (me——1)"¢, ¢t ainsi de suite, des coefficiens de la proposée.

Cest sur ce principe que repose la méthode publice par M.
Budan , pour la résolution des équations numériques ; méthode qui
n'exige uniquement que l'usage de l'addition et de la soustraction.

Rien n’est plus facile, d'aprés cela, que de diminuer les racines
d’une équation d’'une unitd. Que I'équation proposée soit

bat—8z—112°}15204-24=0 ,
par le procédé indiqué ci-dessus , on formera la table suivante :

5—8—114154-24,

5—3—14+4-29+53 ,
5+4-2—124-17,
5+7—5 >

54-12,
5,

et équation transformée sera
5 (w1 )t12(@—1 3 —5(2mm1 ) F 17 (2—1)4-53=0 ;

identique avec la proposée. Nous renvoyons, pour les applications,
A Vouyrage de M. Budan,
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QUESTIONS RESOLUES.

Solution du probléme d Arithmeétique proposé ¢ la
page 384 du 3. yolume de ce recueil ;

Par un ABONNE,

[ %2 Y Vo Vo Vo W, W V)

ENONCE. Etant donné le produit de la multiplication &'un
nombre de plusicurs chiffres par un autre nombre , dont les chiffres

ne sont que ceux du premicr, écrits dans un ordre rétrograde ;
trouver les deux facteurs P

Le premier moyen qui s’offre & I'esprit,, pour résoudre le pro-
bléme proposé , est d’écrire , sur une méme ligne, tous les diviseurs
du nombre donné ; de former une seconde ligne des- quotiens ob-
tenus en divisant le nombre donné par les nombres de la premiere
ligne , et de comparer enfin les nombres correspondans dans les
deux lignes. Il est clair, en effet, que tous ceux de la seconde
ligne qui ne différeront de leurs correspondans dans la premiére
qu’en ce que les mémes chiffres y seront écrits dans un ordre ré-
trograde , pourront, avec ces correspondans , éire pris pour les deux
facteurs cherchés.

Il est meme aisé de voir qu’on peut n’éerire dans la premiére
ligne que ceux des diviseurs du nombre proposé qui n'exceédent
pas sa racine quarrée et borner de méme ceux de la seconde ligne
aux quoticns que ccux-ci fourniront, puisqu’en les prolongeant plus
loin l'un et V'autre, on ne ferait que répéter , dans la ligne inféricure,
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des nombres déji écrits dans la ligne supérieure, et pice persd.
Exemple. Soit le produit donné 252,
La racine quarrée de 252 tombant entre 15 et 16, on bornera

la premiére ligne aux nombres inférieurs & ce dernier, ce qui
donnera

Diviseurs .... 1, 2, 3, 4, 6, 7, g, 12, 14
Quotiens..... 252 , 126 , 84 , 63 , 42, 36 , 28 , 21 , 18.

d’olt on conclura que les facteurs cherchés sont 12 et 21, dont le
produit est en effet 252 ; et qu’ainsi le probléme n’a qu’une solution.

Mais cette méthode , bonne tout aa plus pour de trés-petits nombres,
deviendrait , pour ainsi dire , impraticable par sa longueur, sil’on
voulait l'appliquer 4 des nombres tant soit peu considérables. 11
faut donc en chercher une autre qui n’ait point cet inconvénient.
Pour y parvenir plus facilement, proposons-nous d’abord le probléme
que voici :

PROBLEME. Etant donné le produit d'un polyndéme ordonné
par rapport & une lettre quelconque , par un autre polyndéme du
méme degré , ordonné par rapport & la méme lettre , et ayant pour
ses coefficiens les coefficiens du premier , écrits dans un erdre
rétrograde ; irouver les deux facteurs ?

Limites du probléme. Pour que le probléme soit possible , Ie
polynome donné doit étre d’un degré pair; et ee polynéme doit
étre réciproque ; c’est-a-dire , que ses termes, a égale distance des
extrémes , doivent avoir les mémes coefficiens.

Mode général de solution. Soit le polynéme donné

R N s SN B i N B s 2.z o PN ¢ )
on supposera que les deux facteurs eherchés sont
Ax"4-Bx" ' -Gr+H, Ha"+Ga"'4ntd-Br+A4, (2)

dont le produit est
AH
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AH " AG o A F a0 e [ b AG ek AT 3)
+BH +B6 B | . +BH
- +CH O
S
S 2 QR
4G A+
1| A

exprimant donc que ce produit est identique avec le polynéme (»),
on obtiendra les #+4 1 équations

AH=a ,
AG+BH=b ,
AF4+BG+4CH=c¢ ,

A 4B A-C Ao F- 4G+ H* =1

lesquelles seront en nombre suffisant pour déterminer les n-}-1 eoef-
ficiens 4, B,....G, H, qui sont ici les inconnues du problé¢me,

Remargues. Comme le produit (1) nechange pas en changeant les si-
gnes de ses facteurs, il s'ensuit qu’a chaque valeur de chacun des coef-
ficiens 4, B,....G, H, il doit nécessairernent en répondre un
autre qui n'en différe que par le signe. Cette circonstance doit
donc doubler le degré des équations du probléme.

De plus, Iéchange des facteurs entre eux ne devant pas changer
le produit , et un méme coefficient se trouvant dans I'un occuper
le méme rang, en allant de gauche & droite, qu’il eccupe dans
Pautre , en allant de droite & gauche; il s'ensuit que les coefficiens
également distans des extrémes, dans I'un quelconque des facteurs,
doivent étre donnés, tous deux, par la méme équation : circonstance

Tom. 1V. 17
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qui doit encore, comme la premicre , doubler le degré des équations
du probléme.

Il faut pourtant remarquer que,lorsque n est un nombre pair,
il y a un coeflicient du milieu , qui occupe le méme rang dans
les deux facteurs; et auquel conséquemment la considération 4 laquelle
nous venons de¢ nous arréter n'est point applicable ; ce coefficient
doit donc alors étre déterminé par une équation moins élevée de
moiti¢ que celles qui déterminent les autres.

Ainsi , en résumé, la recherche de I'un quelconque des coefficiens
A, B,....G, H, devra généralement conduire a une équation ne
renfermant que des puissances paires de ce coefficient, et dont le
degré scra quadruple du nombre des solutions proprement dites que
le probléme pourra admettre ; mais le coefficient du milieu, lorsque
le nombre des coelliciens sera impair, sera donné par une équation
d’un degré moitié moindre.

Il est aisé, au surplus, d’éviter I'embarras des équations de degrés
trop élevés , et d’en avoir dont le degré soit précisément égal au
nombre des solutions du probléme. 1l ne s’agit, pour cela, que
de substituer aux inconnues primitives 4, B,....G, H, les in-
connues AH, A*+H*, BG, B*4G*,....1l est évident, en eflet,
que ces nouvelles inconnues sont & la fois indifférentes et aux signes
des facteurs et au renversement de leurs coefliciens.

Eclaircissons présentement ces généralités par la considération de

quelques cas particuliers, de plus en plus compliqués.
Premier cas. n=1.

Soit le produit proposé
ax*bxta.
En posant ce produit égal &
(Az+B)(Bax~+A)=ABx*-(A*+B*)x+A4B ,

en aura, pour déterminer A et B, les deux dquations
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AB=a , A+B=b ;
ajoutant et refranchant successivement 3 la seconde le double de
la premiére et extrayant ensuite la racine quarrée des deux mem-
bres , il viendra

A-{-B:\/b-}-za ’ A—B= \/[)—-—:m s

d’ot
A=1{y/ b+tza+y/ b—z2a}, B=1{y/ bFrza—\/b—2al;
Ainsi le produit donné, décomposé en facteurs, sera
§: [V bq2atv i—a]a [V igza—y/ b—2a] }
X {5 [V od2a—V 1=za] 2+ L [V bqzaty/ 1—2a] } -
Application. Si le produit donné est
18224452418

on aura @=18, b=45 , b42a=81 , b—2a=q , ViFea=g ,

Vi—20=3, ; [V btt2at+Vb=22]=6, [V idza—\ b—2a]=3,
et ce produit décomposé sera

(32-+6)(6243).

Deuzitme cas. n=2.
Soit le produit proposé
axrt a4 +-bata.
En posant ce produit égal i
(Az*+4-Br+4-C) Ca*~+Ba~+A)= ACx*+AB|x’+A*| x4 ABla+-AC , -

+BC| +B:| +BC
+-C

on aura, pour déterminer 4 , B, C les trois équations
AC=a, BA4+C)=b, A+C*=c—B>.
Si, 4 la troisitme équation , on ajoute le double de la premitre

il viendra
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. (A"‘I—C)z:((;-i—za)__Bz ;
mais la seconde donne

b2
(A+Cy= = ;

on aura donc, par l'égalité de ces deux valeurs,

Bt—(¢c4-2a)B*+-b>=0
d’ol , en négligeant le double signe de B,

B= I/ (c42a)+y/ (otear—ib

d’un autre coté, en retranchant le double de I'équation AC=a de

I'équation A*~4-C*=c—B*, et extrayant ensuite la racine quarrée,
il vient

A—C= \/(c—za)—-B2 5
et puisqu’on a d’ailleurs
b
A+C= -E A
on trouvera

b PSP b T e ——————
A= — 4 ==k, C=—5—; V e—2a)—B ;

au moyen de quoi tout sera connu , dans les deux facteurs du
produit donné.

Application. Si le produit donné est

122448234 412482412 ,

op aura a=12 , b=8 , c=41 , dou c+24=65, c—20=17
(c+2a)>=4225, (c420)*—48°=3969, V/ (H2a)—3b>=03 ,/B=—‘“1
ou 8, A=6 ou (14 =47), C=2 ou ;(1—y/=[7); le produit
décomposé sera donc

(22*4-246)(62°+-2--2) ,

ou bien
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by =) H8a4 (1—y/ Z))
<2 (1—y/ )& 84 £ (14 =) )

Troisiéme cas. n=3.

Soit le produit proposé

ax bz 4-cartdzdtcxtt-bat-a.
En posant ce produit égal a

(A2’ 4Bz +Ca4-DY Do+ Ca* 4Byt A)= AD2+AC | a°4+AB | zi4-A* | 2+
4BD| +BC| 4B | .-

+CcDl e | 4.

~+Dr

on aura, pour déterminer 4, B, C, D, les quatre équations
AD=g , AC{BD=b , AB+BCHACD=¢ , A*+B*+4-C*+D*=d,
en y joignant les quatre suivantes

AD=M , (1) A*+D*=P , 3)

BC=N, (3 BH4C=Q, ®)
elles deviendront
M=a,(5) AC{-BD=},(6) AB4+CD=c—N, (7) P+Q=4d,(8)
en prenant successivement le produit et la somme des quarrés des

équations (6) , (7), et ayant égard aux équations (1) , (2), (3),
(4), 11 vient

NP4MQ=bc—bN , (90 PQ44MN=(b24-c?)=2cN4N2,  (10)
dliminant M et N entre les équations (5), (9), (10), il viendra
a*(Q*— { PP—2b P*—[2a(ct-2a)—b*1P—L4abc } Q
+{(l)‘—i-c‘)P’—{-z&(_bz—-zac)P+b’(b’—4ac)} =0 ;

chassant enfin @ de cette équation , au moyen de I'équation (8),
elle deviendra
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P"-—{—(é&-——d)f”+(25“—25d~—.3a’-—2gc+cz>lh
~+(26-b°d- 4abe-4a*bt2a*dt-2acd ) P+(b4-4ab o+ fa*bd+-a*d) =o.

Telle est I'équation quil faudra résoudre pour avoir la valeur de
P; on aura ensuite

be—a

Q=d—P , M=a, N= Q

Pyp

et enlin
A=y Pyomi+y/ P—2bi}, B=:{y/F2N—y/ (=N},
C={y/0FaN+y G—=aN}, D=1{y/ Pgabi—y/ P—abi}.
Application. Si le produit donné est
1225456254332 t4-1222°4-332° 456212 ,

on aura @=12 , 4=56 , ¢=33, d=122; en conséquence , I’équa~

tion en P sera
Pi—10P3—7527P*—20560P-}10945600=0.
Cette dquation a deux racines réelles positives, dont I'une entitre qui est
4o et l'autre incommensurable , comprise entre 84 et 85 ; les deux
autres racines sont imaginaires. En ne conservant que la seule racine
P=4o , nous aurons
0=8 , M=12, N=g9,

A=6 , B=1, C=q9, D=2,
le produit décomposé sera donc

(62’ +2*~4-gr-+-2)(223+g2*4-2-+6).
On voit aisément ce quil y aurait a faire pour des produits de

degrés plus élevés.

Tout nombre pouvant étre considéré comme un polynéme or-
donné par rapport aux puissances de la base du systéme de¢ numé-
ration , le probleme d'arithmétique qui a été proposé ne differe
uniquement de celui qui vient de nous occuper qu'en ce que, dans
les multiplications numériques , les dixaines de chaque ordre vont
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continuellement se joindre , comme unités , avec les unités de l'ordre
immédiatement supérieur ; ct cn ce qu'on ne peut admettre, pour
les inconnues , que des valeurs enticres et positives moindres que 10.

Ce probléeme se résoudrait donc de la méme maniére que l'autre,
si I'on parvenait a faire rentrer dans chaque ordre les dixaines qu’on
en 2 fait sortir ; or, cest la unc chose trés-aisée, ainsi que nous
Pallons voir.

Exemple I. Soit le produit donné ==2268.

Ce produit devant étre un polynéme d’un nombre impair de termes,
le nombre de ses termes doit étre trois et le terme le plus élevé,
qui doit avoir deux chiffres , doit étre compris dans 22; mais comme
Pautre terme extréme , auquel celui-la doit étre égal, est termind
par 8, il sensuit que I'un et I'autre doivent étre égaux a 18, d'ou
il est aisé de conclure que celui du milicu est 45, ce qui, en effet,
compléte le produit total, ainsi qu’on-le voit ici

18004450418 ;
le probléme revient donc au cas ou il serait question du polynéme
182°4-452-18; on trouveradonc, par la premiére application ci-dessus
2268=36X63.

Ezemple I1. Soit le produit donné =132192.
On voit d’abord que les deux produits extrémes sont égaux 3
12, ce qui donne

1200004-12180-412 ;

décomposant de méme le nombre 1218 on trouvera 8 pour chacun
des produits extrémes, ce qui donnera

1200004800044 10048012 ;
il s’agira don¢ de décomposer le polynéme 12244827 +{ 1282412,
¢¢ qui donnera, par la seconde application,

132192=216 X612,
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Ezemple III. Soit le produit =18055872.
Ce produit se décomposant comme il suit

12000000+5600000--330000-+12200043 3004560412 ;
on trouvera, par le troisiéme cas,

18055872=2916 <6192,

QUESTIONS PROPOSEES.

Problémes de Geéomeétrie.

L DETERMINER Lellipse de plus grande surface inscriptible ou cir~
conscriptible & un triangle donné ?

II. Déterminer V’cllipsoide de plus grand volume inscriptible ou
circonscriptible 4 un tétraédre donné ?

Probleme d Analise.

