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ANNALES
DE MATHÉMATIQUES

PURES ET APPLIQUÉES.

ASTRONOMIE.

Recherches sur la détermination des orbites des corps
célestes ;

Par M. GERGONNE,

PREMIERE PARTIE.

Détermination des orbites des corps célestes , par quatre ou un plus
grand nombre d'observations voisines*

JLJÀ méthode que je vais tracer , dans cette première partie, est di-
recte; elle est fondée sur la plus saine théorie; et elle réduit au premier
degré un problème généralement regardé comme très-difficile. Néan-
moins y on la jugera peut-être plus curieuse qu'utile. Elle suppose 5.
en effet ? que Ton a au moins quatre observations complètes de l'astre
dont il s'agit de déterminer les élémens ; elle suppose 5 de plus ? que

Tom* IL *



s DÉTERMINATION DES ORBITES
rintervalle de temps qu'embrassent ces observations n'est pas très-con-
sidérable ; elle suppose ? enfin , que ces observations sont assez exactes
pour qu'il soit permis de compter sur les troisièmes différences des don-
nées qu'elles auront fournies ; et Ton sent que ce sont là autant de
circonstances très-difficiles à réunir.

C'est donc moins dans la vue des applications pratiques que j ' in-
dique ici cette méthode,que pour montrer i.° quelle influence exerce,
dans la solution du problème, la considération des lois du mouvement
auquel l'observateur est assujetti j 2.0 quel parti on peut tirer de la
méthode des différences dans les applications de l'analise ; 3.° enfin ,
combien il importe de perfectionner l'art d'observer , puisque des ob-
servations plus exactes , eu même temps qu'elles conduisent à des "ré-
sultats plus précis 9 permettent 9 dans la recherche de ces résultats, de
substituer, à des tàlonnemens toujours incommodes et souvent très-
compliqués , des méthodes directes extrêmement simples.

Toutefois ? à ne considérer même la méthode que je vais sommai- -
rement présenter que comme propre seulement à fournir une approxi-
mation grossière P peut-être serait-elle encore de beaucoup préférable
à toutes celles qui reposent sur l'hypothèse d'un mouvement sensi-
blement rectilîgne et uniforme ? pendant rintervalle de temps qu'em-
brassent les observations ; hypothèse tout à fait illusoire , comme M.
Lagrange l'a prouvé dans l'un de ses mémoires sur la détermination
des orbites des comètes , et comme je l'ai fait voir, par de nouvelles
considérations , dans un mémoire que j'ai lu , il y a quelques mois 5

à l'académie du Gard (*). J'ajouterai qu'en réduisant ainsi le problème
au premier degré ? en même temps qu'on îe simplifie , on élude une
discussion 5 toujours pénible, et souvent très-délicate 9 entre les diver-
ses solutions que peut admettre un problème d'un degré plus élevé;
ce qui me parait être un avantage irèi-précieux»

(*) J'ai prouvé , fciiti'c autres HLosos i dans ce mémoire , que, dans l'hypothèse d'un
mouvement ceitbiLLmtnl u :;-l c;ne et uniibriiie , les mêmes données pouvaient rér
pondre à une m£aité de trajectoires dîiïéxentes.



DES CORPS CÉLESTES. 3
Je montrerai, au surplus , dans la seconde partie de ce mémoire ?

que ? même en n'employant seulement que les premières et secondes dif-
férences des données fournies par les observations P le problème de la
détermination des élémens du mouvement d'un astre, n'est que du troi-
sième degré 9 si l'orbite de cet astre est assez alongée pour pouvoir
être considérée comme sensiblement parabolique ? et qu'il n'est que du
second degré seulement si, au contraire , le peu d'excentricité de cette
orbite permet de la considérer comme circulaire \ de manière que le
cas où l'excentricité n'est ni très-grande ni très-petite , c'est-à-dire 9

le cas le plus rare dans la nature, est le seul où le problème 5 même
pour une première approximation 9 soit inévitablement du septième
degré. Mais ces simplifications ne peuvent avoir lieu qu'autant qu'on
emploie concurremment les premières et secondes différences tant des lon-
gitudes que des latitudes observées ? ce que l'extrême précision que l'on ap-
porte aujourd'hui dans les observations 5 semble d'ailleurs suffisamment
autoriser , du moins dans un grand nombre de cas.

Les seules suppositions que je me permettrai dans ce qui va suivre,
et elles sont indispensables pour le but que j'ai en vue, sont i.° que
les observations sont faites au centre même de la terre ; 2.0 que le
centre du soleil est dans une immobilité parfaite ; 3.° que les masses
de la terre et de l'astre observé peuvent être considérées comme nulles ?

par rapport à la sienne ; 4«° q u e conséquemment ces deux corps n'exer-
cent aucune attraction l'un sur l'autre ; 5.° qu'enfin il n'existe ? d'au-
tre part 5 aucune cause perturbatrice du mouvement. Au surplus , si
l'on en excepte , peut-être, la belle méthode de M. Gauss 9 il n'en est
aucune qui ne soit fondée sur ces diverses hypothèses.

A l'avenir , lorsque j'emploîrai les coordonnées rectangulaires , le
centre du soleil sera l'origine } la ligne des équinoxes sera l'axe des
ce ; cellè^des solstices sera l'axe des y *v l'axe de l'écliptique sera celui
des £ , et l'angle des coordonnées positives sera compris entre Ariés ?

le Cancer et le pôle boréal de l'écliptique. Je prendrai le jour moyen
pour unité de temps , la distance moyenne du soleil à la terre pour
unité de longueur 2 et l'angle droit pour unité de mesure des angles.



4 DÉTERMINATION DES ORBITES
Enfin y je considérerai les latitudes comme positives ou comme
tives , suivant qu'elles seront boréales ou australes.

L Cela posé 5 soient ? pour une époque quelconque / ,
X, Y5 Z ? les coordonnées d'un astre observé ? et R son rayon vec-

teur ;
oc ? y , les coordonnées de la terre s et r son rayon vecteur ;
& , sa longitude , ou celle du soleil augmentée de deux angles droits ;
/S 5 y 5 les longitude et latitude géocentriques de l'astre,
II est aisé de voir qu'on aura

on aura d'ailleurs

(1) ^r=rCos.^ 5 (2)

posant donc 9 en outre ,

ou , ce qui revient au même ?

(3) /?Sin.y = CoS./3Cos.y ? (4)

les deux équations ci-dessus deviendront

(5) X

(6) T

II. Soit considéré le temps comme variable indépendante, et soient
adoptées , pour plus de simplicité, les notations de M. Lagrange. Eh
dïjJërcntiant trois fois cnacane des deux équations (5 , 6) , il viendra

( 7 )

( 8 )
( 9 )

(">)

00
(ia)

X' -x' -+-
JP ~y> +

J7/=J// +

q' Z+qZ' ;
p" Z-\-2p' Z'^-pZ

Cj" Z-\~2,f Z'-\-qZ

•p111Z-^ropflZ/-\-op/

û///Z-{-3<ji^Z/~{~à(ji/

"
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Maïs ? par le principe des aires ? on a

XY"—YX"=o,

04) YZ»—ZY"= d?où

(16)

(17)

(18)

Dans chaque colonne 5 chacune des équations est comportée par les
deux autres 9 en sorte que les six équations n'équivalent réellement
qu'à quatre } mais ? réunies aux huit équations (5 9 6 ? , n ? 12),
elles sont en nombre suffisant pour déterminer les douze Inconnues

X , X< , X" , X>" ;
Y , Y' , Y" , Y"' ;

Z 9 Z' , Z» Z"f

III. On a aussi, en vertu du même principe,

(19) xyf/—yx^ — o , d'où (20) xyM-—yx

et ? bien que ces deux dernières équations n'expriment que de simples
relations entre les données du problème 5 leur considération n'en est pas
moins très-importante 5 à raison des simplifications qu'elles introdui-
sent dans la recherche des valeurs des inconnues.

IV. Pour parvenir aux valeurs de ces inconnues d'une manière sim-
ple ? soient d'abord substituées ? dans l'équation (19)5 les valeurs de
-x ? ccn\ y ? y

n
 9 données par les équations (5 5 6 , 9 5 1 o ) , il viendra

(X—pZ)(Y»—qtfZ—2<ji'Z'—qZf')—(Y—(]Z)(K»>—pffZ—2.p'Zf--pZ»)=o ,

équation qui 9 en vertu des équations (5 9 6) 9 peut être écrite ainsi

En développant la partie

de cette équation, et l'ordonnant par rapport à p et €j, on voit qu'elle
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s'évanouit, en vertu des équations ( i 3 ? i4> i 5 ) , en sorte que l'équa-
tion devient simplement

V, Soient ? en second lieu ? substituées dans l'équation (20) pour

X .5 OC y X J X J

y > yf > yN > yll/ ;
leurs valeurs données par les équations (5 5 6 5 . •.. ? 1 i, 1 ^) ? il viendra

(X—pZ) ( rw—^"'Z—àq"Z'—3q'Z"—qZ»')+(X'*-p'Z—pZ')(F^—^r/Z—2^'Z'~?Z") )

« ( Y—qZ) ÇXf»—pr"Z—Zp"Z'—$pfZ"—pZflf)—{ Y?—c)

Cette équation peut d'abord ? en vertu des équations ( 5 ? 6
être écrite ainsi :

(X—pZ) (Xf/—qZ'"y-(Y--qZ) (X."f-*rZm)+(X!—pZ') ( 37'—y Z'0-*-C 17—

En développant la première ligne , et l'ordonnant par rapport à/> et ^ ?

on voit qu'elle s'évanouit ? en vertu des équations ( 16 9 1̂7 ? 18 ) ; le
surplus de l'équation est ? en réduisant ,

(22)

VI. Soit enfin différentiée l'équation (21) ; on aura ainsi

(23)

Eliminant alors Z/;^ entre les équations ( 22 ^ 28 ) 3 il viendra
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04) + (p'y—q"^

Eliminant enfin Z/ entre les équations (21 , 24 ) > et divisant par Z l'é-
quation résultante , on en tirera

y'—ç'x"y—a(p'q"—q'pf0 (xyf-~yxf)—± (p'y—g'x) <p"fy—q'''fx)

VI. Pour calculer cette valeur de Z? il faudra d'abord , à l'aide des
valeurs de r et «« qui répondent à l'époque t 9 et que donneront les
éphémérides 5 et par les lois connues du mouvement de la terre 5 déter-
miner 7V

? r
u et «/ ; d"où , par les équations (1 , 2) ? et leurs différen-

tielles premières et secondes, on conclura ? pour la même-époque 5

les valeurs de xf
 9 y

/
 9 ocf/

 9' y
f/, dont les dernières , en vertu de l'équa-

tion (19)5 ne renfermeront pas u.N.
Ensuite , à l'aide de plusieurs longitudes et latitudes observées ,

dans le voisinage de l'époque / , on calculera, par la méthode que
M. Laplace a indiquée (*) , les valeurs approchées , toujours pour
l'époque / , de 0 , /a7, /s" , /3/y/ ; y , */ , y", yff/. Recourant alors
aux équations (3, 4)5 e t à leurs différentielles des trois premiers ordres 5

on en conclura les valeurs correspondantes de p , p;
 5 py/, p/;/ > ç9

*}* 5 Ç^ .9 (jj/// ? a u moyen de quoi tout se trouvera connu dans la
râleur de Z.

Z étant ainsi déterminé 9 l'équation (21) fera connaître Z;, et on
obtiendra ensuite A", A 7 , Yv Y/

 9 par les équations ( 5 , 6 , f , 8 ) «
Appelant donc H le rayon vecteur , pour l'époque t ? on aura

de plus 5 en formant la quantité

(*) Voyez Mécanique edeste 9 tom. 2 3 pag, 293.
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suivant qu'on la trouvera positive ou négative , on saura tjue Fepo-
que / suit ou précède celle du périhélie»

VIL Ces préliminaires établis , rien ne eera plus facile que de
déterminer les élémens de l'orbite, en suivant la. marche tracée par
Fillustre auteur de la Mécanique céleste (*) et qui revient à peu près
à ce qui suit :

Soient posés

YZ— ZY'=J,

—YX>=C , z\ ^—(X
i R

équations dans lesquelles 5 en désignant paf S la durée de l'année
dérale, on a

posant, en outre ,

on trouvera

i . ° demi -e ; r and axe r= • • i • ...••-„, • •

.° rapport de Fexcentricité au demi-grand axe =

3.° Tang. Long» du nœud ascendant =-^-.— ;
JB

£.° Tang. inclinaison de Forbîte = ;

A*

O Vojez Mécanique céleste 9 tome 1 , page 16a*
5.°
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5.° Tang» Long, du périhélie sur l'écliptique = —• •

cor V • DX+EY+FZ6. Los» anomalie vraie = ,
Hli

enfin 5 désignant par a le demi-grand axe , par e le rapport de l'ex-
centricité à ce demi-grand axe 5 par ç l'anomalie , et posant

y
on aura

7.0 Epoque du périhélie = t^.(u—eSm.u) T/ a— ; le signe 4 - ou le

signe — devant être pris , suivant que Fépoque t précède ou suit celle
du périhélie.

D E U X I È M E P A R T I E ,

Détermination des orbites des corps célestes , par trois ou un plus
grand nombre d'observations voisines*

Dans la première partie de ce mémoire, je n?aî fait uniquement usage
que du principe des aires 9 et il m'a fallu , pour suppléer aux autres
circonstances connues du mouvement des corps célestes 9 recourir aux
troisièmes différences des longitudes et latitudes observées, ce qui sup-
posait quatre observations au moins. Ici j'aurai indifféremment recours
à toutes les lois qui résultent du principe de la gravitation ? ce qui
n'exigera plus que l'emploi des secondes différences , et ne supposera
pas conséquemment que les observations doivent être au nombre déplus
de trois. Je conserverai d'ailleurs les conventions et notations déjà adop-
tées dans la première partie.

yIII. L'équation (21) donne

( 2 5 ) Z / =

d'où résultent, par les empâtions (7 v 8)
Tom* IL



io DÉTERMINATION DES ORBITES

si ensuite on substitue dans Féquatlon (i3) les valeurs données par les
équations ( 5 , 6 , g ? io) , en ayant égard aux équations (19? 21) * il
viendra

multipliant cette équation par p;y—qfx et éliminant Zf au moyen de
l'équation (21)5 il viendra

équation qui se réduit à

(Pf—9X) (P;y—

mais ? en vertu de l'équation (19), on a

(p'y—ç'x) (py"—?*")=(py—ç*) tyf'—

substituant donc et divisant par py—qx v on aura

d'où on conclura 9 par les équations (g 9 10) et par la formule (25)
en ayant toujours égard à l'équation (ig) 9
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Voilà donc X, Y, A 7 , Y', Z'9 X» , Y", Z», déterminés en fonc-
tion de Z'; et il est essentiel de remarquer i.° que les valeurs de X*>
Y, Xf, Y1 sont complètes du premier degré en Z \ z.° que celle de Zf,
aussi du premier degré en Z\ ne renferme point de terme sans if; 3.° que
les valeurs de A 7 / , Yn

 P sont complètes du second degré ; 4-° enfin
que celle de Zn , aussi du second degré en Z', ne renferme point de terme
sans Z.

IX. Il nous faut donc une équation de plus pour déterminer nos
inconnues , et le principe de la gravitation donne, comme Ton sait 9

équation dans laquelle ^ a la même valeur que nous lui avons déjà
assignée ( VII ) . Faisant donc les substitutions et divisant par Zz il
viendra

Cette équation semble devoir monter au 8.me degré; mais elle ne s'é
lève réellement qu'au 7.me

 9 comme nous allons le voir (*)»
Le dernier terme de cette équation est H

mais , les lois du mouvement étant 5 pour la terre , les mêmes que
pour l'astre observé ? on a

(*) Cette équation équivaut à celle qui a été donnée par M, Laplace. Voyez la
Mécanique céleste, tome i . e r , page 203.
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d'où

qui donne , en quarrant , chassant le dénominateur et transposant

d3où Ton voit en effet que ? le dernier terme de l'équation (3i) étant zéro?

elle ne doit s'élever seulement qu'au septième degré.
Cette équation étant résolue , on en déduira les valeurs de Z/ , X 9 X

; ^
Y , Y/

 5 comme ci-dessus , et on achèvera absolument le calcul comme il
â été indiqué dans la première partie.

X. Nous allons montrer maintenant comment le problème se simplifie
dans les cas les plus ordinaires, e'«st-à-dire, dans les cas d'une très-grande
ou d'une très-petite excentricité.

Supposons , en premier lieu , que le demi-grand axe soit assez grand
pour pouvoir sensiblement être supposé infini 9 ou 9 ce qui revient au
même 9 supposons que l'astre observé soit une comète ; d'après l'expres-
sion que nous avons donnée du demi-grand axe, nous aurons alors

(3a)

ee qui donnera, en quarrant et introduisant la valeur de B? en X, Y 5 Z,

(33) 4^ = (

II est aisé de voir que la substitution des valeurs de Xv Y', X;\ Y/
 9

Zf, ne fera monter cette équation , en Z, qu'au 6.me degré seule-
ment (*) ; mais ce n'est pas la plus simple que l'on puisse employer ?

dans ce cas 9 pour parvenir à la solution du problème.
On a , en effet, par le principe de la gravitation , ainsi que nous

l'avons déjà rappelé ,

(*) Cette équation équivaut à celle qu'a donné M. Laplace. Yojez la Mécanique
céleste , tome x.er , x̂ age si6,
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et l'équation (02) peut d'ailleurs être mise sous cette forme

multipliant donc ces deux équations Tune par» l'autre, il viendra, ea
réduisant et transposantréduisant et transposant

(34)

équation qu i , par la substitution des valeurs de X, r , l 7 , T7
 ? Z' 5

Zf//
 ? ne s'élèvera, en Z 5 qu'au troisième degré seulement ; elle pourra

donc être résolue directement ? par les tables trigonométriques ; et 5 si
elle a toutes ses racines réelles , on n'admettra que celle d'entre elles
qui satisfera à peu près à l'équation ( 3 i ) ; l'hypothèse d'une orbite
parabolique pourra être admise avec d'autant plus de fondement que
cette valeur y satisfera d'une manière plus approchée (*)•

On voit donc que , dans le cas de la parabole 5 on a une équation
surabondante ; on en pourrait faire usage pour éliminer les secondes
différences soit des longitudes soit des latitudes géocentriques , et c'est
ainsi qu'en use M. Laplace. Il résulte de là que cinq données seulement sont
suffisantes pour la détermination complète des élémens du mouvement
d'une comète*

XL Supposons , en second lieu 9 que l'orbite soit assez peu excen-
trique pour pouvoir être sensiblement considérée comme circulaire , ainsi
qu'il arrive pour la plupart des planètes ? du moins lorsqu'on n'aspire
qu'à une première approximation ; dans ce cas? R et conséquemment R*
devra être constant ; on aura donc, à la fois,

(35) XX'+YY'+ZZ'=o ,

C¥) Les équations (3s , 33) étant combinées entre elles, pourraient conduire à une
équation du premier degré seulement qui serait, sans doute , fort difficile à obte-
nir j mais qui , par l'effet des réductions , pourrait peut-être devenir assez simple.
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(36) x/2+Y'*+z'2-{-xx''+rr"-\-zz"=o.
Après les substitutions 9 ces équations seront 9 la première du second
degré et la seconde du troisième 5 en Z $ il sera donc facile d'en déduire
une équation de relation entre les données du problème et une valeur de
Z au premier degré. Cette valeur substituée dans Féquation (3i) donnera
une nouvelle équation de relation. Si ces deux équations se trouvent sa-
tisfaites 5 on sera assuré que l'orbite est en effet circulaire ; et comme, par
leur moyen ? on pourra éliminer de la valeur de Z les secondes diffé-
rences tant des longitudes que des latitudes géocentriques 9 il s'ensuit que
deux observations seulement seront alors suffisantes pour résoudre com-
plètement le problème.

XII. Considérons maintenant le cas où la trajectoire décrite serait rec-
tiligne : on aurait alors

m ? n P g 7 h étant des constantes ; de là résulte

, V-Zn* 9

X»=mZ" , T"=nZ" >

et par suite

X'Z"—Z'X»=o9 rZ"-~Z'X»=o ;

équations qui ? en vertu des équations ( i4 ? i5 ) ? peuvent être changées
en celles-ci

(37) XZ*—ZX>= o, (38) YZ^

ces dernières prouvent qu'alors le mouvement est dirigé vers le soIeiL
Après les substitutions , ces équations ne seront que du premier degré
en Z , et elles fourniront 9 avec l'équation (3i) y deux équations de con-
dition qui serviront à vérifier l'hypothèse du mouvement rectiligne , et au
moyen desquelles on pourra faire disparaître de la valeur de Z les, s e -
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condes différences des longitudes et des latitudes observées : ainsi, encore
ici , deux observations suffiront pour résoudre complètement le problème.

XIII. Pour compléter cette théorie ? il nous reste encore à examiner
deux cas : ce sont i.° celui où l'astre observé serait dans une immobilité
parfaite ; 2.° celui où son mouvement serait à la fois rectiligne et uni-
forme. Dans le premier cas o n a , à la fois ,

X'=o , r ' = o , Z' =o,

X»=o, Y"=o9 Z"=o;

et comme les équations du mouvement sont en général

on voit qu'elles ne peuvent être satisfaites qu'autant que R est infini ,
c'est-à-dire 5 qu'autant qu'une au moins des trois coordonnées X9 Y> Z ,
est elle-même infinie.

Les équations ( 7 5 8 ) deviennent simplement dans ce cas

d'où on tire

xr y*

si donc ni p ni q ne sont infinis 9 c'est-à-dire 5 si y n'est pas zéro 5 on
devra avoir

= Constante ?

c'est-à-dire
= Constante ;

-1 =̂ Tang.iS = Constante 9

P^=Cot.y = Constante ;
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ainsi les angles £ ? y , doivent être les mêmes pour des observations faites
à diverses époques. C'est ? par exemple , ce qui arrive pour les étoiles
fixes.

XIV. Dans le cas d'un mouvement à la fois rectiligne et uniforme f

on a seulement

X"=o , Y"=o , Z"=o ;

ce qui suppose encore qu'une au moins des coordonnées X » Y? Z > est
infinie 9 du moins en ayant égard à toutes les lois qui résultent du prin-
cipe de la gravitation j mais l'équation (28) donnant alors

Z~^*~

%\p ou q ne sont pas infinis % c'est-à-direa si Ton n5a pas y=Oji on devra
avoir

py—ç/p//-=zo %

équation dont l'intégrale complète est

M

ou ? par les équations ( 3 ? 4 ) ?

JfefCos.i84

ou aura pareilleiftent ; pour deux autres observations*

'éliminant les deux constantes M et N entre ces trois équations , on arrï-
yera à l'équation de condition

Sin.(/3 2—/3 f ).Tang.y+Sin.(/3, —/3).

et rhypothèse d'un mouvement rectiligne et uniforme ne pourra être
admise qu'autant que les données fournies par trois observations vérifie-
ront cette dernière équation»

GÉOMÉTRIE*
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GEOMETRIE.

Solution dun problème de géométrie , dépendant de la
théorie des maxirais et minimis ;

Par M. LHUILIER , professeur de mathématiques à l'académie
impériale de Genève.

JTIIOBLÈME, Par un point donné de position 9 dans un angle
connu ? faire passer une droite de manière que sa partie interceptée
entre les côtés de Vangle soit la moindre possible ? (*)

Soit ACA7 ( rig. 1 ) un angle donné 9 et soit P un point donné entre
les côtés de cet angle ; il s'agit de mener 9 par ce point P , une droite
dont la partie interceptée dans l'angle ACA7 soit la moindre possible.

Solution. Soient XX 7 et ZZ7 deux droites égales inscrites dans l'angle
ACA7 et passant par P. De ce point comme centre , avec les rayons
PZ et PX7

 ? soient décrits deux arcs de cercle Zz et ^SJx;
 9 compris

dans les angles XPZ et XTZA

Puisque X X 7 - Z Z 7 ,

on doit avoir

Or , Lim.X z : Z z —\: Tang.X ,

Lîm.Z z : X ^ = P X : PX' ,

(*) Ce problème a été traité par M. Puissant , ( Recueil de diserses propositions , etc. r
deuxième édition, pag. 4a3 } ; mais son analise est toute différente de celle de M*
Lthuilier.

( Note des éditeurs^. )
Tom. IL 3
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Lim.XV : Z'^/=Tang.X' : i ;

Lim.X z : 7J *'=PX.Tang.X / : PX'.Tang.X.

Donc, lorsque XX' est la plus petite , on doit avoir

PX. Tang.X'= PX'.Tang.X ,

d'où PX : PX'=Tang.X : Tang.X'.

Par P soient menées à CA et CA/ des parallèles rencontrant ces
droites en B et B' ; et, par le même point soient menées aux mêmes
ûroites des perpendiculaires les rencontrant en D et D ' ; on aura

PX : PX' :: BX : PB' :: BX : CB ;

donc BX : CB : : Tang.X : Tang.X'.

Premier cas. Que l'angle C soit droit, on aura

Tang.X'=CotX 'et BX=BPCot.X ;

donc BP Cot.X : CB=Tang.X : Cot.X ,

et par conséquent
C B _ Cot^X _ BX3

donc

on aura de même

Le problème sera donc résolu puisque BX et IVX' seront donnés en
fonctions de quantités connues ? et on voit qu'il n'aura alors qu^une
solution.

Deuxième cas. Que l'angle C ne soit pas droit On parvient à une
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équation du troisième degré (*) % soit qu'on prenne pour Inconnue la
distance du point X à quelque point donné sur CB 9 soit qu'on prenne
pour inconnues les tangentes des angles X ou X7.

Je vais , par exemple ? chercher la position du point X ? par sa
distance à quelque point donné sur CB ? et construire l'équation cor-
respondante.

(*) On parvient à une équation fort simple en procédant comme il suit :
Soit ACB y ( fig. 2. ) l'angle donné y soit P le point donné et soit enfin XY la

droite cherchée. Soit mené CP=K ; soient faits Ang.PCA=#, Ang.PCB=£ T

Ang.CPX=0 ; on aura Ang»CPY=^—Ô ; donc

donc

Ang.CXP=sr— («4-«) , ) { Sin.CXP=Sin.(0+«) ,
' d'où *

P Y = K - s £ F - ' P X = K -
et par conséquent

Sin.

Il faudra donc, pour avoir la valeur de ê qui convient au minimum, égaler à zéro
la différentielle de

Sin.0

ce qui donnera

Sin.(^+^)Sin.

En divisant cette équation par Sin. (£-{-#)Sin(0—/3)Sin.0 elle deviez

ëquation équivalente à celle-ci

Col.«Cot.^— 1
° ' C 0 "*" Cot./3—Cot.0 5

laquelle devient, en chassant les dénominateurs et réduisant ,

équation du troisième degré 5 &anŝ  second terme.
( Note âes éditeurs. }
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On a, comme il vient d'être prouvé ci-dessus ,

BX:CB=Cot.X/:Cot.X ;

DX D'X'
CouX=—, CotJL'=— ;

donc

PD' ' PD CB ' PB v ' '

et consëquemment

BX : PB=D'X' : DX=E'X/—WW : DX ,

= B'X'xBX—B1>xBX:DXxBX ,

—B'D'xBX : BX XDX (**) ,

: B X x D X ;

donc

BX:PB=B'D'xEX:BXxDX ,

ou BX2 : PBxB'D'=EX : DX=EXxDX : DX* ,

ou enfin BX2 : CBxB D =EXxDX : DX2 (***).

Sur ED , comme diamètre , soit décrit un cercle , et du point X soit
- . • . _ m i ) . T 1 •"•— -^-jp————•—•e—

C) A cause des triangles semblables PDB et PD'B'.
(**) Par les triangles semblables , on a les deux proportions

B'X' : B 'P=BP : BX , )
\ d'où B'X' : B'D'=:BE : BX ou

B'P : B'D'^BE : BP ; )

(•**) A cause de BD ; B'D'=PB : PB' ou CB , qui donne

D.

( Notes des éditeurs. )
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élevée a DE une perpendiculaire rencontrant en V la circonférence de ce
cercle; on aura E X x D X = X V 2 ; substituant donc dans la proportion ci-
dessus ? elle deviendra

BXa:

ou BX : v/CBxi3D = XV : DX ,

d'où BXxPX=XVv/CBxBD.

De là découle la construction suivante pour déterminer le point X.
Soit PB parallèle à CA' rencontrant CA en B ; soit PD perpen-

diculaire à CA i soit aussi PD7 perpendiculaire à CA7 et rencontrant
CA en E. Sur DE comme diamètre 9 soit décrit un cercle ; soit en-
suite décrite la parabole qui est le lien géométrique de l'équation

BXDxX — XV^/CBxBD ; par le point V où cette parabole ren-
contre la circonférence du cercle soit abaissée une perpendiculaire VX
sur CA ; alors le pied X de cette perpendiculaire sera le point cher-
ché ; de manière qu'en menant par X et P une droite terminée en X /

a ÇA', cette droite sera la plus petite de toutes celles qui s passant
par P P se termineront à CA et CA7.

Remarque Lve L/équation PXTang.X'^PX'Tang.X devient indé-
pendante de la nature des lignes entre lesquelles il faut inscrire la
plus petite des droites qui passent par le point donné ; en substituant
aux angles X 5 X7 les angles que fait XX ; avec les tangentes menées
par les points X 5 X7 aux courbes sur lesquelles ces points se trou-
vent situés.

Remarque //.me Lorsque le point P est sur la droite qui coupe l'an-
gle ACA'y en deux parties égales ? la plus petite des droites à ins-
crire est ( comme il est connu ) perpendiculaire à la droite CP.

Remarque //.me On pourrait obtenir le minimum proposé 9 en ré-
solvant ce problème déterminé : Inscrire à un angle donné une droite
d'une longueur donnée passant par un point domiê ? et en cherchant
les limites résultant de la construction. Or ? ce problème déterminé
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est susceptible d'une construction élégante par le cercle et par l'hy-
perbole rapportés à ses asymptotes.

Remarque IV.me On ramène à peu près de la même manière à un
problème déterminé les problèmes suivans : Par un point donné, sur
une surface , splièrique, et dans un angle sphèrique formé sur cette
surface -, mener un arc de grand cercle dont la partie inscrite dans
Vangle sphèrique soit la plus petite , ou tel que l'aire ou le contour\
du triangle retranché soit un minimum ?

QUESTIONS RÉSOLUES.

Solutions des deux problèmes proposés à la page 5iS
du premier volume des Annales ;

Paz* MM. VECTEN , professeur de mathématiques spéciale?
au lycée de Nisrcies, ROCHAT , professeur de navigation à
St-Brieux, et FAUQUIER 9 élève du lycée de

JLJES trois solutions de ces deux problèmes qui ont été reçues par
les rédacteurs des Annales , ayant entre elles plusieurs points de
ressemblance 5 on croit devoir 7 pour abréger, en rendre compte dans
im seul article.

Le premier problème 9 comme ori le va voir tout à l'heure ? se
ramène très-facilement à celui-cî ?

LEMME. Deux cercles se coupant, sur un même plan , mener ?

par tune quelconque de leurs intersections , une droite dont la partie
interceptée entre les deux cercles soif d'une longueur donnée ?
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Soient O , O7 ( fig. 3 9 4 ? 5 ) les centres de deux cercles se cou-

pant en C et D , et soit AB une droite donnée ; 11 s'agit de mener
par le point C une droite CA7 ou CA77 de manière que sa partie
A7B7 ou A^B77, interceptée entre les deux cercles soit égale à AB.

S O L U T I O N DE M. V E C T E N .

Construction. A partir du centre O de Tun quelconque des deux
cercles ? ( lig. 3 ) soit portée ? sur la droite OO7 qui joint ce centre
au centre O7 de l'autre cercle, une longueur OE = AB ; soient tirées
DO , DO7 , et j par E , soit menée à la première de ces deux droites
une parallèle coupant la seconde en a ; du point D comme centre ,
et avec Da pour rayon ? soit décrit un arc de cercle coupant en A'
et A77 le cercle dont le centre est O7; par ces points A7 , A77, et par
le point C soient menées des droites coupant en B7 et B77 le cercle
dont le centre est O ; ces deux droites seront les droites cherchées f

en sorte qu'on aura A / / B / / =A / B / =AB.
Démonstration. Sqient joints DA7 , DB7 , DA" 9 DB77

 ? et par a
soit menée à OO7 une parallèle coupant DO en h. Les angles DA7B7,
DA^B77

 9 ayant Fun et l'autre leurs sommets à la circonférence du
cercle dont le centre est O7 , ont également pour mesure la moitié
de l'arc DA/7C ; ils sont donc égaux à DO7O et conséquemment
à ~Qab, Pareillement les angles DB7A7

 ? DB/7A77
 9 ayant l'un et l'autre

leurs sommets à la circonférence du cercle dont le centre est O 9 ont
également pour mesure la moitié de l'are DB7C ; ils sont donc égaux
à DOO7 et conséquemment à Dba ; les trois triangles A7DB7

 5 A
/7DB77,

àDb 9 sont donc semblables ; ils sont de plus égaux, puisque , par
construction, DA7=DA77=:D^ ; donc A 7 B 7 ^A 7 7 B 7 7 ^^ = OE = AB 9

ainsi qu'il était exigé.
Limite du problème. Les points A7

 ? A77
 5 étant déterminés par

l'intersection de la circonférence dont le centre est O7 avec une
circonférence décrite du point D comme centre et avec Da pour ra-
yon ? il s'ensuit que le problème ne sera possible qu'autant que ces
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deux circonférences se couperont, c'est-à-dire, qu'autant que Da
n'excédera pas le double de DO' ; ou 5 ce qui revient au même,
qu'autant que tf£ = OE:=AB n'excédera par le double de OO7 ; c'est-
à-dire 5 qu'autant que la longueur donnée n'excédera pas le double
de la distance entre les centres des cercles donnés. Si cette droite
était précisément égale au double de cette distance ? l'arc K/aK/1 serait
simplement tangent au cercle dont le centre est O7

 5 et le problème
n'aurait qu'une solution.

De là il est facile de conclure le théorème suivant : De toutes les
droites menées par l'une des intersections de deux cercles 9 et ter-
minées à l'un et à F autre 9 la plus grande est parallèle à la droite
qui joint les centres ? et double de cette droite*

S O L U T I O N DE M. F A U Q U I E R .

La solution de M. Fauquîer diffère peu de celle de M. Vecten. Il
mène par le point C (Jig» 4 ) une droite quelconque terminée en m , mf

respectivement aux circonférences dont les centres sont O5 O ;; ayant tiré
Dm , Dm/

 5 et coupé sur mm/ une partie 77?E = AB ; il tire par E paral-
lèlement à mD ? une droite coupant mfD en a ; il décrit alors du point D
comme centre 9 et avec Da pour rayon , un arc dont les intersections A'' s
A/;, avec la circonférence dont le centre est O/ sont les mêmes que les
points désignés de la même manière dans la figure 3* Cette construction
se démontre en conduisant par a une parallèle à mfm ? se terminant à

. Dm en b , et prouvant ensuite 5 à peu près comme le fait M. Vecten 9 que
les trois triangles A'TMB7 , A^DB" , aDb, sont égaux. L'avantage de
cette construction est qu'elle n'exige pas que les centres des cercles
donnés soient connus.

Il est assez remarquable que tous les triangles construits sous les
mêmes conditions que mDm/ sont semblables , et que le plus grand de
tous est celui qui a pour hauteur la corde commune aux deux cercles*

S O L U T I O N DE M. R O C H A T .

M. Rochat a traité le problème analitiquement de la manière suivante.
Soit
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Soit prise pour axe des x la droite indéfinie qui passe par les centres

des cercles donnés ; soient r, rf , les rayons de ces cercles , et * ? *', les
abscisses de leurs centres , leurs équations seront

( t f — ^ + ^ z r r * , (x—*Oa+Ja = WS

En retranchant ces deux équations Tune de l'autre , on obtiendra 9
comme Ton sait , celle de la corde commune aux deux cercles ; on aura
ainsi

= o.

Si" Ton veut profiter de l'indétermination de # et a/ pour faire en sorte
que la corde commune aux deux cercles devienne Taxe des y, il fau-
dra, dans cette équation, faire # = 0 , ce qui donnera l'équation de rela-
tion

posant donc

les équations des deux cercles deviendront

x*—2^^-+-y2 = i3a , x*—2«t

e t , comme elles sont satisfaites Tune et l'autre par

il en faut conclure que + £ est l'ordonnée de l'intersection des deux
cercles et conséquemment la moitié de leur corde commune.

Présentement 5 toute droite passant par l'intersection dont l'ordonnée
est -4~/3 3 aura une équation de la forme

dans laquelle a est tangente de son inclinaison sur Taxe des x; en com-
binant successivement cette équation avec celles des deux cercles , on

Torn. IL 4
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obtient pour les coordonnées des intersections de la droite avec chacun
d'eux les valeurs suivantes

x~
2(ct û/3) 2.(ot,

si donc on veut que la portion de cette droite interceptée entre les
deux cercles soit d'une longueur donnée K , on devra avoir

-T-a

ou

d'où ^
— K

telle est donc la tangente de l'angle qui doit faire la droite cherchée
avec Taxe des oc 9 d'où l'on voit que le problème aura en général
deux solutions 5 à cause du double signe du radical ; on voit de plus
qu'il ne pourra être résolu si l'on a K>2(*—«f) 5 c'est-à-dire , si la
longueur donnée surpasse le double de la distance des centres ; on
voit enfin que, si K est indéterminé ? la plus grande valeur qu'il pourra
avoir sera 2(«—«f) , c'est-à-dire , le double de distance entre les centres 5

auquel cas 5 a étant nulle , la droite cherchée devra être parallèle
à Taxe des x. Ainsi, si l'on proposait de mener, par l'une des interse-
tions de deux cercles, une droite de telle manière que la partie de cette
droite interceptée entre les deux cercles fût la plus grande possible, ou
résoudrait le problème en menant par ce point une parallèle à la droite qui
joint les centres; et la partie interceptée serait double de la distance entre
ces centres.

La valeur générale de a fournit cette construction : soient E X (fig. 5)
la droite qui joint les centres , et EY la direction de la corde commune ,
de manière que E soit le point d'intersection de ces deux droites. Soit
prise sur E X , à partir de E , une partie EF égale à la longueur donnée
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AB ; du point F comme centre , et avec le double de la distance 0 0 ' des
centres pris pour rayon 5 soit décrit un arc coupant EY en G et H , et
soient menés FG ? FH ; en tirant par C des parallèles à ces deux
droites5rencontrant les deux circonférences 5 l'une en A' ,W et l'autre en
A" , B" , on aura A//W/— AJW = AB.

PROBLÈME L Construire un triangle qui soit égal à un triangle
donné , et dont les côtés , prolongés s'il est nécessaire 9 passent res-
pectivement par trois points donnés.

Il est entendu que l'on désigne à l'avance ceux des points donnés par
lesquels doivent passer respectivement les côtés ou prolongemens de
côtés du triangle donné. Mais, s'il en était autrement ? il arriverait seu-
lement que le nombre des solutions du problème en deviendrait 5 en géné-
ral , six fois plus grand , comme Ta observé M. Rochat*

Soient donc ABC (fig. 6) un triangle donné ? et a ? h , c 9 trois points
donnés 9 il s'agit de construire un triangle égal à ABC 5 et tellement situé
que le point a soit sur la direction du côté égal à BC 5 le point b sur la
direction du côté égal à AC , et le point c sur la direction du côté égal
à AB.

Solution* MM. Vecten , Rochat et Fauquier ont également réduit la
solution du problème à ce qui suit»

Sur les distances ca > cb ? de l'un quelconque c des points donnés
aux deux autres a, b , prises pour corde, soient décrits des arcs respec-
tivement capables des angles A , B , du triangle donné ; par c soit menée
(Lemmè) une droite dont la portion interceptée entre les circonférences
dont ces arcs font partie soit égale à AB ; soient respectivement W 5 A',
les points où cette droite coupe les circonférences passant par at, b ; en
menant Wa et K!b se coupant en ÇJ ? le triangle A/B/C/ sera le triangle
cherché. Il est clair en effet que 7 parla construction , les points a v b ^c%
se trouveront respectivement sur les directions de ses côtés B'C7, CA7 ,
A'B' ; de plus son côté A'B' 9 et les deux angles adjacens se trouvant
aussi, par construction , égaux au côté AB et aux deux angles adjacens
du triangle donné , d'où il résulte que ces deux triangles sont égaux.

On peut ? par le point c > mener de deux manières la droite dont la
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portion interceptée entre les deux circonférences doit être égale a ÀB 5

ce qui fournit déjà deux solutions du problème : cette observation a été
également faite par MM. Vecten , RochatetFauquier. M. Vecten a remar-
qué de plus que les arcs capables des angles B et A pouvaient être indiffé-
remment décrits de l'un ou de l'autre côté de ca et cb, ou ? ce qui revient
au même 9 qu'on pouvait décrire d'un même côté de ces droites , des arcs
capables tant des angles B et A que des supplémens de ces angles , ce
qui donne lieu à quatre solutions du problème. A la vérité , les deux
arcs décrits sur ca peuvent être combinés avec les deux arcs décrits sur
cb de quatre manières différentes ? ce qui semblerait devoir conduire à
huit solutions du problème ; mais il est facile de se convaincre que des
quatre combinaisons dont ces arcs sont susceptibles9 il n'y en a que deux
seulement qui donnent un triangle égal au triangle ABC» Les deux
autres donnent un triangle dont un côté est égal au côté AB de ce
triangle 5 et dont un des angles adjacens est égal à un des angles A 5

B , mais dont le second est supplément de l'autre. La figuré 7 représente
les quatre solutions indiquées par M. Vecten ; on y a ponctué de la
même manière les cercles qui doivent être combinés ensemble ; /3 5 $J
sont les centres de ceux qui sont décrits sur ac , et *, *' sont les centres
de ceux qui sont décrits sur le v de manière que les centres des cercles
à combiner sont *fi 9 a''p>>'.

M. Vecten a soin de remarquer que le problème ne peut avoir quatre
solutions qu'autant que la moitié du côté donné AB sera moindre que
la pllis petite des deux distances *p ^J^ ; que si elle est égale à cette
distance 5 le nombre des solutions se réduira à trois ; qu'il n'y en aura
que deux si~AB se trouve compris entre *£., *!& ; qu'il n'y en aura
qu'une seule si \ AB se trouve égal à la plus grande de ces deux distances ;
et qu'enfin le problème sera impossible s'il la surpasse,

M. Rochat, en considérant que l'arc capable de l'angle C 5 construit
sur la troisième distance ab , doit couper les deux premiers au même
point , a déduit de cette observation les deux théorèmes suivans :

1. Trois points a , b , c ? étant pris respectivement d'une manière
arbitraire sur les côtés BC, CA., K&^d'un triangle ABC5 si Von
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fait passer des circonférences par les systèmes de points a* b , C;
^ , c , A , c , a , B 5 ces circonférences se couperont toutes en un même
point,

IL Trois circonférences passant par un même point P et se cou-
pant de plus deux à deux en des points a , b ^ c , il existe une infinité
de triangles dont les côtés passent respectivement par xes trois points et
dont les sommets sont respectivement sur les trois circonférences données*

Tous ces triangles sont semblables entre eux et au triangle dont
les sommets sont aux centres des trois cercles, et ils ont tous
le point P pour point homologue commun. Le plus grand de tous est
celui dont les cotés sont parallèles aux droites qui joignent deux
à deux les centres des trois cercles.

L'arc capable de l'angle C décrit sur ab peut, entre autres usages 9

servir à lever l'incertitude où Ton pourrait être sur la manière de
combiner deux à deux les quatre arcs décrits sur ca et cb ; on voit
en effet , par ce qui précède., qu'il ne faudra prendre ensemble que
•ceux qui couperont ce troisième arc * décrit soit d'un côté soit de
l'autre de ab , en un même point*

Les trois points donnés a 4 b ? c v peuvent être situés sur- une
même ligne droite , et c'est un cas qui a été examiné par M. Vecten.
11 n'y a alors aucun changement à faire dans la construction f déjà
indiquée, II arrive seulement 5 dans ce cas particulier^ que les deux!
distances que nous avons désignées par #/3>et «e^-'sottt égales^ et que
conséquemment ? suivant que AB sera 'plus-p^tit que1 le double de
l'une d'elles, égal à ce double ou plus grand que ce -dtmbte , le problème
aura quatre solutions, deux solutions ou sera impossible.

PROBLÈME IL Construire un triangle qui soit égal à un tri an-*
gle donné et dont les sommets soient respectivement sur trois droite^
données ? (*)

(*) Ce problème a été traité par M. Carnot ( Yoyez Géométrie de position ,
page 277 ) ; mais l'auteur s'est contenté de donner une formule algébrique.' Il a aussi
&é traité par Newton : voyez les Principes , Uvre I , > lemme O
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* Oh suppose encore ici que Ton a désigné, à l'avance > les sommets

'.qui doivent se trouver sur chacune des droites données > ce qui rend
le nombre des solutions six fois moindre qu'il ne le serait si Ton
pouvait indifféremment établir chaque sommet sur chacune des droites
donr^ées.s

MM. Vecten 5 Rochat et Fauquier ont également ramené ce pro-
blème au précédent 9 et il n'est pas difficile de voir que réciproque-
ment le précédent pourrait être ramené à celui-ci. Voici donc à quoi
se réduit la construction de ce dernier problème :

Soit ABC le triangle donné ( fig. 8 ) et bc ? ca , ab ^ trois droites
.données; il s'agit de construire un triangle égal au triangle ABC et
dont les sommets des angles égaux à A , B> C9 soient respectivement
situés sur bc 9 ca , ab.

Construction. Soit construit (Problème I. ) un triangle a/b/c/\ égal
à abc, et dont les côtés passent respectivement ? savoir 5 b

/c/ par A , c/a/

par B , a/b/ par C. Soient alors coupés bc 9 ca ? ab ? en A ^ B 7 , C' 7
<de la même manière que le sont b!c* 5 c/a/, a/b/, en A , B , C; ti-
rant alors A/W v B

/C /
> CA 7 , le triangle A/B/C/sera le triangle demandé.

M» Vecten observe qu'en général, quatre triangles pouvant se trou-
yer dans les mêmes circonstances où se trouve le triangle afbrcf

 9 il
s'ensuit que pareillement quatre triangles peuvent se trouver dans les
mêmes circonstances où se trouve le triangle A ^ C 7 ; c'est-à-dire 9

quç ce second problème , comme le premier 9 peut admettre quatre
solulioiis. La figure^ ^ représente ces quatre solutions ? telles qu'elles
ont été indiquées par M. Vecten»

M. Vecten observe ensuite que la construction indiquée ci-dessus
devient illusoire toutes les fois que les trois droites données ne for-
ment pas un triangle ; ce qui peut arriver de diverses manières qu'il
considère successivement.

i ,Q II peut arriver ( fig. i o ) que les droites données (VA7
 5 O B ' 9 (VC,

se coupent en un même point O7 ; alors décrivant sur deux quelcon-
ques CA P CB y des côtés du triangle donné , pris pour cordes , et du
côté de l'intérieur de ce triangle 7 des arcs COA, COB > capables des
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angles C7O7A7<

5 W B 7 , et tirant OC, OA9 OB;en portant ces longueurs
sur O C ^ , & A' , O7B7, de O7 en C7, A7, B 7 , et mirant A ' B ' , B'C7, C'A7,
le triangle A7B7C7 résoudra le problème. Ce problème a deux solu-
tions ; car , en prolongeant A7O7 , B7O7, C/O/ , au-delà du point O7

des quantités O7A77, O ^ 7 7 , O7C77, qui leur soient respectivement égale!1;
et menant A77B /7, B7/C77, C77A77, le triangle A7/B77C77 sera aussi égal
au triangle ABC, et aura ses sommets sur les droites O7A7, O / B / , O7C7.

2.° Il peut arriver ( fig. 11 )• que deux aaf , bbJ des droites don-
nées soient parallèles, la troisième C7 C77 les coupant respectivement erï
* et £ ; alors , l'angle égal à C dans le triangle cherché étant celui
dont le sommet doit être sur C C77, il faudra sur CA, CB? pris pour
cordes, décrire des arcs respectivement capables des angles $*& et d^br\
menant ensuite par C ( Lemme ) deux droites dont les parties a7/37,
#7//377, interceptées entre les deux arcs 5 soient égales à »§ ? et tirant
«'A 5 «!fA^ /37B ? /3

7/B , les deux dernières droites*se trouvlrp^t, d'elles-
mêmes ? respectivement parallèles aux deux premières ; coupant donc
*p en C7 , C/7 de la même manière que ^^ et *77/â7/ le sont en C ; et
faisant de plus «A7, ««A77

 5 fiW , /sB77, respectivement égales à «*7A ,
«"A , iô7B 5 ^7/B , et tirant A7B7

? B7C7, C7A7
? A^B77

 r B77C77, C77A77,
les triangles A7B7C7

 ? A77B77C7/, seront deux solution^ du problème,.
Au moyen de ces deux solutions on en obtiendra facilement deux
autres, en imaginant que Ton fasse tourner les triangles C7A7B7, C77A/7B7/

autour de deux perpendiculaires à aaf
 9 bb*\ l'une passant par C^et

l'autre par C77 ; les deux nouveaux triangles seront C7A/77B777 efr
C / 7A / 7 7 7B / / / 7 .

3.° Il peut enfin arriver que les trois droites données aaf
 ? bbf , ccf >

( fig, 12 ) soient parallèles , et alors il e t̂ facile de comprendre que le
triangle donné ne saurait être quelconque 5 et que, s'il est tel qu'il rende
le problème possible ? ce problème sera indéterminé. Si en eiFet le triangle1.
A ^ C 7 satisfait aux conditions du problème , en faisant glisser deux-,
de ses sommets > suivant les parallèles sur lesquelles ils se trouveront
situés 9 le troisième ne quittera pas la troisième de ces parallèles , et
Gonsé^uemment le triangle satisfera toujours aux conditions du problème.
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Supposant donc ^ pour rendre le problème possible, que les deux

côtés CA. t CB 5 du triangle CÀB sont seuls donnés ; de l'un quelconque
CX des points de ce1 et avec CA 5 CB pris successivement pour rayons 5

on décrira deux arcs 5 le premier coupant aar en A /
 5 h!1 , et le second

coupant bb< en B ' , B " ; tirant alors C A ' , C ' A " , C B ' , C B " , A'W\
A^E" , A / /B / , A ^ " ? on formera les quatre triangles C A ' B ' ?

OA'R" ? C/A^B^ , C /A / /B / , dont les deux derniers ne diffèrent des
deux premiers que par leur situation entre les parallèles , et dont eba-
cun , à cause de l'indétermination du point C : donnera lieu à une infi-
nité de solutions.

QUESTIONS PROPOSEES.

Problèmes de Géométrie.

I. A un polygone rectiligne donné , inscrire un autre polygone rectl-
ligne , d'un pareil nombre de côtés, équivalant à une surface donnée ?

et dont les côtés ou leurs prolongemens passent respectivement par un
égal nombre de points donnés de position.

II. Construire un quadrilatère dans lequel on connaît les quatre côtés
et la droite qui joint les milieux de deux côtés opposés.

Théorème de Géométrie.

Les droites qui vont de Fun quelconque des points d'une hyperbole
équilatérale aux deux extrémités d'un même diamètre transverse quel-
conque p sont également inclinées à Tune quelconque des asymptotes.
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GÉOMÉTRIE ANALITIQUE.

Détermination de la longueur des axes principaux dans
les surfaces du second ordre qui ont un centre ;

Par M. BRET , professeur de mathématiques transcendantes
au lycée de Grenoble.

J-J??ÉQUÀTION générale des surfaces du second ordre est

Si. on ne considère que les surfaces qui ont un centre ? on pourra 5

en transportant l'origine des coordonnées à ce centre v faire disparaître
de cette équation les premières puissances des variables oc ^ y? z , et
on obtiendra l'équation plus simple

B//xy=H.

Substituons à oc ? y 9 z 5 les valeurs qui servent à passer du système
de coordonnées rectangulaires oc 5 y 7 z 9 à un autre système de coor-
données aussi rectangulaires oc1, yf

 5 z/ \ et pour cela rappelons les
formules connues

ensuite les équations de condition
Tom. IL
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Cos.3« -f-Cos.^ +Cos.2y ~ i ,

Cos.V+Cos.^+Cos.y == i ,

Cos.2«'M-Cos.vM-Cos.v'= i ;
- (A)

CoS.fi/

ÇoS.tf^.CoS.* -4-CoS.j3//.CoS./3 + C o S y^.CoS.y = 0 ;

lesquelles peuvent, comme l'on sait,, être remplacées par les suivantes

/ = o

/ = O

(B)

Nous aurons , en faisant disparaître de la nouvelle équation les rec-
tangles ^ y , y/z/ y zfxf

 5 ce qui est toujours possible (*) ? l'équation

Nous allons maintenant chercher l'équation du troisième degré qui
a pour racines P, Pf

 ? P ; / .
On trouve cette équation ?,de la manière la plus simple, en pas-

sant de l'équation

p^+py^+FV3=H ( i )

à celle-ci

~ H. (11)

(*) Voyez V Application de Valgèbre M la géométrie de MM. Monge et Hachette

voyez aussi la Géométrie analitique de M. JB/of.
( Note des éditeurs, )
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Pour cela posons les valeurs de x* 5 y

/, zf
 ? en x, y, z, ces valeurs

sont

Substituant ces valeurs dans l'équation (1) , et comparant celle qui en
résulte à l'équation (JI) % on trouve

(C)

.«//== B' , (D)

Il est visible que Ton parviendra à l'équation dont les racines sont
P 9 P

1, P / ; , en déterminant ? au moyen des équations de condition,
les valeurs de P+P^P^ , PPf-±PtP»-\-P"P, PP'P».

D'abord , si Fon ajoute les équations (C) on a P en vertu des équa-
tions (A) ?

P+PM-P"=A-\-A!-*rA".

Pour simplifier les calculs suivans, je ferai usage des notations que
voici

etc. ? etc. 9 etc»

Cela posé p dans les équations (C) ? effectuons le produit A A1\ nous
obtiendrons

or , les équations (D) donnent
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retranchant donc ce dernier résultat du précédent, on aura

AA'—B""- =

on aura pareillement

A' A»—B\ =

A»A —B'*=fPP/(Cos.y.Cas.«'—Cos.y'.Cos.«y ;

donc

(CoS.«.CoS./3/ C0S.*/.C0S./3)2

s fP P/

s.y.Cos.*7—Cos.y'.Cos.*)3 .

Maïs 5 si du produit des deux premières équations (A) on retranche
le quarré de la quatrième 9 on aura

(Cos.*.Cos./3/—Cos.̂ .Cos.̂ a-f-cCos./S.Cos.y'—Cos./3/.Cos.y)2+(Cos.y.Cos.̂ /—Cos.y.Cos,«)a

on a donc simplement

fAA/—/B2=/PP/
 9 ou fPP'=fAA'—/B%.

Il nous reste encore à trouver PPfPf/ ; pour y parvenir formons le
produit AAfA/f

 ? dans les équations (C) ? nous aurons

AA'A"— i

( +KPPT» j

K représentant la fonctio'n de cosinus qui multiplie PPŒ^.
Effectuons aussi le produit des équations (D) , il viendra

.** Cos )3.Cos.y ,

Av étant le coefficient de
Les équations (C) et (D) donnent encore

(+K"PP'P'' ;
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A* B'* =
+K'lfPPfP" ;

Avec un peu d'attention , on conclura facilement de ces trois der-
nières équations et des deux précédentes.

AA/A//^2BB/B//—AB^—A/B/2—A//B//2=F. PP'P". (E)

Pour obtenir la valeur de F\ j'observe qu'étant simplement une fonc-
tion de cosinus , sa valeur est indépendante de celles que Ton peut
attribuer aux coelïxciens A 5 Af

 ? A/f
 ? B 9 B/, Bn y ainsi posons

A=i 9 A'=i , ^ = i , B=o 9 B'=o , 5//=o ,

Les équations (C), (D) , deviennent les équations (B) , lorsque P = i ?

P/=zi ? P/J-=z\ • donc l'équation (E) sera vraie, dans la même hy -
pothèse, et comme elle se réduit à F=i , on en conclut que

partant l'équation du troisième degré qui a pour racines P 9 P/

sera
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ANALISE ELEMENTAIRE*

Application aux équations du premier degré de la mé-
thode cïélimination par la recherche d'un commun
diviseur entre les équations données.

Par M- G. M. RAYMOND , principal du collège de Chambéri,
membre de plusieurs sociétés savantes et littéraires.

A MM. LES REDACTEURS DES ANNALES.

MESSIEURS,

V OlCî encore un article très-éîém en taire que je soumets à votre indul-
gence et à celle de vos lecteurs. Peut-être les détails les plus minutieux
ne sont-ils pas toujours inutiles aux intérêts de l'enseignement. Le
grand NEWTON n'a pas dédaigné de descendre jusqu'à la soustraction
et à l'addition , pour y introduire la lumière de son génie , et 5 après
lui y les Lagrange et les Laplace se sont arrêtés , avec complaisance 9

sur les opérations les plus simples du calcul pour en développer la
métaphysique. Qu'il me soit donc permis 5 MM. 5 pendant que les savans
auteurs et collaborateurs des Annales rassemblent d'importans maté-
riaux autour de l'édifice de la science, pour son accroissement et sa
perfection , d'apporter quelquefois mon grain de sable dans la masse
commune.

i . Les méthodes d'élimination entre plusieurs équations simultanées
ont ? en général 5 pour objet de réduire deux quelconques de ces équa-
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lions à une seule. Pour obtenir ce résultat ? dans les équations du pre-
mier degré , on Indique ordinairement trois méthodes qui consistent ou
à prendre la valeur d'une inconnue dans l'une des équations pour la subs-
tituer dans l'autre , ou à égaler entre elles les valeurs d'une même Incon-
nue tirées des deux équations ? ou enfin à modifier les équations par
rôle de multiplication , de manière qu'en les ajoutant l'une à l'autre 9

l'inconnue qu'il s'agit d'éliminer disparaisse d'elle-même. On aurait pu
facilement remarquer que ces trois méthodes qui , au surplus , ne sont
que la même présentée sous difîérens aspects 9 reviennent au fonds à la
recherche d'un commun diviseur entre les équations données ; diviseur
composé de l'une des inconnues et subordonné aux valeurs des autres
inconnues déterminées convenablement à la question. En cherchant ce com-
mun diviseur parla division ordinaire ? on emploirait une méthode d'élimi-
nation qui aurait le double avantage d'être souvent plus courte que les
procédés rappelés ci-dessus, et d'être uniforme et applicable à tous les
degrés : on préparerait ainsi , à l'avance 5 la théorie de l'élimination ap-
pliquée aux équations supérieures.

2. Soit le système des deux équations simultanées

a x-+-b y—c = o s )

afx-\-b'y—c* — o . J

Puisque la valeur de x doit être la même dans ces deux équations ,
ainsi que la valeur de y , il est évident que, si l'on y remplace y par
sa valeur effective 5 les deux équations devront contenir une valeur
commune de x exprimée par un facteur de la forme

x—*=o.

Et 5 comme nous supposons que les équations (A) diffèrent essentielle-
ment 5 elles deviendront alors de la forme

a{pc~&)~o 5 # /(#—«):=o.

D'où Ton voit que le commun diviseur x—a se trouverait par la di-
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vision* en supprimant dans le diviseur le facteur a ou af

 9 comme ne pou-
vant faire partie du commun diviseur cherché.

3. Si l'on a un nombre n d équations simultanées ; que 5 dans ces
équations 5 a ? af

 9 aff
 9.*». désignent les coefficients respectifs de x ;

b, b/, bfI
 5 . . . . ceux de y; c, c1

9 cN . . . . . . ceux de z ; et ainsi de
suite; et qu'en même tems * P &9 y ? . . . . désignent respectivement les
valeurs simultanées de x9 y 9 z9*.*. qui conviennent à la question;
il est facile de prouver qu'ayant remplacé \n—i inconnues par leurs
valeurs respectives, les équations données se trouveront réduites à l'une
des classes de formes suivantes :

& (x—as) — O ; U (V*—/3) ^^ O 5 C \Z—yj — O 9 . . . . . . . .

3

elles acquerront donc un commun diviseur qui , égalé à zéro, donnera
la valeur de la nMme inconnue.

4. La découverte du diviseur commun %—* 9 entre deux équations à
deux inconnues 9 est donc subordonnée à la connaissance et à la substi-
tution de la valeur de y convenable à la question ; or on trouvera cette
valeur en ordonnant d'abord les équations données par rapport à x , en
divisant le premier membre de Tune par le premier membre de l'autre >

et en égalant à zéro le reste indépendant de x : car l'anéantissement du
reste donne au diviseur employé la qualité de commun diviseur en tant
que l'on remplit la condition qui résulte de l'anéantissement de ce reste
fonction de y , c'est-à-dire , en tant que l'on donne à y 9 dans les poly-
nômes dividende et diviseur, la valeur qui résulte de cet anéantissement.

Je sais bien que je ne fais que reproduire ici le raisonnement exposé
dans tous les traités élémentaires d'algèbre a à l'article de l'élimination
appliquée aux équations des degrés supérieurs ; mais il me semble
qu'employer d'abord ce raisonnement pour les équations du premier
degré 9 c'est le mettre à sa première place -naturelle , en-lui donnant
une application facile à saisir 9 qui comme je l'ai déjà remarqué , a

l'avantage
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l'avantage de coordonner toute la théorie de réliminatlon sur un plan
unique et régulier.

5. Divisons donc la seconde des équations (A) par la première 5 dans
la vue de déterminer leur plus grand commun diviseur j la division
étant faite et le reste égalé à zéro 9 on aura

(abf—ba^yAfca1—ac1=o , (R)

d'où
ad—car

J ab<—ba' *

SI Ton substitue cette valeur de y dans les deux équations proposées 9

elles deviendront, toutes réductions faites ?

i cb!—bcf )

\ abf—baf) 5 v '

ce qui met à découvert le diviseur commun en x qui résulte de la
valeur qu'a pris y 5 dans l'anéantissement du reste de la division ; et
le diviseur commun, égalé à zéro r donne la valeur de x qui con-
vient à la question.

Soient ces équations numériques

ox—2.y—4 ̂  o 1 5x-±-3y—51=0.

Divisant le premier membre de la seconde par le premier membre
de la première , au moyen de l'introduction du facteur 3 dans le di-
vidende ? on trouvera le reste îgy—133 qui, étant égalé à zérpj, donnera

Cette valeur de y, mise dans les deux équations proposées > les réduit
à celles-ci

o(x—6) = o , 5(#—6) = o ,

qui ont pour commun diviseur le facteur x—6 5 exprimant la valeur
de x commune aux deux équations.

Il est inutile d'observer que ? dans la pratique ? il suffit de substl-
Tom> IL 6
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tuer la valeur de y dans l'une das équations proposées 5 pour en tirer
la valeur correspondante de x (*)•

6. Si les équations proposées n'avaient pas de dernier terme, auquel
cas on sait que les inconnues sont nécessairement nulles ou indéter-
minées $ le reste (R) égalé à zéro, se réduirait à

(abf—ba/yy=^o ;

condition qui ne pput être satisfaite que de deux manières , savoir r
ï.° par la nullité du coefficient de y , ce qui rentre dans le cas ex-
posé plus bas ( 1 0 ) et donne j = f ; 2.0 par la valeur j — o 5 d'où
résulte aussi x — o.

7. Soit maintenant le système des trois équations

a x-k-b y-\-c z—d '=<

(Q
—dlf—o

Divisant successivement le premier membre de chacune des deux der-
nières par le premier membre de la première , et égalant les restes
à zéro y on aura

( al/—foOr+C acf—caf > + da!—ad> =0 ,

Divisant ensuite le premier membre de l'équation (R") par le pre-
mier membre de l'équation (R7) , et égalant à zéro le nouveau reste,
on aura

(*) On peut objecter qi e la m'ihotle de soustraction ne diffère en aucune manière
de celle que j'indique , soit dans la modification préalable des deux équations don-
nées , soit dans l'usage du reste emplojé à déterminer l'inconnue qu'on n'a pas éliminée.
Cela est vrai, et je l'ai déjà olr ervé plus haut (1). Mais je réponds que le raisonne-
ment diffère complètement dans les deux procédés; que celui de la soustraction,
employée comme telle , ne se présente que comme un simple artifice de calcul ; qu'il
n'éclaire pas l'esprit et ne répand aucun jour sur la détermination simultanée et récipro-
que des deux inconnues ; qu'enfin il exclut toute application aux équations des degrés
supérieurs;
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\{ah'—ia'){ac'!~-ca"')-—(flc>—ca>) (ab"—ba")}z-{-(ab'—ba') (da" ad")—(ai"—ba") (da'—a J ')=o.

Développant, réduisant P simplifiant et dégageant z, on trouvera enfin

Z=-'
abfc/f—acfbhr-\-ca'bn —balctf -\-bc'a'f—cb'a1' *

Ces opérations ? dont la longueur provient de l'emploi des lettres 5

deviennent très-expéditives sur les nombres , à cause des réductions
qui s'exécutent immédiatement. Au surplus les autres méthodes 5 ap-
pliquées à des équations littérales 9 comportent exactement les mêmes
détails de calcul ; mais ? quand bien même celle-ci n'aurait pas tou-
jours l'avantage de la brièveté 9 on ne saurait, du moins , lui con-
tester celui de la généralité.

8. En divisant, comme nous Pavons fait 9 les deux dernières équations
(C) du N.° précédent par la première 9 on conçoit que les conditions
(R7) (R/7) font acquérir aux premiers membres de ces trois équations
un commun diviseur , fonction de x 5 que l'on mettrait en évidence
en substituant dans les équations (C) les valeurs de x et y données
par les équations (R;) , (R7/) , comme nous Pavons vu pour le cas de
deux inconnues.

Donnons maintenant un exemple numérique , et soient pour cela les
trois équations

y—2Z—8 = o y

\r—Sz—7 = o .

En divisant le premier membre de chacune des deux dernières par le
premier membre de la première 5 et égalant les restes à zéro ? il vient
d'abord

2.3y—16z—5 = o. (r;/)

Divisant ensuite (;v/) par (r ;) 5 et égalant encore le reste à zéro ? on a

i&z—JZL^O 5 d?où z~4-î
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substituant la valeur de z dans (r;) ou (;v/) ? on trouve

substituant enfin les valeurs de y et de z dans les équations proposées
elles deviennent

d'où l'on voit que la valeur de x se présente sous la forme du com-
mun diviseur x—2 (*).

q. Si les équations proposées n'avaient pas de dernier terme 5 les
restes (R/) et (R/7) se réduiraient à

(afy —ba* )y-\~(ac/ —caf )z = o 9

{al<i—batf)y-\>{ac'f-~catf)z = o ;

équations qui ? appartenant au cas indiqué (6) , font voir sur-le-champ
qu'on aurait y = 0 jZ = o , d'où ^ = 0 ; à moins cependant que les restes
ci-dessus ne fussent nuls d'eux-mêmes ? par la nullité des coefficiens

,de y et de z, ce qui donnerait des valeurs indéterminées pour les
inconnues.

10. Si quelques-unes des équations proposées rentraient les unes
dans les autres , le caractère indéterminé de la question se manifes-
terait par la nullité absolue du reste de la division. Soient v par exem-
ple les équations

ax-\-by—£=0 ^ m(ax~\-by—.^) = o.