«

‘Assigner le terme général du développement de la série

B SO SR Wi

§ —— [ —ac2 f—a3 B

ordonnée suivant les puissances ascendantes de 27 (*)

(*) Le géométre qui propose ce probléme observe que sa résolution offrirait
un caractére certain pour discerner les nombres qui sont premiers de ceux qui
ne le sont pas. Il est aisé de voir en eftet que, dans le terme général A,a",
e coeflicient A, n'est autre chose que le nombre abstrait qui indique combjen
Yexposant 7 a de diviseurs, y compris lui-méme et l'unité; de maniére que =
sera ou ne sera pas premier , suivant que sa subslitulion dans 4, rendra ce coeffi-
cient égal A 2 ou A unnombre plus grand que 2.
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PHILOSOPHIE MATHEMATIQUE.

Essai sur une maniére de representer les quantités
imaginaires , dans les constructions geomélriques;
Par M. ArcaxD.

[a Yo Vlo Vi Vi Sa o S

AU BEDACTEUR DES ANNALES,

MONSIEUR ,

LE mémoire de M. J. F. Francais quia paru i la page 61 du 4.°
volume des Annales , a pou;‘ objet d’exposer quelques nouveaux
principes de géométrie de position, dont les conséquences tendent
particuli¢rement & modifier les notions admises jusqu’ici sur la nature
des quantités imaginaires.

En terminant son mémoire, M. Frangais annonce qu’il a trouvé
le fond de ces nouvelles idées dans une lettre de M. Legendre qui
en parlait comme d'une chose qui lui avait été communiquée , ct
il témoigne le désir que le premier auteur de ces idées mette au
jour son travail sur ce sujet. Il y a tout lieu de croire que le
veeu de M. Frangais est depuis long-temps rempli. J’ai publié en 1806,
un opuscule sous le titre d’Essai sur une maniére de représenter
les quantités imaginaires , dans les constructions géométriques
dont les principes sont enti¢rement analogues a ceux de M. Francais,
ainsi que vous pourrez en juger par I'exemplaire que j’ai I'honncur
de vous adresser (*). M. Legendre a eu, dans le temps, la bonté
d’examiner mon manuscrit et de me donner ses avis , et ce doit
étre 14, si je ne m’abuse , la source de la communication dont

parle M. Francais.

(") L’ouvrage se trouve & Paris, chez lauteur, faubourg St-Marceau, ruc du

chemin de Gentilly, no 12.
J. D. G.

Tom. IV , n® ¥V, 1.°* novembre 1813 18
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L’éerit dont il s’agit n'ayant été répandu qu’a trés-petit nombre ,
il est extrémement probable qu’aucun de vos lecteurs n'en a con-
naissance ; et je crois pouvoir prendre cette occasion de leur en pré-
senter un extrait , présumant que cette matiére pourra les intéresser , au
moins par sa nouveaulé; ct faire naitre chez quelques-uns d’entre
eux des réllexions propres & perfectionner et a2 étendre une théorie
dont mon ouvrage ne présente encore que les premieres bases.

1. Si nous considérons la suite des grandeurs

A, 2a 5,30 , 4A yeeieins
‘nous pouvons concevoir chacun de ses termes comme naissant de
celui qui le précede , en verta d’une opération la méme pour tous,
et qui peut étre répétée indefiniment.

Dans la suite inverse )

eeveeida , 3a , 22 ,a, 0,
on peut également concevoir chaque terme comme provenant du
précédent ; mais la suite ne peut étre prolongée au-dela de zéro,
gu'autant qu’il sera possible d'opérer sur ce dernier terme comme
sur les précédens.

Or, si a désigne, par exemple, un objet matériel , comme un
Jranc , un gramme , les termes qui, dans la seconde suite , devraient
suivre zéro , ne peuvent rien représenter de réel. On doit donc les
qualifier d’’maginaires.

Si @, au eontraire , désigne un certain degré de pesanteur ,
agissant sur le bassin A d’une balance contenant des poids dans ses
deux bassins ; comme il est possible de diminuer @ , soit en enlevant
des poids au bassin A, soit en en ajoutant au bassin B, la suite
en question pourra étre prolongée au-dela de zéro; et —a, —2a,
—3a ,.... seront des quantités aussi réelles que 42 , 4-2a, +3a,....

Cette distinction des grandeurs en réelles et imaginaires est plutét
physique qu’analitique ; elle n'est pas d’ailleurs tout i fait insolite
dans le langage de la science. Le nom de jfoyer imaginaire est
usilé en optique , pour désigner le point de concours des rayons qui,
analitiquement parlant , sont négatifs.
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2. Lorsque nous comparons entre elles, sous le point de vue appelé
rapport géométrigue , deux quantités d’un genre susceptible de four-
nir des valeurs négatives , l'idée de ce rapport est évidemment com-—
plexe. Elle se compose 1.° de I'idée du rapport numdrique , dépendant
de leurs grandeurs respectives, considérées absolument; =.° de I'idée
du rapport des directions ou sens auxquels elles appartiennent :
rapport qui, dans ce cas-ci, ne peut étre que '/dentité ou l'oppo-
sition. Ainsi , quand nous disons que —Ha@:—b::—ma :-+mb,
nous énongons , non seulement que @ : 4 ::ma : mb , mais nous allir-
mons de plus que la direction de la quantité @ est, relativement
a la direction de la quantité —b& , ce que la direction de —ma est
rclativement & la direction de ~+m& ; et nous pouvons méme ex-
primer cette derniére conception d'une maniére absolue , en éerivant

(A) e ! EEE SE o) 8

3. Soit proposé maintenant de déterminer lamoyenne proportionnelle
entre 41 et —1, ¢’est-a-dire , d’assigner la quantité & qui satisfait
a la proportion

r:xiia—1,
On ne pourra égaler x 4 aucun nombre positif ou ndgatif, d’oi
il semble qu’on doit conclure que la quantité cherchée est imaginaire.

Mais , puisque nous avons trouvé plus haut que les quantités néga—
tives, qui paraissaientd’abord ne pouvoir exister que dans I'imagination,
acqui¢rent unc existence réelle , lorsque nous combinons I'idée de
la grandeur absolue avec celle de la direction ; I'analogie doit nous
porter & chercher si 'on ne pourrait pas obtenir un résultat ana-
logue , relativement & la quantité proposée.

Or, s’il existe une direction &, telle que la direction positive
soit & & ce que celle-ci est & la direction négative, en disignant
par 1, lunité prise dans la direction &, la proportion

(B) driagiin,i—1,
présentera 1.° une proporlion purement numeérique T:1::r:r, 2.°
une proportion ou similitude de rapports de dircction , analoguc a
eclle de la proportion (A); et, puisqu'on admet la virité de cctte
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dernitre, on ne saurait se refuser & reconnaitre également la légi-
timité de la proportion (B).

4. Nous allons encore établir ici une distinction physique entre
les quantités réelles et imaginaires, Que l'unité dont il s'agit soit,
comme plus haut, un certain degré de pesanteur , agissant sur un
des bras d’'une balance. Nous avons trouvé que ce genre de gran-
deur peut réellement étre positif ou ncgatil ; mais on ne saurait aller
plus loin; et on ne peut, en aucune maniére, concevoir un genre
de poids tel que 1, représente quelque chose de réel. Donc, dans
ce cas, 1, est une quantité imaginaire.

Prenons maintenant pour unité positive une ligne KA ( fig. 1),
considérée comme ayant sa direction de K & A. Suivant les notions
universellement regues, I'unité négative sera KI, égale & KA, mais
prise dans un sens opposé.

Tirons KE, perpendiculaire 3 IKA ; nous aurons la relation suivante :

La direction de KA est, & la direction de KE , comme celle-ci est &
la direction de KI.

La condition nécessaire pour réaliser Ja proportion (B) se trouvera
donc completement satisfaite , en prenant pour d la direction de KE;
et on aura 1,=KE: quantité tout aussi réelle que KA et KI. On
voit aussi que la méme condition est également remplie par KN,
opposée & KE : ces deux derniéres quantités étant entre elles :: -1 : —1,
ainsi que cela doit étre.

De méme qu'on a assigné une moyenne proportionnelle réelle
KE entre =41 et —1, ou entre KA et KI, on pourra construire
les moyennes KC, KG ,....., entre KA et KE, KE et KI,.....

De la, et par une suite de raisonnemens que nous supprimons ,
on arrivera a celte conséquence générale que, si (fig. =

Ang AKB=Ang A’K'B/ ,
on a, abstraction faite des grandcurs absolues,

KA:KB:: KA/ KRB/,
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Cest 1a le principe fondamental de la théorie dont nous avons
essayé de poser les premiéres bases, dans I'éerit dont nous donnons
ici un extrait. Ce.princ}pe n'a rien au fond de plus étrange que
celui sur lequel est fondée la conception du rapport géométrique
entre deux lignes de signes différens, et il n’en est proprement
qu’une généralisation,

5. Comme, dans ce qui suivra, nous aurions A répéter fréquem-
ment la phrase : /ignes considérées comme tirées dans une certaine
direction , nous emploirons 'expression abrégée : lignes en direction
ou /ignes dirigées ; et nous dénoterons par AB la ligne AB, dirigée
de A cn B, et par AB, simplement, cctte méme ligne , considérée
dans sa grandeur absolue. Nous préférons le mot de direction i
celui de position , parce que le premier indique , entre les deux
extrémités de la ligne , une différence , essentielle dans notre théerie ,
que ne marque pas le dernier. Nous pourrons réserver celui-ci pour
désigner collectivement deux directions opposées , et nous dirons

‘que AB el BA ont la méme position.

6. Nous allons maintenant examiner comment les lignes dirigées
se combinent entre elles par addition et multiplication , et en cons-

truire les sommes et les produits.

La multiplication ne présente aucune difficulté. Un produit A4XB
n’étant autre chose que le quatriéme terme de la proportion 1: 4:: B: x,
il ne sagit que d’appliquer aux lignes données le principe dun.® 4.

Quant & laddition , la regle que nous allons donner peut se dé-
montrer facilement par les théorémes qui donnent les sinus et cosinus
de la somme de deux arcs; mais il semble qu’il serait plus élégant
de la tirer, @ priori, des principes de la chose. En raisonnant par
analogie, on peut rcmarquer que , lorsqu’il s’agit d’ajouter deux
lignes , positives ou négatives @, &, on a pour régle générale quels
que soient les signes, de tirer d’abord AB= l'une des lignes, &
par exemple; de prendre le point darrivée B de cette ligne pour
point de départ de la ligne &, de tirer ensuite BC=4, et la ligne
AC, dont les points de départ et d’arrivée A, C sont respective=~
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ment le point de départ de la premitre ligne @ et le point d’arrivée
de la seconde ligne &, sera =a--b.

Geénéralisons ce principe et nous conclurons que A, B, C,....F,
G, H, étant des points quelconques, on a

AB4+BCHC....4od F+FG4+CH=AH .

7. On peut décomposer une ligne en direction donnée KP ( fig. 3)
en deux parties appartenant a4 des posizions données KA et KB.
1l suffit, pour cela, de tirer , sur KB, KA, les lignes PM , PN,
paralleles 2 KA, KB; et on aura

KP=KM4MP=KN--NP ;
mais , comme on a

KM:‘N_? et ]_{—L\-I‘:N‘TF s
et comme d’ailleurs il n’y a que ces deux maniéres d'opérer la décom=
position proposée , il faut en conclure, en général, que si, ayang
A4-B=A/-4B' ,

A, A/ ont la méme direction @, et B, B/ la méme direction 4
@ et b n’appartenant pas 4 la méme position, on doit avoir ausst
K:K-’. et E‘.—:E./

Cette partition a fréquemment lieu , lorsque I'une des positions
est celle de 1 et lautre la position perpendiculaire ; ce qui revient
a la séparation du réel et de limaginaire.

8. Passons aux applications, et établissons d’abord quelques con-
séquences dont Temploi est le plus fréquent.

Soient ( fig. 4) AB, BC,....EN, AB/, B/C/,....E/N/, des
arcs égaux , au nombre de 2, de chaque cé6té du point A ; KA étant
prise pour unité ; et soit KB=u ; on aura

KA=1 » KB=u , K(T::u‘ , KD=#*,.......KN=u" .

- Ema— D 1 et 1 m— 1 PO 1
KA=1 , Kb'= —, KU= =, KD/'=— ,....KN/=;,-, ;

u u2
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KA KB RC KD KN

2 A

. 0 [l —,6 — e pp3 L

— 1 —= =u —_—= = ut —_—=U ves e e —— —

ha N 7 KU T KD ? KN

Et, si I'on prend, sur les rayons correspondans , Kg/=Kp , Ky/ =Ky,
Ks/=Ky,.... les longueurs Kg, K, Ky,.
aura encore

... étant & volonté, on

Ke |
xe O ?

K¢
=t ::_:UG

s .
4 K& ’

1€1

e

Si sur des rayons KA , KM, KN,...., pris pour bases, on

construit des figures semblables, et que @, m, n,.

«o.. solent des
lignes homologues de ces [igures , on aura

(C) m=axKM , n=ax<KN ,.....

9. Sotent ( fig. 5 ) Arc.AB=CD=a , Arc.AC=5 ; on aura
(5,6,7)

Cos.(a4b)+1/ =1 Sin(a+4-0)=Ky+sD=KD=KB < KC
:(Ke +ﬁB) ><(K»,+yb)= (Cos.a+1/—=1Sin.a)(Cos.b41/ =18in.b)
=Cos.aCos.b—S8in.aSin.b )~/ —1(Sin.aCos.b~+4-Cos.4Sin &) ;.

donc , en séparant,
Cos.(a-0) =Cos.aCos.5—Sin.aSin.b ,

Sin.(a4-2)=Sin aCos.b~}Cos.aSinb .
-—b
Scient (fig. 6) AC=a , AB=4 , BD=;BC=~— ; prenons

AE=BD ect tirons KD et BC se coupant en & ; nous aurons

(Cos.a—Cos.b)+/—=i(Sin.a—Sin.b) =(Cos.a~+y/ —1Sin.a)

' (Cos.b4-y/ =iSinb)= (Ko C)—(Kp+7B) =KC—KB
—KC+Bh=BC=2dC= (n.° 8. C) 2EXKD

b b
= 27F x (K34-3D) =2y =:iSin. ——~(Cos =St )

a—b a-}-b a+b
=—asin. " sin 2 oy TTsin, T Gos. 2
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Donc , en séparant,

a-b

. e=b .
Cos.a—Cos.5=—28in. — Sin. ,

2 )

2 2

Sin.g—Sin.f =42 Sin, =~ Cos ath .

Soient (fig. 7) AB, BC,....EN, des arcs égaux , au nombre
de 7 ; et faisons AB=a. Nous aurons

‘Cos.na—+1/ —:Sin.na=Cos. AN/ =1Sin AN= KN =

KN=KB"=Kp+4-B,"=(Cos.a-+/ =1Sin.a)".
On aura encore

" Cosay/=iSina=Ke4-2B=KB=KNi=(C-4 NV

|
EIL

I - I I I T~
y — e mmas e ]y - - y
N A T i - R I
7\ K 1.2 K 1.2.3 Ky

I .
p . —_—— —1)Sin.2na
=(Cos.na)i{ 1+ = Y.:LM+ R W T, o

Cos.na Cos.na

1.2

Faisant na=ux et ensuite 2= o, on obtient, par lcs termes affectds
de =7,
s=Tang.x—? Tang.%-{—% TanglSz—......