(*) Si les équations proposées appartenaient respectivement h trois plans, la con-
dition (r') exprimerait la projection , sur le plan des yz , de l'intersection du premier
et du second plan; la condition (r7) la projection, sur le même plan, de l'intersection
du premier et du troisième ; enfin l'élimination de y , entre (rO et (r"), la projection ,
sur l'axe des r , de l'intersection de ces deux droites ; ou, ce qui revient au même ,
la projection, sur l'axe des z, de l'intersection des trois plans , laquelle aurait wnsi,
pour ses équations £ = 4 , j = 3 , ^ = 2 .
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La division de la seconde par la première donne le quotient exact 772,
et en égalant le reste à zéro , comme s'il n'était pas nécessairement
nul ? on obtient l'équation

(jnb—mb)y-\-mc—mc~o ,

d'où Ton tire, pour y toutes ces formes de valeurs

m (c—c) m (c —c) c (m—m)
1 J IQJI—rn) * 3 m(b—b) ' fc ^(m—m) '

Les trois premières se réduisent nécessairement à

quant à la dernière elle devient P par la suppression du facteur commun,

c

cette valeur 9 substituée dans l'équation

ax-\-by~c~o ,

donne

ce qui exige que Ton ait # = 0 9 si toutefois a n*est pas nul. Ces ré^
sultats sont exacts ? puisque la nullité de l'une des inconnues déter-
mine nécessairement l'autre ? en sorte qu'alors l'équation proposée n'en
renferme proprement qu'une seule.

11. Si l'on avait trois équations v Tindétermination pourrait d'abord
dépendre de ce que deux d'entre elles ne différeraient que par un
multiplicateur commun à tous les termes de Fuïie d'elle^ ? et cette
circonstance se manifesterait, comme dans l'exemple précédent 9 par
la nullité absolue du reste de la division de ces deux équations l'une
par l'autre 9 ou par l'équivalence des équations en y et z qu'on ob-
tiendrait en égalant à zéro les restes de leurs divisions par la troisième.

Si 5 en second lieu ? l'indétermination résultait de ce que l'une des
équations serait la somme des produits des deux autres , chacune par
un certain facteur 9 cette circonstance se manifesterait encore par
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l'équivalence des équations en y et z qu'on obtiendrait en égalant
à zéro les quotiens de la division de deux quelconques d'entre elles
par la troisième.

Si enfin le problème était plus qu'indéterminé , c'est-à-dire , si les
trois équations prises deux à deux ne différaient que par un multi-
plicateur commun à tous les termes de Tune d'elles , dans ce cas
le reste de la division serait identiquement nul 3 quelles que fussent
les deux équations sur lesquelles on l'opérerait.

12. Si la division de deux des équations du problème l'une par
l'autre donnait pour reste une quantité toute connue, l'impossibilité
d'égaler ce reste à zéro , annoncerait qu'il ne peut exister de commun
diviseur entre ces équations qui par conséquent, ne sauraient avoir lieu
en même temps ; le problème serait donc alors impossible.

Soient par exemple les deux équations évidemment incompatibles

aoc-\-by—c~o ? jnax-\~mby—nc~o ;

en égalant à zéro le reste de la division de la seconde par la pre-

mière , on aura :

condition absurde, tant que 772 est différent de n , et c différent de zéro.
Si l'on écrivait le reste , sans y opérer de réductions, on aurait

{m—m)by-\-\m—n)c~o > dou J^— —~ l

symbole de l'infini 9 qui peut seul îe\er l'absurdité exprimée par le
système des deux équations proposées (*).

(*) L'impossibilité des problèmes à plus de deux inconnues présente plusieurs cas
qu'il peut être utile de faire remarquer aux commençons.

Supposons que Ton ait seulement trois équations entre trois inconnues ; il pourra
d'abord arriver que , de quelque manière qu'on prenne ces équations deux à deux , elles
soient également incompatibles ; ce qui revient, en géométrie > à chercher le point
commun à trois plans parallèles.

Il peut ensuite arriver que , Tune d'elles pouvant avoir lieu avec chacune des deux
autres , prises séparément , ces dernières soient incompatibles entre elles ? ce qui
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II résulte des considérations précédentes que la méthode d'élimina-

tion par la recherche du commun diviseur , fait reconnaître toutes les
circonstances et tous les cas particuliers que peut présenter uu problème
du premier degré (*).

revient, en géométrie, à chercher le point commun à trois plans dont deux sont parallèles.
Il peut arriver aussi que deux des équations proposées soient équivalentes, et alors,

si la troisième est incompatible avec l'une d'elles, elle le sera aussi avec l'autre; ainsi, dans
ce cas , le problème sera indéterminé dans un sens , et impossible dans l'autre. Ce cas
répond , en géométrie, à la recherche du point commun à trois plans dont deux
se confondent et dont le troisième leur est parallèle.

11 peut enfin arriver que , de quelque manière que l'on prenne les trois équations
deux à deux, elles ne soient pas incompatibles, et que néanmoins le problème soit
impossible y à raison de la contradiction qui existera entre les deux équations qui
résulteront de l'élimination d'une même inconnue entre elles. C'est, en géométrie,
le cas de la recherche du point commun à trois plans qui, sans être parallèles entre
eux , sont parallèles à une même droite , et se coupent conséquemment deux à deux
suivant trois droites parallèles.

(*) On ne saurait contester à M. Raymond l'utilité , on pourrait presque
dire la nécessité , de commencer par le premier degré l'application des procédés
généraux d'élimination; mais ce serait une erreur de croire qu'il faille se borner, pour
ce degré , à ces procédés généraux qui ont principalement pour objet d'éluder la
résolution des équations par rapport aux inconnues qu'il s'agit de faire disparaître ,
ce qui n'est en efïet d'aucun avantage lorsque les équations sont du premier degré.
La méthode du commun diviseur en particulier n'a pu naître que de réflexions qui
supposent déjà une certaine habitude de Panalise , tandis que , pour le premier degré,
l'élimination, soit par les substitutions soit par l'expression de l'égalité entre diverses
valeurs d'une même inconnue, se présente , pour ainsi dire , d'elle-même à l'esprit.

La méthode d'élimination par les mulliplicateurs indéterminés re doit pas non plus
être négligée , d'autant qu'elle a pour analogue , dans les degrés supérieurs , celle qui
a été présentée par Bezoul dans sa Théorie des équations algébriques ; mais , pour
lui donner toute l'élégance et la simplicité dont elle peut être susceptible, il convient
d'employer autant de multiplicateurs que d'équations ; ce qui permet de n'admettre , pour
ces multiplicateurs , que des valeurs entières, et montre ainsi, dès les premiers pas
dans Fanalise , l'avantage qu'il peut y avoir à introduire dans une question plus d'in-
déterminées que sa nature ne semble l'exiger.

Soient d'abord les deux équations
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La méthode à'Euler , fondée également sur la considération d'un

commun diviseur 5 peut aussi s'appliquer au premier degré ; nous n'en
donnerons qu'un seul exemple.

la somme de leurs produits par les indéterminées m et m1 sera
(ma^jn'af)x+(jnb+mfbf)y^Çmc-\-mfcl)=o.

si Ton veut que y disparaisse 3 il faudra poser
_, . mb

mb-\-mfy=o d'où m ' = ~ ,*

posant donc, pour plus de simplicité mz=z-±zbf , on aura m!^=.^b ; ainsi, on fera
disparaître y de ces équations , en prenant la somme de leurs produits par ztlb' et zp& ;
on trouverait de même que, pour en faire disparaître a;, il faut prendre la somme de
leurs produits par zïzaf et Zfïa, on obtient ainsi

cli—bcr ac!—caf

X~~ ab'—ba> * ^'~~ ab'—ba' '
Soient ensuite les trois équations

a x-\-
af x~\

la somme de leurs produits respectifs par m, mr, mn
 ? sera

ma+mfaf+mfraftïx+(jnb+mfbr+mffy')y+(mc^

Si Ton veut que y et z disparaissent, il faudra poser

d'où on tirera > par ce qui a été dit ci-dessus ,

b c»—c b/f » c V —- b cf

- m . m v=:— . mut- — — — —————i m, ,

bW—c'b"
posant donc , pour plus de simplicité, m = ± (J>fcff—dbn), il viendra m'z= ±z {cb"—bd%
m"—i±Z(bcf—cbf). Ainsi, on fera disparaître, à la fois , y et z de ces trois équations%

en prenant la somme de leurs produits respectifs par

On en ferait disparaître x et z, en prenant la somme de leurs produits par

et on les délivrerait enfin de x et y, en prenant la somme de leurs produits par

II est facile d'étendre ces considérations à un plus grand nombre d'équations renfer-
mant un égal nombre d'inconnues

( Note des éditeurs, )
Soient
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Soient les deux équations

ax-\-by—c=o 7 c'==o.
On posera

ax-+-hy—c=p(x—*) 9 a

d'où 9 par l'élimination de x—* 7 on conclura Fidentité
apfx-\mipp/y—cp')—afpx—tytpy—c;p)~o ;

laquelle fournira les deux équations

qui sont suffisantes pour éliminer p et p/ ; et qui ? par l'élimination
de ces quantités P conduiront à l'équation finale en y.

Il serait facile d'étendre ces diverses considérations à un plus grand
nombre d'inconnues; mais c'est déjà occuper trop long-temps ici une
place que nous devons céder à des théories plus importantes.

J'ai l'honneur d'être 9 etc.

GEOMETRIE.
Recherche de la plus grande des projections ortogra-

phiques cHun système de Jigures planes, données de
grandeur sur des plans donnés de position dans Ves-
pace , et de la plus grande des projections ortographi-

d'un triangle sphèrique ;

Par M» LHUILIER , professeur de mathématiques à l'académie
impériale de Genève.

J_jÀ doctrine des projections ortographiques est de la plus grande im-
portance , soit dans les mathématiques pures ? soit dans les mathéma-
tiques mixtes. Elle sert de base aux propositions les plus générales
de la polygonométrie et de la polyhédrométrle, Elle trouve des ap -

Tom. IL 7
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plîcations fréquentes et importantes dans l'optique 9 dans la perspec-
tive , dans la géographie 9 dans la gnomonique et sur-tout dans l'as-
tronomie. Tout ce qui peut contribuer à étendre ou à éclairer cette
doctrine est d'une utilité ou immédiate ou indirecte. L'objet de ce
mémoire est intéressant et remarquable , soit par la réduction d'une
question générale de maximum aux simples élémens, soit par l'accord
de ses résultats avec les propriétés générales des poîyhèdres ^*).

§. i . -

Lemme. Soient deux droites dont on connaît seulement la somme
des quarrés : on demande la plus grande valeur de la somme de leurs
rectangles par des droites données de grandeur. O u , soit un triangle
rectangle dont Fhypothénuse seulement est donnée de grandeur, on
demande la plus grande valeur de la somme des rectangles de se§
côtés par des droites données de grandeur.

X

Soit XCY un triangle rectangle dont on connaît lliypothénuse CY.
Soient m et n deux droites données de grandeur. On demande la plus
grande valeur de la somme 772 X XY-+-/2 X CX ?

(*) Nous saisirons cette occasion pour exprimer le vœu qu'à l'exemple de M.
Francœur , ceux qui écrivent des élémens de géométrie y introduisent l'impor-
tante notion des projections, que par-tout on suppose connue et qui n'est pour ainsi
dire présentée nulle part ; cette notion , entre autres avantages, serait très-propre à abré-
ger, et conséquemment à rendre plus clairs les énoncés d'un grand nombre de théo-
rèmes. On dirait j par exemple: les quarrès des cordes qui, dans un demi-cercle y

partent des extrémités du diamètre sont proportionnels à leurs projections sur ce
diamètre, TL!inclinaison d'une droite sur un plan , se mesure par Vangle que fait
cette droite avec sa projection sur ce plan, etc., etc.

( Note des éditeurs. }
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Que la somme mXXY+72 X CX soit égale au rectangle de la droite

n par une droite CZ dont on doit déterminer le maximum. On ob-
tient mXXY — nXXZ ; donc XY :XZ — n:m. Dans le triangle XYZ,
le rapport des côtés XY et XZ se trouvant ainsi connu , ce triangle
est donné d'espèce ; et , en particulier , l'angle en Z est connu * et
la droite ZY est parallèle à une droite donnée de position. De là, la
plus grande valeur de CZ a lieu lorsque la droite ZY est tangente
au cercle dont C est le centre et dont CY est le rayon. Dans le cas
du maximum ? ZX: XY = XY: CX=772 \n ; savoir, les droites XY et
CX sont entre elles directement comme les droites m et n qui leur
correspondent.

Puisque XY:CX=m:/2 , on a CY2:', =mm+nn:\mm i d'où
( CX 2 (72 72

; C X = C Y X - = ^ = = ; CZ = C Y x l; C X = C Y X = ^ = =
\Jmm~\-nn \Jmm-\-nn

et n X CZ = CY X

Remarque* Ce résultat d'un procédé purement élémentaire 9 s'ac-
corde avec celui du calcul différentiel.

En effet ? soient

on aura

mx-\-ny=maxim* 772—1—72 — = O

d'où x:y~~m :n

En général, soient deux quantités variables dont la somme des quar-
rés est donnée. La somme de leurs produits par des quantités don-
nées est la plus grande , lorsque ces premières quantités sont entre
elles comme les dernières quantités qui leur correspondent (*).

(*) Ce théorème peut encore être démontré d'une manière assez simple et assez
élégante en procédant comme il suit :

Soit proposé de déterminer deux inconnues x et y au moyen des deux équations

la première pourra être considérée comme appartenant à un cercle ayant son centre
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Application. Soient des quantités variables en nombre quelconque

dont la somme des quarrés est donnée : j'affirme que la somme de

leurs produits par des quantités données est la plus grande , lorsque

ces variables sont entre elles comme les quantités données qui leur cor-

respondent.

En effet, toutes les variables excepté deux quelconques d'entre elles

restant les mêmes , ces dernières doivent être entre elles comme les

quantités données qui leur correspondent. Donc toutes les variables doi-

vent être entre elles comme les quantités données qui leur correspon-

dent.

à l'origine des coordonnées rectangulaires et son rayon égal à r, tandis que la seconde
sera celle d'une droite. Ainsi les valeurs de x et de y qui résoudront le problème
seront les coordonnées des points d'intersection de ces deux lignes , de manière
que , généralement parlant ? le problème aura deux solutions \ mais ? comme la dis-
tance du centre du cercle à la droite a pour expression

K

\Jmz-\-n2

le problème ne sera possible qu'autant que cette quantité ne sera pas plus grande que r«
Si maintenant on suppose K indéterminé et qu'on demande quelles valeurs il faut

donner à x et y pour qu'il soit le plus grand possible ? comme K est proportionnel à
K

la question reviendra à rendre cette dernière quantité la plus grande possible ; il fau-
dra donc poser

K ,
r . d'où K~rJ

on aura donc

mx-\-ny=.r\Jm--\-nz , ou

éliminant donc r2entre cette équation et celle du cercle, il viendra, en développant,
. . . „ x m

transposant, réduisant et extrayant la racine quarree ? my—nxzzzo , ou — ̂ = — 5

comme dans le texte.
( Note des éditeurs. )
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§. a.

Problème. Soient des figures planes données de grandeur5 sur des
plans donnés de position ( non parallèles entre eux ). On demande
le plan sur lequel on doit les projeter ortographiquement pour que
la somme de leurs projections soit la plus grande possible.

Comme les projections sur une même plan de deux figures planes
de même grandeur 9 situées sur des plans parallèles , sont égales entre
elles ; on peut, pour plus de simplicité s rapporter les figures propo-
sées à des plans qui se coupent en un même point; et en particu-
lier on peut prendre ce point pour l'origine des coordonnées.

Soient F, F'9 F" , jroi-n^ jpw, les figures données de gran-
deur.

Que les équations des plans sur lesquels ces figures sont rapportées,
et que nous avons supposé passer par l'origine des coordonnées3 soient

= o >

^1- l > = = O

Que l'équation du plan sur lequel on projette des figures ? et que
nous supposons aussi passer par l'origine ? soit

œCos,X~\-yCos.Y-\~zCos.Z =: ù.

Les cosinus des inclinaisons de ces premiers plans sur le dernier seront
respectivement

Cos.et • Cos.X+Cos./â • Cos.Y+Cos y. Cos.Z y

CosV. Cos.X+Cos.^. Cos.Y+Cos.y7. Cos.Z ,
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+ + . y C « ) Cos.Z.

La somme des projections des figures proposées sur ce dernier plan
sera donc

('l) } Cos.X

{FCos./3+F/Cos.^+F//Cos./3^+ J^^DCos^-i^fOOCos,^ }Cos.Y

Cos.yCn) } Cos.Z

O r , la somme Cos.2X+Cos.2Y+Cos.2Z=: i 5 est une quantité cons-
tante ; donc la somme des projections des figures proposées est la plus
grande , lorsque les quantités variables Cos.X , Cos.Y ? Cos.Z ? sont
entre elles respectivement comme leurs coefficiens.

Or ? les coefficiens de Cos.X „ Cos.Y ? Cos.Z v sont respectivement
les sommes des projections des figures proposées sur les trois plans
coordonnés. Pour abréger , que ces sommes soient désignées par
/".F.Cos.^ 5 y.F.Cos./s s y.F.Cos.y 5 les quantités inconnues Cos.X ?

Cos.Y, Cos.Z , sont entre elles respectivement comme les quantités
connues y^F.Cos.» > yiF.Cos./3., y.F.Cos.y. De là on obtient

Cos.Y=-^==========z===

Co,Z= , / R C o S "

La plus grande somme de projections cherchée est

Cos.X/.FXos^+Cos.Y/.F.Cos./3+Cos.Z/.F.Cos.y 5

Savoir : le tjuarrê de la plus grande somme de projections des
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figures proposées est égal à la somme des quarrès des sortîmes des
projections de ces figures sur les trois plans coordonnés.

§ . 3

Dans un tétraèdre trirectangle, le quarré de Fliypothénuse ( la face •
opposée à l'angle solide droit ) est égal à la somme des quarrés des
autres faces. Donc , si Ton réduit la somme des projections des figures
proposées sur chacun des plans coordonnés en un triangle rectangle
ayant pour sommet l'origine des coordonnées (*) ? le plan de la plus
grande projection est celui de Thypothénuse de ce tétraèdre ; et la plus
grande projection cherchée est cette hypothénuse elle-même (**).

Remarque. Lorsque 5 dans un tétraèdre trirectangle , les trois faces
de l'angle droit sont données de grandeur 9 chacune de ces faces est
aussi donnée d'espèce. La plus grande projection cherchée , ou l 'hy-
pothénuse de ce tétraèdre est la somme des projections de. ses faces
sur cette hypothénuse ; et partant 9 cette plus grande projection est
la projection des sommes des projections des figures données sur les
trois plans coordonnés.

(*) II faut, en outre , que les deux côtes de l'angle droit de chacun de ces trian-
gles soient respectivement égaux aux côtés des deux autres qui se trouvent situés
sur les mêmes axes.

(**) Ce plan est très-facile à déterminer : soient, en effet, A, B , C , les seg-
Macns qu'il détermine sur les axes, à partir de Porigine ? son équation sera

se *v* z

on aura d'ailleurs
BC=2/F.Cos.* , CA

d'où

r /.F.COS./S ' r /F.Cos.y

substituant ces valeurs dans l'équation du plan cherché, elle deviendra, toules réduc-
tions faites ,

( Notes des éditeurs, )
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On peut aussi exprimer la plus grande projection cherchée dans
les figures données et dans les inclinaisons de leurs plans 9 deux à deux.

Qu'on développe 5 en effet , l'expression

Le coefficient du quarré de Tune des faces , telle que F est Cos.2*
fc4"Cos.2/8-|-Cos.3y= i ; partant 5 ce développement comprend la somme
des quarrés de toutes les figures données. Le coefficient du produit de
deux faces 9 telles que F et F ; , est ^Cos.^Cos^+Cos./sCos^M-
COS.^COS.Q/) 5 et partant le double du cosinus de l'inclinaison entre
elles des perpendiculaires à ces deux faces 5 ou le double du cosinus
du supplément de l'inclinaison de ces deux faces. Partant , le quarré
de la plus grande projection cherchée est l'excès de la somme des
quarrés des figures proposées sur le double de la somme de leurs
produits 9 deux à deux , par les cosinus de leurs inclinaisons ( prises,
intérieurement à la figure formée par les plans sur lesquels elles sont
tracées )•

S. 5.

Le résultat que je viens d'obtenir présente une analogie remar-
quable entre le sujet de ce mémoire et les propositions les plus gé-
nérales de la polyhédrométrie. En effet , dans tout polyhèdre , le
quarré de Tune des faces est égal à l'excès de la somme des quarrés
des autres faces sur le double de la somme de leurs produits, deux
à deux 5 par les cosinus de leui*s inclinaisons (*)• Partant , si l'on

(*) Cette belle proposition est développée par CAB.NOT , dans son ouvrage ingénieux
intitulé : Géométrie de position. J'en avais envoyé le développement à l'Institut avant
la publication de ce bel ouvrage. ( Voyez les Mémoires présentés à VInstitut , et
îa note de cet auteur , P. 3o6 ). Il a été bien flatteur pour moi de me trouver
d'accord avec ce grand géomètre , soit pour l'objet de mes recherches ? soit pou?
la marche qui m'a conduit aux résultats obtenus.

( Note de TauteuT. )
conçoit
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conçoit un polyhèdre dont toutes les faces ( excepté une) soient respect!^
yement égales et parallèles aux figures données de grandeur, la face
restante ( si le polyhèdre est possible ) est , soit quant à la gran-
deur ? soit quant à la position ? la plus grande projection des figures
proposées.

En effet, une face quelconque d'un polyhèdre est, égale à la somme
des produits de toutes les autres par les cosinus de leurs incli-
naisons sur elle ; ou elle est la somme des projections sur son plan
de toutes les faces restantes ; et la somme des projections de toutes
les faces 5 excepté l'une d'elles, sur un plan quelconque ? est égale à
la projection de la face restante sur le même plan. Or cette der-
nière face est plus grande qu'aucune de ses projections faites sur un
plan qui ne lui est pas parallèle ; partant la plus grande somme de
projections de toutes les faces d'un polyhèdre s excepté une 9 est cette
face restante.

Cette proposition est évidente 5 lorsque les premières faces font /
avec la face restante ( que j'appelle base ) ? des angles aigus P pris
intérieurement au polyhèdre. Lorsque quelqu'un de ces angles est
obtus ? l'expression somme se change en différence 5 en changeant les
signes des cosinus qui répondent à des angles obtus.

La possibilité du polyhèdre proposé peut être éclaircie comme il
suit. J'ai démontré ( voyez mes Èlèmens d'analise géométrique , etc ?

pag. 25-28 ) la proposition suivante : D'un point pris dans l'intérieur
d'un polyhèdre soient abaissées, sur ses faces ? des perpendiculaires ; sur
ces perpendiculaires soient prises , depuis ce point , des droites res-^
pectivement proportionnelles à ces faces s ce point est le centre des
moyennes distances des extrémités de ces droites.

L'application de ce théorème au sujet de ce mémoire est évidente.
D'un point P soient abaissées ? sur les plans donnés de position ? des
perpendiculaires ; sur ces perpendiculaires soient prises 5 depuis le
point P , des droites respectivement proportionnelles aux figures don-
nées de grandeur ( en tournant toujours dans un même sens ). Si le
point P se trouve être le centre des moyennes distances des extrémités

Tom. IL 8
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de ces droites , la somme des projections des figures proposées sur
un plan quelconque est zéro ; et partant la position du plan est indé-
terminée. Que le point P ne soit pas le centre des moyennes distances
des points donnés ; soit déterminé le point P7 , tel que le point P soit
le centre des moyennes distances des points donnés et du point P / ;
la distance du point P au point P7 est proportionnelle à là plus grande
somme de projections des figures proposées ; et tout plan perpendi-
culaire à la droite PP7 est l'un des plans parallèles entre eux su?
lesquels a lieu cette plus grande projection.

§.6.

Ce qme j'ai dit sur les projections des figures planes peut s'arpplîquer
aux projections de quelques surfaces courbes, et , en particulier, il s'ap-
plique aisément aux projections des triangles et des polygones sphériques.

Soit un triangle spbérique 5 et qu'on demande le plan sur lequel
on doit projeter ce triangle orttiographiquement pour que la projection
soit la plus grande possible.

Soit conçue la pyramide spbérique ayant pour base le triangle
spbérique proposé, et ayant pour sommet le centre de la spbère à
laquelle ce triangle appartient. La projection du triangle spbérique
sur un plan quelconque est égale à la somme des projections des
faces latérales de cette pyramide sur le même plan. Partant 5 la pro-
jection du triangle spbérique est la plus grande 5 lorsque la somme
des projections des faces de la pyramide est la plus grande. Soient
J P 5 F' 9 F

n p les faces de cette pyramide , et que leurs inclinaisons ,
deux à deux ( prises intérieurement au solide ) soient désignées par
ff -> fju > SNf ? ' a P^us g ran(le projection du triangle spbérique est

La position du plan de plus grande projection se détermine comme
il suit. Que les faces latérales de la pyramide spbérique soient con-
çues converties en triangles ayant le même sommet et les mêmes côtés
adjacens 5 de manière que les triangles rectilignes égaux à ces faces
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deviennent les faces latérales d'une pyramide triangulaire. Le plan de
la base de eette pyramide est le plan^ cherché de la plus grande pro-
jection du triangle sphérique proposé.

On ramène 9 de même ? la,, projection d5un polygone sphérique 5 à
la projection des faces ( planes ) d'une pyramide sphérique ; et par-
tant 5 on détermine la position et la grandeur de la plus grande pro-
jection de ce polygone..

Remarque. La projection d'un polygone sphérique est composée
d'espaces elliptiques , appartenant à des ellipses différentes dont l'es-
pèce dépend des inclinaisons des faces de la pyramide sphérique sur
le plan de projection ; et , malgré cette complication , la grandeur de
la plus grande projection est facilement déterminée.

Post-Scripium. Je me suis entretenu de l'objet de ce mémoire
avec mon ami et collègue ? M. le professeur SCHAUB : il m'a averti
que M. POISSON avait traité le même sujet. En effet 5 dans le N.° 10
( avril 1808 ) de la Correspondance sur Vécole polytechnique ?se trouve
un mémoire de ce profond mathématicien dont une partie est relative
à l'objet principal de celui-ci. Il m'a été fort agréable de me rencontrer ,
dans le sujet d'une recherche 5 avec un savant aussi distingué. Ce-
pendant 5 je n'ai pas cru devoir supprimer mon travail. Nous avons
suivi 9 pour parvenir au même bu t , des marches sensiblement diffé-
rentes. Le rapprochement que je fais , des propriétés obtenues et des
propositions fondamentales de la polyhédrométrié 5 me parait ? en par-
ticulier , mériter l'attention des mathématiciens.
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GEOMETRIE.

Note sur le problème de VInscription de trois cercles à
un triangle, traité à la page 3/fî du premier volume
des Annales ;

Par LES RÉDACTEURS DES ANNALES.

JL LUSIEURS géomètres 5 n'ayant pas sous la main les derniers volumes
des Mémoires de la société italienne ? ont manifesté le désir de con-
naître ? par la voie des Annales > l'analise qui a conduit M. Malfatti
à l'élégante construction à laquelle il est parvenu, pour l'inscription de
trois cercles à un triangle. Les rédacteurs , dans la vue de répondre
à leur vœu ? se sont adressés à M. Bidone qui a bien voulu leur faire
parvenir un extrait de la solution de M. Malfatti. Malheureusement
cette solution est peu propre à éclairer sur les moyens par lesquels
l'auteur Ta obtenue ; elle se réduit uniquement 5 en effet 5 à former
les équations du problème et les valeurs des inconnues 5 et à prouver
ensuite ? à l'aide des relations entre les données 5 que les dernières sa-
tisfont aux premières. M. Bidone termine ainsi son extrait :

« Tel est le précis de la solution de M. Malfatti ? qu'il dit avoir
» converti en un théorème 5 comme on le voit par ses procédés, pour
» la présenter sous une forme plus simple 5 et pour ne pas être obligé
» d'exposer le nombre de calculs qu'il a sans doute dû faire pour
» arriver à cette construction ? en cherchant à résoudre directement le
» problème. M. Malfatti n'indique nullement la trace qu'il a suivie
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r> pour parvenir aux valeurs des mconnues 5 et l'on peut dire que son
» mémoire est tout renfermé dans ce précis ? à quelques développe-
ra mens près ».

Au lieu de vérifier les valeurs des inconnues sur les équations de
M. Malfaiti, les rédacteurs des Annales préfèrent les vérifier sur les
leurs qui sont plus simples 5 attendu que M. Malfatti emploie six
inconnues au lieu de trois 9 et qu'en outre 5 n'ayant pas représenté par
des symboles particuliers les distances de*5 sommets du triangle donné
au centre du cercle qui lui est inscrit ? ses formules se trouvent ainsi
compliquées de radicaux.

Avant de venir au but , il faut d'abord établir entre les données du
problème des équations de relation propres à simplifier le calcul. On

>* ( tom. i . e r pag, 343 )

en ajoutant ces équations et réduisant 9 il vient

d'où

c* ou c{s—p) = p/2-|-2p

ou j, en multipliant par p et mettant pour p//; sa valeur R*s

en mettant pour s , dans le second membre sa valeur c+/> il vient

TOais on a
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substituant donc 9 il viendra , en réduisant

ajoutant à cette dernière équation ? l'équation

o = 2Rcd—2Pd/d// ,

Téquation résultante pourra être mise sous cette forme

tsc = c(R+d)*+?(d'—d")* ;

en y mettant pour c sa valenr s—p 5 elle deviendra

ajoutant à cette équation , l'équation identique

-~2ts(R+d)=—2Sf(Il+d) 9

l'équation résultante pourra être mise sous cette forme

et comme , dans toutes ces formules, on peut P à volonté, permuter
les accens 9 on aura

{( } - ? y >
t< {(s—R-d> y—(d»--d Y] =

(A»)

Cela posé, on a vu ( tom. i . e r , pag. 344 ) que les équations du

problème sont

(É) ?'r/+2R\/r?7"-{-p//r//=Bû -,

S'r"+zR\/r"r +P r =Rc' ,

? r +2Rs/~"+,-'>/ ~Rc!f ;

et il aaglt de prouver qu'on y satisfait 9 en posant
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(C) 2f r = R(s—R+d —d'—d») ,

{C) zt'r' =R(s—R-\-d'~d"~d ) ,

(C77) ' 2?"r//=R(s~R-\-d"—d —d' ) (*).

Pour cela soient d'abord ajoutées, deux a deux , les équations (Ct

C, C", ) il viendra , en divisant par 2 ,

(D) f r' •\->»r»=R(s—R—d ) ,

(D") f r +fr' -R(s—R—d") ;

multipliant les mêmes équations deux à deux, il viendra

(E) 4/f fr/r"=R*{(s-R—d )2—(d' —d"Y\ ,

(Ef) tf't r"r -R?{{s—R~d' y—{d"—d )*\ ,

f'r r> =R%s—R—

multipliant respectivement ces dernières équations par P, tf, tfl,
changeant /jf7^77 en iî2^ , il vient

(F) 4R'sr'r"=R*f {(s—R—d )*—Çd'

(.F77) 4R*sr r' =R*f"i(s—R-d")*—{d —d'Y) .

Par leur comparaison avec les équations ( A , A', A" ) , et la di-
vision par s , ces équations deviennent

( G ) 4#V r»=R*(R-\-d —( y ,

{G') lfi*r"r =R*(R+df—f/y ,

(G77) ^R2r r' =R%R+d"— f/7)2 ;

d'où , par l'extraction de la racine quarrée , on déduit celles-ci

(*) Voyez lome i . e ' , page 34-8.
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(H) 2R^/~"=R(R-{-d —P ) ,

( H') 7^7

lesquelles ajoutées respectivement aux équations ( D , D', D" ) , don
nent

J r1 •\

+ R / û " \ r =R(s—?/)—

r' = )r +2R\/+?> r
qui sont précisément les équations du problème.

QUESTIONS PROPOSÉES.
Problèmes de Géométrie.

I. JL ROIS figures planes étant données de grandeur seulement sur trois
plans , non parallèles deux à deux 9 donnés de position ; déterminer
tin quatrième plan sur lequel ces figures étant projetées orthogonale-
ment 5 les aires de leurs projections soient proportionnelles à des nom-
bres donnés ?

IL Soient divisés 9 dans le même sens ? tous les côtés d'un polygone
P donné ? de m côtés 9 en deux parties qui soient entre elles dans le
rapport de p à q. Si l'on joint les points de division consécutifs par
des droites , ces droites formeront un nouveau polygone V/, aussi de
m côtés. Opérant sur celui-ci comme sur le premier, on obtiendra un
nouveau polygone P7 / duquel on pourra déduire un quatrième poly-
gone Pw et ainsi de suite.

Les côtés de ces polygones décroissant continuellement, si Ton pour-
suit l'opération à l'infini 5 le dernier polygone se réduira nécessairement
à un point. On demande de déterminer la situation de ce point relative-
ment au polygone primitif P ?

INTRODUCTION
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INTRODUCTION

A la Philosophie des Mathématiques ;

Par Mt HOËNÉ DE WRONSKI 9 ci-devant officier supérieur
d'artillerie au service de la Russie (*).

A N N O N C E ;

Par LES RÉDACTEURS DES ANNALES,

JLJ'ÀBONBANCE des matériaux qui nous sont parvenus pour la com-
position des Annales 7 ne nous a pas permis jusqu'ici , et ne parait
guère devoir nous permettre davantage ? pour l'avenir ? d'y présenter
à nos lecteurs 9 ainsi que nous nous l'étions promis ? l'analise des ou-
vrages nouveaux relatifs aux sciences exactes ; mais , loin que nous
croyons devoir nous justifier4 de cette sorte d'omission 9 nous pensons ? au
contraire, que le motif qui la nécessite ne peut que la. faire tourner à l'a-
vantage du recueil. En effet ? outre que plusieurs écrits périodiques sup-
pléent ? à cet égard , à ce qui manque à celui-ei ? des analises d'ouvrages
nouveaux 5 quelque soin qu'on y mette dVilkurs , n'ont au fond qu'un
intérêt éphémère , et demeurent à peu près sans objet > dès qu'une fois
ces ouvrages sont répandus , ou lorsque , frappés par l'opinion ? ils sont
tombés dans l'oubli ; à quoi Fou peut ajouter que ? le plus souvent ? la
réputation acquise des auteurs fixe ? à l'avance, d'une manière à peu près
certaine , le degré de confiance et d'estime que doivent mériter leurs pro-

(*) Volume m-4»° de près de 3oo pages; à Paris, chez Courriery libraire pous
les mathématiques , quai des Augustins , n,Q 57»

TQIU* II* 9
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ductions. En composant , au contraire , notre recueil de mémoires
inédits, sur les diverses branches des mathématiques, nous en formons
un corps d'ouvrage d'un intérêt durable , çt qui pourra être utilement
consulté dans tous les temps.

Il est néanmoins certains écrits qui semblent réclamer de nous une
exception : ce sont ceux qui , par la nouveauté des vues qu'ils pré-
sentent , tendent à produire quelque révolution dans les sciences exactes ;
et telle est, en particulier, Y Introduction à la philosophie des mathé-
matiques > par ]VL DE V^RONSKI : aussi 9 avant même que l'ouvrage eut
paru, avions-nous déjà conçu le dessein d'en présenter l'analise dans ce
recueil ; mais un coup d'oeil jeté rapidement sur cette production vrai-
ment originale, tout en nous montrant l'utilité, nous pourrions pres-
que dire l'indispensable nécessité du travail que nous avions projeté ?

nous a presque ôté le courage de l'entreprendre.
Nous ne sommes point, en effet, initiés dans la doctrine du Trans-

cendantalisme\ nous en ignorons jusqu'aux premiers élémens, et la lan-
gue même quvil lui a plu de se créer nous est tout à fait étrangère. Cepen-
dant , une connaissance parfaite de cette nouvelle scolastique , semble
être une condition presque indispensable pour bien saisir les idées de
M. de Wronski* On peut en juger par le début de son livre qui , bien
qu'il n'en soit pas l'endroit le moins intelligible ^ paraîtra sans doute
aussi obscur à la plupart de nos lecteurs,, qu'il nou^ l'a para à nous-
mêmes ; le voici :

« Le monde physique présente, dans la causalité non intelligente 9

» dans la nature , deux objets distincts : l'un, qui est la forme, la ma-
» nicre d'être ; l'autre qui est le contenu, l'essence même de l'action
» physique.

» La déduction de cette dualité de la nature ? appartient à la. phi-
» losophie : nous nous contenterons ici d'en indiquer l'origine transcendan-
» taie. — Elle consiste dans la dualité des lois de notre savoir, et nom-
» mément dans la diversité qui se trouve entre les lois transcendantales
» de la sensibilité ( de la réceptivité de notre savoir ) , et les lois trans-
» cendantales de l'entendement ( de la spontanéité ou de l'activité de
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» notre savoir). C'est 5 en effet 9 dans la diversité qui résulte de Pap-
» plication de ces lois aux phénomènes donnés à posteriori ? que con-
» siste la dualité de l'aspect sous lequel se présente la nature ; dua-
» lité que nous rangeons ? conduits de nouveau par des lois trans-
» cendantaleSj sous les conceptions déforme et de contenu du monde
y> physique ».

Ce n'est certainement pas dans ce style que Leibnitz et Euler ont
traité des sujets de philosophie ; mais ? si le style de M. de Wronski
est obscur 9 son livre n'est pas cependant du nombre de ceux qu'il
soit permis de négliger. On ne saurait, en effet ? contester à l'Auteur
d'être très-versé dans toutes les branches des sciences exactes ; de con-
naître parfaitement tout ce qu'on en a écrit ; et d'avoir lui-même, sur
la philosophie de ces sciences , des vues non moins profondes et noa
moins générales qu'elles sont nouvelles.

Nous ferons donc tous nos efforts pour tenter de traduire en français,
pour notre usage, I'INTRODUCTION A LA PHILOSOPHIE DES MATHÉMA-

TIQUES ? et nous destinerons ensuite plusieurs articles des Annales à
en faire connaître la substance; si toutefois, dans la tache pénible que
nous allons entreprendre s nous obtenons quelques succès.

Cet ouvrage n'étant pas , au surplus 5 le seul que M. de Wronski
se propose de publier , nous croyons convenable de placer ici quelques
réfle-xions que s pour l'intérêt même de sa gloire , nous désirons vi-
vement que l'auteur veuille bien prendre en considération.

M. de Wronski ? dans l'une des notes de son livre ? observe que
l'application que Condillac et Limmer ont voulu faire aux sciences
mathématiques , l'un , du système de sensualisme de Locke 5 et l'autre,
du système d'intellectualisme de Leibnitz 5 a été d'une nullité absolue
pour le progrès de ces sciences , et cette remarque nous paraît d'une
exactitude parfaite ; mais nous pensons qu'elle doit être indistincte-
ment étendue à tous les systèmes philosophiques qu'il a plu ou qu'il
pourra plaire encore à l'esprit humain d'imaginer. Nos opinions spécula-
tives 5 en effet, n'ont guère plus d'influence sur notre entendement que sur
notre volonté , sur notre savoir que sur notre conduite; et ? quoi qu'en
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veuille prétendre la modestie de M. de Wronski 9 s'il a fait des dé -
couvertes dans les sciences exactes ? s'il en a reculé les limites ? c'est
à son génie et à son rare savoir qu'il en est redevable > bien plus
qu'aux dogmes métaphysiques qu'il a adoptés.

Nous osons dire plus encore 9 et noirs pensons que , si M. de Wronski
eût uniquement dirigé l'activité de son esprit vers ces mêmes sciences y

que s'il fût né et qu'il eût vécu jusqu'ici en France , il serait déjà >
très-problablement 5 en possession d'une réputation qu'il travaille seu-
lement à acquérir ; nous pensons qu'alors 9 donnant à ses idées un plus
libre essor 9 il ne lui serait pas échappé quelques erreurs évidentes,
quelques divisions et distinctions également forcées et inutiles , que
sa raison désavoue peut-être à son insçu 5 et «fui ne se sont glissées dan9
son livre que sous l'influence despotique des principes de la scolastique
du Nord : nous pensons qu'alors enfin son ouvrage, à la fois plus clair et
plus concis , n'eût pas été déparé par un néologisme fatigant et par
une métaphysique ardue qui ? nous le répétons 5 ne saurait aucunement
contribuer à l'avancement d^s sciences positives.

Sans donc prétendre que M. de Wronski doive abandonner des
systèmes philosophiques auxquels il paraît sincèrement et fortement
attaché, nous pensons que , pour son intérêt et celui du public 5 il ferait
bien de rendre à l'avenir moins dépendans de ces mêmes systèmes les ou-
vrages qu'il se propose de nous donner encore. S'il veut ? en effet, quecçs
ouvrages soient lus et appréciés par notre nation: et il le veut sans doute,
puisque c'est au milieu de nous qu'il les publie ; il faut qu'il ap-
prenne d'abord à bien nous connaître ; il faut qu'il sache bien que
nous n'estimons vrai que ce qui peut être clairement exprimé en lan-
gue vulgaire; que nous n'aimons pas d'acheter l'instruction par trop de
de peine; que nous voulons que les idées même les plus abstraites soient
revêtues de formes agréables ; qu'enfin ? nous sommes une nation un peu
légère chez laquelle le livre le plus profondément pensé ne se sauve pas
du discrédit9 s'il exige^ pour être compris, une contention desprit
dont notre caractère et nos habitudes nous rendent également incapables*
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AN ALISE.

Formule nouvelle pou?1 calculer les logarithmes j

Par M. DUBOURGUET , professeur de mathématiques spéciales
au lycée impérial.

N sait qu'en représentant par 1 la caractéristique des logarithmes
naturels, on a généralement' ?

l J r = :
C a ? - I ) _. C a r - I ) a ! (*—I)3 C r~ I ) 4 ! . . . . ( A \

i 2. 6 4 • • . . v ••

Cette série ? qui ne peut converger lorsque x>2 > a cependant été

mise par Lagrange sous une forme très-convergente , en substituant à x

la quantité y x \ ce qui a donné à ce grand géomètre l'équation

dont le second membre converge rapidement lorsqu'on prend n assez

grand pour que \/x n'excède l'unité que d'une très-petite fraction; mais
la longueur du calcul qu'exige l'extraction de la racine n àe x P lors
même qu'on prend n égale à une puissance exacte de 2., afin de n'a-
voir que des extractions de racines quarrées à effectuer, a fait rejeter
cette formule , lorsqu'on a voulu calculer des tables de logarithmes.

Si l'on substitue successivement x—J-̂y et 1—y à la place de x dans
l'équation (A) , qu'ensuite on retranche la seconde équation trouvée

Tom. 1U 10
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de la première; en posant — — ^ d'où y — —- , on obtiendra la

formule déjà connue

qui est convergente et assez simple.
Voilà les seules formules de ce genre, du moins à ma connaissance ,

qui ont été trouvées jusqu'à présent. Mais mes recherches sur cet objet
mont conduit à la formule suivante

qui est beaucoup plus convergente que la formule (C), et qui se dé-
montre comme je vais l'expliquer (*).

On sait qu ên prenant l'intégrale de la formule àz\/ i+z% de ma-
nière que cette intégrale s'évanouisse lorsque z = o , on a complète-
ment

(*) Si, dans les formules (C), (D), on fait x= — 5 elles deviendront

formules qui convergeront rapidement, si l'on prend pour t et u deux nombres très-
grands et très-peu difîerens , et qui seront susceptibles de toutes les applications
qui ont été dêtaiLlces dans ce recueil ( tom. i , pag. 79 et suivantes ). Mais 5 ce
qui rend sur-tout précieux le concours de ces deux formules , c'est que, la première
étant toujours fautive par défaut et la seconde par excès, leur emploi simultané peut
teul faire connaître la limite de l'erreur que peut donner l'usage de l'une ou de l'autre»

( Note des éditeurs, )
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d'où Fon tire

1 0 + V 1 •+•**) = zfàz V1 +^ 2 — z S/ 1 + z \ (E)

Maïs, en se servant de la méthode d'intégration par approximation
que j'ai donnée au chapitre IV de la première section de mon calcul
intégral ( art. 267 et 258 ) (*) , et que je crois nouvelle P on a

fdzi/i-\-z*=zv/i-\-z2— *—<H 1 h.-L (F)

en prenant, comme précédemment, l'intégrale de manière qu'elle s'é-
vanouisse lorsque z n o .

Substituant cette valeur de fàz\/1+^;2 dans l'équation (E) 5 on a

Soit fait i /#=z+-\ / i~ | - ,z 3 , d'où z=—pr ,

(je 1)3

substituant ces valeurs dans l'équation (G) , en observant que \\/x^=i
l\x , et multipliant toute l'équation par 2 5 on obtiendra la formule
(D) qu'il s'agissait de démontrer»

Si ? après avoir divisé les deux membres de l'équation (D) par >9

on y suppose ^ r=o ? elle deviendra en transposant

(*) Cet ouvrage se trouve à P a r i s , chez l 'Au teur , rue S t - Jacques . n.° I 2 i , e t

chez Courcier , quai des angustins , n»° 57*
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i = - L + - L + JL + -L + _L + . . . ,

i . j à.o b.7 7.9 ' 9.11

résultat assez remarquable (*).

GÉOMÉTRIE.

Détermination du centre des moyennes distances dun
triangle sphétique.

Par M, LHUILIER , professeur de mathématiques à l'académie
impériale de Genève.

JLJE rentre des iroyennes distances d'un triangle rectiligiie est le
point de section des droites menées de chacun de ses sommets aux
milieux des côtés opposés , ou ce centre est sur chacune des parallèles
aux côtés du triangle dont les distances à ces côtés sont moitié de
leurs distances aux sommets des angles opposés.

Cette propriété du centre des moyennes distances d'un triangle
rectiligne découle de cette autre propriété du même triangle : la droite
menée de l'un des sommets d'un triangle rectiligne au milieu du

(*) On s'assure à priori de l'exactitude de ce résultat, en remarquant que la

feomme générale des termes de la série dont il s'agit est —•—- ou dont

n
la limite est ~.

( Noie des éditeurs, )
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côté opposé coupe en deux parties égales chacune des droites paral-
lèles à ce côté terminées aux côtés adjacens à ce sommet.

Cette dernière proposition n'a pas sa correspondante dans les trian-
gles sphériques. Aussi la détermination du centre des moyennes dis-
tances d un triangle sphérique n'est-elle pas susceptible du même
degré de simplicité que la recherche analogue relative au triangle
rectiligne. J'ai fait des efforts inutiles pour la ramener aux simples
élémens. Parmi les divers procédés qu'on peut suivre pour parvenir
à cette détermination 9 le suivant m'a paru le moins compliqué ; et 9

en particulier , 11 me paraît plus simple que celui qui serait fondé
sur la doctrine générale des coordonnées,

s- a.
. dz i

Lemme. Soit — = • une équation différentielle pro-
6x a-\-bSmx-\-cCosx ^ r6x

posée. Dans la double supposition que z et x doivent devenir nuls
en même temps 5 et que à1 > b2-\-c* r on a

Cette intégrale se vérifie facilement par la différentiation ; mais ?

comme le moyen de l'obtenir ne se trouve indiqué dans aucun des
ouvrages qui sont à ma disposition 5et en particulier dans celui d'Euler,
je crois devoir indiquer ici la route par laquelle j'y suis parvenu 9

et considérer ? en même temps ? les différons cas qu'elle peut présenter.
Soit donc

dx

-Y i—*v2

soit fait Sin.# = , d'où CQS.#=: ; 5 et partant y mTang. | x*

De Pa

dz 2.
_ = -
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Première supposition. So i t^=^ 5 on aura

d'où z-C+l Log. j — +Tang.^ x

Si 5 en particulier ? on suppose que * et x doivent être nuls en même
temps 9 on aura

£ = -

Seconde supposition. Soit £ > # ? on aura

I

( c—a (c—a)2

2 I

a
2^2 C fr \Z

•a)3 ( c — a J y

s

~~° i (6 c-t"^ -ri

ĉ —ât c — a

à*oh on conclura
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c*—o2+i>* ~(c—a)Tang. i

Si l'on veut 5 en particulier ? que ze t J soient zéro en même temps
la constante C devra être nulle.

Troisième supposition. Soit enfin £ < # , on aura

d j

a—c a—c J J

1 *^ ( ^i ) , , 1 y i
\a—c {a—c)2 ) \a—c )

I

•{=•* \'

a3—#2—-c 1 ) — ^ ^

\\fa*—b2—c2 y/a2=zâz—cz )

d'où on conclura

. Arc



76 CENTRE DES MOYENNES DISTANCES

s i , en particulier , on veut que z &-x soient zéro en même temps,
•on a ura

,-^)T«nS.i*-i , r™ l l i

§ • 3 .

Soît une partie de la surface sphérique terminée par deux arcs égaux
de grands cercles et par Tare de petit cercle qui , joignant leurs ex-
trémités 5 a pour pôle leur point de section. On demande le moment
de cette surface relativement au plan tangent mené à la sphère par
le point de concours des deux arcs égaux ?

Soit BAïV ( fig. i ) une partie de la surface sphérique terminée
par deux arcs de grands cercles A B , AB7

 ? égaux entre eux , et par
Tare de petit cercle BW joignant leurs extrémités , et ayant le point
A pour pôle. On demande le moment de cette surface relativement
au plan tangent mené par A.

Soit mené le rayon AC. Que les arcs AB , AB/ soient divisés en
tin même nombre de parties égales 5 et soient menés les arcs de pe-
tits cercles qui joignent les points • correspondais , et qui ont pour
pôle le point A. Que les arcs Mm 9 Mm/

 9 soient deux de ces par-
ties correspondantes. Sur le rayon CA soient abaissées les perpen-
diculaires MP ? mp* Que les arcs AB 9 KW rencontrent 9 en X ? X

7 ,
le grand cercle dont A est le pôle. Qu'enfin le rayon de la sphère
soit désigné par r ; et soit w la circonférence du cercle dont le dia-
mètre est l'unité ? on aura

Hémis. : X A X / = 2 « r : X X / ,
XAX'
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donc Hémis. : Tïlmm'W'= 2*rr2 : Vp.XX'.

Mais Hémis. = 2^/>2 ;

donc Mmm/M/='Pp.XX/

La limite du moment de l'espace Mmm/M/, relativement au plan
tangent en A est P/?.XX7.AP 5 et partant, le moment de l'espace MAM /

est^ AP*.XX7= f X X / . ^ S i n . ^ AM~2r2 .XX/.Sin> 1 AM.
Or, l'espace MAM7 a pour expression XX / .AP = 2r.XX/.Sin.2 7 AM ;

donc la distance du centre des moyennes distances de l'espace MARI/
au plan tangent en A , est 7 AP = rSin.a 7 AM.

Remarque, II est facile de ramener aux. simples élémens cette pro-
position particulière»

§. 4.

Soit un triangle sphérique dont un des côte's est constant, et dont
un des angles, ayant pour sommet une des extrémités de ce côté, est
aussi constant. On demande le moment de ce triangle relativement au
plan tangent à la sphère mené par l'autre extrémité de ce côté.

Soit ABB7 ( fig. 2 ) un triangle sphérique dont le côté AB est cons-
tant ? ainsi que l'angle B. On demande le moment de ce triangle re-
lativement au plan tangent à la sphère mené par l'extrémité A de
ce côté ?

Soit décomposé le triangle proposé en espaces sphérïques MAM7 ayant
en A leur sommet commun. Que les arcs AM, AM7 rencontrent, en
X , X ;

 ? le grand cercle dont A est le pôle. Soit aussi Mm/ un arc
de petit cercle dont A est le pôle 5 et terminé en mf à Tare AM7.

Le moment de l'espace MA/?2/ ou MAM7, relativement au plan pro-
Mm'

posé, est ( §. 3. ) ar*.XX/.Sin.*ïAM = 2r a .Sin.^AM. T - T T ; =

Tom. U. 11



78 CENTRE DES MOYENNES DISTANCES

Sin.2AM
kmir Sin.B.Sin.AB

ar a . Sîn.* x AM. —-———-. MM'
Sin^AM

i-J-Cos,

= ir\MM/.Sin.B.Sin.ABS — ~ T ^ •
£ i+Cos.AM

r^Sin.B.Sin.AB.MM'

i+Sin.AB.Shi.BM.Cos.B+Cos.AB.Cos.BM

en observant donc que

i—Sin.2AB.Cos.2B—Cos.5AB=Sin.3AB.Sin.2B ,

on trouvera pour le moment du triangle ABTvl ( §. 2. )

3 A ( r r Sin.AB.Sin.B.Tang.iBM ) A R2r3.Arc{ T a n g . = — ^ ^ ^ o — — - — — — r > — 7r2Sm.B.Sin,AB.
( D i+Cos.AB+Cos.B.Sin,AB.Tang^BM)

ILe moment du triangle ABBy, relativement au même plan, sera donc

, \ ( m Sin.AB.Sîn.B.Tanfi-, I B B ' ) , ^ . _ . . â _ ^ ^
2r3.Arc> Tang. = _ _ _ _ _ _ — 2 - i - 5 — ^r2Sm.B,Sin,ABJBB/

( d l+Cos.AB+Cos.B.Sin.AB.Tang.|-BB/)

§• 5.

Comme on a Sin.B.Sin.AB = Sin.B /.Sin.A /B /
5 tout est symétrique5

dans cette expression par rapport aux angles B y W, et aux côtés op-
posés AB7 , AB , excepté le dénominateur; mais nous allons faire voir
que ce dénominateur peut aussi être rendu symétrique ? ainsi que cela
doit être.

•r, n~ ^ ^ Cos.x\B'—Cos.AB.Cos.BB'
En effet, Cos .B=-

donc Gos.B.Sin.AB =

Sin.AIi.Sin.E3/

Co3.AB'—Cos.AB.Cos.BB' Cos^AB7—Cos.AB.Cos.BB'

Sin.BB/ ' ûSin.J.BB^Cos.JBB' *
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Cos.AB'—Cos.AB.Cos.BB'
clone aussi, Cos.B.Sin.AB.Tang.jBB^

ou Cos.B.Sin.AB.Tang.xBB/=

2C0S.2IBB'

Cos.AB'—Cos.AB.Cos.BB'

i+Cos.BB' *

donc enfin
i+Cos.AB+Cos.AB'4-Cos.BB'

Le moment du triangle sphérique ABB7, exprimé d'une manière
symétrique dans les côtés AB? AB / , et rapporté au plan tangent e n A ,
est donc

a . ( Sin.AB.Sin.B.Sin.BB' ) ^ „ , A ̂  „ _
2r3Arc < Tang. = . } — -r*¥>W.Sin.AB.Sin.B.

( 6 i+Cos.AB+Cos.AB'+Cos.BB^ *
Que le produit continuel des sinus de la demi-somme des trois côtés

du triangle sphérique et des sinus des excès de cette demi-somme
sur chacun d'eux, soit désigné par P ; on aura Sin.B • Sin.AB . S in .BB^
2\/P • que de plus Tare BBX soit exprimé dans le rayon pris pour
unité; le moment du triangle BAB7

 ? relativement au plan tangent
en A , sera

T 5 Arc < Tan£ —* r T^K/ P
~ ' l ^ ' i+Cos.AB+Cos.AB'+Cos.BB') v ' Sin.BB'#

Soit r2S la surface du triangle sphérique 9 rapportée à l'octant pris
pour unité de surface; et partant, soit 5=B+B/-f-A-—2 droits; on
aura

i+Cos,AB+Cos.AB'-f-Cos.BB' *

( Voyez la Géométrie de LEGENDBE. )
Donc le moment du triangle , relativement au plan tangent en A? sera
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§. 7.

Puisque r2S est la surface du triangle BAB', la distance au plan
tangent en A du centre des moyennes distances de ce triangle, est

f BB'
S *Sin.BB'

La distance de ce centre au plan mené par le centre de la sphère
perpendiculairement au rayon CA 5 est donc

ce qui donne la proposition suivante :
THEOREME. Du centre des moyennes distances d'un triangle sphè-

rique soient abaissées des perpendiculaires sur les rayons menés à ses
sommets. Les segmens de ces rayons retranchés depuis le centre de la
sphère > sont entre eux comme les expo s ans des rapports que les arcs
opposés à ces rayons ont à leurs sinus ; et le coefficient constant de

l'exposant de ce rapport est r .iL_.

Remarque. On a / P = 2Sin.^S.Cos.f AB.Cos.f AB^Cos^BB^ donc
ce coefficient constant est aussi

r. ^ | ^ . Cos. 1AB. Cos. { A&. Cos. '-BW.

Soit Z le centre des moyennes distances du triangle sphérique BAB;

( fig. 3 ) 5 et soient Za , U , Z3 ;
? les perpendiculaires abaissées du
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point Z sur les rayons C A 5 CB, CB'; les droites Ca, C£, C£3 sont
entre elles respectivement comme les cosinus des angles que fait la
droite CZ avec les rayons CA 5 CB 9 CB7 ; et la droite CZ est le dia-
mètre d'une sphère qui passe par les .points C, a , b , b* ; ou qui
est circonscrite au tétraèdre dont les sommets sont C , a , b , b'.

Or, le quarré du diamètre de la sphère circonscrite à un tétraèdre
est exprimé 5 comme il suit 5 d'une manière symétrique , dans les élé-
mens d'un de ses angles solides.

Soit prise la somme des trois produits des quarrés de chacune des
arêtes de cet angle solide par le quarré du sinus de la face opposée.

Soit prise la double somme des trois produits continuels des arêtes
deux à deux par les sinus des deux faces non comprises entre ces
arêtes et par le cosinus de l'inclinaison de ces deux faces.

De la première somme soit retranchée la seconde.
Que l'excès soit divisé par le quadruple du produit continuel des

sinus de la demi-somme des trois faces et des excès de cette demi-
somme sur chacune d'elles.

Le quotient qu'on obtient est le quarré du diamètre de la sphère
cherchée.

Partant on a, dans le cas présent,
Gz2.Sin.BB'—s

CZ2:=— +C£2.Sin.AB/—

AB2 —2.AB/.BB/.Cos.B/

•4-AB/2—2.AB .BB'.Cos.B

4-BB'*—s.AB .AB'.Cos.A

Savoir; Le quarré de la distance du centre des moyennes distances
d'un triangle sphèrique au centre de la sphère à laquelle il appar-
tient, est au quarré du rayon de cette sphère , comme Vexcès de
la somme des quarré s des cotés de ce triangle sur le double de la
somme de leurs produits ,deux à deux 7par les cosinus de leurs in-
clinaisons , est au quarré du double de la surface du triangle.
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Pour abréger , soit le troisième terme de cette proportion désigné

par Q2 , on aura CZ=-~- Q ; d'où on conclura

V E . EB'
Cos.ZCA=-— = ; = ^ Q • S^BB? '

On aura donc

:V! AB .
2Q ' Sin.AB

Partant, la position du centre des moyennes distances d'un triangle
sphérîque proposé est entièrement déterminée ? soit par la position du
rayon sur lequel ce centre se trouve? ou par les inclinaisons de ce rayon
aux rayons menés aux trois sommets, soit par la distance de ce centre
au centre de la sphère à laquelle ce triangle appartient.

Exemple. Que le triangle proposé soit un octant, on aura

Application. La distance au sommet du centre des moyennes dis!

tances d'une pyramide dont la base est un triangle sphérîque ? est |r.—'
S

Que le triangle soit un octant ? cette distance sera „ ,r—^r à peu
8

près.
S-"9-

Au lieu d'exprimer, comme je l'ai fait dans le § précédent , le
rayon de la sphère circonscrite au tétraèdre dans les neuf élément
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de l'un de ses angles solides, savoir : dans les trois arêtes de cet
angle solide 9 dans les angles que font ces arêtes deux à deux,
enfin dans les angles que forment deux à deux les faces qui les
contiennent • il est aisé d'exprimer ce rayon dans six seulement de.
ces élémens , en substituant aux inclinaisons des faces les angles de

xes faces et réciproquement.
Mais , de même que le rayon du cercle circonscrit a un triangle

peut être exprimé dans deux seulement des élémens de ce triangle :
savoir 5 dans un de ses côtés et dans l'angle qui lui est opposé; on
peut aussi exprimer le rayon de la sphère circonscrite à un tétraèdre
dans quatre seulement des élémens de ce tétraèdre; savoir 9 dans une
de ses arêtes , dans l'inclinaison des deux faces dont cette arête est
la commune section et dans les angles opposés à cette arête dans
les plans de ces faces.

En effet, soient A , A7 ( fig. 4 ) le s extrémités de Tune des arêtes
d'un tétraèdre ; soient B , B7 , les sommets apposés à cette arête ,
dans les plans des faces ABA , AB7A7 \, que les angles B , B 7 , soient
donnés ; et que l'inclinaison BAA7B7 de ces deux faces soit aussi
donnée. Je dis que le rayon de la sphère circonscrite au tétraèdre est
déterminé par ces quatre élémens du tétraèdre.

Soient C , C7 les centres respectifs des cercles circonscrits aux
faces ABxV ? AB7A7 ; l'arête AA7 ainsi que les angles B , B7 > étant
donnés , les points C 5 C7 seront donnés sur les plans de ces faces.

De ces points C, C7
? soient abaissées sur l'arête A A7 des perpendiculaires ;

elles rencontreront cette arête au même point D qui en est le milieu , et
l'angle CDC7 sera l'inclinaison connue des deux faces ABA7 , AB7A7«

Des points C , C7 , soient élevées aux plans des faces ABA7 , AB7A7
 v

des perpendiculaires qui se coupent en Z ; le point Z sera le centre
de la sphère circonscrite au tétraèdre proposé.

Or , dans le quadrilatère CDC7Z .dont les angles sont donnés, .et
dont les cotés CD , C7D , sont aussi donnés 5 la diagonale DZ est dé-
terminée ? et partant, le quarré de AZ qui est égal à la somme des
quarrés de DZ et de AD 5 est aussi déterminé.
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Calcul. CD=AD.Cot.B , C/D=AD.Cot.B' ,

.Cos,D=AD={Cot.2B—sCoi.B.Cot.B'.CosD+Cot.'B'}
donc

Cot.2B—2Cot.B.Cot.B'.Cos.D3-Cot.2B'
DZ2=AD\ —— .

Sin.2D

donc aussi

De là on peut exprimer le rayon de la sphère circonscrite à un
tétraèdre dans les élémehs de l'un de ses angles solides tels que A »
en substituant à Cot.B et CotB/ les valeurs suivantes.

r AB—AA'.Cos.BAA' __AB*-AA'.Cos.B'AA'
~~ AA'.Sin.BAA' ' ° ' "" AA'.Sm.B/AA' *

TRIGONOMETRIE.
Démonstrations de quelques formules de trigonométrie

sphérique ;

Par M. SERYOIS , professeur de mathématiques aux écoles
d'artillerie de Lafère.

L

H trouve, dans les œuvres de Goudin ( Paris 18o3 ) , un mémoire
qui a pour titre : Usages de Vellipse dans la trigonométrie sphérique ,
et où Tautetir , entre autres applications , s'occupe de la résolution de
l'équation

Cos.
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dans laquelle a est l'inconnue, et A , B s des quantités données dont
la dernière n'excède pas l'unité.

On peut parvenir fort simplement au but sans recourir aux pro-
priétés de l'ellipse dont l'emploi, en cette rencontre , semble tout à
fait hors de propos.

Soient posés 5 en effet ,

B = Cos.fi , (2)

A = Sln.fi. CoUy (3)

l'équation (1) deviendra

Cos.^+Sin.^.Sin^.Cot.y—Cos.fi = o ?

d'où on tire en doublant,

2.Cos.a sCos.y

Sin.cc.S'm,fi ~ Sin.y

ou encore

(i+Cos.«)(i—Cos.yS)—(I—Cos.*)(i+Cos./3) (1—Cos.y)—

équation qui peut être mise sous cette forme

s.2 \ ûc.2Sin.2 \ /3—sSin.2 \ ct.2.Co$.z \ /3 sSîn.2 \ y—^Cos.2 ~y

2.S'm. j ctCos. ~ oi.2.Sln, 7 /

ou en simplifiant,

Cot.^.Tang^/3—Tang.^.Cot.^=^Tang.;>—Cotfy ;

équation qui peut être écrite ainsi

(Cot.{«—Cot.i /s.Tang.i y)(Tang.f ^ + T a n g . | -.Cot.Jy) = o ;

égalant successivement chaque facteur à zéro ? on obtiendra

Tang.i«= Tang.i/8. Cou fy , (4)

T a n g i « =
Tom> IL
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Ainsi, en supposant B < i , et c'est le cas des applications trigo-

nométriques 9 on obtiendra l'angle auxiliaire /3 par Féquatlon (2) ; Iné-
quation (3) donnera ensuite l'angle auxiliaire y5 et on obtiendra enfin
les deux valeurs de « par les formules (4) ? (5) ; ce qui est exacte-
ment conforme aux résultats obtenus par Goudin»

II.

M. GAUSS a donné, sans démonstration (*) , les formules trigono-
metriques que voici : a , b 9 c, étant les trois côtés çliun triangle sphd-
rique 5 et A 5 B , C , les angles respectivement opposés 5 on a

Sin. j c

Sin.fc

* z ^

b)

-b)

-b)

Cos.iC

Cos.i(^4—B)

Sin.fC

Co^+S)

Sin.f (a—b) __ Sin.i(^—B)

IL

III.

Cos,~c Sin.jC

II m'a paru que ces formules pouvaient être assez facilement démontrées
comme 11 suit.

Les équations fondamentales de la trigonométrie sphérlque sont,
comme Ton sait ^

,A^=-Cos.a—Cos.^Cos.c ,

,B=Cos.^—Cos.aCos.c ,

i.C=Cos.c—Cos.aCos.3 ;

(*) Vojes- Thêoria motus corporum cœlestium ; Hambourg, 1809, page 5l#

(**) Ces formules ont aussi été données par M. Delamhre , dans la Connaissance
âes temps pour 1809 , page 44^*

( Notes âes éditeurs. )
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Eliminant, dans les équations des deux premières lignes , Cos.£ et
Cos.C1 , au moyen de celles de la dernière 9 en se rappelant que
1—Cos.x2 = Sln.^2

 ? et supprimant ensuite le facteur commun à tous
les termes des équations résultantes 9 11 viendra

=Cos.rtSin.£—Sin.aCosJ?Cos.C , Si

s,5—Cos.ûSîn.3Cos.C , S s.^ Sin.BCos.c;

en ajoutant et retranchant successivement les équations de chaque co-
lonne , les résultats qui en proviendront, pourront être écrits ainsi

Sin.c(Cos.£+Cos.^)=(i—Cos.C)Sin.(a+£) , Sm.C(Cos.3+Cos.o)=(i+Cos.c)Sîn,(-4+B)

Sin.c(Cos.B—Cos.^)=(i+Cos.C)Sin.(fl—3) , Sin.C(Cos.3—Cos^)=(i-~Cos.c)Sin.(^—-B)

en observant que

y) , Cos.y—Cos.o;

n.2 \ x .2 ~x
{• x

ces équations deviendront

.c. Cos i( +b )Cos.K

s.K a—b ) =

divisant successivement les deux premières par chacune des deux

dernières 9 il viendra

Sin. 7 ( a+b )Cos. T ( a—b )Sin.c

Sin.c

Sin.C

Sin.c

Sin.C

Sin.c

Sin.C

(Sin. r

<Sin.^

l Sin. -

\ Cos. -

^Cos.

^ Cos. -

(Sin.-

C.Cos. -
c Cos. ••

- C.Sin. -

- c. Cos. -

- C.Cos. -

\ c.Sin. \

\ C.Sin. \

\ c. Sin. -

\ (a +b )

- (A-+B)

- ( a-—b )

- U—B)

Sin. 7 (^+ii)Cos. i (A—B) '

Sin. j ( «—b )Cos. | ( a+b )
Sin» \ (A——B')Cos. 7

Sin. f ( a—b )Cos. £ ( a+b ]

Sin. ^ (-4-

(^4.^ )Cos.r(c—-b )
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mais ? par la proportionnalité des sinus des angles aux sinus des côtés
opposés ? on a

Sin. i ( û-\-b )Cos. f ( a—b ) Sîn. tf+SIn. b __ Sin.c

Sin. f (A+B)Cos. f {A—B) ~~Sm.A+Sln.B~~ Sm.C

Sin. f ( G—b )Cos. f ( a+b ) Sin. a—Sin. b Sm.c

Sin.r C^—i^)Cos. | (A+B)~~ShuA—Sin.B""Sin.C *

susLtituant donc , réduisant et extrayant la racine quarree 9 on tom-
bera sur les formules annoncées On se convaincra d'ailleurs que les
racines doivent toutes être prises avec le signe + , en considérant le
cas particulier où le triangle serait bi-rectangle en B et C ; on aurait
alors B~C~b~c — (/ , ç étant le cadran et A~a ; valeurs qui ne
peuvent satisfaire qu'avec le signe -+-.

Il est presque superflu d'observer que les formules 15 II5 III5 IV,
donnent y en les combinant 3 par voie de division ? les Analogies de
Néper > lesquelles se trouvent ainsi démontrées par ce qui précède.

QUESTIONS RÉSOLUES.
N. B. Le défaut d'espace, le grand nombre des solutions obtenues pour les mêmes

problèmes et l'analogie entre ces solutions obligeront souvent à l'avenir les Rédac-
teurs des Annales à les comprendre toutes dans un seul article et à n'en présenter
qu'une courte analise. Ils auront soin , au moins , d'être équitables et de ne rien omettre
de ce qui pourra piquer la curiosité de leurs lecteurs.

Solutions des deuoc problèmes proposés à la page
du premier volume des Annales ;

Par MM. ROCHAT , VECTEN , FAUQUIER > PILATTE , etc.

JLROBLÈ3IE L A un triangle donné circonscrire un triangle
semblable à un autre triangle donné ? et qui soit le plus grand
possible ?
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PROBLEME IL A un triangle donné inscrire un triangle sem-

Halle à un autre triangle donné , et qui soit le plus petit possible ?
MM. Rochat ? professeur de navigation à Saint-Brieux , Vecten ,

professeur de mathématiques spéciales au lycée de Nismes, et Fauquier,
élève du même lycée , ont également fondé les solutions qu'ils ont
données de ces deux problèmes sur les considérations suivantes.

i.° Deux triangles t et / ; étant donnés d'espèce , et deux autres
triangles T , T 7 , respectivement semblables à ceux-là , étant inscrits
l'un à l'autre, T7 à T par exemple; si T/ est le plus petit des triangles
semblables à tf qu'il soit possible d'inscrire à T , ce triangle T sera
le plus grand des triangles semblables à / qu'il soit possible de cir-
conscrire à T 7 , et réciproquement.

Voici à peu près de quelle manière M. Rochat démontre cette
proposition. Soit ABC ( fig. 5 ) un triangle semblable à / ? et soit
DEF le plus petit de tous les triangles semblables à t1 qu'il soit pos-
sible de lui inscrire. Si ABC n'est pas le plus grand des triangles
semblables à / qu'il soit possible de circonscrire à D E F , on pourra
circonscrire à ce dernier un triangle semblable à / ? plus grand que
ABC ; soit KfWQ ce triangle ; soient coupés les côtés de ABC en
D ' , E / , F 7 , comme le sont ceux de k!WQJ en D , E , F , et soit
formé le triangle D /E /F / . Ce dernier étant disposé par rapport à ABC
de la même manière que l'est le triangle DEF par rapport au triangle
À /B /C /

 P on doit avoir évidemment

ABC D'E'P
A'B'C'"-" DEF 9

si donc on pouvait avoir A /B /C />ABC , on devrait avoir aussi
D E F > D / E / F / ; ainsi, contrairement à l'hypothèse, le triangle D ^ F ^
semblable à / / comme DEF , et inscrit comme lui à ABC , serait
moindre que DEF.

La réciproque de cette proposition n'est pas plus difficile à établir.
Soit en effet ABC le plus grand des triangles semblables à / qu'il
soit possible de circonscrire à DEF ; si DEF n'est pas le plus petit
de tous les triangles semblables a tf qu'il soit possible d'inscrire à ABC ,
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on pourra lui en inscrire un autre plus petit que DEF et toujours
semblable à t'; soit D'E'F' ce triangle; par D , E , F , soient menées
trois droites WO, C'A' , A'B' 5 faisant avec ses côtés les mêmes angles
que font BC 5 CA , AB, avec leurs homologues dans le triangle D'E^F';
le triangle A/WC' se trouvant alors ? par rapport au triangle DEF ? ce
qu'est le triangle ABC par rapport au triangle D /E /F / , on aura

DEF _A'B'O
D'JVJb''"" ABG ?

si donc on pouvait avoir D / E / F / <DEF, il faudrait qu'on eût aussi
ABC< A'B'C ; ainsi, contrairement à l'hypothèse , le triangle A'B'C,
semblable à / comme ABC, et circonscrit comme lui à DEF, serait
plus grand que ABC.

2.0 Si deux cercles se coupent, de toutes les droites menées par
Tune de leurs intersections et terminées à leurs circonférences ? la
plus longue est la parallèle à la droite qui joint leurs centres 5 ou, ce
qui revient au même , la perpendiculaire à leur corde commune ; et
la longueur de cette droite est double de la distance entre les centres
des deux cercles (*).

Ces principes établis , yoici à quoi se réduit la solution des deux
problèmes proposés.

Solution du / .e r problème. Soit ABC ( fig. 6 ) un triangle
donné ? auquel il faille circonscrire un triangle semblable à un autre
triangle donné def 9 et qui soit le pi as grand possible.

Sur les cotés CA et CB du triangle ABC soient décrits extérieure-
ment des arcs CEA , CDB respectivement capables des angles e et d ;
soient H et G les centres des cercles dont ces arcs font partie ; soit I
l'intersection de ces cercles ? et soient menées IICT et CI. Par le point
C soit menée DE parallèle à GH5 ou perpendiculaire à CI, et terminée
en D et E aux deux arcs; en menant ensuite DB et EA concourant
en F ? le triangle DEF sera le triangle demandé.

C) Voyez les pag, 24 et 26 de ce volume.
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Solution du ILe problème. Soit ABC ( fig. 7 ) un triangle donne',

auquel il faille inscrire un triangle semblable à un autre triangle donné
dej', et qui soit le plus petit possible.

Au triangle def soit circonscrit {problème I.) un triangle abc, sem-
blable au triangle ABC, et le plus grand possible; soient coupés les
côtés du triangle ABC en D , E , F , de la même manière que le
sont ceux du triangle abc en d v e jf; formant enfin le triangle DEF,
ce sera le triangle demandé.

Ce qui précède suppose tacitement que Ton a indiqué, à l'avance,
à quels côtés du triangle donné d'espèce seulement, doivent être ho-
mologues ceux des côtés du triangle à circonscrire qui doivent passer
par chacun des sommets du triangle donné à la fois d'espèce et de
grandeur ; ou à quels angles du triangle donné d'espèce seulement,
doivent être homologues ceux des angles du triangle à inscrire dont
les sommets doivent être sur chacun des côtés du triangle donné à la
fois d'espèce et de grandeur. S'il n'en était pas ainsi , il est clair que
chacun des deux problèmes pourrait, en général, admettre six solu-
tions ; et qu'ainsi il y aurait lieu à un maximum maximorum ou à
un minimun minimorum. M. Rochat à qui Ton doit cette remarque,
a calculé les expressions de l'un des côtés du triangle cherché qui
répondent à ces six solutions ; mais il n'a pas eu le loisir de les
discuter.

Ces six solutions se réduisent à une seule lorsque le triangle à
construire est équilatéral. M. Vecten observe à ce sujet que, si, dans
ce cas on mène du point I ( rig. 6 ) des droites aux points A , B , C>

ces droites, respectivement perpendiculaires aux côtés du triangle DEF,
feront, autour du point I , des angles égaux entre eux et au tiers de
quatre angles droits , d'où il suit qu'alors le point I sera celui dont
la somme des distances aux sommets A , B , C , du triangle donné,
est la plus petite.

Ainsi, le plus grand triangle èquilatèral qu'il soit possible de
circonscrire à un, triangle donné est celui dont les côtés sont per-
pendiculaires aux droites qui joignent aux sommets de ce triangle
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donne le point dont la somme des distances à ces sommets est la
plus petite.

E t , comme la somme des distances aux trois côtés d'un triangle
équilatéral d'un point quelconque pris dans son Intérieur, est égale à
la hauteur de ce triangle , il en faut conclure que la hauteur du
plus grand triangle ècfiiilatèral qu'il soit possible de circonscrire
à un triangle donné , est égale à la somme des droites menées aux.
sommets de ce triangle du point dont la somme des distances à
ces sommets est la plus petite*

M. Pilatte^ professeur de mathématiques spéciales au lycée d'Angers s

ancien élève de l'école polytechnique , a traité ces deux problèmes
par l'analise et d'une manière tout à fait différente de celle qui vient
d'être expliquée. Il a d'abord soin d'observer que, par triangle circons-
crit à un triangle donné, il faut entendre un triangle dont les côtés,
prolongés s'il le jaut, passent par les sommets du triangle donné :
et que, par triangle inscrit à un triangle donné, il faut entendre un
triangle dont les sommets sont sur les côtés ou sur les prolongemens
des côtés du triangle donné. Il se propose ensuite ces deux problèmes :

i.° Connaissant les coordonnées des sommets d'un triangle T ,
déterminer Vexpression de la surface S d'un triangle circonscrit
à celui-là et semblable à un triangle donné t ?

2.0 Connaissant les coordonnées des sommets d'un triangle T y

déterminer F expression de la surface S7 d'un triangle inscrit à celui-là
et semblable à un triangle donné t ?

Ces problèmes étant l'un et l'autre indéterminés, les expressions
trouvées par M. Pilât te pour S et S' , sont fonctions d'une certaine
arbitraire et qui est la tangente tabulaire de l'angle que fait l'un des
côtés du triangle cherché avec l'axe des x ; ainsi les triangles S et S /

peuvent être assujettis à une nouvelle condition choisie comme on voudra.
Supposant donc i.° que les triangles S et S / doivent être à la fois

<*gaux et semblables au triangle t, * se trouve donné pour l'un et
Fautre.par des équations du second degré, et les deux problèmes pro-
posés à la page 3 i8du i . e r volume des Annales se trouvent ainsi résolus.

Supposant ,
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Supposant , 2.0 que les surfaces S et S7 doivent être des maxima

ou des minima , M. Rochat trouve pour S un maximum linl et an
minimum zéro et pour S7 un minimum fini et un maximum infini.

Passant alors au cas particulier où le triangle demandé doit être
équilatéral, M. RocJmt détermine les valeurs de *. qui , dans ce cas 9

conviennent au maximum de S et au minimum de S7, et il enseigne à
construire ces valeurs»

Retournant ensuite aux valeurs générales de S et S7 et supposant
que l'indéterminée a est la môme dans Tune et dans l'autre , ou, ce
qui revient au même, que les côtés homologuas des triangles S et S7 ,
le premier circonscrit et le second inscrit à T sont parallèles ; il obtient, en
multipliant ces valeurs, SS 7 ~T% d'où il conclut cet élégant théorème.

Si à un triangle quelconque T on en circonscrit un autre aussi quel-
conque T7 ; qu'à celui-ci on en circonscrive un troisième T77, ayant
ses côtés respectivement parallèles à ceux de T ; puis , qu'on circons-
crive à T77 un nouveau triangle T777, dont les côtés soient respectivement
parallèles à ceux de T 7 , et ainsi de suite, les aires des triangles
T , T 7 , T 7 7 , T7 7 7 , . , , ? lesquels seront semblables de deux en deux >
formeront une progression par quotiens.

Nous croyons devoir 5 à ce sujet, mentionner ici un autre théo-
rème fort analogue à celui-là 5 et qui se démontre facilement ? soiï
par Fanalise , soit par la géométrie.

Si des triangles T , T 7 , T /7
 5 T

777 , . . . , sont tels que les cotés de
chacun soient respectivement égaux aux droites qui 9 dans celui qui
le précède, joignent les sommets des angles aux milieux des côtés
opposés $ les aires de ces triangles 9 lesquels seront semblables de
deux en deux , formeront une progression décroissante par quo-
tiens dont la raison sera \ •

Nous terminerons par observer que les deux problèmes qui font
le sujet principal de cet article , ont été résolus par M. Lhuilier ? dans
les Élémens danalise géométrique et d'analise algébrique 9 ouvrage
remarquable par le grand nombre des problèmes qui y sont traités»

Tom. IL Ï3
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Démonstrations du théorème énoncé à la page 384
du i.er volume des Annales;

Par MM. SERVOIS , LHUILIER , ROCHAT , LABROUSSE ,

FAUQUIER , etc.

j t HÊORÈME. Le volume d'un tronc de prisme quelconque, droit
ou oblique, s'obtient en multipliant Faire de l'une quelconque de ses
bases par la perpendiculaire abaissée sur son plan du centre de
granité de l'aire de l'autre base.

Toutes les démonstrations qu'on a données de ce théorème reposent
sur les deux propositions suivantes.

i.° Le volume d'un tronc de prisme triangulaire 9 droit ou obli-
que 3 s'obtient en multipliant Taire de l'une quelconque de ses bases
par la perpendiculaire abaissée sur son plan du centre de gravité de
Paire de l'autre base.

2.° Si Ton décompose les deux bases d'un tronc de prisme quel-
conque en triangles, par des diagonales correspondantes ? les aires des
triangles homologues seront dans un rapport constant qui sera celui
des aires des bases elles-mêmes,

La première de ces propositions est une suite de ce que le volume
d'un tronc de prisme triangulaire est le produit de l'aire de l'une
quelconque de ses bases par le tiers de la somme des perpendiculaires
abaissées sur son plan des sommets de l'autre base > et de ce que
la distance du centre de gravité de l'aire d'un triangle à un plan
quelconque est le tiers de la comme des distances de ses sommets
au môme plan (*).

(*) La vérité de cette dernière proposition s'aperçoit sur-le-cîiamp, en remarquant
que le centre de gravité de l'aire d'un triangle est le même que le centre commua
de gravité de trois masses égaies situées fi ses sommets.
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La seconde proposition n'est pas plus difficile à defnonfrer. Qu'on

imagine en effet une section perpendiculaire aux arêtes latérales , et que
cette section soit décomposée en triangles correspondants à ceux des
deux bases ; comme ces derniers seront les projections des premiers
sur le plan coupant, ils seront à la fois entre eux dans le rapport
des triangles de Tune des bases et dans le rapport des triangles de
l'autre ; d'où il suit que les triangles correspondants de Tune et de
Fautre base seront eux-mêmes dans un rapport constant.

Pour parvenir, d'après ces principes, à la démonstration du théorème^
MM- Lahrousse 5 maître de mathématiques à Nismes , et Faucjuier y

élève du lycée de la même ville , ont démontré 9 par la composition des
forces parallèles, que , si la proposition était vraie pour un tronc de
prisme ayant des bases de n—1 côtés , elle devait l'être aussi pour
un tronc de prisme ayant des bases de n côtés ; et ils en ont con-
clu que la proposition étant vraie , en effet, pour des troncs de prismes
triangulaires ? elle devait être vraie pour des troncs de prismes quel-
conques.

Les démonstrations données par MM. Servois, Lhuilier et Rochat
reviennent au fond à ce qui suit :

Soient I I la base supérieure du tronc et G la distance de son
centre de gravité au plan de la base inférieure ; soient ô , tf, ê;/

 ? . . •,
les triangles résultant de la décomposition de cette base et g > gf, gtf

 9.,,%
les distances de leurs centres de gravité particuliers au plan de la base
inférieure ; soit P cette base et ts t(

P / / /
5 . .* ? les triangles résultant

de sa décomposition et correspondant à 0? tf 9 é;/
 9,ê*

m
9 soit enfin V la

volume du tronc ? on aura d'abord

mais ? 772 étant un nombre constant choisi convenablement 9 on doit avoir

V=mïl 9 i

ce qui donne d'abord

mais on a 9 par le principe cleê nxomens
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done enfin

Les rédacteurs des Annales ont reçu diverses autres démonstrations
du même théorème qui rentrent toutes dans les précédentes. Les auteurs
de quelques-unes d'entre elles ont remarqué que la même proposition
pouvait être étendue aux troncs de cylindres droits ou obliques à
bases quelconques. L'un d'eux a observé, en outre, qu'il suivait de cette
proposition qu'on ne change pas le volume d'un tronc de prisme ou
de cylindre , droit ou oblique , à base quelconque , en substituant à
Tune de ses bases une autre base passant par le centre de gravité
de Faire de celle-là.

Le théorème qui fait le sujet de cet article se trouve traité par
M. Blondat 5 dans le dernier cahier de la Correspondance sur ïécole
polytechnique ( janvier 1811 5 pag. 267 ).

QUESTIONS PROPOSÉES.
x Théorème danalise.

V/N propose de démontrer l'équation suivante :

1 , 3 , 0 . 4 *ffi — [jn-iri) -

. ~ m-4- 1
m m«—i m—2. (m—5)

I 2 O 4- A -s >J î . o

Problème de statique.
Une table triangulaire, dont les dimensions sont données, est soutenue

-horisontalementj à ses trois angles., par trois piliers verticaux dont les
forces F , F7

 ? F / ; sont données. On demande
i.° Le plus grand poids que peut supporter chaque point delà table ;
2.0 La courbe renfermant tous les points de la table qui peuvent

supporter un poids donné P ?
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ASTRONOMIE,

Eocamen dune nouvelle théorie du mouvement de la
terre, proposée par le docteur WOOD ;

Par M. D. ENCONTRE , professeur, doyen de la faculté des
sciences de l'académie de Montpellier.

JLJE n.° 372 de la Bibliothèque Britannique, et le n.° 118 du jour-
nal de NlCHOLSON annoncent a une nouvelle théorie de la rotation
» diurne de la terre , démontrée d'après les principes mathématiques,
» et fondée sur les propriétés de la cycloïde et de répîcycloïde ; avec
» une application de cette théorie aux phénomènes des vents, des marées*
n et des concrétions pierreuses et métalliques qui tombent êe$ cieujc
» sur la terre, »

La théorie dont ïf s'agît se trouve amplement développée dans uft
grand ouvrage publié à Richmond , en Virginie, par le docteur Woo i ï ;
mais> les libraires de ce pays-là n'ayant pas de communications bien
régulières avec les nôtres , on ne connaît guère cet ouvrage en France
que par l'extrait qu'en ont donné les auteurs de la Bibliothèque bri-
tannique*, extrait qui, bien que peu étendu, renferme heureusement tout
ce qu'il faut pour éclairer l'opinion des physiciens géomètres. Nous
pouvons , en effet, nous passer des raisonnement du docteur W o o d ,
pourvu que nous ayons une idée bien nette des principes snt lesquels
il les établit. Ce sont ces principes 5 tels du moias que ïa Bibtiothè~
que britannique nous les donne, que je me propose de soumettre ici

lonu IL 14
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à une analîse rigoureuse* II est d'autant plus nécessaire de les bien
discuter que les conséquences en sont tout-a-fait alarmantes, et ne ten-
dent à rien moins qu'à renverser entièrement le magnifique édifice de
la Mécanique céleste.

Le premier principe posé par le docteur Wood est que, lorsqu'un
cercle roule sur une ligne droite ou courbe , la partie supérieure de ce
cercle est animée dune vitesse plus grande que celle de sa partie
inférieure.

Le second est que , la vitesse variant dans les difiérens points de
la même circonférence 3 il est absolument nécessaire que la force cen-
trifuge y varie aussi. Le docteur Wood regarde ce second principe
comme une conwquence mathématique et rigoureuse du premier. Exa-
minons , avec quelque détail, jusqu'à quel point et dans quel sens son
opinion peut être admise.

§. i .

QUESTION» Lorsque la roue d'un char, ou tout autre cercle solide,
roule sur une ligne droite , la partie supérieure de la circonférence
a-t-elle plus de vitesse que n'en a sa partie inférieure ?

i . Cette question qui fut ? dit-on ,1e sujet d'un pari considérable, entre
quelques savans Anglo-Américains, n'est pas bien difficile à résoudre.
On conçoit, en effet, qu'au point le plus élevé de la roue , le mou-
vement de rotation et le mouvement de translation s'exécutent dans le
même sens, tandis qu'au point le plus bas, qui est aussi le point tangent,
ils ont lieu en sens contraire. La vitesse absolue du point le plus élevé est
donc la somme des vitesses de rotation et de translation 5 tandis que
la vitesse absolue du point le plus bas en est la différence : ces deux
vitesses sont donc essentiellement inégales. La première peut même
être infiniment plus grande que la seconde ; et c'est ce qui arrive 5

lorsque la vitesse de translation est égale à la vitesse de rotation; car
alors la vitesse absolue du point le plus bas est sensiblement nulle ?

tandis que celle du point le plus haut est double de celle du centre.
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Généralisation de la question précédente*

2. Ces expressions : partie supérieure , partie inférieure , point le
le plus haut , point le plus bas, ont quelque chose d'équivoque et
peuvent induire en erreur, sur-tout lorsqu'on en fait usage en astro-
nomie et. qu'on dit / ^avec le docteur ^V ood , qu'un même point de
la terre est plus haut, quand on y compte midi, qu'il ne Test quand
on y compte minuit.

D'un autre côté , la roue qui roule sur une droite et qui applique
successivement chacun de ses points sur cette droite , de manière
que la longueur parcourue, pendant le temps que dure une révolution
entière, soit exactement égale à la circonférence de la roue, ne nous
présente qu'un cas très-particulier de la génération des cycloïdes.

11 importe donc de se faire un langage plus géométrique , et de
considérer la question sous un point de vue plus général et plus simple
à la fois , en concevant toutes les cycloïdes, tant communes qu'allongées
et raccourcies, engendrées par un point pris sur la circonférence d'un
cercle qui tourne autour de son centre , tandis que ce centre est lui-
même emporté, d'un mouvement uniforme, le long d'une droite située
dans le plan du cercle tournant.

3. Soient A B , DD7 ( fig. i ) deux diamètres d'un même cercle se cou-
pant à angles droits. Soient E E / , FF7 deux droites qui touchent le cercle
aux points A , B , et qui par conséquent sont parallèles Tune à l'autre et
au diamètre DD7. Que le cercle tourne uniformément autour de son
centre, tandis que ce centre lui-même se meut uniformément le long
de D7D. Chaque point S de la circonférence du cercle décrira une
cycloïde 9 laquelle sera commune, accourcie ou allongée , suivant que
l'espace parcouru par le centre du cercle , pendant une révolution,
sera égal à sa circonférence, moindre que cette circonférence ou plus
grand qu'elle.

4- Dans cette hypothèse , les droites EE 7 , FF7 paraissent être sem-
blablement placées relativement au cercle tournant > et, si pour éyitey
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toute difficulté , on suppose le plan de ce cercle horizontal , il n'existera
absolument aucune raison , soit physique soit géométrique, de regarder
l'une de ces deux lignes comme supérieure et l'autre comme infé-
rieure ; mais, dès qu'on aura déterminé le sens de la rotation du cercle,
et le sens de la translation de son centre, on reconnaîtra sans peine
que le mouvement du point tangent à l'une des deux droites dont il
s'agit. est très-différent du mouvement du point tangent à l'autre.
Concevons , par exemple , que ie centre se meuve dans le sens C D ,
et que le cercle tourne dans le sens AD ; le point A , par le seul
effet d# son mouvement de rotation , doit décrire, au premier instant
une petite droite suivant AE ? e t , par le seul effet de son mouvement
de translation , une autre petite droite , dans le même sens. Il est donc
évident que le point A , par l'effet simultané de ces deux mouve-
mens, doif décrire suivant A E , au premier instant où il se meut, un
espace égal à la somme des espaces que ces deux mouvemens lui fe-
raient séparément parcourir.

Le point B , au contraire, est sollicité par la rotation dans le sens
BF ' et par la translation dans le sens BF 9 directement opposé. La
vitesse réolle de ce point B , en vertu des deux mouvemens dont il est
animé, n?est donc que lacdifférence des vitesses <jue chacun de ces
mouvemens tend à lui imprimer.

5. On voit donc clairement que , si un cercle tourne sur son centre 9

et se meut en même temps d'un mouvement rectiligne et uniforme ,
entre deux parallèles qu'il touche continuellement 9 les vitesses absolues
des deux points tangens sont très inégales : l'un se mouvant avec la
somme et l'autre avec la différence des vitesses de rotation et de trans-
lation. 11 a plu au docteur Wood d'appeler demi-circonférence su-
périeure , celle qui contient le point tangent qui a la plus grande vitesse,
et demi-circonférence inférieure, celle qui contient le point tangent
qui a la moindre vitesse. Ainsi, dans notre hypothèse et dans son lan-
gage , DAD' est la demi-conférence supérieure, et DBD7 est l'infé-
rieure ; mais si , le cercle continuant à tourner dans le môme sens , son
centre , au lieu d'aller de C vers D > allait dans le sens CD/, la .demi*
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circonférence DAD' devrait être regardée comme inférieure , et la demi*-
circonférence DBD' comme supérieure. Ceci suffira , sans doute, pour
prévenir toute équivoque à cet égard.

§.3.

Recherche de la vitesse absolue dans la cycloïde.

6. Quoi qu'il en soit du langage adopté par le docteur Wood > sa
première proposition n'en est pas moins certaine, et, le point A se mouvant
plus vite que le point B ? nous sommes en droit d'affirmer que les diffé-
rens points d'une mêoie circonférence roulant sur une droite 5 ne sont
pas tous animés d'une même vitesse absolue. Toute courbe d'ailleurs
pouvant être regardée comme formée d'une infinité de petites droites ?

et tout mouvement comme une suite de petits niouvemens uniformes >

la même proposition s'étend généralement à toute circonférence de cercle
roulant d'un mouvement quelconque sur une courbe quelconque.

7 Mais il ne suffit pas de savoir que les différens points de la cir-
conférence sont animés de vitesses inégales, il faut encore être en état
de comparer la vitesse absolue d'un point avec celle d'un autre point quel-
conque , pris sur la même circonférence* W o o d , en s'occupantde cette
recherche , ne paraît pas avoir embrassé la question dans toute sa géné-
ralité, si du moins nous jugeons de son travail par l'extrait qu'en a
donné la Bibliothèque britannique, au l'on ne trouve d'ailleurs qu'une
formule algébrique, sans aucune trace de l'analise que Fauteur a pu
suivre pour y parvenir. Il ne sera donc pas inutile de donner ici une
vsolution directe et complette de ce problème intéressant,

8. Proposons-nous donc de trouver , dans l'hypothèse d'un cercle
tournant uniformément sur son centre s avec une vitesse donnée ,
pendant que ce centre se meut d'un mouvement rectilignc et uni-
forme avec une vitesse aussi donnée ; proposons-nous , dis-je ,
,de déterminer la vitesse d'un point quelconque de la circonférence,
laquelle est aussi la vitesse , au point correspondant de la cycloïde
décrite. Soit S ce point , et soit sa position déterminée par le nombre
de degrés de l'arc AS : le point A , que nous appellerons aussi Fori-
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gme 5 étant supposé celui des deux points tangens dont le mouvement
de rotation est dirigé dans le sens du mouvement de translation.

Menons la tangente S T , et concevons qu'en vertu du mouvement
de rotation, si lui seul avait lieu, le point S dût parcourir, pendant
l'élément du temps 5 Tare élémentaire SM, se confondant avec le prolon-
gement de la tangente ; et que le même point S , soumis au seul mou-
vement de translation 9 dût , dans le même temps, parcourir la petite
droite SN , parallèle à BF. Soient m et n les quotiens respectifs de SM
et SN par l'élément du temps ; m et n seront ainsi les vitesses de rotation
et de translation.

Achevons le parallélogramme SMNP; sa dianogale SP sera Fespace
parcouru par le point S , pendant l'élément du temps , en vertu des
mouvemens combinés de rotation et de translation ; soit p le quotient
de la division de SP par l'élément du temps ; p sera conséquemment la
vitesse absolue cherchée.

Soit prolongée NS jusqu'à la rencontre du diamètre AB en R , et
soit mené le rayon CS ; nous aurons MP = SN; de plus, à cause des
angles égaux MSN et ACS, le dernier de ces angles sera supplément
de SMP , en sorte qu'on aura

or , par un des théorèmes fondamentaux de la trigonométrie t le
triangle SMP donne

SP =&M + M P — aSAi.

substituant donc , il viendra ,

ou enfin , en divisant par le quarré de l'élément du temps

Ainsi la vitesse de translation ou, ce qui revient au même , îa vitesse
du centre est à la vitesse absolue d'un point quelconque S de la cir-

conférence, comme n est à y//7z-i4-/i24-^//2/2.Coi.AS^ AS étant l'arc
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compris entre ce point et celui dont la vitesse est la plus grande.

g. Si Ton suppose successivement que le point S devient chacun
des points A , D , B , Tare AS deviendra successivement o , AD f

ADB ; son cosinus deviendra donc successivement -+-i , o , «—1 ;
on aura donc

pour le point A , pzzm-^-n ,

pour le point D , pzny/m*-\-n% ,

pour le point B , p"=.m—n ;

le premier et le dernier de ces résultats sont, comme Ton voit, exac-
tement conformes à ce que nous avions trouvé ( 1 et 4 )•

10. Si Ton observe que m et n sont tous^deux positifs, et que Cos.AS
est positif ou négatif, suivant que le point S se trouve entre A et D
ou entre D et B , il sera facile d'en conclure que tout point situé entre
le point A et le diamètre DD7 a plus de vitesse absolue que le point D ,
et qu'au contraire tout point sïtué entre le point B et le même dia-
mètre a moins de vitesse absolue que le point D ; de manière que la
vitesse absolue croît sans cesse de D en A où elle atteint son maximum,
tandis qu'au contraire elle décroît sans cesse de D en B où elle atteint
son minimum*

11. Déterminons présentement les composantes de la vitesse absolue
du point S, dans le sens des axes AB , DDX. Si nous abaissons PQ
perpendiculaire sur RS , cette droite PQ exprimera la vitesse dans le
sens AB , tandis que SQ exprimera la vitesse dans le sens CD ; or
PQ = PM.5//2.AS = 772.5//z.AS et SQ=SN-4-NQ=/2+#2.Cos.AS.

12. Si le point S , se détachant de la circonférence, se mouvait
uniformément, dans la direction S P , avec la vitesse absolue que nous
lui avons trouvée, et parvenait, au bout d'un certain temps /, au point S7,
en abaissant de ce point une perpendiculaire S'I sur le prolongement
de RS , on aurait.

SI =£ //2+//7z.Cos,AS 9
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§•4.

'Vèiermination de la vitesse absolue dans les hélices* Relation curieusi
entre les hélices et les cycloïdcs.

13. Si, tandis que le cercle tourne uniformément autour de son
centre j ce centre, au lieu de parcourir une droite située dans le plan
du cercle, se meut uniformément sur une droite dirigée d'une ma-
nière quelconque dans l'espace, en sorte que cependant le plan du
cercle reste constamment parallèle à un plan invariable ; chaque point
de la circonférence décrira une sorte d'hélice.

14. Concevons d'abord que la droite directrice du centre soit per-
pendiculaire au plan du cercle générateur ; la courBe engendrée par
un point quelconque de la circonférence sera Fhélice droite ou vulgaire f

celle dont il s'agit dans la statique élémentaire, lorsqu^on y traite de
l'équilibre de là vis.

Soit toujours m la vitesse de rotation ; soit q la vitesse de trans-
lation , perpendiculaire au plan du cercle générateur, il est aisé de voir,,
sans recourir à une nouvelle figure, que la vitesse absolue d'un point
quelconque de la circonférence génératrice est i//?22-|-y\ Cette vitesse
absolue est alors évidemment la même pour tous les points de la cir-
conférence.

15. Concevons, en second lieu, que la droite directrice du centre
«oit oblique au plan du cercle générateur, il en résultera une hélice
oblique qui , bien qu'elle ait lieu dans la nature 7 n'a été encore *
jusqu'ici % d'aucun usage dans les arts.

Concevons , par la directrice, un plan perpendiculaire à celui du
cercle générateur et, dans ce cercle, $oit mené un diamètre perpen-
diculaire à l'intersection des deux plans ; menons encore deux droites
qui touchent le cercle générateur aux extrémités de ce diamètre. La
projection du cercle , emporté le long de la directrice , en quelque point
qu'on le suppose arrêté 5 sera constamment un cercle égal au premier
et tangent à ce$ deux mêmes droites.

Décomposons
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Décomposons le mouvement du centre en deux autres , l'un per-

pendiculaire au plan du cercle générateur et l'autre dirigé dans ce plan,
parallèlement aux deux tangentes. Chaque point de la circonférence
pourra être considéré comme étant animé de trois vitesses : savoir i.°
la vitesse m de rotation ; 2.0 la vitesse n de translation parallèle aux
tangentes ; 3.° enfin la vitesse q de translation , perpendiculaire au
plan du cercle.

Soit toujours p la vitesse du point décrivant, dans le plan du cercle
mobile 9 et soit *> sa vitesse absolue dans l'espace *7 les deux vitesses p
et q étant perpendiculaires Tune à l'autre , et se composant dans la vi-
tesse unique v ? on aura p r \/qz~hp2 ; mais on a (8) p2 —
-{-2mn.Cos.AS ? donc

Telle est l'expression générale de la vitesse absolue dans les hélices»
16. On volt, par ce qui précède, qu'il existe entre les hélices et

les cycloïdes une relation très-remarquable ; ou plutôt que les cycloïdes
ne sont que des, hélices d'une espèce particulière. Si la directrice d!u
centre du cercle générateur est perpendiculaire au plan de ce cercle ,
on obtient l'hélice droite, ainsi que nous l'avons déjà observé. Si l'on
donne à la directrice différent degrés d'inclinaison, on obtiendra les
/différentes sortes d'hélices obliques. Si enfin, en inclinant de plus en
plus la directrice, on finit par la coucher dans le plan même du cercle
générateur, les hélices dégénéreront en cycloïdes.

17. Aussi la formule du n.° i5 embrasse-t-elle tous les cas. Si la
directrice est perpendiculaire au plan du cercle générateur, on a n~o

et par conséquent t>~ y 'm^H-^, comme nous l'avons trouvé (i4) pour
l'hélice droite. Si, au contraire, cette directrice est dans le plan môme du
cercle générateur, ona^ = o et par conséquent v= \/m2-J-/z2+iim«.Cos,AS,
comme nous l'avons trouvé (8) pour la cycloïde.

18. Si la vitesse du centre du cercle générateur sur la directrice rec-
tiligne , au lieu d'être constante, variait d'une manière quelconque,
n et q seraient variables, et on déterminerait la vitesse absolue d'un

Tom* IL i5
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point de la circonférence, pour une époque quelconque > en substituant
pour n et q> dans la formule générale, les valeurs qui répondraient à
cette époque.

19. Si j au contraire, le mouvement du centre du cercle générateur
était uniforme ? mais curviligne , il faudrait considérer ce centre , à
chaque instant, comme étant mu sur la tangente à la courbe; ce qui 5

déterminant la situation du point A , et conséquemment la grandeur
de l'arc AS, permettrait de faire encore usage de la même formule.

2.0. Enfin le mouvement du centre du cercle générateur pourrait
être en même temps varié et curviligne, et il est aisé de voir, d'après
ce qui précède, comment, dans ce cas, on ferait usage delà formule
générale (*)•

21. On pourrait aussi supposer que le rayon du cercle générateur
varie , pendant le mouvement, suivant une loi quelconque ; ce qui

(*) Soit, en général, un cercle tournant uniformément sur lui - même ; que ïe
plan de ce cercle demeure constamment parallèle à un plan fixe, pendant que son
centre est emporté d'un mouvement varié d'une manière quelconque, sur une courbe
à double courbure , et proposons-nous de déterminer la grandeur et la direction
de la vitesse absolue de l'un quelconque des points de la circonférence.

Soit r le rayon du cercle générateur et soit m la vitesse de rotation com-
mune à tous les points de sa circonférence. Soit pris un point quelconque de
l'espace pour origine des coordonnées rectangulaires, et soit prise pour axe des z
une perpendiculaire au plan fixe auquel celui du cercle générateur est constamment
parallèle. Enfin soient

xr ûc

yf } les coordonnées du centre ; y

z' ) z

les coordonnées du point décrivant.

Supposons que les équations du mouvement du centre soient

fixt, yf
m) zf, t)zzzçy > Ç(xf , yf > z1, f)~=z=-o 9 ^{xf, yf

 9 zf, f)zzzo j {À)

en sorte que l'élimination de t, entre ces équations , conduise à celles de la directrice.
On en tirera ? par la diffèrentiation ,

—
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donnerait naissance à des espèces de spirales ou volutes planes 5 ou à double
courbure? ou que la vitesse de rotation est elle-même variable, ou
enfin que la direction du plan du cercle générateur varie dans l'espace
suivant une loi connue ; mais toutes ces recherches, d'ailleurs très-
curieuses , ne paraissent guère susceptibles d'une utile application,

X, Y, Z , étant, ou du moins pouvant toujours devenir des fonctions de t seule-
ment , et représentant les vitesses du centre parallèlement aux axes,

Soil Ô l'angle variable que forme avec l'axe des x la projection sur le plan des
xy du rayon mené au point décrivant, en sorte qu'on ait

(C)m

r

on aura évidemment

et l'élimination des variables x!, y'9 zf, f, 0, entre les sept équations (À, C , D)
conduira à l'équation de la trajectoire décrite. Si au contraire on n'en élimine que
x!, yf, zf, 0, les trois équations qu'on obtiendra seront celles du mouvement du
point décrivant.

Cela posé , dans les équations (D) , tout, excepté r , étant variable et fonction de t ,
en les diiTérentiant sous ce point de vue, elles deviendront

équations d'où on tirera, en ayant égard aux équations (B) et observant que Pé-

quation (C) donne r-~=m ,

âx • ty ~ dz n—— inX—m S in. ê , —=Y-+^772CosJ , —rr/ , .
d£ d£ dt

Désignant donc par v la vites&e absolue du point décrivant ? il viendra

. . i • ^m ^ i ****T \ g - - / i . / Li-2» \

c'est-à-dire ,

/ C o s J — X S i n . é ) .

Quant aux équations de la direction de cette vitesse t et conséquemment celle de
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§. 5.

QUESTION. La vitesse absolue étant variable 9 la force centrifuge le
sera-t-clle aussi ?

22. Après avoir suffisamment éclairei tout ce qui concerne la varia-
tion de la vitesse absolue, il nous reste à examiner le second principe
posé par le docteur ^Vood, savoir : que, la vitesse absolue variant à

la tangente à la trajectoire, en désignant maintenant par xr, y!, zf, non pas les
coordonnées du centre, mais celles du point de contact, elles seront

X—m Sin.0 Y+mCos.0

L'axe des x , et conséquemment l'angle ô, étant arbitraire par rapport à la directrice ;
Substituons à cet angle un autre angle a , dépendant de la nature de cette directrice
et de la manière dont elle est parcourue par le centre du cercle générateur.
Prenons , par exemple, pour cet angle co, l'angle que forme la projection, sur le
plan des xy, du rayon mené au point décrivant ? avec la normale à la projection d§
la directrice sur le même plan. Les équations de ces deux droites étant

Sin.0 dx> X

on aura
X.Sin.0

Y . G o s . f l Y . C o s . é — X . S i n . 0

d'où Y.Cos.tf—X.Sin.fc==Cos.*.\/5ô+Yâ==wtCos.« ,

en désignant par n la vitesse estimée dans le sens du plan du cercle générateur. Substi-
tuant donc, dans la valeur de i-, elle deviendra

formule générale , de laquelle on déduira facilement tous les cas particuliers discutés

dans le texte.
( Noté des éditeurs, )
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chaque point de la circonférence 5 la force centrifuge varie aussi. Or ,
la première chose à faire pour se mettre en état de décider cette ques-
tion 5 c'est de bien déterminer le sens qu'on attache au mot force
centrifuge

Un grand nombre de physiciens l'emploient comme synonyme de
force tangentielle ou projectile; voyez entre autres la Physique mèclianiquô
de FISCHER, sec. I I , chap. XI I I , §. V I , pag. 4g. Mais HUYGHENS y

NEWTON, JEAN BERNOULLI , et une foule d'autres illusties géo-
mètres entendent, par force centrifuge, la force avec laquelle un point
contraint de décrire une courbe , tend à s'en écarter à chaque instant
suivant la direction de la normale.

Ici même , c'est-à-dire, dans le cas d'un cercle tournant autour de
son centre , pendant que ce centre est emporté dans l'espace d'une ma-
nière quelconque 9 on peut établir une distinction qui donne lieu, à
considérer quatre sortes de forces centrifuges : on peut, en effet, con-
sidérer la force centrifuge ou par rapport à la trajectoire réellement
décrite dans l'espace par un point de la circonférence , ou considérer
cette force centrifuge par rapport à la circonférence; et , dans chaque
cas, cette même force centrifuge peut être envisagée sous les deux points
de vue que nous venons d'expliquer.

On aura donc ainsi à considérer i.° la force suivant une direction
tangente à la trajectoire, laquelle sera variable comme la vitesse absolue;
2.0 la force suivant la direction tangente à la circonférence sur laquelle
se meut le point décrivant ; 3.° la force normale à la trajectoire ; 4°
enfin la force normale à la circonférence, ou dirigée suivant le pro-
longement du rayon mené au point décrivant.

Or , de ces quatre sortes de forces centrifuges, dont les trois pre-
mières varient de grandeur suivant le point que l'on considère, il n'y
aurait proprement que la dernière qui, si elle variait aussi , pourrait
détruire l'équilibre entre les parties d'un cercle tournant sur son centre,
11 est clair 5 en effet, que , si les points de la circonférence sont éga-
lement poussés vers le centre par la force d'attraction qu'on suppose
la même pour tous ces points, et inégalement sollicités dans le sens
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opposé par la force centrifuge ? qu'on suppose varier d'un point à
l'autre 5 l'équilibre sera nécessairement détruit, et sa destruction exer-
cera vraisemblablement une influence sensible sur les phénomènes des
vents et des marées ; mais si, au contraire , tous les points de la cir-
conférence sont, en même temps ? également attirés et également re-
pousses ? l'équilibre devra nécessairement être maintenu.

Prouvons donc que 9 dans le cas de la cycloïde ? qui paraît être
celui duquel Wood s'est principalement occupé 5 le point A et un
autre point quelconque S ? s'ils cessaient d'être retenus sur la cir-
conférence , en conservant d'ailleurs leurs vitesses acquises , s'éloigne-
raient également du centre dans des temps égaux.

^3. Concevons , pour cela 5 que le point A qui, comme nous l'a-
vons vu , est animé de la vitesse absolue m-\~?i , suivant AE ? par-
vienne en A7 au bout du temps / , nous aurons ainsi AA; ~tm-\-tn.
Or ? dans le même temps que le point A parcourt AA', le centre C
parcourt aussi une certaine longueur CCX 5 laquelle est nécessairement
égale à tn ; si donc nous abaissons sur AA/ la perpendiculaire C/H,
coupant en K le prolongement de SN, nous aurons AH=/772.

Nommant donc r le rayon CA = OU , nous aurons C/A/ =
\/r2-\-t2m\

D'un autre côté le point S , devenu libre, sera mu dans la direc-
tion SP avec une vitesse y//7za-f-/22-t~27?2/2Co$.AS et parviendra , au bout
du temps / , en un point S7 du prolongement de cette droite telle-
ment situé qu'en abaissant de ce point, sur le prolongement de SN
la perpendiculaire S'I coupant en L le prolongement de CG/ > oa
aura (12)

S I =

d'où

donc
^K^Bl—RK:rRI—CC /=



DU SYSTEME DE WOOD, ni

on a de plus, à cause de CR=r.Cos.AS ,

SO^S'I—LI=S/I—CR=/OT.Sin.AS—r.Cos.AS ;

on aura donc

S—rCos.AS)a,

ou , en développant et réduisant ?

ainsi , au bout du temps / , le point A et le point quelconque S ,
devenus libres ? pendant que le cercle continuera à se mouvoir, se
seront également écartés de son centre ; d'où l'on voit que la force
centrifuge , proprement dite , la seule qui puisse troubler l'équilibre,
est la même pour tous les points de la circonférence (*)•

(*) En conservant les notations et conventions de la note précédente , le centre du
eercle est sollicité, à l'époque t9 parallèlement aux axes par des forces qui sont res-
pectivement

d**'_dX dy_dY ^£_^

et le point décrivant est sollicité, au même instant, parallèlement aux mêmes axes^
par des forces qui sont

d«» dt m et °S* 5 ' cU» " " dt dt m # ' dt»""" df '

mais les axes faisant, avec le rayon mené au point décrivant", des angles dont les cosinus

aont respectivement,

Cos,0 , Sin.0 , o ;

les forces de la première sorte, estimées suivant ce rayon , seront

dX dY .
•— Cos.0 , —-Sin.^ , p ;

et les forces de la seconde sorte, estimées suivant ce même rayon, seront

C d X de ) ( dY d0 )
< — 772— COS.0 >COS.0 , < 772 — S i n J > Slïl.ô 1 O.
{ dt dt ) l dt dt J

Ainsi le rayon mené au point décrivant sera sollicité, suivant sa direction, savoir ;
k l'une de ses extrémités, par une force unique égale à
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On toît donc que le système du docteur "VVood n'est absolument

pas soutenable. Son premier principe est vrai ; quand au second, il
est vrai dans un sens et faux dans un autre , et c'est dans ce der-
nier sens qu'il en a prétendu pouvoir faire l'application à la rotation
diurne de la planète que nous habitons.

QUESTIONS RÉSOLUES.

Solution du premier des deux problèmes proposés à
la page 62 de ce volume ;

Par M. LHUILIER ? professeur de mathématiques à l'académie
impériale de Genève.

JLJEMME L Partager deux droites données de grandeur, Tune et
l'autre en deux parties, de manière que le rectangle d'une partie de
Tune de ces droites par une partie de l'autre soit donné de grandeur 5

et que le rectangle des deux autres parties soît aussi donné de gran-
deur ?

ax <IY
— CosJ+-SinJ>

et, h son autre extrémité, par une force unique égale à

dX dY du dX dY m*
— Co§J+— SinJ— m — = CosJ+—*Sin.0 ,

!a force centrifuge , proprement dite , évidcmmenl égale à la différence de ces deux-

là , sera donc simplement — , c*esl-à-dire ; exactement îa même que si le centre

ît fixe, et tout à fait indépendante de la situation du point décrivant sur la circonférence.
( ISote des éditeurs. )

Soient
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Soient À B , K/W ( fig. 2 ) deux droites donne'es de grandeur ; on

demande de couper ces droites l'une et l'autre en deux parties aux
points X etX7

 5 de manière que les rectangles AXxA'X ' et
soient l'un et l'autre donnés de grandeur ?

Soient

AXxA'X'=ABxAV et
on aura

AX:AB=AV;A/X' et ;
donc

BX: AB=^X': A'X' et AX: AB=£'X';BOE' ;
donc aussi

*'X':A'X'=B'J':BOL' et ^ Î B O C ^ A V J A T ;
ce qui donne

ansj x pyj-k/at x wy.
•On connaît donc la somme a/b/ des deux distances /z'X7, ^ /X / et

le rectangle de ces mêmes distances ; ainsi elles sont données de gran-
deur et conséquemment le point X7 est donné de position.

Remarque L Pour fixer Fattentlon sur un cas déterminé 5 j'ai supposé
que les positions des points donnés et des points cherchés sont respecti-
vement AXB 5 A

/X /B /
 5 et que les droites hfaf ^ Wh; > sont données de

grandeur de manière à répondre à cette supposition» Si l'on voulait faire
rémunération de toutes les positions dont ces points sont susceptibles,
il paraît d'abord qu'il y aurait neuf cas à examiner ; mais quelques-uns
de ces cas rentreraient les uns dans les autres ; ils dépendraient de la
grandeur des droites données A./a/\Wb/ et des directions suivant les-
quelles on les porterait depuis les points A' et B^ La géométrie et
l'algèbre indiquant la liaison qui règne entre ces différens cas 5 par les
ehangemens de directions et de signes des lignes obtenues ? j'ai cru
devoir me borner à l'exposition sommaire de l'un de ces cas.

Remarque IL On obtient, comme il suit ? la condition de possibilité
du problème proposé :

Tom. IL 16
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LEMME IL Partager trois droites données de grandeur chacune en
deux parties de manière que l'on connaisse de grandeur chacun des
rectangles suivans : savoir, le rectangle d'une partie de la première
par une partie de la seconde ; le rectangle de l'autre partie de la se-
conde par une partie de la troisième ; enfin le rectangle de l'autre partie
de la troisième par l'autre partie de la première ?

Je vais montrer comment le problème proposé., sur trois droites ?

peut être ramené au problème correspondant sur deux droites seulement.
Soient AB ? A

7B7 , A77B77 ( fig. 3 ) , trois droites données de grandeur,
à couper en X ? X

7 , X/7^ de manière que l'on connaisse de grandeur
chacun des rectangles A X x A 7 X 7

5 B7X7xA7 7X / 7
? B / 7 X y / xBX ?

Soient

AXxA7X7=A7B7xAa et

on aura

AXiAa-AW-.A'X' et AW:WX'=A''X'':A"a» ,

donc

AX:*X=À/B':B'X' et A/B':A'X'=À'Ot":fl"X/' ,

et par conséquent

AX:«*X=A"X":A"a" et AX:Aa=A"X":«"X" ,

d'où résulte
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ou *XXa"X"=Aa>:A''a''.

Donc on connaît les droites #B y a;/W;
v et en outre les rectangles

aXXanXN ^ B X x B ^ X " sont donnés de grandeur ; donc le problème
sur trois droites données de grandeur et SVT trois rectangles formés
par leurs parties ? d'une manière conforme à l'énoncé , est ramené au
problème correspondant sur deux droites seulement.

Remarque. On ramènera précisément delà même manière le problème
proposé sur quatre droites 9 au problème correspondant sur trois droites;
et généralement, le problème étant proposé sur un certain nombre de
droites ? on le ramènera au problème correspondant sur un nombre de
droites inférieur d'une unité.

Problème* A un triangle donné , inscrire un triangle dont les côtés
passent par des points donnés ?

Soient A , A;
 P A;/

 ? les sommets d'un triangle donné ; soient P ̂
V/, P 7 / , trois points donnés sur le plan de ce triangle. On demande
d'inscrire au triangle donné, un triangle XX'X77., dont les côtés XX'%
X'X'', X ^ X , passent respectivement par les points P ^ , P ? P

; ?

Par

P ) (A A/ ,A
P 7 > soient menées aux eôtés ( A/ Kf/

 5 A '

A"

les parallèles

b»9

¥'a">V b

a"A* xbk! 9 afA

P")

Les rectangles ,
l

sont égaux deux à deux ; ainsi ceux de la première ligne sont donnés
de grandeur; et5 comme on connaît en outre les distances tf^ 5 afbl' 9 a!fbn\
le problème se trouve ramené au lemme précédent.

Remarque. A l'aide de l'extension dont on a vu tout à l'heure que
ce lemme çst susceptible, on résoudra d'une manière semblable le pro-
blème général. A un polig&ne donné, inscrire un poligone de même
nom , dont les côtés ( ou leurs prolongemens ) passent respectivement
par des points ( en même nombre ) donnés de position P
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Autre solution du même prohlème ;

Par M, SERVOIS , professeur de mathématiques aux écoles
d'artillerie de Lafère.

Ton construit une suite de polîgones de m côtés dont les côtés
ou leurs prolongemens passent respectivement par m points donnés et
dont les sommets, excepté le dernier, soient respectivement sur m—i
droites données , le lieu des derniers sommets de ces polygones sera
en générai une courbe du second degré ( Voyez, pour la démonstra-
tion de cette proposition, la Correspondance sur V école polytechnique?
tome i . e r , n.° S^page 009 ). A quoi il faut ajouter qu'avec la règle
seulement il sera facile de déterminer cinq ou un plus grand nombre
de points de la courbe,

2»° Si donc le dernier sommet est assujetti, comme les autres, à
se trouver sur une droite donnée ou ? ce qui revient au même 3 s'il
s'agit d'inscrire à un polygone donné de m côtés un polygone d'un
pareil nombre de côtés , dont les côtés 5 ou leurs prolongemens, passent
par m points donnés 9 l'un quelconque des sommets du polygone cher-
ché devra se trouver à l'intersection du côté correspondant du polygone
donné avec une courbe du second degré dont cinq points au moins
seront déterminés ; d'où l'on voit que le problème ne pourra admettre
que deux solutions au plus.

3.° On voit, en outre., que la résolution de ce problème se trouvera
réduite à celle du problème suivant : cinq points étant donnés de
position par rapport à une droite indéfinie , construire les inter-
sections de cette droite avec la courbe du second degré passant par
les cinq points donnés? Or ce problème a été résolu ( Voyez la Corfes-
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pondance suri école polytechnique, tome i . e ï , n.° 10, page 435 )ç
et il peut l'être facilement de diverses autres manières.

4.0 Dans des cas particuliers 5 il peut arriver que ? par la nature du
polygone donné et la situation des points donnés 5 l'un des sommets
du polygone cherché cessant d'être assujetti à se trouver sur un côté
du premier 5 ce sommet décrive une ligne droite ; alors le problème
rentre en totalité dans le domaine de la géométrie de la règle. Ces-
cas sont en très-grand nombre dans le problème général ; car seulement
le problème particulier du triangle présente celui des trois pôles en
ligne droite ? celui de deux pôles en ligne droite avec un sommet ? etc.

Solution du dernier des deuoc problèmes proposés à la
page 32 de ce volume ;

Par M, LHUILIER , professeur de mathématiques à l'académie
impériale de Genève.

JLROBLÈME. Déterminer un quadrilatère dont on connaît les qua*
tre côtés et la droite qui joint les milieux de deux côtés opposés ?

Je remarque d'abord que ce problème donne lieu à un cas indé-
terminé. En effet 9 lorsque les côtés opposés d'un quadrilatère sont
égaux ? deux à deux 9 le quadrilatère est un parallélogramme; la droite
qui joint les milieux de deux côtés opposés est déterminée à être
égale et parallèle à chacun des deux autres côtés ? et le nombre des
quadrilatères assujettis aux conditions données est illimité.

Supposons donc que la double égalité qui rend le problème indé-
terminé n'ait pas lieu.

Soit AA /CC / ( fig. 5 ) un quadrilatère dont les côtés sont donnés
de grandeur de manière qu'on n'ait pas, en même temps , AA / = CC/

et AC -zz A /C / ; que les côtés opposés AC et A /C / soient coupés
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en deux parties égales 5 en B et W , et que la droite BB' soit donnée
de grandeur; on demande le quadrilatère.

Inapplication des propositions générales de la Polygonométrie m'a
paru le moyen le plus convenable pour résoudre le problème proposé ;
savoir, je vais chercher, au moyen de ces propositions, les angles en
B et en B ; que la droite BBy fait avec les côtés du quadrilatère dont
elle joint les milieux.

Que dans le quadrilatère ABB'̂ A7 les angles extérieurs soient désignés
par B et par B7; dans le quadrilatère CBB/C/ les angles extérieurs
seront les supplémens des premiers.

Dans le quadrilatère ABB'A' ? on a l'équation

AA/2=AB3+BB/3+B/A/2+2ABxBB^xCos.B ,

4-2AB x WA' x CW.(B+B0 ,

Dans le quadrilatère CBB/C/, en remarquant que BC^ABetque
/C/^A/B/, on a l'équation

CC/2=AB2+BB/3+B/A/2—2AB xBWxCosB ,

Cos.W.

Ajoutant et retranchant successivement la seconde équation à la
première , il viendra, en réduisant,
A A/2-f-CC/2 = 2 AB2-4-2BB^+2B/A/^+4AB x S'A/ X Cos.(B-{-B%

AA/2—CC/2r=:4AB x BB^ x
Ce qui donne

AB. Cos&+A.W. Cos.B'= -

A K'+CC AA'—ÇÇf

Par la première de ces équations , on connaît la somme des angles
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B et B ; , par le cosinus de cette somme ; par la seconde Qn connaît
la somme des produits des cosinus des mêmes angles par les droites
données AB et A'B'. Partant, le problème est ramené à cet autre :
trouver deux angles dont on connaît la somme , et la somme des
produits de leurs cosinus par des droites données.

Remarque L Lorsque AA' = CO et AB = A/W , on a aussi
/ = AA /:=CC / ; il vient conséquemment

donc la somme des angles B et B / vaut deux droites, et conséquemment
les droites AC et A'C' sont parallèles entre elles* Alors Cos>W~
~CosJB ? et la seconde équation devient

(AB—À /B0C<w.B=AA'—CC' ;

d'où Cos35=l; partant, l'angle B est indéterminé, comme il doit
l'être en effet.

Remarque IL Le problème : couper un angle donné en deux parties
telles que la somme des produits de leurs cosinus par des droites
données soit donnée de grandeur5 peut être résolu de différentes ma-
nières ? soit par l'algèbre soit par la géométrie. Le procédé suivant ,
fondé sur la doctrine des centres des moyennes distances , me paraît
l'un des plus élégans.

Soit ACA7 ( fig. 6 ) un angle donné, on demande de le partager
en deux parties ACX ; A ' C X , par une droite CX s de manière que
les sommes de leurs cosinus 9 pour les rayons donnés de grandeur
CA e tCA 7 , soient égales à une droite donnée de grandeur 2a?

Soit menée AA' ? laquelle soit coupée en deux parties égales, au
point Z ; de ce point 9 comme centre, et avec un rayon égal à la
moitié a de la droite donnée 5 soit décrite une circonférence de cercle ;
du sommet C soit menée ( s'il est possible ) une tangente à ce cercle 3

et du point C soit élevée à cette tangente une perpendiculaire CX ;
cette perpendiculaire sera la droite qui divisera l'angle proposé dans
les parties cherchées.

Tour que le problème soit possible 5 le point C ne doit pas être au
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dedans de la circonférence dont Z est le centre et dont # est le rayon,

c'est-à-dire, qu'on doit avoir a^CZ. Or ,

CAJ+CA /a=2CZ* = 2AZ3 = 2CZ2-K AA"
2—zCAxCA'.Cos.C

donc

C A H-C A'*+aC AxC A'. Cos. C

»

on doit donc avoir

4*2 ~, CA^+2CA X CA/.Cos.G+CA.'*.<

Dans le cas présent, cette inégalité devient

[ L (AA'+CC). 7 (AA'—CC )2 =

^ ' — C O )
De là on tire

savoir ; Dans tout quadrilatère 9 la droite qui joint les milieux de
deux côtés opposés n'est pas plus petite que la demi-différence des
deux autres côtés , et elle n'est pas plus grande que leur demi-somme.

Remarque
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Remarque III. I/équation

BB'
donne lieu à la construction suivante :

Dos points À et A' soient abaissées sur BB/ les perpendiculaires
Àb et Kfht j on aura

B6=AB.Cos<B 9 B/b/=A/B
donc

Or 5 le rapport de AÀ / à bbf est le rapport du sinus total au cosinus
de l'inclinaison du côté BE' au côté A A7; donc on connaît cette incli-
naison ; et ? par la première équation 5 on connaît celle des deux côtés
AC et A ' O l'un à l'autre.

Remarque IV. De là le problème proposé est ramené au suivant ;
soient deux cercles donnés de grandeur et de position , et soit une
droite donnée de position ; mener une droite parallèle à la droite donnée
de position, de manière que sa partie comprise entre les circonférences
des deux cercles soit de grandeur donnée.

En effet, les points B et B ; sont à des circonférences données, dont
les centres sont A et A ; , et dont les rayons sont AB et AfW-P et la
droite BB ; , donnée de grandeur9 doit être inscrite entre les circon-
férences de ces cercles ? de manière qu'elle fasse un angle donné
avec la droite AA / qui joint leurs centres.

Par le centre A soit menée une droite A*, égale à BB ; e^fr'sant
avec AA7 l'angle donné. Du point « comme centre, avec le rayon AB ?

soit décrite une circonférence de cercle qui rencontre ( s'il est possible )
en W la circonférence dont A/ est le centre et A /B / le rayon ; soit
enfin menée B^B parallèle à A*, et terminée en B à la circonférence
de l'autre cercle; la droite B7B sera la position de la droite qui joint
les milieux des côtés opposés AC et A/ C ;.

Si la circonférence décrite du centre » avec le rayon AB , coupe la
circonférence décrite avec le rayon A'B' et le centre A7

 9 le problème
proposé a deux solutions,

Tom> IL JJ
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Si la rencontre de ces circonférences n'a pas lieu «, le problème est

impossible.
Si enfin la rencontre se fait par contact, il y a une limite entre

les quantités données.
Pour que le problème soit possible, on doit avoir les deux conditions

AB+A'B'1,0 AB~A'*—A13'
ou

À'«—AB—À'B'
donc

or,

= AA /3+BB /a —2 BBy x W

\ BB/+ r *= AA'M-BB» —2 BB/ \ BB/+

A'*»~(AB+A'B')a

—CC)

on a donc les deux limites

(AB-A/BO^
Autre solution. Le problème proposé peut aussi être résolu , indépen-

damment des propositions générales de la polygonométrie 5 comme il suit.
Que les côtés AC 9 A'C/ se rencontrent ( s'il y a lieu ) en S ,

( fig, 7 ) on aura

2—2(BS—BC)(B/S—WC/).Cos.& à= (BS—
=2=BB/2-~2B SxB C 4-2B

—2B/S x B/C/+2B /S x BC.Cos.S.
On trouvera par un calcul à peu près semblable,

. Coi.S.

4-2B/S X B/C/—2WS X BC. Cos.S.
de là AA/2-4-CC/2 = 2BB / i+2BC2+2B /C /3

AA / 3 —CO-4BS x BC— 4BS xWC'sCos.S ,
-KB ;S x B'Cy—4B/S XB C .Cos.S.
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La première des ces équations donne

et de la seconde on tire
4BS(BC—B/a.Coj.S)+4B/S(B/C/—BC.Co5.S)=AA^—CO.

Partant , dans le triangle BSB', on connaît la base BB/
 9 l'angle S

au sommet, et la somme AA /3—CC /2 des rectangles des deux côtés
BS et B'S7 par les quantités données BC—B'C'.Cos.S et B (7
—BC.CW.S ; lesquelles quantités données reviennent respectivement à

Ainsi, le problème proposé 5 snr le quadrilatère , est ramené au
problème suivant, sur un triangle : on demande un triangle BSB7

dont on connaît la base BB7 , l'angle au sommet S 9 et la somme
des rectangles des côtés BS et B/S par des droites données ?

Solution anali tique du même problème ;

Par M. R O C H A T , professeur de mathématiques et de
navigation à St-Brieux.

OOIT le quadrilatère BCDE ( fig. 8 ) , dont les milieux des côtés
BC et DE sont respectivement A et K, et dans lequel on connaît
A K : = ^ BC = £? DE = £, CE-d, BD — e. Soient pris AK pour axe
des x ^ et le point A pour origine ; et soient les coordonnées des sommets
ainsi qu'il suit :

( — m y C a—p ,
pour C l pourD 1pour B

les coordonnées des milieux respectifs G ? H de BD, CE seront

pour G pour H
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soit fait enfin GH = Z ; on aura les équations de condition

En traitant p-\-m et q—n comme inconnues dans celles de la seconde
colonne > et quarrant il viendra

d2—e* ) * , N 8a2(J2+e2—na*)—(d2—e2)2

} ( ) 2

ajoutant ces équations à l'équation en Z , il viendra, en doublant et
retranchant les équations de la première colonne ,

au moyen de quoi Z peut être regardé comme connu.
Cela posé ? les coordonnées des points M et P ? milieux respectifs

des diagonales BE et CD 5 sont
( '-(a+p+m) , ( '-(a-p-m) ,

pour M < pour P <

I -r(9-") > l H9-») •>
d'où il suit que la droite P M , passant par l'intersection O des droites

et GH 9 aura pour équation

y-K(7-«) = - ~ ; | x-\(p+p+m) j ;
ainsi AK forme avec PM un angle dont la tangente tabulaire est

P—" ___ v/Sa^Ja+e2—2a2)—(d2—e2)*
c/-\-m d2—ez """ *

on trouvera de même que GH forme avec la même droite un angle
dont la tangente estdont la tangente est

\/ HZ2 (

b~—c2

l'angle formé par les droites AK et GH ; angle qui est la somme ou
la différence de ces deux-là, pourra donc être déterminé ; et, comme
les grandeurs de ces droites sont connues , et que d'ailleurs leur inter-
section O est leur milieu commun , on aura tout ce qui sera néces-
saire pour construire le quadrilatère demandé.

Cette analise s'applique également aux trois sortes de quadrilatères, et
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les limites du problème sont données par celles de la réalité du radical (*).

Construction géométrique du même problème ;

Par M. Pi LATTE, professeur de mathématiques spéciales
au lycée d'Angers*

JLRQBLÈME. Construire un quadrilatère dans lequel on connaît les
quatre côtés et la droite qui joint les milieux de deux côtés opposés ?

Solution. Supposons que ce quadrilatère soit déjà construit et que ce
soit le quadrilatère ABCD ( Hg. g ) dans lequel, outre les quatre côtés ,
on connaît la droite EF qui joint les milieux E , F des côtés opposés
AB? CD. Soient I , Kles milieux des deux autres côtésBC , AD; soient
menées les diagonales AC, BD , dont les milieux soient H , G ; en
exécutant les constructions indiquées dans la figure, on aura (**)

le parallélogramme E H F G , dans lequel on connaît, outre les côtés,
la diagonale E F , peut donc être construit ; sa construction fera cou-
naître sa diagonale HG 5 laquelle est aussi diagonale du parallélogramme
HKGI dont on connaît 9 en outre , les côtés -, ce dernier parallélo-
gramme peut donc aussi être construit, et conséquemment les points
I et K peuvent être déterminés ; menant donc par E , F , I , K , des
droites respectivement parallèles à GI , GK , HF 5 GF , ces droites, par
leur rencontre, formeront le quadrilatère demandé.

Le parallélogramme HKGI, tournant autour de celle HG de ses

(*) On parvient encore assez facilement au but, en prenant l'un des côtés opposés
du quadrilatère dont la distance des milieux est donnée pour axe des x ; son milieu pour
origine ; et en cherchant à déterminer la situation du milieu du côté opposé. Ce milieu
est donné par l'intersection d'un cercle ayant son centre à l'origine avec une para-
bole ayant pour axe l'axe des x ; ce qui conduit, par l'élimination 9 à une équalioa
du quatrième degré se résolvant à la manière du second.

(**) Y oyez les pag. 3i3 et 353 du tom. i.€r des Annales:
( Notes des éditeurs. )
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deux dîogonales qui lui est commune avec le parallélogramme EHFG,
peut prendre, par rapport à ce dernier, la situation IIK/GI'; et, si
l'on construit sur celui-ci , comme sur le premier , on formera un
nouveau quadrilatère A/B/C/D/ qui, sans être égal au premier, rem-
plira comme lui les conditions du problème.

Quant à l'impossibilité de ce problème , elle se manifestera par
celle de la construction de l'un ou de l'autre des parallélogrammes
EHFG et HKGI.

Démonstrations du théorème énoncé à la page 32 de
ce volume.

Par MM. RAYMOND , VECTEN , LHUILIER , ENCONTRE 9

LABROUSSE , FERRIOT, ROCHAT, FAUQUIER et AJASSON.

\̂ UELQUES~UNS des géomètres qui se sont occupés de ce théorème,
en ont donné, à la fois, des démonstrations analitiques et des démons-
trations synthétiques ; d'autres se sont bornés à une démonstration de
l'une ou de l'autre sorte ; enfin deux en ont donné des démonstrations
mixtes, c'est-à-dire, partie analitique et partie synthétique.

M. Raymond, principal du collège de Chambery , a donné deux
démonstrations purement analitiques ; et MM. Vecten , professeur de
mathématiques spéciales au lycée de Nismes 3 Rochat > professeur de
navigation à St.-Brieux, et Ajasson , élève du lycée d'Angers, en ont
chacun donné une. Ces diverses démonstrations reviennent à peu près
à ce qui suit.

L'équatioa d'une hyperbole équilatérale, rapportée a ses asymptotes
prises pour axes, est de la forme

xy = A* ;

et, si «, et £ sont les coordonnées de l'une des extrémités d'un diamètre ^
— et et —£ seront les coordonnées de son autre extrémité ; en sorte
que, si par un point dont les coordonnées sont or et y^ on mène des
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droites à ces deux-là , en désignant par /;* et m' les tangentes tabu-
laires des angles que feront ces droites , d'un même côté ? avec l'asymp-
tote prise pour axe des x ? on aura

772—

Mais comme on a

on a aussi

xy—xp d'où y— — ;

donc

»=—î, m^ + l;
X t

et par conséquent
mf'=.*~-m ;

les angles formés d'un même côté avec l'asymptote par les deux droites,
sont donc supplémens l'un de l'autre y ces deux angles, pris de diffé-
rens côtés ? sont donc égaux.