Soit I'arc AN ( fig. 7 ) divisé en 7 parties égales. Les rayons KA,
KB, KC,.... forment une progression géométrique, et les arcs cor-
respondans , ou certains multiples de ces arcs , peuvent étre pris
pour les logarithmes de ces rayons.

Posons Log.KN=mAN=mnAB , m étant le module indéterminé,
Si Von fait = oo , arc AB pourra éwre considéré comme une
droite perpendiculaire sur KA ; on aura donc AB=y/=; AB; ou
AB=-— /[ AB ainsi

KN=mnAB=—mny/—1AB=— — (AKX R\=
Log KN=mn V —1A _n,m‘/ 1(AK+4-KB)=
—mn\/ —1(—i~+KNn),
Faisant KN=1-+2 , il vient
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Log.(1-2)=—mn \/:T[—x—{—(x-l-x)i]=—-mn\/'——{(—-1_—|—1+ —:—{ F— -;I; z* )

—_— x2 x3
=—my Te— T L)

ou encore , parce que m est indéterminé
x2 a3 x4
Log.(1-+2) =m(z— — —+ - — o e
2 4

Divisons les deux arcs égaux AN, AN/ ( fig. 8 ) en n parties
égales ; tirons la double tangente nn/ et les sécantes K&, Ke,...;

nous aurons (8)
KA Ks KC Kn

‘e m—
Kn' ’

N I_{_A- . W . ]TG * 80
denc les arcs correspondans , ou certains multiples de ces arcs peuvent
encore étre pris pour les logarithmes de ces mémes quantités , savoir:

m. AN:Log.I‘:" .
Kn/
Soit AN=z; on a
Kn ‘ﬁ-{-_A—n. I+\/:?Tang.x

ma=Log. g5 =Log. == =Log T e

Soit encore ( fig. 9 ) I'arc AN==24 divisé en un nombre infini
de parties dgales , dont AB soit la premitre, prenons AP="~ =z , et
tirons AN, KP et Po; nous aurons

201/ —1 =2ANy —1=2n.ABy/—1=2n. AB=2n(AK-+KB)

=2n(—14KN#)= 272[ em 14-(KA+AN)#] = 2] —1-(1--AN)7]

) S I

— T —_—1
ey e — AN R
=2n(—1+1+iAN+ n_n AN,+"->=2(AN—"—;‘ +é31—\1 —..); (D)
I.2

mais (8), AN=2pN= 20D <KP= 2¢P(Ko+¢P)
=21/ —1Sin.g(Cos.a--y/ =iSin.a) ;
Tom. 1V. 19
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d’ou AN*=—(2Sin.a)*(Cos.2a-4y/ —1Sin.2a) ,
AN’ =—1/ =1(2Sin.z)’(Cos.3a41/ —1Sin.3a) ,

En substituant ces valeurs dans la série (D) et séparant, il vient

2Sin.a T (2Sine)? (2Sin.a)3
28 =+ Cos.a~+— Sin.2a— —5— Cos.3a—......
I 2
2Sina . (2Sin.a)? (2Sin.e)3 _,
0= an.a+———-Cos.2a+——§—— Sin.3g—......
1 2

9. Nous bornerons ici ces applications. On peut, ainsi que nous
I'avons fait dans notre Essal, obtenir, d’'une maniére analogue, les
principaux théorémes de la trigonométrie, comme les développemens
de Sin.na, Cos.na, (Sina)*, (Cos.a)*, les sommes de séries Sin.g
=+8in.(a+4-5)=4Sin.(a-+20) ..., Cos.a~ Cos.(a-b)+Cos.(a20)+..,

ct la décomposition de x*"—2zCosaza-f-1 en facteurs du second

degré.

Comme application a l'algtbre , nous démontrerons que tout
pelynéme
a"ax b - f2tg
est décomposable en facteurs du premier degré ou, ce qui revient
au mérne , qu'on peut toujours trouver une quantité qui , prise
_pour z, rende égal A zéro le polynéme proposé que nous dési-

gnerons par y. Les lettres @, &,....f, g n’é¢tant point d’ailleurs
restreintes ici 4 n’exprimer que des nombres réels.

Soient yp, ¥p4p les valeurs de y résultant des suppositions z=p,
a=p+; p et i étant des nombres -pris a volonté et p désignant
un rayon en direction ; on aura

ypr=p"tap" " " it
Yrau= (Pe)) " 4alp)' " b lppi)" " S (p ) tg
.=yp+1'pQ+l'2pZB+Z'3p3S+....+i"p" 5

Q,R,S,.... éant des quantités connues, dépendantes de p, 7,



DES GRANDEURS IMAGIXNAIRES. 143
a,b,c,....f, g, qui sobtiennent en développant les puissances
de p+4-pi. Si l'on suppose 7 infiniment petit, les termes affectés de
3

#, 22,....0" disparaissent , et 'on a simplement

Yo+u=yp Q.

Construisons le second membre de cette équation , suivant les
regles preécédentes. Soit « l'angle que fait y, avec la ligne prise
pour origine des angles ; on peut prendre p de maniére que 7;Q fasse
avec cette méme ligne un angle —« , c’est-a-dire , que la direction
de 70 soit opposce & celle de y,. La grandeur de Yp4,i SCTa ainsi
plus petite que celle de yp. On obtiendra , de la méme manieére,
une nouvclle valeur de y, plus petite que ypi )i, et ainsi de suite,
jusqu’a ce que y soit nul; donc, etc.

Cette démonstration est cependant sujette & une difficulté dont
nous devons la remarque a M. Legendre. La quantité Q peut étre
nulle, et alors la construction prescrite n’est plus praticable ; mais
nous observerons que cette objection n’anéantit pas notre démons-
tration ; car le terme 7R, ou le terme 2°p*S si R est nulle, et
ainsi de suite, peut remplacer le terme 7Q , puisque 5*, ¢’,.....
sont des quantités de la méme nature que p; or, quand méme on
voudrait supposer tous ces termes nuls , le dernier au moins 4" ne
le serait pas.

10. La théorie dont nous venons de donner un apergu , peut étre
considerée sous un point de vue propre 4 écarter ce quelle peut
présenter d’obscur, et qui semble en étre le but principal , savoir :
d’établir des notions neuvelles sur les quantités imaginaires. En effet,
mettant de c6té la question si ces notions sont vraies ou fausses ,
on peut se borner & regarder cette théorie comme un moyen de
recherches , n’adopter les lignes en direction que comme signes des
quantités réelles ou imaginaires, et ne voir, dans l'usage que nous
en avons fait, que le simple emploi d’'une notation particuliére. 1k
suffit , pour cela, de commencer par démontrer , au moyen des
premiers théorémes de la trigonométrie, les régles de multiplication
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et d’addition données plus haut ; les applications iront de suite
et il ne restera plus & examiner que la question de didactique
» si I'emploi de cette notation peut étre avantageux ? s'il peutouvrir
» des chemins plus courts et plus faciles, pour démontrer certaines
» vérités 7 » c’est ce que le fait seul peut décider.

11. Nous ne croyons pas devoir omettre quelques apergus sur
une extension dont nos principes paraissent susceptibles. Soient,
comme plus haat (fig. 10), KA=-41, KC=—1, KB=-}y/=1,
KD=—1/=1; tout aatre rayon KN, mené dans le plan de ceux-
la, sera de la forme p-f~¢y/ =i ; et réciproquement, toute expres-
sion de cette forme sera celle d’une ligne dirigée dans ce plan.
Tirons maintenant , du centre K, une perpendiculaire KP=KA 2a
ce plan. Que sera la ligne dirigée KP, relativement aux précédentes?
Leur est-elle tout a fait hétérogéne , ou bien peut-on la rapporter
analitiquement & l’unité primitive KA , et assigner son expression
algébrique , comme celle de KB, KC,....?7

Si nous nous laissons guider par l'analogie , voici ce qu’elle nous
suggére sur ces questions.

En prenant pour unité des angles la circonférence entiére , il suit
des principes ci-dessus qu’un rayon en direction, faisant un angle
« avec KA peut étre exprimé par 1“. Mais , d’aprés la nature des
exposans, cette cxpression a des valeurs multiples, lorsque « est
fractionnaire , ce qui peut amener quelques difficultés. On évitera
cet inconvénient , en employant la notation de M. Francais ( mémoire
cité) , et en écrivant 1, ; on aura ainsi KA=1, , @:1%,‘
KC=1:, KD=1:.

[} .

Nous avons pris, de part et d'autre du point A, sur la circon-
férence ABCD, deux directions opposdes, affectées I'une aux angles
positifs , l'autre aux angles négatifs ; or , si nous appliquons aux
angles les mémes considérations qu’aux lignes , nous serons conduits
3 prendre les angles imaginaires dans une direction perpendiculaire.
4 celle qui appartient aux angles réels.
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Supposons que le demi-cercle ABC tourne autour de AC, le
point B décrivant le cercle BPDQ ; puisqu’on a déja

Ang AKB=-;=1.(41) ,
Ang AKD=—3=1.(—1) ;
on pourra dire que

Ang AKP=;y/ —1=1.1

LI

d’ou on conclura

KP=1: ,, =1, ——- __I--’——'(lz)\/—I =(‘/:',)\/'_1.

Telle parait devoir étre I'expression analitique demandée.
Si T'on prend un point M sur le cercle BPD tel qu’on ait
Ang BKM=x, on aura pareillement

Ang ARM= 5 (Cos.x+1/ =1Sin.p) ;

et, en faisant pour abréger Cos..~y/=iSin.u=; ,

KM= 1,= 1= (1 7)": (‘/.__I)C""‘“'f‘\/—‘s;"':“ ,

west lexpression générale de tous les rayons perpendiculaires aw
rayon primitif de Ka.

Cherchons maintenant I’expression de l’angle BKP.

De part et d’autre du point B, sur la circonférence ABC, les
angles sont positifs et négatifs réels , et le plan BKP est perpen-
diculaire a leur direction ; il semblerait donc que Iangle BKP est
ainsi que langle AKP=131y/—1, et qu'il en doit étre de méme de
tout angle NKP , N étant pris sur la circonférence ABCD ; mais
on s’apergoit bientét de la fausseté de cette.conclusion, en faisant
coincider N avec le point C, ce qui donnerait CKP=Zy/ =1, tandis
que cet angle est évidemment —AKP =2/ —1.
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Pour éclaircir cette difficulté , observons qu’une direction étant
adoptée pour celle de =1, il y a une infinité de directions qui lui
sont perpendiculaires , parmi lesquelles on en prend arbitrairement
une, pour laffecter & I'unité imaginaire /7. L’expression générale
de toute unité prise dans l'une de ces directions est, comme nous
venons de le voir,

ll’=l:.’= (V=2 P__:(‘/:—l)Cos.p-i-\/—lSin.,s .

Imaginons au point A une infinité de direction perpendiculaires
a4 la circonférence en ce point; une de ces directions sera parallele

KP. C’est celle que nous avons prise pour construire les angles
imaginaires positifs —-«y/=1; c’est-a-dire , que nous avons choisi,
pour ce cas , p—t1=Ka. Parcillement , au point C , la direction
parallele 2 KP nous adonné les angles imaginaires négatifs —«y/ =13
c'est-d-dire , que nous avons fait p=—1=KC.

Donc I'analogie nous conduit 4 faire =/ =1=KB, lorsqu’il s’agit
de la direction paralléle & K7, 4 partiv du point B.

L’angle BKP aura donc pour expression

-\l

12, Nous ne pousserons pas plus loin ces apergus ; et nous obser-
verons, en terminant, que les expressions, 2, a5, ap,, qui désignent
des lignes considérées par rapport a une, a deux, & trois dimen-
sions , ne sont que les premiers termes d'une suite qui peut étre
prolongée indéfiniment.

Si les notions exposées dans l'article précédent étaient admises ,
la question , souvent agitée , de savoir si toute fonction peut étre
ramenée a la forme p--¢y/—i se trouverait résolue négativement;

etk_Pz(‘/:T/\/—I offrirait I'exemple le plus simple d’une quan-
tité non réductible & cette forme, et aussi hétérogéne par rapport
3 /=1 que lest celle-ci par rapport & —-1.
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Il existe, 4 la vérit¢, des démonstrations tendant a établir que
la fonction (a+b\/:x)m+"\/—l peut toujours étre réduite a la
forme p-+¢y/ = ; mais quil nous soit permis de remarquer sur
ces démonstrations , que celles qui emploient le développement en
séries , ne sauraient étre concluantes qu'autant qu'on prouverait que
p et g ont des valeurs finies. 1l arrive souvent , en ecffet, dans
Vanalise , qu'une série qui, par sa nature, ne peut exprimer que
des quantités réelles , prend une valeur, ou plutot une forme in-
finie , lorsqu’elle doit représenter une quantité imaginaire ; et on
peut présumer pareillement qu'une série composée de termes de la
forme p—+gy/ =7 ou a,, pcut devenir infinie, si elle doit exprimer
une quantité de Vordre ap,.

Quant aux démonstrations qui emploient Ies logarithmes, elles
laissent aussi, ce nous semble , quelques nuages dans lesprit , en
ce qu'on n’a pas encore des notions bien précises sur les logarithmes
imaginaires, Il faudrait d’ailleurs sassurer si un méme logarithme
n¢ pourrait pas appartenir & la fois & plusieurs quantités d’ordres
différents @, a,, ap,. En outre, la muliiplicité des valeurs dues aux
radicaux de P'expression proposce, est une autre source d’incertitude;
de telle sorte qu’on pourrait parvenir , de la mani¢re la plus rigou-

reuse, 3 rédnire (a—l—&\/:;)m"l_n\/_l a la forme p--gy/ =1, sans
qu’il s’ensuivit nécessairement que cectte fonction n’a pas encore
d’autres valeurs de I'ordre a@3,, non réductibles 4 cette forme (*)

(*) On ne peut, sans doule , que savoir beaucoup de gré 3 M. Frangais
d'avoir, en quclque sorte , provoqué M. Argand 4 donner plus de publicitd &
ses vues sur I'un des points les plus délicats et les plus épineux de l'analise algé-
brique. Espérons quil s'élablira désormais une heureuse rivalité entre ces deux
estimables géomeétres , et qu'ils s'empresseront , & I'envi P'un de l'autre , & per-

b1

eclionner et a éclaircir l'intéressante théorie dont ils viennent de poser les
fondemens.

J. D. G.
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ANALISE ELEMENTAIRE.

Developpement de la théorie donnée par M. LAPLACE ;
pour lélimination auw premier degré ;

Par M. GERGONNE,

Le.Tla Vi Vg Via Vo Y Vo d

CRAMER est , je crois, le premier qui ait remarqué la loi que
suivent les valeurs des inconnues dans les équations du premier
degré, et qui ait indiqué des méthodes pour construire ces valeurs,
sans passer par le calcul de ’édlimination. Postérieurement , Bezout,
dans sa Théorie générale des équations algébriques, a apporté quel-
ques modifications a ces méthodes; mais, quoiqu’il fat sur la voie
d’en donner une démonstration proprement dite , elles sont demeurées
entre ses mains, comme entre celles de Cramer , le résultat d’une
simple induction.