Ainsi , Les droites qui vont d'un même point quelconque d'une
hyperbole èquilatèraie aux deux extrémités d'un même diamètre trans-
verse , sont également inclinées à Vune quelconque des asymptotes.

Passons actuellement aux démonstrations synthétiques. M. Raymond
a déduit la sienne de ces deux propositions connues.

i.° Dans l'ellipse et dans l'hyperbole, les deux cordes supplémen-
taires qui répondent à un même diamètre 5 indiquent, par leur direc-
tion , un système de diamètres conjugués.

2.° Dans toute hyperbole, le parallélogramme construit sur deux diamè-
tres conjugués quelconques, a ses diagonales dirigées suîvantles asymptotes.

Il est évident en effet, par la première proposition, que les droites
qui vont d'un point quelconque d'une hyperbole aux deux extrémités
d'un même diamètre transverse, sont parallèles à deux autres diamètres
conjugués l'un à l'autre ; ces droites sont donc, en vertu de la seconde
proposition > parallèles aux droites qui joignent les milieux des côtés
opposés d'un certain parallélogramme dont les diagonales se confondent
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avec les asymptotes de Ihypeibole; si donc cette hyperbole est équi-
latérale, ce parallélogramme ayant ses diagonales rectangulaires devient
un rhombe; les droites qui joignent les milieux de ses côtés opposés
sont donc également inclinées à une quelconque des diagonales , c'est-
à-dire , à une même asymptote ; il en doit donc être de même de
deux parallèles à ces droites.

Quoique la première des deux propositions sur lesquelles M. Ray^
mond ^ fondé sa démonstration se trouve démontrée dans divers ouvrages
élémentaires , on verra sans doute ici avec plaisir la démonstration très-
simple qu'il en donne lui-même, et qui peut également être appliquée
à l'ellipse.

Soient HBK ( fîg. io ) Tune des branches d'une hyperbole, C
son centre , AB Pun quelconque de ses diamètres transverses ? MA et
MB des droites menées aux deux extrémités de ce diamètre, d'un point
quelconque de la courbe; si, par le centre C? on mène des parallèles à
MA et MB , coupant ces droites en E et D ; parce que C est le milieu
de AB , E sera le milieu de MB ; le diamètre CE coupera donc en deux
parties égales toutes les cordes parallèles à MB ; son conjugué sera
donc parallèle à cette corde, et sera par conséquent CD.

Voici présentement la démonstration de M. Lhuilier.
. « Soit C le centre d'une hyperbole équilatère ( fig. 11 )* Soit ACA /

» un diamètre trarrsverse de cette hyperbole, dont les extrémités soient
» A et A'. Soit M un point de cette hyperbole auquel soient menées
5> les droites AM, A ;M. Par M soit menée une droite parallèle à l'une
» des asymptotes; et., sur cette droite, soient abaissées les perpendi-
» culaires AB , A'B'* J'affirme que les angles AMB 5 A'MB' sont
» égaux entre eux.

» Soit y en effet, menée par C l'autre asymptote , qui rencontre en
» P la droite BB/ ; et ^ sur CP 5 soient abaissées les perpendiculaires
» AD , A^TK

» On a, par la propriété fondamentale de l'hyperbole rapportée à
^ ses. asymptotes ,

ADxCD^MPxCP, ou AD:MP=CP: CD;
de là
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» de là

AD—MP : A D + M P = C P - C D . CP-+-CD,
» ou , à cause de AD~A 7 D ; =rB 7 P, et de CDurCD7

M B : M B 7 = A B : A ' B ' ;

» les deux triangles rectangles MBA et MB7A7 sont donc semblables
» entre eux ; et , par suite , les angles AMB et AOIB7 sont égaux
» entre eux.

» Application. Soient deux points A , A7 donnés de position 9 et
» soit une droite BB7 qui £e meut parallèlement à elle-même dans un même
» plan passant par ces deux points. Dans chacune des positions de cette
» droite, soit déterminé, sur elle , le point M dont la somme des
» distances aux points A , A7 est la plus petite; le lieu de ce point
» M est une hyperbole équilatère dont AA7 est un diamètre trans-
» verse , et dont une asymptote est parallèle à BB7.

» Ce point est aussi le point d'incidence des rayons qui f partant de l'un
» des points A , A7 , sont réfléchis à l'autre point, par la droite BB7. »

La démonstration de M» Encontre, Professeur doyen de la faculté
des sciences de l'académie de Montpellier, suppose , outre le premier des
deux principes employés par M. Raymond, les deux autres principes que
voici ; i.° la tangente à l'hyperbole, terminée aux asymptotes , a son
point de contact à son milieu; et elle est égale au conjugué du dia-

• mètre mené par ce point de contact ; 2..0 deux diamètres conjugués
quelconques d'une hyperbole équilatérale sont égaux entre eux.

Ces principes posés, soient C ( fîg. 12 ) le centre d'une hyperbole
équilatérale , AA7 un diamètre, MA , MA7 des droites joignant un
point quelconque M de la courbe aux extrémités de ce diamètre, et
supposons que ces droites coupent Tune des asymptotes en B et D.
Soit E F une tangente parallèle à M A , soient E le point de contact de
cette tangente et F le point où elle coupe l'asymptote ; en menant
le diamètre EE7 il aura pour conjugué le diamètre parallèle à EF ou
MA ; ce diamètre EE7 sera donc , par la propriété des cordes sup-
plémentaires , parallèle à MA7 ; les deux triangles CEF et JjMB
seront donc semblables ; mais 9 si l'hyperbole est équilatérale , on a

Tom> IL 18
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EC = EF , et eonséquemmentle premier de ces deux triangles est isocèle;
le second doit donc l'être aussi ; on doit donc avoir Ang.MBD=Ang.
MDB.

M. Encontre remarque de plus que, si l'on désigne par G et H les
points où. MA' et MA remontrent l'autre asymptote 9 on aura ? par ce
qui précède et par les propriétés générales de l'hyperbole ,

MB=MD,

MH=MG,
AB=MH;

retranchant la dernière équation de la somme des deux premières , il.
vient, en réduisant ,

MA=DG.

Les démonstrations synthétiques de MM," Vecten , professeur de ma-
thématiques spéciales au lycée de Nismes , et Labrousse , maître de
mathématiques dans la même ville , sont absolument les mêmes et
reposent uniquement sur l'égalité des portions de sécantes interceptées
entre les asymptotes et la courbe ; elles reviennent à peu près à ce
qui suit.

Soient toujours C ( fig. i3 ) le centre de la courbe, BE et CH
les asymptotes, KhJ un diamètre, MA, MA7 deux droites joignant
ses extrémités à un point quelconque M de l'hyperbole ; la première
de ces droites coupant les asymptotes en B et H , et la seconde en
D e t G .

Soit menée par A' une parallèle à MA terminée en E à l'asymp-
tote , et soit joint EH ; à cause de l'égalité des triangles CAB et CA7E>
et de MH~AB, HE sera parallèle à MA7, et conséquemment les
triangles EHB et DMB seront semblables ; mais, parce que HC per-
pendiculaire à BE tombe sur son milieu , le premier de ces deux
triangles est isocèle; le dernier Test donc aussi; on a donc Ang.MBD
= Ang.MDB.

La démonstration donnée par M. Ferriot, principal du collège de
Baume , est d'une forme particulière ; il démontre d'abord 7 comme
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îi suit, que la proposition est vraie, dans le cas où le diamètre dont
il s'agit est l'axe transverse lui-même.

Soient C ( fig. i4 ) le centre de l'hyperbole, CD son asymptote,
AÀ' son axe transverse, prolongé vers X y MA et MA/ les droites
joignant les extrémités de cet axe à un point quelconque M de la
courbe , ces droites coupant l'asymptote en D et E ; soit enfin AF
une perpendiculaire à l'axe, coupant l'asymptote en F.

Dans l'hyperbole équilatérale, deux diamètres conjugués, et consé-
quemment deux cordes supplémentaires, terminées au premier axe ,
font d'un même coté avec cet axe des angles complément l'un de
l'autre; ainsi MA'C est complément de MAX, et, comme FAD l'est
aussi, il en résulte que ces deux angles sont égaux ; mais, d'un autre
côté, les angles A7CE et AFD valent l'un et l'autre un angle droit
et demi ; donc les triangles A'CE et AFD sont semblables. On a
donc Ang.MDE=Ang.CEA = Ang.MED.

Cela posé, soit un plan arbitraire passant par CD, et soit projetée
la figure sur ce plan ; sa projection sera toujours une hyperbole équi-*
latérale, ayant encore CD pour asymptote, mais dont la projection de
AA/ ne sera plus l'axe , mais un diamètre transverse , lequel pourra
être quelconque , à cause de l'indétermination du plan conduit par
CD ; d'un autre côté , à cause de la situation arbitraire du point M,
les projections de MA et MA' pourront, dans la nouvelle hyperbole>
devenir des droites joignant un point quelconque de la courbe aux:
deux extrémités d'un diamètre transverse quelconque -, et, comme les
projections des angles égaux MDE et MED seront encore des angles
égaux , il en résulte qae la proposition aura encore lieu dans ce cas.

Î a démonstration mixte de M. Vecten P et celle de M. Fauquier
élève du lycée de Nismes , consistent également à prouver d'abord ,
par l'analise , que les droites-qui vont d'un point quelconque d'une
hyperbole équilatérale aux deux extrémités d'un même diamètre trans-
verse font, d'un même côté, avec le premier axe, des angles com-
plément l'un de l'autre; ce qui est évident., d'après ce qui précède , puis-
que ces droites sont respectivement parallèles à deux diamètres conjugués.
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Cette proposition une fois établie , la proposition principale s'en

déduit facilement.
Soient, en effet, C ( fig. i5 ) le centre d'une hyperbole équila-

térale, XXy la direction de son premier axe, YY7 celle da second,
CD et CG- ses deux asymptotes , AA7 un diamètre transverse quel-
conque 5 MA et MA' des droites joignant les extrémités de ce diamètre
à un point quelconque M de la courbe 9 F et F/ les points où ces
dioites coupent le premier axe ; soient enfin B et H les intersections
de jUA avec les asymptotes 9 D , G, celles de MA7 avec les mêmes $
droites , et I l'Intersection de DG avec CY.

Par ce qai précède , l'angle MFX est complément de l'angle MF'X ;
il est donc égal a GIF7 ; mais MFX et GIF7 sont respectivement des
angles extérieurs dans les triangles CFH et CGI, d'où il suit qu'on
doit avoir

Ang.ICH+Ang.IGC = Ang.CHF-hAng.HCF;
ou simplement, à cause de Ang.ICH~Ang.GCF ,

Ang.IGC ou Ang.HGM=Ang.CHF ou Ang.GHM ;

et, comme les angles MDB et MBD sont les complémens respectifs
de ces deux-là, ils doivent aussi être égaux.

M. Fauquier a déduit de cette proposition la conséquence que voici.
Soient C le centre ( fîg, 16 ) et A, A' les sommets d'une hyperbole
équilatérale ; soient pris les arcs

Arn = h!mf, An^=^A/n/, d'où mn = rrJn* ;

aoient joints les points 772, mf
 vn, n1', à un point quelconque P de

la courbe par des droites coupant l'une des asymptotes en g} g/, h 5 h'.
Les points 772 et my, ainsi que les points n et nf, se trouvant, par
la construction 9 les extrémités d'un même diamètre , les triangles
?nl?n et 772/PTZ/ seront semblables , par ce qui précède , comme ayant
des angles égaux en g et g/

9 h et hJ ; on aura donc
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GÉOMÉTRIE.

Analogies entre le triangle et le tétraèdre ;

Par M. F E R R I O T , principal du collège de Baume.

\_/N trouvera dans ce mémoire quelques propositions déjà connues ,
mais que j'ai cru néanmoins devoir y comprendre, afin d'en former
mn tout plus complet,

§•r-

1. Avec trois droites données , telles que chacune soit moindre
que la somme des deux autres , on peut toujours former un triangle p

et on n'en peut former qu'un seuL
2. Avec six droites données et inégales, telles que chacune d'elles

soit moindre que la somme de deux quelconques des autres , on peut
toujours former 60 tétraèdres dijfèrens, dont 3o sont symétriques
par rapport aux 00 autres , et on n'en saurait former un plus grand
nombre.

Soient en effet a , h , c, d, £? f9 les six droites données 9 on pourra
choisir trois d'entre elles de 20 manières différentes peur former la
base du tétraèdre ; e t , le choix de ces trois étant fait, il y aura en-,
core six manières d'ajuster d'un coté de cette base les trois arêtes res-
tantes 5 ce qui fera en tout 120 tétraèdres ? et on en obtiendra 120
autres symétriques à ceux-là, en ajustant les mêmes trois arêtes res-
tantes de l'autre côté de la face prise pour base; mais fl est évident
qu'en procédant ainsi 5 les tétraèdres ne différeront 9 quatre à quatre ,
que par la face sur laquelle ils se trouveront posés : donc, en effet ^

Tom* II* 19
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le nombre des tétraèdres essentiellement différens se réduira à 60 seu>
lement ? dont 3o seront symétriques par rapport aux 3o autres.

Remarque L La condition que Tune quelconque des six droites
données soit moindre que la somme de deux prises d'une manière
quelconque parmi les cinq autres 5 équivaut à 60 inégalités lesquelles
doivent toutes avoir lieu pour que les 60 tétraèdres soient possibles.
Si donc quelques-unes de ces inégalités n'étaient pas satisfaites , le
nombre des tétraèdres possibles s'en trouverait d'autant diminué. Il
serait plus long que difficile de déterminer à combien il se réduirait
dans chaque ca?.

Remarque IL Si plusieurs des droites données étaient égales entre
elles ; quand bien même toutes les conditions d'inégalité se trouve-
raient satisfaites , il pourrait y avoir diverses séries de tétraèdres égaux
et superposables , en sorte que le nombre des tétraèdres différens tom-
berait alors au-dessous de 60. Il serait encore facile ici de déterminer
à combien leur nombre se réduirait dans chaque cas. En particulier
si les six droites données étaient toutes égales 5 auquel cas les 60 con-
ditions d'inégalité se trouveraient satisfaites d'elles-mêmes , tous les
tétraèdres se réduiraient à un seul qui serait le tétraèdre régulier.

Remarque 111. Enfin , il pourrait arriver à la fois que les droites
données ne satisfissent pas aux 60 conditions d'inégalité et qu'en outre
plusieurs de ces droites fussent égales entre elles ; on aurait alors deux
causes qui conspireraient à la fois à réduire le nombre des tétraèdres
possibles et réellement différens.

§.2 .

1. Les perpendiculaires élevées sur les milieux des côtés d'un trian~
gle se coupent toutes trois en un même point qui est le centre du
cercle circonscrit.

2. Les plans perpendiculaires sur les milieux des arêtes d'un té-
traèdre , se coupent tous six en un même point qui est le centre de
la sphère circonscrite.

Ou autrement ;
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Les perpendiculaires élevées aux faces d'un tétraèdre par les centres

des cercles circonscrits à ces faces 5 se coupent toutes quatre en un
même point qui est le centre de la sphère circonscrite.

Ces propositions deviennent évidentes si l'on considère que les arêtes
d'un tétraèdre sont des cordes de la sphère qui lui est circonscrite ,
que les cercles circonscrits à ses faces, sont des cercles de cette même
sphère , et que les plans perpendiculaires sur les milieux des cordes
d'une sphère ainsi que les droites menées par les centres de ses
cercles perpendiculairement à leur plan , passent nécessairernent par
le centre de cotte sphère.

§• 3.
1. Les droites qui partagent les angles d'un triangle en deux

parties égales ? se coupent toutes trois en un même point qui est le
centre du cercle inscrit.

2. Les plans qui divisent les angles dièdres d'un tétraèdre en
deux parties égales, se coupent tous six en un même point qui est
le centre de la sphère inscrite.

Ou autrement,
Les droites qui ? partant des sommets des angles trièdres d'un

tétraèdre P font des angles égaux avec les faces de ces angles trièdres 9

se coupent toutes quatre en un même point qui est le centre de la
sphère inscrite.

En effet , i.° les deux faces de l'un quelconque des angles dièdres
d'un tétraèdre sont des plans tangens à la sphère inscrite 5 et il est
évident que le plan qui divise e» deux parties égales l'angle formé
par ces deux-là , doit passer par le centre de la sphère.

2.0 Soit un angle trièdre circonscrit à une sphère ; le cône droit
Inscrit à cet angle trîèdre sera comme lui circonscrit à la sphère ; or ?

il est facile de voir que l'axe de ce cône 5 lequel ne sera autre
chose qu'une droite qui ? partant du sommet de"l'angle trièdre 5 fera des
angles égaux avec ses faces ? passera par le centre de la sphère (*).

(*) 11 existe toujours quatre cercles tangens à la fois aux trois cales d'un



Ï36 TRIANGLE

§• 4-
i. Les droites qui joignent les sommets d'un triangle aux milieux

des côtés opposés , se coupent toutes trois en un même point qui est
le centre de gravité ou le centre des moyennes distances des trois
sommets de ce triangle.

triangle, considérés comme des droites indéfinies; l'un de ces cercles est intérieur
au triangle et touche , à proprement parler, ses trois côtés; les trois autres lui sont
extérieurs, et chacun d'eux touche un côté et les prolongemens des deux autres au
delà du premier.

Si, pour chacune des droites qui par leur intersection forment un triangle , on
regarde comme côté positif celui des deux côtés de cette droite qui regarde l'inté-
rieur du triangle , et comme négatif le côté opposé, on pourra dire que , des quatre
cercles qui touchent à la fois les trois côtés d'un triangle , un touche ces trois côtés
positivement , tandis que chacun des trois autres touche seulement deux côtés positive-
ment et le troisième négativement.

Huit sphères différentes peuvent , en général , toucher à la fois les quatre faces
il'un même tétraèdre , considérées comme des places indéfinies ; et ces huit sphères ,
considérées relativement à leur situation par rapport au tétraèdre, peuvent être distribuées
dans les trois classes que voici : i.° une sphère intérieure qui est proprement la sphère
inscrite; 2.0 quatre sphères sur les faces dont chacune louche une face extérieurement
et touche les prolongemens des trois autres au delà de cette première ; 3.° enfin
trois sphères sur les arêtes , touchant les prolongemens des quatre faces au delà
de l'une des arêtes ; ces dernières répondent toujours aux trois arêtes d'un même
angle trièdre ou aux trois arêtes d'une même face.

Si , pour chacun des plans qui par leur intersection forment un tétraèdre , on
regarde , comme côté positif, celui des deux côtés de ce plan qui regarde l'intérieur
du tétraèdre , et comme négatif le côté opposé , on pourra dire que , des huit sphères
qui touchent à la fois les quatre faces d'un tétraèdre , celle qui est inscrite touche
ces quatre faces positivement ; que les sphères sur les faces touchent seulement trois
faces positivement et la quatrième négativement ) qu'enfin celles qui répondent aux
arêtes touchent deux faces positivement et les deux autres négativement.

Si , en particulier , le tétraèdre est régulier , les sphères qui répondent aux arêtes
ont leur centre à une distance infinie et leur rayon infini ; de plus chacune d'elles peut
être indifféremment considérée comme répondant à une arête ou h son opposée ; en
sorte qu'on peut dire également, ou que les faces d'un tel tétraèdre ne peuvent être
touchées que par cinq sphères seulement} ou qu'elles peuvent être touchées par onsç
sphères dont six sont infinies. ( Note des éditeurs. )
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2. Les droites qui joignent chaque sommet d'un tétraèdre au centre

commun de gravité ou des moyennes distances de ses trois autres som-
mets 9 se coupent toutes quatre en un même point qui est le centre de
gravité ou des moyennes distances des quatre sommets de ce tétraèdre.

On peut se convaincre facilement ? comme il suit , de la vérité
de ces deux propositions : i.° si l'on joint les milieux des côtés du
triangle donné par des droites , on formera un nouveau triangle ins-
crit au premier et dans lequel les droites 9 joignant les sommets aux
milieux des côtés opposés , seront encore les mêmes que dans le pre-
mier ; en opérant d'une manière semblable sur ce nouveau triangle
et poursuivant ainsi à l'infini 5 on formera une série de triangles con-
tinuellement décroissans , dont le dernier se réduira à un point uni-
que qui, contenant toujours les trois droites dont il s'agit, sera consé-
quemment leur commune section.

2,.° Pareillement 5 en considérant les centres des moyennes distances
des aires des faces du tétraèdre donné comme les sommets d'un nou-
veau tétraèdre inscrit à celui-là 9 il est facile de voir que les droites
qui 5 dans ce dernier „ joindront les sommets aux centres des moyen-
nes distances des aires des faces opposées, seront les mêmes que dans
le premier ; opérant donc de la même manière sur ce nouveau tétraèdre
et poursuivant ainsi à l'infini ? on formera une série de tétraèdres con-
tinuellement décroissans 9 dont le dernier se réduira à un point uni-
que qui 5 contenant toujours les quatre droites dont il sagit , sera
conséquemment leur commune section.

Corollaire. Les triangles et tétraèdres dojit il vient d'être question
étant tous semblables et ayant leurs côtés et faces homologues pa-
rallèles , on peut établir les propositions suivantes :

i.° Si par les sommets d'un triangle donné on mène des parai*
lèles aux côtés opposés, ces parallèles formeront un nouveau triangle
tel que les sommets du premier se trouveront situés aux milieux de
ses côtés.

2.0 Si par les sommets d'un tétraèdre donné on mène des plans
parallèles aux faces opposées 9 ces plans jormeront un nouveau
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tétraèdre tel que les sommets du premier se trouveront situés aux
centres des moyennes distances de ses faces.

Remarque I. Les triangles inscrits les uns aux autres dont il a
été question ci-dessus étant tels que les côtés de chacun sont moitiés
de leurs homologues dans celui qui le précède immédiatement ; si
Ton prend pour unité le contour du plus grand ? la somme des contours
des autres sera

E t , si Ton prend pour unité Taire du plus grand, la somme des aires

des autres sera

T+4r + ? + ? + ~3#

Remarque IL Les tétraèdres inscrits les uns aux autres dont il a
été question ci-dessus > étant tels que les arêtes de chacun sont le tiers
de leurs homologues dans celui qui le précède immédiatement ; si
Ton prend pour unité la surface du plus grand 5 la somme des sur-
faces des autres sera

Et 9 si Ton prend pour unité le volume du plus grand P la somma
des volumes des autres sera

i i i r , i

27 2.JZ ^ 27^ **'* 26*

ï. L'un quelconque des côtés d'un triangle est égal à la somme
des produits des deux autres par les /cosinus de leurs inclinaisons
sur celui-là.

2. Lune quelconque des faces d'un tétraèdre est égale à la somme
des produits des trois autres par les cosinus de leurs inclinaisons
sur celle-là*
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Soient c 9 cf, cn, les trois côtés d'un triangle ; le coté cft , par
exemple 9 n'est autre chose que la somme des projections des côtés
c , ^ ? sur sa direction ( le mot somme étant pris ici comme en algèbre );
ainsi on doit avoir

Soient / , t* 5 t", tlu, les quatre faces d'un tétraèdre ; la face / ' " ,
par exemple 5 n'est autre chose que là somme des projections des
faces 11 tf , tf/, sur son plan ( le mot somme étant toujours pris
dans le même sens ) y ainsi on doit avoir

i • Le quarrè de Tun des côtés d'un triangle égale la somme des
quarrès des deux autres moins le double du produit de ces mêmes
côtés et du cosinus de leur inclinaison Vun à Fautre*

2. Le quarrè de l'aire de Vune des faces d'un tétraèdre égale la
somme des quarrès des trois autres moins les doubles des produits
de ces mêmes faces multipliées deux à deux et par les cosinus de
leurs inclinaisons les unes aux autres.

En effet i.° on a , par ce qui précède,

c ~cfXos.(£ c')-+-cVCos.(c cf/) %

c' =

c"~

multipliant respectivement ces équations par leur premier membre,
et retranchant ensuite la dernière de la somme des deux premières p

il viendra , en réduisant et transposant,

c//1=c2-\-c/1—2Cc'Cos.(cc/).

a.0 On a aussi, par ce qui précède ,

t = / ' Cos.(/ t> )+t" Cos.(t t» )+///;Cos.(//W) %

£os.(//' ) ,
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t»t'»)+t Cos.(/ /// )+// Cos.(/'

t'"=t Cos.(t t»^+t'Cos.(t't"')+t"Go

multipliant respectivement ces équations par leur premier membre t

et retranchant ensuite la dernière de la somme des trois premières P

il viendra , en réduisant et transposant,

Corollaire. Il suit de là i.° que , dans un triangle rectangle, le
çuarré de Fhypothénuse est égal à la somme des quarrês des deux
autres côtés ; 2.0 que , dans un tétraèdre rectangle y le çuarré de
Taire de la face hypothénusale est égal à la somme des quarrés
des aires des trois autres faces.

§• 7.

Ï . Dans tout triangle, la somme des trois angles est constante
et égale à deux angles droits.

2. Dans un tétraèdre dont les arêtes opposées sontperpendiculairesf

la somme des six angles dièdres augmentée de la somme des douze
inclinaisons des six arêtes sur les quatre faces est constante et égale
à douze angles droits*

Soient A 5 B deux arêtes opposées du tétraèdre ; par Â soit fait
passer un plan perpendiculaire à B ; ce plan déterminera un trian-
gle dont un des angles mesurera l'inclinaison des deux faces quî
passent par B , tandis que les deux autres mesureront les inclinai-
sons de l'arête A sur ces deux faces -, opérant de même successive-
ment sur chaque arête , on en conclura que la somme des angles dièdres
et des inclinaisons des arêtes sur les faces est la même que la somme
des angles de six triangles ; c'est-à-dire 5* que cette somme est cons-
tante et égale à douze angles droits.

1. Les perpendiculaires abaissées des sommets d'un triangle sun
Us directions des côtés opposés se coupent toutes trois en un même point.
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2.0 5 / deux arêtes continues d'un tétraèdre sont respectivement

perpendiculaires à leurs opposées ? les deux arêtes restantes seront
aussi perpendiculaires l'une à l'autre s et alors les perpendiculaires
abaissées des sommets du tétraèdre sur les plans des faces opposées
se couperont toutes quatre en un même point lequel est aussi le
point d'intersection des six plans conduits par chaque arête ? perpen-
diculairement à son opposée.

Ce même point est encore celui où se coupent les quatre perpen-
diculaires élevées aux faces du tétraèdre par les points de ces faces
où se coupent les trois perpendiculaires abaissées de leurs sommets
sur les directions des cotés opposés.

Soient a y b , c, les trois arôtes de la base d'un tétraèdre; af*bf
y

c*\ celles qui leur sont respectivement opposées et qui conséquemment
concourent au sommet ; supposons que af et U soient respectivement
perpendiculaires à a et b ; par a/ et bf soient fait passer deux plans
A et B respectivement perpendiculaires à a et b 9 et ayant pour in-
tersections avec la base du tétraèdre deux droites a. et /s se coupant
en o : ces deux plans se coupant eux-mêmes suivant une droite p pas-
sant par o et par le sommet du tétraèdre ; enfin , par cf et p soit
conduit un plan C ? dont l'intersection avec la base sera une droite
y ? passant par o : a étant perpendiculaire à A doit Fôtre aussi à *5

et b doit pareillement être perpendiculaire à £ ; * et £ ne sont donc
autre chose que les perpendiculaires abaissées sur les directions de a
et b des sommets qui leur sont opposés ; donc y qui passe par o 5

intersection de « et /3 3 est aussi une perpendiculaire abaissée sur la
direction de £ du sommet de l'angle opposé : de plus A et B étant
respectivement perpendiculaires à a et b , sont perpendiculaires à la
base du tétraèdre, et conséquemment leur intersection p est aussi perpen-
diculaire à cette base , et par suite à c ; le plan C qui passe
par p et par y perpendiculaires à c, est donc lui-même perpendiculaire
à cette droite; la droite c/ qui est dans ce plan est donc aussi perpendicu-
laire à c ; ce qui démontre la première partie de la proposition. Le
même raisonnement prouve aussi que 3 dans un tétraèdre dont k&

Tam. IL ^o
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arêtes sont a angles droits 5la perpendiculaire abaissée sur le plan d'une
face , du sommet de l'angle opposé , se termine au point de cette face
où se croisent les perpendiculaires abaissées sur les directions de ses
côtés des sommets des angles opposés.

Le tétraèdre ayant ainsi ses arêtes opposées perpendiculaires l'une
a l'autre ; concevons que , par les trois arêtes de sa base , on conduise
des plans perpendiculaires aux arêtes qui leur sont respectivement
opposées i ces trois plans se couperont en un certain point suivant
trois droites passant par ce point, et qui , par ce qui vient d'être dé-
montré , ne seront autre chose que les perpendiculaires abaissées res-
pectivement des trois sommets de la base sur les plans des faces
opposées. De plus , il arrivera aussi 9 par ce qui précède , que le
point de chacune de ces faces où se terminera la perpendiculaire
tombant sur son plan , sera celui où se croisent les perpendiculaires
abaissées des sommets de cette face sur les directions des côtés
opposés.

Ainsi, dans un tétraèdre dont les arêtes opposées sont à angle droit ;
chacune des perpendiculaires abaissées d'un sommet sur le plan de
la face opposée ? se termine au point de cette face où se croisent les
perpendiculaires ^abaissées de ses trois sommets sur les directions des
côtés opposés i ëtixois de ces perpendiculaires se coupent, et se coupent
en un même point ; d'où il résulte qu'elles se caupent toutes quatre
en ce point ; e t , comme chacune d'elles est la commune section de
trois des plans conduits par des arêtes perpendiculairement à leurs op-
posées 5 il faut en conclure que les six plans conduits de cette ma-
nière passent aussi par ce point.

Remarque. 11 est facile de s'assurer que ces propositions ont leur
réciproque, et qu'ainsi, si un tétraèdre a seulement deux arêtes op-
posées perpendiculaires v les perpendiculaires abaissées de ses quatre
sommets sur les plans des faces opposées se couperont deux à deux
et seront comprises dans deux plans , tandis qu'il n'y aura aucun
point commun à plusieurs de ces perpendiculaires, si aucune des
arêtes du tétraèdre n'est perpendiculaire à son opposée.
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§•9-
1. Dans tout triangle , / ^ perpendiculaires élevées sur les milieux

des côtés se coupent toutes trois au même point.
2. Dans tout tétraèdre dont les arêtes opposées sont à angle

droit > les perpendiculaires élevées aux plans des faces par leurs
centres de gravité se coupent toutes quatre en un même point.

En effet, les centres de gravité des faces du tétraèdre dont il s'agit,
peuvent ( §. 4* ) ^ t r e considérés comme les sommets d'un tétraèdre
semblable à celui-là ? et ayant ses faces parallèles à leurs homologues
dans le premier : ce nouveau tétraèdre a donc , comme le tétraèdre
proposé , ses arêtes opposées à angle droit; et par conséquent (§ . 8.)
les perpendiculaires abaissées de ses sommets sur les plans des faces
opposées 9 lesquelles ne sont autre chose que les perpendiculaires éle-
vées aux plans des faces du premier par les centres de gravité de
ces faces 9 doivent toutes quatre se couper au môme point.

§. io .

i • Dans tout triangle , V intersection des perpendi:cul air es sur les
milieux des côtés > le centre commun de gravité des sommets et l'inter-
section des perpendiculaires abaissées de ces sommets sur les* di-
rections des côtés opposés ? sont trois points situés sur une même
ligne droite v de manière que le second est intermédiaire aux deuoù
autres. De plus v la distance entre les deux derniers est double de
la distance entre les deux premiers.

2. Dans tout tétraèdre dont les arêtes opposées sont à angle droit,
l'intersection des perpendiculaires élevées aux plans des faces par
leurs centres de gravité, le centre commun de gravité des sommets du
tétraèdre et Vintersection des perpendiculaires abaissées de ces som-
mets sur les plans des faces opposées sont trois points situés sur
une même ligne droite 9 de manière que le second est intermédiaire
aux deux autres. De plus , la distance entre les deux derniers est
triple de la distance entre les deux premiers.
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Soit T un triangle , g son centre de gravite et p le point de son

plan où se croisent les perpendiculaires abaissées de ses sommets sur
les directions des côtés opposés. Soit T7 un autre/triangle ayant ses
sommets aux milieux des côtés du premier; soitg/son centre de gravité
et p1 le point où se croisent les perpendiculaires abaissées de ses*
sommets sur les directions des côtés opposés. Les deux triangles T
et T7 étant semblables ( §. 5. ) , ayant leurs côtés homologues parallèles
et dans le rapport de 2 à 1 ? il en résulte que les distances gp et
gipf qui sont des lignes homologues de ces deux triangles seront pa-
rallèles ou dirigées suivant une même droite et qu'on aura gp — zg'p';
mais g/ étant le même que g ( §. 4- ) -> il s'ensuit que p, g 9 p

f sont
trois points en ligne droite 9 parmi lesquels g est intermédiaire à p
et pt, puisque T7 est situé en sens inverse de T : or, si Ton désigne
par q le point où se croisent les perpendiculaires élevées sur les mi-
lieux des côtés de T P ce point q ne sera autre chose que le point
pf ; donc les points p, g, q^ sont en ligne droite, de telle manière
que g est intermédiaire à p et ç et qu'on a gp~2>gq.

La même démonstration a lieu pour le tétraèdre , en recourant à
un second tétraèdre ayant ses sommets aux centres de gravité des faces
du premier.

GÉOMÉTRIE ANALITIQUE.
Recherche de la position des axes principaux dans

les siwjaces du second ordre ;

Par M. BRET , professeur de mathématiques transcendantes
au lycée de Grenoble.

JLJES formules qui servent à passer d'un Système de coordonnées

rectangulaires x^y^zz à un système de coordonnées obliques xf ,
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' , z1

9 ayant même origine que les premières sont , comme Ton sait

Nous allons donner à ces formules une forme plus commode pour
l'objet que nous avons en vue. Soient les équations des axes des xJ,
Y/•> z/

7 ainsi qu'il suit

!

9 ,

axe des y/ l axe des z'
y=bz ; ( y — b'z y \ <y—b/lz ;

et soient posées les équations
fi, — . . / / . — . « ^ I- .

nous aurons

s.y= // ; Cos.y/=

et par conséquent

Si l'on substitue ces valeurs dans l'équation générale du second degré
entre les trois variables # , j , z ,

on obtiendra une nouvelle équation du même degré que Ton pourra
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simplifier en disposant des quantités arbitraires #, a*', an , h, bf

5 lf\
qui déterminent ia position des nouveaux axes. Faisant donc dispa-
raître tous les rectangles des coordonnées , nous aurons les équations

(1) (Aa' +BfW +B?)a +(B'V +AW +B)b

(2) (A

(3) (A

Cela posé, en éliminant a et b entre l'équation (2) et les équations
x—aZ) y~bz de Taxe des x/

 y on tombera sur l'équation d'un plan
tel que, l'axe des x* y étant situé d'une manière quelconque , l'équa-
tion de la surface sera délivrée du terme en xfzf. Pareillement, si entre
l'équation ( 3 ) et les équations x'=-afz> y~bfz de Taxe des y/ on
élimine af et bf, on obtiendra l'équation d'un plan tel que, l'axe des
y y étant situé d'une manière quelconque , l'équation de la surface
sera délivrée du terme en y/z/. Maïs, par la forme des équations (2)
et (3) les équations des deux plans doivent être les mêmes ; donc,
en écrivant seulement les équations (2) et (3) , on obtient pour un
axe quelconque des z/, un plan unique des xfy* tel que la nouvelle
équation de la surface du second ordre sera privée des rectangles
ccfzf 1 y/z/'; et, comme il est toujours facile , l'axe des z; étant cons-
tant , ainsi que le plan des x/y/

 9 de donner aux axes des x/ et desy ;

une direction telle que le troisième rectangle xfyf disparaisse aussi ;
il s'ensuit que l'on peut 9 d'une i^finhé de manières, donner à l'équation
générale des surfaces du second ordre, la forme plus simple

L'équation du plan des xfyf sera

= o.

Parmi tous les systèmes d'axes pour lesquels l'équation prend cette
forme 9 il n'en est généralement qu'un seul qui soit rectangulaire.
En effet ? assujétissons l'axe arbitraire des z1 , dont les équations
sont x = af/z, yzzè'-'z, à être perpendiculaire au plan des x/y/ dont
nous venons de trouver l'équation^
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B>a"-\-Bh»-\-A")z=o;

nous obtiendrons les équations de condition

Aa"-+-B'>b"-\-B'=. (B'a'
(4)

substituant dans la première la valeur de a/; donnée par la dernière
on parvient à l'équation du 3.e degré

v:-4—A'

N ' -AJr A}!— Â\f AU A!\TW f >*_L_ AU ^ AtsUTil I /^Tt!i m^.J$Z^mm

Or 5 on démontre s dans les élémens d'algèbre, que cette équation
â toujours au moins une racine réelle ? et que même , lorsque le
coefficient de son premier terme s'évanouit, cette racine est alors infinie5

ce qui n'implique point ici contradiction ; car bn exprime une tangente
trigonométrique. Par conséquent il existe , pour toutes les surfaces du
second ordre , un axe des z /

? perpendiculaire à un plan des x'yf
 9 de

manière que l'équation générale de ces surfaces ne renferme plus les
rectangles x/z/, y/z/ ; e t , comme on peut toujours chasser le rectangle
;v/y/ qui reste encore dans l'équation, on en conclut que, non-seule-
ment on trouve an axe des z7, perpendiculaire au plan des cc/y/

 9 qui
prive la nouvelle équation des rectangles xfzf

 9 y
/z/, mais encore qu'il

existe un axe des xf
 9 perpendiculaire au plan des y/z/, et un axe

des y1, perpendiculaire au plan des xlzf, jouissant des mêmes pro-
priétés ; donc si , au moyen de l'équation (3) et des équations de
l'axe des zf, on détermine le plan des xfyf ^ on trouvera que son*
équation est

(Aa/+B//b^B^x+{B^+A/b/+B)y^B^+Bb^A//)z=o.

Ecrivant que l'axe des yf
 9 dont les équations sont x"=-aUy y = lfz,

est perpendiculaire à ce plan, on parviendra aux mêmes équations
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(4) ; donc l'équation (5) détermine bf en même temps que bu ; on
prouvera de môme que sa troisième racine doit être b.

On conclut de tout ce qui précède 9

i.° Qu'il n'existe, généralement parlant, pour une origine donnée5

qu'un système d'axes rectangulaires tel que les surfaces du second
ordre , rapportées à ce système , soient privées , dans leur équation , des
rectangles xy , ccz , yz.

2.0 Que les équations des nouveaux axes étant

v=>az p \ x—afz , { y~aifz ,

l'équation (5) a ses trois racines réelles qui sont b > b/, bu% la seconde
des équations (4) donnant les valeurs correspondantes de a 5 a1

5 an.
3.° Que l'équation

A"A-\-AA'—JB»—^—Bf'*)t+iAB*+AW^A''B'r*—zBB'Bf'--AA/A'f)—o

a ses trois racines réelles et donne les valeurs de P> P ; , P/f dans
l'équation transformée

car le procédé que nous avons suivi, dans la recherche de l'équation
en / , n'oblige point de faire d'abord disparaître les premières puis~
sances de x, y, z.

Nous observerons en passant que 5 pour les surfaces du second ordre
qui n'ont pas de centre , l'équation en t a nécessairement une ou deux
racines qui s'évanouissent»

L/équatîon (5) pouvant avoir une racine infinie et pouvant aussi
être identique j il est nécessaire d'examiner ces différons cas.

D'abord, le premier terme seulement de l'équation (5) s'évanouis-
sant, on a

=: o.

(*) Voy* notre précédent mémoire , page 3^ de ce volume*
Dans
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Dans ce cas , une des racines b" est infinie, a" est aussi infini ;
ainsi les équations x — a^z^ y — b^zde Taxe des z/ deviennent z — o;
cet axe est donc situé sur le plan des xy. Pour le déterminer on

b11

cherchera le rapport — : or la dernière des équations (4) , dans la

supposition de an et ^ infinis se transforme en celle-ci

ainsi y les équations de Taxe cherché sont

à l'égard des deux autres axes5 on les obtient en résolvant une
tion du second degré.

Supposons, en second lieu % que les deux premiers termes de l'équa-
tion (5) s'évanouissent ; alors les deux autres termes disparaissent d'eux-
mêmes ; ainsi les deux équations

I
(A-*A")BB"+(B*-rB"*)B' =o 9

expriment que l'équation (5) est Identique. Il existe donc, dans ce

cas, pour une même origine donnée, une Infinité de systèmes d'axes

rectangulaires pour lesquels l'équation générale des surfaces du second

degré ne renferme aucun des rectangles des coordonnées. Pour étudier

ces difFérens systèmes * nous remonterons aux équations (4) > mises sous

cette formeB b
retranchant du produit de la première des équations (6) par BN le.
produit de la seconde par B;

 ? en divisant le résultat par B, il viendra

éliminant An~A et Al/—A' des deux équations ci-dessus 5 au moyca
de cette dernière et de la dernière des équations (6) , il viendra

{B a//~B//)(B'B//a»-{~BB//b//-{-BB/)~o 7

"~-B") (B'B"a"-\-BB"b"-i-BB/)=o .
Tom* IL
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Ces deux équations sont satisfaites en posant

ce qui détermine un axe dont les équations sont

ensuite on a l'équation commune aux deux autres axes

éliminant af/ , bn
? entre cette équation et les équations x — af/z ?

de Taxe des z*, on obtient le résultat

équation d'un plan perpendiculaire à l'axe déjà déterminé v et qui con-
tient les deux autres axes rectangulaires. La rencontre de ce plan avec
la surface du second ordre donne une courbe du second degré qui
aura par conséquent une infinité de systèmes d'axes rectangulaires ,
puisque son équation sera dépourvue du rectangle des coordonnées ;
or , on sait que le cercle est la seule courbe du second degré qui
jouisse de cette propriété ; donc la section faite par ce plan est un
cercle. Si Ton transporte l'origine des coordonnées au centre de ce
cercle, l'équation de la surface rapportée au nouveau système prendra
la forme

équation qui appartient à une surface de révolution.
On conclut de là que l'équation

lorsque les équations (6) sont satisfaites , représente toujours une sur-
face de révolution du second ordre ; et que, si l'on veut chasser de
cette équation les rectangles xy, yz, zx , en passant à un nouveau
système rectangulaire , on obtiendra une infinité de ces systèmes, l'un
des nouveaux étant fixe.

Il nous reste encore à discuter ce qui arrive dans les surfaces
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du second ordre, lorsque u n , deux ou trois rectangles des coordonnées
manquent dans leur équation.

D'abord, pour qu'il y ait une Infinité de systèmes de coordonnées
rectangles , il faut toujours que les équations (G) aient lieu. Soit
donc B/=^o 9 nous aurons J5 = o ; et comme alors le plan dont Féqua-
tion est

n'existe plus ? puisque son équation se réduit à o = o ? nous repren-
drons l'équation des surfaces qui aura la forme

Faisant disparaître le rectangle xy ? en passant à un nouveau système

rectangulaire dans le plan des xy > nous obtiendrons l'équation

dans laquelle P et P; seront les racines de l'équation

t*—(A+A/)t+(JJ'—B»*) = o. (*).
Maintenant il s'agit de produire tous les systèmes rectangulaires

de manière que l'équation des surfaces conserve toujours cette forms.

Px*+Py2+A//z2-\-gx+g/y+C"z-\-D=: o.
Substituant à x 5 y ? z y les formules

h hffzf
 9

et faisant disparaître tous les rectangles qui s'Introduisent s on trouvera
des équations qui servent à déterminer le plan de deux axes ,

écrivant que la droite dont les équations sont X"=.af/z 7 y — b^Z) est
perpendiculaire à ce plan , on aura les équations

(P—A")a"=o ,
\

(•) Voy* le mémoire déjà cité.
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i*° Supposons que P , P', A" soient différens ; il s'ensuivra que

a"z=LO , b"=o ;
éonséquemment on retombera sur le système d'axes rectangulaires <Toti
l'on était parti.

2.0 Supposons P=zP/ y et A/r de grandeur différente ; on aura
encore

ce qui redonne l'axe primitif z ; mais les axes des x et des y
•vant être pris rectangulaires d'une infinité de manières différentes, la
surface sera alors de révolution autour de Taxe des z.

Si l'on supposait P~AU, et P/ de grandeur différente, on dé-
montrerait également qu'il existe une infinité de systèmes rectangu-
laires et que la surface du second ordre est de révolution autour de
Taxe qui est fixe. Comme P est racine de Péquation

l'hypothèse d e . P = ^ ' v donnera

ou ; (A^
3.° Soit enfin. PznPt — A" ; alors l'équation de la surface devient

celle d'une sphère , et elle a évidemment une infinité de systèmes
d'axes rectangulaires principaux.

ANALISE.
Hïéthode nouvelle et fort simple pour la résolution de

Véquation générale du quatrième degré ;

Par M. P ILÀTTE , professeur de mathénjatiques spéciales
au lycée d'Angers.

Péquation du quatrième degré, sans second terme,,
+/1=0. * (A)
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Soît fait # = y + / ; il viendra , en substituant et ordonnant par

rapport à y ?

+2/7/'

4 - y

-4- r
Soit fait

Féquation ( B ) deviendra

JMais Péquation ( £ ) , délivrée du facteur ys donne

y 2 = — / a — - /— —. (E\
J 2 4* v /

En substituant cette valeur et son quarré dans T^quation ( D ) , on
obtient la* réduite

Soient / ;
 5 / " , / / /y, ~ - / ; , '—tN

 9 ~~t//;i les six racines de cette équa-
tion , on aura ? par la théorie connue,

I^e signe supérieur répondant à la valeur + / ' et Pinférieur à la
yaleur — tf.

Substituant dans la valeur ( E ) de y a en y mettant pour / Pune
des trois valeurs tf ^ tn^ t/n, la première par exemple ? on trouvera,

à cause du double signe de la valeur de— y
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mais on a > dans le premier cas , xz=.y-\-t! et dans le second x~y—
il viendra donc

QUESTIONS RÉSOLUES.
Solution du premier des deux problèmes proposés à

la page 64 de ce çolume ;

Par M. K O C H A T ; professeur de mathématiques et de
navigation à St-Brieux.

JLROBLÈME. Trois figures planes étant données de grandeur seu-
lement y sur trois* plans 9 non parallèles deux à deux ? donnés de
position ; déterminer un quatrième plan sur lequel ces figures étant
projetées orthogonalement 9 les aires de leurs projections soient pro-
portionnelles à des nombres donnés ?

Solution. Représentons par A > B9 C , les aires des trois figures
données ; par a ? b , c , les nombres proportionnels aux projections
orthogonales de ces figures ; par « , & 9 y, les angles dièdres que
forment, deux à deux, les plans de ces figures; enfin par x ^ y, z%

les angles que forment ces plans avec le plan cherché.
Les plans des trois figures données et le plan cherché forment une

pyramide triangulaire dont les angles dièdres sont a P / 3 ? y : ^ ? / 5 ^ ^
or 5 d'après un théorème connu, on a
0=1—(
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Mais , d'après un autre théorème connu , les projections orthogonales
des figures A «, B 9 C , sur le plan cherché sont représentées pat
^.Cos.^r, B.Gos.y 9 C.Cos.z; et puisque ces projections doivent être
porportionnelles aux nombres a 3 b 3 c 7 on aura

cA*Gos.x=^aC.Cos.z 9 cB.Cos.y — b.C.Cos.z-

Or, s i , dans l'équation ci-dessus , on substitue pour Cos.:r et Cos.y,
les valeurs que donnent ces deux dernières 5 l'équation résultante
n'étant que du second degré en Cos.z , l'angle z pourra être déter-
miné , et par suite les angles x et y.

Le problème est donc ramené à celui-ci : deux plans qui se cou-
pent étant donnés de position , mener un troisième plan qui fasse avec
ces deux-là des angles respectivement égaux à deux angles donnés.

Or, on a des méthodes graphiques et des méthodes de calcul pour
résoudre ce dernier problème ; on voit ? en effet, qu'il est question
de résoudre un triangle sphérique dans lequel les trois angles sont
connus»

Attire solution du même problème ;

Par M. LHUILIER ? professeur de mathématiques à l'académie
impériale de Genève,

» Soient trois points ( non en ligne droite ) donnés de po-
sition dans Fespace ? et soit un quatrième point ( hors de leur plan )
donné de position ; on demande de mener , par ce quatrième point,
un plan sur lequel abaissant des perpendiculaires des trois premiers ?

les rapports de ces perpendiculaires soient égaux à des rapports donnés ?
Ce lemme donne lieu à différens cas, suivant que les trois pre-

miers points donnés sont supposés devoir être situés d'un même côté
du plan cherché ou de différens cotés de ce plan. Pour fixer les idées,
je supposerai d'abord que les trois premiers points doivent être situés
d'un jnême côté du plan cherché*
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Pour abréger 5 que les trois premiers points soient désignés par

A9 A/
 ? A

/;\ et que le quatrième point donné soit désigné par 2?.
Que les rapports donnés soient des rapports d'inégalité 5 et que la

perpendiculaire abaissée du point An doive être plus grande que cha-
cune des autres,

Soient prolongées les droites AnA > A"Af en Z), D/\ de manière
que les rapports de A/;D à AD et de A//D/ à A/D/ soient respecti-
vement égaux aux rapports donnés. Le plan mené par les points B5

D, D;
 9 sera le plan cherché.

Remarque L Pour que le problème ( s'il est possible ) soit déter-
miné , les points A, A/

 5 A
u, ne doivent pas être situés sur une même

droite ? et le point B , s'il est situé sur quelqu'une des droites ANAy

Af/Af, ne doit pas coïncider avec l'un des points D2 D'.
Remarque IL Lorsque l'un des rapports donnés > tel que celui des

perpendiculaires abaissées des points AN et Af est un rapport d'égalité,
le plan cherché est parallèle à la droite A;/A/m

9 et partant il passe par
la droite menée par B parallèlement à AuAf.

Si les rapports donnés sont chacun des rapports d'égalité 9 le plan
cherché est parallèle au plan AAtÂ^*

Remarque IIL Que les points donnés doivent être situés de diffé-
rens côtés du plan cherché; que, par exemple, le point Au doive
être situé d'un côté de ce plan, et les points Ay A/ à\i côté opposé;

Alors les points 2)5 i y au lieu d'être sur les prolongemensdes droites
A;/A, AflAfi devront être sur c.es droites elles-mêmes»

Remarque IV, Cette conception géométrique de la solution du lemme
proposé me parait plus lumineuse que le développement algébrique
( appelé analitique ).

Que le point donné B soit pris pour l'origine des coordonnées
rectangulaires ;

iA

que les coordonnées des points / Af

A»
soient respectivement ( V , bf

Uf c» }

que Péquation du plan chejché sçjt
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Les perpendiculaires abaissées des points donnés sur ce plan seront
pour À y a Co$.sc-\-& COS.B-{-C Cos.y ;
pour A; 5 af Cos.*+3 / Cos.&-\-cf Cos.y ;
pour A» , 0"Cos.*+£//Cos.jS+£"Cos.y .

• Que les rapports de ces perpendiculaires soient respectivement ceux
des quantités données m , m1, 772//f ; on obtiendra , entre les cosinus
des angles #? p9 y ? deux équations desquelles on déduira les rapports
de ces cosinus : puis on déterminera chacun d'eux au moyen de l'équa-
tion de condition

PROBLEME. Soient trois plans ( non parallèles deux à deux )
donnés de position. Sur ces plans ? soient trois figures données de
grandeur. On demande la direction du plan sur lequel 9 ces trois
figures étant projetées orthographiqucment, les rapports de leurs pro-
jections soient donnés ?

Solution. Du point de section des plans donnés soient élevées à ces
plans des perpendiculaires respectivement proportionnelles aux figures
données de grandeur qui y sont tracées. Par ce même point soit mené
( lemme ) le plan dont les distances aux extrémités de ces perpen-
diculaires soient respectivement dans le rapport des projections des
figures données. Ce plan ( ainsi que tout plan qui lui sera parallèle )
pourra être pris pour le plan demandé.

Solution du dernier des deux, -problèmes proposés à la
page 64 de ce volume ;

Par M. Pi LATTE , professeur de mathématiques spéciales
au lycée d'Angers.

J V X O N T U C L A , qui a considéré un cas particulier de ce problème,
dans l'édition qu'il a donnée des récréations mathématiques d;'Ozanam 7

Tom. IL 22
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le regarde si non comme impossible, du moins comme très-difficile* à
résoudre , par des considérations purement géométriques. Il paraît
qu'en le proposant, dans les Annales, on nJa eu en vue que les poly-
gones plans ; je vais le généraliser un peu ? en étendant son énoncé
à un polygone gauche.

PROBLJÈME. Soient divisés, dans le même sens, tous les côtés
d'un polygone donné P , plan ou gauche, de m côtés, en deux parties
qui soient entre elles dans le rapport de deux nombres donnés p et q.
Si Von joint les points de division consécutifs par des droites, ces
droites formeront un nouveau polygone P ; , plan ou gauche > aussi
de m côtés. Opérant sur celui-ci comme sur le premier > on obtiendra
un troisième polygone V/; duquel on pourra déduire , par un semblable
procédé , un quatrième polygone I3/// ; €t ainsi de suite.

L^es côtés de ces polygones décroissant continuellement , si Von
poursuit V opération à î infini, le dernier polygone se réduira néces-
sairement à un point. On demande de déterminer la situation de
ce point, relativement au polygone primitifs ?

Solution» Soit rapporté le polygone proposé à trois plans rectangu-

laires quelconques; soient St , 52 , *$5 > ^m-* , Sm-i *> $m * ^es

sommets consécutifs du polygone P ; soient 57j , S\ , 57
? , ..•. S/

m_t ,
^/m-1 > ̂ m ? ceux du polygone P; , et ainsi de suite. Supposons de
plus que vS/

I soit entre Sx et Sz ; que 5 /
z soit entre S% et 5 ? ; et

ainsi de suite ; et soient les coordonnées de ces différens sommets ainsi
u'il suit :

pour 5 , bt ? pour S2 bx , . .- .pour Sm_! ( bm^l 5 pour Sn

pour 5'j ( h\ , pour5 /
1

n-i ?

„_, , pour 5'n
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on trourera facilement, d'après cela,

jct+pct

P+q

P+9 '

prenant alors la somme de ces valeurs, il viendra, en réduisant et
exécutant la division ,

Ainsi la somme des distances des sommets du polygone P/ au plan
des xf 9 c'est-à-dire à un plan quelconque , est égale à la somme
des distances des sommets du polygone P au même plan.

La vérité de cette proposition peut au surplus être aperçue sans
calcul. Que l'on conçoive en effet des masses égales entre elles, et
représentées par p-\-q, appliquées aux sommets St, S2 , S^ , .... du
polygone P ? on pourra composer en une seule la portion p de la masse
appliquée à chacun de ces sommets avec la portion q de la masse
appliquée au sommet suivant ; en procédant ainsi, on aura substitué
aux 7n masses p-*rq ? appliquées en 5 , , 5 Z , 5 3 , •..•, rn nouvelle
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niasses ? aussi égales à p-^rç5 lesquelles se trouveront précisément ap-
pliquées aux points 5 / , ? S

;
2 5 iS' j , . . , . Ainsi la somme des mcmens

de ces derniers points par rapport à un plan quelconque sera égale
à la somme des momens des premiers par rapport au môme plan.
Otant donc de ces sommes égaies le facteur commun p-\-q , on en
conclura que la somme des distances de ces derniers points à un plan
quelconque est égale à la somme des distances des premiers au même
plan. C'est à peu près de cette manière que Montucla traite le cas
particulier qu'il considère. (*)

II suit de là généralement que la somme des distances des sommets
de chacun des polygones p'9 P

f/
v P

//;, ..... à un même plan quel-
conque est une quantité constante et égale à la somme des distances
des sommets du polygone P au même plan ; il en sera donc de même
pour le dernier polygone; et comme ce dernier polygone se réduira
a un seul point , la somme des distances de ses sommets à un plan
quelconque ne sera autre chose que m fois sa distance à ce plan.

Ainsi la distance du point cherché à un plan quelconque n'est autre
chose que la 772.eme partie de la somme des distances des sommets
du polygone donné au même plan ; ou en d'autres termes :

Le point demandé n'est autre que le centre de gravité ou le centre
des moyennes distances des sommets du polygone proposé.

Il est aisé de voir que cette proposition aurait également lieu si
les nombres p et q, au lieu d'être constants, variaient d'une manière
quelconque d'un polygone à l'autre.

(*) Pondant que ceci s'imprimait , les rédacteurs des Annales onl reçu de M*
Fauquier , élève de l'école polytechnique, ane solution fondée sur cette considération

( Note des éditeurs, )
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ASTRONOMIE.
Ephëmérides abrégées de la comète de 1811; dressées

pour le méridien de Paris, daprès les élemens cal-
culés par M. BURCKHARDT ;

Par M. GERGONKE,

JLJA première colonne de ces éphémérides Indique , en temps solaire
vrai, les époques pour lesquelles les positions de la comète sont cal-
culées; elles embrassent un intervalle de plus de i3 mois et un mouve-
ment en anomalie de 220 degrés dont 110 avant et 110 après le périhélie.

Les £.e et 3.e colonnes indiquent, pour les mêmes époques., les dis-
tances de la comète tant au soleil qu'à la terre; la moyenne distance
du soleil à la terre étant prise pour unité. Ainsi, les nombres renfermés
dans ces deux colonnes étant multipliés par 3o 680 097 deviendront
des distances en lieues métriques de 5 kilomètres.

Les quatre colonnes qui suivent donnent, toujours pour les mêmes
époques, les longitudes et latitudes géocentriques, ainsi que les ascen-
sions droites et déclinaisons de la comète. Elles pourront servir à tracer
la route de cet astre sur les cartes célestes.

On trouve, dans les trois colonnes qui viennent après, les heures en temps
vrai; du lever apparent^ du passage au méridien et du coucher apparent
de la comète j vers les époques portées à la première colonne. Ces incfica-
tions pourront aidera retrouver l'astre , dans cette saison pluvieuse , où ori
risque de le perdre souvent de vue pendant plusieurs jours consécutifs.

Les deux dernières colonnes n'ont besoin d'aucune explication.
J'ai mesuré, le 6 au soir., la queue de la comète; je l'ai trouvée de

plus de io.° ce qui, eu égard à sa position oblique et à la distance
qui nous en sépare , indique une longueur absolue de plus de dix
millions de lieues ou i5o fois la distance qui nous sépare de la lune.

Ni S MES } le §d * octobre 181 u
Tom. IL 2 3
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Époques en temps
pour le

1 8 x 1 <

1812

1

2 1

16

2 2

16

5

2 0

1

1 1

2 0

Û 3

7

1 2

2 0

2 8

6

15

2 0

G

2 1

9
4

9
0 / .

vrai ,
méridien de. ]

Février. . à

Avril. . . à

Mai . . . à

Juin . . . à

Juillet . . à

Juillet . . à

Août . . à

Août . . à

Août . . à

Août . . à

Septembre à

Septembre, à

Septembre à

Septembre à

Octobre . à

Octobre . à

Octobre . à

Novembre à

Novembre à

Décembre à

Jaiuier . à

Février . à

Mars. . . à

H.
11.

4-
2 .

8.

•4-

9-

9-
2 •

<;.

1 0 .

.-9--
«.

1 .

5.

5.

1 0 .

1 0 .

3.

I I .

5.

3.

M.
53.

1 0 .

3a.

O .

I I .

3G.

3 2 .

7-

- 3 .

54-
5 2 .

49-
3 1 .

38.

14.

1 0 .

35.

43.

1 2 .

2 O .

*9-

•

soir.

soir.

soir.

soir.

soir.

ma.

m a .

soir.

soir.

soir.

ma.

soir.

ma.

ma.

ma.

ma.

ma.

ma.

ma.

soir.

ma.

m a .

soir.

Distance

va soleil.

3,1 I

2,47

i?74

1,32

i53G

i,^4

1,16

1,10

i,o5

1 jo3

i,O2

i,o3

i,o5

1,10

1,16

1,24

i,36

1,52

i ,74

2,04

2:47

3 , I I

Distance

\ La terre

2,46

2 ; l6

2,32

3,41

2,4°
2,33

2,20

2,01

i,86

1,72

i,59

1,46

i,34

I J 2 5

1,20

1,25

1,42

i,;3

^ 9

^ 7 9

3,44

3 / I D

Longit udes

géocenlriq.

D.
1 39.

123.

I2O.

122.

126.

I 29-
i3a.

i4o«

142.

i 4 r .

i44-
t48.
!55.
i65.

182.

212.

25O.

275.

291.

302.

3l2.

322»

33i .

M.
34.

3.

6.

45.

1 .

8.

0 .

58.

34.
0

45.

53.

56.

5 i .

53.

57.

9-

49.

47-
OU.

39.

56.

2 3 .

Latitudes

géocentriques.

D.
—56.

- 3 7 .

—X9-

— 9-
— 2.

-h 3.

+ 9.
+i3.

+17.
+22.

+29.

H-34.

+4o.
4-48.
4-56.
4-6i.

4-58.

4-47-
4-35.
4-25.

4-i6.

4- 9.

4- 3.

M.
56.

40.

5g.

3 7 .

20.

3 1 .

1 2 .

i 5 .

5o.

58.

0 .

8.

5 9 .

4o.

43

5 9 .

49-
49.

5 2 .

1 0 .

O /

2«

Ascensions

droites.

D.
135.

11 (5.

118.

I 22«

137.

l33.

i3 7 .

i48.
I 5 I .

i5a.

i58.

166.

178.

193.

2l3.

236.

25 7 .

274.

288.

-99-
310.

322.

33a.

n.
1 0 .

53

7.

49.
46.

3 i .

»9-
5.

36.

18 .

54.

34.

3.

i 5 .

1 0 .

4-
2 5 ,

1 8 .

-33.

32 .

6.

2 0 .

Déclinaisons.

D.
— ^.j.

— 17-

4- 0.

4-io.

4-16.

4-21.

4-26..

4-27.

4-3o.

4-3G.

4-39.

4-43.

4-46.

4-48.

+49-
+45.
+36.
+24.
+i3.

+ 5.
1 .

— b.

M.
02,

1 ;

32.

I I .

27-
12.

1.

1.

45.

-•

14.

5i.

C

6.

i3.

4C.

u-

9*
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Heure ,

a lever apparent.

H. M.

i. 38. soir.

g, 53. ma.

;. 4i. ma.

6. 8. ma.

5. i. ma.

3. 5g. ma.

3. 52. ma.

3. 19. ma.

1. 26. ma.

Durant cet

intervalle ?

la comète

ne quittera

pas ïhorison

de Paris.

4. 56. ma.

7. 17. ma.

7, 2g. ma.

8. 27. ma.

~. 5G. m a .

6. 21. ma.

4. 33. nia.

du

au

H.

I O .

6.

3.
2 .

i .

0 .

0 .

0 .

0 .

1 1 .

1 1 .

1 1 .

Oi

i ,

2

«->
0

3

3

r>

I

O

9

Heure
passage

méridien.

M.

4.3

1 2 .

58.

36.

3 7 .

59.

3o.

3 i .

1 1 .

4 1 .

34.

44-
8.

40.

3 i .

3o.

. iG.

3 7 .

. 3 i .

. 56.

• 4g-
. 4.
. 52,

soir.

soir.

soir.

soir.

soir.

soir.

soir.

soir.

soir.

ma.

ma.

ma.

soir.

soir.

soir.

soir*

soir.

soir.

soir.

soir.

soir.

soir.

ma.

Heure
du coucher
' apparent.

H.

I O .

I O .

9-

9-
8.

9-

9-

9-
1 0 .

M.

47. soir.

5. soir.

3o. soir.

5. soir.

56. soir.

2. soir.

10. soir.

9. soir.

3. soir.

Durant cet

intervalle ?

la

ne

comète

quittera

pas Vhorison

de

1 .

0 .

9-

1-

5.

3.

1 Paris.

3g. ma.

0. ma.

46. soir.

26. soir.

44* soir.

47. soir.

ig. soir.

Constellations
où l'on voit

Le

Le

Le

Le

Le

Le

Le

Le

Le

Le

La

La

La

La

Le

He

la Comète.

Navire

Navire.

Petit-Chien.

Cancer.

Cancer.

Cancer.

Lion.

Lion.

Lion.

Petit-Lion.

Grande-Ourse.

Grande-Ourse*

Grande-Ourse.

Grande-Ourse.

Bouvier.

rcule.

Hercule.

Le Rameau.

L'Aigle.

L'Aigle.

Le

Le

Le

Petit-Cheval.

Verseau.

Verseau.

PRINCIPAUX PHÉNOMÈNES.

M. Flaugergues a aperçu la
Comète à Vivier , le 25 mars.

Passage à l'équateur.

Passage à Técliptique ? près
de l'orbe de Mars.

Moindre distance au Soleil.

Moiadre distance à la Terre.

Passage par « de rAIGLE du
au 3 décembre.

Passage à Féquateur*
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QUESTIONS PROPOSÉES.

Problè7?ie dhydrodynaviique.

O N suppose qu'une cuve cylindrique dont l'axe est vertical, et qui
est remplie d'eau jusqu'à une certaine hauteur connue , est percée laté-
téralement, et dans toute sa hauteur, d'une fente parallèle à son axe?

par laquelle l'eau s'écoule.
On suppose que l'eau évacuée de cette cuve tombe dans une autre

cure de même forme et de dimensions connues, percée aussi latérale-
ment comme la première.

On suppose que la quantité d'eau qui s'écoule par chacun des points
de chacune des cuves pendant le même temps est constante et indé-
pendante de la pression exercée par la colonne supérieure , et que
cette quantité est connue pour l'une et l'autre cuves.

Cela posé 9 on propose i.° de déterminer la hauteur de l'eau, dans
l'une et l'autre cuves au bout du temps / ; 2.0 de déterminer le maxi-
mum de hauteur de l'eau dans la seconde cuve et l'époque à laquelle
ce maximum aura lieu ?

On peut ensuite supposer que Fune ou l'autre cuves , ou toutes
les deux sont des troncs de cônes droits ou obliques.

Théorème de Géomét7%ie.

Si , par l'un quelconque P des points du périmètre d'une hyper-
bole , ou mène deux droites PA9 PB 9 respectivement parallèles à ses
asymptotes, et que, par un autre point quelconque M , pris sur ce
périmètre , on mène une suite de droites coupant PA en a , a1\ an

 ? . . . %
PB en b, l' 9 b/f,..., et la courbe en m, m', m" 7 ..,} on'aura
cm <3/772/ a11 m11

btn b'rn' h1'm'1



PROBLEME DE MALFATTI. i65

GEOMETRIE.

Lettre aux rédacteurs des Annales, renfermant quelques
remarques sur le problème de Vinscription de trois
cercles à un triangle ;

Par M. TÉDENÀT , correspondant de la première classe de
l'Institut, recteur de l'a-cadémie de Nismes.