Ce n’est seulement qu'en 1772 que M. Laplace , dans les Mémoires
de l'académie des sciences , a démontré , pour la premiere fois, d’une
maniére générale et rigoureuse , I'exactitude de ces formules. Mais ,
soit que la précieuse collection ot la théoric de cet illustre géo-
meétre est exposée , ne se trouve pas sous la main de tout le
monde, seit plutét que M. Laplace , ne présentant pour ainsi dire
cette théorie qu’en passant , ne lui ait point donné le développement
suffisant pour la faire bien apprécier, on a toujours continué depuis
lors , dans tous les traités d’algebre, & n’appuyer les méthodes de
construction des valeurs générales des inconnues que sur une simple

induction,
Une
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Une expérience de plus de dix années m’a convaincu que la

théorie de M. Laplace , suffisamment développée n’excéde pas la portée

des esprits les plus ordinaires. Voici sous quelle forme jai coutume

de la présenter. Jose croire qu'on la trouvera plus courte et plus

simple que les calculs qu'il faudrait faire pour donner quelque vrai-
semblance aux conclusions qu'on voudrait tirer de I'induction.

1. Dans tout ce qui va suivre , jappellerai Nombres de méme
espéce deux nombres qui seront l'un et lautre pairs ou l'un et
Vautre impairs. Jappellerai, au contraire , Nombres d'espéces djffé-
rentes deux nombres dont 'un sera pair tandis que l'autre scra
impair.

2. Ainsi, il sera vrai qu'on change I'espice d'un nombre en lui
ajuutant ou en lui retranchant une unité ou , plus généralement ,
un nombre Zmpair quelconque, et qu'on nc la change pas en lui
ajoutant ou en lui retranchant un nombre parr.

3. 1l sera encore vrai de dire que, si l'on change plusieurs fois
consécutivement l'espéce d’un nombre , son espéce se trouvera defi-
nitivement étre ou n’étre plus la méme qu'elle était en premier
lieu , suivant que le nombre des changemens d’espices qu’il aura
subli sera pair ou impair.

4. Soient des lettres @ , &, ¢,...., toutes dilférentes les unes
des autres , au nombre de 72. Concevons que ces lettres soient écrites,
les unes & la suite des autres , dans un ordre arbitraire. Si alors.
deux d’entre elles se trouvent tellement disposées, I'une par rapport
4 Pautre, dans l'arrangement total, que celle qui se trouve le plus
3 droite soit , au contraire, a la gauche de l'autre dans I’alphabet ;
nous exprimerons cette circonstance en disant que ces deux leitres
forment entre elles une Znversion. Nous dirons, en conséquence ,
que l'arrangement total présente autant d’inversions qu’il s’y trouvera
de sysiémes de deux lettres pour lesquelles la méme circonstance
aura lieu.

5. On voit par la que, si les m leftres se trouvent é€crites suivant

Tom. 1V, 20
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I'ordre alphabétique , le nombre des inversions sera nul ; et qu’au
contraire il n'y aura que des inversions, lesquelles par conséquent
seront au nombre de Im(m—1), si elles sont écrites dans un ordre
absolument inverse de celui de Dalphabet.

6. Soit M un arrangement quelconque de nos 72 lettres; per-
mutoris-y entre elles deux lettres consécutives quelconques, sans
toucher aucunement aux autres; et soit M/ le nouvel arrangement
(iui en résulte. Je dis que, dans M et M/, les nombres d’inversions
sont d’espéces différentes. En effet, les deux lettres permutées devant
nécessairement former une inversion dans 'un des arrangemens M,
M/, et n’en point former dans Pautre:, et toutes les autres lettres
demeurant , dans les deux arrangemens , disposées de la méme
manidre , soit entre elles, soit par rapport a celle-la; il s’ensuit que ,
soit en plus soit en moins, le nombre des inversions de M/ differe
seulement d’une unité du nombre des inversions de M ; ces deux
nombres sont donc d'espéces différentes.

7. W suit de la que, si I'on déplace unc seule lettre d’'une maniére
queiconque , V'espéce du nombre des inversions demeurera la méme
ou se trouvera changée , suivant que le nombre des places parcourues
par cctte lettre sera pair ou impair. En effet , on peut concevoir
que le déplacement ne s'opére que successivement , par la permu-
tation continuelle de cette lettre avec sa voisine, soit de droite soit
de gauche ; or , & chaque permutation partielle (6), lcspece du

nombre des inversions variera ;

; donc, a la fin (3) , lespéce du
nombre des inversions se retrouvera la méme qu'au commencement

ou sera changée , selon que le nombre de permutations particlles,
c’est-a-dire, le nombre des places parcourues sera pair ou impair.

8. Concluons de la que, si on déplace deux lettres, pour leur
faire parcourir, en tout, un nombre impair de rangs, Iespéce du
nombre des inversions se trouvera nécessairement changée. 1l est
clair, en effet, qu'il faut , pour cela , que l'une des deux lettres
déplacées parcoure un nombre pair de rangs, ce qui ne change
pas (7) l'espéce du nombre des inversions, et que l'autre en par-
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coure ensuite un nombre impair , ce qui doit nécessairement la
changer (7).

g. Donc, si I'on permute entre elles deux lettres non consécutives ,
on changera nécessairemrent l'espécc du nmombre des inversions. Soit
en cffet » le nombre des lettres intermédiaires 3 ces deux-la; on
pourra d'abord porter la lettre la plus & gauche immeédiatement 2
gauche de l'autre, ce qui lui fera parcourir » places; puis remettre
cette derniére a la place de la premitre; et, comme elle sera obligée
de passer par-dessus celle-ci, elle se trouvera avoir parcourn n--1
places. Le nombre total des places parcourues par les deux lettres
sera donc 27-4-1 , et conséquemment (8) l’espéce du nombre des
inversions se trouvera changdée.

10. Soit derite successivement la lettre & 3 la gauche et d la
droite de la lettre 2, en changeant le signe au changement de place;
on formera ainsi le binéme

ab—ba.

Soit introduite successivement , et en allant de gauche & droite, la
lettre ¢, dans chacun des termes de ce polynéme , en lui faisant
parcourir , dans chacun , toutes les places de droite & gauche, et
changeant encore de signe & chaque changement de place, on formera
ainsi le polynéme

abc—ach-t-cab—bact-beca=—cha.

Concevons que 'on en fasse de méme suceessivement pour les lettres
suivantes 4, €, f,...., jusqu’a la dernitre inclusivement, en suivant
toujours exactement l'ordre alphabétique : on parviendra ainsi &
un polynéme homogéne P, de m dimensions, dont les termes, au
nombre de 1.2.3....m, ne seront évidemment autre chose que la
totalité des permutations dont nos m letires sont susceptibles. Je
vais prouver que, d'aprés ce mode de génération , les termes de ce
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polynéme auront le signe -+ ou le signe ~— , suivant que
le nombre des inversions qu’ils présenteront sera pair ou impair.

Il est d’abord aisé de voir que les deux résultats que nous venons
de former satisfont a cette loi. Supposons donc qu'elle se soutienne
encore pour l'avant-dernier polynéme, de maniére que chacun de
ses termes porte déja le signe qui convient au nombre de ses inversions.
L’introduction de la derniére lettre 4 la droite de I'un de ces termes
ne changera rien & cet état de choses puisqu’elle n’en changera ni
le signe ni le nombre des inversions. A mesure que cette lettre
“avancera ensuite vers la droite , l'espéce du nombre des inversions
sc trouvera alternativement (7) changée et rétablie ; mais le signe
se trouvant aussi, par hypothése, alternativement changé et rétabli,
la loi dont il est question continuera a subsister, si, comme nous
le supposons, elle a lieu dans P’avant-dernier polynéme ; puis donc
quelle subsiste dans les deux premiers , il s’ensuit qu’elle est
générale. .

11. Concevons actuellement que , dans chacun des termes du

polynéme P, on affecte chaque lettre d’un indice égal au rang de
cette lettre , en cette maniére

ab,—b,a, ,

ab,cy—~a,c,bt-c.a,b,—b,a,c,+4b,c,a,—c,b,a, ,

.
® 8 8 ¢ 8 2 e s e s s e s 8 s s B s s s s e s e e e ey

on formera ainsi un nouveau polynéme D, qui n’aura plus de termes
semblables. Je vais prouver que si, dans ce polynéme D, on change
une lettre quelconque en une autre, en laissant d’ailleurs celle-ci
ou elle se trouve déja, et sans toucher aux indices, tout le poly-
néme s’anéantira.

Supposons , en effet, que l'on change %4 en g, sans toucher &
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g ni aux indices. Soient , pour un terme pris au hazard dans le
polynéme, p et ¢ les indices respectifs de g et %; ce polyndme,
renfermant toutes les permutations, doit avoir un autre terme ne
différant uniquement de celui-1a qu'en ce que c’est 2 qui y porte
Iindice p et g l'indice ¢: et de plus (9) ces deux termes doivent
étre affectés de signes contraires ; ils se détruiront donc , lorsqu’on
changera 4 en g; et il en sera de méme de tous les autres termes
pris deux a deux.

12. La lettre @ devant se trouver dans tous les termes du poly-
nome D, et ne pouvant se trouver qu'une seule fois dans chacun;
ce polynéme peut étre ordonné suivant les indices de cette lettre,
ainsi qu’il suit :

D=4,a,4+4,0,}A4,0,}......+Apa, ; (1)

A, A,, 4;,..... 4, étant des fonctions de &,, ¢,, dy,.....,
byy 2y @y yeieiniy by €y dy. Alors, d'aprds ce qui vient d’étre
dit (11), on devra avoir

o=A,b,4A4,0,+4,b,4..... 40, ,
o=d,c,4A,c,+Ac,4o  Amey 5 Y (2) @)

€ o o 4 o 8 o e 0 8 e 4 8 » o e 0 s s s s 0

Le polynéme D, ordonné par rapport & quelqu’autre lettre, don~
nerait lien & des conséquences analogues.

13. Ces choses entendues, soient, entre les 7 inconnues £,y , 2 ,...;
les m équations

(*» Ce sont ces fonctions dont il a été question & la page 153 du 3. volume
de ce recueil.
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a 24b ytc 2. =k, )
ay 24b,y+c, 4.0 =k,
a,24by+ciz4-...o =k, , ) (3)

c 3

dbmytemet.o =k o

AmX

En prenant la somme de leurs produits respectifs par A;, A4,,

A, eii. Ay, et ayant égard aux équations (1 et 2), il viendra
Da=Ak,A4k,+A kv A0 5 (4)

d’on

x___.'A,k,-{-A,k,-l—A,k,-{- ..... A e
Ayaydia, 4 034wt Ansn

Ainsi le dénominateur commun des valeurs des inconnues n’est autre
chose que le polynome D ; et on en conclut le numérateur de la
valeur de chacune d’elles , en y mettant la lettre qui représente
le terme tout comme & la place de celle qui représente le coefficient
de cette inconnue, toujours sans toucher aux indices.

14. Si, dans les équations (3), on change £y, k,, ky,ieiiliy
en —kyw , —k,v, —kyo,....—k, , ¢ étant une (m—~+1)™° in-
connue , ces équations, toujours au nombre de 7 , deviendront

a,a+b,ytc,zt ek, v=0
a,2+b, y4c, 2otk o=0 (5)

a6 s 8 6 6 % 0 s & o e o 0 g s 00

et donneront , par un semblable changement opéré dans I’équation (4),
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ot
Ot

fx:-—(AJf,-l-Asz-l“A;k 3+""'+Au.kiﬂ)‘; 4 <6>

or, comme ¢ , dans cette équation , denfeure arbitraire , on peut
fort bien poser y=-—D«: on aura ainsi

a=(A, kA oA e Ah)e

formule dans laquelle « demeure indéterminée. On aurait des valeurs
analogues pour y, z,....s.

15. Ainsi , la méme méthode qui nous a conduit aux valeurs
générales des inconnues, dans les problémes déterminés du premier
degré, nous donne également les valeurs entiéres les plus générales
des inconnues dans les problémes indéterminés de ce degré ; du
moins lorsque les équations n’ont point de terme tout connu,
et que le nombre des inconnues n’y surpasse que d'une seule
unité le nombre dec ces équations.

16. Mais , de ce cas particulier on peut facilement passer aux
autres. Si, en effet, le nombre des inconnues surpasse de » unités
celui des équations , il ne s’agira que de joindre aux équations
données n—1 autres équations de méme forme affectées de coefli-
ciens arbitraires; la qnestion se trouvera ramenée au cas que nous
venons de considérer , avec cette différence qu’au lieu d’une seuls
arbitraire , les valeurs des inconnues cn contiendront plusieurs. C’est
4 peu prés par cette voie que, depuis long-temps, M. Servois était
parvenu, de son c6té, aux résultats que j'ai donnés a la page 156
du 3. volume de ce recueil.

17. Enfin la méme méthode peut conduire encore aux équations
de condition qui doivent avoir lieu entre les coefliciens , lorsque les
équations sont en plus grand nombre que les inconnues. Si, en
effet , entre /2 inconnues on a m-{-n équations, en tirant des m
premitres équations les valeurs de ces inconnues pour les substituer

dans les 7 suivantes, on obtiendra ainsi les équations de condition
demandées,

.
o
V]
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QUESTIONS RESOLUES.

Solution du premier des deux problémes proposes &
la page 28 de ce volume; :

Par M. SERrvois, professeur aux écoles dartillerie.

(o Yo Vo Vo Vio o Mo Vie V]

ENON CE. Une droite mobile parcourt le plan d'un triangle de
maniére que le produtt des segmens qu’elle détermine sur dewx de
ses ¢btés , vers leur point de concours, est constamment égal au
produit des deux aulres segmens des mémes cotés. On propose
d’assigner la courbe & laquelle, dans son mouvement, cette droite
sera perpétuellement tangente ?

Solution. Soient M, M/ (hg. i1 ) deux points quelconques d'une
parabole , dont F soit le foyer ; et soit O le point de concours
des tangentes en M, M’. Robert Simson a démontré que, d’aprés
cette construction , les triangles FMO , FOM/ sont semblables, de
telle maniére qu’on doit avoir

ou

Ang MFO=Ang OFM’ ,

Ang FOM=Ang FM/O
Ang
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Ang OMF = Ang NVOF ; (*)

(*) La similitude de ces triangles peut étre facilement déduite du théoréme
suivant : .

THEOREME. Si ayant mené , dans une parabole , un nombre quelconque
des rayons vecteurs , de direction arbitraire 5 ou fait tourner tous ces rayons
vecteurs , un seul excepté, autour du foyer de maniére que les angles qu'ils
Jorment respectivement avec le rayon vecteur fixe soient diminués de moitié; et si ,
en méme temps , on allonge ou on racourcit les rayons vecteurs mobiles de maniére que
leur nouvelle longueur soit moyenne proportionnslle entre la longueur du rayon
vecteur fixe et leur longueur primitive ; leurs extrémités se trouveront toutes alors
sur la tangente & lextrémité du rayon vecteur fixe.

Ce théoréme n'est lui-méme qu’'un cas particulier de cet autre théoréme :

THEOREME. La ligne dont les rayons cecteurs sont moyens proportionnels
entre ceux d'une parabole et upe longueur arbitraire donnée, et ou ces rayons
vecteurs forment , deux & deux , des angles moitié de ceux que forment leurs
correspondans dans cette parabole , est une ligne droite.

Ce dernier théoréme se démontre assez simplement comme il suit :

Soient r, r/, r/ trois rayons vecteurs d’une parabole dont la distance du sommet
au foyer soit p; et soient «, o', «” les angles que forment respectiviment ces
rayons vecleurs avec p , on sait qu'on aura

- N T o

r Cos2la =—p , Vr .Cos. fa =\lp ,
3 AY — —

r' Cos.2; o/ =p , d ou \r' . Cos. ;& :\/p y
/! 21 pfe—p ——

r/Cos.2 3 o/'=p ; \Vr. Cos. & o/!=v\/p .

Prenant la somme des produils respectifs de ces trois derniéres équations par
F\ . Sin. k(@) , ==\[rr!. Sin, & (@/==a)4-\[rr’. Sin. t (¢'—a) , et réduisant,
il viendra

\/rr/. Sin. t (;’-—u)-—Vrr”.Sin.% (a”—-x’)-{-\/r’r”. Sin, I (a//==aY=0. (1)
Or, soient présentement M, M/, M/ trois points de la ligne dont on cherche

la nature, F le pole auquel on la rapporte et a la longueur arbitraire donnée;
on aura, par hypothése,

Ang MEM=1 (¢/=—a) , Ang M/FM=1 (¢/==z) , Ang.M/FM/'=1 («/'=a'};
FM=\/ra , FM=\re , FM'=Vra:
ol
Tom. 1IV. ax
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on a donc, par la proportionnalité des cotéds ,
FM oM FMW OM/
FO oW’ Fo om’
d'ott on tire, par I'élimination de FO,
o' wmo'
nMF T wF
et ainsi se trouve démontré, en passant, le théor¢me de la page 6o.
~ Soient présentemeut ( fig. 12) LP, PQ, QN trois tangentes }
une parabole dont le foyer est I ; soient L., M, N les points de
contact respectifs des tangentes , et R le point de concours des tangentes
extrémes, Suivant le théoréme de Simson
Ang LRF = Ang ANF=Ang MQF ;
d’ou il suit que le quadrilatire FPRQ est inscriptible au cercle.
On a d’aprés cela
Ang RPF == — Ang RQF = Ang NQF
Ang RQF ==z — Ang RPF = Ang LPF ;
les triangles RPF , RQF sont donc respectivement semblables aux
triangles NQF , LPF, et on a par conséquent
QN :NF :: PR:RF,
PL:LF::QR: RF ;
d’oll on tire, en multipiiant
PR.OQR

RE =LF.NF. —— ON.PL

Triang MFN/ == :FM XFM Sin.M/ FM= ta\/rr’ Sin. 1 (& =& ,
Triang MFM//== ; FM XFM/'Sin.MVFM== £ a\/rr//Sin.} («/'—e ) o
Triang M'FNM/= ; FM/XEM"Sin MVFN/=]a\/r'r"Sin.} («/ &) ,
done (1) *
Triang MEN/=Triang MFM/"<4-Triang M"FM/z=o,

Propridté qui appartient exclusivement 3 la ligne droite.

J. D, G
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mais, par le théortme de Simson ,

| BF =LF.NF ;
done

PRXQR=PLXxQN ;
relation indépendante du point M, et qui prouve par conséquent
que, si la droite PQ se meut sur le plan da triangle LRN, de
maniére a y satisfaire constamment, elle sera constamment tangente
4 une parabole, touchant respectivement RL et RN en L et N. (*)

() Ce probléme fournit une application des plus simples de la théorie développée
& la page 361 du 3.° volume de ce recueil.

Soient @, b ceux des cotés du triangle donné que la droite mobile doit couper
suivant les conditions données ; et soient 4, B , respectivement, les segmens qu'elle
détermine sur eux, du coté de leur point de concours; en prenant @ el & pour
les axes des coordonnées, I'équation de la droite mobile sera

%
242 =1 ou Batdy=AB ; (1)
A B
et l'on aura la condition
AB=(a==A)(b~B) ou  BajAb=ab ; 2)
faisant varier A4 et B, dans les équations (1) et (2), il viendra
(x~=A)3B4-(y=—=B)dAd=o0 , adBA4-bdA=o0 ;
d'oli
b(x—A)=a(y=B) ; 3
tirant enfin des équations (2) et (3) les valeurs de 4 et B, pour les substituer
dans I'équation (1), il viendra
(ay—bx)?~2ab(ay~}-bx)4-a*br==0 ;
¢quation d'une parabole touchant les deux ctés @, b 3 leurs points de concours
avec le troisieme,

Nous observerons que ceci peut fournir un mode de construction plus simple
de la parabole de raccordement des routes , dont il est question 4 la page 250
du 1.*Y volume de ce recueil.

On résoudrait, par un procédé analogue , le 2.° probléme de la page 28 du
présent volume ; mais le calcul en est fort compliqué,

J. D. G.
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On peut déterminer plus particulierement cette parabole par une
construction qui me parait assez élégante. Soient LAN (fig, 13) le
triangle proposé , et P, Q, respectivement , les milieux des edtés RL,
BN ; PQ sera évidemment une des situations de la droite mobile.
Soit p le centre du cercle passant par les trols points PRQ ; Ie foyer
devra étre sur la circonférence de ce cercle. Soit menée Bp , prolongée
jusqu'a la rencontre de la circonférence en ¢ ; le point ¢ sera le
centre du cercle circonscrit 3 LRN; de sorte qu'en menant gL et
gN langle TgN sera le double du supplément de LRN ; mais
dans la figure 12, Pangle LEN doit aussi étre double du supplé-
ment de LRN; donec ( fig. 13 ) le foyer cherché doit étre sur la
circonférence passant par les points LgN , laquelle coupe la pre-
mitre en un nouveau point F qui sera conséquemment le foyer; et
comme d'ailleurs on connait deux tangentes et leurs points de contact »
rien ne sera plus aisé que de déterminer le sommet. (*)

QUESTIONS PROPOSEES.

Theoréme de Geéomeélrie.

CA, CB sont deux demi-diamétres conjugués d’une ellipse ou
d’une hyperbole , dont le centre est C. On a mené la droite AB;
et, par un point queleonque M de la courbe, on a mené & cetfe
droite une paralltle , coupant respectivement CA et CB en A’ et B/,

—_— —_—
On propose de démontrer que MA’/ +~MB/ est une quantité cons-
tante.

(* On peut aussi employer a la recherche du foyer et du sommet les mé-
thodes, soit de M. Bérard , soit de M. Bret, dout il est fait mention & la page 58
de ce volume.

J. D. G,
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ASTRONOMIE.

Essai d'une nouveile’ solution des principaus problémes
d’astronomie ;

Par M. KrAamp , professcur , doyen de la faculté des
sciences de lacadémie de Strasbourg.

[a Ve Via Vo Vo Vo Mo Vo V]

1. SOIENT, p le temps périodigue d’une plantte ; @, le demi-
grand axe; aCos.n, le demi-petit axe ; aSinn, Vexcentricité 5 ¢ ,

Yanomalie vraie ; ¢/ , Vanomalie de Pexcentrique ; i, le temps,

. . . t .
compté depuis I'aphélie; ce qui donne 2Z pour l'anomalie moyenne.
P

On parviendra de ¢ 4 ¢/, et de 12 & 7, moyennant les équations
connues

2=t . . Cos.ASin ¢ Cos.g==Sin.2
— = ¢/~-Sin.ASin.¢/ , Sin.¢/= —"— Cos.¢/ = — 8 —— .
rEas s O T Cong . S T IS aCos @

2. PROBLEME 1. Connaissant le temps t, et pur conséquent
. 2at . . .
Panomalie moyenne — , on demande Uanomalie vraie ¢ , exprimée
P

par une série disposée selon les puissances ascendanies de l'excen~
tricité », telle que o=A-+-Ba4-Ca>~+-.....; les coefficiens A, B,
C,.... étant des fonctions det qui ne renferment point a et qu'il
sagit de déterminer ?

A cet énoncé , on reconnait le Probléme de Képler. Pour le
résoudre, on a employé jusqu’ici la série ¢=r¢=4-4Sin.z4-BSin.2z
~4CSin.3¢--..... Iciles coefliciens 4 , B, C ,.... étaient des séries,
ordonnées sclon les puissances ascendantes de Pexcentricité; con-
vergentes , & la vérité , mais pourtant inlinics, et qui ne sont sommables

Tom., IV , n.° VI, 1.°° décembre 1813. 22
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dans aucun cas. Les coefliciens de la nétre seront des expressions
finies ; et clle se trouvera ainsi exempte du défaut de lautre.
3. Sotution. Le premier terme est ce que devient ¢ , dans le
) 2%t P
cas de a=o, ce qui do"ne7‘=¢’=¢. Ainsi 4= —. Les autres

p
coefficiens seront ce que deviennent, dans ce méme cas de a=o0,

. o e . do d¢ dip .

les coefficiens différenticls partiels — | <=2 T30+ Pris en re=
gardant a comme la seule variable, et le temps # comme exempt
de difTérentiation. Cherchons d’abord 1’équation différenticlle com-
plete entre dz , da et do.

. Cos.ASin ¢
4. De Sin.g/= ——— " ou de

1—Sin.ACos.9

0=Sin.¢’~Sin.¢’Sin.2nCos.p—Cos,ASin.¢ ,
on tire en différentiant

0=da{Cos.2Cos.¢Sin.¢/—Sin.»Sin.¢)
—d¢(Sin.2Sin.eSin.¢/—Cos.2Cos.¢)
—d¢’Cos.¢/(1 —Sin.aCos.o).

En mettant 3 la place de Sin.¢/ et de Cos.¢/ leurs expressions en

A et en ¢, cette équation deviendra divisible par Cos.o—Sin.a , ct
fournira , aprés les réductions

daSin.e4-daCos.x

do/ =
? 1=—S5in.2.Cos.@
L’autre équation

aat . .
— =¢'-Sin.»Sin.¢/ ,
p
donne, aprés avoir été diflérentiée et réduite
2wdt 1—Sin.ACos.¢

/ ——d»Sin. .
de daSin.e-+ . o

Egalant entre elles les deux expressions de d¢/, on aura une
¢quation cntre les trois différentielles dz , da, de, d'apres laquelle
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oz (1==Sin.ACos.9) > Sin.g{z—Sin.2C0s.0)
de= = dz— - d» ;
pCos.ia Cos.a

d’ou il résulte

d@ 2% (x——Sm ACos ¢)2
Cos A ?
( d@ ) Sm.qb(z-—Sm.ACos@)

Cos.a

.

5. Considérant ici le temps # et lanomalie vraie ¢ comme lcs
seules variables , on aura 'équation trés-connuc

. Cos.3a do
di= d

2z(1—>5in ACos.9)*
d’ott ’on pourrait tirer , sur-le-champ , 'anomalie vraie ¢ , moyennant
une série, ordonnde d’apres les sinus des angles multiples de I’ano-
malie moyenne. Mais, si I'on regarde a comme la seule variable,
et le temps # comme exempt de différentiation , on aura d'abord
de _ Sin.@(2==Sin. A Cos.®)
FT Cos.a i

pour le premier de nos rapports différentiels partiels. Faisons ici
do . .

A==0,on aura ¢:=A4, et - —=——28in.4. 1l en résulte B=—28in.A4 ;
¢

et tel est le coefficient du second terme de la série.

6. Pour faciliter les différentiations ultérieures , et les développe-
mens qui , dés le troisitme terme deviennent assez compliqués,
faisons Sin.a=x et Cos.p=y; ce qui donne

do Sin.@ dx dy Sin.2@
— T — D — —_— :CO A _ = — .
a Pt Gt DI 20 9 S G ()

Remarquons , de plus , que le rapport différenticl :——}z est constam-
z8in @
Cos."A
rement algébrique, ordonnée selon les puissances ascendantes de @
et de y. Si Von désigne par Pda—Qdy la différentielle de cetle

fonction z, on aura, aprés les réductions

ment de la forme

, la lettrec z désignant une fonction entié~
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D0 S8 lnw-aydray’)HP(1-a0) - Qamzy —2y tay )]

dandt T Cos.i+IA
Ainsi, pour trouver ces cocfliciens , il faudra effectuer les -multi~
plications ; c’est la seule difiiculté qu'il restera & surmonter.

Sin.@

(2-zy) au

do
. D'aprés cela our passer du premier -— = — —
vi Dap ela, p passe P ier o L

a - .
second T on awra n=t, z=—2-ay , P=y, Q=x , dou il

résulte
%232 - (S;:sli By —ry—5zy’t-22%7).
On en tire
n=2; z=by—a'y—6zy’ 422’y ,
P=—22y—by*day’ ,
Q=5—z*—122y+462%* ,
donc
dp  Sin.g 10—22*-212y—26y*~42y
da3 Cosia .

( d2222y*4-50xy’ =82’y —3 a2y t4-82%y°
Faisant ensuite n==3 et
Z==10==252=—=2120y—206y 23y 42222y 245000y 383y 33 f a2y 4d-Bac3y5
P=—jx=—21y 4322y 44 4ay24-S0ydmmzfay’—68xytdeafazy’ ,
Q=m—218—52y 234442241500y 22423y 2—13622y 3}-foxdyt ;
Jou il résulte
—162—145y+742y+41229*+206y°
—aty — 762y —52027y —5406xytt-2624y3
28827y 5642y ' —7 22ty S — 2662y S48ty

Et ainsi des autres.

dép _ Sin.@ s
dat T Cosén l

8. Il ne reste donc qu’a faire , dans tous ces rapports différentiels,
A==o0, et par conséquent z=o0, ¢=4 , y=Cos.4. On aura

B= -—.’.’.Sinod ’
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2C=-}58in. 4Cos. A ,
6D= Sin.A4{10—26Co0s.4) ;
24E=— Sin.ACos.A(145—206Co0s.24) ,
120F=— Sin.4(306—2228Co0s.*A~42194Cos.*.4) ,
et ainsi des autres. On aura e=A~+Bra4+Cr’~+Dr’+4...... La
série , ordonnée selon les puissances ascendantes de la petite fraction
angulaire A, est convergente par elle-méme ; ct les coefliciens nu-
mériques qui accompagnent les puissances de Cos.4 ne mettent aucun
obstacle a cette convergence.

g. La série donnée par lillustre auteur de la Mdécanique céleste
(tome I, page 181 ), est

p=A+(2e— =% &)Sin A4 (L e*— = et 474 e5)Sin2 A4

=+ (5 — 25 Sin 3 A4 (222 eb— 222 ¢6)Sin. 4.4
+ 22 5Sin 5 A4 e5Sin 6 4,
Pour la transformer dans la unétre, il suffira de mettre 4 la place
de Sin.2A4, Sin.3A4,..... les formules connues, ordonnées selon les
puissances ascendantes de Cos.d ; il faudra faire de plus e=Sin.a
et changer enfin les signes de a et de toutes ses puissances impaires ,
attendu que, dans notre formule , les anomalies sont comptées, non
du périhélie , mais de I'aphélie. On reconnaitra bientét ainsi lidentitéd
absolue entre l'une et l'autre.

10. Faisant , dans cette formule , 7=p ou #=1:p, on aura
¢=/A. Etsi Von fait t=1p, il résultera p=qo°—2a-42ia3—LaSf-.,
On aura donc go°—9¢=o2r—Ia'4-Sa%—.. .. et telle est aussi, a
trés-peu prés, la plas grande équation du centre,

11. PROBLEME 1I. On demande dexprimer le rayon vecteur
r, par une série analogue & la précédente , savoir r=1-++Ba—-4Car*
+Dx’A-.....; le demi-grand axe étant supposé égal & lunité ?