M E S S I E U R S >

JLJE silence de M> Bldone , ou plutôt celui de Malfattî lui-même %

sur la nature des considérations qui ont pu le conduire à l'élégant
résultat que vous avez fait connaître aux pages 347 e t ^48 du I.eE

volume des Annales , m'a entraîné à quelques recherches sur ce cu-
rieux problème. A la vérité la solution en est maintenant connue,
et vous avez prouvé ? Messieurs , à la page 60 du 2.m e volume , qu'elle
est exacte; mais ? faute de savoir par quelle route on j parvient, cette
solution ne peut être considérée que comme un théorème dont on
peut raisonnablement désirer une démonstration simple comme son
énoncé. Si le peu de temps qu'il m'est permis de consacrer à la géo-
métrie ne me laisse guère d'espoir de parvenir à une pareille démonst-
ration ? je pense que du moins les réflexions que j'ai faites à ce sujety

pourront aider dans sa recherche ceux de vos lecteurs qui ont tout
le loisir nécessaire pour s'en occuper*

-Suivant Malfatti> si R est le rayon du cercle inscrit à un triangle^
f 5 / v 1° 5 le s distances de ses sommets aux points où ce cercle touche

Tom* IL z£



166 PROBLEME
ses côtés ; d ? d

1
9 d/f

 ? les distances de ces mêmes sommets au centre
du cercle ; r, r;, rlf

 5 les rayons de trois cercles inscrits, de manière
que chacun touche les deux autres et deux côtés du triangle ; et
enfin s la demi-somme des trois côtés de ce triangle, on doit avoir

2, r =R(s—R+d —d'—d") ,

2/r ' —R^s—R+d' —d^—d ) , (A)

en ajoutant ces équations deux à deux 9 et supprimant le facteur 2
dans les équation? résultantes , il vient

f r -\-ffr' =R(s—R—d") ,

r" = R(s—R—d ) , (B)

Mais ? c 9 c*} c
/f, étant les cotés du triangle s on a aussi ( tome I.er

 f

page 344 ) ^es équations

r"=Iic , (C)

r ^Rcf .

Retranchant de chacune de eeiles-*ci sa correspondante parmi les équa-
tions (B) 9 et divisant par R les deux membres des équations résul-
tantes , en se rappelant que s—c, s—c*, $—ctf, sont respectivement
égaux à f , jt 7 ?;/

 9 on obtient

y/r'r»=d +R—? , (D)

Cela posé 5 soient ppfp!/ ( fig. 1 ) le triangle dont il sagit ; C le
centre du cercle inscrit; / , tf

 ? /^^ les points de contact de ce cercle
avec ses côtés ; tkntf > P'kin

 9 t^f^t 5 des arcs décrits des sommets
comme centres et avec leurs distances respectives aux points / 9 t

f ^ i!l
 5

pour rayons ; soient enfin o f o1
 s ofi ^ les centres des cercles dont les



n
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rayons respectifs sont r , r* 5 r" , et soient 772, n , m/ , n ' , m9

les points de contact de ces cercles avec les cotés du triangle. Soient
enfin q , ^ , ^ , les points où /?C , /?C 5 /?"C , prolongés au-delà du
point C 9 rencontrent la circonférence du cercle inscrit.

Il a déjà été démontré , et il est d'ailleurs facile de s'assurer immédia-
tement que

r; —

(E)

D'un autre côté ? il est aisé de voir que

d -4-72—p =/? cArccj —p k =k g ,

df 4-72 — f ~p* c+cç' —p/ kf = y (j* y (F)

d'où il suit que les équations (D) reviennent à celles-ci

mtfnf = £ q ,

m n»=ik'q' , (G)

lesquelles présentent un théorème fort remarquable.
Posons pour abréger ,

k q =d -bff—f =a

d'oùk'q' =zd'-{-Il—p'-a' (H)

2\/r rf zz.af/ •

En prenant le produit de ces dernières équations, il viendra

c'est-à-dire ? que le parallélipipède construit sur les diamètres deê
trois cercles cherché» est équivalant au parallélipipède construit sur
les trois longueurs connues kq, k;q;

 ? k//q//.
Si, au contraire, on divise successivement par chacune àe$

tions (H) le produit des deux autres , il Y
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. a'a!f , ana aaf „ .

valeurs Incomparablement plus simples , et peut-être tout aussi faciles

à construire que celles de Malfatti ; puisque les longueurs a 5 a
1\ aff ,

sont données immédiatement par la construction de la figure (*).

Si l'on suppose admises les équations (G) ou, ce qui revient au même 9

les équations (D) ; les équations (C) du problème deviendront les

équations (B) ; et en retranchant successivement chacune de ces der-

nières de la somme des deux autres 9' on en déduira les formules (A)

de Malfatti. Le problème* nef sera ainsi que du premier degré.

On voit donc combien la solution de ce problème deyiendrait fa-

cile , si l'on pouvait parvenir à démontrer ? û priori , que les droites

k(j , k/tj/
 5 lil/q//

 5 sont respectivement égales aux droites m^n* v mnn ,

m!n ; ou simplement que kq—m'tn'; c'est sur ce point capital que

j'ai cru 5 Messieurs , devoir appeler l'attention de vos lecteurs.

(*) Nous placerons ici nne remarque qui peut souvent être d'une utile application.
Le problème dont il s'agit ici, s'élève naturellement au 8.e ou tout au moins au

4«e degré , du moins tatit qu'on n'emploie d'autres données que les trois côtés du triangle
proposé. Voilà pourtant des valeurs rationnelles extrêmement simples ; mais, sous
leur simplicité apparente , elles renferment implicitement les diverses solutions qu'en
générai le problème peut admettre. Les quantités a, af, %aft sont en effet des fonctions
cie R , d 9 d{, dl!, p, f , f , et ces dernières prennent diverses valeurs suivant
qu'on les rapporte au cercle inscrit, proprement dit 9 ou qu'on les considère par rap-^
port à chacun des trois cercles exinscrits.

Il en doit toujours être de même ; c'est-à-dire , qu'en général un problème
susceptible d'un grand nombre de solutions , ne peut être que d'un degré élevé, tant
qu'on n'y emploie que des données invariables ; et qu'on ne doit espérer de l'abais-
ser à un degré inférieur, qu'en substituant à ces données d'autres données dont les
Valeurs ne soient pas lesmêmespour les diverses solutions dont ce problème est susceptible.

Il a souvent été remarqué qu'un heureux choix d'inconnues pouvait simplifier d'une
manière notable la solullon#dcs problèmes ; mais il n'avait pas été observé jusqu'ici»
c£ne des données choisies convenablement peuvent procurer le même avantage,

( Note des éditeurs, )
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On pourrait parvenir à s'assurer de l'exactitude des valeurs que j'ai

assignées à 7', r;
 9 r

N
 9 en posant

21/r'r —>J{R^d —/) ;

et prouvant 9 par la substitution dans les équations du problème qu'on
doit avoir h — x'zztf'zzi y mais 5 outre que cette vérité ne pourrait
être mise en évidence que par un calcul assez prolixe ; il resterait
toujours à savoir ce qui a pu conduire à poser les équations ci-dessus ,
de manière qu'on ne ferait par là que reproduire , sous une autre
forme , la vérification que vous avez présentée vous-mêmes\ Messieurs ,
\ la page 61 du tome II de votre fecueil»

Je n'ajouterai plus qu'un mot : d'après les valeurs que j'ai assignées
ci-dessus à r , rf

 9 r
N

 9 on a

V Q>f* V Qffz

mais ^ à la page 346 du tome I , vous avez fait ? Messieurs ?

d'oi

r ? r

donc

qui donn«



t7o ÉLEMENS ELLIPTIQUES
maïs ? d'après les valeurs que vous avez trouvées pour xf , coN

 9

l'endroit cité 5 on a

â"

done

En permutant convenablement les accens ? on aura donc , entre
données du problème , les relations suivantes

—, )=d (c —d>.

relations qull doit être facile de vérifier»

Agréez , Messieurs ? etc*

Nismes, le 18 d^octobre i 8 i r ;

ASTRONOMIE.
Elémens elliptiques de la Comète de 1811 ?* *

Par M. F L A U G E R G U E S , astronome correspondant
de l'Institut.

comète que je découvris , le a5 mars dernier , et qui 9 dans ce
^ occupe Tattention des astronomes et du public ? me
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être la même que celle qui parut au mois de septembre I 3 O I , et
qui fut remarquée par toute l'Europe et observée en Chine, En effet,
les élémens de la comète actuelle représentent très-bien les obser-
vations des astronomes chinois sur la comète de I 3 O I , pourvu qu'on
suppose seulement que ? lorsqu'ils disent que la comète passa de la
constellation Tsing à Nan-ho ( Procion ) , Us entendent qu'elle fut
en conjonction avec cette étoile , et qu'on admette , en outre , que
les trois Koung qu'ils remarquèrent qu'elle traversa ? ne sont pas trois
étoiles de la constellation. des Chiens-de-Chnsse , au sud de la queue
de la Grande Ourse , comme le prétend M. Pingre 5 d'après le père
Gaubil, ( puisqu'il ne se trouve à la tête d'Àstérion , que deux étoiles
de cinquième grandeur qui n'ont rien de singulier ) mais plutôt
trois étoiles voisines $9 <, * ,à la main du Bouvîef, qui sont de qua-
trième grandeur v et qui forment dans le1 ciel un petit triangle fort
remarquable. L'apparition de cette comète ne dura , suivant ces as-
tronomes 5 que quarante-six jours ; mais il y a apparence qu'ils n'ont
entendu parler que de la durée de son plus grand éclat ou du temps
qu'elle employa à parcourir les constellations que je viens de désigner;
car les historiens d'Europe donnent à son apparition une durée bien
plus longue, et Villani^en particulier, assure l'avoir encore vue au
mois de janvier i3o2 ; ce qui s'accorde fort bien avec l'hypothèse que
.cette--comète est la même <jue celle-de cette a«née 1811 , dont la
période serait ainsi d'environ 510 années , dê  sorte qu'elle pourrait
reparaître en l'année 2021,

Cette conjecture est encore confirmée par4 l'apparition d'une comète ?

dans le signe de la Vierge 5 5 io ans avant Tannée i3oi 5 c'est-à-dire
en 791 , suivant Èekstormius 9 Lubinietzki, Zahn ? etc.

Dans cette supposition d'une période d'environ 510 ans 5 et d'après
mfes'observations 5 j'ai calculé des Elémens elliptiques de là comète
de cette année ( 1811 ) qui représentent les observations avec une
précision singulière; ce qui fournit une nouvelle preuve de l'identité
de cette eoijiète avec celle de I 3 O I . Voici ces élémens.



% KLÉMENS ELLIPTIQUES DE LA COMÈTE DE 1811.

années
Révolution périodique . . « • 009 , 8846

La moyenne distance du soleil
axe 127,644- 5

Petit axe 22,8084,
Distance aphélie , . . . 126,61705
Distance périhélie . * . i5150272 .

à la terre étant prise pour
unité.

)

Rapport de l'excentricité au demi-grand axe . 0,980g

Nœud ascçi>dant » * . • . i4o° i6; 56 ; /

Inclinaison . 4 . . . 720 5g / i o ; /

Longitude du périhélie sur Torbite . 74° 29' 4Q//

Passage au périhélie . 12 septembre 1811 ,

à 6h. 577 3o" du soir , temps moyen à Paris,

Sens du mouvement . . « . rétrograde (*)

La queue de la comète de i3oi , avait de dix à douze degrés de
longueur, comme la queue de la comète actuelle.

À l'observatoire de Viviers > le 1 o çToctobre 181 r#

(*) E& prenant pour unité k lieue métrique de 5 kilomètres , on parviendra aux
ïës\jkats que voici :

Grand axe • . . . . . . . . . . 3 916 t36
Petit axe , . - 699 763 924 lieues.
Distance aphélie . . • • . . . . . . 3 884 621 842 lieues.
Distance périhélie . « . 31 514 $96 lieues»

On trouvera aussi, d'après les lois de la gravitation> que les vitesse aphélie et
ie 5ont telles qu'il suit :

Vitesse aphélie, environ 249 lieues )
i- i .f i- • * o ro, i- ) P a r heure .

[Vitesse pénhelie , environ 00604 lieues )

( Note des éditeurs. }

très-
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GEOMETRIE.
LIEU AUX SECTIONS CONIQUES , relatif au problème traité

à la page 3o2 du premier çolurne des Annales.

Par M, LHUILIER, professeur dé mathématiques à l'académie
impériale de Genève.

JLJE problème proposé à la page 202 du I.e r volume des Annales ,
relativement à deux canaux rectilïg^es , a été discuté, d'une manière
très-intéressante par M. Tedenat, à la page 3o2 du même volume.
Cette discussion m'aJ engagé à présenter la question sous un autre-
point de vue , et à* rechercher le lieu des points de chacun desquels
abaissant des perpendiculaires sur deux droites données de position ,
et menant une droite à un point donné, la somme de ces'perpendi-
culaires et de cette droite soit d'une grandeur constante.

Lemrne. Soient deux droites données de position , et soient, deux
droites correspondantes données de grandeur. D'un point quelconque,
pris sur le plan de ces droites , soient abaissées sur elles des per-
pendiculaires. Soient pris les rectangles de ces perpendiculaires par
les droites correspondantes données de grandeur , et soit prise la somme
de ces rectangles.

On peut substituer à cette somme le rectangle de la perpendiculaire
abaissée du même point sur une-droit&Ji déterminer de position par
une droite à déterminer de grandeur de la manière suivante :

Soient SA et SAX ( fig. 2 ) deux droites données de grandeur et de
position qui se coupent en S. Soit prolongée A ^ au-delà de S d'une
quantité S^z /=SA /; soit menée ha/ , et soit coupée cette droite en deux
parties égales au point Z ; enfin soit menée S Z , cette dernière droite

' Tom. IL 20
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sera la droite a déterminer de position ? et son double sera la droite
à déterminer de grandeur ; c'est-à-dire 5 que 9 si d'un point quelconque
M on abaisse sur SA ? SA/ , SZ 5 les perpendiculaires MP ,JNIP' 5 MR ,
on a Téquation S A x M P + S A / x M P ^ s S Z x M R . (*)

En particulier 5 si les droites SA et SA/ sont égales entre elles ? la
droite SZ coupe en deux parties égales l'angle ASa' ? et elle est
perpendiculaire à la droite qui coupe en deux parties égales l'angle
ASA'. L'expression de SZ est alors SA.5//z.^ S , et on a MP+MP'

Cette proposition n'est qu'un cas particulier d'une propriété géné-
rale du centre des moyennes distances ? que j'ai développée dans mes
ÊJèmens banalise , etc. > pag. 5:i-5g.

Application. Soient deux droites qui se. coupent données de posi-
tion 5 et soit un point donné de position. On propose de trouver le
lieu des points de chacun desquels abaissant des perpendiculaires
sur les droites données de position , et menant une droite au point
donné v la somme de ces perpendiculaires et de cette droite soit donnée
de grandeur. ,

Soient SA et SA' ( fig. 3 ) deux droites données de position , se*
coupant en S. Soit C un point dpnné de position. Soit M un point
duquel on abaisse sur SA et SA7 les perpendiculaires MP ? MP7 ,
et on mène la droite MC. Que la somme MP+3V1P/+MG soit
donnée de grandeur ; on demande le lieu du point M ?

Par le point S soit menée la droite SZ qui divise en deux parties
égales l'angle de suite de l'angle A'SA. Soit aussi JVJR perpendicu-
laire à SZ. Par le lemmo précèdent MP-+-MP' = 2MR..S//2. { S ; donc
la somme aMR.iSm.^S+MC* est donnée de grandeur. Soit SD la

(*) En effet, en prolongeant SZ d'une quantité ZS'—ZS , et menant S'A et S'A',
la figure SASW sera un parallélogramme > et coiisequenamenl SS/ pourra être considérée
comme représentant en grandeur et en direction la résultante de deux forces, repré-
sentées en grandeur et en direction par SA et Sa\ Alors , en considérant le point M
comme le centre des momens , on devra avoir eu eilet réquation ci-dessus.

( ISote des éditeurs, )
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droite qui divise er deux parties égales l'angle ASA;* 9 et Sur SD
soient aba\^ecs les' perpendiculaires CB et MQ.

Première supposition. Que la somme donnée soit zSB.Sin. f S. On
aura 2MR.5/>z. { S-HMC=2SB.S/72. {S d'où. MC=:i(SB—MRJ.S/TÎ.ÎS
= 2(SB—Q&j.Sin. { S = 2BQ.Sîn. | S.

i.° Soit zSin.^$~i ; ou que l'angle S vaille le tiers de deux droits
(fig. 3 ) ; on aura MC = BQ ; partant le lieu du point M est une
droite donnée de position 9 menée par C parallèlement à celle qui
divise l'angle iVSA en deux parties égales,

2.0 Puisque MC. ( fig. 4 ) n'est Pas plu s petit que BQ ; zSin. { S
n'est pas plus petit que l'unité 9 et partant l'angle S ne peut pas être
plus petit que le tiers de deux droits. Soit donc 25//2.~S>i ; on a

S:i.Le lieu des points M est donc une droite menée

par C et rencontrant SB sous un angle dont le cosinus est ->
* ° zSin. {S

Seconde supposition. Que la somme donnée soit différente de
2SB.5//2.-S ; soit cette somme égale à 2SD.5//?, 7 S.

Puisque aMR.5//2. { S + M C ^ 2S D.S//2. { S ,

on aura MC = 2DQ.S//2. i S ,

ou MC:DQ=:25z>/.{S:u

i.° Soient 2Sin.^S-=i ; on aura MC — DQ. Ainsi le lieu des points.
M est alors une parabole dont C est le foyer ? et dont la directrice
est la perpendiculaire élevée du point D à la droite SB.

2.0 Soit 2i577z. ^ S < i ; on aura aussi MC<DQ ; et le rapport de
MC à DQ sera un rapport constant. Le lieu des points M sera donc
alors une ellipse ayant le point C pour un de ses foyers et dont
la directrice correspondant à ce foyer sera la perpendiculaire élevée
du point D à la droite SB»

3.° -Soit enfin 25/7z.~S> 1 1 on aura aussi MC>DQ , et en rapport
constant. Le lieu des points M sera donc une hyperbole dont le
point C sera Pun des foyers et dont la directrice correspondant à ce
foyer sera la perpendiculaire élevée du point D à la droite SB.
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- Remarque LOn peut substituer aux droites dont on prend la
la somme de leurs rectangles par des droites données.

Remarque IL On peut aussi généraliser cette recherche , et l'étendre
à un nombre quelconque de droites données de position , qui partent
ou non d'un même point ; vu que le Iemme sur lequel la proposition
repose , s'étend à un nombre quelconque de droites données de position
sur un plan.

Remarque III. Aux droites données de position sur un plan, on
peut substituer des plans donnés de position , qui se coupent ou non
en un môme point ; vu que le Iemme sur lequel la proposition est
fondée , s'étend à des plans donnés de position. ( Voyez Fouvrage
déjà cité, pag. I 5 O ~ I 5 5 ) . Le lieu cherché dans l'espace est un plan
pu une surface de révolution du second ordre.

Remarque IV* Comme la comparaison des méthodes est un des
points les plus importans dans les sciences de raisonnement 5 je crois
devoir ajouter ici le procédé fondé sur la doctrine des coordonnées,

Que les équations des droites données soient,

que les coordonnées du point donné soient a et b ;
que les coordonnées du point cherché soient oc et y.

Les perpendiculaires abaissées du point cherché sur les droites
données sont,

.#Cos.«+ySm.«e—d , xCos.u'-i-ySin.*—d/ $

La distance du point donné au point cherché est

;
soit enfin s—(d-^-d') la somme constante donnée , l'équation du lieu
géométrique des points M sera

Si l'on désigne par <p l'angle des deux droites données 9 cette équa-
tion deviendra
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d3où on conclura 9 en transposant et quarrant

y2—f̂ sx Cos. 7<p.Cos.

— 4 ^ Cos. ••^•Sin.

(or—-âr)2+/y —-iïy =

ou en développant et ordonnant

—2.y {b—

Remarque V. Que le point cherché doive être situé sur la cir-
conférence d'un cercle donné dont le point donné est le centre ; la
somme des perpendiculaires abaissées du point cherché sur les droites
données de position sera susceptible de limites, soit en grandeur,
soit en petitesse ; et on déterminera ces limites comme il suit.

Du point donné soit abaissée une perpendiculaire sur la droite
qui divise en deux parties égales l'angle de suite de Fangle S ; les
points dans lesquels cette perpendiculaire rencontrera la circonférence
du cercle 5 seront les points auxquels répondront la plus grande et la
plus petite valeurs des sommes de perpendiculaires abaissées sur les.
droites données de position,
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ANALISE.

Remarques relatives à la formule logarithmique qui se
trouve à la page 70 de ce volume ;

Par M. SERVOIS , professeur de mathématiques aux écoles
d'artillerie de Lafère.

A MM. LES RÉDACTEURS DES ANNALES ;

MESSIEURS 3

N cherchant à me démontrer 9 <Tune manière purement élémentaire, la
formule donnée par M. Dubourguet à la page 70 du 2,e volume des
Annales 5 il m'a paru que cette formule était entachée d'une petite
inexactitude que j'ai cru nécessaire de faire remarquer 5 et dont j 'in-
diquerai la source 5 après avoir exposé brièvement le moyen fort simple,
que j'ai employé pour parvenir à la formule exacte»

Soit la série

Si on la multiplie par i<—y2
 P le terme général du produit sera

(an—

en sorte qu'on a
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mais, dans le système de logarithmes de Neper, on a aussi.

Formant le produit de ces deux équations 5 l'équation résultante de-
viendra , par la suppression de la série commune à ses deux membres ,
et la division par i—yz

Posant alors

il viendra

Formule qui revient à

r 3 (^—o2 1
5.7 («+O5

La formule donnée par M. Dubourguet est

1 /x—1\4 1 /^—A5

et son calcul est exact jusqu'au bout ; de manière que l'erreur ne
peut venir uniquement que de ce que , dans la substitution de la valeur
j 2 * 3 M i 1 • (*—1)3 , . j (x—O3

de " , il aura sans doute écrit , au lieu de
\/Ihz a 2x(ar+i)2

II est fâcheux ? au surplus, que cette formule doive avoir la forme
que je viens d'indiquer ? attendu qu'elle perd ainsi un peu de sa
convergence.

Agréez , Messieurs , etc.
Lafère , 2 octobre i8xi«
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GEOMETRIE.
De Vinscription du quarré au triangle , et de celle

du cube au tétraèdre ;

Par M. F E R R I O T , principal du collège de Baume.

I. U N quarré ayant quatre angles et un triangle ayant seulement
trois côtes ; la première de ses figures ne saurait être inscrite à la
seconde à moins que deux de ses sommets ne soient situés sur un
même côté du triangle et que conséqucmmeut un coté de la première
figure se trouve appliqué sur un côté de la seconde.

Mais 5 d'autant que le côté du triangle avec lequel doit se con-
fondre un côté du quarré à inscrire peut être choisi de trois manières
différentes , on voit que le problème a , en général , trois solutions.

Entre les diverses méthodes que Ton peut indiquer pour inscrire
un quarré à un triangle , la suivante paraît devoir mériter la préférence 9

tant à cause de sa simplicité que parce qu'elle peut être facilement
étendue à l'inscription du cube au tétraèdre.

Soit ÀSB ( fig. 5 ) le triangle proposé ; so't AB le côté de ce
triangle sur lequel on veut que repose un côté du quarré à inscrire
et soit A /B /D /E / ce quarré. Sur AB ? comme côté , soit construit un
autre quarré ABDE ; les triangles ASB et A /SB / étant semblables,
les pentagones ASBDE et A /S3 /D /E / doivent l'être aussi, d'où il est
aisé de conclure que le point E7 doit être sur la droite SE.

La construction se réduit donc à ce qui suit : A Tune quelconque
A des extrémités de AB soit élevée à cette droite du côté opposé
au triangle, une perpendiculaire AE égale à elle; en menant S E ,
son intersection E ; avec AB sera l'un des sommets du quarré cher 3
ché ? et alors le problème pourra être considéré comme résolu.

IL
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IL Un cube ayant huit sommets , et un tétraèdre ayant quatre faces

seulement ? mais qui , trois à trois ? concourent en un même point ;
il est impossible que les huit sommets d'un cube inscrit à un tétraè-
dre soient distribués deux à deux sur les quatre faces du tétraèdre.
D'un autre côté5 il est aisé de voir que trois des sommets d'un cube
ne sauraient être sur une des faces d'un tétraèdre 9 dans lequel il
est inscrit 5 sans qu'un quatrième sommet soit aussi sur la même face
du tétraèdre 9 et qu'alors cette face n'en peut recevoir un plus grand
nombre ; e t , comme alors les quatre sommets restants doivent être
distribués sur trois faces seulement ^ l'une d'elles devra en contenir
deux 9 et contiendra conséquemment une des arêtes du cube.

Lors donc qu'un cube est inscrit à un tétraèdre , l'une des faces
du cube doit se confondre avec le plan de Tune des faces du tétraè-
dre j, et la face opposée de ce cube doit être un quarré inscrit à la
section faite au tétraèdre par le plan de cette face.

Or 5 la face du tétraèdre qui doit recevoir une des faces du cube
peut être choisie de quatre manières différentes, et 5 dans chaque cas,
celle des trois autres faces du tétraèdre qui doit contenir une des
arêtes du cube ? peut être choisie de trois manières; ainsi 9 on peut ,
en général 5 inscrire à un tétraèdre douze cubes difFéreiss.

Cela posé 9 qu'il soit question d'inscrire un cube au tétraèdre SABC
( fig. 6 ) 9 de telle manière que la face ABC du tétraèdre contienne
une des faces du cube , et que la face ASC du tétraèdre contienne
une des arêtes de ce cube.

Soit D /E /F /G /FI /I /K /L / le cube demandé, dont la face H I I C L ' soit
sur la face ABC du tétraèdre ? l'arête D ^ 7 sur la face ASC de ce
tétraèdre 9 et enfin les sommets E7 „ F 7 , sur les faces SBA 5 SBC ?

respectivement. Soit joint le point S aux points D7 ? E 7 , F7
 9 G7

 9

par des droites se terminant en D , E , F , G ? au plan de la face
ABC ; il est aisé de voir que ces points seront les sommets d'un quarré
DEFG inscrit à cette face. Sur ce quarré , et du côté opposé au té-
traèdre soit construit le cube DEFGHIKL; à cause de la similitude
des pyramides quadrangulaires SDEFG et SD / E / F / G /

? ces pyrami-
Tom. IL 26
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des augmentées des deux cubes formeront deux polyèdres semblables ;
d'où il est aisé de conclure que , si Ton mène S I , cette droite contiendra
le point F.

La construction se réduit donc à ce qui suit : soit déterminé ( I )
le point D de AC sur lequel doit être situé l'un des sommets du
quarré inscrit au triangle ABC ; soit menée D E , perpendiculaire à AC
et se terminant en E à AB ; soit ensuite élevée au plan de ABC 5

par le même point D , une perpendiculaire DI égale à DE ; enfin soit
menée SI coupant en I7 la base ABC ; ce point F sera l'un des
mets du cube cherché; et, ce sommet étant ainsi déterminé, le
blême pourra être regardé comme résolu.

QUESTIONS RÉSOLUES.

Démonstration du théorème énoncé à la page 96 de
ce volume ;

Par M. TÉDENAT , correspondant de la première classe de
l'Institut, recteur de l'académie de Nismes.

À MM. LES RÉDACTEURS DES ANNALES S

MESSIEURS ,

J E viens de recevoir le 3.e numéro du 2.m e volume de
les» Pour me distraire un moment de mes occupations ordinaires , je
l'ai parcouru , et je me suis arrêté sur le théorème d'analise que Ton
trouve énoncé à la page 96. La démonstration n'en sera pas difficile
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pour ceux à qui le calcul des différences est familier. Je me conten-
terai d'en indiquer la marche , sans entrer dans aucun détail.

On sait que y , y , 9 y% 5 y 3 , yn9 désignant les états succes-
sifs d'une fonction y d'une variable x , on a généralement

n ?2 n—I n n—i 7?—2

A +y y , y n - i + r » - « 7 7

Soit

«y

et supposons que x prenne successivement des accroissernens
désignés par Ax -7 on aura

m
>

Substituant donc dans l'équation (A) ? il viendra

équation qui, en y supposant n~m 3 se change en celle-ci

m m m 7r*~~* i / \ A \m

Mais , d'un autre côté , d'après la valeur y=z.%m, et l'égalité des ac-
eroissemens de la variable indépendante % 5 il est connu qu'on doit
avoir

Am j=i,2.3.4 mAxm (*) ; (C)

(*) Cette proposition n'est qu'un cas particulier de la suivante ;
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on aura donc , à cause de l'équation (B) ;

. m , ^. . ~m m , s m m—ml f x A } m

équation qui, en y faisant ^r=:(z—m)Ax , et divisant ensuite sts
deux membres par Axm devient

a Si dans une fonction rationnelle et entière , telle que

•(M)

t» on substitue pour x les termes consécutifs d'une progression par différences dont
v la raison soit è ; les résultats des substitutions formeront une suite dont les m. t

v différences seront constantes et égales à

Cette dernière trouvant une utile application dans la recherche des limites des
racines incommensurables des équations numériques , nous croyons convenable d'en
présenter ici une démonstration générale purement élémentaire.

Supposons qu'elle soit déjà démontrée pour toutes les fonctions des degrés infé-
rieurs à m , et soit k l'un quelconque des termes de la progression des nombres h

substituer dans la fonction (M) ; le suivant sera fc+^ ; exécutant donc la substitu-
tion de ces deux, termes, et prenant la différence des résultats ; il viendra

mJlk*1-^— t\zB-{-mAi]km-*-{- .'; (N)

tel est donc le terme général des premières différences de la suite dont il s'agit > et
on en conclura ces premières différences, en y substituant successivement pour k la
suite /i-J-^, k~\-2$ y fc*4-3^9.. . . ; mais cette suite étant une progression par dif-
férences j dont la raison est $ 9 et la fonction (N) , dans laquelle il faut la substituer 5

clant une fonction entière et rationnelle du degré m—I , dont le premier terme a
pour coefficient mA$ ; il résulte de l'hypothèse que les résultats des substitu-
tions , c'csi-à-dire , les premières difïéiences ce la fonction (M) formeront une suite
dont les (772—i)emts différences, lesquelles seront par conséquent les ro.cmÇf dif-
férences de la fonction ÇSl) seront constantes et égales à

1.2.3 ( T O — i ) o k x ^ ^ X * T ' 1 = 1.2.3 . . . . . mAim.

Jl est donc prouvé , par là , que la proposition serait vraie pour une fonction
tlu d* gré m , si (11: éiait vraie pour une fonction du degré 777—1. Or , il est très-
facile de se conwrncrc qu'elle est vraie pour les fonctions des deux ou trois pre~
mlers degics, d'où il faut conclure qu'elle est ^énéralet
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faisant s dans cette dernière , zzzm-\-i , on obtiendra celle qu'il
s'agissait de démontrer. (*)

Agréez , Messieurs 5 etc.

Nismes , le 2 septembre 1811.

Sur les différences des ordres successifs des puissances
semblables des termes dune progi^ession arithmétique\

Pour servir de réponse à la même question ;

Par M. LHUILIER , professeur de mathématiques à racadémic
impériale de Genève.

«-w v w w v

XJE théorème algébrique proposé à démontrer a la page 96 du
z.me volume des Annales , peut être énoncé comme il suit : Les
différences de Vordre m.eme des puissances m.emes des nombres
naturels successifs sont une quantité constante ; savoir : le pro-

On pourrait prouver, plus généralement, que si , dans une fonction entière et
rationnelle du degré m , on substitue les termes d'une suite dont les n.emes di~
fèrences soient constantes , les résultats des substitutions formeront une suite dont
les mn?mz% différences seront constantes,

(*) M. Servois , professeur de mathématiques aux écoles d'artillerie de Lafère , a
aussi adressé aux rédacteurs des Annales une démonstration de cette formule ; mais
eilo ne diffère en rien de celle do M. Tédenat.

( N*tes des éditeurs. )
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duit continuel des nombres naturels depuis Vunitè jusqu'à Vexpo~
sant m.

Cette proposition appartient à la doctrine des différences finies ,
qui sert d'introduction aux calculs supérieurs. Je l'ai démontrée dans
mon ouvrage intitulé : Principiorum calculi dijferentialis et integralis
expositio elementaris. En travaillant de nouveau ce sujet ? à Foc-
casion de la demande faite dans les Annales , j'ai établi la loi générale
des différences de tous les ordres des puissances semblables des termes
successifs d'une progression arithmétique. Le théorème proposé devient
ainsi un cas très - particulier de cette doctrine générale,

§ • ' •

Pour abréger et pour faciliter le développement de ce sujet , je
yais d'abord ^établir quelques symboles.

Je désignerai par f.Pt , f.Px , f.P, , f.P4 , . . . . / .PB_, , f.PB ,
les sommes des produits de i , 2 , 3 ? 4 5 • • • • n—l •> n 3 dimen-
sions y faits avec des lettres proposées et leurs puissances.

Les lettres proposées étant Al 9 A% ? A% s AA , la somme des
produits de n dimensions , faits avec ces lettres déterminées , sera
exprimée comme il suit \f.Pn. AX...*AA.

Que les lettres qui composent ces produits soient au nombre de
deux seulement ; on conservera cette symbolisation , en supprimant
les points mis entre ces lettres. Ainsi l'expression f-Pn-<4tA4 est
celle de la somme des produits de n dimensions ? faits avec les deux
lettres At et AA (*).

§. 2.

Sur les différences premières.

Soient A et A ; deux termes successifs d'une progression arithmé-
tique , des termes de laquelle oa prend les m.emes puissances ; et les
différences premières de ces nr emes puissants : on aura

(*) Ces sortes de fonctions ont déjà été consid.it es u une manière spéciale par
M. de Wronski j ( Voy. soa Introduction à la philosophie des mathématiques ,
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^ _ ^ =(^ _ ^ )(^ -4-A A +A A +. , . .+^ ^ -+-A A 4-A )

=(J —A)f.P. A A .

Savoir : un terme des différences premières dos puissances 772.cme* des
termes d'une progression arithmétique ? est le produit de la diffé-
férence constante des termes de cette progression par la somme des
produits de m—1 dimensions , faits avec les termes dont on prend les
différences premières des puissances.

Sur les différences secondes.

Soient A , A 5 A , trois termes successifs d'une progression

arithmétique ? des termes de laquelle on prend les m.emeS puissances ,
et les différences secondes de ces puissances 5 on a 9 par ce qui
précède ?

m
A—A"=(A —A )f.P . A A ,

pag. 65 ) il les désigne par la caractéristique hébraïque ( Aleph ) ,* ainsi , par
exemple , la fonction

que M. Lhuilier désigne par

est désignée par M. de "Wronski ainsi qu'il suit :

de manière qu'en général

/ . P. abc k = Xia+b+c+ -Ht]"1.
m

( Noie des éditeurs. )
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d'oùOU

A )/.P . A A ;

= r4 —A )\f.P . - /P . A A \

m i
(A ~hA A+ +A A+A )

1

2
+ A -M )

-i.i(A—A)\f.P . A A -{-A f.P . A A -h A*f.P . ^ ^

ou enfin

m- î m - z )

f.P . A A +A ;
2 l 5 I 2 )

=i.z.(A —A y/.P . ^ ...A .
X 2 I m ~ 2 ) 1

Savoir : un terme de différences secondes des puissances /72.emes des
termes d'une progression arithmétique est le double du produit du quarré
de la différence constante des termes de la progression par la somme des
produits de m — 2 dimensions 9 faits avec les termes dont on prend les diffé-
rences secondes des puissances.

S- 4-
Sur les différences troisièmes.

Soien t^ , 5 At , A% , AA quatre termes successifs d'une progression
arithmétique , des termes de laquelle on prend les m. e m e s puissances
et les différences troisièmes de ces puissances. On a % parce qui précède ,
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3

m
4

RÉSOLUES.

1 2 * m - 2 3 î

. JS/+.4M=I.2.(^ — A YfP • ^ ...A ;
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m
i -

2

4 I

d'où

î .
—AY\fP • A...A —f.P .•M A... A

/ n - 2 m - 2

)

m - 3 m - î

+ ( A— A ) f.P A A
4 1 1 } 2

-h( ^ — A ) f.P A A
4 1 2 5 2

-f-( A'—A' ) f . P . A A
4 1 m 3 2

-K A- . / )f.P.AA
4 1 m - 4 î 2

- ^ )f.P . A A ;

©u enfin

m m
—3A +ZA —A =J.2.3.(A —A )f.P. A A ;

4 J 2 1 2 x m-j 4 1

savoir : un terme des différences troisièmes des puissances /?2.emes

des termes d'une progression arithmétique est le produit con-
tinuel des trois premiers nombres naturels , du cube de la dif-
férence constante des termes de la progression et de la somme
des produits de m — 3 dimensions, faits avec les termes dont on prend les
différence^ troisièmes des puissances.

Tom. IL 27
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En procédant continuellement de cette manière , on parvient à
déterminer les différences quatrièmes d'après la connaissance des
différences troisièmes 9 puis les différences cinquièmes , et ainsi de

isuite.
En général ; soient Ax , Aï,Al, ....* An, An+t / 72+1 termes suc-

cessifs d'une progression arithmétique, des termes de laquelle on prend les
7?2.eineSpuissances ? et les (/z-+i)emeS différences de ces puissances. Qu'on
se soit assuré qu'on a l'équation

m n m n n—I m n n—I m n m m

A — - A H . A — 21 A -J_ — A -*~A
n l « -1 x * n-» J * 3 * 3 1

2 î /n-7i~h I « I

j'affirme qu'on a aussi l'équation

m 72+1 rn 72+I n m 72+1 n m W + Ï w m

2 I m-7J ;2-f- I I

En effet , des deux équations supposées vraies pour les termes
A A et /l ...... A , on tire

K-H I I 7i l

m n+ i m ̂ n+i n J72 T?+I 72 m n+I m m

n+1 I n * ^ n-i 1 2 . » l ,

. ^ A -f.P . A î
2 1 ( w-n+i "4-1 x m-»4-i " )

= 1.2,3 n[A —A )/.P . A A .
t 1 m-i n-ht 1

On a donc le théorème général suivant :
Soit une progression arithmétique des termes de laquelle on prend
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les /7?.€mcs puissances et les différences n.

€ine$ de ces puissances. Un
terme quelconque de ces diiFerences est le produit continuel des nom-
bres naturels, depuis l'unité jusqu'à n ; de la /z.eine puissance de la
différence constante des termes de la progression, et de la somme des
produits de m—n dimensions, faits avec les termes des puissances ?

desquels on prend les différences /2.emes.
En particulier, soit m~n ; la somme des produits qui forme le

troisième facteur est l'unité ; et partant , les différences de l'ordre
772.cme des puissances m.eines des termes d'une progression arithmé-
tique sont une quantité constante : savoir , le produit continuel des
nombres naturels depuis l'unité jusqu'à m 5 et de la puissance 772.eme

de la différence constante des termes de la progression.

Solutions du problème de statique proposé à la
page 96 de ce volume ;

Par M. D. ENCONTRE , professeur > doyen de la faculté des
sciences de l'académie de Montpellier ;

Et M. ROCHAT , professeur de mathématiques et de
navigation à St-Brieux (*).

iNous allons comprendre ces deux solutions dans une rédaction uni-
que 5 en faisant remarquer toutefois les différences ? très-légères d'ail-
leurs ? qui les distinguent.

PROBLÈME, Une table horizontale , non pesante , de forme

(*) 3M. TcJenat a aussi remis aux rédacteurs des Annales quelques notes relatives
à ce problème ; elles rentrent , quant au foad, dans les solutions dont ©n- \%
rendre compte»
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quelconque., posant, par des points déterminés, sur trots piliers
verticaux , susceptibles , au plus , de résistances respectivement re~
présentées par F , F ; , F7 / , et qu'on suppose données ; on demande :

i.° Quel est le plus grand poids que puisse supporter un point
déterminé quelconque de la table ?

2.0 Quels sont les points de cette table qui peuvent supporter
tin poids donné quelconque P ?

3.° Quel est le plus grand poids que la table puisse supporter ?
4-° Enfin quel est le point de cette table qui peut supporter c$

plus grand poids ?
Solution. Soient y , j 1 ' , fn

 9 ( fig. 7 ) les points respectifs de la
table où répondent les piliers dont les forces sont F > F/, FIf ; soit
P un poids placé en p , et cherchons comment la pression qu'il
exerce en ce point se répartira entre les trois points d'appui f ,ff

 sf
L'«

Pour cela , formons le triangle ffjf/, et 9 par p et se$ som-
mets , menons des droites se terminant aux côtés opposés en q , q;

 } q
/;*

Soit décomposé le poids P en deux autres situés en f et q , il ne
s'agira plus ensuite que de décomposer ce dernier en deux autres
situés en ff

 ? j"
/f. Mais comme , au lieu de décomposer, en premier

lieu 5 suivant j q , on pourrait d'abord décomposer suivant f qf ou
fN q/f, il s'ensuit qu'on peut obtenir trois expressions différentes de
chacune des pressions exercées en f, ff

9 Jf/. En les égalant entre
elles 9 on obtiendra , entre les parties de la figure , diverses équa-
tions qui , par leur combinaison , donneront naissance à plusieurs théti-
rèmes de géométrie parmi lesquels M. Rochat remarque le suivant.

on peut y ajouter encore celui-ci

PS _ L PJL 4 - pJl = i

En désignant par $ 5 $ / , 4)//, les pressions exercées en J",/,
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Respectivement, leurs expressions les plus simples seront les suivantes :

2 ft l
ce sont aussi celles qu'adopte M. Roehat ; mais M. Encontre remarque
qu'à cause des triangles de même base , en désignant par T l'aire du
triangle fffu , et par / , / ' , tn les aires respectives des triangle*

>f'pf,fpf > on a

pq __ t pqf __ V pq" *"

d'où résulte

~ , * / =P-^» ^ = P - ~

et conséquemment

L Ces préliminaires établis 9 si le point p est donné , et qu'on
demande la plus grande valeur qu'il soit possible de donner à P f

eette valeur sera limitée par les trois inégalités

ou

p~

OU encore

le signe < n'excluant pas Tégalîté , et deux de ces inégalités étant
nécessairement comportées par la troisième. Ainsi il faudra prendre P
égal à la plus petite des trois quantités



QUESTIONS

T T T1

t V ^ * i"

II. On peut supposer , en second lieu ? que c'est le poids P qui
est donné 5 et qu'il s'agit de déterminer quels sont tous les points
p de la table qui peuvent le supporter. Dans ce cas , les mêmes
inégalités doivent encore avoir lien ? à la fois,

SI Ton désigne par d, df, dft
 y les distances respectives du point

p aux droites ffn
 9 ff, ff, et par D , Z?/, D " , les distances des

points f, ftf't aux mêmes droites; à cause des triangles de mêmes
bases ? on aura

t ^ d V __ ^ *;/ _ ^ ; /

substituant ces valeurs dans les Inégalités ci-dessus ? on en tirera

^ F , F7 JF/;

d<B .— , d'<D'.— 5 d/f<B/f.— .
P P P

- A des distances de fff, / ^ y , j ^ / 7 ( fig. 8 ) , respectivement éga-
F F! FH '

les à D . —• ? D / . - ~ , X/^ . — ? et du coté de l'intérieur du trian-

gle 5 soient menées des parallèles mfmtf, m/fm , TTZT?// à ces côtés. Le

point p sera assujéti , par la première condition à être entre ffN et

mfm/;
 ? par la seconde à être entre ff et mnm , et enfin par la

troisième à être entre ff et mm'. Ainsi on ne pourra prendre pour

le point p que Tun de ceux du triangle mmtm1* (*).

(*) Nous saisirons cette occasion de remarquer qu'en général, de même que l'équa-
tion y^=ax-\~b exprime tous les points d'une dioite indéfinie , tracée sur un plan ,
les inégalités y^>ax-{-b , y<^ax-\-b expriment, l'une tous les points du plan de cette
droite qui sont situés au-dessus d'elle , et l'autre tous les points de ce plan qui sont

situés au-dessous. De même des deux inégalités #24-J2<C r 2 > Jc2~t-J2^>r2
 } îa première
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Si le triangle mmfmn

 9 au lieu d'être tourné en sens inverse du trian-
gle fffN

 5 était tourné dans le même sens que lu i , le problème se-
rait impossible , puisque alors le point p serait assujéti à se trouver
à la fois dans les trois espaces déterminés par chaque côté du trian-
gle mmfmN et par les prolongemens des deux autres au-delà de
celui-ci.

III. Quant au plus grand poids que la table puisse supporter, il
est clair qu'il ne saurait surpasser la somme des résistances F, Fft ,
Ff/

 ? puisque 9 dans l'hypothèse contraire , Tune au moins de ses com-
posantes surpasserait la résistance qui lui correspondrait.

IV. Ce plus grand poids doit donc être égal à F-+-F/-\-F//, et
il est aisé de déduire de ce qui précède, qu'il ne peut être appliqué
qu'en un point unique qui n'est autre que le centre commun de gra-
vité des trois forces F, F/

 5 Fn. Alors aussi le triangle m^m11 se
réduit à un point.

M. Encontre termine par observer que, quand même la table se-
rait supposée pesante ? le problème n'en serait pas pour cela plus
difficile 5 pourvu que l'on connut son poids et son centre de gra-
vité ; il est clair ? en effet , qu'en décomposant ce poids en trois
autres appliqués en y,, f* if/f > e t prenant seulement pour F, F/, Flt,
non les résistances des piliers , mais les excès de ces résistances sur
les portions du poids de la table qui leur correspondent, le problème
se trouverait réduit au cas où la table est sans pesanteur.

exprime tous les points d'un plan qui sont intérieurs à un cercle, et la seconde tous
ceux qui lui sont extérieurs.

D'après ces considérations , qu'il est facile d'appliquer a l'étendue à trois dimen-
sions , il est aisé de voir qu'il n'est aucune portion d'étendue limitée , en tout ou en
partie qu'on ne puisse parvenir k exprimer analitiquement, par un système d'équa-
tions et d'inégalités considérées comme ayant lieu à la fois; ainsi, par exemple, uu
su\c ds cercle ayant son centre à l'origine sera exprimé par le système

( Note des éditeurs. }
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QUESTIONS PROPOSÉES

Problèmes de Géométrie.

h À un polygone donné, Inscrire un autre polygone de même
nom dont les côtés soient respectivement parallèles à un même nombre
de droites données de position ?

IL Trouver le plan sur lequel projetant orthogonalement un trian-
gle donné , sa projection soit un triangle semblable à un autre triangle
donné ? (*)

Théorème de Géométrie.

Dans tout quadrilatère 5 plan ou gauche , la somme des quarrés des
deux diagonales est double de la somme des quarrés de deux droites qui
joignent les milieux des côtés opposés.

(*) Ce problème se trouve résolu , pour le cas particulier où la projection doit
être un triangle équiiatéral, dans la Correspondance sur V école polytechnique ; tom. 11,
n.° i . e r

? page 20.
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PUISSANCES DES POLYNOMES- i97

ANÀLISE ELEMENTAIRE-

Recherche directe du terme général du développement
d'une puissance quelconque d'un polynôme ;

Par M- GERGONNE.

iiEWTON a donné> pour le développement d'une puissance quel-
conque d'un binôme ? une formule qui ? à raison de son importance
et de la multitude d'applications dont elle est susceptible 9 doit être
considérée comme un des points fondamentaux de lanalise algébri-
que. Ce grand géomètre ne parvint à cette formule , résultat de ses
premières recherches , que par une simple induction ; et Clairaut est
le premier , je crois , qui ait tenté d'en donner une démonstration
proprement dite. On a ajouté depuis à cette démonstration quelques
perfectîonnemens tendant à îa rendre plus rigoureuse ; mais elle est
demeurée la même quant au fond; et tous ceux qui;, dans ces der-
niers temps 9 ont écrit des élémens d'algèbre ont pensé ne pouvoir
rien faire de plus convenable que de l'adopter. On a aussi étendu
la formule de Newton au développement des puissances des polynô-
mes d'un nombre de termes quelconques ; et on a prouvé enfin que ,
bien que les raisonnemens qui y conduisent, supposent essentiellement
que l'exposant de la puissance est un nombre entier positif, elle peut
néanmoins être appliquée 5 en toute confiance , au développement des
puissances fractionnaires et négatives (*) , et même à celles dont Tex~
posant est incommensurable ou imaginaire (**).

(*) Voy. Ie Complément d'algèbre de M. Lacroix,
(**) Vov. les notes à la fin du i.€r vol. de l'Introduction au calcul

Tom. IL -JS
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Pour suivre donc , dans cette recherche d'analise , la méthode gé-

néralement admise aujourd'hui , on est d?abord obligé de déterminer
quelques formules appartenant à la théorie des permutations et des
combinaisons.- On forme ensuite divers produits de facteurs binômes
ayant tous le même premier terme : un examen attentif de ces
produits conduit bientôt à faire soupçonner une loi générale à la-
quelle \\s paraissent devoir être assujettis , quel que soit le nombre
de leurs facteurs ; et Ton parvient en effet à justifier 5 par un rai-
sonnement rigoureux , cet aperçu fourni par la simple induction.
Supposant enfin que les seconds termes des facteurs multipliés de-
viennent égaux , et faisant subir au résultat d'abord obtenu les mo-
difications qu'entraîne cette circonstance , on arrive ainsi à la formule
de Newton, de laquelle on peut déduire ensuite Texpression du terme
général du développement d'une puissance quelconque d'un polynôme -,
alors , seulement 9 on se trouve en état d'écrire ce développement
tout réduit.

Cette marche d'ailleurs très-rigoureuse, est , comme on le voit ?

assez longue et peu naturelle ; car, outre qu'il semble plus direct
et plus élégant de considérer les binômes comme des cas particuliers
des polynômes , que de déduire des premiers ce qui est relatif aux
derniers, la supposition de l'inégalité des seconds termes des binômes
que l'on multiplie , supposition tout-à-fait étrangère à la question,
ne peut tendre qu'à en compliquer la solution ; puisqu'en général le
résultat d'un calcul est d'autant plus compliqué qu'il y entre un plus
grand nombre d'élémens inégaux. Aussi arrive-t-il que , dans la plu-
part des traités d'algèbre, la formation des puissances et l'extraction
des racines des polynômes, au lieu de suivre immédiatement leur
multiplication et leur division, comme la filiation des idées semblerait
l'exiger, sont présentées beaucoup plus loin, parce qu'on les fait
dépendre de la formule du Binôme de Newton dont, à raison des

tiel d'Euier , traduction de M. Labey. Voy. aussi le Calcul des fondions de M.
Lagi'ange , leçon i u . e
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longueurs et des difficultés qu'entraîne sa recherche, on croit devoir
faire un objet à part., une espèce de hors-d'œuvre. Souvent même on
ne dit absolument rien, dans ces sortes d'ouvrages, du développement
des puissances des polynômes de plus de deux termes.

Toutefois5 s'il n'y avait, pour parvenir au but 5 d'autre route que
celle qui a été tracée par Clairaut 5 quelque longue et quelque dé-
tournée qu'elle fût, il faudrait bien nécessairement s'y assujettir. Mais
s\3 par une voie plus courte, plus facile et non moins rigoureuse, on
peut parvenir directement au terme général du développement d'une
puissance quelconque d'un polynôme, de quelque nombre de termes
qu'on le suppose d'ailleurs formé, il n'y a point de doute qu'alors
cette voie ne doive être préférée, et que le développement des puis-
sances d'un binôme ne doive être considéré que comme un cas par-
ticulier du résultat général qu'on aura obtenu.

La méthode que je vais exposer me paraît réunir ces avantages»
Ce n'est qu'après m'être assuré , par une expérience de dix années
au moins , qu'elle n'est pas plus au-dessus de l'intelligence des com-
mençans que tant d'autres théories qu'on est dans l'usage de leur en-
seigner, que je me suis déterminé à la rendre publique.

Pour ne rien emprunter d^illéurs,* je m'occuperai d'abord de la re-
cherche de la seule formule de la théorie des permutations qui me
soit nécessaire pour parvenir à mon but. Je le fais d'autant plus
volontiers que les .recherches de cette nature ne me paraissent pas
exposées d'une manière assez nette dans la plupart des ouvrages des-
tinés à l'enseignement.

I. Soient a , b , £ , . . . . . . , des lettres toutes différentes les unes
des autres , au nombre de m , et proposons-nous de déterminer de
combien de manières elles peuvent être disposées entre elles, ou, ce qui
revient au même, cherchons combien elles peuvent fournir de mots
différens, de m lettres chacun.

Soient, pour cela, désignés respectivement par
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les nombres qui expriment combien on peut faire de mots au moyen

des divers arrangemens de différentes lettres au nombre de

m ? 7 7 2 — i , 772—2 . , . . . • . 3 , 3 , i :

on aura évidemment Ml~i,
Cela posé 9 il est clair que , dans la totalité des mots de 772 lettres,

chaque lettre devra occuper à son tour la dernière place , et qu'il y
aura autant de ces mots terminés par Tune quelconque de ces lettres
qu'il y aura de manières de disposer les 772-1 autres à sa gauche ou,
ce qui revient au môme , autant que 772-1 lettres peuvent fournir
de mots différens.

Il suit de là qu'on doit avoir 9 entre Mm et Mml , la relation
suivante

Mmz=mMm.l;

et, comme cette relation est indépendante de la grandeur de m, on
"pourra écrire successivement

Mm = mMm.l ;

M, = 1 Î

d'où, on conclura5 sur-le-champ, par la multiplication et la suppres-
sion des facteurs communs aux deux membres de Féquation produit

(*) Cette manière assez simple et assez nette de parvenir au but peut être appliquée
avec avantage à une multitude d'autres recherches du même genre.

Que l'on propose , par exemple , de déterminer le nombre des mots distincts , de
n lettres chacun , que Von peut former avec m lettres données , toutes différentes
les unes des autres ? Pour y parvenir , soient désignés respectivement par

311 , 3 / , , M%> Mn.t , Mn.t , M,, , •
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ÏL Voilà pour le cas où toutes les m lettres sont différentes les unes

des autres. Concevons maintenant que plusieurs de ces lettres, au nombre

les nombres qui expriment combien avec les m lettres données on peut former de mots
dont le nombre des lettres soit

i 5 2 , 3 , n—2 , n—i , n ;

on aura évidemment Mi=-m, Concevons de pins que les mots de w—i lettres soient
déjà formés; si Ton écrit successivement, à la droite de chacun , chacune des m—(ji—i)
ou m—rc+i lettres qui ne s'y trouvent pas , on formera évidemment m—ra-f-l fois
autant de mots de n lettres chacun qu'on en avait d'abord de n—i lettres. Je d*s
de plus qu'on formera ainsi tous les mots de n lettres que peuvent fournir les lettres
données , et qu'on ne formera chacun d'eux qu'une fois seulement.

Cette dernière assertion se prouve en faisant voir que, si l'on compose au ha-
sard un mot de n lettres , prises parmi les m lettres données , ce mot doit se
trouver , «t se trouver une seule fois parmi ceux qu'on aura formé. Or , soit

ela

le mot de n lettres dont il s'agit; puisque , par l'hypothèse, on avait, une fois seulement $

tous les mots de n—1 lettres ? on devait avoir et n'avoir qu'une fois le mot

gla dh 9

ne différant du précédent que par la suppression de la lettre p ; puis donc qu'on
a écrit , et qu'on n'a écrit qu'une seule fois à la droite de chacun , chacune des
lettres qui n'y entrait pas, on a du écrire , et n'écrire qu'une fois la lettre p à la
droite de ce dernier ; on a donc formé l'autre, et on ne l'a formé qu'une seule fois.

D'après ce qui précède, on doit avoir , entre M;J et Mttrm t , la relation suivante :

et, comme cette relation est indépendante de la grandeur de n > on pourra écrire
successivement

Mt - m
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de a, se changent toutes en a ; il est clair qu'alors tous les mots
où les autres lettres se trouveront occuper les mêmes rangs respec-

d'où on conclura , sur-le-champ t par la multiplication et la suppression des fac-
teurs communs aux deux membres de l'équation produit,

Mn = 772.(772—1) (m—72+2). (772—72+1).

En faisant, dans cette formule , m=n, et renversant , dans le second membre,
il vient

Mn = i . 2 . 3 n ;

formule des permutations , démontrée dans le texte.
A l'aide de ces deux formules , il est facile, comme l'on sait, de résoudre cette

question .* Combien , avec m nombres donnés , tous diffèrens les uns des autres,
peut-on faire de produits distincts, de n facteurs chacun ? Mais M. A. Ollive ?

ancien élève du lycée de Nismes , est parvenu à résoudre directement cette der-
nière question par les considérations suivantes qui me paraissent assez simples.

Soient représentés respectivement par

P P P P P P

les nombres qui expriment combien , avec m nombres donnés , tous diilérens les
uns des autres 3 on peut faire de produits dont le nombre des facteurs soit exprime
par

i ? 2, 3 , n—2 , n—i , n ;

on aura évidemment P j =772. Concevons de plus que tous les produits de rt«— i fac-
teurs soient déjà formés , et qu'on introduise , tour à tour , dans chacun d'eux, chacun
des m—72+1 facteurs qui n'y entrent pas ; on formera ainsi des produits de n facteurs
dont le nombre sera m—72+1 fois plus grand que celui des produits de 72—1 facteurs
qu'on avait d'abord; je dis de plus que, par ce procédé, on aura formé 72 fois chacun
des produits de 72 facteurs.

Pour prouver cette dernière assertion , il suffit de faire voir qu'un tel produit ,
composé au hasard, se trouve 72 fois parmi ceux qu'on aura formé : or, c'est là
une chose facile ; car soit ce produit

a.b.c §J£'k )

si l'on en ôte successivement chacun de «es n facteurs, on formera les n produits
de 72—1 facteurs que voici :
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tîvement 5 se réduiront à un mot unique : or , il y aura autant de
ces mots, pour un arrangement donné des lettres demeurées inégales,
qu'il y a de manières de permuter entre elles les lettres qu'on sup-
pose être devenues égales ; maïs ce nombre est 5 d'après ce qui pré-

bx •. g.û*k ,
ax g.h.k ,

a.bx gJk ,

a.bx • . g.h ;

lesquels devaient se trouver , une fois chacun , parmi ceux dont il a été question cU
dessus ; puis donc qu'on a dû introduire la lettre a à son tour dans le premier, la
lettre b k son tour dans le second , et ainsi de suite , on a dû former n fois le
produit a.bx g.h.k , et on en peut dire autant de chacun des autres.

D'après ces considérations, on doit avoir, entre Fn et P / z-x > la relation suivante

et, comme cette relation est indépendante de la grandeur de n } on peut écrire

nPn = (m—n-hi)Pn-1 ;

2 p , = (m—i)Ps >

iP, = m i

d'où on conclura, sur-le-champ, par la multiplication et la suppression des facteur»
communs aux deux membres de l'équation produit ,

1.2.3 nPn ^mÇm—i)(m—2) (m—#+1) ,

•t par conséquent
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cède, 1.2.3 #5 et doit conséquemment, dans le cas présent, de-
venir diviseur de la formule ci - dessus ; et, comme le même rai-
sonnement est applicable à tout autre groupe de lettres devenues
pareilles, on peut établir généralement que, si l'on a * lettres pareilles
à a, p lettres pareilles à b, y lettres pareilles à c 9 et ainsi de suite,
de manière qu'on ait *+/3~H'+*# *.=m , le nombre des divers ar-
rangemens dont ces m lettres seront susceptibles, aura pour ex-
pression

x.2.3 (m— i)m

(A) 1.2.

c'est là , par exemple ? le nombre qui exprime de combien de ma-
nières différentes on peut écrire , les uns à côté des autres 5 les
facteurs du monôme

«"£ V ;
si toutefois on a

III. Ces préliminaires établis 9 qu'il soit question d'assigner la forme

du développement de ( #-|-$-{-£-f- + r )m
 5 ou plutôt celle de son

terme général; le moyen le plus naturel de parvenir à ce dévelop-
pement , si l'indétermination tant de m que du nombre des termes
de la racine ne le rendait impraticable , serait de multiplier le poly-
nôme ct-\-b-\-c-\r». • * .-f-r par lui-même m-i fols. Concevons néan-
moins que Ton procède de cette manière ; mais que , pour éviter
des rédactions qui ne laisseraient , dans les coefficiens des termes
réduits, aucune trace de leur origine > on convienne , dans le cours
des multiplications de monôme à mofiome qui doivent conduire au
dernier résultat , d'écrire constamment la lettre multiplicateur à la
droite du terme multiplicande, tout comme on le ferait si les ex-
posans n'étaient pas d'usage , et qu'en outre on ignorât qu'il est
permis, dans une multiplication, d'intervertir à volonté Tordre des
facteurs (*). Alors, comme on n'exécutera aucune réduction, il est

(*) Je dois la première idée de ce moyen de démonstration à M. Lavernède qui?

depuis long-temps y en fait usage pour parvenir à la formule du Binôme.
aisé
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aîsé de voir qu'en désignant par n le nombre des termes de la racine,
le premier produit aura nz termes de 2. dimensions, le second en
aura n? de 3 dimensions, et ainsi de suite , en sorte que la puis-
ôance cherchée sera un polynôme homogène de 772 dimensions ayant
nm termes , sans coefficiens ni exposans , et dont les termes seront
formés de letlres prises parmi celles du polynôme proposé, et écrites
une ou plusieurs fois.

Je dis présentement que ce produit contiendra, une fois seulement,
chacun des mots de m lettres qu'il est possible de faire, en n'y
employant que des lettres prises parmi celles du polynôme proposé,
et répétant chacune d'elles autant de fois qu'on voudra. Soit en effet
formé, au hasard, un pareil mot, et soit ce mot

dbba >gacl ;

d'après la manière dont on suppose que les résultats successifs ont
été formés , pour que ce mot ne fit pas partie du dernier produit
ou s'y trouvât plusieurs fois, il faudrait que le mot

âbba..... .gac

ne fit pas partie de Pavant-dernier ou s'y trouvât plusieurs foisj par
la même raison, le mot

dbba ga

manquerait dans le précédent ou s'y trouverait plusieurs fois , et ,
en continuant ainsi, de proche en procho , on serait conduit a con-
clure, contrairement à l'hypothèse, que la lettre d manque dans le
polynôme proposé, ou s'y trouve plusieurs fois.

Rendons présentement à chacun de ces termes la forme ordinaire y
l'un quelconque d'entre eux deviendra

a*b*c' ,

avec la condition *-|-/3-{-y-b . = 772;. mais il ne sera plus alors
seul de son espèce, d'autant que ceux qui, jusque-là, ne différaient
de lui que par la disposition des lettres ,, lui deviendront absolument

Tom. IL 29
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semblables ; e t , comme le développement renfermait, ayant d'avoir
subi la modification dont il s'agit ici, tous- les mots qui pouvaient
être formés de cette manière, et ne renfermait ctiacun d'eux qu'une
fois seulement , il s'ensuit que ce développement , ainsi modifié,
renfermera autant de termes pareils à celui que nous venons d'écrire,
qu'il y a de manières de disposer , les uns à côté des autres, les
facteurs dont ce terme est composé ; il faudra donc , pour faire la
réduction de ces termes, n'en écrire qu'un seul, et lui donner pour
coefficient la formule (A), à laquelle nous sommes parvenus (II).
Le terme général du développement de (a~\-b-\-c-{- -\-r)m est
donc

et on en déduira tous les termes de ce développement en y admettant
successivement, pour «, /3 ,y . . . . . . tous les systèmes de valeurs en-
tières et positives , y compris zéro , qui pourront satisfaire à la
condition

IV. Si Ton suppose actuellement que le polynôme a-J-^-HHK.. H-r
réduise au binôme x-\~a , le terme général du développement de

(x-\-à)m sera simplement

m

se

I . 2 . O . . . .

avec la condition «+/3n/72. Soit changé /s en n , on aura a n m — n%
ce terme général pourra alors être écrit comme il suit

m(m—i)(m—2) .. . (m—n+i)(m—n) . . . 3.2.1 n m_n

i , 2 . 3 ,n . {m—n) . . . 3.2.1

ou? en réduisant,
m m—^ m—2 TTC—n+i n m_n

1 * a * 3 «

c5cstlk le terme général connu de la formule du binôme.



D E S P O L Y N O M E S . 207
V. On peut? au surplus 9 parvenir directement à ce dernier résul-

tat , sans rien emprunter de la théorie des permutations et combi-
naisons. Il suffit, en effet, de former les premières puissances du
binôme x~\-a pour être conduit a soupçonner que ? dans toute puissance
de ce binôme , le coefficient d'un terme quelconque pourrait bien
être le coefficient du terme précédent multiplie par l'exposant
de x dans ce même terme , et divisé par le rang qu'il occupe
à partir du premier.

Cette observation une fois faite, il n'est plus question que de
changer en certitude le soupçon auquel elle conduit. Pour cela, sup-
posons que la loi dont II s'agit de prouver l'existence, se soutienne
jusqu'au développement de (x-\-a)m~l ; il est aisé de voir que, dans
cette hypothèse? en faisant pour abréger

772 1 771 2.

I 2.

trois termes généraux consécutifs de ce développement seront

Pour passer de là au développement de (x-}-a)m, il suffira d'exécuter
la multiplication par x-\-a ; or il est aise de voir que le produit de
cette multiplication renfermera les deux termes généraux consécutifs
que voici

w—n v-—7

lesquels deviennent v en réduisant

mP. -
n n n

et sont évidemment eaeore assujettis à la même loi. Cette loi ex
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tera donc pour la m m e puissance, si elle a lieu pour la ( m - i ) m e ;
e t , puisqu'elle se vérifie pour les premières, on en doit conclure
qu'elle est générale ; le terme général du développement de {x-\-a)

A^{* --J r~\ •»"* r>• est donc

n

'ou 9 en remettant pour P sa valeur.

m m—i
1 * 2.

c'est-à-dire, le même que ci-dessus.*
Parvenu ainsi au terme général du développement de Çv-\-œ)m, il

est facile d'en déduire celui du développement de (^+^-4-^-{-.--+^) /n »
duquel , par une marche inverse de celle que nous avons suivie
dans ce qui précède ? on pourra conclure les diverses formules de la
théorie des permutations et combinaisons. Il est très-utile à ceux qui
étudient les sciences , d'apprendre à parcourir ainsi 5 en divers sens ^ la
chaîne des propositions dont elles se composent.

Méthode facile pour exécuter le développement des
puissances des polynômes ;

Pour faire suite à Varticle précédent ;

Par M. T H a M A s - L À v E R N È D E.

i . JL/ANS le mémoire qui précède, M. Gergonne est parvenu,
d'une manière simple et élégante 9 au terme général du développe-
ment d'une puissance quelconque d'un polynôme. Je me propose
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ici de donner des règles faciles pour efFectuer ce développement d'après
la connaissance de son terme général.

2. Il vient d'être prouvé que le terme général du développement
ae (a-\-Z+c+d-{- .)m est

x.2.3 . . > (m—2)(jn—i)m - v

1.2. . «X1*2 • 0X1.2. . yX 1 ' 2 . . ^X • •

avec la condition #+/3+y-+-^~K...#.:= 772 ; or9 ce terme peut être
écrit comme il suit :

. . . (m—2) (m-

1.2... «xi.2.

et deviendra conséquemment ? en réduisant ,

m (m—1)

1.2... 0x1.2* . . 7X1.2. . .

Mais, par ce qui précède, on a

u'=.m—^—y

il viendra donc, en substituant,

—2) (77?—,5

b*cyd*...a*.

1.2... 0X1.2...

ce qui fournit la règle suivante :
Ztf coefficient d'un produit quelconque des lettres a, b 5 c , d>#..;

dans le développement de ( a + b + c + d - 4 - )m est une fraction?
qui a pour numérateur le produit d'autant de termes consécutifs de
la suite m 5 m—1 , m — 2 5 . . , . quil y a d'unités dans la somme
des eocposans des lettres qui multiplient a, et pour dénominateur le
produit d'autant de termes consécutifs de la suite naturelle, à partir
de l'unité , pour chaque lettre qui multiplie a ? qu'il y a d'unités
dans l'exposant de cette lettre.