32, Solution. On a, par la théorie connue de Dellipse,

Cos.2a

g —

1—Sin.ACos.p
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Le premier terme de la série étant ce que devient 7, dans le cas

. . dr .
de A=o, c’est-a-dire, égal & 'unité; pour trouver e faisons encore

2=Sin.a , dz=dxCos. ,
d’ou
y=Cos.? ; dy=—d¢Sin.¢ ;
donc
dx . dy Sin.2¢ do Sin.g
—_— = S.A — = — —_— T e— Po Y— :
da Cos.a da Cos.A (2 xy) > da Cos A( ¥) ;
de plus
L2
r= R
1—xy

d’olt on conclura , apres les réductions, la formule tres - simple

dr

Ty =y Cos.ne

13. Pour effectuer, avec facilité , les différentiations ultérieures ;
n

. d*r
remarquons que le rapport différentiel T A1ra generalement la forme

z . R , .
o) la lettre z désignant un polynéme ordonné selon les puis
sances ascendantes de x et de y, et dont la différentielle com-

plete pourra étre supposée dz=~Pdz+Qdy. Il en résultera, aprés
les réductions, le rapport suivant

dettr  (n—2)zx~-P(1—a)}-0(2—xy—2y2-}-ay3)
dan+-1 Cos.i—=2 ) °

‘Aidé de cette formule générale, on passera facilement d'un rapport
différentiel & Tautre; les multiplications a faire seront la seule diffi~
culté qu’il faudra surmonter. )
. dr )
Ainsi , ayant eu - =yCos.a, on aura d’abord, par la diffé-

rentiation ,
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et dés lors on pourra se servir de la formule générale. Pour trouver
dy

o5 ¢ on aura

n=2 , z=s—ozye—rytay’,
P=—2y+y?® ,
Q=—2x—4y+3zy* ;
d’ot on conclura
di3r 1 —4x-——loy+4x’y+1 4xy*

—

@-Co

S +9}~3——6x’y3—~xoxy‘+3x‘}ff‘

Par un semblable procédé, on fera ensuite =3,
z=—4x—10yt4a’y+ 14zt gy —62y —102yi 325
P=—f4-8xy+-14y*—122y —10y'+-62y° ,
Q=—r1o0+4a*4-28xy—+27y*—1827y*—foxy 4152%y¢ ;

d’ou on conclura

— 24482+ 642y +88y>—8z’y

722y —1762y3 —64yt+2827y J-13427y¢ ¥ 5

F1132y5 =362y —70a’y -1 527y

dré -~ Cos.2A

dér 1

et ainsi du reste.
14. Ainsi donc , pour trouver les coefficiens de la série r=x

F-Ba4-Cr*~4-Dra’—-.. ... , il faudra voir ce que deviendront ces
d=r dir

o0 Taco dans le cas de a=0 ,

R . dr
rapports différentiels NG

. a2zt < ,
qui donne z=o0, ¢=A=—, et y=Cos.4; et l'on aura
p

B=-4Cos.4 ,

2C=42—2Co0s.4 ;

6D=—10C0s.4+4qCos.’4 ;
2{FE=—02/488Cos.2A—(4Cos.44 ,
120F=-}416Cos.4 —~1040C0s.> A+4625Co0s.>4 4

ct ainst des autres.
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15. Dans le cas de z=o0, on aura A=0 ; Cos.A==1 , et

A3 AS . .
— — — 4 — —...., ou bien, r=1-}S8in.a. Dans le cas de
r=14— &+ 5 , ’ +
. a3 25
t=%p, on aura A==, Cos.d=—1, et r=1-—7\+—6— --l—‘;+...;,

ou bien , r=1—S8in.a, 1l est presque superflu de remarquer que
ces deux expressions 1-Sin.x, 1—Sin.a, sont effectivement celles
des distances du foyer de lellipse & ses deux apsides. Faisant enfin
t=:1p,on aura A=1=, Cos.d==0, et r=i1-4a*—atfnrbm. ..,
ou bien , 7= n . Ainsi, le rayon vecteur qui répond au quart
1422

de la révolution est une fonction algébrique de la quantité angu-
laire a.

16. Nous nous proposerons, en troisitme lieu, de déterminer , pour
un temps quelconque proposé , la longitude géocentriqgue d’une pla-
néte , moyennant une série double , ordonnée selon les puissances
ascendantes des excentricités de la planéte et de la terre. L’extréme
complication des calculs auxquels nous conduit le développement des
coefliciens nous oblige a faire une supposition qui heureusement
est admissible, et qui ne restreint en aucune maniére la généralité
du probléme. Nous supposerons que , la terre étant dans I'aphélie
de son orbite , la plantte soit en méme temps & une trés—petite
distance de I'une de ses deux apsides. De pareilles époques sont toujours
assignables , et leurs retours doivent former des périodes que l’on
peut déterminer avec toute la précision qu'on désire. Soient, en
effet, p et g, les durées des révolutions anomalistiques des deux
planctes et «, 2 leurs anomalies vraies , pour une époque quelconque.
Il est clair que la premiére des deux planétes passera par I'une

af-ma

de ses apsides au bout d'un temps égal a p , tandis que

2@
“+-n=

. B
Vautre passera par l'un des siens au bout d’un temps

g:les

2%
deux nombres m , n étant des nombres entiers quelconques, po-
sitifs ou négatifs. Donc , pour déterminer une des époques o les

' deux
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deux plandtes auront été ou seront, i la fois, dans I'une de leurs
apsides, il faudra déterminer les deux nombres entiers m et n de
maniére qu’ils remplissent le plus exactement que possible la condition

atmw = i ou mp—ng=— et i
2w .p 2@ 7 4 yh w ?

et on sent que la solution de celte question ne peut présenter de
difficulté.

17. PROBLEME IIl. On demande, pour un temps quelconque
proposé , la longitude géocentrique d'unc planéfe geéncralement ex-
primée par une série double , ordonnée selon les puissances ascen-
dantes des excentricites de lorbite de la planéte et de celle de

la terre?

18. Solution. Supposons que la terre et la planite ayant quitté
au méme instant leurs aphélies A, B (fig. 1), soient arrivées ,
au bout du temps #, aux points P, Q de leurs orbites respectives ;
en désignant par F le foyer commun ou le centre du soleil , et
supposant que la ligne des équinoxes soit EE/, l'angle EHQ sera
la longitude géocentrique de la planéte. Désignons de plus:

par p et ¢ les durées des révolutions anomalistiques,

par @ et b les demi-grands axes des deux orbites,

par aCos.n et 5Cos... leurs demi-petits axes,

par aSin.x et 4Sin.. leurs excentricités,

par « et g les longitudes EFA, EFB des deux aphélies,

par ? et ¥ les deux anomalies vraies AFP, BFQ, 4 I'époque 2,

par ¢ et ¥ les deux anomalies de I'excentrigue,

par 7 et s les deux rayons vecteurs FP, FQ,

et enfin par w la longitude géocentrique demandée EHQ.

19. Les deux longitudes héliocentriques seront ainsi les angles
EFP, EFQ; et I'on aura

EFP=«=—¢ , EFQ=p—y ;
ce qui donne
. sSin.(B==y)==rSin.(z—@)
Tang.gp= - .
$Cos. (8= ) =rCos.(a—@)
Tom. 1V, 23
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On aura de plus , pour les deux rayons vecteurs FP et FQ ou
rets

aCos.2A 5Cos.2p
r=————, =
1—Sin.ACos.@ 1—3Sin.z.Cos.

On aura enfin les équations, déja employées dans le premier pro-
bléeme , par lesquelles on passe de lanomalie vraie 4 l'anomalie
moyenne , et réciproquement : savoir ,

. Cos.ASin. . Cos.uSin.
an.¢’=—7—“—¢—- , Sm.x]/::—~—,—{f—l—i— R
1—Sin.ACos.® 1—38in.Cos.y
Cos.@=—Sin.x Cos.9—Sin.a ~
Cos ¢/ = Cos Y/ = ————
1—Sin,ACos.0 ’ 1—Sin.zCos. ¢
27t

. ozt . .
;— = ¢-Sin.aSin.¢ i:"’"—}—Sm.,«Sm.-\p.
q
20. Comme on demande pour w une série double , ordonnée selon
les puissances ascendantes des deux excentricités, telle que
w=A—4Bat-Cr*4-Dr’~4=.creres
B/ u=4=C/rpe=D/ 22 podvaniee,
S B e ot LN SO
+D///[43+n-un
+|.Il'l.

on voit que son premier terme 4 sera ce que devient l'angle »,

2wt
dans le cas de a==0, w=o03; ce qui denne r=a, s=b, ¢=—,

12 .
-:p:—zig dol il résulte
9

aSin, (a—-z—;'—t ) ~b5Sin. ([5—- i:—t

2Cos. (oa-—%f—t) —bCos. (ﬁ—f(j—t .

a1, Les deux coefficiens qui suivent, B et B/, seront ce que
2 H

Tang.4=

‘v . dev dw
deviennent les deux rapports différentiels PP dans laméme sup-

position de a=o0 , »=o0; et 'on voit que la differentiation doit
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porter uniquement sur les deux excentricités a et g, et que le

temps ¢ doit étre regardé comme exempt de différentiation. On
aura ainsi

do Sin.@¢(2=Sin.ACos:®) dr

—— =— —_— = 0 '¢
da Cos. A ’ da aCos.2Cos.?
ad Sin.(2=Sin.xCos.+) ds

A, . = =Cos.uCos¥
E» Corn ; M 5Cos.xCos

22, Enfin, de Vexpression de Tang.w , donnée ci-dessus , on
tire lexpression générale de dw , ainsi qu’il suit

—r2d@-4-rsd@ Cos.(a— p==¢4-)—sdrSin. (a=—p—p-}\)
d __—sldil«—}-rsdxlzCos.(u—-ﬁ—q)-{-xlz)+rdsSin.(u——/.’:~—-¢+¢)
w= r2—2r5 Cos. (o= Bu—@~}=}) 45> 2

. . . dw dw
_ee qui donnera, pour les deux cocfliciens partiels — , —

A dee
dw _ Cos.A a2C05.2A5in.¢(2=—Sin.ACos.9)
dr  r2—2rsCos.(a—PB=-@4-4 )52 (1—Sin.ACos. )2

abCos.2.Sin.p(2=—=Sn.ACos.0)"
- (1==Sin.2Co0s.¢) (1 =Sin.,.Cos.y) Cos.(u—-ﬁ—-qa-l—xl/)

abCos.2uCos.¢ _, %
kil stk A8 EEPRRPR A
(1=—Sin.xCos.{) Sm'(“ e—¢+¥) {5

dee

_ Cos.pe 52Co0s.2Sin. (2==Sin.. Cos. )
dee - r2==2rsC0s.(t— =4~ )52 (1=Sin. e Gos. )2

2A8in.J/(2—Sin..Cos.
. abCo.s ASin. (2 ll’.l ©Cos.) Cos.(u——ﬁ—‘l’—{—‘l’)
(1—Sin.AC0s.¢) (1==Sin.pcCos.y)

abCos.*ACos.
—_— " _Sin.(xa—pg—0¢+¥) } .
(1—Sin.ACos.9) Sin.(«e—p—oF )§

24. Pour en tirer les deux coefficiens B, B/, il faudra faire,

aat
dans les deux expressions , a=o0 , g=o0 , r=a, s=b, ¢=—,

2%t . e
Y ==~ ; on aura ainsi
q
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I ., 2=t

B= poE— 22°Sin,—
a? = abCos.(( @—p— — ...f) b2 P

(=Tt
. 2=t 2zt 2%t 2%t _, 2 2
—24bSin. — Cos.(a—ﬁ—*- -+ -1) -abCos. = Sin. (u—/s-._f_t_i_.f.t ?,
P P 2 P q)S

B = z 25°Sin, 22

2%t 2=t q

a=—zabcos.(u—,3__ = |4-b2
P + q

~2abSin. ﬁCos,(m—g—z——m —{-2—23"5)--|-115('jos.izr—lSin(as-/s-f-w-f 4.2 g .
P P q q P q

25. La forme, trés-compliquée, des deux différentielles partielles

de dw

dr 7 dg

succes, au développement des coefliciens ultérieurs ; et nous avouons

ne permet guére de procéder , avec quelque espérance de

que la formule que nous venons de trouver ne pourra guére é&tre
regardée que comme le résultat d’une premiére approximation, &
laquelle il nous parait convenable de nous arréter. Pour trouver la
longitude géocentrique , avec une plus grande précision , il faudra
encore recourir , dans chaque cas particulier, 3 'emploi des tables,
et renoncer aux avantages qui pourraient résulter d’une formule
générale,

26. Connaissant la position des deux aphélies, ou les angles EFA,
EFB ; et les deux longitudes héliocentriques EFP , EFQ , et par
conséquent aussi les deux rayons vecteurs FP , FQ, on trouvera la
longitude géocentrique , ou l'angle EHQ par la formule
FQS8in. EFQ—FPS:n.EFP
FQCos.EFQ—FPCos.EFP *

Ici la ligne FP, rayon vecteur de la terre , peut toujours &tre regardée
comme donnée ; mais, pour trouver FQ, rayon vecteur de la planéte,
il faut connaitre 'anomalic vraie de cette derniére, ou 'angle AFQ,
qui est lui-méme égal & la longitude EFB de I'aphélie, moins la
longitude héliocentrique EFQ ; ce qui fait naitre une difficulté,
lorsque, de la longitude géocentrique , qui est la seule donnée, tapt

Tang. EHQ =
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par les tables que par l’observation, on veut repasser  le longitude
héliocentrique. La difliculté sera levée, par la résolution du probléme
que voicl.

27. Connaissant , outre les longitudes des deuzx aphélies , aussi
bien que les grands axes et les excentricités des deux orbites,
la longitude gdocentrique d'une plancte , pour un instent doamnc ,
trouver sa longitude héliocentrigue ?

Désignons par

B l'angle EFB, longitude dc l'aphélie de la plantte;

b le coté BF, demi-grand axe,

w l'angle EHQ , longitude géocentrique de la plandte,

J le rayon vecteur FP,

» Pangle EFP, longitude héliocentrique de la terre,

¢ I'angle EFQ, longitude héliocentrique de la planéte;
donc , AngFPH=w—, ,

Ang PQF =@—s .
I’angle BFQ, anomalie vraie de la plandte, sera B—¢; et I'angle
formera ainsi 'inconnue du probléme.

Le triangle FPQ donnera FP : FQ=Sin.(w==¢): Sin.(s~=n) ; donc
FQ‘“ Sin.(w-—n)f.

Mais , parce que FQ est un rayon vecteur de I'ellipse ; om a aussi
P q y p3¢ ;

" Sin.(w—>¢

FQ _ bCos.2e .
" 1=Sin.uCos,(B—¥)

donc, si 'on pose, pour abréger,
bCos.2p
—_——=n ,
JSSin, (w=—17)
on aura l’équation
1 =7Sin.(w——0)-Sin,xCos.(B—6).
Pour la résoudre, il suffira de faire
nCos.w=—Sin.xSin.B

2 = p2ed-27Sin.,uSin.(W==B)-Sin.’s ;
nSinww—=4-Sin.Cos.B ’ R n*+ nSi HS ( ) - ?

Tang.K=
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et I'on aura finalement

Cos. (14K} = -13{- .
Le probléme sera résolu,

28. PROBLEME V1. On demande de comprendre les époques
des conjonctions et des oppositions d’une planéte dans une seule
série double , ordonnée selon les puissances ascendantes des deux
exceniricités ?

2qg. Solution. Par les mémes raisons exposées au sujet du précédent
probléme , le temps # sera compté d'une époque ol , la terre étant
dans son aphélie en A, la planite était trés-prés de l'une de ses
deax apsides B ou B/. Les quantités données du probleme seront
donc : savoir, les demi-grands axes @, & des deux orbites; les deux
demi-petits axes aCos.n, #Cos.. ; les deux révolutions anomalistiques ,
P, g ; enfin l'angle AFB que les deux grands axes font entre eux,
et que nous désignerons par ¢; et les lettres ¢ ct ¥ continueront
a4 désigner les anomalies vraies AFP, BFQ des deux planttes au
bout du temps #z On aura ainsi AFP=¢, AFQ=s++; ce qui
donne , pour le cas du probléme ¢—¥—s=n=; la lettre n désignant
un nombre entier pris A volonté, pair dans les corjonctions , im-
pair dans les oppositions. T en résulte 1’équation différentielle
de=dy ; cest la premicre des équations différentielles qui nous
conduiront & la connaissance des coefficiens.

30. La série étant supposée de la forme

t=A4-Br~4Cr*4-Dr3—-......
B/ p4-C'rpu4-D/22 ot
4 C 2= D VP .
D13
Le premier terme A sera ce que devient # dans le cas de a=o,
2wt 2wt

u=o ;or, on a, dans ce cas, p—:@, —=v, ce qui fournit
q

. 2=t 2=t
Péquation — — — ==na-}~; done
P q
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A= (nw+-pyq '
2@(g—p)
Telle est la valeur du premier coefficient de la série.
31. Les coefficiens B, B’ seront ce que deviennent , dans le
. . de dt
cas de n=o0, =0, les deux rapports différentiels partiels — , T :
f‘
On a trouvé (4), dans le premier probléme , pour la différentielle
complete de o,

2% (I—Sin.ACo0s.0)2 Sin.@(2=Sin.ACo0s.9)
d¢= = 1 df— mn.o(2 mn da :
pCosia Cos.a

on aura de méme, pour la seconde orbite,

dd= 2w (1==Sin,pCos.y)?2 A Sin.(2==Sin.x Cos. )

gCos.lp Cos.ee

d(x.l

Egalant entre elles ces deux différentielles, ce qui est effectivement

I'équation de condition (29) des syzygies, on en tirera la différen-
ticlle complete de z qui doit répondre 2 la nature du probleme ;

. . . . de dt
ce qui donnera ensuite , pour les rapports différentiels — , T
de 1 }_1(]Cos.’-’ACosﬁyan.¢(2-—Sin.AC05.¢)
FT 27 ¢Cos.3pe/ 1==S5in.AC05.9)2=pCos.3a( 1—Sin. xCos.4)2 >
dt I p9Cos.2.Cos.3ASm. (2==Sin.ge Cos.{)
de ~ 2a  gCos3u(1—Sin 2C05.9)*—pCos.3A(1=Sin.xCos,4)2

32. Il nc restera qu'a faire, dans ces expressions, a==0, x=0;

ce qui donne cp:#, 2%11’ pour avoir les deux coefliciens
B, B’. On trouvera ainsi
pySin 22 pysin. 222
O =

33. Les coefficiens €, €/, €/ des termes du second ordre seront
ce que deviennent , dans le méme cas de A=0, x=o0, les trois
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dzt ad2g da#
T 2dade T 2de

rapports différentiels partiels pYTP -. Faisant , pour

abréger

P=1—S8in.»Cos.0 , @=1—8in xCos.¢ ,

ce qui donne
dP =—d»Cos.2Cos.0 d¢ Sin.ASin. ¢ N

dQ:—d,«Cos.#Cos.4/+d4/5in.#81n.4/ ;

on parviendra ainsi & donner une forme un peu plus abrégde aux

¢ X .
deux rapports T A lesques deviendront
dt ) pqCos.2A2Cos.3,Sm.o(14-P)
2% _— =+ - »
da gP2Cosdp=—p2Cos.3n

. d¢ ) pgCos.2pCos3ASinAd (14-0Q)
—w( dw ) g P2Cos.3p—pQ2Cos.sia

Mais il est convenable d’abréger encore. Désignons par #', M , N
le dénominateur commun et les numérateurs de ces deux valeurs,

de maniére qu’on ait

dt _ M dt _ N .
(5 )=% > =(5%)=%F
fes différentiations partielles nous apprendront que
dF
( Ty )=—-29PCos.A3yCos.<p+3pQ”'Sin.mCos.’;..
- < %’% ) (29 PCos.’uSin.ASin.e—2pQCos.’ASin &Sin.¥) ,
dF 2 .
( m ) =429 Co5..Co05.*2Cos.4— 37 P*Sin.uCos.>x
13
" d . . . .
-+ ( Ti,ui ) (2¢PCos.’Sin.»Sin.e—2pQCos.’2Sin.uSin ¥) ;

( > 4 g oS, A Q8. FS!D-?( Sl .2\ CO . /‘.COS'. ASID' A )
i :
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+( )(}’7005 2»Cos.>¢(2Cos.e— Sin.»Cos.> ¢~ Sin.2Sin.* ¢

dM
( A > =—23pgCos.>2Cos.?xSin..Sin.¢/2 — Sin, »Cos. ?)

-+ ( e >/DqCOS.’?\COS.3;4(2COS.,@—-Sin.ACos.zfp-{-Sim)\Sin.’@) .
( O )—-—-oquos. aSin.aCos ?x«Sin ¥ (2—Sin.«Cos.¥)
do . e ae
~- ( e )pqCos.3ACos.‘*M(zCos.«lz-—Sm.(.aCos.W—-l-Sm.,ubm.N«) ,
( ) = ~—p7Cos.32Cos.£Sin.¥(4Sin.u~Cos.*uCos.¥—25in.*Cos, ~P)

+( ™ ) p§Cos.’aCos,*(2Co0s.¥4-Sin.xSin.*§—Sin..Cos.>¥),.

de
Reste donc a trouver les expressions littérales de ( ) ( )

dr et dee, et 2 cffectuer ensuite les développemens. Or, ayant déji
exprimé do en d# et da, de méme que d¥ en d7 et de, on n'aura
qu’a substituer , dans 'une de ses expressions, la valeur de dz en
dxr et de : on aura ainsi la différenticlle compléte de de ou dv .

d’ott on conclura

pSin.quos.!A(I +P)Q> ( ﬂ )__qSin JCos.2pe(14-QY P>
T gP2Cos.3pm=pQiCosia’ T gP2Cosu—pQ=Cosin |

34. Apres avoir effectué ces développemens, on pourra procéder;

. ¢y . o ‘e . det
sans difficulté, 3 la détermination des rapports différentiels el

dz¢ da¢  Avant dz 1
— nt 2 — ==, 2 —— -
T d,(.a ya zr( 7y , w( i ) -7 il en ré
sultera

WF2< i;) F( (m> M(

Tom., 1; 34
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(i) =F (5 -5 ) =1 (& )+N(
()= () (i)

35. Ainsi donc, pour trouver les coefficiens €, €/, €/, de nos
termes du second ordre , il fatudra voir ce que deviennent ces
rapports différentiels partiels , dans le cas de A»=0, x#=o0. On tire

.. . 2wA 2w A4
de cette supposition P=1, =1, ¢= , = ; eten con-
P . q
tinuant, par abréviation , d’employer les lettres ¢ et ¥ i la place

de leurs valeurs , on aura, dans la méme supposition de a=o,

#=0 ,
F=g—p , M=opgSin.p , N=2p¢Sin.y ,

( ) 2pSin.¢ ( - quin.wI«
g g=p
ct ensuite

( )=_9900s¢, ( ) ~F2pCos.¥ ;

( ) pq(q—-5p)Sm ¢Cos. ° ( ) __ 4pgCos. ¢Sm ¥
9P
( ) pq(Sq-p)Sm 4 Cos. '4/ ( ) + 4p2qCos.Sin. ¢ )
=P 9=r

we

36. De 12 on pourra passer immédiatement aux rapports différentiels
dat d2t dz¢
du second ordre Tr 0 D de On aura, toujours dans le cas

de a=o0, x=0,
&t pg5p43p
dar 22(g=—p)?
dx

Tl S q__p‘z(pSm 2Cos¥+4Sin¥Cos.e) .

Sin.¢Cos.¢ ,
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2 5943 .
o = MSID."LCOS.‘;’ ;
d'ul 2w(p——q)2

d’ot lon tire enfin

C = P9(5p~+43¢)Sin.¢Cos.0
T ey ’

8pq(pSin.¢Cos.~f-¢Sin. Cos.0)

) —
¢'= ha{g—p)? ’

_ P9 (5943p)Sin.d Cos.y

c/
4o (g—p)?

37. Pour trouver pareillement les coefficiens D, D/, D/, D/, des
termes du troisitme ordre , il faudra différencier de méme , par
rapport a » et «, les rapports différentiels dont nous avons donné
la liste (33). Nous n’exécuterons pas ces développemens ; mais la
route est tracée, et, en attendant, la série

t=A+Br4Cr*
+B/t“+C/A‘u
~+C/e*

fera connaitre , 3 peu prds, les époques auxquelles il arrivera quel-
que conjonction ou opposition de la plantte a laquelle se rapporte
Vellipse BQB/ de la figure.

Nous poursuivrons ces recherches dans un prochain article.
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OPTIQUE.

Note sur la construction des miroirs concaves de grandes
dimensions ; 4

Par M. A.***, abonné.

[a Vi Sla e Tia ~a N e =

ON sait que la construction des miroirs concaves , de grandes
dimensions , présente des difficultés considérables , soit pour obtenir
I'uniformité de courbure , soit pour donner au poli la perfection
nécessaire. On surmonte, en partie, ces difficultés , avec du temps,
du travail et du soin; mais les opérations sont toujours trés-longues
et trés-coliteuses. Si donc il était possible de ramener la fabrication
des instrumens de cette espice aux procédds qu'on emploie, ou
da moins quon peut employer , pour celle des miroirs plans, il
n’est pas douteux quil n’en résultat beaucoup d’économie et de
facilité , et par suite un perfectionnement sensible , dans cette partic
intéressante de l'art de lopticien.

Le moyen dont on va parler parait tendre 3 ce but; mais on
ne devrait penser & le mettre en pratique qu'aprés s’¢tre préala-
blement assuré, par la théorie, du résultat qu’on pourrait en espérer;
abstraction faite des différences inévitables entre le calcul et Pexé-
cution, Les questions dont il provoque ’examen sont d’ailleurs de
nature & mériter l'attenion des géometres. Par ce double motil ,
on croit pouvoir entrer dans quelques détails sur le procédé dont
il s'agit.

On rappellera d’abord celui qui a ¢été mis en usage par Buffon,
il y a environ soisante ans, pour se¢ procurer des mireirs ardens.
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Il consiste & couper une glace circulairement , 4 Tastreindre par
son bord, et & la rendre concave , par une pression appliquée au
centre , d’une maniére permanente ( Mémoires de [l'académie des
sciences , pour 1754 ). Prenons, au lieu d’une glace , une plaque
métallique , convenablement préparée ; et imaginons que sa convexité
se forme du coté qu'on destine & la face antérieure du miroir.
Suapposons , de plus , qu’il soit possible de soumettre cette face
convexe aux opérations par lesquelles on applanit et polit une grande
pi¢ce de métal; on enlévera ainsi la calotte trés-mince qu’intercepterait
un plan passant par l'aréte de cette méme face. Si 'on supprime
ensuite la force comprimante , la plaque reprendra son état primitif ;
et la face sur laquelle on aura opéré deviendra concave, avec une
courbure sensiblement pareille 2 eelle qu’elle avait dans son ¢état
de convexité.

Dcux questions se présentent d’abord, relativement & cc procédé.
La premicre de pratique : comment obtenir la condition absolument
nécessaire pour que I'opération proposée soit praticable, savoir, que toutes
les parties de la machine soient situdes du méme cété, par rapport
au plan indéfini qui passe par la surface & polir ? La seconde de
théorie : quelle est la courbe que forme un diamétre de la plaque,
dans son ¢tat de comi)ression; et, plus particulitrement , quelle
est la portion de cette courbe qui peut, sans erreur sensible , rela-
tivement a sa destination , étre prise pour une parabole ?

On ne croit pas devoir entrer ici, sur la premiére question, dans un
discussion qui ne pourrait qu’étre prématurée ; et il conviendra seu-
ment d’observer que les difficultés , peut-étre insurmontables en
opérant sur le verre , disparaissent , lorsqu’il s’agit d'une maticre
aussi facile & travailler qu’une substance métallique. I.a seconde
question , indépendamment méme de toute application , parait digne
d’excrcer la sagacité des géometres. 1l conviendrait peut-étre de I'étendre
au cas ot la pression aurait lieu , non sur le centre , mais sur tous les
points d’un cercle concentrique 4 la circonférence de la plaque, et
méme sur plusieurs cercles de cette espece, 4 la fois ; et , pour
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ce dernier cas, on pourrait rechercher quels seraient les rayons des
cercles et les forces & appliquer qui produiraient la courbure la plus
apprachante de la parabole. (*)

Comme , & Pexécution, il se trouve nécessairement des défauts
d’cxactitude dont on fait abstraction en théorie , il ne serait point
inutile de rechercher les anomalies que produiraient , dans Deffet
cherché , des irrégularités dont I'ordre pourrait étre supposé treés-
petit par rapport aux dimensions du miroir; comme , par exemple,
si les deux faces n’étaient pas exactement paralléles; si, au lieu
d’étre planes , elles étaient des portions de cylindres, de cénes ou
d’ellipsoides trés-grands; si la plaque ct le support nécessaires a
Vopération ne se touchaient pas cemplétement par tous les points , ete,

() Un probleme beaucoup plus général serait le suivant : Ure surface courbe
rigide et élastique, d'une forme connue et d'une épaisseur constante , ou variant
suivant une loi donnée , est invariablement fixée dans Uespace, par plusieurs de
ses points , ou méme par une oy plusieurs courbes continues tracées sur elle.
On a appliqué des pressions constantes , données d’intensité et de direction , en
divers autres points de cette surface, ou méme suivant d’autres courbes continues
tracées sur elle. On propose d’assigner la nouvelle courbure gu’affectera cette surface?

On pourrait aussi renverser le probléme, et demander quels devraicnt éure les
points d’application, directions et intensités des pressions , ainsi que la situation des
points fixes , pour produire une courbure dennée.

Pour préparer, par un probléme plus simple , & un autre plus compliqué , on
pourrait d’abord se proposer celui-ci : Une verge courbe , rigide et élastique , d'une
courbure connue , et d’'une épaisseur constante , ou variant suivant une lpi donnée
est invariablement (fixée dans Uespace, par plusieurs de ses points. On a appligué
des pressions constantes , données d'intensité et de direction , er divers autres
points de cette verge. On propose d’assigner la nouvelle courbure gu'elle affectera
par leffet de ces diverses pressions ?