3. Concevons présentement que le développement soit ordonné
par rapport à a * et considérons , comme un ternie unique , l'ensem-
ble de tous ceux qui sont affectés d'une môme puissance de cette
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lettre. Dans le n.me terme , am-Tî + l sera multiplie partons les pro-
duits de n—i dimensions que Ton peut faire avec les lettres b y cy

d,.....; et5 dans le ( ^ + i ) m e
5 am"n sera multiplié par tous les pro-

duits de n dimensions que l'on peut faire avec ces mêmes lettres.
Or , en supposant déjà formés les produits de n—i dimensions que
peuvent fournir les lettres by c , * / , . . . . , il est évident qu'en les
multipliant par bv on aura tous ceux de n dimensions qui doivent
contenir cette lettre comme facteur ; et on aurait de même tous
ceux de n dimensions qui doivent renfermer la lettre c 9 en les
multipliant par cette dernière lettre, au lieu de les multiplier par b;
mais, comme parmi ces derniers, il y aurait des produits qui ren-
fermeraient le facteur b et que ceux-ci sont déjà détermines par la
première multiplication, il est clair qu'en multipliant par c, il faudra
opérer seulement sur les termes de n—i dimensions qui ne con-
tiendront pas le facteur $ ; réunissant donc les derniers résultats aux
premiers? on aura ainsi tous ceux des termes de n dimensions dans
lesquels doivent entrer les lettres b et c. Par un semblable raisonne-
ment on trouvera qu'en réunissant à ces termes les produits par d
de tous ceux des termes de n—i dimensions qui ne renferment ni
bv ni cv les produits par# tous ceux qui ne renferment ni b , ni c ? ni d, et
ainsi de suite ? on parviendra à obtenir tous les produits de n dimen-
sions qu'il est possible de faire avec Jes lettres b 5 cv d,.. . . Nous
déduirons de là la règle suivante pour former le (/2~f-i}me tenue de la
772.me puissance du polynôme ^-j-^+^-f-^/H-......, ordonnée par rap-
port à a > lorsque le /2,me terme de cette puissance est déjà connu.

Multipliez par — tous les produits des lettres a , b ? c , • . . qui

entrent dans le n.m e terme > par — tous ceux des ces produits qui

ne contiennent pas le facteur b , par— tous ceux de ces mêmes
3.

produits qui ne contiennent ni b 3 ni c , par — tous ceux qui

ne contiennent ni h\ ni c , ni d , et ainsi de suite, enfin > donnez
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è chacun des produits obtenus le coefficient que lui assigne la règle
prescrite (2).

Cette règle étant générale , et le premier terme du développement

de (a-lrb-\'C'\-d-\- ) m étant toujours connu et égal à ^ m ; il est

évident que son application fera trouver successivement tous les au-

tres ; elle suffira donc pour développer (a-\-b-\-c-\-d-\- .)m en une

suite de monômes.

4. Examinons présentement, d'une manière plus particulière , la

loi que suivra le développement ; et, pour cela, considérons un pro-

duit quelconque b^cYd? a
m-P-v-i clans lequel, p, y , } > •• ••

étant des nombres entiers ou zéro, on ait / 3 + y + £ + _ m. Si

nous supposons la somme /M-y+^-f- constante et égale à n ,

quelles que soient d'ailleurs les valeurs particulières des exposans

/s, y ? ^ ? ; il est visible que b^cyd*...*am~n sera l'expression

générale des produits des lettres # , b, cy,*.. qui doivent entrer

dans le terme du développement de (a-+-b-{-c-{-d-+- )m dont le

rang est désigné par /s+y-j-^+ + 1 ou / 2 + 1 . Or? nous avons

vu (2) que le coefficient de b$cydr. ....a™"11 est

I . 2 . 3 (772 2.)(77l I

1 . 2 . . . / 3 X I . 2 . . . y X i . 2 . . . ̂ X X L 2 Qn—n)

ou ce qui revient au même

772(772 1)(772 2.) . . . (72+l)"(« 1) . . . 3 . 2 . 1

...^X..Xi.2..(77î— ri) '

QU encore
72(77 1)(77 2 ) . , 3 2.1 772(772 1)(?72 2.) 0?+l)

_ ><; . . . . .

1.2. .^xi*^ . . . ' / X i ' 2 . . . ^X- • i.2.o. . • . . (m—n)

et ; comme on a évidemment

77î(m—i)(m—2.) . . . ( n + i ) m(m—I)(TT2—:>) . . . (m—n+i)

1.2.3. . . . Çjn 72) 1.2.3 72 *

on pourra écrire encore

F2(7? 1)(72^ 2) 3.2.1 772(772 ï)(m 2) . . . . . . (777 72~f-l)

1 3



ziz P U I S S A N C E S
d'où il suit que la formule

1-2.3 n 7 , y y j tn ni—i m—-tf+l

Pydà
1.2.

y il , • . .X. —— . " • • tir

représentera généralement les quantités monômes qui doivent com-
poser le ( /2+ i ) m e terme da développement. Or 9 dans cette expres-
sion ? le facteur

J l . ^ZL rn-n+i ^ n
i z * n ?

est constant ? et son co-facteur

*-2-3- n
 7 P v i f

• • • " • ' " • . • •'" b C Cl . . ?

t.*... .jsxi-a yXi-2. «. .^x- •

qui est-variable ? à cause des exposans variables ** 5 /3 5 y , . , . . , est?

d'après le précédent mémoire ? le terme généra! da développement de

- )« ; donc le ( / z + i ) e m e terme da développement de

. . . . . . )m sera

et conséquemment ? ea posant b~{-c~{-d-i~.•...,. = J , ce développe-

ment est

1 1 s 1 2. 3

comme il résulte d'ailleurs du développement de (a-+-s)m
 ? par la

formule du binôme.
5. Il résulte de ce que nous venons de dire5 que7 m étant un nombre

entier positif 9 le développement de (#-h3-f-£+ ) m , donné par
la règle (3) j revient à celui qu'on obtiendrait par l'application de la
formule du binôme; puis donc qu'il est démontré que cette formule
a lieu quel que soit l'exposant m 9 il parait légitime d'en conclure
que la règle dont il s'agit, pourra également être appliquée quel que
soit 7725 ce qui se vérifie, en effet, pour des cas particuliers.

6. 11 suit de tout ce qui vient d'être dit i . ° ? que p ? exprimant
le
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le nombre des termes du polynôme » et m étant un nombre entier

.positif 5 la somme des coefficiens des monômes qui composent le dé-
veloppement de (#-HM-£-}-</-|- ) m est pm

 9 ce qu'on aperçoit
d'ailleurs sur-le-champ, en supposant a — b — c — drm = i ; 2.°
que lorsque Ton connaît, abstraction faite de leurs coefficiens, les monômes
qui de*vent composer le développement de(tf-f-£+£-f~^4*-...)m, on en
peut déduire ceux qui doivent entrer dans le développement de
( # + 3 + £ + J . . . . ) m + I , toujours abstraction faite de leurs coefEciens , en
les multipliant d'abord tous par a, puis par b tous ceux qui ne contiennent
pas a , puis par c ceux qui ne contiennent ni a ni b s par d ceux qui ne
contiennent ni a, ni b , ni c9 et ainsi de suite; de manière qu'il ne
sera plus question alors que d'affecter chacun des termes obtenus du
coefficient convenable.*

7. Le sujet que nous venons de traiter nous conduit à nous occu-
per de la recherche des formules qui expriment les puissances entières,
et de degrés déterminés, d'un polynôme a-{-b-\-c+d-±* , quel
que soit le nombre de ses termes. Ces formules peuvent être écrites
d'une manière fort simple, et les considérations qui précèdent, fournis-
sent un moyen très-facile de les construire.

8.° Il est d'abord à remarquer que , parmi les termes du déve-
loppement de (a-\-b-\-c-\rd-\- )m > ceux qui ne diffèrent que
par l'ordre suivant lequel se succèdent les mêmes exposans «, p9

y 9 $, , t e l s , par exemple , que les termes aub cy-*.», a^b^c*'.... ,

avy*cr4# è# y doivent être affectés des mêmes coefficiens , ainsi qu'il
résulte de la forme assignée au coefficient du terme général, dans
le mémoire précédent, et comme on peut aussi le déduire , a priori\
de ce que (#+£+£+£?+ ) m e s t **ne fonction symétrique des
quantités a, b7 c> d,

Cela posé, désignons par («/3y^ ) la somme des produits des
facteurs a, b, c, d, et de leurs puissances, dans lesquels les ex-
posans sont «, £, y, ^, . . . quelles que soient d'ailleurs les lettres que
ces exposans affectent. Dans le développement de (tf+^+r-HZ-f-...)111*
il y aura, outre la classe de produits comprise dans l'expression («Sy.....),

Tom. IL 00
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autant d'autres classes de produits qu'il y aura d'autres manières de satis-
faire à la condition <a+/3-Hv+àH-". ~m avec des nombres entiers positifs
ou nuls 9 c'est-à-dire 5 autant qu il v aura d'autres manières de former
le nombre m , par addition 5 avec des nombres compris dans la suite
naturelle, depuis i jusqu'à m inclusivement. Nous voilà donc con-
duits d'abord à cette question : trouver toutes les manières de former
par addition de nombres entiers positifs un nombre donné rn ?

Nous indiquerons ici , pour résoudre cette question, deux règles
fort simples ; et d'abord-, pour fixer les idées , nous supposerons que
le nombre m qu'il s'agil de former par addition 5 est 6. Alors toutes
les manières de le former seront comprises dans le tableau suivant,
dans lequel les chiffres écrits les uns à côté des autres, sans au-
cune interposition de signe, doivent être considérés comme séparés en-
tre eux par le signe + , et conséquemment comme devant être ajoutés
ensemble pour former le nombre demandé,

lïIIUII, 1111112., I1II22, II222 s 2222, 2%l\ ̂  26, 8.

I I I I I 3 ? n i 2 3 9 i%2.os 2339 35

I I I I 4 ? 1124? i^55 44

1100, 134? l7

La formation de ee tableau présente peu de difficultés. Sa première
colonne verticale à gauche n'a qu'un seul terme, et, quel que soit
le nombre proposé ? ce terme est toujours composé d'autant d'unités
que ce nombre en contient. Quant aux autres colonnes , elles se
déduisent successivement les unes des autres par la règle que voici ;

Pour former la colonne du rang r s changez deux unités en 2
dans les termes de la (r—i)me colonne , trois unités en 3 dans
ceux de la (r—2)me qui ne renferment pas 2 9 quatre unités en 4
dans ceux de la (r—o)mç qui ne renferment ni 2 ni 35 et ainsi
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de suite > jusqu'à ce que vous soyez parvenu à la première colonne
dans laquelle vous changerez r unités en r.

Cette règle étant générale pour toutes les colonnes qui suivent la
première , et celle-ci étant toujours connue, il est clair qu'elle fera
trouver successivement toutes les colonnes qui doivent composer le
tableau, et par conséquent toutes les manières de former ? par addi-
tion 9 le nombre donné.

On peut encore disposer le tableau des diverses manières de former
le nombre 8 dans Tordre suivant.

I I I I l S , I I I 2 3 , 1223

11114, 11^4? 224

1 I 1 O , I2D 9 2OO

I l6 , 26,

17, 1133 ,

o? *^4?

35,

44,
alors chaque colonne dépend uniquement de celle qui la précède,
et on forme celle du rang r par la règle qui suit : changez dans
les termes de la (r—i)me colonne deux unités en 2, puis trois unités
en 3 dans tous ceux de ces termes qui ne renferment pas 3 , puis quatre
unités en 4 dans tous ceux qui ne renfcrjncnt ni 2 ni 3 , et ainsi
de suite ; V ensemble des termes oh tenus par ce procédé formera
la colonne du rang r.

On doit observer, dans l'application de Tune ou de l'autre règle,
que, si un terme d'une colonne sur laquelle on opère ne contient
pas le nombre d'unités nécessaire pour faire l'échange prescrit, ce
terme ne doit point être employé dans la recherche de ceux de la
colonne que l'on calcule.
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Lorsqu'on â obtenu toutes les différentes manières de faire, par

addition, le nombre m, on a, d'après la convention établie, toutes
les classes de produits qui doivent entrer dans la «7.me puissance du
polynôme a-\-b-{~c~\-d-\-....t ; mais nous avons vu que tous les pro-
duits d'une même classe doivent avoir le même coefficient ; on aura
donc une formule qui exprimera le développement de {a-^-b-^c-k-d-^».)*1

en donnant à chacune des manières de former le nombre m le coef-
ficient qui convient aux produits dont elle représente la somme. En
posant donc , pour abréger

on trouvera

( i l ) ,

P'=(3)+3 (

+ 6 (22)

=(5)4-5 (I4)+2O(I I3)+6O(I i i2)+i2o(i 1111),

P« = (6)+6(i5)-f-3o(n4)-hï2o(i i I3)+36O(I x i i2)+720(m 111) s

i23)+i 80(1122)

=(7)4- 7(16)4-

4*210(223)



DES POLYNOMES-
(8)+ 8(17)+ 56(i 16}+ 336(n I 5 ) + I 6 8 O ( Ï I H 4 ) + 67

4-28(26)+ (i2D)4- 84o(ii24)4-336o

+ 5 6 ( 3 5 ) + 2 8 O ( I 3 4 ) + I 120(1 I33)+5O4O(I 1222)

+56o(283)+252O(2222)

72(117)4. 5o4(iii6)+

4- 36(27)4- 252(Ia6)+l5l2(IUï5)+

4- 84(36)4- 5O4(I3D)4.252O(II34)4-IOO8O(III33)4-4536O(XII322)

4.126(45)4- 756(225)4.3780(1224)4.15120(11223) 4-36â88o(ïHïxnn)

4 . 63o(i44)+5o4o(i233)+a268o(i2222)

4 . Ï 260 (234)4-7 56o (2223)+

+i68o(333)

et ainsi de suite.
9. Je terminerai par les deux observations suivantes, p désignant

le nombre des termes du polynôme, m le degré de la puissance à
développer ? et n le nombre des lettres différentes qui doivent entrer
dans une même série de termes, i.° si l'on a p<£m , toutes les classes
dans lesquelles on a n >/? doivent être regardées comme nulles 9

parce que les produits qui leur appartiennent, doivent avoir zéro
pour facteur ; 2.0 si s dans une classe quelconque , représentée par
(«6#*..../3£ yy ) les exposant « 5 $ , y 3 . M - sont répétés des
nombres de fois exprimés respectivement par «!, iS/, 0/, , , . , ? le
nombre des produits de cette classe aura pour expression

p(p—1) (/>—

Cette dernière remarque y qui se déduit aisément de la théorie des
combinaisons, offre un moyen de s'assurer que Ton n'omet aucun des
produits qui doivent entrer dans la puissance cherchée.
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GÉOMÉTRIE ANALITIQUE,
Discussion des équations du second degré entre deuoo

variables ;

Par M. BRET , professeur de mathématiques transcendantes
au lycée de Grenoble.

s- ».
Construction des courbes qui ont un centre.

XJ'ÉQUATION générale des courbes du second ordre qui ont un centre t

peut toujours, comme Ton sait., être facilement ramenée à la forme

ay*-\-*2bxy-\-cx:iizz.P; ( i )

x et y désignant des coordonnées rectangulaires.
Nous allons chercher à construire, le plus simplement possible y

les différentes courbés que cette équation peut représenter.
L'équation

:P, (2)

construite sur les axes obliques des x/
 9 yf, déterminés de position

par rapport aux premiers, et ayant la même origine, donnera les
mêmes courbes, si, en substituant pour xf

 5 y
/', dans l'équation (2),

les fonctions équivalentes de %« y^ on obtient une équation identi-
quement la même que l'équation ( i) .

Or^ les. formules connues qui donnent les valeurs des coordonnées
obliques xf

 ? y
f en coordonnées rectangulaires y sent

.ctf—vCos.^' xSin.a—yCos.ct

' J —Sin* "S'mJ
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-dans lesquelles *l et * désignent respectivement les angles que font
les axes de oc1 et y/ avec l'axe des x, du côté des ce positifs 5 et où
on a fait ? pour abréger &/—« = £.

Effectuant donc le calcul que nous venons d'indiquer, et exprimant
que l'équation résultante est identique avec l'équation (1), il viendra

(3)

De ces équations on déduit facilement ?- savoir: la valeur de la somme
g~\-h, en ajoutant les deux premières, et la valeur du produit ^# ?

en retranchant de leur produit le quarré de la troisième. Ces valeur^
sont

g+h = (a +*)Sin.»* , \ f •

et par conséquent l'équation du second degré qui a pour racines g
et h ? sera

z^^(a^cySin.2ê+(ae—£a)Sin.a*=so ; (5)

ses racines sont imaginaires lorsqu'on a

(a-\-cyS\n*.i—4(ac—I>2}<0 ,

ee qui emporte la condition

ÛC—h2 > o ,

et donne

dans ce cas seulement l'équation (3) cesse de représenter les courl>es
comprises dans l'équation "(i)I ATnslV'la plus petite valeur que puisse
atteindre Sin,£ est donnée par l'équation

alors les racines de l'équation (5) sont égales, c'est-a-dîrej qu'on a
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alors g —h ; ce qui démontre que Pangle obtus formé par les dia-
mètres conjugués égaux est le plus grand de tous ceux que puissent
former deux diamètres conjugués.

En éliminant g et h entre les équations (3) on obtient

ou
/)+^=o 3 (6)

cette équation sert à fixer la position des nouveaux axes.
On conclut de tout ce qui précède qu'il y a une infinité de systèmes

de coordonnées pour lesquels l'équation des courbes du second ordre
qui ont un centre , conserve la forme

Cherchons maintenant s i , parmi ces systèmes , il en peut exister
de rectangulaires. Supposons Pangle ô droit et prenons Paxe des xf,
dans Pangle des x et y positifs • il viendra

Cosa'rr-—-Sin* , Sin#/~Cos# ;

d'après quoi les équations (3) se transformeront en celles-ci

£ = (//—g)Sin.«Cos.« ?

prenant la différence des deux premières , il viendra

et

(*) Non seulement il j a une infinité de systèmes de coordonnées pour lesquels
l'équation conserve cette forme , mais il n'est aucune droite menée par le centre
delà courbe, qui ne puisse èlre prise pour l'un des axes d'un de ces systèmes; et
c'est là un point sur lequel il conviendrait d'appuyer un peu plus dans les élémens.

des éditeurs. )
donc
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doue

o — e 2.b 2.b

Cos.2*:=—- ? Sin.2*=.-— , d'où Tane.2*= ;
g—h h—g O a—c

cette dernière formule fait connaître la direction dos axes principaux.
[Mais il est nécessaire de distinguer 5 par quelques caractères, la

valeur de g de celle de h. Pour cela nous observerons que « étant,
par hypothèse, moindre que le quadrans , 2* est plus petit que deux
angles droits; d'où il suit que Sin.2* est positif; la différence h—g
aura donc le signe qui affectera b ; c'est-à-dire ? que, si b est positif 5

on prendra pour h la plus grande racine, et que v si b est négatif ?

on choisira, au contraire , pour h la plus petite de ces racines. Ainsi 7

par ce qui précède 9 les courbes du second ordre qui ont un centre -,
se trouvent entièrement connues de grandeur et de situation par
rapport aux axes primitifs»

Les racines de l'équation

sont essentiellement réelles.
i.° Si ces racines sont de même signe, la courbe est une ellipse*
2.0 Si elles sont de signes contraires ? la courbe est une hyper-

bole.
3.° Si s en particulier, elles sont numériquement égales > la courbe

sera un cercle ou une hyperbole équilatérale.
On déduit très-simplement des équations (4 et 6) les relations qui

ont lieu entre les grandeurs des a«xes principaux et les grandeurs
et directions des diamètres conjugués. Considérons, en effet 9 l'équation

dans deux systèmes différens de coordonnées; nous aurons deux équa-
tions correspondantes des mêmes courbes auxquelles nous donnerons
les formes suivantes :

— B* A* ' — fi/2 ' ji'z

La première , dans laquelle x , y désignent des coordonnées rec-
Tom. IL 3x
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tangulaires, répond à Péquation ( i ) ; et la seconde, dans laquelle
a;', y/ expriment des coordonnées obliques, répond à l'équation (2)*
Comparant ces équations entre elles, on obtient

d'après quoi les équations (4 et 6) deviennent

-L + .i-

d'où on déduit, sur-le-champ, les relations connues

A B = A ^ S i n . ^ — *), A a + B a = A / a + B / a , A.*Tmg

Nous terminerons par l'application de ces méthodes à la construc-
tion d'une ellipse donnée par l'équation

en portant l'origine au centre 9 dont les coordonnées sont Tune et l'autre
égales à l'unité, cette équation deviendra

5j*a+2^-y-i-5^a= 12.
Reprenant alors les formules

Sin.2«= - — 5h—g

on trouve

1—ioz-4-24^0, d'où -2 = 4 o u
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or, comme Sin.2* doit être positif, il s'ensuit que h = 6
3n sorte que l'ellipse a pour équation

6x/2+4y/1=:i2, ou 3x'*+2y"=G.

Construction de la parabole.

L'équation générale de la parabole est

en écrivant que b* = ac

Si on la résout successivement par rapport à oc et par rapport à
y ? on trouvera

_ bx+d^ i ,

1 ' *~cf).
c

Soient ensuite posées les équations

:L~af) = o , (3)
cf) = Q . (4)

Soient désignés par A et B les points où la droite (3) coupe les
diamètres (1) et (2)9 et par C et D ceux où la droite (4) rencontre
ces mêmes diamètres. On voit que ces droites (3) et (4) sont tan-
gentes à la parabole aux points A et Z). Si maintenant des points A
et D on abaisse sur les droites (2) et (1) des perpendiculaires qui
aboutissent respectivement aux points E et F de ces lignes , et qu'en-
suite on joigne le point A au milieu de BI£ et le point D au mi-
lieu de CF) par deux droites 5 ces droites se couperont au sommet
S de la parabole.

Cette construction est fondée sur cette propriété de la parabole
rapportée soit à son axe soit à ses diamètres , savoir : que la soiis-
tangente est double de Fabscisse du point de contact.
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On peut employer une construction ' semblable pour déterminer

d'autres points que le sommet. Si , en effet, au lieu d^abaisser des
points A et D des perpendiculaires sur les diamètres (2) et (1), or*
mène ? par ces points, des parallèles AE, DF 9 sous un angle
quelconque ; en continuant la construction, comme ci - dessus , on
obtiendra le point de la parabole où sa tangente est parallèle aux
droites AE ou DF.

Ayant le sommet, îl est facile de trouver le foyer ; il suffit, en
effet, pour cela de mener le rayon vecteur du point A, c'est-à-dire,
de mener par le point A une droite faisant avec la droite (1) un
angle égal à celui que fait celle-ci avec la droite (3), cette droite
par sa rencontre avec Taxe de la courbe qui est maintenant connu,
déterminera le point cherché. On pourrait aussi déterminer le foyer
par rintersection des rayons vecteurs des points A et D; mais quel-
quefois ces rayons vecteurs pourraient se confondre»

Ayant ainsi le sommet et le foyer de la courbe 5 il est facile de
la tracer, soit par points , soit par un mouvement continu.

QUESTION S PROPOSÉES.
Problème de Probabilité.

JL/EUX joueurs, dont chacun a un nombre de jetons connu 3 el
dont les adresses respectives sont m et n v conviennent de ne quitter
le jeu que lorsque l'un d'eux aura gagné tous les jetons de Fautre.
A chaque partie le perdant donne un jeton au gagnant ; an demande
quelle est l'espérance de chaque joueur ? (*)

Problème de Géométrie.
A un polygone donné circonscrire un polygone de même nom,

dont les angles soient respectivement égaux à des angles donnés ^
et dont l'aire ou le contour soit donné ?

(*) On pourrait aussi demander quelle est la probabilité que le jeu finira après
un nombre de parties détermine ?



TANGENTES AUX SECTIONS CONIQUES. - 5

GÉOMÉTRIE ANALITIQUE.

Recherche de quelques pi^opriétés des tangentes au ce
sections coniques ;

Par M. R O C H À T , professeur de navigation à St-Brieux.

'OOIT A2f2-+-B*x2~A2Bz l'équation d'une ellipse rapportée à son centre
et à ses axes ; soient de plus

les équations de deux droites quelconques.
Nous exprimerons que ees droites sont tangentes à l'ellipse , en

écrivant

Ou bien

A*a *~\~B2=y*—2a œy-\-a 2x*

A2a/2-{~B2 = y2—za'xy ~t-a/2x

ou encore
, 2.x y . B2—y2

A?—x-

d^où Ton volt que a et af sont racines d'une même équation a\:\ n'est
autre que l'une des deux précédentes , et qu'ainsi on doit avoir

(3Ï)

Tom. II.
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Si Ton suppose le produit aa1 constant et négatif, l'équation (M)

Sera

elle appartiendra donc à une ellipse concentrique à la première , dont
les axes €iAf, iB/ auront même direction que les axes primitifs > et
seront déterminés par les équations

en sorte que leur rapport sera
B>
- = y/aa*.

Si Von suppose au contraire le produit aaf constant , mais posi-
tif , l'équation (M) deviendra

y%—aa'x* — B%—aafA* ;

elle appartiendra donc alors à une hyperbole concentrique à l'ellipse
proposée ; les axes 2.Af et 2.B1 de cette hyperbole , qui auront en-
core même direction que les axes primitifs , seront déterminés par
les équations

tn sorte que leur rapport sera
B' —
A' y '

e t , suivant que oaf sera plus grand ou plus petit que —- , l'axe

transverse de cette hyperbole sera dirigé suivant le grand ou le pe-
tit axe de l'ellipse.

Comme on parviendrait évidemment aux mêmes conséquences , en
rapportant l'ellipse à son petit axe ? on peut établir le théorème sui-
Tant :

THÉORÈME. Si deux droites touchant continuellement une mémâ
ellipse 5 se meuvent de manière que le produit des tangentes trigo«*
nométriques des angles qu elles forment avec Vun des axes soit cons*
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tant, le point d intersection de ces deux droites décrira une sec-
tion conique concentrique à l'ellipse proposée, et dont les axes auront
mêmes directions que ceux de cette ellipse.

En général\ cette section conique sera une ellipse ou une hyper-
bole , suivant que le produit constant sera négatif ou positif. Vans
l'un et dans Vautre cas 5 le rapport des deux axes de la section co-
nique sera la racine quarrée du produit constant.

Si à l'ellipse qui a pour équation

y*-+-aa/x*=:B*-{-aa/A* ,
et dont les axes 2 A' et iBf sont conséquemment déterminés par les
équations

+ ;
a a1

si à cette ellipse, disons-nous, on mène deux tangentes de manière
que le produit a a/ conserve la même valeur que précédemment et
soit négatif, la courbe décrite par ces nouvelles tangentes sera une
troisième ellipse dont les axes 2>AU , 2.BU seront déterminés par les
équations

mettant pour B/2 et A/2 leurs valeurs déjà déterminées , il viendra

j Â , B
aaf

Si, en observant les mômes conditions , on cherche le lieu de l'in-
tersection des deux tangentes menées à cette troisième ellipse , on
en déterminera une quatrième dont les axes 2.A///, 2.BfU seront don-
nés par les équations

A///2 — 2A//2 , B///2 = 2B//Z

et ainsi de suite : on aura donc
— B' B" B/If

V A' A"~A"' '
ee qui donne lieu à ce théorème.
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THÉORÈME. Si deux droites , touchant continuellement une

même ellipse , se meurent de manière que le produit des tangentes
irigonornciriaues des angles qu elles forment avec Vun des axes
soit constant et négatif > le point d'intersection des deux tangentes
décrira une seconde ellipse. Si on conçoit deux tangentes à cette
seconde ellipse , mobiles comme les premières , et assujetties aux
mêmes conditions qu elles , Vintersection de ces dernières décrira
une troisième ellipse de laquelle, en suivant les mômes procédés ,
on en pourra déduire une quatrième, et ainsi de suite. Cela posé :

i.° Toutes les ellipses construites sur la première seront sembla-
bles entre elles ; elles lui seront concentriques ? et leurs axes auront
la même direction que les siens.

2..° Les aires de ces ellipses formeront une progression croissante
par quotiens dont la raison sera = 2 .

3.° Enfin les tangentes dont l'intersection décrira Vune quelcon-
que de ces ellipses, seront continuellement parallèles à deux cordes
supplémentaires de l'ellipse qui la précédera immédiatement, dans
tordre de leur génération successive. '*

Considérons présentement quelques cas particuliers.
Soit i.° aa'^ — x ; dans ce cas l'équation (M) deviendra simple-

ment

ce qui donne ce théorème connu :

THÉORÈME. Si les deux côtés d'un angle droit mobile sont
continuellement tangens à une même ellipse 9 son sommet décrira
un cercle concentrique à cette ellipse 9 et ayant pour rayon la corde
qui joint l'une des extrémités du grand axe à l'une des extrémités
du petit.

Soit 2.0 aa/=+i ; l'équation (M) deviendra alors

ainbi , dans ce cas , le lieu du point d'intersection des deux langea*
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tes mobiles est une hyperbole equî'aLiale dont les axes sont égaux
à la distance en ire les foyers de l'ellipse.

Soit 3.° aa/=—— Féquatîôn (M) deviendra

on aura donc une ellipse dont les demi-axes seront A\/2. ? B\/2 ;

et , comme - ~ = = — et (A\/^y^^A* > c e t t e ellipse sera semblable
A\J2. A.

à la première, et son aire sera double de la sienne ; la condition

aaf~ convenant d'ailleurs aux cordes supplémentaires de Tei-
A2 * rv -

lipse proposée 5 on en peut conclure ce théorème :
THEOREME. Si deux droites mobiles ? continuellement tangen-

tes à une même ellipse, sont constamment parallèles à deux cordes
supplémentaires de cette ellipse 9 le lieu géométrique de Vinierscc-
iion de ces deux tangentes sera une autre ellipse , concentrique et^
semblable à la première 9 ayant ses axes dans la même direction
et dont Vaire sera double de la sienne (*).

Soit 4-° tfû/=H ; ; Féqtiation (M) donnera

— -h B

e'est-à-dire, qu'on aura alors ? pour le lieu géométrique cherché 9

les diagonales du rectangle dés axes. -

Si $ dans tout ce qui précède, on change B en B\/-Î , la courbe
primitive sera une hyperbole, et on pourra établir, pour cette courbe,
des théorèmes analogues aux précédents.'

Enfin ? en appliquant le même procédé à la parabole 3 on parvient
à ce théorème.

THÉORÈME. Si deux droites mobiles , touchant continuellement

(*) Ce théorème esl un corollaire du deuxième de ceux qui précèdent.
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une même parahole se meuvent de manière que le produit des tan-*
gentes trigonomètriqves de leur inclinaison à Vaxe de cette para-
bole soit constant, le lieu de l'intersection de ces deux droites sera
une droite indéfinie perpendiculaire à cet axe.

Cette droite indéfinie sera la directrice de la parahole , si les
deux tangentes sont constamment perpendiculaires Vune à Vautre.

St-Brieux, le 20 de novembre 1811.

ANALISE INDÉTERMINÉE.

Résolution, en nombres entiers positifs 9 de Véquation
générale du premier degré ci deux indéterminées.

Par M. PILÂT TE > professeur de mathématiques spéciales
au lycée d'Angers.

JNous nous proposons îcl de résoudre en nombres entiers positifs,
lorsque cela est possible , l'équation du premier degré à deux indé-
terminées,

a t x-\-ax j = h••

En supposant que a , a t , b sont des nombres entiers 9 que
a et ax sont premiers entre eux , et qu'on a # > # t ? nous aurons
à considérer successivement les trois équations

axx-\-axr=3 9

axx—ax1 —

axj —a tx~

ce sont , en effet, les seules variétés de la proposée , compatibles
avec les conditions du problème.
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§• Î-

Solution de Véquation aIx-|--axI =1>.

Opérons .sur a et #j , comme si nous cherchions leur plus grand
commun diviseur; nommons # t , ol , . . . an_t 9 an les restes succes-
sifs dont le dernier sera nécessairement égal à l'unité , et ci x , a x 9

9i > • • • <]n-\ ? $n les quotiens , nous aurons cette suite d'équation^

a =

Mettant pour ^ sa valeur dans la proposée , divisant par ^ t et trans-
posant , on aura

înaîs ^r,^1, devant être des nombres entiers , et qx étant lui-mêm^
un nombre entier 5 en désignant par xz un nombre entier indéter-
miné , on devra avoir

$iinsi Ton a

d'une part

et de l'autre

Ope'rant sur cette dernière équation , comme sur la proposée , en
continuant les mêmes raisonnemens et les hypothèses analogues , nous
formerons ces deux séries d'équations
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x

x.

3 ?

(B) > (C)

n- i (Jn-1^n- i

Si maintenant en substitue fa valeur de xn^t dans celle de &1f~2 ?
celle-ci dans celle de xnmm^ , et ainsi de suite on parviendra^ à la
fin y à des valeurs entières des xx et x ; niais , en exécutant ces subs-
titutions 5 on s'aperçoit bientôt qu'elles deviennent plus faciles et plus
symétriques , en posant 3'abord les équations suivantes :

Procédant alors aux substitutions, on aura pour i . r e équation

puis

observant alors que , par les équations (D) 9 *n-i<Jl-1~*a-z » e t

par les équations (A) 5 ûn.t^n_t--hi ~an.t , il viendra

En continuant ce procédé , on formera le système d'équations
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(E)

xn i

équations dans lesquelles il faudra prendre les signes supérieurs on
les signes inférieurs, suivant que n sera impair ou pair. Cette r e -
marque s'étendant également à tout ce qui \a suivre , nous noua
dispenserons de la répéter.

Pour calculer rapidement les valeurs des inconnues xx et x , on
cherchera d'abord les quotiens qx , qz , q^ ? . . . . Jqn^=:an.1 \ on écrira
ensuite #,,_, ou 1 sous le quotient qn^l ; on multipliera qn_l par i
et l'on aura &flmz qu'on écrira sous qn.t ; on multipliera qn~2 par
«;i-2?

 a u produit on ajoutera un_t ou i , et l'on aura «u-$ qu'on écrira
sous qn-% ? o n multipliera qn-i p a r un-i ? a u produit on ajoutera #rt.2 ,
et l'on aura ^ .^ : on continuera ainsi jusqu'à ce qu'on soit par-
vequ à ul et «.

Nous ne répéterons pas Ici les remarques connues ? sur les diverses
valeurs qu'on peut obtenir pour x et xl ; nous observerons Seulement
que 9 bien que le nombre entier xn puisse être pris à volonté ^ il est
néanmoins compris entre certaines limites , déterminées par la condi-
tion que x et xx soient des nombres entiers positifs ; il faudra doue
qu'on ait généralement.

xn si n est impair ,
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ah

a

a.

si n est pair,
h

II y aura autant de solutions différentes qu'il se trouvera de nombres

entiers compris entre — et — ; et ? s'il ne s'en trouve aucun entre
r a <2t

ces deux limites , la proposée n'aura aucune solution en nombres en-
tiers positifs.

On peut, à la simple inspection de la proposée , assigner, au moins
a une unité près , le nombre des solutions qu'elle peut admettre.

ub m ctxb .

En effet , depuis — jusqua , il doit y avoir au moins autant
* a x ai J

de nombres entiers ou , au plus , autant de nombres entiers plus un

que la différence + ( —• — J contient d'unités entières ; mais on a
\ a al J

±. -JL
aax

 n'l~ aal

donc la proposée admet autant de solutions, au moins, en nombres

(*) Pour obtenir ces résultats, il faut d'abord substituer pour a et oc , ensuite
pour ax et #i , a% et ctt etc. , leurs valeurs urées des équations (A) et (D). Il est da
plus essentiel de se rappeler qu'il faut prendre les signes supérieurs ou inférieurs ,
suivant que n est impair ou pair»
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positifs , qu'il y a d'unités entières dans , et elle ne peut en admettre

qu'une de plus.

Solution de Véquation a xx—ax^b.

La méthode à suivre dans ce second cas est exactement la même
que pour le premier. En conséquence, les systèmes (A) et (D) 1J€
subissent aucun changement , et il suffit d'indiquer les modulations
qu'éprouvent les systèmes (B) 5 (C) , (E) qui deviennent alors

=*. +7.x —a xt =
xi —a>i xt = — b ,

n-2^;«*i "-" -4-^?

x = ;+> b~ha xn 7

On voit qu'ici xn ne sera susceptible que d'une seule limite* Si/? est
impair, on pourra prendre pour xn un nombre entier positif quel-
conque ^ et même un nombre négatif , pourvu qu'il ne soit pas plus-
grand que la plus petite des deux quantités — 5 -—.
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Si n est pair , on ne pourra prendre pour xn qu'un nombre posi-

tif, et ce nombre ne devra pas être moindre que la plus grande des
ab ci J)

aeux quantités — , — .
a Ci

. o.

Solution de Véquation axx—axx = b.

En mettant cette équation sous la forme atx—ax1=^t—b ? on voit
qu'elle ne diffère de celle qui vient d'être discutée que par le signe
de h ; il suffira donc , pour la résoudre , de changer le signe de b ,
dans toutes les formules du §. 2. : on aura donc

x
K ]

11 faudra donc appliquer à n pair ce qui a été dit de n impair,
et vice versa.

Applications*

i.® Soit l'équation i3x+ic^xl=z 1000 , qui se rapporte au §. i. On
^ iooo

a d'abord ==——>4 ; il y aura donc quatre solutions au moins

et cinq au plus.

Suite des diviseurs a 9 a1 5 ar , a ̂  i (
Suite des quotiens ^ 1 ? q % , q}

Suite des quantités " 9 *l 9 *>% 3 , 2 , 1 •
Puisque n — 3 est un nombre impair, on aura ? en remplaçant xu

par e*

x =
d'où on conclura

(J
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on fera donc successivement e = i54 •> *55 , i56 ? 107 ;

( ^ x: o J 5 28 4*
et Ton aura < " x ~ * ? ~ '

( # = 74 , 55 5 36 , 17 -
2.0 Soit encore l'équation 3g#—-o6x1^=. 11 , qui se rapporte au §. z.

On aura ici
Suite des diviseurs a , ax 5 a% , ^3 5 <z4 ? ^ s . . . 56 ] 3o | 17 5 2 1
Suite des quotiens t]x , (]z v cj^ 5 ç 4 , ^5 ••• 1 2 0 2 2
Suite des coeffieiens ce , *x ? uz 9 a.^ , «4 ... 2 3 , 16, 7 , 2 , 1.
Et , puisque 72 = 5 est impair 5 il viendra ? en remplaçant toujours xm

par <?,

^ " Ï ^ + I G . I I + 3 9 < ? = : - + - I 7 6 + 3 9 ^ ,'

x = — 2 3 . i i + 5 6 ^ = — 2 5 3 + 5 6 ^ ;

faisant donc e = 5 , 6 , 7 , 8 , . , « ; ;
( ^^ = 371 , 4 1 0 ? 44Q 5 488 5 . •• . •on trouvera < ^_ ^ r
( X = 27 , OO , IO9 . igD 5

Ces deux exemples sont tirés de Falgèbre d'Euler.

ASTRONOMIE.

Formules pour la détermination de l'obliquité dç
lécliptique , et du lieu de Véquinoxe^

Par M. GERGONNE,

OOIENT « $ *f deux ascensions droites du centre du soleil rapportées
à une même étoile quelconque 5 et soient a 9 af les ascensions droites
du même astre comptées depuis Féquinoxe ; soient § et $f les dé-
elinaisons correspondantes prises avec leurs signes , et soit enfin * l'obli—
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quité de Técliptique. On aura , par la théorie des triangles sphériques
rectangles ?

on aura de plus

ar—a=-*f—« 9 d'où

et eonséquemment

substituant s dans cette équation v pour Sin.^ et Sîn,^/ , les valeurs
que donnent les deux premières, elle deviendra , en transposant,

mais la première des équations ci-dessus étant multipliée par
Sln.^7— #) devient

ajoutant donc les quarrés de ces deux équations , et ayant égard
à ce que

on en tirera

OUI. ( ^—ce )

On calculera aisément le numérateur de cette valeur en considéfanf
que c'est un côté d'un triangle rectiligne dont les deux autres sont
Tang.£ et Tang.^ et dont Pangle compris entre eux est *'—*.

Mais , quelque symétrique que soit cette formule, on préférera sans
doute , pour le calcul par logarithmes , le procédé que voici : on
posera d'abord

Cos. f
I
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par ces formules on déterminera les angles auxiliaires tf 9 * , et l'on
aura ensuite

L'obliquité de l'écliptique se trouvant ainsi déterminée , on déterminera
la position de Féquinoxe par l'une ou l'autre des deux équations

Sin.tfrzTang.^Cot.* ? Sin.^—Tang^Cot.*.

Si l'on a le choix entre plusieurs observations 9 et qu'on ne
Veuille en employer que deux , il faudra les choisir de préférence ,
de manière qu'elles ne soient pas trop rapprochées soit entre elles , soit
des solstices , et qu'elles ne comprennent pas un solstice entre elles.
Le mieux sera peut-être de les prendre à environ six semaines avant
$t après Féquinoxe. . :

Mais , dans le cas où Ton aura plus de deux observations, il sera
plus convenable de les combiner deux à deux de toutes les manières

différentes : n observations donneront ainsi - . résultats desquels

on pourra déduire un résultat moyen très-approché. On pourra aussi
de cette manière suivre ? pendant un long temps 3 toutes les va-
riations que l'obliquité de récliptiq.ue pourra éprouver.

J'ai été toujours surpris que des méthodes si simples n'aient été
consignées jusqu'ici dans aucun traité d'astronomie (*).I1 peut bien
se faire qu'elles ^présentent quelques inconvéniens dans l'application ;
mais * comme elles s'offrent, pour ainsi dire, d'elles-mêmes à la pensée ,
il serait du devoir des astronomes de nous expliquer les motifs qui
les déterminent à les rejeter»

(*) M. Blot , dans la nouvelle édition de son Traité élémentaire d'astronomie
-physique ( note de la page i5 du 2.e volume ) } indique bien cette méthode } mais
seulement comme moyen de vérification du mouvement du soleil, suivant un grand
cercle de la sphère céleste. Il ne donne d'ailleurs aucune formule applicable au calcul
par logarithmes.
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GEOMETRIE.
Application de la doctrine des projections à la recherche

des principales propriétés de Vellipse ;

Par M. F E R R I O T , Licencié es sciences , professeur de
mathématiques au lycée de Besancon.

ï. J'APPELLE Ellipse la projection orthogonale d'un cercle sur un
plan qui n'est pas parallèle au sien. J'appelle Centre de cette e l -
lipse la projection du centre du cercle sur son plan. J'appelle en-
lin Diamètre de l'ellipse toute droite qui , tracée sur son plan ? passe
par son centre , et se termine de part et d'autre à la courbe. Tout
diamètre de l'ellipse est donc la projection d'un diamètre du cercle.

Toutes les projections d'une même4 figure sur des plans parallèles
entre eux étant égales 9 je supposerai 5 à l'avenir v pour fixer les idées %

que le plan de l'ellipse passe par le centre du cercle , de manière
que l'ellipse et le cercle auront le même centre. Je désignerai par
a le rayon du cercle , par ê l'inclinaison de son plan à celui de
Fellipse v et je ferai , pour abréger, aGosA~b*

2. On voit par là que l'ellipse a avec le cercle un diamètre commun
égala 2.a ? et que le diamètre de l'ellipse perpendiculaire à celui-là est
2aCos*ê=:2b. Il est de plus facile de démontrer que le premier de ces
diamètres est le plus grand , et que le dernier est le plus petit de
tous les diamètres de l'ellipse. Je les appellerai à l'avenir le grand
axe et le petit axe.

3. Soient pris le grand axe pour axe des x et le petit axe pour axe des
y yàe manière que le centre de la courbe soit l'origine des coordonnées.
x et y étant les coordonnées d'un point quelconque de l'ellipse 5 les

coordonnées
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coordonnées du point correspondant du cercle seront x et — ; on
CGS.0

aura donc, par la propriété du cercle y

# 2+--^— —a% ou x
Cus.2ô

ou y en multipliant par a* ?

ou enfin

équations connues de l'ellipse d'où on déduira que les quarrës des
ordonnées ? soit au grand axe, soit au petit axe? sont aux produits
des abscisses correspondantes dans un rapport constant qui est celui
des quarrés de ces deux axes.

4. Soient menées dans l'ellipse , sous une Inclinaison quelconque,
tant de cordes parallèles qu'on voudra ; les cordes du cercle dont
elles seront les projections seront aussi parallèles ; ces dernières auront
donc leurs milieux sur un même diamètre qui sera perpendiculaire à leur
direction commune, et les tangentes aux extrémités de ce diamètre seront
parallèles à ces cordes.

Les projections, tant du diamètre que des tangentes, seront un diamètre
et des tangentes à l'ellipse ; ce diamètre de l'ellipse passera donc par les
milieux des cordes parallèles, et les tangentes à ses extrémités seront
parallèles à ces cordes.

Ainsi y Dans l'ellipse ? des cordes parallèles ont toujours leurs
milieux sur un même diamètre ? et les tangentes aux extrémités
de ce diamètre sont parallèles à ces cordes. De cette propriété
résulte le moyen de déterminer le centre d'une ellipse donnée.

De même qu'une -suite de cordes parallèles ont toujours leurs
milieux sur un même diamètre de l'ellipse ? réciproquement tout
diamètre de l'ellipse coupe en deux parties égales un système de
cordes parallèles. En effet ce diamètre étant la projection d'un diamètre
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du cercle, et ce dernier coupant ea deux parties égales toutes les
cordes de ce cercle qui lui sont perpendiculaires 9 sa projection cou-
pera aussi en deux parties égales les projections de ces cordes.

5. Parmi toutes les cordes qu'un même diamètre de l'ellipse par-
tage en daux parties égales , il eu est une qui , passant par le
centre , est elle-même un diamètre. Les diamètres du cercle dont ces
deux-là sont les projections étant perpendiculaires entre eux , les tangen-
tes^aux extrémités de chacun d'eux sont parallèles a l'autre ; il en est donc
de même des projections de ces tangentes a l'égard des projections des dia-
mètres. Ainsi, Dans l'ellipse , un diamètre étant mené arbitrairement ,
on en peut toujours mener un second cle manière que les tangentes
aux extrémités de chacun d'eux soient parallèles à Vautre ; Alors
aussi chacun de ces diamètres partagera en deux parties égales les
cordes parallèles à l'autre.

Deux diamètres ainsi disposés sont ce que nous appellerons à
l'avenir des Diamètres conjugués de l'ellipse. Ces diamètres conju-
gués sont donc les projections de deux diamètres rectangulaires dans
le cercle..

6. Il est aisé devoir , d'après cela, que, dans l'ellipse, il ne peut
y avoir qu'un seul système de diamètres conjugués rectangulaires,
et que ces diamètres sont les deux axes de l'eilipse.

7. Pour que deux diamètres conjugués de l'ellipse soient é^aux
entre eux , il faut que les deux diamètres rectangulaires du cercle
dont ils sont les projections soient également inclinés au plan de
cette ellipse ; ils doivent dune aussi être également inclinés à la
commune section des plans des deux courbes. De là ils est aisé
de conclure que les deux diamètres du cercle dont les projections
sont des diamètres conjugués égaux de l'ellipse., doivent être dirigés suivant
les diagonales du quarré circonscrit dont deax cotés opposes sont
parallèles et les deux autres perpendiculaires au grand axe de i el-
lipse. De là résulte la proposition suivante :

Dans l'ellipse, les diamètres conjugués égaux sont dirigés suivant
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les diagonales du rectangle circonscrit dont les cotés sont parallèles

aux deux axes.

8. Soit circonscrit à l'ellipse un parallélogramme dont les cotés soient

parallèles à deux diamètres conjugués; ce parallélogramme sera '5)

la projection d'un quarré circonscrit au cercle. L'a:re de ce quané

étant qa2 , celle du parallélogramme sera 4^"Cos.ôr= 4^^ = ^/7.2^.

Ainsi, Tous les parallelo^rommrs circonscrits à l'ellipse ^ de ma-

nière que leurs côtés soient parallèles à deux diamètres conjugués ,

sont équivalons entre eux et au rectangle construit sur ses deux

axes. (*)

9. Soit iaf un d'amèfre quelconque de l'ellipse , projection d'un

diamètre da cercle faisant un angle § avec le diamètre de ce cercle

perpendiculaire a«j grai'd axe; s)it x l'abscisse commune au cercle

et à l'ellipse répondait à l'extrémité du diamètre za;, et soient enfin y

l'ordonnée de l'ellipse et-y' l'ordonnée ,dti cercle répondant à cette

même extrémité , ou aura

x — aSm,i , y/ = aCos,t > y=y'CosJ9

donc

c'est-à-dire ,

a<* = a* (S'n. V+-Cos ACos.2ô)*

Si ? ayant ensuite mené dans le cercle un diamètre perpendiculaire

au premier, ou désigne par c.br sa projection sur l'ellipse > laquelle

sera le conjugue du diamètre zaf, on trouvera, par des considéra-

tions semblables r

(¥) IL faut bien se garder de dire , comme on le trojve dan- quelques traitas élë—
mentaires , que tous les parallélogrammes circonscrits à une même ellipse sont
èquivalens. Loin qup celte proposition soit vraie ? on peut toujo.jrs se propose 1 de
circonscrire à une ellipse donnée un parallélogramme dont Taire et les angles
donnés»
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donc

ou

c'est-à-dire :

Dans l'ellipse, la somme des quarrés de deux diamhres conju-
gués quelconques est une quantité constante et égale à la somme
des quarrés des deux axes.

10. Désignons par # et £ les angles que font les diamètres con-
jugués zaf et zb' avec les diamètres du cercle dont ils sont les
projections. Soient x/

 5 yf les coordonnées d'un point de l'ellipse
rapporté à ces deux diamètres , et x , y les coordonnées correspoja**
dan tes du cercle, on aura

y
Cos.* ' J '

mais on a

substituant donc , il viendra

mais on a aussi

substituant donc, il viendra

Ainsi ; Héquation de Vellipse rapportée à deux diamltres conju*
gués quelconques , est de même forme que l'équation aux axes.

I I . On sait que l'aire de la projection de toute figure plane sur
un plan incliné au sien , est le produit de l'aire de cette figure par
le cosinus de l'inclinaison des deux plans. En remarquant donc
cjue Taire du cercle est -&a* , et désignant par E l'aire de l'ellipse ,
on aura
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c'est-a-dire :

L'aire de Vellipse est égale à celle d'un cercle dont le diamètre
serait moyen proportionnel entre ses deux axes.

12. On appelle cordes supplémentaires d'une ellipse , deux cordes
qui partant d'un même point se terminent aux deux extrémités d'un
même axe ou d'un même diamètre. Il est aisé de voir que deux
pareilles cordes sont les projections de deux cordes supplémentaires
du cercle ? lesquelles étant essentiellement perpendiculaires «ntre elles
sont eonséquemment parallèles à deux diamètres rectangulaires dont
les projections sont des diamètres conjugués de l'ellipse.

Ainsi ,5 Dans l'ellipse > deux cordes supplémentaires sont toujours
parallèles à deux diamètres conjugués.

De ce principe résultent i.° le moyen de mener une tangente à
l'ellipse par un point pris sur la courbe ; 2.0 le moyen de déter-
miner deux diamètres conjugués qui fassent entre eux un angle
donné.

13. Soient p 5 a les angles formés respectivement d'un même.
cà\é , avec l'axe des x , par les deux diamètres conjugués 2.af et 2 ^ ;
et soient p1, qf les angles formés avec le même axe par les deux
diamètres rectangulaires du cercle dont ceux-là sont les projections:
ofi aura,€omme Ton sait

mais on a aussi

Cos.p = Cos./?7 ; Cos.y^Cos.y7 -,

ng.

ce qui donne

il viendra donc en substituant,
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relation connue et dont la combinaison avec les théorèmes énoncés
(8) et (9) fournit la solution de tous les problèmes relatifs au rap-
port de grandeur et de situation des diamètres conjugués et des,
axes,

J4 - Par le petit axe de Fellipse soit conduit un plan faisant avec

le sien un angle dont le cosinus scit —- , et soit projetée l'ellipse

orthogonalement sur ce plan ; soient x9 y les coordonnées d'un point
quelconque de l'ellipse , et x/

 ? yf celles du point correspondant de
sa projection, on aura .

£= ~ x' , y=y'i

mais, on a d'ailleurs
bzx2-\-a2 y2 — a2!?2 ;

substituant donc, il viendra, en divu-ant par a*s

ainsi la projection de l'ellipse est un cercle dont le rayon est &»
io> Par les deux extrémités du grand axe de l'ellipse et par Tune

des extrémités du petit, soit fait passer un arc da cercle ; ces trois
points seront les seuls points communs aux deux courbes , puisqu'elles
ne peuvent se couper en plus de quatre points 5 et que 3 si elles
avaient quatre points communs, à cause de la symétrie de la figure,
elles en auraient au moins cinq. Il est en entre aisé de voir que
le centre du cercle étant sur le petit axe de l'ellipse au-delà du
centre de cette courbe 9 les tangentes menées à ce cercle par les
extrémités du grand axe coupe ivnt l'ellipse 5 puisqu'elles, formeront
des angles aigus avec ce t^aud axe.

Ainsi , Lare de cercle, qui passe par les deux extrémités du
grand axe et par ïune des ea tri mi lés du petit est intérieur à
Vellipse, .

Oa démontrera , par ch semblables considérations, que Lîarc de
cercle qui passe par le à derx extrémités du petit axe et par Vunc
des extrémités du grand est extérieur à l'ellipse*
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Dé là il est facile de conclure, i.° Que de tous les angles ins-

crits (jui sappuyent sur le grand axe , le plus grand est celui qui
a son sommet à Vextrémité du petit ; 2.0 Que de tous les angles
inscrits qui sappuyent sur le petit axe} le plus petit est celui qui
a son sommet à Vextrémité du grand.

De l'une et de l'autre de ces propositions et de ce qui a été dit,
(7) , résulte que l'angle obtus formé par les diamètres conjugués
égaux de F ellipse est le plus grand que puissent former deux dia-
mètres conjugués.

16. Soient une suite de cercles égaux situés dans des plans différer»s ,
se coupant tous suivant un diamètre commun. Si on les projette sur un
plan quelconque passant par ce diamètre, leurs projections seront une suite
d'ellipses ayant le même grand axe. Soit pris cet axe pour axe des abaisses ;
si 9 pour une abaisse quelconque , on mène les ordonnées correspondantes
de tous les cercles , les projections de ces ordonnées se confondront en
une seule droite qui sera une ordonnée commune à toutes les
cil'pies. Que par les extrémités des ordonnées aux diilérens cercles on
mène des tangentes à ces cercles , ces tangentes iront toutes se
terminer au même point du prolongement de leur diamètre commun ,
c'est-à-dire , du grand axe des ellipses ; et les projections de ces
tangentes , lesquelles seront des tangentes aux ellipses , concourront
aussi en ce point.

Ainsi , Si une suite d'ellipses ont le même grand axe , les
tangentes menées à ces ellipses par les points où elles sont cou*
pèes par une perpendiculaire quelconque à ce grand axe y concourront
toutes en un même point de son prolongement. On démontrerait
facilement, à l'aide de ce qui a été observé (14) ? que la môme pro-
priété a lieu par rapport à une suite d'ellipses qui auraient toutes
le même petit axe.

Ce qui précède suffit pour montrer combien la doctrine des pro-
jections est propre à simplifier la démonstration*dlun grand nombre
de propositions de géométrie. Nous terminerons par observer qt'on
se procurerait plus de ressources encore en recourant aux princ^ es
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de la perspective , comme quelques géomètres en ont déjà fait
l'essai. Kn particulier 9 il serait très-facile de déduire de ces prin-
cipes les méthodes connues pour mener 9 avec la règle> une tangente
à une section conique 5 soit par un point extérieur 9 soit par un point
pris sur la courbe (*).

QUESTIONS RESOLUES.
Solution du problème cThydrodynamique proposé à la

page 164 de ce volume ;

Par M. G E R G O N N E , (**)

N a deux vases V et V ; , en forme de prismes ou de cylindres
droits. Leurs bases sont horizon!aies et ont des aires respectivement
égales à b et h\ Ces vases étant remplis d'eau jusqu'à des hauteurs
7i et y , on pratique à la fois à l'un et à l'autre et latéralement
une fente verticale d'une largeur uniforme par laquelle l'eau s'écoule»
L'eau du vase V est reçue dans le vase V7 et celle de celui-ci est
évacuée au dehors. On suppose d'ailleurs que la quantité d'eau qui
s'écoule des deux vases est indépendante de la pression du liquide
supérieur ? que conséquemment, pour chaque vase, elle est constante
dans toute l'étendue de la fente qui répond au liquide. On suppose
enfin que le volume d'eau écoulé pendant l'unité de temps , par une
•unité de longueur de la fente , est ç pour le vase V et v* pour le
vase V7.

Cela posé, on propose de déterminer 9 i.° quelle sera la hauteur
du liquide dans les deux vases à une époque donnée quelconque -

(*) Voy. la note de la page 3o8 5 du \Jr volume des Annales.
(**) Ce problème acte proposé par M, Bret^ professeur à la faculté des sciencet

de l'académie de Grenoble.
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a.# à quelle époque Peau aura atteint son maximum de hauteur dans
le vase V' -, 3.° enfin quelle sera alors la hauteur du liquide dans ce
vase.

2. Soit z la hauteur du liquide dans le vase V à l'époque / j à
l'époque / + / cette hauteur sera

dz i d2z i* '
d t I d t * 1 . 2 . • • • • ^ \ J

elle aura donc diminué de la quantité
dz i d2z i2"

dt i d t 2 1 . 2 • " • • >

d'où il suit que le volume du liquide évacué durant l'intervalle de
temps i sera

/ dz i d*z i* \
*V lTT~"dSr ~ ) f

c'est-à-dire ;

— l ~T ~ * ^r- — — • (B)
dt x dP i.2 x

3. Présentement si, pendant l'intervalle de temps i , le liquide
eût été constamment entretenu dans le vase V à la hauteur z , le
volume d'eau évacué durant cet intervalle eût éta

et sî, au contraire , le liquide eût constamment été y pendant le même
temps,, à la hauteur où il n'est parvenu qu'à l'époque t-\-i , le vo-
lume de la partie évacuée durant le temps i n'eût été que

. / dz i d*z i*

\ dt i dt* 1.2 f

c'est-à-dîre ,
i dz ï2 , d~z P

I dt 1.2 art 1.2.5 V '

Or il est visible que l'on peut toujours supposer / assez petit, sans
Tom. 11 35
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être nul , pour que le volume deau réellement évacué soit compris
entre ces deux-là ; c'est-à-dire , pour que la fonction (B) soit com-
prise entre les fonctions (G) et ( D \ et qu'alors il en sera de même
pour toutes les valeurs de i inférieures à celle-là ; on doit donc
avoir ? rigoureusement en ^ertu d'un théorème connu (*) ,

— b . ~ vz y

c'est-à-dire

4. Si l'on fait z = t", d 'où— = e* — , il viendra, en substi-

tuant et divisant par t*

T étant une constante arbitraire. On aura donc
V

* = / " " " ' ; (F)

au bout du temps /-+-/, z sera donc devenu
V V V y

T (t-t-0 T 1 i i
e h = c b X e b ~z.e b ,

c'est-à-dire ,

- z«+— z (G)

(*) Voyez le Calcul des dérivations d'Arbogast, noie de la préface , page XIV.
Vo>ez aiis^i le Traité de calcul différentiel et de calcul intégral de M. Lacroix ,
deuxième édition, tome i . e r , introduction , page 60.

(**) Ou parvient à ce résultat d'une manière moins rigoureuse, à la vérité , quant
«u langage , mais beaucoup plus courte , en remarquant que vzàt et — làz ne sont que
deux expressions dillérenles du volume de liquide évacué durant l'instant dt*
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formule qui doit coïncider avec la forum:* sÀ) , et qui montre que
r*aDdL£seiiie:it du liquide dans le temps i eofr

ç i r - z'2

b ~ i b* " 1,2. ^tx^

5, Si l'on veut compter les temps depuis l'époque où IVcoule-

leuivnt a commence, on dovra avoir à la tois z~à et / = o , ce

qui donnera

divisant l'équation (F) par celle-ci ? il viendra , en chassant le dé-
nominateur fi

z-hê1**
c'est là l'expression de la hauteur du liquide dans le vase V au
bout du temps / : elle montre que cette hauteur, bien qu'elle dé-
croisse continuellement, ne pourra jamais devenir tout à tait nulle.

G. Considérons actuellement ce qui se passe dans le vase \7/; soit
z/ la hauteur du liquide dans ce vase à l'époque / \ à l'époque /•+*
elle sera

et le volume de liquide introduit dans ce vase pendant le temps /
sera (H)

( f l f ) (K)
Si ce volume eût été subitement introduit a l'époque / , il eût éleyé
le liquide d'une quantité

b /' v i v* i2- \
^ \ 3 i 6- i.a ' y

c'est-à-dire ?

— z z < \- ?



*3a Q U E S T I O N S
de manière que ce liquide se fût trouvé , à l'époque / , à une
hauteur

z'-\ z — -— — z f-
b' i bb' 1.2.

$a hauteur à l'époque /-f-z eût donc été dans cette hypothèse (G)

( z' + —z — z— +....)_ z'+Tz ) -
\ ' b' i bb' 1.2. J b' \ x b i / I

c'est-à-dire,

' b' ) i ^^V V* bb' bb'

7. Si , au contraire ce volume de liquide eût été subitement in-
troduit à l'époque /-+-/ ; comme à Pépoque / il se trouvait à la
hauteur z/, sa hauteur à l'époque / + / se fût trouvée d'abord (G)

a quoi ajoutant l'élévation (L) due au liquide subitement introduit,
c'est-à-dire ,

on aura pour hauteur totale, à l'époque /-+-/,

±- + ..M. (N)
1** K Jb' b' J i \ b'* bb'

8. Présentement il est facile de voir que i peut toujours être
supposé assez petit , sans être nul ? pour que la hauteur effective
du liquide dans le vase \ r / , à l'époque /•+•/ soit moyenne entre
celles qui résultent de ces deux hypothèses ? c'est-à-dire , pour que
la fonction (I) soit comprise entre les fonctions (M) et (N) ; d'où
l'on doit conclure, comme ci-dessus ?

~ *~ T' Z~ V Z *
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ou

K ^ = w — • * ' (*). (O)

9. Pour que la hauteur zf du liquide dans le vase \ r / soit un
àz*

maximum, il faut qu'on ait = 0 , ce qui donne

vz—p'z'—o d'où çz — ̂ z* ;

or vz et ç/z/ sont les d4penses respectives des vases V et \ r / dans
le même temps ; ainsi le liquide sera à sa plus grande hauteur dans
le vase V7

 ? lorsque ce vase perdra précisément autant d'eau dans
un instant que le vase V lui en fournira , ce qui était d'ailleurs
facile à prévoir.

JO. Si entre les équations (E) et (O) on élimine d/, on obtiendra
àz'

fyvz—— —btyzt—vz) ;

posant alors z/=zy d'où — =zz -- + r , il viendra; en substituant

%l divisant par z »

ou

z ~~" (bvf—b'v)y—b9 ~~ bv'—bfv * (fa'

d'où

Log.z+Log.Cr:- — Log. { {hy*—Vy)f—lv} J

ou en remettant pour y la valeur — et réduisant

(*) On parvient sur-le-champ à ce résuilat , en remarquant que l'accroissement ÛA
volume du liquide dans le vase V , durant l'instant df , pçut être également expi im#
par è'dz; et par {yz—v?zl)àu
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i l . En considérant que les valeurs h et h' de z et z1 doivent se

correspondra, on aura pareillement

— houJi 4-Loc.C= b'"' Los. { (bv'—Vv)h'—lfl} ,

équation qui , retranchée de la précédente 9 donne

• L o s . — = •
h bs—ï* l" b {U'—b'.'jh'—b

ou simplement

b h ° {bv'—LïjL'—Ofk

ce qui revient a

\ h ) \{bv—b*v)h'—bvh^

ou encore
bvr

et donne

Z =

formule qui donnera £7 lorsque ,2 sera connu.

12. Nous avons trouvé (5)
bvr

v v ^

z = / /rT f , d'où ^ r ^ W ^
substituant donc , il viendra

v' — — - — — t

(Q)

Si ddns l1 équation (O) , on substitue pour z sa \ a Leur en t, elle deviendra
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C'est là la hauteur du liquide dans le vase V à l'époque /.

i 3 . Si dans l'équation (P) on met pour z* sa valeur—qui con-

Tient au maximum, elle deviendra

rbw-b'v—Jbv' ) - — (
* l { 9ilbvh—Q»'—b\>)h'i\\ '

•n remettant pour z sa valeur en / , on aura

ou en passant des nombres aux logarithmes

équation qui donnera l'époque / où le liquide du vase \ 7 / aura
atteint son maximum d'élévation.

i4« Ces dernières formules se simplifient lorsque le vase \T/ ne
contient d'autre liquide que celui qu'il reçoit du vase V. On a alors
h'—o 5 ce qui donne pour la hauteur de l'eau dans le vase V à
Tëpoque / 5

- v t -vlt

TU
b b

et pour l'époque du maximum de hauteur du liquide dans ce vase,

, _

1 b*

il est remarquable qu'alors l'époque du maximum est indépendante
du volume d'eau contenu dans le vase V.

fc r5 . Si de plus on suppose les vases'V et "\r/~absolument égaux
et percés de la même manière,on trouvera i.° pour la hauteur du

cette équation, qui ne parait être facilement iiué^raLie par aucun mer*en connu 5a
donc'pour intégrale l'équation (Q).
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liquide dans le vase \ / à l'époque t

V

z — /.— e ,

2.° pour ha plus grande hauteur du liquide dans ce vase
h

3.° enfin pour l'époque où le maximum d'élévation du liquide aura lieu

dans le vase \ r /

b

On traiterait de la même manière le cas où l'un des vases ou tous
les deux seraient construits en forme de cônes ou de p)ramidesf

tronqués ou non tronqués , et celui où Ton aurait égard à la pression
du liquide supérieur ; mais il est douteux qu'alors on parvînt à des
formules intégrables.

QUESTIONS PROPOSÉES.
Problèmes de Géométrie.

I. JJJTANT donnés, dans un quadrilatère complet, le triangle formé
par deux côtés et la diagonale qui joint leurs extrémités, et connaissant,
en outre , la position , par rapport à ce triangle , du point de concours
des deux autres diagonales ; construire le quadrilatère , en ri employant
que la règle seulement ?

II. A un même triangle donné quelconque , on peut inscrire une
infinité de systèmes de trois cercles égaux , tels que chacun de ces cer-
cles touche les deux autres et un côté du triangle.

On propose de construire le plus petit de ces systèmes ? (*)

(*) On pourrait généraliser le problème , en demandant que les rayons des trois cer-
cles , au lieu d'être égaux , soient entre eux dans un rapport donné. On pourrait aussi îe
renverser , en proposant de circonscrire , au système de trois cercles qui se toa-
chent deux à deux > un triangle donné d'espèce, qui soit le plus grand possible.



TRIGONOMÉTRIE SPHÉRÏQUE. Û07

GEOMETRIE.
Ëclazrcissemens sur le troisième et sur le sixième cas

de la trigonométrie sphérique ;

Par M, LHUILIER , professeur de mathématiques à l'académie
impériale de Genève*

ÂPPELLE troisième cas de la trigonométrie spîiérique celui dans
lequel on donne deux côtés et Pangle opposé à l'un d'eux. J'appelle
sixième cas celui dans lequel on donne deux angles et le côté opposé
à l'un d'eux.

Par les propriétés des triangles polaires , l'un de ces cas est ramené
\ l'autre ; en particulier 9 le sixième est ramené au troisième. Quoi-
qu'on puisse traiter chacun deux séparément, et indépendamment
des triangles polaires, j'examinerai particulièrement ce qui concerne
le troisième cas ; il sera facile ensuite d'appliquer au sixième ce qui
aura été dit sur le troisième.

Lorsque le troisième cas est possible et déterminé 5 on a coutume
de dire qu'il admet tantôt deux solutions , tantôt une solution et
même aucune , en ayant égard à la grandeur du côté donné opposé
à l'angle donné, relativement au côté qui est jambe de cet angle.
Je pense , au contraire , qu'on doit regarder ce cas ( lorsqu'il est
possible et déterminé ) comme ayant toujours deux solutions.

Pour éclaircir mon avis à cet égard ? je vais discuter le cas corres-
pondant de la trigonométrie reetiligne > dans lequel on connaît deux
côtés et l'angle opposé à l'un d'eux.

Pour construire le triangle proposé, sous les conditions données,
on fait l'angle À ( lig. i ? 2 ) de la grandeur donnée ; sur une de
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258 TRIGONOMETRIE
ses jambes, on prend AB de la grandeur donnée ; de son extrémité
B on abaisse sur l'autre jambe la perpendiculaire BD. Pour que le
triangle soit possible , le coté donné opposé à l'angle A ne doit pas
être plus petit que la perpendiculaire BD. Lorsque ce côté est égal
à sa limite en petitesse , le triangle ABD , rectangle en D ? est le
$eul qui satisfasse aux conditions.

La condition de possibilité étant remplie; du point B comme centre,
avec un rayon égal au côté donné opposé à l'angle A ? on décrit un
arc de cercle qui coupe la jambe AD en deux points C et C ; , situés
de part et d'autre du point D , et à une même distance de lui y
auxquels répondent deux triangles BAC ? BAC7.

Partant, en tant que la construction du triangle proposé dépend
de l'intersection ( supposée possible ) d'un cercle et d'une droite, le
problème a toujours deux solutions.

Si le côté BC ( supposé plus grand que BD ) est plus petit
que le côté AB , jambe de l'angle donné; les deux points C et C/
sont situés d'un môme côté du point A ( fig. i ) , relativement à la jambe
ÀB , et l'angle donné A est déterminé à être aigu. Les deux trian-
gles ABC , ABC7 ont entre eux les rapports suivans : les angles G
et C7 sont l'un supplément de l'autre ? les côtés AC et AC7 sont
l'un la somme et l'autre la différence de DA et DC ou DC7 , et les
angles ABC et ABC7 sont aussi Pun la somme et Pautre la différence
des angles DBA et DBC ou DBC7.

Que le côté BC soit égal au côté AB ; le point D7 tombe en A ,
le triangle ABC7 dégénère dans la ligne AB , et le côté AC7 devient
zéro , en conservant le type de son inclinaison à AB.

Que le côté BC ( iîg. i ) soit plus grand que le côté AB ; ies
points C et C7 sont situés de différents côtés du point A , relativement
au côté ÀB. Dans le triangle ABC7 , Pangle A est déterminé à être
obtus. Dans les triangles ABC , ABC7 , les angles C et C7 sont égaux
entre eux , le côté ÀC7 est l'excès de DC sur DA , et Pangle ABC7

tst Pcxcès de DBC sur DBA. Quant aux angles en A 5 les deux
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triangles diffèrent entre eux en ce que ces deux angles sont l'un
le supplément de l'autre.

C'est cette difFérence qui fait regarder ce dernier cas comme n'ayant
qu'une solutipn , en tant qu'on regarde l'angle A comme étant
déterminément aigu ou comme étant determinement obtus.

Lorsque deux droites ( non perpendiculaires Tune à l'autre ) se
rencontrent, chacun des angles , l'un aigu et l'autre obtus, qu'elles
font entre elles 5 peut être pris pour leur inclinaison , jusqu'à ce qu'il
y ait quelque raison qui lève le doute qu'on doit avoir à cet égard.
Or , la grandeur du côté BC ? relativement au côté AB , lève ce
doute ; de manière que , lorsque le côté BC est plus petit que le
côté BA 9 il détermine l'angle A à être aigu 9 dans chacun des trian-
gles qu'on obtient ; et lorsque, au contraire, BC est plus grand que
BA y il détermine l'angle A à être aigu dans l'un des ces triangles , et
obtus dans l'autre. Donc chacun de ces triangles doit être regardé
comme remplissant les conditions de la question 9 tantôt pour l'angle
aigu A dans l'un et dans l'autre \ fig. i ) , et tantôt pour l'angle
aigu A dans l'un et l'angle obtus A dans l'autre ( fig. 2 ) (*).

L'algèbre vient à l'appui de ces considérations géométriques.
En effet, en regardant BC et BD comme connus, on a DC2 =

BC2—BD2, et partant D C ^ ^ / B C ^ ^ B D 7 ; partant la ligne DC
a toujours deux valeurs , les mêmes quant à la grandeur , et diffé-
rentes par le signe 5 soit que DC soit plus petite ou plus grande que
AD ? et partant, soit que l'angle A soit aigu ou obtus. L'algèbre et la
géométrie sont donc d'accord pour faire regarder chacune des deux
solutions qu'on obtient comme devant être admise. Le problème pro-

(*) On peut concilier l'opinion de M, Lhuîlier avec celle qu'il combat, en disant
qu'à la vérité le problème a toujours deux solutions , mais qu'il arrive ici ce qu'on
rencontre dans la plupart des problèmes du second degré ou , par des circonstan-
ces particulières à la question qu'on traite , une des deux solutions doit être
rejetée ; il paraît même que ce n'est que dans ce sens que les géomètres disent
que le problème dont il s'agit ici, peut souvent n'admettre qu'une solution unique*

( Rote des éditeurs. )
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posé , lorsqu'il est possible et hors de la limite , a donc toujours deux

solutions.

Qu'on cherche immédiatement le côté AC 7 sans considérer le seg-

ment AD, on l'obtiendra par l'équation

BC2 = AO—ZABXJLCCOS A-f-AB*,

laquelle donne

C2—AB2.67/z.2A.

Partant 5 lorsqu'on a BC>AE5///.A, AC a deux valeurs.

En regardant A comme aigu , Tune de ces valeurs est toujours

positive ; l'autre est aussi positive 5 si l'on a

ou AB>BC ;

cette valeur est zéro, si AB = BC ; et elle est négative, si l'on a

AB<BC.

Ainsi encore , l'algèbre fait regarder l'une et l'autre des détermina-

tions du point C ? dépendantes de la grandeur de AC, comme réelles,

et comme pouvant différer entre elles par la direction de la droite AC.

Avant de passer à mon but principal , relatif à la trigonométrie

sphérique , je crois devoir faire précéder la proposition suivante.

LE M ME. Soit un point donné de position, sur la surface d'un hémis-

phère , hors de sa base et différent de son pôle. Par ce point, soient

menés des arcs de grands cercles à la circonférence de la base de

l'hémisphère. Le plus grand de ces arcs est celui qui passe par le

pôle ; le plus petit est le supplément de celui-là. Les autres sont

d'autant plus grands ou plus petits qu'ils font des angles plus grands

avec le plus petit ou le plus grand de ces arcs ; de manière qu'ils

passent par toutes les grandeurs intermédiaires entre leur plus petite

et leur plus grande valeur.

SoitP ( fig. 3 ) le pôle d'un hémisphère;.soit B un point hors de sa basa

et différent du pôle ; par B soit mené à un point C de la circonférence

de la base de l'hémisphère l'arc de grand cercle BC ; soit aussi mené

par B le demi-grand cercle DBD7 dont la partie BD' soit celle qui

passe par le pôle P 7 en sorte que ce ne soit que le prolongement
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de BD qui passe par ce pôle ; j'affirme que l'on a BD<BC et
BD/>BC.

Soit BQ une droite perpendiculaire au plan de la base de l'hé-
misphère ; et soient menées les droites QC , QD, QD'.

On a, quel que soit le point C f

Dans toutes les équations semblables, BQ est constant ; donc le carré
de la corde BC croit avec le carré de QC ; mais QD est la plus
petite et QD7 la plus grande des droites QC ; donc aussi la corde
BD est la plus petite , et la corde BD7 la plus grande des
cordes BC ; mais les arcs BD , BD7 , BC sont plus petits que
la demi - circonférence ; donc aussi l'arc BD est le plus petit
et l'arc BD7 le plus grand de tous les arcs BC. De plus ? comme
le carré de QC passe par tous les degrés de grandeur intermédiaires
entre le carré de QD et le carré de QDX, le carré de la corde
BC passe aussi par tous les degrés de grandeur intermédiaires entre
les carrés de BD et BD 7 , et partant aussi 9 les cordes BC et les
arcs BC passent par tous les degrés de grandeur intermédiaires entre
les cordes et les arcs BD et BD7.

En particulier , les arcs qui font avec l'arc BD ou BD7 des
angles égaux de part et d'autre de ces arcs, sont égaux entre eux.

Cela posé ? soit ABC ( fig. 4 ) u n triangle sphérique dont on
connaît les côtés AB et BC et l'un des angles en A opposé au
côté BC.

I. Que les côtés AB 9 BC ? soient tous deux des quadrans , le
point B est le pôle de l'arc AC ; les angles A et C sont déterminés
à être l'un et l'autre des angles droits ; le côté AC et l'angle ABC
sont quelconques ; et le triangle ABC est indéterminé.

Réciproquement 5 que l'angle A soit droit et que sa jambe donnée BA
soit un quadrans ; le côté BC est déterminé à être aussi un qua-
drans ; l'angle C est déterminé à être droit ; et le triangle est
indéterminé.
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IL Que l'angle A soit droit , et que le côté AB soit différent
d'en quadrans ; que AB prolongé rencontre en A7 la circonférence
de la base AC.

Le côté BC est déterminé à être plus \ ? que le plus < >
r ( petit ) ^ l Srand )

des arcs BA et BA7.
Cette condition de la possibilité étant remplie 9 il y a deux points

C et C/ situés de part et d'autre du point A et à une même dis-
tance de lui (*) , auxquels répondent des arcs égaux BC , BC7;
et on obtient deux triangles BAC , BAC7 qui ne diffèrent l'un de
l'autre que par leur position relativement à AB.

III. Que l'angle A soit différent d'un droit, et que Parc AB soit
un quadrans. Par B soit mené Tare de grand cercle perpendiculaire
a AC rencontrant en D et D7 la circonférence dont AC fait partie.

1/arc BC est déterminé à être plus?*5 > que le plus < £ des arcs
r ( petit ) ^ f grand )

BD et BD 7 , dont l'un est plus petit et Fautre plus grand qu'un
quadrans.

Que ces conditions de la possibilité soient remplies.

T,° Que l'arc BC soit plus petit qu'un quadrans, les deux points
C et C7 auxquels répondent les arcs égaux BC et BC7

 5 également
éloignés du point D , de part et d'autre de ce point, sont situés dans
celui des fuseaux ABA7D auquel répond l'angle aigu en A ; par-
tant ? dans chacun des deux triangles ABC et ABC7

 ? l'angle A est
aigu , et les triangles ABC et ABC7 ont entre eux les relations sui-
vantes : les deux angles C et C7 sont, l'un aigu et l'autre obtus ,
supplémens l'un de l'autre ; les côtés AC et AC7 sont, Y un la somme
et l'autre la différence de AD et DC ou DC7 ; et les angles ABC

(*) On n'a point cru nécessaire de faire une figure pour ce cas particulier qui est
de lui-même évident,

( Note des éditeurs» )
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et ABC7 sont ? l'un la somme et l'autre la différence des angles DBA
et DBC ou DEC.

2.0 Que Tare BC soit un quadrans , l'un des triangles ABC de-
yient le fuseau ABA7D , et l'autre de ces triangles devient le côté
AB. Pour le premier de ces deux triangles , Tare AC = AA7 , pour
le second , l'are AC devient zéro , et l'angle ABC devient aussi zéro.

3.° Que Tare BC soit plus grand qu'un quadrans, les deux points
C et C7 sont l'un et l'autre dans celui des deux fuseaux sphériques
dont l'angle en A est obtus ; l'arc BD , qui appartient à ce fuseau,
est le plus grand des deux arcs BD et BD7 ; les angles C et C7 sont,
Pun aigu et l'autre obtus ; supplémens l'un de l'autre ; les arcs AC
et AC7 sont respectivement la somme et la différence ŝ arcs DA
«t DC ou DC7 ; enfin les angles ABC et ABC7 sont, *i : i la somme
et l'autre la différence des angles DBA et DBC ou DBC7.

IV. Que l'angle A soit différent d'un droit , et que l'arc AB soit
différent d'un quadrans.

L'arc BC ne doit pas être plus< , > que le plus < > des arcs
1 r ( grand ̂  r (grand)

BD et BD7 , perpendiculaires à AC , et supplémens l'un de l'autre

à la demi-circonférence. Lorsque BC est égal au plus \ > de ces arcs ,

l'angle A est déterminé à être \ to i ; le triangle proposé est unique ,

et dans le cas de la limite.
Que les conditions de la possibilité soient remplies.

i.° et 2.0 Que Tare BC soit donné plus \ ^ \ que le plus \ p e b t }
^ r l grand P r ( grand J

des arcs BA et BA7
9 supplémens l'un de l'autre à la demi-circon-

férence , on obtient deux triangles ABC , ABC7 l'un et l'autre dans

celui des deux fuseaux qui a l'angle A < > ; et partant, dans

chacun de ces triangles , l'angle A est déterminé à être \ & > ;
( obtus ^

U$ angles en C et C7 sont l'un le supplément de l'autre ; les côté*
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AC et ACsont , l'un la somme et l'autre la différence des arcs DA
et DC ou B(7 : enfin les angles ABC et ABC sont, l'un la somme
et l'autre la différence des angles DBA et DBC ou DEC7.

3.° Que le coté BC soit donné égal au côté AB ; l'un des trian-
gles ALC s'évanouit ? parce qu'il se réduit au côté AB. Que le
côte BC soit donné égal au supplément de AB ? l'un des triangles
devient le fuseau sphérique ABA'A.

A.0 Enfin que Tare BC soit donné à la fois plus \ A que le
* \ grand ;

plus < *" l > des deux arcs AB. A'B ; les deux triangles BAC, BAC'1 ( pciii ) °

sont l'un dans celui des fuseaux ABA'D qui a l'angle aigu en A P

et l'autre dans celui de ces fuseaux qui a l'angle obtus en A ; par-
tant , dans l'un de ces triangles ? tel que BAC7

 ? l'angle en A est
aigu 5 et dans l'autre de ces triangles , l'angle en A est obtus. Les
angles BCx\ et BC'A sont égaux entre eux ; les côtés AC et AC'
sont, l'un la somme et l'autre la différence de DC ou DC; à DA ;
et les angles ABC et ABC/ sont aussi , l'un la somme et l'autre la
différence de l'angle DBC ou DBC à l'angle DBA.

Récapitulation, BC a pour limite en <§ran e° r \ le plus \ ^^. des arc*.
1 l (petitesse ) r ( petit )

supplémens l'un de l'autre dont le sinus commun est Sin.AB Sin.A.
Que BC soit plus petit que le plus petit des arcs BA , BA;

 ? sup*-
plémens l'un de l'autre à la demi-circonférence ; l'angle A est dé-
terminé à être aigu.

Que BC soit plus grand que le plus grand des arcs BA et BA7,
supplémens l'un de l'autre à la demi-circonférence ; l'angle A est
déterminé à être obtus.

Que BC soit, à la fois plus < to . /que le plus < > des arcs BA
^- ? ( peut ) ^ C grand )

et BA7 , supplémens Fun de l'autre à la demi-circonférence ; dans
l'un des triangles obtenus ? l'angle A est déterminé à être aigu; et dans
Fautre de ces triangles ? l'angle A est déterminé à être obtus.

Le problème : Déterminer un triangle dont on connaît deux cotés et
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Vangle opposé à Vun d'eux ? ( lorsqu'il est possible et déterminé )
a toujours deux solutions , en tant qu'on prend le mot inclinaison
dans son acception générale ? et qu'on se réserve de lever le doute
si cette inclinaison est aiguë ou obtuse, d'après la relation des deux
côtés qui fournît une raison déterminante pour lever ce doute.

On a coutume de donner pour raison trigonométrique de l'indé-
termination du triangle proposé la double valeur d'un angle donné
seulement par son sinus > en tant que l'angle C est déterminé par la
proportion Sin.BC:Sin.AB = Sin.A : Sin.C; cette raison s'applique seule-
ment aux deux premiers cas, dans lesquels les angles A de chacun des
triangles ABC 5 ABC7 sont l'un et l'autre aigus ou l'un et l'autre obtus ;
mais elle ne «'applique pas au troisième cas dans lequel les angles
en A sont l'un aigu , dans l'un des triangles, et l'autre obtus, dans
l'autre de ces triangles. Je pourrais aussi ? pour soutenir mon opi-
nion , m/appuyer sur cette proposition : le sinus de A est le même
pour deux valeurs de A dont l'une est le supplément de l'autre.

La véritable raison de la double solution du problème proposé
me paraît être la possibilité de mener deux arcs obliques , égaux
entre eux à la circonférence d'un grand cercle , depuis un point
qui n'est pas le pôle de ce cercle.

En admettant, dans tous les cas , la double solution du problè-
me proposé ( du moins lorsqu'il est déterminé possible et hors de la
limite ) , on lève l'anomalie de regarder un problème du second
degré ( lorsqu'il est possible ) comme ayant tantôt deux solutions >

tantôt une seule 5 et même comme pouvant n'en avoir aucune. (*)

(*) Ce qu'on peut conclure de tout ceci, c'est que , pour s'exprimer d'une ma-
nière convenable , il faut dire que le problème ou il s'agit de déterminer un trian-
gle sphérique par la connaissance de deux de ses côtés et de l'angle opposé à
l'un d'eux, considéré d'une manière abstraite, admet toujours deux solutions ; mais
que souvent, par les circonstances de la question dont on s'occupe , une de ces so-
lutions et même toutes les deux doivent être rejetées. La même remarque s'appli-
que au cas où il s'agit de déterminer le triangle par la connaissance de deux de ses
angles et du côté opposé à l'un d'eux.

( Note des éditeurs. )
Tom. U 37
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On sait en effet qu'on a l'équation

Cos.ABCus.AC+Sin.ABSîn.ACCos.A=Cos.'BC

d'où on tire , en considérant AC comme l'inconnue ,

C^ç A p. Cus.BC Cos AB qz \/>in.2BC—Si

A ~

QUESTIONS RÉSOLUES.
Démonstration du théorème énoncé à la page IG/J. de

ce volume;

Par MM. P I L A T T E ? professeur de mathématiques spéciales
au lycée d'Angers, LEGRAND, professeur de Mathématiques,
et PtOGHAT y professeur de navigation à St-Brieux.

JUJNONCÉ. SI 9 par l'un quelconque P des points du périmètre
dune hyperbole , on mène deux droites TA 5 PB , respecti-
vement parallèles à ses asymptotes , et que , par un autre point
quelconque m , pris sur ce périmètre , on mène une suite de droites
coupant PÀ en a , a7

 ? a
x/, . . . , PB en b , b7 , b " , . . . , et la courbe en

na n'a' n"a"
n , n ; , n/;, . . . ; on aura — = = — .. = Constante.

' 11b rJi>f n'tu"

Démonstration. MMPHatte, Lcgrand et Rorhat ont donné de ce
tliëorème des démonstrations analiticjues qui reviennent à peu près k
ce qui suit.
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Soient pris ( fig. 5 ) le point P pour origine, la droite PA pour

axe des x9 et la droite PB pour axe des y ; l'équation de l'hyperbole
sera de la forme

xy=/2x+gy, (I)
et donnera

hx

si donc on désigne par * l'abscisse du point m , son ordonnée sera

6—*
En conséquence l'équation de Mn sera de la forme

k déterminant la direction de cette droite*

Si , dans l'équation (II) on fait y~o , la valeur qui en résultera
pour x sera celle de Pa ; on aura donc

kçg—*)

Si ensuite on élimine y entre les équations (I) et (II) , en divisant
réquatîon résultante par x—a , la valeur qui en résultera pour x sera
alors Fabscisse du point n , laquelle aura pour expression

ce sera donc là aussi la projection de ?ih sur Taxe des x. Quant à
la projection de na sur le même axe ? elle est la dïiTérence des
abscisses des points n et a prises avec leurs signes ; ce sera donc

Ainsi , les projections de na et nb sur Taxe des x seront respec-
tivement
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7-te—)=—l—

et comme na et nh sont proportionnelles à leurs projections sur une

même droite , on doit avoir

*)
ne ~ fc h—h(g—*) ' g g

quantité indépendante de k^ qui détermine la direction de mn> et qui
sera conséquemment la môme lorsque cette direction changera, pourvu
que le point m reste le même.

Outre cette démonstration analitique, M. Legrand a donné du théo-
rème la démonstration purement géométrique que voici :

Soient C le centre de la courbe; Cg ? Ch ses asymptotes; M9

N les points où. elles sont rencontrées par la droite mn ; G, i f ceux
où elles sont rencontrées par les prolongemens de PB et PA ; et
soit menée par le point m une parallèle à Cg, se terminant en d à
Ch et coupant PG en e.

Par la propriété fondamentale de l'hyperbole rapportée à ses asymp-
totes et par les parallèles, on a

dm\PG\\de : Ge ,
PG.Ma::Ge:mM ,
mN: dm: iNlr.de -,

proportions qui, étant multipliées par ordre, donneront, en rédui-
sant ,

mN:Ma:iN&:mM J
d'où

Mtf X Nb = m M X mN.

Ou aurait semblablement
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ce quî fournît déjà un théorème assez remarquable.

Maintenant la proportion

m N : Ma Î : Nb : m M

donne

mN—Ma:Nb—mM::Ma:rnM ;

ou, en faisant attention que mM=nN ,

mn—ma :nb::Ma:mM: : PG:eG

ou
na.nbr.PGteG ,

d'où
na PG

~nb ~ TÔ

quantité constante, quelle que soit la direction de mn, tant que le
point m restera le même.

M, Pilatte indique, comme application de ce théorème, la réso-
lution du problème suivant :

Décrire une hyperbole qui passe par trois points donnés, et dont
les asymptotes soient parallèles à deux droites données ?

On tire, en effet, de la proportion ci-dessus

na—nb:na\\PG—eG\PG ,

ou
ab:na::Pe:PG ;

et9 si Ton mène par n une parallèle à Ch , coupant PH en/*, on
aura pareillement

ab:mb::Pf:PH.

Cela posé, soient m, P , n les trois points donnés; par P soient
menées des parallèles aux droites données , et conséquemment aux
asymptotes; soit menée mn , coupant PA et PB en a et b; et soient
enfin menées, parallèlement aux mêmes droites > les droites 772̂  et
nfï rencontrant en e et f les prolongemens de PB et FA* Alors les
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trois premiers termes de chacune des deux proportions cî-dessus se

trouvant connus, on pourra déterminer PG et PH, et eonséquem-
ment les points G , H par lesquels menant des parallèles Cg et Ch
aux droites données, ces parallèles seront les asymptotes de la courbe,
dont la construction , par points , ne présentera plus alors aucune
difficulté.

Solutions du premier* des deux problèmes proposés à
la page 196 de ce volume.

Première solution ;

Par M. LHUILIER , professeur de mathématiques à l'académie
impériale de Genève.

XJE cas dans lequel le polygone proposé est un triangle, est.de
première facilité ; en particulier il se construit par fausse position de
la manière la plus simple. Il n'en est plus de même lorsque le
nombre des côtés du polygone proposé est plus grand que trois.

LEJMME. Soient des droites données de grandeur. On demande de
couper chacune d'elles en deux parties , de manière que les rap-
ports de ces parties , deux, à deux, soient donnés , sous les conditions
6uivantes : on connaît le rapport d'une partie de la première
à une partie de la seconde ; celui de l'autre partie de la seconde
à une partie de la troisième ; celui de l'autre partie de la troisième
a une partie de la quatrième , et ainsi de suite > jusqu'à ce qu'on
parvienne au rapport de la seconde partie de la dernière à la seconde
partie de la première.

Premier exemple. Que les droites données soient au nombre de
deux seulement. Soient AB et À /B / deux droites données de grandeur
( rig. 6 ) » à couper en X et X ; , de manière que les rapports de
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AX à B'X' et de A/X/ à BX soient, Tua et l'autre, égaux à des
rapports donnés.

Que le rapport donné de AX à B'X' soît égal au rapport de
AB à Wb>\ et soit porté Wb' sur W\' de W vers A'.

On a A X :B'X'=AB:B'£ ' ,
d'où BX iJ 'X^ABiB'i ' ;
si donc on pose A'X' : B X = £ : A B ,
il viendra A'X':b'X'= L : Wb' ;
011 connaît donc la différence S!b* ( s'il y a lieu ) et le rapport des
droites A 'X' et bfX* , et conséquemment ces droites sont l'une et
l'autre déterminées.

Construction. Que le rapport donné de AX à B ;X ; soit présenté
«pus la forme du rapport de AB à Wbf

 9 et soit portée Wb; sur B/A/.
Que le rapport de A /X / à BX soit aussi présenté sous la forme du
rapport d'une droite L à AB. Enfin soient déterminées les droites
A'X7 et b/X/ dont la différence A!b* est donnée , et dont le rapport
est celui de £ à AB.

Remarque. Pour que le problème soit déterminé , les points b*
et A7 ne doivent pas coïncider. En effet , si le rapport de AX à B /X /

est donné égal au rapport de AB à hfW > le rapport de BX à AOC'
se trouve déterminé à être égal au même rapport 9 et la question
proposée demeure indéterminée. Cette question est impossible > si le
rapport de AX à B /X / étant donné égal au rapport de AB à A /B / ,
le rapport de BX à K!X* n'est pas donné égal au môme rapport.

Second exemple. Que les droites données soient au nombre* de
trois. Soient AB , A7B7 , A^B^ , ( fig. 7 ) trois droites, données de
grandeur , à couper en X , X ;

 5 X /7 , respectivement 5 de manière
que chacun des trois rapports AX : BOt ' , A'X' : B^X^ , A^X^: BX
soient égaux à des rapport donnés.

Que le rapport de ÀX à B /X / soit égal au rapport de AB à
B V ; et soit porté B V sur B /A / de W vers A ;.

On a AX : BOi^AB : BV ,
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d'où B X : # 7 X 7 = A B
posant donc A/7X/7 : B X = L : A B ,

H viendra A7/X /7 : ^ X 7 = L : B V .

Soit en outre

L :B7<77 =A 7 7 B 7 7 :^ 7 ^ 7 ;
donc A7/X/7 : af X / = A"W : bf af ;

posant donc A7 X7 :B77X77:= M : A7/B77,
il viendra enfin A7X7 : £ 7 X 7 = . ¥ : Va9 .

On connaît donc la somme A/b/ et le rapport des droites A 'X '
et ^ X 7 ; donc ces droites sont l'une et l'autre connues.

Troisième exemple. Que les droites données soient au nombre
de quatre. Soient AB , AfW y A " B " , A777B//7 ( fig. 8 ) , quatre
droites données de grandeur, à couper en X , X 7 , X77 , X7/7

5 de
manière que chacun des quatre rapports AX : B7X7 , A7X7 : B7/X77*
A77X77 : B777X777

 y A y / / X / / ; :BX, soient égaux à des rapports donnés.

Soit fait AX :B 7 X 7 ~ AB : B V ,
d'où BX :<27X7= AB : B V ;
posant donc A777X777 : B X = L : A B s

il viendra A777X77/:^7X7= L :Waf •
Soit encore L : BW=A7 7 7B7 / / : ^7^7 ,

d'où A777X777 : ^7X^ = A777B^7 : a'V ;
et conséquemment B/77X777 : b/X./ = A7/7B7// : ^7^7 ;
posant donc A77X/7 : B W X W = M:A"W ,
il viendra A77X77:37 X7 = M: a*b' •

Partant, on connaît, de grandeur, les droites A/b/ et A/7B/7 , et
les rapports A7X7 : B /7X77, A /7X77: 37X7 ; donc la question proposée
sur quatre droites est ramenée à la question correspondante sur deux
droites. Et , comme cette dernière est susceptible d'indétermination
et d'impossibilité, aussi la question proposée sur quatre droites est
susceptible d'indétermination et d'impossibilité.

On montrera précisément, de la même manière, que la question
proposée
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propose'e sur cinq droites est ramenée à la question correspondante
sur trois droites; et partant la question est toujours possible, dé-
terminée et susceptible tTurïè seule solution. On montrera aussi que la
question proposée sur six droites est ramenée à la question corres-
pondante sur quatre droites, et partant qu'elle est susceptible d'im-
possibilité et d'indétermination.

En général, la question étant proposée sur un ncmhre quelconque
de droites ( plus grand que deux ) , elle est toujours ramenée à la
question correspondante sur des droites dont le nombre est inférieur
de deux unités. Si donc le nombre des droites données est impair,
le problème est finalement ramené à trouver deux droites dont on
connaît la différence et le rapport. Afin donc que, dans ce cas, le
problème soit possible et déterminé, la différence ne doit pas éva-
nouir, et le rapport donné ne doit pas être un rapport d'égalité. Si
la différence évanouit, le rapport est déterminé à être celui d'égalité,
et alors la question est indéterminée.

Remarque. On résout sensiblement de la même * manière les cas
dans lesquels les droites données sont, en tout ou en partie , des
différences des droites cherchées. Le nombre des droites données étant
quelconque, pair ou impair, si le nombre de celles auxquelles ré-
pond une somme est pair, la question est susceptible d'indétermina-
tion ou d'impossibilité.

PROBLEME. À un polygone donné, inscrire un polygone de même
nom, dont les côtés soient respectivement parallèles à des droites
données de position ?

Solution, Dans chacun des triangles retranchés par les cotés du
polygone inscrit y lesquels ont pour bases les colés de ce polygone
et pour sommets les sommets correspondans du polygone donné;
dans ces triangles, dis-je, les angles sont donnés; parlant^ ces trian-
gles sont donnés d'espèce, et en particulier les rapports de ceux de
leurs cotés qui font partie des cotes du polygone proposé, sont donnes.
Delà la question est immédiatement ramenée au lemme qui vient
de nous occuper.

Tom. IL 38
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Savoir : désignons par A, A ' , A", . . . . A*'1 . AN , les sommets

du polygone donné, et par X , X7 , X / 7
5 . . . . X K l

 ? XN , les som-
mets du polygone cherché, de manière que le sommet X soit sur
ANA, le sommet Xx sur AA' , et ainsi de suite. On connaît les
droites ANA, AA', A'A", . . . . A*-1 AM, et les rapports AX:XA' ,
A'X'iX'A", A / /X / / :X / /A / / / ,- . . .A»XN :XKA de leurs parues.

Puisque cette Inscription est ramenée à notre Icmme, elle est pos-
sible et unique, lorsque le nombre des cotés du polygone proposé
est Impair; elle est susceptible d imposslhiiilé ou d'indétermination,
lorsque le nombre des côtés de ce polygone est pair.

Je crois devoir éclairclr l'indétermination, si elle a lieu, par quel-
ques exemples.

Premier exemple. Soit un quadrilatère Kk!KnKn/ » ( fig. 9 )dont A A"
et k!K!n soient les diagonales. A la diagonale A/A/// soit menée arbi-
trairement une parallèle, se terminant en X et X w aux côtés AA'
et AA/7/ de ce quadrilatère. Par les points X et X / / ; soient menées
à l'autre diagonale AA/; des parallèles, se terminant en X' et X'7 aux
côtés kuk! et Kf/A///, et soit enfin menée X ^ ' 7 . J'affirme que cette
droite sera, comme XX / / ; , parallèle à la diagonale A^V77; et par-
tant que le quadrilatère XX'X^X^7 est un parallélogrammev

On a? en elTet P par construction,

A"X':AX =A^V:A^A ,
AX rAX^rrA^A :AA^ ,
AXW : A"X" = A Aw: A^AW ;

donc A"X': A"X"=;A"A/:A"A'" }

donc X'X" est parallèle à A'A^.
Ou bien, les rapports X'A^AOC, XA:AXX//, yL'"A"':A"/yL»

étant respectivement égaux aux rapports A / /À /:À /A, A ^ ï A A ^ ,
A À ^ I A / ' A / " , le rapport A^X^A'-'X^ est déterminé à être égal au
rapport A^A'rA/Ot"-': et le nombre des polygones équiangl^s las-
criptlbles au quadrilciieve proposé e-; m'imite.

Second exemple. So\lAA/A'/X1'' '-.!•'"'Av un hexagone. ( fig. 10 ) Soient
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menées les diagonales AA"5 A ^ " , A^A"", A ^ A ^ A;///A, qui retran-
chent deux côtés. Par un point X , pris arbitrairement sur l'un AA' des
côtés ? soit menée à la diagonale A A" une parallèle terminée en X /

au côté A'xV ; par X' soit menée à la diagonale A/À/// une parallèle
terminée en X/7 au côté A" A"' ; soient de même menées X"X'"
parallèle à A"A"", X!"X!!I! parallèle à A"'AV , X""XV parallèle à A""A,
et soit enfin menée XVX ; j'affirme que cette dernière droite est
parallèle à la diagonale A'Av.

On a, en effet ? par construction

X À' :A' X' = A A' :A' À" ,

A7 X' : X " A ^ = . V A" :À" A/// ,

X" A'"

A"' X'"
A'" X"'=A." A."'

: X///7AV = A///A////

:XV

:XV

Av =A""A V

Av = A A'

: A / / ; A""

: A / WAV

:A Av

:A AV
donc X A
donc la droite XXV est parallèle à la diagonale A7AV.

Partant , les rapports XA^: A ^ , A ^ : X^A^ , X"A"' : AWXW ,
A ^ X ^ Î X ^ A V , X / /7 /Av:XvAv étant respectivement égaux aux rap-
ports AA': A^A// , A/A// : A^\w ^ ^ A ^ : A'"AV , A^AW/ : A w / A v ,
A///;AV : AAV , le rapport XA/ : XVAV se trouve déterminé a être égal
au rapport AA7 : AAV ou encore , dans le polygone XX/X//X///X////XV ,
les côtés XX' , X'X", X//X///, X/z/X//// ? X///Xv étant respectivement
parallèles aux diagonales AA//, A ^ , A"h./n/ , AWAV, Aw/A ? le
côté restant XVX se trouve déterminé à être parallèle à la diagonale
AVA7 ; et le. nombre des hexagones , équïangles entre eux, inscrip-
tibles à l'hexagone proposé ? sous les conditions données , demeure
illimité.

Cette propriété s'étend à tous les polygones d'un nombre de côtés
pair , en menant des parallèles aux diagonales qui joignent les
extrémités des côtés des angles du polygone donné.

Scholie. Le problème proposé trouve une application qui mérite
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d'être mentionnée. Qu'on demande à*inscrire à un polygone donne un
polygone de même nom dont le contour soit le plus petit ? 11 est
aisé de démontrer que les deux côtés de chacun des angles du poly-
gone cherché doivent faire des angles égaux avec le cote du poly-
gone donné sur lequel est situé le sommet de cet angle (*). SI le
polygone proposé a un nombre impair de cotés , ces angles sont
détermines par les angles du polygone proposé , et l'inscription deman-
dée est unique et déterminée. Mais , si le polygone propose a un nombre
pair de cotés , pour q-:e le problème soit possible , la somme des
angles de rang pair du polygone proposé , à partir de l'un quelcon-
que , doit être égale à la somme de ses angles de rang impair (**).
Cette égalité étant supposée, le nombre des polygones à inscrire est
illimité; et ils ont tous le même plus petit contour. Cette application
remarquable fait l'objet d'une dissertation qui est à la suite de mon
ouvrage iniitulé ; De relatione muiua capacitatis et terminorum
Jigurarum.

(*) Voyez le tome i des Annales , pa^e 3JD , lemme I.

(**) Cette proposition revient à la suivante : si entre n inconnues Xi} a?8 , xl ; ...
#/J-I > x

în on a a équations de la forme

et que n soit un nombre impair ? ces inconnues seront âe'erminées. Si, au contraire,
n est pair , le problème ne sera possible une sous certaine relation entre les don*
nées) relation qui , si elle a lieu , rendra ce problème indéterminé*

On a, en elfet, i.° dans le cas de n impair

(A.+A.-f- ..+A,,)-(Al+A4+...-fA,,.t}=:>*, ;
2.° Dans le cas de n pair.

cquatlon i]e condition q«û , s tivaût quelle aura ou n'aura pas lieu, rendra le pro-
blême indt'term'ac ou irnpot&ible»

( Notes des éditeurs* )
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La différence que présentent, à l'égard du sujet de ce mémoire,

les polygones rectiiignes , suivant que le nombre de leurs eôt4s est
pair ou impair , n'est pas la seule qui distingue ces deux classes
de polygones. Je vais encore en donner deux exemples.

Qu'on demande d'inscrire à un cercle donné un polygone dont
les angles soient donnés. Cette condition si*fïit pour déterminer le
polygone cherché , lorsque le nombre de ses cotés est impair , de
manière que l'inscription est toujours possible. Au contraire . le
nombre des côtés é'ant pair > l'inscription est possible seulement,
lorsque la somme des angles donnés de rang pair est égale à celle
des angles donnés de rang impair. L'égalité entre ces deux sommes
ayant lieu en eiïet, le nombre des polygones înscriptibles 5 sous les
conditions données , demeure illimité ; et , pour que le problème soit
déterminé 9 on doit ajouter quelque condition indépendante de la connais-
sance des angles , et qui soit , par exemple 9 relative au contour
ou à la surface.

De même, qu'on demande de circonscrire à un cercle donné un
polygone ( dont le nombre des côtés est plus grand que trois )
ayant des côtés donnés; ce problème est susceptible d'une seule solution ,
si le nombre des côtés du polygone à construire est impair. Mais >
que le nombre des côtés de ce polygone soit pair , une condition
essentielle, pour que le problème soit possible , est que la somme des
côtés de rang pair soit égale à la somme des côtés de rang impair.
Cette égalité étant supposée , le problème est susceptible d'un nom-
bre illimité de solutions.

Le procédé que j'ai suivi pour résoudre le problème proposé ,
consiste à diminuer successivement de deux unités le nombre des
celés du polygone à construire , et partant a réduire finalement
la question proposée à l'inscription d'un triangle , d'une part 9

pour les polygones impairs , et à celle du quadrilatère , pour
las polygones pairs, On peut aussi traiter chaque polygone immédia-
tement 5 sans ramener la question à un polygone d'un moindre
nombre de eût^s. il me suffira d'exposer ce procédé sur un quadrilatère.
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Soit AA'A^A''7 un quadrilatère auquel on doit inscrire un autre

quadrilatère XX'X^X77' , dont les côtés soient respectivement paral-
lèles à des droites données.

Que les angles du premier quadrilatère soient désignes par A
A ' , A" , À'" et soient faits

Ang.A X X w = - , Ang.A^ X X / =fi ,

Ang.A' X ' X = *' , Ang.A" X^ X"=/â-' ,

Ang.A" X^X/ = ^ , Ang.A / / /X / /X / / / = J3
// ,

Ang.AwX / / /X / /=-* / / / , AngA XWX = ^ w ;

soit enfin X A 7 ^ ^ ? on aura

A / X / = , .

Sin./S''
=A ; / A / / 7

Sîn./3" â . Sin.15'.Sîn.,ô/' Sin.i8.Sîn./ô
/.Sin./S'/

A X " ' = A ' " A A ^ A w + A / A / /

Sm.flfi Sin.a.Sin.*7 " ' Sin.tf.

Sîn./S.Sîn.^'.Sm.^'.Sïn ^;r' ' . â
— X . • — - — — zz: A A/——S •

Cette dernière équation donne

C Sm 5.Sin.ô/.Sïn.3//.Sîn.5//O

^ Sin.fic.Sin.fis'.Sin.a^.Sin.^' J

A A ' — A ' A " . Sin-a-s;n-3'/-c-:n &'" | t W ; . S i"-av-s ;"- iS/ / /_A»>At

d?où on tire
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A A' Sm.a .SirW .SiiW.SiiW"—-A' A".Sin.*',Sin,3'. Sîn,/3" .Sin.3'"'

4-A'/A'/'.Siii.*'.Sirt.*''7.Sin p>" Sin.3w—-À"'A .Sin.«'.Sin«".Sin.«'".Sin.j$'"

~~ S

Lo problème est impossible si , entre les données , on a la
«eule équation

Mais si Ton a , en outre 5

A A' ,Sin.« .SirW .Sjn.«".Sîn,«'" ) C A'A".Sin.«\Sin./3' .Sin.fl" .SlrM"'

le problème est indéterminé.
S i , en particulier , on a

la première condition est d'elle-même satisfaite , et la seconde
devient

Il faut donc alors que cette condition soit remplie pour que le pro-
blème soil possible ; et , si elle Test en effet, ce problème demeure
indéterminé.

Le procédé est exactement îe même pour les polygones d'un
plus grand nombre de eûtes ? et ne diffère de celui-ci que pour
]a longueur.

Lorsque le nombre des côtés du polygone proposé est impair , le
dénominateur de la fraction qui exprime la valeur de s , au lieu
d'être la différence de deux produits , en est la somme ; et consé-
quent ment il n'y a lieu alors ni à impossibilité ni à indétermination.

Sr/to!ie. On peut réunir , sous un même énoncé , le problème qui
fait l'objet de ce mémoire, et celui qui est résolu à la page n 5 de
ce volume , comme il suit : A un polygone donné 9 inscrire un
pulygone de iiicmc nom dont quelques-uns des cotes passent par
des /•oi/i's donnés de position , et dont les autres soient parallèles
à (hs droites données de position ?
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Deuxième solution ;

Par M. PEKJON , professeur de mathématiques au lycée
d'Angers.g

J'observerai d'abord que , pour que le problème proposé n'ait qu'une
solution unique , il est nécessaire d'indiquer à laquelle des droites
données de position chaque coté du polygone cherché doit être parallèle;
car autrement, m désignant le nombre des côtés du polygone donné,
et conséquemment aussi le nombre des droites données de position ,
le nombre des solutions du problème serait 1.2.3 m.

Soient SjSz et S 2 S } deux cotés consécutifs du polygone donné
( iîg. i l ) 5 et soit X Ï X X le coté du polygone cherché qui répond
à l'angle S2 . Par Sx soit menée S,K2 parallèle à celle des droites
données de position à laquelle XXX2 doit être lui-même parallèle.
Soient S1S1=al , S2K2 = r^ ï S z X 1 = ^rI , S 2 X 2 = y 2 ; nous aurons

Ci b%

— = — ou aly1=l>2x1 ,

et il est clair que, si 772 est le nombre des cotés du polygone proposé >
nous aurons m équations semblables entre les 2m inconnues

yi , y% , yz •> ym •

Nous aurons de plus 5 entre les mêmes inconnues, m autres équa-
tions de la forme xx-\-y 1 — ^1 ? xx-\ry2=.^2 , ce qui sera suf-
fisant pour les déterminer ; et 9 comme ces équations sont toutes du
premier degré , le problème , lorsqu'il sera possible et déterminé %

n'admettra jamais plus d'une solution.
Premier exemple. Pour le triangle 5 les équations seront

do 3i
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d'où on tirera

_

Deuxième exemple. Pour le quadrilatère ? les équations seront

aAyl=blxA 9

d'où on tirera

_

Ces résultats , dont la loi est manifeste y se construiront par des
quatrièmes proportionnelles.

Troisième solution ;

Par M. PLOCHAT , professeur de navigation à St-Brieux.

J'appliquerai seulement le procédé au quadrilatère ; son uniformité
laissant assez apercevoir de quelle manière il peut être étendu à
tout autre polygone.

Scit SïVf/'V'7 le polygone donné ( fi g. 12 ) et soit XXyX/yX//;

le p -ï-ygoie cherche. Soit construit arbitrairement un polygoneÀA/À//A///
f

dont les oius soient respectivenu-ut parallèles aux droites données de
position , et consequ^mment aux ce»tes du polygone cherché , et dont
tous les soiiunets A 9 A ; , A7/

 7 excepte le dernier A / ; / , soient respec-
tivement sur les cotés SS7

 5 S /S / / , S^S777 du polygone donné. Soient
Tu m. 11 39
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enfin INI, N les points où le dernier coté S'"S de ce polygone est
coupé par les directions A"1 A"' et AA'" des cotés de l'angle A'".

A cause des parallèles , 011 aura les proportions

N X'" : A X : : S N : S A ,

A X : A' X' : : S' A : S' A' ,

A/ X' : A"X" : : S" A' : S" A" ,

A"X" : M X"' : : S"'A" :

lesquelles, étant multipliées par ordre , donneront, en réduisant,

NX"' : MX"' : : SN X S'A x S"A'x S'"A" : S A X S'A' X S"A" X S'"M

donc
NX'"—MX'" ou MN : MX"' : :

/xS"'A"—SAxS'A'xS"A"xS'"M : SAxS'A'xS"A"xS"'M

donc

M X ' "=MN

cette valeur de MX / / ; étant construite 9 par des quatrièmes propor-
tionnelles , on connaîtra la position du sommet X / / ;

 ? et alors il sera
facile d'achever le polygone.

Quatrième solution ;

Pau M. PILATTE , professeur de mathématiques spéciales
au lycée d'Angers.

Soit SS7 ( fig. i3 ) l'un des côtés du polygone donné ; soit X
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celui des sommets du polygone cherché qui doit se trouver sur la

direction de ce côté , et soit fait SX=:r.

Soit pris arbitrairement un point A sur la direction SS^ et soit

opéré avec ce peint A , comme on le ferait avec le point X , si , ce

dernier étant connu , on voulait construire le polygone demandé.

Si le dernier côté du polygone construit, à partir de A , venait se

terminer à ce môme point , le point A serait ? en effet 9 le point

cherché ; mais en général ce dernier coté viendra se terminer en un

autre point B de SSX.

Si l'on opère ensuite par rapport au point B comme par rapport

au point A y on déterminera un troisième point C , dépendant du point

B de la même manière que celuî-ri dépend du point A.

Soient faits S A ~ # , SB~Z> , SC~c.

SI Ton prend le point S peur crigïne , et le côté SS/ pour

axe des x , on se cet.vaincra iacia iront que la relation entre les deux

variables a et b doit être du premier degré seulement , et peut consé-

cruemment être représentée par l'équation

pa\<jb-r ; (I)

dans laquelle /?, q , r sont des constantes dépendant delà nature du poly-

gone donné , et de la dirrction connue des culesdu polygone cherché.

Mais , puisque c dépend de b de la même manière que cette

dernière quantité dépend de a , on doit avoir pareillement

pb+qc — r ; (II)

or y sî a eût été pris égal à x , b eût aussi été égal à x ; on doit
donc avoir encore

px~\-(]x~r . (III)

Retranchant successivement de l'équation (III) les équations (I)

et (V1I/ 5 il viendra , eu transposant ,
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équations qui, étant div'sécs membre à membre, donneront

x—a x—b h7—ne
— -,— d où x = _ .

x—h x—c 2u—-(/i-J-t)

expression facile a construire»
Pour plus de simplicité , on peut prendre pour le point arbitraire À

le pointS lui-même; on a alors a~o , et par conséquent

Ce qui réduit la solution du problème à la recherche d'une troisième
proportionnelle à deux l'y ies données.

Supposons qu'on ait pris a<^fs y il est facile de se convaincre
que le nombre des cotes du polygone étant impair, on aura b^cc
et £ < # ; on aura donc aussi a<^b , c<ib d'où a-\-c<zb; ainsi, dans
ce cas , le dénominateur de la valeur de x ne pouvant devenir nul ,
le problème sera toujours possib'e.

Mais, a étant toujours pris < # 5 si le nombre des côtés du po-
lygone est pair , on aura a<x * ^ < ^ , r < ^ r , et il pourra fort bien
arriver qu'on ait a~-\-c~2b, alors le problème sera impossible, à moins
cependant qu'on ait , en outre , ac — b* , auquel cas le problème
cerait indéterminé ; or , des équations

a-\-c~2.b et ac~b% ,

11 est facile de conclure

ainsi > dans le cas d'un nombre de côtés pair y on reconnaîtra que
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le problème est impossible , si le point B se trouve au milieu de
rkilLrvalia qui sépare les points A et C ; et on reconnaîtra qu'il est indé-
terminé 5 si 5 le point A étant pris quelconque, le point B coïncide
avec lai (*)•

Cinquième solution ;

Par M. G E R G o N N E .

ï.° Soit 772 le nombre CQÏ calés tant du polygone donne que
du polygon-5 à construira ; concevons une suite de polygones
P , ly/

 ? P ' 7 , . . . dont les cotes soient respectivement parallèles aux
droites données de position, et demi les m—î premiers sommets scient
sur les m—t premiers côtés du polygone donné ? et soient S", S', S" ,..
les ?/2.mfcS soniinets de ces polygones.

2.° Le lieu des points S , S', S' ' , . . . .est une certaine ligne dont
les intersections avec le m.jnc cota du polygone donné peuvent évidem-
ment être prises pour le m.nie sommet du polygone cherché.

3.° Or P il résulte des considérations développées dans les solutions
précédentes ? et il serait d'ailleurs très-facile de prouver a priori,
par u/ie simple ébauche de calcul , que le problème proposé n?est
que du premier degré; donc le lieu des points S , S' , S " , . . . . ne
peut jamais couper le /7?.nie côté du polygone donné en plus d'un
point ; do tic ce lieu est une ligne droite.

4«° La construction du problème proposé se réduit donc à ce qui
suit : construisez arbitrairement les deux polygones P et P' qui vous

(*) Cette méthode peut , avec quelques mo-ïliicMions cire appliquée à la solution
du problème traité à la pa^e n G de ce volumo. Tl faut seulement alors déterminer
vin quatrième point D , faire SD~d ; posant alors

de p, f , r en^re ces quahe éqi allons donnera les deux valeurs de
x qui résoudront le problème.
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détermineront les deux points S et S' ; en joignant ces deux points
par une droite, l'intersection de cette droite avec le ^2.me côté du
polygone donné sera le rr?.rne commet du polygone cherché.

5.° Si la dro'te 88' est parallèle au /?/.me côté du polygone donné,
le problème sera impossible; s i , au contraire , elle se confond avec
lui ou 5 ce qui revient au même 9 si les sommets S et S7 sont sur
ce /72.me c^te , le problème sera indéterminé.

G.° Si m est un nombre impair , il est facile de voir que les
angles S et S; seront l'un dans l'autre , qu'ainsi leurs sommets ne
pourront se trouver tous d«/u\ ni sur le ;/2.me côté du polygone
don:ie 5 ni sur une droite qui lui soit parallèle ^ et que conséquent*-
ment, dans ce cas , le pr *bleoie sera toujours possible et déterminé.

7.0 Mais il iYen s-.ra plus de m111e si m est un nombre pair 7 parce
qu'alors les angles S et 5 ; ne seront plus l'un dias l'autre»

8.* Cette coaUractnn 5 qui diiiVre peu de celle di ?.l. Pilatte? rentre
dans ce que les arithméticiens aypePent Rèrle de deux fausses
positions. Elle est parfaUcuir-nt aan-ogue à celle que M. Servois
a donnée d'un autre problème à ;a pa3e i i j de ce volume»

LETTRE

De 1\T. DUBOURCUET} , professeur de mathématiques
spéciales au lycée ini^erial 3 aux rédacteurs des
Annales.

3ÏESSIEURS 9

JUERRFUR qui s'est glissée 9 en écrivant la formule logarithmique
q^i se trouve à la page 70 du :».e volume des Annales , et dont
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M* Servoîs fait mention à la page 178 du môme volume 3 étant
corrigée , ma formule en acquiert un plus grand degré de simplicité ;
et , avec la même forme qu'elle avait d'abord , la série conserve toute
sa convergence. On a , en effet, toutes réductions faites ,

J'ai l'honneur, etc. (*)

Paris , le 6 décembre 181 r.

QUESTIONS PROPOSEES.

Problème de Géométrie.

JHL un tétraèdre donné quelconque, inscrire quatre sphères de manière
que chacune d'elles touche les trois autres et trois faces du tétraèdre ?

Problème dAlliage.

Deux vases A et B , dont les capacités sont respectivement a et
b9 sont remplis d'un mélange d'eau et de vin dont la proportion
est connue pour chaque vase. On a deux mesures égales dont la
commune contenance est r , et que l'on plonge, en même temps,
dans les deux vases pour les remplir , après quoi on verse dans
chaque vase le liquide tiré de l'autre. On reitère la môme opération

(* ) II est Lion vrai qu'an move.i de celle petite transformation, la série , en
se spîipiifrint , reprend sa forme primitive et , avec elle, toute sa convergence, si
du moins, comme on le t'ait assez, suivent, on veut ju^er de la convergence d'une
sJrliî par le rapport de deux termes constcutiis quelcon'jues. Mais &i, au contraire, et
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n fois consécutivement ; et on demande quelle sera alors la propor-
tion de Peau et du vin dans chaque vase ?

cela paraît tout ausM naturel, on veut estimer le degré de convergence des séries par
le nombre de leurs ternies qu'il faut employer pour parvenir à u.:e approxima-
tion donnée , l'assertion de M. Servois est exacte. Les termes de la première

x—*
téne n'étaient, en effet, multipliés que par , tandis que ceux de la nour

x
x-—I

vclle le sont par — y quantité nécessairement plus grande que la première,
x

si , comme l'exigent les usages de la formule , oz est plus grand que l'unité.
Il est donc vrai que la formule, en se modifiant, a un peu perdu, sinon de

ta convergence, du moins de sa faculté approximative, et c'est là sans doute ce
qu'a \oulu dire M. Servois.

Mais la formule do M. Duhourguet, ainsi modifiée n'en est pas moins très-
précieuse, parce qu'elle conserve toujours les avantages indiqués dans la note de
la page 70 de ce volume.

( Note des éditeurs. )
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STATIQUE.

Recherche directe et rigoureuse des centres de gravité
du triangle et du tétraèdre ;

Par M. GERGONNE.

la Correspondance sur T école polytechnique (*) ? M. Berthof y

professeur au lycée de Dijon , a présenté la recherche des centres
de gravité du triangle et du tétraèdre , dégagée de toute considéra-
tion d'infiniment petits et de limites. Sa méthode ne laisse rïen à
désirer du côté de la rigueur; mais c'est une réduction à l'absurde
qui , comme toutes les démonstrations de ce genre , a l'inconvénient
de supposer que l'on sache déjà à l'avance à quel résultat on doit
parvenir. Le but que je me propose ici est de traiter les mêmes
questions par des méthodes directes qui me semblent plus simples
et non moins rigoureuses que celles de M. Berthot.

AXIOME. Les centres de gravité des triangles et des tétraèdres
semblables sont des points homologues de ces triangles et de ces
tétraèdres. (**)

(*) Tom. 1, n.° 7 , pag. 22g.

(**) A l'exemple d'ARCHiMEDE , j'ai cru pouvoir admettre cette proposition au
nombre des Axiomes ; mais , si l'on en jugeait autrement, on pourrait la remplacer
par la suivante qui se démontre facilement.

LEMME. Les distances des centres de gravité de deux triangles ou de deuos
tétraèdres semblables , aux bases de ces triangles ou tétraèdres y sont proportionnelles
à leurs hauteurs,

.Yoici de quelle manière peut se démontrer cette proposition,

Tom* II* 4°
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PROBLÈME. Déterminer le centre de gravité dt Faire d'wt

triangle quelconque ?

I. Soient 11 et h les hauteurs de deux triangles semblables; soient » , 0, les
angles dco bases de ces triangles ; soient enfin G et g les hauteurs respectives de
leuis centres de gravité au-dessus de ces bases.

H, ^ , j3 , étant donnés , le premier de ces deux triangles est absolument déter-
miné ; son centre de gravité l'est donc aussi ; il en doit donc être de même de
la distance G de ce point à la base du triangle ; le rapport de celte dislance à sa
hauteur doit donc être également déterminé ; et conséquemment on doit avoir ,
au plus 9

Q désignant? une fonction encore inconnue, mais absolument déterminée.
Or , il est impossible que 7f, qui est une ligne, entre dans le second membre

4e celle équation , puisqu* alors cette ligne se trouverait être seulement fonction de#

deux angles * , £ 5 et du nombre abstrait — . On doit donc avoir simplement

en aura donc pareillement, pour l'autre triangle 9

h f
— Z=. Ça ? /3) $
S

4'où on conclura

IL - L
l ï . Si II et k sont les hauteurs de deux tétraèdres semblable» dont C et g soient

les hauteurs respectives des cenlres de graviié au-dessus des plans de leurs bases ;
en di'Mpiant par ce, /3 , deux des angles de ces bases , et par y , ^ , g, les angles
flXL1' s qi:p les trois autres faces forment avec elles ; par un raisonnement sem-
î hilAc cx\ préctdc.A on prouvera que , bien que la détermination complète des deux
t»'fr.t»..lres exi^e que l'on cunnai-se , outre les cinq angles # 5 ^ ? yy à^i, leur»
huutcLirs H t t h , on doit n/âamoiùs avoir



DE G R A V I T E . 291
Solution. Soit ÀBC ( fig. 1 ) un triangle dont on cherche le

centre de gravité ; soient m , n ^ p les milieux de ses côtés. En
joignant ces points par des droites , on divisera le triangle donné
en quatre autres qui lui seront semblables, et dont les dimensions
seront moitié des siennes.

Soit pris AB pour base du triangle donné , et soient pris ses
homologues A/?, /?B , nm 5 mn*> pour bases des triangles résultant
de sa décomposition. Soient T Faire du triangle donné , H sa hau-
teur et G la distance de son centre de gravité à sa base ; soient
t 9 h ? g } les quantités analogues ? pour l'un des petits triangles ; on
aura ( Axiome )

T~4t , H=2h , G = 2g.

Remarquons présentement que les distances des centres de gravité
des deux triangles knp et pmH à la droite AB sont également g;
que celle du centre de gravité de mpn à cette droite est h—g ; et
qu'enfin celle du centre de gravité de nCm à la môme droite
est h+g-

Si donc on prend AB pour axe des niomens 5 on devra avoir

TG = tg+tg+t(h--g)+t(h-\-g) = 2%-+-/,) ;

d'où

donc

$G=H d'où: G=\IL

Ainsi , La distance du centre de gravité de Paire d'un triangle
à la base de ce triangle est le tiers de sa hauteur ; d'où il est
aisé de conclure que ce centre se trouve à Vintersection des droites
qui joignent les sommets du triangle aux milieux des cotés opposes.

LEM31JE. Le centre de gravité du volume d'un octaèdre, régulier
ou non régulier % mais dont les faces opposées sont des triangles
égaux ayant leurs plans parallèles y est à son centre de figure ;
c'est-à-dire , au milieu de la droite qui joint deux sommets opposés
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quelconques ; ou encore à riniersection des trois plans qui divisent

Voctaèdre en deux pyramides quaclrangulaires égales ; d'où il suit

que la distance de ce centre à lune des faces de Voctaèdre est

moitié de l'intervalle qui sépare cette foce de celle qui lui est

opposée.

Démonstration. Il est aisé de se convaincre , en efFet 9 que l'oc-

taèdre dont il s "agit ici est symétrique par rapport à trois plans passant

par le point que nous assignons comme sou centre de gravité. (*)

PROBLÈME. Déterminer le centre de gravité du volume d'un

tétraèdre ?

Soit ABCD ( fig. 2 ) un tétraèdre dont il s'agit de déterminer

le centre de gravité. A la moitié de la distance entre ses sommets

et les faces opposées soient conduits des plans parallèles à ceux de

ces faces ; ces plans en détacheront quatre tétraèdres qKnp, rpmh ,

snCm , Dqsr ? qui lui seront semblables, et qui, ayant leurs arêtes

moitié des siennes , auront chacun le 8.me de son volume. Ces

tétraèdres enlevés , il restera un octaèdre mnpqrs ? ayant ses faces

opposées égales et parallèles , et un volume moitié moindre que celui

du tétraèdre proposé.

Soit prise ABC pour base du tétraèdre ABCD, et soient prises pour

bases des quatre petits tétraèdres les faces homologues à celles-là.

Soient désignés par T le volume du tétraèdre proposé , par / / sa

hauteur, et par G la distance de son centre de gravité au plan de

sa base. Soient désignées par t, hv g les quantités analogues, pour

chacun des petits tétraèdres ; et soit enfin désigné par 0 le volume

de l'octaèdre ; nous aurons ( Axiome )

T-St , 0=4/ , H=zh , G-2g.

Remarquons présentement que la dislance du centre de gravité de

chacun des petits tétraèdres qknp > rpm¥*, snCm au plan ABC est g ;

que celle du centre de gravité de Dqsr à ce plan est g~\~h \ £t

(*) Voyez le tome i.er des Annales, page 355 et suisantes.
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qu'enfin celle du centre de gravité de l'octaèdre au môme plan est
( Lemme ) égale à ^ .

En prenant donc ABC pour le plan des momens, on devra avoir

donc

ou

d'où

Ainsi, la distance du centre de gravité du volume d'un tétraèdre
au plan de sa base est le quart de sa hauteur ; d'où il est facile
de conclure que ce centre est situé à Vintersection des droites qui
joignent les sommets du tétraèdre aux centres de gravité des aires
des faces opposées ; et 5 par suite , qu'il est situé au milieu de la
droite qui joint les milieux de deux arêtes opposées quelconques. (*)

QUESTIONS RÉSOLUES.
Solution du dernier des deux problèmes proposés à la

page 196 de ce volume ;

Première solution ;

Par M. LHUILIER , professeur de mathématiques à l'académie
impériale de Genève.

§• ' •

JLJEM3IE. L Trouver deux droites dont on connaît le rectangle et
la différence des carrés ; ou , déterminer un triangle rectangle dont on

(*) Vojes la Correspondance sur Vécole polytechnique > tome 11 , n.° a>
page 96.
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connaît tine des jambes de l'angle droite et le rectangle de Thypothénuse
par Fautie jambe de 1 angle droit ?

Soit ABX ( fig. 3 ) un triangle rectangle dont on connaît .une
des jambes AB de l'angle droit ^ et te rectangle de l'hypothénuse
ÀX par l'autre jambe BX de l'angle droit ; on demande ce triangle.

Que le rectangle donné AXxBX soit égal au rectangle du côté
donné AB par une droite L ? en sorte qu'où ait AXxBX—ABxZ ;
oa déduira de là

AX :AB -L :BX ,
et
d'où

Soît conçue la droite XZ perpendiculaire à AX et qui rencontre
en Z le côté AB prolongé, on aura

AX2=ABxAZ , BX a =ABxBZ ;

donc

AZ:Z=Z:BZ ;

donc on connaît la différence AB et le rectangle Z2 des deux droite*
AZ et BZ ; donc ces droites sont données.

Construction* Que le côté ÀB soit prolongé en Z , de manière
que le rectangle AZxBZ soit égal au carré de la droite donnée L»
Sur AZ , comme diamètre, soit décrit un demi-cercle dont la circon-
férence rencontre en X la perpendiculaire à AB élevée depuis le
point B ; en menant AX , le triangle AXB sera le triangle
demandé.

En appliquant le calcul à cette construction > on trouve d'aJbord

tt ensuite

X2 = AB t
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Remarque. On peut traiter ce problème d'une manière puremeni

algébrique comme il suiu
Soient

les équations du problème seront

ajoutant au carré de la première le quadruple du carré de la se-
conde 9 il Viendra , en extrayant la racine quarrée de l'équatioi
résultante ,

mais on a **"""y1— à* jj
«lonc

S- 2.

LL3IME. JL Soient deux droites parallèles entre elles , données
rie paillon ; et soit un point donné de position , sur le plan de
ces droites. Oh demande , sur Tune des parallèles , un point duquel
menant deux droites perpendiculaires entre elles , dont une passe
par le point donné , et dont l'autre soit terminera la seconde des
p̂ r&Hèles données, la différence des carrés de ces droites soit donnée?

Soient ^ A ' , BB' , ( fig. 4 ) deux droites parallèles entre elles,
données de position ; et soit P un point donné sur le plan de ces
parulLlcs. On demande , sur l'une de ces droites , telle que AA' f
un point X , duquel menant deux droites, Tune XP au point donné
P 5 et l'autre XZ 9 perpendiculaire à XP , et terminée en Z à l'autre
Tcrdkle : îa daT^rence des carres de XZ et de PX soit donnée de

L:os points P et Z soient abaissées sur AA' î-ns perpendiculaire*
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PA et ZY. L'angle PXZ étant supposé droit, les angles PXA, ZXY,
valent ensemble un angle droit, et partant les triangles PXA , XZY
sont equiangles ; donc

PA:AX = XY:ZY ou A P x Z Y = A X x X Y .

Mais les droites PA et ZY sont données de grandeur ; donc le
rectangle AXxXY est aussi donné de grandeur.

Or, PX2 = APH-AXJ ,
et XZ- = ZY'-f-XYl ,
donc XZ'-PX'^ZY'—AP'j+fXY1—AX1) .

Donc, on connaît le rectangle des droites XY et AX , et la dif-
férence de leurs carrés ; donc ( Lemme 1 ) ces droites sont l'une e*
l'autre connues.

§.3.

PROBLÈME. Couper un prisme triangulaire donné par un plan ,
de manière que la section soit donnée d'espèce ?

Soit B ( fig. 5 ) un point donné , sur l'une BB7 des arêtes d'un
prisme triangulaire , dont les deux autres arêtes sont AAX

 ; CC. On
demande de couper ce prisme par un plan passant par D 9 de manière
que la section soit donnée d'espèce ?

Soit BXY la section cherchée.
Analise. Du point B soit abaissée sur le plan de la face opposée

la perpendiculaire BP* Du point P soit abaissée sur la commune
section XY de cette face et du plan cherché la perpendiculaire PZ ;
et soit menée BZ. La droite BZ sera la hauteur de la section, en
prenant XY pour base et B pour sommet.

Le triangle BXY étant donné d'espèce, le rapport de XZ à ZY
est connu , et partant le point Z appartient à une droite donnée de
position 5 parallèle à Kh! et CC/ , et sur le plan de ces droites ;
soit cette droite DD7.

Le rapport de XZ à BZ est aussi donné ; et partant si 5 sur la
droite XZ , on conçoit portée une droite ZY égale à BZ , le point

V
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V appartiendra aussi à une droite donnée de position, parallèle à D D ' ,
et toujours dans le plan de AA' et C C Soit EE 7 cette droite.

Cela posé , la différence des carres de BZ et PZ est égale au
carré de la droite donnée BP ; donc aussi la différence des carrés
de ZVet de PZ est égale au carré de la droite donnée BP ? et les droites
PZ et ZV sont l'une perpendiculaire à l'autre ; donc ( Lemme ) ces
droites sont déterminées. De là découle la construction suivante :

Construction. Du point B soit abaissée sur la face opposée une
perpendiculaire BP. Sur cette face soient déterminées deux droites (paral-
lèles aux arêtes du prisme ) telles que, menant une droite quelconque sur
le plan de cette face, les parties de cette droite ? comprises entre la première
parallèle et les deux arêtes, soient entre elles dans le rapport donné desseg-
mens faits sur la base de la section , par la perpendiculaire abaissée de son
sommet sur cette base ; et que la partie de la même droite ? comprise entre
ces deux parallèles, soit à la partie de cette droite comprise entre
la première et l'une des deux arêtes dans le rapport donné de la
hauteur du même triangle au segment correspondant de sa base. Que
DD' et JEE/ soient ces deux parallèles. Soit déterminé sur la première
( Lemme 2 ) un point Z tel que , menant de ce point deux droites
perpendiculaires entre elles , Tune ZP , terminée au pied P de la
perpendiculaire BP , et l'autre ZV , terminée en V sur E E ; , la
différence des carrés de ces deux droites soit égale au carré de la
perpendiculaire BP. La section XBZ qui passera par le point B et
par la droite Z V , sera la section cherchée.

§. 4-

Application au prohlème proposé. Que la projection donnée d'es-
pèce soit prise pour base d'un prisme droit ; soit coupé ce prisme
par un plan , de manière que la section soit semblable au triangle
donné. La base du prisme et la section sont entre elles comme la
projection demandée du triangle proposé est à ce triangle.

Corollaire* Un parallélogramme étant proposé, on peut le projeter
Tom. Il 41
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crthographîquement , de manière que sa projection soît un autre
parallélogramme donné d'espèce. En particulier, on peut projeter un
parallélogramme orthographiquement ; de manière que sa projection
soit un carré.

On peut recliercher immédiatement les angles que les côtés BX et BY
font avec l'arête BB ; , et partant l'inclinaison des plans du triangle
projeté et de sa projection orthographique donnée d'espèce.

Que les côtés BA. et BC de la section perpendiculaire aux arêtes
adjacents au point B soient désignés par a et c ; que l'angle compris
soit designé par £ ; que les angles B'BI'C et B'BY soient désignés
par x et par y; que l'angle B du triangle XBY soit désigné par b ;
qu'enfui le rapport des côtés BX et BY soit celui de a à y ; on

aura

donc
a:c=zaS\n.x:yS\n.y d'où cS\n.x=

donc

Sin.yrz-lsin.^ , Cos.j= 1/ x_fL. $m*x .