Ce probléme est susceptible du méme renversement que le précédent ; ¢’est-
A-dire, quon peut demander quels sont les points fixes et les pressions qui pro-
duiront unc courbure donnée ?

Ces problémes paraissent avoir beaucoup d'analogie avec celui de la courbe
élastique ; le premier suppose nécessairement dans la surface une certaine extensibilité
et contractibilité , sans laquelle on ne pourrait obtenir que des surfaces développables.

J. D. G.
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Ce contact exact est vraisemblablement une condition irés - impor-
tante ; mais on aurait des moyens assez faciles de Pobtenir, avec

toute la précision désirable.
Paris, le 23 octobre 1813.

QUESTIONS RESOLUES.

Démonstrations du théoréme de géomeétrie e€nence o la
page 6o de ce volume ;

Par - MM. MassaBieau et GuiLLAuME , professeurs de
mathématiques au lycée de Rodez , Gosert, éleve du
lycée d’Angers, et M. BErArD , principal et professeur
de mathématiques au collége de Briancon, (¥)

[ S Va Y Ve e Za o

E NONCE. N/, M étant deuz points quelconques dune parabole ,
O le point de concours des tangentes en ces points , et ¥ le foyer;
on propose de démontrer que

MO*_W0"

MF ~ ™MF
d'oi il suit que, si ¥ tombe sur VM, le sommet de l'angle O ,
qui devient droit, est placé sur la directrice , et la ligne OF est
perpendiculaire sur la corde N/M//.

Les solutions fournies par MM. Massabieau, Guillaume et Gobert
sont purement analitiques , et reviennent & peu prés 4 ce

qui suit.

(*) Le théoréme a été proposé par M. Bérard.
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O

Soit
y’=4m‘ s (I>

I’équation de la parabole , et soient les coordonnées des points M/,

M/, O et F ainsi quil suit

x’ PN

pour M7/ pour O

¥

a, c,
pour F

s o 5

pour M/ g

¥
on aura conséquemment
yr=4ex’ , y'*=/fcx. (2)
Les équations des tangentes, par les points M/, M/ seront
yy/'=z20(z+a’) , yy'=zc(lata") ; (3)

et, comme le point O appartient & la fois & ces deux tangentes;
on aura

by'=z2c(a+-a’) , by’=20(a-ta") ; (4)
d’olt on tire , en ayant égard aux équations (2)
y/‘y” .
a= W’ b==x(y"y"). (5)
Cela posé on a

MO = (wrma(y—iy = {22 —22]

4e 4e
. . I;v+4 2
iy =y =TT (=

MO =X (g

et on a pareillement

x/

e 3, (A
1\1//0 = 40 (y/_..y//)z 3

mais , d’'un autre c6té, on a aussi

et 3
M/F
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—_—
MF = (2/=c)*~4y/ ={(a/—c)*F fex/=(a'+¢)* ;
d’ox I\I/F=x/+c ;

et 'on a pareillement

M/F=z/c ;
done
————— 2 —— 3
MO _ M”70 (yl==yy3 (6)
MF ~ M'F T e ?

ce qui démontre la premidre partie de la proposition,
On a de plus

MF X M/F=(x/0) <x~+c>={ = +c§ { = +c§= 33{0— -—c}z iy

o

M'F X MN/'F=(a—c)*--1*= OF .

Eliminant successivement M/F et M/”F entre cette derniére équation
et I'équatien (6), et extrayant chaque fois la racine quarrée, il

viendra
MO M'F _ OF

MO OF M/ 7

d’ott il résulte que les deux triangles FM/O ct FOM/” sont sem-—

blables, (*)
Cela posé , si la somme des angles égaux OFM’, OFM” vaut

(" Cest le théoréme de Robert Simson , rappelé par M, Servois, & la page 156
de ce volume.

Tom. 1V, 2>
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deux angles droits ; cest—a-dire, si le point F est sur la corde
BI/M*, chacun de ces deux angles sera droit ou , cn d’autres termes,
OF sera perpendiculaire sur M/M/ ; la somme des deux angles
FOM’ et FM/O vaudra donc deux angles droits ; et, puisque le
dernier est égal & FOM/” , il en résulte que l'angle M/OM/ est

alors droit,

Lorsque les trois points M/, F, M’ sont en ligne droite, on a

¥y
Xl g ?
ou
/Sﬁ_— }: //g‘y/2 — } °
T T
ou Oy 4e Yy —y") =0

ou simplement

Yy'+4er=o ;

ce qui donne

ainsi alors le point O est perpétucllement sur la directrice.

Voici présentement la démonstration de M. Bérard , qui est pure-
ment géométrique.

Par les trois points M/, M/ , O ( fig. 2 ) soient mendes des
paralleles & l’axe ; et soit H le point ol la derniére rencontre la
courbe. Par ce point H soient menées des paralleles 3 OM’ et 3 OM//,
rencontrant respectivement en P/, P/ les diamétres menés par M/,
M. Le quarré d’une ordonnée au diametre étant le produit de

I'abscisse par le quadruple de la distance du sommet de ce diametre
au foyer; on a

P/ =fMEXMP , HP" =4M/FxMP" ;
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mais , & cause des parallélogrammes OP/, OP/, on a
M/P/=M/P”=0H , HP/=0M/, HP/=0M";
donc
OM/ =4FM/<OH , OM/ =4FM/xOH ;

ce qui donne, par l'dlimination de OH ,

oM’ omr

FW ~ Fmr C

Si le point F est en ligne droite avec les points M/, M~ (fig. 3 ),
cette équation n’exprimera autre chose que la proportionnalité des
quarrés des c6tés de 'angle droit d’un triangle rectangle avec leurs
projections sur ’hypothénuse ; le triangle M/OM/ sera donc rectangle
en O, et OF sera perpendiculaire sur M/M”.

Soit , dans ce cas, prolongée OH jusqu’a la rencontre de M/M//
en I, et soit menée HF. On sait que, par la propriété de la pa-
rabole le point H est le milieu de OI; puis donc que I'angle OFI
est droit , ce point H est le centre du cercle circonscrit au triangle
OFI, et par conséquent HO=HF ; et puisque OH est parall¢le 2

Paxe, le point O est un point de la directrice.

N

Tentatives et réflexions relatives au probléme proposé
a la page 352 du troisiéme volume de ce recueil;

Par M. Kramep , professeur , doyen de la faculté des
sciences de l'académie de Strasbourg.

[a Vi o Vo Vi, VI W7o W ¥

LE probléme proposé & la page 352 du troisitme volume des
Annales revient évidemment a cclui ol il s'agirait de determiner
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langle au sommet d’une pyramide ou d’un céne donné, 3 base
quelconque. Clest aussi sous ce point de vue que je me propose
de l’envisager, dans ce qui va suivre.

1. L’angle au sommet de tout corps pyramidal a pour mesure
naturelle de sa capacité le polygone sphérique décrit de son sommet
comme centre, avec un rayon arbitraire , dans toutes les faces qui
le comprennent; et le rapport de la surface de ce polygone 3 celle
de la sphere entitre, ou bien & la huititme partie de cette sphere,
connue sous le nom de triangle sphérique tri-rectangle, et que ,
dans mes Elémens de géométrie , j'ai désigné par le nom dorzhoddre.

2. Désignant par s la somme des angles externes d’un polygone
sphérique quelconque, la surface de ce polygone scra égale & 360°—s;
Pangle droit étant l'unité des angles linéaires, de méme que I'or-
thoedre est celui des angles solides. Ainsi I'angle droit sera & 360°—s,
comme Dlorthotdre est & la surface du polygone sphérique.

3. La figure 4 désigne la surface antérieure d’'une pyramide, ayant
pour base le polygone rectiligne ABCD..... Si du point S comme
centre , et avec un rayon arbitraire, on déerit , dans les faces de
cetie pyramide, le polygone sphérique abed....; la surface de ce
dernier polygone exprimera la capacité de I'angle solide pyramidal
dont le sommet est S, tandis que ses angles exprimeront les incli-
naisons mutuelles de ses faces entre elles ; c’est ainsi que , par
exemple , 'angle sphérique & exprime l'angle plan (*) compris entre
les deux faces triangulaires ABS, CBS. On le trouvera, lorsque l'on
connaitra tous les angles lincaires aux sommets de la base ; c’est ainsi
qu'en désignant par B l'angle ABC, par m langle ABS , et par
n Pangle CBS, on aura le cosinus de l'angle plan ABSC, ou

(*) Il est presque superflu d’observer que lauteur emploie ici les ancicnnes
démonstrations d'angles linéaires , plans el solides , corrcspondant aux dénominations

nouvelles d'angles plans, diédres et polyédres.
J. D. G,
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Cos.b= Cos.B—Cos.mCos.n -

SinmSin.n

4. Mais , pour appliquer ces principes généraux aux conoides;
ayant pour base une courbe quelconque, rentrant en eclle-méme,
il faut nécessairement réduire 4 des coordonnées rectangulaires la
position des sommets de cette base , considérée comme polygone
rectiligne d’'un nombre de cotés fini. Soient done (fig. 5) L, M,
N, trois sommets consécutifs de cette base, que nous rapporterons
4 l'axe indéfini AZ, mené dans le plan de cette méme base, par
le pied A de la perpendiculaire SA. Nous désignerons par Z cette
méme hauteur SA ; et, prenant le point A pour origine des coor-
données , nous exprimerons par & , ¥ les coordonnées du premier
sommet L ; par 7, #, celles du second sommet M; et parp, ¢,
celles du troisitme sommet N; de maniére que

AO=z , AP=¢ , AQ=p,

OL=y ; PM=wz; QN=g¢:

Il en résultera
gﬂ’:k%—x’—l—y’ ; I—J_Iz=(l—x)’+(”—3’)’ i
SM =hrdwr , NN =(p—tyd-(g—)* ;
SN =kdpdg ;s LN =(p—a)+(g—y) ;
d’ott 'on tire

P2 s 2] bl y

Cos SML= """
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t2fute—pt—qu

Cos.SMN = SNy

t2feu 2t gomtlymmplomgu--p x-4-qy
J m—
Cos LMN = L MXMN .

Il faudra aussi se procurer les expressions des sinus des deux pre-
miers SML et SMN de ces angles. On aura, aprds les réductions
nécessaires,

———— Y
) 72 LM o(fy—ux)?
Sin:SML=~ — y_z ,
SM xLM
B2 MN. -(gtmmpu)
2, ‘wamT)11)2
Sin.2SMN = 9,

Le produit SMXXLM.S:z.SML exprime le double de la surface du

triangle LSM; d’ou il suit que cette surface gura pour expression

H Vﬁ“.mz —+(ty—ux)* -

5. Le cosinus de l’angle plan LSMN, qui exprime linclinaison
mutuelle des deux faces triangulaires LSM et MSN, ayant pour
son sommet lindaire I'aréte pyramidal SM , est exprimé comme il suit :

Cos.LMN==Cos5.L.MSCos. NMS

0S. = .
Cos.LSMN Sin . LMS.Sin. NMS

Aprds les substitutions, et les réductions, en assez grand nombre;
. qui se présentent, cette expression devient
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ha(t2efu 2t sty mmpt—gu—-p 2=y Y= {ty—tia ) (gl==p1)

V{ B LM +{ty—uzx)*}} 7 MN z+(qt——pu>2 i

Cos. 1.SMN =

On trouve ensuite, pour le sinus du méme angle,

h.SM (pu—gtt-ty=—110=—
Sin.LSMN = (pu=—qt-ty—ux=—=py-+-g.x) .

§ LM 1—-|—(ty —ux)*} {4* MN z+(qt—pu)“}

d’ott il résulte enfin

b SM(pu—git-ty—ux—py-q:x) )
hE( sty —pt—qutpagy)—(ty —ux) (u—gt) *

Tang LSMN=

et telle est la tangente de l'angle plan, compris entre les deux
faces triangulaires contigués L.SM , NSM.

6. Pour passer du polygone rectiligne au cas d’une courbe con-
tinue , prenons sur son périmetre les trois points L, M, N, i des
distances infiniment petites I'une de l'autre ; et, en continuant de
désigner par les lettres #, z, les deux coordonndes AP, PM, du
point intermédiaire M, nous aurons z~4-d#, z-}-dz, respectivement,
pour les coordonnées AQ, QN , du point suivant N; tandis que
t—dt4-d*t—d’t4-..... , u—du+d?u~d’u4-..... seront , respecti-
vement , les expressions complétes des coordonndes AO, OL, du
point précédent L. Comme , dans le probléme que nous nous pro-
posons , il suffira de nous arréter aux secondes différentielles,
mOUS aurons

AO=a=t—dt+ds ; AP=z, AQ=p=s-4d:,
OL=y=uy—du+d*z; PM=z; QN=¢g=u-du.

En faisant ces substitutions, dans I'expression ci-dessus , nous aurons
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pour la différentielle de la somme des angles extérieurs, différentielle
que nous représenterons conséquemment par ds, et de laquelle dépend
la solution de notre probléme , I'expression suivante

- R.SM(dtd2um=dudzr)
T he(deerdur) - (tdum—ydz)a

7. Si nous désignons , en outre , par A4 la portion de la surface
convexe de ce corps conique , comprise entre les deux arétes AL,
AN, nous aurons

dd=\/ h*(dr*~-du*)+(¢tdu—udz) ,

ds= Rdedenn/h-—-t2u>

442

L’expression de ds est donc beaucoup plus compliquée que celle de
dd ; et, comme cette dernitre n’est integrable que dans un nombre
de cas trés-borné , desquels celui du céne oblique, a base circu-
laire , est formellement exclu ; on voit que l'on doit encore moin:
se flatter d’une solution complete du probléme qui concerne I
capacité des angles au sommet.

8. A la place des ccordonndes rectangulaires # et z, essayons de
substituer le rayon vecteur AM=r et langle MAZ=¢ qu’il fail
avec l'axe des 7z, ce qui donne z=rCos.¢, u=rSin.e. On trouver:
ainsi

dd=1y/ h*dr*4-(L—r)r*de®
et si I'on fait d¢ constant, d'ol d*¢=o0, on aura

_ adr2de4-r2d@3—rdorde
T hrdre (heraradgr

v \/h:—}-rﬁ .
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9. Prenons pour premier exemple le céme droit ayant A pour

centre de sa base, ct 7 pour rayon de cette base. Ici on aura dr=0;
la différentielle de la surface conoidique deviendra donc

dd=rdey/h¥r,
ayant pour intégrale

A=:irey/ higr+4C ;

ce qui donne, pour la surface entiére du céne =ry/Tgre. Faisant,
4 A —ane ’ld@
pour abréger, le c6té du céne ou y/Egr=f, on aura ds= WAk

ho .. o .
et s= — . Ainsi, la somme des angles extérieurs , pour le céne

S

. , , omh .
entier , étant d’aprds cela 7— , la_capacité de l'angle au sommet

. o2m( f—h) . .
deviendra T On aura donc la proportion: l'angle droit, ou
- 2a( f—h) .,
— , est é-——§~—, comme l'orthotdre est 3 la capacité de l'angle
2

qu’on cherche, lequel, par conséquent, sera égal a l'orthoédre mul-
T 4(f—h) . .
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