Or9 dans l'angle solide triangulaire formé en B 5 par les angles
B'BX , B^BY , XBY , on a

Cos. b—Cos.xCos.r
: r .

Sia.jcSin.j*

^Iettant pour Sin.y et Cos.j leurs valeurs et chassant les dénominateurs,
il viendra

dégageant celte équation de l'irrationnalUé , et mettant pour
sa valeur i—Sin.2jr , elle deviendra , toutes rédactions faites 9

£25iii.a.s5ui.*ar—(c*—2
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on obtiendra de même ?

y * S i n . 2 / 3 S i n . 4 / — < y 2 ( c 2 — ) y \

Lorsqu'on a déterminé les angles x et y 9 on a déterminé les
rapports des dimensions du triangle à projeter et de sa projection .
partant aussi on a déterminé le rapport des surfaces de ce triangle
et de sa projection. O r , ce rapport est celui du sinus total ^au.cosinus
de l'inclinaison de leurs plans entre eux j partant cette Inclinaison
#st connue,

§• 6

Le problème qui fait l'objet du Lemme premier est un cas par-
ticulier d'un problème plus général , dans lequel l'angle B ̂ u lieu d'être
droit est un angle quelconque.

Ce problème général est solide. Je vais en exposer la solution
par l'intersection du cercle et d'une parabole.

Soit ABX un triangle ( fig. G ) dont on connaît un côté AB ,
un angle B sur ce côté ? différent d'un droit s et le rectangle des
deux autres côtés AX et BX , on demande ce triangle.

Soit Ab perpendiculaire à BX ; et que le rectangle donné soit égal
au rectangle de la perpendiculaire Ab par une droite / donnée de
grandeur.

Puisqu'on a

AXxBX=A£x/,
on doit avoir

AX:AJ=/:BX d'où
donc

AX2—A£*:AJa=/a—BX2:BX*

eu bX*:\b* = l*—BX2:BX2 .

Du point B comme centre ? avec le rayon / soit décrit un cercle ;
et que la perpendiculaire élevée à BX depuis le point X rencontre
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en Y la circonférence de ce cercle ; on aura l*—BXf = XYa ; dont

d'où ;

donc le point Y est à une parabole dont B3 est une double coor-
donnée de l'axe , et dont le paramètre est la perpendiculaire Kb.

Rem arque* La parabole qui passe par le centre B du cercle dont
le rayon est / , coupe toujours en deux points ? au moins , la circon-
férence de ce cercle ; mais elle peut aussi couper cette circonférence
en deux autres points , ou la toucher en un point ou ne la rencontrer
en aucun autre point. Au cas du contact répond une limite , en
petitesse 9 du rectangle proposé. Comme ce problème est seulement
accessoire au but principal de ce mémoire 9 je ne crois pas devoir
insister sur la discussion de ces différens cas.

Ce dernier problème 5 envisagé algébriquement , conduit à une
équation du quatreme degré,

Soit AB = # ? et que l'angle B soit désigné par <p. Soit BX = ^ ,

le rectangle donné est %\/x~—zau;L;u$.<p-\-a'i • que ce rectangle soit
p2 , on a l'équation

cette équation a au moins deux racines réelles.

Deuocième solution ;

Par M. D. ENCONTRE , professeur, doyen de la faculté des
sciences de racadémie de Montpellier ;

I. Soit ABC ( Kg. 7 ) le triangle qu'il s'agit de projeter , ses
projections sur tous les plans parallèles à celui sur lequel on le projetera
seront toutes égales. Nous pouvons donc supposer que le plan de
projection passe par tel point qu'il nous plaira de choisir ; et nous choisi-
rons le point A*
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II. Soit menée AE parallèle à BC , les angles CAE et ACB seront

égaux et les projections de BC et AE seront parallèles. Si donc nous
parvenons à projeter AB , A C , AE ,de manière que leurs projections
forment des angles donnés , les projections de AB 9 AC , BC for-
meront aussi des angles donnés; d'où il suit que la question se réduit
à trouver un plan sur lequel projetant orthogonalement deux angles
adjacens donnés, compris dans un même plan , leurs projections soient
des angles donnés. (*)

III. Soient BÀ.C , CAD ( fig. 8 ) les deux angles adjacens pro-
posés ; prenons , à volonté ? la longueur AB 5 et par B concevons %

dans le plan BAD 5 une droite BCD , parallèle à la commune section
ÂE des deux plans ; la direction de cette droite n'est pas connue.

Soient menées A F , perpendiculaire sur BD ; puis Bb ? F/*, C*?, Dd
perpendiculaires sur le plan de projection ; ces perpendiculaires seront
égales 9 et auront leurs pieds sur une même droite hd parallèle à BD.

Joignons Kb , A/*, A^ 9 Ad , les angles AbB, A / F , AcC, AdD
seront droits , A / sera perpendiculaire à bd qui est parallèle à BD ;
ainsi les droites FA et fA étant toutes deux perpendiculaires au
même point A de la commune section AE des deux plans , l'angle
linéaire FA/* qu'elles formeront mesurera l'angle formé par ces deux
plans.

IV. Faisons l'arbitraire A B = i ; faisons en outre Sin.BAC=* ~%

Toutes ces quantités sont connues.

Faisons encore Bb=¥f=Cc=Dd~x , et Sîn.ÀBD==y.
Ces quantités sont inconnues.

(*) Le problème envisagé de cette manière revient à celui-ci : Etant donhèeê
les différences tant des longitudes que des ascensions droites de trois points de
Vècliplique , déterminer son inclinaison à Vèquateur et le lieu de Vèquinoxe ?
Les deux angles à projeter sont les différences entre les trois longitudes ; lei
angles que doivent former leurs projections sont les différences des ascensions droites ;
•nEa l'inclinaison des deux plans est l'obliquité de l'écliptique.

( Note des éditeurs. )
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On a

Sin.ADB=Sin.(BAD+DBA) = i a v / l — J 3 + ) V i — ^ = Q ;
en fa'sant donc entrer P et Q dans le calcul , nous n'introduirons
pas de nouvelles inconnues.

V. d'après cela on a
Sin.ABF F/ *

^ p — ~ j ^ Sin.FA/=: —- = — ,

- AF
 = Z.

" Sin.ACF P '

AF _ y

Sin.ADiî Q ' v

VI. Il ne s'agit plus maintenant que de trouver .deux ëquations
entre les deux inconnues x et y. Or , on sait que les aires des
triangles BAC , BAD multipliées par le cosinus de l'angle FA/*doivent
donner pour produits les aires des triangles l/Ac , b&d ; on sait
d'ailleurs que

BAC=;ABxACxS;n.BAC ,
b&c—\Kb xAc xSin. bkc ,
BAD=-fABxADxSin.BAD ,
bhdz= *-kb XiU xS'm.bAd ,

donc

On peut simplifier ces équations ; mais l'équation linale à laquelle
on parviendra > en éliminant, sera nécessairement très-compliquée.



RÉSOLUE S.

Troisième solution ;

Par M. TEDENAT , correspondant de la première classe de
l'Institut, recteur de l'académie de Nismes.

Soit ACB le triangle à projeter 9 ( fig. 9 ) et supposons , ce qui
est permis , que le plan de projection passe par le point C ; soit CD
l'intersection du plan de cette projection avec le plan du triangle ACB;
des points A et B soient abaissées , sur le plan de projection ? les
perpendiculaires AA" , BB" ; en joignant CA" , CB" , A^B" 5 le
triangle A^CB" sera la projection du triangle ACB , et les prolon-
gemens des droites AB , A / /B / / devront rencontrer en un même
point D 1 intersection des plans des deux triangles. Soient enfin pro-
longés les droites CA7/ , CB/X en A ; et B ; , de telle sorte que CA7 ,
CB/ soient respectivement égales aux deux cotés de l'angle égal à C
dans le triangle donné d'espèce auquel la projection de ACB doit
être semblable. En joignant A / B / , cette droite sera parallèle à A^B7^
et A /CB / sera ce triangle donné d'espèce*

Les triangles ACB, Â /CB / étant donnés , posons

3 , Ang.ACB=y , A B =c

CA/=a' , CW^b' , Ang.A/CB/^y/ ; A/B/=c/

en désignant par x le rapport inconnu entre les côtés homologues
des deux triangles A/CB/ , A^CB" s on aura

on aura de plus

Aire de A C B = ^ S i n . y , Aire de À"CB"= f ^a'h

Si donc l'on désigne par • l'inclinaison des deux plans , on aura t

eomme Ton sait

.yCos.è (I)
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Présentement 5 en faisant A\^=j:, BB / /=jr, les triangles rectangles

AA^Cet BBy/C , et le quadrilatère bi-rectangle AA^B^B donneront

a,*•=(? — >?a'* , y*=b* — x*b/% ,

(x—})2 = 6 - - A V > ;

La dernière de ces équations étant retranchée de la somme de deux

autres, il viendra

ou en divisant par 2 et qnarrant

égalant cette valeur de x2y2 à celle qui résulte de la multiplication

des deux premières équations, en changeant les cosinus en sinus #

il viendra

substituant enfin pour xz sa valeur donnée par l'équation (i) p

on aura

Cette équation donnera , étant résolue , la valeur de Cosê. (*) d5o

(*) En posant, pour abréger ,
a2b'2—za

•Toi\
^23/a—2flfl'3A/Cos.yCos.y'4-.y;!ôî= f

2fltfWSin.yCos.y=7 (M-—AT^) •

ks valeurs de Cos.d prendront cette forme tiès-simple

(M ± y)*_ MrtlST

er , comme l'adoption des signes supérieurs conduirait à l'absurdité Cos»0> 1 % *l
faudra simplement écrire

ce <jui fournit cette constructlori très-remarquable ; :
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on conclura celle de A , au moyen de l'équation (I) ; alors on aura
vc et y p a r ^es équations

on pourra donc connaître l'angle BCB" ; cet angle étant déterminé ,
l'angle trièdre rectangle dont les a*\ les sont CB"9 CB , CD donnera

bin.ê

et on aura enlin 9 dans le même anyle trièdre

alors on pourra sans peine construire la situation respective des deux
triangles ÀCB et A^CB" sur le développement de l'angle drièdre formé
par leurs plans.

Quatrième9 Cinquième et Sixième solutions ;

Par MM. PILATTE et PENJON , Professeurs de mathémati-
ques au lycée d'Angers ; et MM. HOCHÂT et LEGRÀKD ,
professeurs à Saint-Brieux.

La marche de M. Penjon diiTère peu de celle de M. Tédenat,
si ce n'est qu'il prend pour inconnue le coté CÀ", ce qui le con-
duit à une équation du quatrième degré se résolvant comme une
du second.

H Cherchez une moyenne proportionnelle entre CA et CBr , et une autre entre
v CB et CA' ; faites de ces deux lignes deux eûtes de deux triangles , dont l'an-
w gle compris soit pour l'un la somme et pour l'autre la différence des deux
» angles ACB et A;CBr ; si alors vous construisez un triangle rectangle dont l ' inpo-
v ihénuse soit la somme , et un côte de l'angle droit la différence des troisièmes
v côtés de ces triangles , l'angle opposé à l'autre côk' de l'angle droit dans ce înaugte
a» rectangle , mesurera l'inclinaison des deux plans, tt

( Note des éditeurs* )

Tom. IL 4-
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M. Pllatte traite la question par la géométrie analîtîqiiô, en prenant

le pian de projection pour le plan des xy et le point C pour origine
des coordonnées rectangulaires; II ne se permet, au surplus, d'autres
simplifications que de prendre pour plan des xz le plan même du
triangle AÀ / 7C Prenant alors pour Inconnue la coordonnée CA;/ du
point A , ce qui rentre dans le système de M. Penjon , il parvient,
comme lui 5 à une équation du quatrième degré se résolvant comme
une du second , et à l'aide de laquelle il construit les projections du
triangle ACB sur les plans des xz et des xy. Nous ferions connaître
ses constructions3 beaucoup plus simples que la forme de l'équation
ne semble le promettre , si nous n'avions à indiquer bientôt une
méthode très - élégante pour résoudre le problème ? par des consi-
dérations purement géométriques.

MM. Rochat et Legrand ont réduit la question à chercher la direction
des arêtes latérales d'un prisme droit triangulaire ayant pour base
supérieure le triangle a projeter, et pour base inférieure la projection
de ce triangle. Soient donc ( fi g. 10 ) ACB la base supérieure de
ce prisme 5 A /C /B / sa base inférieure , et soit fait passer par C un
plan aCb parallèle à cette dernière. Soient AngACC'^o^An

Àng.ACB = y, Ang.À'C'B'=V,~=!rc , ^ = **'; l'angle trièdre

dont les arêtes sont CA, CB , CC7 donnera

les deux triangles rectangles CaA. , GZ>B donneront ensuite Ca on
C /A / = CASin.»r et Qb ou C /B /~CBSin.y ; d'où Ton conclut 9 par

S'in.x t

division 3 m
/=m * y c est-à-dire ^

bin.y

au moyen de cette équation et de la précédente , on trouve facilement,
soit pour Sin.^r , soit pour Sin.y, une équation du ^.Jlie degré se
résolvant comme une du second.
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Septième solution ;

Construction géométrique du problème ;

Par M. VECTEN , professeur de mathématiques spéciales
au lycée de Nismes.

LEMMEI. Si plusieurs triangles semblables ACB, KfC/Bf ( % 11 )
ont leurs angles homologues C, C7 inscrits au môme arc aC;Cb , et
que , dans chacun d'eux , on mène la droite CM , W&V qui joint le
sommet C , _ C au milieu M , M' du côté opposé AB ? AyB; ; les
prolongemens des droites CM , C /M / iront tous concourir en un même
point m ? sur la circonférence dont l'arc aG'Gb fait partie.

Démonstration* Dans les triangles semblables 9 les droites qui
joignent les sommets homologues aux milieux des côtés opposes
étant des lignes homologues, doivent faire des angles égaux avec leurs
côtés homologues ; les angles bCM et iC /M / sont donc égaux , et
doivent conséquemment comprendre des arcs égaux entre leurs côtés :
puis donc que ces arcs ont une extrémité commune b et vont dans
le même sens , Ils doivent se terminer à un même point 772.

Corollaire. Il suit de là que 9 le triangle ACB étant seulement
donné d'espèce , et inconnu ^ tant de grandeur que de situation par
rapport à la corde ab , il est néanmoins possible de déterminer le
point m où Tare #772̂  est rencontré par la droite CM menée de
son sommet C au milieu M du côté opposé AB ; il suffit en effet,
pour cela, de déterminer le point 772 pour un autre triangle hJQW
arbitrairement construit semblable à celui-là , et ayant son angle C / ,
homologue à C ? inscrit comme ce dernier à l'arc aOb.

LEMME IL Soient deux cercles ( fig. 12 ) ayant la droite ah
pour corde commune ; soit un troisième cercle ayant son centre O
sur ab, et coupant les deux premiers en 772 et m/ et la droite ah
en p et q j soient menées mp et mfp , prolongées jusqu'à la *en—
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contre des deux circonférences en C et C ; ; soit enfin menée CC/
coupant ah en > ; il s'agit de prouver que CU est perpendiculaire
à ah.

Pour le démontrer, soît d'abord menée mm/ ; par les propriétés
. des cordes qui se coupent dans le cercle, on aura, à la lois,

pC Xpm —paXpb
d'où pCXprn=pC/Xpm/ ;

pO Xpmf—pa Xpb

donc les triangles CpQf et mpmf sont semblables, d'où il suit que
l'angle C , égal à l'angle mf , est mesuré par la moitié de Tare pm ;
mais d'un autre coté, l'angle ypG 9 égal à mpq , doit être mesuré par
la mcitîé de l'arc mq ; donc, dans le triangle (Zyp , la somme des
deux angles C et p est mesuré par la moitié de la demi-circonference
pmq ; cette somme vaut donc un angle droit ; ce triangle est donc
rectangle en y et par conséquent CC/ est perpendiculaire à ab.

Corollaire, Si donc on proposait ce problème : » Deux points m
*> et mf elant donnes sur deux circonférences ayant une corde com-
*> mune ah ; déterminer , sur cette corde ab 9 un point p par lequel
» et par chacun des points m et m/ menant les cordes ?nC et m/C/

 9

» la droite C C soit perpendiculaire à ab ? » II faudrait , pour le
résoudre v décrire un cercle dont le centre fut sur ab , et dont la
circonférence passât par les points m et rn/ ; chacune des intersections
p et a de cecte circonférence avec la droite ab pourrait être prise
pour le point cherché.

PROBLEME. Deux triangles ciant donnés > déterminer sur quel
plan il faut projeter orthogonalement le premier > pour que sa pro-
jection si it semblable à l'autre; construire de plus cette projection
ainsi que Vinclinaisoji des deux plans ; et déterminer 5 en outre , la
situation du triangle et celle de sa projection par rapport à la commune
section de ces deux plans ?

Analisc. Concevons que le problème soit déjà résolu, Soient ABC
( iig. i3 ) le triangle à projeter , A /B /C / sa projection 9 semblable
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à un triangle donné 5 et ab l'intersection de leurs plans. Soient M
et W les milieux de ÀB et A7B7 ; M7 sera la projection de M, et
il est clair que CA, CM 5 CB prolongés iront concourir aux mêmes
points a , /?, £ de tf£, avec les prolongemens de C'A7. COI 7 , C /B /.
Soient enfin menées A A/ , BB7, CC7 , perpendiculaires au plan de
projection, et A« , B,â5 Cy perpendiculaires à ab ; en menant A7*,
B7/3 9 OV , ces droites seront aussi perpendiculaires à ab.

Concevons présentement que Ton fasse tourner le plan du triangle
ÀCB autour de la commune section ab -> jusqu'à ce que ce plan
soit devenu le même que celui du triangle A /C /B / , comme on le voit
( fig. i4 ); dajis ce mouvement., les points a ? p , h> *, £, y demeure-
ront immobiles , et les droites A« , B/3 , Cy , ne cessant pas d'être
perpendiculaires à ab , deviendront les prolongemens de A7^ , B7/3 ?

C7y. Quant à la longueur de ab 9 comme toiit plan parallèle à celui
de A7B7C7 peut être pris , comme lui 9 pour le plan de projection ,
II s'ensuit que cette longueur est tout à fait arbitraire.

De cette analise découle naturellement la construction suivante.
Construction* Sur l'arbitraire ab ( fig. i4 ) soient décrits , de

diflerens cotés , des arcs capables de deux angles correspondais C
et C7 tant du triangle à projeter que de sa projection. Sur les parties
restantes des deux circonférences , soient déterminés ( Corollaire du
Lcmme i ) les points m et m/ où ces arcs seraient rencontrés par
les droites joignant les sommets C , C7 aux milieux des cotés opposés.
Soit enfin déterminé sur ab ( Corollaire du Lcmme 2 ) un point p
par lequel et par les points m et m/ menant aux deux cercles les
cordes mC et /?27C7, la droite CC7 soit perpendiculaire en y sur ab ;
alors C et C7 seront les sommets cherchés : formant donc sur l'angle C
un triangle ACB égal au triangle à projeter et' abaissant des points
A ? B 9 sur ab des perpendiculaires A* 9 B<3 prolongées jusqu'en A7

et B7 à leurs rencontres respectives avec C7# et C7£, le triangle A'C/B'
sera la projection demandée. Quant à l'inclinaison des deux plans,,
elle sera l'angle aigu d'un triangle rectangle compris entre une
hypothénuse égale à >C, et un coté de l'angle droit égal à yC\
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Comme le problème de la détermination du point p a deux so-

lutions ( fîg, 12 )> savoir le point p et le point q, on pourrait croire
que le problème propose en a deux aussi ; mais, en exécutant l'opéra-
tion sur le point q , on se convaincra facilement que le triangle rec-
tangle qui doit donner l'inclinaison des deux plans ne peut être construit^
de manière que le problème n'a jamais qu'une solution au plus.

Ce problème serait même impossible si la projection de Y un des angles
du trïmg'e à projeter devait être égale à cet angle même; à moins
cependant que lei projections des deux autres ne dussent aussi leur
être égales; auquel cas les deux plans devraient être parallèles 5 et la
situation du triangle à projeter indéterminée sur l'un de ces plans. (*)

Démonstrations du théorème de géométrie énoncé à la
page 196 de ce volume ;

Par MM. ENCONTRE , FERRIOT , LEGRAND , PÔUZIN , PENJON ,

LEHAULT , BRET , LABROUSSE et ROCHAT,

JLLNONCÊ. Dans tout quadrilatère> plan ou gauche, la somme
des quarrès des deux diagonales est double de la somme des quarrés
des deux droites qui joignent les milieux des côtés opposés.

Les démonstrations de cette proposition données par MM. Encontre,
professeur doyen de la faculté des sciences de l'académie de Mont-
pellier ; Ferriot ; professeur au lycée de Besançon ; Legrand, professeur
de mathématiques à Saint-Brieux , et Pouzin ? de Montpellier, se
réduisent également à ce qui suit.

(*} Tout cela résulte âU5si de ce qui est dit dans la note de la page 3o4«
C Kote des éditeurs, )
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On saît (*) qu'un quadrilatère , plan ou gauche ; étant donné ,

sî Ton en construit un autre dont les sommets soient les milieux
des côtés du premier , ce dernier sera un parallélogramme dont IeS
côtés opposés seront parallèles aux diagonales du quadrilatère donné %

et en seront respectivement les moitiés.
11 est connu d'ailleurs (**) que 5 dans tout parallélogramme , la

somme des quarrés des deux diagonales est égale à la somme dts
quarrés des quatre côtés.

Soit donc ABCD ( fig. i5 ) un quadrilatère, plan ou gauche, et
soient M, N , P , Q, les milieux respectifs de DÀ ? CD, BC et
AB ; par la première proposition on aura

on aura donc, en quarrant ? ajoutant et divisant par 2 ,

A Z V ^ 2 = ^ ( ^ V I N P 2 +

mais 9 par la seconde proposition , on a

donc

M. Encontre remarque, à ce sujet, que tout parallélogramme înscrîp-i
tible au cercle est nécessairement un rectangle , puisque les deux
diagonales se coupant en deux parties égales sont nécessairement des
diamètres et qu'ainsi ses angles se trouvent inscrits au demi-cercle.

AL Ferriot observe que5 si Ton conçoit une suite de parallélogrammes
tels que les sommets de chacun soient les milieux des côtés du
précédent, et qu'on désigne par 1 Taire du premier , la somme de

(*) Voyez le lome î . e r des Annales, page 353.

(**) Voyez le corollaire de la proposition XIV du livre I I I de la Géométrie <î#
I I , Legendre,
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leurs aires sera celle de la progression décroissante i-| h — + — -4-
2 + 8

V. . = 2 ; il remarque que la même proposition a encore lieu si la pre-

mière figure 9 au lieu d'être un parallélogramme , est un quadrilatère

quelconque.

Ivl. Legrand remarque d'abord qu'en prenant le mot quadrilatère

dans le sens le plus général , on peut, dans un quadrilatère plan

ou gauche , considérer les deux diagonales comme deux cotes op-

pos-r, , et vice versa ; si donc II et S sont les milieux des diagonales

BD et ÀC ? ( fig. 17 ) on devra avoir, en vertu du théorème démontré 7

ce qui donne ? en ajoutant >

c'est-à-dire : Dans tout quadrilatère , plan ou gauche ? la sojnme

de quarrés tant des côtés que des diagonales est quadruple de la

somme des quarrès des droites qui joignent tant les milieux des

côtés opposés que ceux des diagonales.

Ou autrement : Dans tout tétraèdre , la somme des quarrès des

six arêtes est quadruple de la somme des quarrès des trois droites

qui joignent les milieux des arêtes opposées. (*)

Si de la somme des deux dernières équations on retranche la pre-

mière , il vient ? en transposant

z
AB +BC +CD -+-DA =AC +BD 4-

c'est-a-dire : Dans tout quadrilatère , plan ou gauche , la somme

des quarrès des quatre côtés est égale à la somme des quarrès des

(*) Voyez la page 358 du tome i.er des Annales*
deux
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deux diagonales , plus le quadruple du quarrè de la droite qui joint
les milieux de ces diagonales. (*) q£

Supposant ensuite que le. quadrilatère est plan , formant le qua-
drilatère complet, et appliquait le théorème à chacun des quadrilatères
simples qui le composent, M. Legrand parvient aux deux théorèmes
que voici :

i.° Dans tout quadrilatère complet, la somme des quarrês des
trois diagonales est égale à la somme des quarrès des six droites
qui joignent les milieux des cotés opposés? dans les trois quadrilatères
simples qui le composent.

2 / Dans tout quadrilatère complet 9 la somme des quarrès des
douze côtés des trois quadrilatères simples qui le composent est
égale au double de la somme des quarrès des trois diagonales 7

plus le quadruple de la somme des quarrès des trois distances
des milieux de ces diagonales, pris deux à deux.

M. Penjon 7 professeur au lycée d'Angers , a démontré la propo-
sition comme il suit :

Tout étant d'ailleurs dans la figure 16 comme dans la figure i 5 ,
soient menées NA et NB ; par un théorème connu (**) les triangles
ANB , CAD , DBC donneront

Ajoutant les deux dernières équations au double de la première ? U
viendra , en réduisant 5 transposant et divisant par 2

c'est-à-dire : Dans tout quadrilatère ? plan ou gauche , la somme
des quarrès des deux diagonales est égale à quatre fois le quarrè

C) Vojez ie tome i.er des Annales ? page 358*
(**) Voyez la même page.

Tom. IL 43
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de la droite qui joint Jks milieux de deux côtés opposés quelconques ,
plus la somme des quarrès de ces mêmes côtés , moins la somme
des quarrès des deux autres ; proposition qui rentre au surplus dans
Tune de celles de M. Legrand.

On aura donc pareillement

prenant la demi - différence de ces équations , il viendra , en
transposant,

AB1 -+-CJJ +2ÎSQ2 =lwj2 +AD 2 +2 l \ Ip I ;
c'est-à-dire : Dans tout quadrilatère , plan ou gauche , la somme
des quarrès de deux cotés opposés , plus le double du quarré de
la droite qui joint leurs milieux , est égale à la somme des quarrès
des deux autres côtés , plus le double du quarré de la droite qui
joint les milieux de ces derniers.

Ou axitrement : Dans tout tétraèdre 9 la somme des quarrès de
deux arêtes opposées quelconques , plus le double du quarré de la
droite qui joint leurs milieux , est une quantité constante. (*)

Si au contraire , on prend la demi-somme de ces équations , il
viendra

ce qui démontre la proposition annoncée.
"Voici la démonstration de M. Lehault ? élève du lycée d'Angers.
Soient R5 S ( fig. 17 ) les milieux respectifs des deux diagonales

BD et AC5 et soient menées les droites MR, MS , NR , NS , PR9

PS y QR , QS ; on sait (**) que ces huit droites , moitiés des cotés
du quadrilatère ABCD sont les côtés de deux parallélogrammes dont
RS est une diagonale commune ; on aura donc ? par le théorème
déjà rappelé ,

(*) Vovcz le tome i.er des Annales , p^ge 36o.

(**) Voyez le tome i.er des Annales , p^<-'3 3 i3 cl 333.



RESOLUES. 3i5

M R ' + R P ' + Î S VSÂÏ2 OU 2\

ou a(^AB -j-^CD ) = \ [
ou

on aura pareillement

AD -f-B;, =2{î
En prenant la différence de ces équations , on retomberait sur l'un
des théorèmes de M. Penjon ; mais si Ton en prend au contraire
la somme, il viendra

c'est-à-dire : Dans tout quadrilatère , plan ou gauche , la somme
des quarrès des quatre côtés est égale au double de la somme des
quarrès des deux droites qui joignent les milieux des côtés opposés,
augmenté du quadruple du quarrè de celle qui joint les milieux des
deux diagonales.

Or , on a , par un théorème connu , (*)

Th +BC2 +CD V D Â =ÂC +KD +4RS ;
donc y en retranchant et transposant,

ce qui démontre la proposition annoncée.
MM. Bret , professeur à la faculté des sciences de l'académie de

Grenoble 7 Labrousse 9 professeur de mathématiques à Montélimart,
et Rochat 9 professeur de navigation à St-Brieux t ont démontré le
théorème par Fanatise. Nous indiquerons seulement la démonstration
de M. Bret , qui nous a paru remarquable par sa généralité et son
élégante brièveté.

(*) Voyez; le tome i.er des Annales , pages 6i6 et 353*
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Soient À , B , C » D , M , . tant de pointa qu'on veudra 5 disposés
d'une manière quelconque dans l'espace et rapportes à trois axes
rectangulaires quelconques ; soient a f a* ? aft les coordonnées du
point A ; by bl

 ? b11 celles du point B ; et ainsi des autre*. Soit
designé par Nab le milieu de la droite qui joint les points À et B^
et soient adoptées des notations analogues pour les milieux des
droites qui joignent les autres points deux à deux ; les coordonnées

tf-f-3 a'-\-bf al?-\-b'f

du point ~Slab seront , comme Ton sait 5 —— , » * 5 • * ; celles du

c+d c'+d* c''+d"
point ]>I . seront ? , , et il en sera de même pour

2, 2. 2. *

les autres.
Soient enfin adoptées , pour abréger , les notations que voici ;

g-H î+f V i//fl/+z>/ c'+d'yi/f l+z> c+dy (f+h[ c+1}V /a+b

\2 ^ y \ 2 3 / " ^ " \~lT~
en observant que 9 quelles que soient deux quantités p , ^ ? on a
}féquation identique

on aura

c'est-à-dire ,

ÂB + CD

ce qui démontre la proposition annoncée.
Loin que la proposition ainsi démontrée en présuppose aucune antre y

on peut au contraire en déduire facilement, comme corollaires , toutes
celles sur lesquelles on s'est appuyé dans les démonstrations précé*
dentés, et un grand nombre d'autres. M. Bret se contente d'en donner
les exemples qui suivent.

On peut d'abord supposer que le quadrilatère est un
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g ; alors la droite qui joint les milieux de deux côtés apposés
devient égale à chacun des deux autres cotes ; le théorème devient
donc alors la propriété du parallélogramme sur laquelle se sont appuyég
AîBI, Encontre , Ferriot, Legrand et Pouzin.

Dans la formule

on peut permuter à volonté les lettres entre elles j on peut donc écrira

ÂC-f BÏ)-2
Si^ laissant la dernière de ces trois équations , on ajoute seulement
entre elles les deux premières, il viendra

ce qui est un théorème de 3VL Penjon ; mais, en vertu de la propriété
du parallélogramme qui vient d'être démontré, on a

OvUM* + M A ) = -( V J + M,,MJ+M^î,;+ NbcM,lO U * + M

donc
• a

AB + BC + C U + DA = BD+AC -4-4^
ce qui est le théorème d'Euler sur lequel s'est appuyé M. Lehault.

En prenant la somme des trois équations on obtient

+ ÂC+ÂD + î ^ l + BD -f- CD = 4 { M.,4lVjJ H- KcM^+JVVM
propriété du tétraèdre démontré par M, Legrand,

Si ? dans cette dernière formule 9 on suppose que Je point D
confond avec le point C 9 on aura

AD^AC, BD^BG, GD=o, M,rf=C, Mw=M 4 o M^=M^
«Ile deviendra donc
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maïs, par la propriété des parallèles, on a

d'où

substituant donc, il viendra , en réduisant ,

+ BC ) = AB +4CM** ;
c'est la propriété du triangle , sur laquelle s'est appuyé M. Penjon^

M. Bret termine en observant que cette propriété du triangle donne
lieu à un théorème assez remarquable que voici :

La somme des quarrès des distances- d'un point fixe aux deux
extrémités d'un même diamètre quelconque d'une sphère est une quan-
tité constante , égale au double du quarrè du rayon de la sphère 9

augmenté du quadruple du quarrè de la distance du point Jixe au
centre de cette sphère.

La même propriété a évidemment lieu pour le cercle , soit que
le point tixe se trouve sur son plan ou qu'il soit hors de ce plan.

Solutions du problème de géométrie énoncé à la
page 224 de ce volume ;

JliNONCÈ. A un polygone donné circonscrire un polygone de
même nom , dont les angles soient respectivement égaux à des angles
donnés ? et dont l'aire ou le contour soit donné ?,
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Première solution;

Par M, LHUILIER , professeur de matliématîques à l'académie
impériale de Genève.

Comme le procédé que je vais développer , pour la solution de
chacun des deux problèmes ? est exactement le même , quel que soit
le nombre des côtés ( plus grand que trois ? lequel cas donne lieu
à une construction très-simple ) du polygone proposé ; et que les
opérations diffèrent seulement par leur longueur 9 et par le nombre
des termes qui composent l'équation à laquelle ce procédé conduit ;
je crois devoir me borner , par raison de brièveté ? à le développer
seulement pour un quadrilatère.

Soit ABCD ( Hg. 18 ) un quadrilatère proposé. On demande de
lui circonscrire un quadrilatère abcd dont les côtés ah, le, cd , day

passent respectivement par les sommets A , B , C , D , du premier
quadrilatère ; en connaissant les angles a, h ^ c, dv et le contour
ou la surface du quadrilatère abcd.

Que les angles du polygone donné soient désignés par A , B , C , D ,
respectivement. Que les angles donnés du polygone cherché soient
désignés par a, b , c, d. Que l'un des deux angles que forment? avec
un côté du polygone cherché , les deux côtés du polygone donné
dont le point de concours est sur celui-là ; que l'angle aAË , par
exemple 5 soit désigné par x\ on peut exprimer dans cet angle et
dans les angles des deux polygones 5 les inclinaisons mutuelles des
autres côtés correspondais de ces deux polygones.

On trouve , en effet , successivement ? l'angle droit étant pris
pour unité ?

—B—C+.r) ,
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d'où résulte

QUESTIONS

Sïn.*
Sin.a

bni.o

^-B—C+x)

6in c

, </A=DA.
bm.d

PROBLÈME L On donne le contour du polygone demandé.
D'après ce qui précède , on a

Sin.a

in.(^+^—B—C4-.

Sin.(a+&4-«—B—C—D+.r:+Sir —B—C—D+x)

prenant la somme de ces équations ? en remarquant qu'en général

il viendra

Sin.k

( AB.Cosee.

J +BC.Cosec.

-^CD.Cosec.

De là découle la construction suivante > fondée sur les propriétés
du centre des moyennes distances :

Sur une droite SE ( % . 19 ) , et en un de ses points S5 soient faits
les angles ESA 5 ES£ , ES^ , JLSd, respectivement egaux aux angles
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\a y a-\-\h , a-\-bJf\c, a-\-b-\-c-\-\d > en tournant toujours dans
le même sens.

Sur les droites Sb , Sf , Se/, soient faits les angles £SB, ^SC , </SD
respectivement égaux aux angles B 5 B-f-C , B+C-f-D 5 en tournant
toujours dans un même sous, opposé au premier.

Sur les droites S A , S B , SC , S D , soient prises des longueurs SA,
S B , SC , SD , respectivement égales à AB.Cosec.^ 9 BC.Cosec.^ 9

CD.Cosec.^r , DA.Cosec 7/A
Soit cherché le ce n lie Z des moyennes distances des extrémités

À , B , C , D d e ces droites. Du point Z comme centre , avec un
rayon égal au quart du contour donné , soit décrit un cercle. Du
point S soit menée ( s'il y a lieu ) une tangente à ce cercle. L'angle
formé par cette tangente et par la droite SE est l'angle cherché x*

Remarque. Le contour donné ne doit pas être plus grand que le
quadruple de SZ. Lorsque le quart du contour donné est plus petit
que SZ , le problème proposé a deux solutions. Pour que ce pro-
blème soit déterminé , le centre Z doit être différent du point S.

PROBLEME IL On donne la surface du polygone demandé.
D'après les formules ci-dessus et l'expression connue de la surface

d'un triangle dans deux de ses côtés et l'angle qu'ils comprennent 9

on a
Sin.*.Sin.(<2+jr)

. :

Sit
Sin (a—

S'm.b
Sin. («+£—B—C+x) Sin. (a+b+c—B—C+.r )

:—B—C—D4-^) Sin. (a-\-b-l-c-±-d—B—C—

En ajoutant ces équations , membre à membre , ajoutant aux deux
membres de l'équation résultante le quadruple de la surface du poly-
gone ABCD, et remarquant qu'en gênerai

Sin.zSln.çk+z) ^Cos.k—Cos.2(f

Sin.k
Torn. IL



322 Q U E S T I O N S
il viendra

+^—B—C~
De là découle la construction suivante , fondée aussi sur les pro-

priétés du centre des moyennes distances.
Sur une droite SE ( fig. 20 } ? et en un de ses points S , soient

faits les angles EvSÀ , ES£ 9 ESr ? ESr/9 respectivement égaux aux
angles i\a , 2(^-^7^) , 2.{p-\-b-\-x-c) , 2(a-\-b-\-c-\-\ d) , en tournant
toujours dans un môme sens.

Sur les droites Sb 9 Se ? Sd 5 soient faits les angles £SB , ^SC ,
JSD y respectivement égaux aux angles 2B , 2(6-4-0), 2(B-4"C-j-'D),
en tournant toujours dans un même sens 5 contraire au premier.

Du quadruple de l'excès de la surface du polygone cherché sur
celle du polygone donné soit retranchée la somme ÂB\Cot.#-+~
BCa .Coti-4-CD2 .Cotx+DA3 .Got.J , et soit le reste égal au rectangle
de deux droites / et m.

Que les carrés des côtés donnés A B , BC 5 CD 5 DA 9 soient con-
vertis en rectangles ayant ? pour un de leurs côtés ? une des deux
droites , telle que m.

Que les autres côtés de ces rectangles soient u , /s 9 y , ^ , respective-
ment.

Sur les droites SA, SB, SC, SD , soient portées, depuis le point
£ ? des longueurs respectivement égales à «Cosec.# , /îCosec,^ > yCosecr ,
iCosec.c/; que ces longueurs soient SA, S B , SC , SD.

Soit cherché le centre Z des moyennes distances des points A f

B , C , D ; et du point Z comme'centre , avec un rayon égal à •••/,
soit décrite une circonférence de cercle.

Du point S soit menée , ( s'il y a lieu ) une tangente à cette circon-
férence • et du même point S soit menée à cette tangente une per-
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pendîculaîre. L'angle formé par cette perpendiculaire et par la droite
SA sera le double de l'angle cherche x.

Hâmarçue. On tire de cette construction , relativement à ce second
problème 5 des conséquences analogues à celles qu'on a déduites de
la construction du premier.

'Deuxième solution ;

Par M. PILÀTTE , professeur de mathématiques spéciales
au lycée d'Angers.

Par un calcul tout semblable à celui de M. Lhuilier y mais moins
développé , attendu qu'il n'a pour objet que de faire connaître la forme
des résultats qu'on doit en déduire ; et en prenant d'ailleurs la môme
inconnue ; M. Pilatte prouve que , quel que soit d'ailleurs le nom-
bre des côtés des deux polygones ? en désignant par c le contour
du polygone à construire et par e l'excès de son aire sur celle da.
polygone donné , on aura 5 savoir : pour le premier problème

ypSin.#-{-~^Cos.4r=£ , (I)
et pour le second

p8\n.2X'+çCos.2x-jrr=e , (II)

p 5 (] , r étant des constantes, fonctions des données du problème,
et qui peuvent être déterminées d'une multitude de manières diffé-
rentes.

Pour les déterminer de la manière la plus simple ? M. Pilatte
suppose 9 pour le premier problème , que l'on a circonscrit au polygone
donné deux polygones équiangles avec le polygone cherché ; mais
dans lesquels on prend, savoir , pour le premier . r ~ o et pour le
second ^ = i o o ° ; désignant par cf et c/f respectivement les contours
de ces deux polygones ? il obtient

(]—Cf p—C;/

ee qui réduit l'équation (1) à celle-ci.

—r. (A)
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qui , combinée avec Sîn. \ r+Cos.3ar=i , donnera les deux valeurs
soit de Sln.x soit de Cos.jr.

Puer le second problème, M. Pilatte suppose que l'on a circonscrit
au polygone donné trois polygones équlangles avec le polygone
cherche (*) ; mais dans lesquels on prend successivementx=o,x = oo° >
x=^ioo°; désignant respectivement par e/, *" , eN/, l'excès de l'air©
de chacun de ces polygones sur Taire du polygone donné % II obtient

y-i-r=e/ , p+-r = e" , r—q-=efN ,
d'où p^cfl~- kitt+e'») , q — \Ke'—^lt) , r==£(<?M-*//0 ;
en conséquence , l'équation (II) devient

(2e"—e'—e///)S\n.2x+[e/—c"/, Cos.zx = ne—e/—efff. (B)

qui combinée avec Sin.a2j:-+-Cos.a2jr=i donnera les deux valeurs soit de

Sin.2ar soit de COS.2JT , dToù on conclura ensuite celles de x.

On peut consulter , au surplus , sur la résolution des équations (À)

et (B) y la page 85 de ce volume.

Troisième solution j

Par M. ROCHÀT , professeur de navigation à Sl-Brîeux»

La marche de la solution de M. Hochât ne diffère en rien de-
celle de MM. Pilatte et Lhuilier ; elle le conduit aux deux mêmes
équations en x qu il ne construit pas*

QUESTION PROPOSEE.
Problème de probabilité*

L J X E loterie étant composée de n numéros i , 2 , 3 . . . . / Z , dont II

en bort / à chaque tirage ; quelle probabl ité y a-t-il que , parmi les

t numéros d'un tirage , il ne se trouvera pas deux nombres consé-

cutifs de la suite naturelle? v**)

( * ) I I c à l e n t e n d u q u ' i c i l e m u t t i n r s n i t d u i t t t i e j n i ^ < i < i j i > l e s t i i s h p l i . s g é n é r a l .

(+*) On pourrait aussi demander quelle est la proLauilité qu'un lir,«^e ne pré—
sellera pas deux nombres ccns-Jeutifs de lu suite uatiueile se succédant c
vement dans l'ordre de sortie.
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DIFFERENTIATION DES FONCTIONS. 3a5

ANALISE TRANSCENDANTE.

Méthode de différenciation > indépendante du dévelop-
pement des fonctions en séries.

Par feu FRANÇAIS , professeur aux écoles d'artillerie. (*)

JL OUTES les méthodes de différentiation 5 connues jusqu'à présent 5

supposent le développement des fonctions en séries ; et la chose
parait même , en quelque sorte , inévitable ? puisque les différentielles
d'une fonction ne sont autre chose que les coeflïciens des termes
successifs du développement de ce que devient cette fonction > lorsque
la variable reçoit un accroissement arbitraire. Il peut donc paraître
assez intéressant de déterminer les différentielles d'une fonction , sans
recourir à ce développement ; c'est l'objet de la méthode qae je vais
exposer. Elle ne suppose connues que la différentielle de la somme
x-j-y , et celle du produit xy, et repose sur les deux lemmes suivans :

LEMME I. x et y étant deux variables entièrement indépendantes,
et P y Q , iZ , S étant des fonctions quelconques de x et y ', si
Ton a l'équation

(*) Ce mémoire a été communiqué aux Rédacteurs des Annales par M. J#

Français , professeur à l'école de l'artillerie et du génie , frère de l'Auteur.
Le même géomètre a aussi adressé aux Rédacteurs ôes Annales une démons-

tration du théorème énoncé à la page 96 de ce volume , qui leur est malheureusement
parvenue trop tard pour qu'il ait pu en être fait mention à temps. Elle csl, au
surplus, semblable en tout à celle qui a été donnée par M. Tédenat à la
page 182. ( JS'ote des éditeurs ) .

Tom. 11 45
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on en pourra conclure ces deux-ci

P^R , Q-S.

Démonstration. Si l'équation (P—R]dx + (Ç—S)dy = o n'était
point identique , ce serait une équation di/Tercntielle en vertu de
laquelle y se trouverait, contrairement à l'hypothèse, une certaine
fonction de x ; on a donc nécessairement P — R = o et Q—5~o ;
dune , etc.

LLM3IE IL X et Y étant deux fonctions composées de la même
manière , la première en x et la seconde en y , variables indépen-
dantes : si l'on a X = Y, on en pourra conclure A —constante.

Ltmonstrat/on. D'après l'hypothèse , la fonction A" doit devenir
la fonction Y , si 1 on y met y au lieu de x ; maïs , à cause de
X=Y i la fonction Â  ne doit pas changer de valeur , par l'eiTet
de cette substitution ; donc , puisque y , indépendant de x , peut
représenter des valeurs quelconques de x 9 la fonction A est tellement
constituée , qu'elle conserve la même valeur , quelle que soit
d'ailleurs la variation de x ; propriété qui caractérise les constantes ;
donc 5 etc.

Cela posé , soit i,° à di/Térentier am ?
Soient x et y deux variables absolument indépendantes ; on aura

{xy)m=xmym . ( i )

Désignons la différentielle inconnue de xm par <p(x)dx ; nous
aurons , en difïérentiant l'équation, ( i)

d'où nous tirerons , par le Le/nrne 1,

ce qui donne , par l'élimination de <p(xy) et la suppression des
facteurs communs ,

m-ï , x m-x f \
=
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on a donc, par le Lemme II 9 - ~ =C ; donc ç[x)~Cxm-1 , et pa*

conséquent,

à.xm=-Cxm-*Ax.

2+° Soît à différentier t? ?
En supposant encore y quelconque et Indépendante de x >

on aura
<F+y-=La*.a?. (2)

Soit <p(x)dx la différentielle de ax ; il viendra , en différentiant l'é-^
quation (2) >

d'où nous tirerons , par le Lemme I,

donc

ou - _

e t , par le Lemme II> —~ =C ; donc <p[x)=.Ca*f et par conséquent

d.tf* — Caxdx*
3.° Soit à différentier Log.^r ? pour un système quelconque ?
On aura par la définition de la fonction proposée,

Log. (xy) = Log.or+Log.)r. (3)

Soit <p(j;)dar la différentielle de Log,# ; il viendra en différentiant
Féquation (3)

donc ( Lemme 1 )

donc ( Lemme II )x<p(x)~C ? ou ?(#) = — ? et par conséquent
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Cêx

d.Log.^nr —-».

'4.° Soit à différentier Sin.s: ?
Soit d.Sin.ar=?(,r)dtr ; en dUIérentiant réquatîonSln.2^r-4-Cos.1^= I ;

îl vient Sin.a:.<?)'r;.
Cos..r

ç(x)dx.

D'un autre côté on a , par la définition de la fonction proposée

Sin.(ar+jr)=:Sin.^rCos.y+Cos.arSîn.y ; (4)

d'où on conclura, par la dilTérentiation ,

( ] d S i ^ {)à

ou
Cos.(\r-fj)

cp(y)dy ;

donc ( Lemrne I )

ou

Gos.vT Cos.y '

—C ; donc <prx)=; CdxCos.x ; donc enfindonc ( Lemrne H )

et 3 puisqu'on a

il viendra en outre

d.Cos.,r~—C

Il ivste maintenant à déterminer les constantes qui entrent dans
sos difl'erenticlles.

Sln'x „ '.x = — <P
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i.° Dans l'équation d.^m=C tr
m 'xdjr , la constante C ne peut être

qu'une fonction de m ; en la désignant par j\rri), elle se changera
en /(/?) pour la différentielle de xn , et en f(m~+-n) pour celle
de xm+n ; or on a

d'où on conclura, par la différentiation ?

frn+n)xm+n' l dx=f{m)xm^n'l àx-\-f(n)xm+n-l dx ;
c'est-à-dire ,

f(m+n)^f(m)+f(n). (5)
Soit d:/(/7z) = 4'(77z)d772 ; en différentiant l'équation (5) , îl viendra

donc ( Lcmme I )

donc ( Lemme 11 ) "P(m)'=:a , ^ étant une nouvelle constante; on a
donc Af{m)—aàrn , d?où f{rn) — am^ nous n'ajoutons pas de nouvelle
constante parce qucj^/T?) doit être nulle en même temps que m.

On a donc

et , si l'on fait 772=1 P on en conclura d # : r â d # ; donc # = ï j donc
C~m ; donc enfin;

2.0 Dans la différentielle d.#*=CVxl:r , la constante C ne peut
être qu'une fonction de a qu'on appelle la base 9 et doit changer avec
cette base. Appelons e la valeur de a pour laquelle C devient l'unitéy

nous aurons
à.e*=axàx.

Faisons ensuite ax~ey; nous en conclurons, parla différentïation

Caxdxzzeydy, d'où C=^ ;

f>r ? si nous désignons par la caractéristique / les logarithmes qui
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répondent à la base e et qu'on appelle Logarithmes naturels , et
par L ceux qui répondent à la base a 9 l'équation ax~ey donnera
x\a~y et x~=-yLe\ donc

àyzzdaia s dx — dyLe ;

d'où

-^L =z\a~ — . dou t/ = l # = — •

3.° La constante C, dans l'équation d .Z^= -—,se détermine bien

facilement par ce qui précède. En posant Lx=y 9 il vient

- = d / ? dou ^ : = ^ — ; o r «e
 LX^=Y resuite sc=zaJ et consequem-

CL ov jrnv* T
ment Ax~\a.ayàY — \a.xàY* ou bien dor= == donc C= —-J J Le Le ïa

zzLe, et par conséquent

d .JUx — ——— — *
xïa x

4.° Si 5 dans l'équation d.Sin.jr = £d;i;Cos.37 , on suppose que Tare

x décroisse continuellement, jusqu'à devenir n u l , on aura S\n.x=x

et Cos .^r=i , d?où d.S'in.x=:Cdx ou S in .^^C^r , ce qui donne

C = ; mais , on démontre rigoureusement (*) qu'à la limite

Sin.r
—— = i ; donc C =: i , et consequemment

Diaprés cette détermination des constantes , les différentielles des
fonctions am , ax, Log.jr , Sin.jr , Cos..r se trouvent ramenées à la
forme connue. E t , comme ces fonctions sont les elemens de toutes
les autres fonctions connues , on parviendra sans difficulté , par ce
qui précède , aux différentielles de ces dénigres.

O Yojez le Calcul des fonclioiis y lf^ou Ve.
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On voit, par la manière dont nous avons déterminé la constante

dans d.xm , que notre méthode peut être employée à déterminer la forme
d'une fonction inconnue qui doit satisfaire à une relation donnée.

GÉOMÉTRIE ANALITIQUE.

Construction des formules qui servent à déterminer
directement la grandeur et la situation des diamètres
principaux, dans les courbes du second degré rap-
portées à deux axes J^ectangulaires quelconques.

Par M. ROCHAT , professeur de navigation à St-Brieux.

donne, dans plusieurs ouvrages élémentaires , des méthodes
propres à la recherche des diamètres principaux des courbes du second
degré, rapportées à deux axes rectangulaires quelconques; mais, les
calculs relatifs à cette recherche n'y étant point terminés , j'ai pensé
qu'il pouvait être utile de remplir cette lacune ; en donnant des
formules propres à ramener directement l'équation

aï *-\-bxy-k-cx2-\-dy-\-ex-\-f~ o ( 1 )

a la forme

si 32—\ac n'est pas zéro ; et à la forme

dans le cas contraire.
Pour parvenir à ce but, changeons d'abord > dans l'équation ( i ) i

ce en x'-{-m , et y en y'-^-n , et ensuite x/ en ^Cos.*—y^Sin.* >
et y/ en ^Sin.^-j- j^Cos.^; la transformée en xn et yN sera
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aCos.*x

—hSln.&Co*. —2.C Sin.atCos a. -J-^Sin.se Cos a

+ cCos.2*

—e'Sin -J-e'Cos.»

-—bS'm.2»

équation dans laquelle on a

Posons présentement

aS\n.z*-\-bS\n.eiGos.*-{-cCos.2a = N ;

nous trouverons ( Voyez Blot ou Garnier )

et la transformée sera

—0.(2)

Soit, en premier Heu b1—l^ac positif ou négatif, différent de zéro;
en posant

U viendra ( Voyez les Auteurs cités )
zae—bd ic(1——be

b2—Lac ya —

et la transformée sera simplement

Si nous désignons respectivement par A et B , dans cette équa-
tion , les valeurs de a,h/ et y/f qui répondent à yll-=zo et ^ r ^ ^ o ,
nous aurons

M
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* ' 'A* '
ce qui donnera , en substituant et chassant les dénominateurs i

Si présentement nous portons les valeurs déterminées ci-dessus pour
a et b dans celle de f, elle deviendra, toutes réductions faites >

__ ae2+rd2—bàe
J — —7"—:

b2—^ac

et de là nous conclurons

[=z "K/ 1—cd~—(b-—\

Ainsi le centre sera donné par les valeurs de a et b , les grandeurs
des axes par celles de A et B , et leurs directions par celle de

Soit, en deuxième lieu, b1—4Û^=O > d'où M—a-\-c , i\r=:o ;
nous supposerons alors , dans l'équation (2)

et la transformée sera

Présentement comme nous avons trouvé ci-dessus

Tang.2«^=- .>
^ a—c

puisqu'on a d'ailleurs

I—J

il viendra, en égalant ces deux valeurs
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d où

T a n g . K =

c'est-à-dire ,

« = — , Tang.*= ,

d'un autre côté l'équation d'Cos.*—^/Sin.« = o donne

âf

valours qui ne saurait s'accorder avec Tang.« = • ? parce q'

conduiraient à la condition bd—2.ae= o qui , jointe à b*—L±ac = o, exprime ?

comme l'on sait, que la courbe dégénère dans le système de deux

droites. Il faudra donc prendre Tang .an— — ; en égalant cette

valeur à In précédente , et résolvant l'équation résultante par rapport
h m 5 il viendra

En mettant cotte valeur dans l'équation ^ = 0 9 et se rappelant la
relation b*—+ÛC=O , le coefficient de rr disparaîtra P et il viendra

ce2—nc<lz—.+rf(a-\-r^

et par suite
dbûcil2—are2—ït

7TÎ "

On a cri outre

Tang.«= ? d'où CQS.g=~« • -> ;

V-1 T-r1-'
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posant donc

p zcd—le

la transformée sera

Ainsi les coordonnées du sommet seront données par les valeurs cL*
7?2 et n ? la direction de l'axe par celle de Tang.» ? et le paramètre
par celle de P .

Au surplus y comme 9 dans certains cas particuliers , ces formules
pourraient devenir illusoires, il sera convenable d'y remplacer h
par 2\/ac \ on aura ainsi

ad2\Ja-\-2.câe\JÏ-\-2.rd-\]a—ce \f i—\f'a-±-r}*\Ja
7 7 2 = — ——ï

a-\-2ae2\Jc—ad-\Jc—•+J'(.CL

$ous cette forme leur application n'entrainera plus aucune difficulté-

Addition au précédent mémoire ;

Par M. G E R G o N N E*

\JS peut atteindre au but que vi?nt de remplir M. Rochat par
une autre méthode 5 moins élémentaire il est vrai , mais qui a l'avan-
tage de n'exiger aucune transformation de coordonnées ? et qui peut
fournir une agréable et utile application de la doctrine des Max/mis
et Minimis à ceux qui étudient le calcul différentiel ; je vais l'ex-
poser brièvement»
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Soit reprise l'équation

ay*+bxy+cx*+Jy+ex+f=o ; (M)
et 5 outre le point de la courbe dont les coordonnées sont X et y ,
considérons-en un autre dont les coordonnées soient x/ et y/ ; nous
aurons pour ce nouveau point.

afi+bxy+cx^+dy+ex'+f-o ; (MO
posons

{x—xfy-\-{y—yfy- —maximum ; (N)

nos deux points seront alors les extrémités de la plus grande corde
de la courbe.

L'équation (N) revient à

d'un autre côté, on tire des équations (M) et (M7)

(zay Arlx -\-d)sy -\-r
K2cx -\-by -\-e)$x =o , (m)

(2ay/+bx/+d^y/+(zc\v/-\-by/-+-e)£x/=o ; (m')
ajoutant les produits de ces deux dernières par les multiplicateurs
indéterminés A et—>/ à l'équation (jï) il viendra

donc

(x—rO+x(2ro?+3j+^) = o , (x-~x/)-+-\/(p,cx/-\-by/+e)—o ,
(j—y^K^y-i-by+d) = o , (y—x/)-\-x/(2ay/~\-bx/-+-d) = o ;

éliminant A et AX entre ces équations , elles deviendront

(jiay

On satisfait à ces équations, quel que soit le premier des points pris
sur la courbe, en supposant que le second se confond avec lu i , ce
qui donne sur-le-champ la direction de la tangente en ce point,
ainsi que cela doit ctie.



DU S E C O N D ORDRE. 33?
Rejetant cette hypothèse et retranchant l'équation (P;) de l'équa-

tion (P) il vient

9 f
mais, en désignant par * l'angle que fait la corde que nous considérons
ici avec Taxe clés x, on a

^ ' , d'où y—y'z=.(x—^)Tang.« ,

substituant donc , il viendra ? en réduisant , transposant et divisant
par x—x/

Tang . 2 ^—2.^Tang .^~ i=o . (K)

Ainsi ? dans les lignes du deuxième ordre , les cordes dont la variation
est nulle, n'affectent que deux directions , et les tangentes des angles
qu'elles forment avec Taxe des x se trouvent déterminées par l'équa-
tion précédente. On voit de plus que ces directions sont perpendiculaires
Tune à l'autre 9 puisque le produit des deux tangentes est égal
à —i.

En ajoutant ? au contraire, l'une à l'autre les équations (P), (P;) ?

substituant pour y—y/ , dans l'équation résultante ? sa valeur
{x—o^Tang.* et divisant par x—x;, il vient

(2a—&Tang.«)(y+y)—(2cTang.«--£)(a:+#')+2(^—eTang.«)=o. (G)
D'un autre côté , en retranchant Téquation (M;) de l'équation (M) ,
le double de l'équation résultante peut être mis sous cette forme

ou , en chassant encore y—y/ et divisant par x—xy
 ?

(2aTang.«+&)(y+xO+C2C+^Tang^)(^+^0+^(^Tang.^+e)==o . (H)
Les équations (G) et (H) donnent

« ' i A 2ae~bd d

ainsi , les cordes des lignes du second ordre dont la variation ezt
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nulle, cnt leurs milieux au m^ine point qu'on appelle leur centre;
cl , pui^pie ces cordes doivent d'ailleurs se couper perpendieulaire-
ipciit , elles sont au nombre de deux seulement. On les appelle les
{ÏJ\S Je la courbe.

Ces axes ont donc pour équation commune

2cd—ae ( zoe—bel

équation double ? à cause des deux valeurs de Tang.^ ; cette équa-
tion coinbinoe avec celle de la courbe fera connaître les longueurs
de ces mêmes axes.

AN ALISE ÉLÉMENTAIRE.
Démonstration du principe qui sert de fondement à

la théorie des équations ;

Par M. DUBOURGUET ? professeur de mathématiques spéciales
au lycée impérial.

JL OUTE la théorie des équations algébriques repose sur le théorème
suivant :

Une fonction algébrique , rationnelle et entière d'une seule variable
étant donnée ; parmi le nombre infini de valeurs > réelles ou ima-
ginaires , que ton peut donner à la variable , il en existe toujours
une , au moins , dont la substitution rend nul le polynôme proposé ;
ou , en d'autres termes, toute équation algébrique d'un degré quel-
conque, à une seule inconnue , admet toujours if ne racine , au moins.

Quelque fondamental que soit ce principe, plusieurs auteurs d'elëmens
d'algèbre ont négligé de le démontrer, ou ne l'ont fait que bien long-
temps après avoir développé la théorie des équa lions : ce qui est
contraire à la méthode et à Tordre qui doit régner dans ua livre
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élémentaire où les théories qu'on développe ne doivent poser que
sur des principes déjà démontrés. Cette sorte d'interversion , clans
Tordre des propositions , a été considérée comme nécessaire , par les
auteurs en question 9 parce qu'ils ont jugé le principe dont il s'agit
ici d'une démonstration trop difficile pour de simples élémens. Je
crois donc faire une chose utile en ramenant la démonstration de
ce principe aux notions élémentaires que doivent déjà avoir acquises
les élèves qui parviennent à la théorie générale des équations.

Soit le polynôme du n«me degré
Axn-+-Bxn-l+Cjcn'*+....+Px+Q 9 (i)

dans lequel les coefficiens A y B , C P> Q sont des quantités
réelles finies quelconques , et où x représente une variable. Puisque
ce polynôme change de valeur , à chaque valeur qu'on attribue à or;
H peut lui-même être considéré comme une variable. Représentant
denc cette variable par y , on aura l'équation

Aj,n-+-B*n-l'+'Cj.n'1+ +Px+Q=y 9 (2)
qui établit entre les variables x et y une relation en vertu de laquelle
chacune d'elles est déterminée par l'autre.

De même donc que , dans l'équation (2) > y se trouve exprimée
en fonction de x et des coefficiens, il doit y avoir réciproquement
une expression de x en fonction de y et des mêmes coefficieas ;
de manière qu'on doit avoir

jr = ? ( y / , 5 , C , . . . . P , Q,y) 9 (3)
1 désignant une fonction qui peut être inconnue, mais qui, dans tous
les cas y doit être absolument déterminée. Cette dernière équation
n'est, au fond,, qu'une transformation de l'équation (2 ) ; e t , si l'on
en contestait l'existence , il faudrait admettre qu'il y a des valeurs
de^r indépendantes de celles de^y,et réciproquement, ce qui serait contra-
dictoire avec l'équation (2) , et par conséquent absurde. (*)

(*) Si iViquation (3) pouvait ne pas exister , c'est-à-dire , si x pomait n'être
pta fonction de y ) alors , en rr-présentant par # une des valeurs de x c|ui ne dépendraient
pas de celles de y . le polynôme déterminé
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Cela pose ? 51 est clair que si, dans l'équation (3) , on fait }*=n ;

on ne pourra a\oir J T = J ni .r = cc ; car, dans le premier cas-,
J'equation fa) donnerait Q~ o , e t , dans le second, elle donnerait
Q = —A ozn= oc , résultats contraires à l'hypothèse ; donc , lorsqu'on
pose y~o, r doit avoir une valeur, réelle ou Imaginaire, différente
de zéro et de l'infini , telle que

x = ±(4, B, C P, 0 ;

qui satisfasse à l'équation

à laquelle se réduit l*equaton (2) dans la même hypothèse de y = O ;
donc il y a , au moins , une fonction des coeiïîcîens de cette dernière
équation qui, substituée dans son premier membre, à la place de xv

réduit ce premier membre à zéro. Cest - là ce qu'il s'agissait de
démontrer.

QUESTIONS RÉSOLUES.

Solutions du problème de probabilité proposé à la
page 224 de ce volume*

HJNONCE. Deux joueurs , dont chacun a un nomhre de jetons
connu } et dont les adresses respectives sont m et n , conviennent
de ne quitter le jeu "que lorsque l'un d'eux aura gagné tous les
jetons de Vautre. A chaque partie le perdant donne un jeton au
gagnant ; on demande quelle est l'espérance de chaque joueur ?

devrait, en vertu de l'équation (2) ctre à la fois égal à toutes les valeurs qu'on

voudrait donner à y ) ce qui est absurde»

Première
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'Première solution ;

Par M. D. ENCONTRE , professeur, doyen de la faculté des
sciences de l'académie de Montpellier,

I.

XJORSQUE deux joueurs sont prêts à commencer la partie , et ont

déjà formé l'enjeu tutal^ ils en cèdent Tan et l'autre l'entière pro-

priété à celui des deux qui gagnera. Chacun a d'ailleurs diûit d'attendre

ce que le hasard doit probablement lui donner; et y s'ils se trouvent

contraints d'abandonner la partie , l'enjeu deit être psrtagé entre eux 3

non d'une manière égale , mais de manière que la part de chacun

soit proportionnée à la probabilité qu'il aurait eu de gagner le tout,

si la partie eût été continuée.

Très-généralement, les droits respectifs des deux joueurs sur l'en-

jeu total , au moment où la partie se trouve interrompue , sont

en raisun des probabilités qui leur sont respectivement favorables ,

ou , en d'autres termes , de leurs espérances mathématiquement cal-

culées.

I I .

Lorsque , de deux chances données, une doit nécessairement arriver;

que la première promet à un joueur une certaine somme ou un

certain droit , que la seconde promet au même joueur une autre

somme ou un autre droit , et qu'elles ne sont pas également pro-

bables ; la somme ou le droit que le joueur dont il s'agit doit

raisonnablement attendre, en vertu des deux chances données , équivaut

à la somme ou au droit qu'apporterait la première chance multipliée

par sa probabilité 9 plus la somme ou le droit qu'apporterait la

seconde , multipliée aussi par sa probabilité.

Supposons i.° qu'il y a i t , dans une bourse, deux billets, l'un

de 6 francs et l'autre de 12 , et qu'un joueur ait actuellement le

droit de prendre , au hasard ? un de ces deux billets, Les probabilités

Tom. H. Al
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étant égales , et exprimées , l'une et Fautre , par 7 5 le droit réel
de notre joueur équivaut à

Supposons 2.0 qu'il y a i t , dans une bourse, trois billets: savoir,
deux «le 12 francs et un de 6 y et qu'un joueur ait le droit de prendre,
au hasard , un de ces trois billets. La probabilité qu'il tirera un des
deux billets de 1 2 francs étant exprimée par y, et la probabilité qu'il
tirera celui de G francs étant exprimée par y ; la somme à laquelle
II doit raisonnablement prétendre sera

Supposons 3.° qu'il y ait , dans une bourse , quatre billets , dont
un donne droit de prendre, au hasard ? un des billets de la bourse
du premier exemple, et dont chacun des trois autres donne droit
de prendre , au hasard , un des billets de la bourse du second
exemple ; l'espérance du joueur qui aura le droit de prendre 9 au
hasard , un de ces quatre billets sera

III.

Ces principes étant admis par tous les mathématiciens , nous ne
nous arrêterons ni à les démontrer ni à les expliquer par un plus
grand nombre d'exemples, et nous passerons de suite à leur appli-
cation à la question proposée. Mais , pour nous ouvrir plus facilement
la voie à la solution générale , nous commencerons par un exemple
particulier.

Soient A et B les deux joueurs , et convenons , en général 7

de designer par A et B leurs états respectifs 5 lorsque le premier
aura p jetons et le second a. Supposons, par exemple, que le premier
ait deux fois plus d'adresse que le second . en sorte qu'à chaque
partie il y ait deux à parier contre un que ce sera lui qui gagnera;
alors leurs probabilités respectives de gagner une partie quelconque 3

seront ^ et | . Donnons enfin un jeton à A et quatre à B , ce que
nous exprimerons ainsi

A, , B4 .
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Les conditions du jeu étant celles qu'on a vues dans l'énoncé du

problème , proposons-nous de trouver, dans ce cas particulier , le
droit des deux joueurs sur l'enjeu commun, ou quelles sont leurs
espérances, mathématiquement calculées.

Soient désignées respectivement par xl , x x 9 x ^ , x4 les proba-
bilités favorables au joueur A , dans les hypothèses successives

A t , B 4 ; A , , B^ ; A, , B x ; A 4 , B , ;

d'après quoi on aura 9 ; r 0 =o , ^ s = i .
Il est évident que , suivant que A gagnera la première partie ou

qu'il la perdra , son espérance deviendra xx ou aro=o ; que s'il la
gagne , suivant qu'il gagnera ou qu'il perdra la seconde, son espérance
deviendra x ^ ou x x , et ainsi de suite ; puis donc que les probabilités
qu'il a de gagner ou de perdre chaque partie, sont respectivement \ et \ >
on aura

xz T ^ j 1 7 ^ 1 v

ees équations étant en môme nombre que les Inconnues qu'elles ren-
ferment 9 ces inconnues pourront être déterminées et conséquemment
on pourra assigner , pour chaque état du jeu ? l'espérance de chacun
des joueurs.

En faisant le calcul , désignant en général par y l'espérance de
B lorsqu'il a q jetons, et se rappelant que la somme des espérances
des deux joueurs doit être l'unité , on obtiendra le tableau suivant

l ? ° 4 * .^T, 77 ? J 4 77 >

f A B T

Ainsi ? dans l'hypothèse proposée Ax , B4 , les espérances des joueurs
A et B sont respectivement ~ et -j-f. liaison voit que, pour parvenir
a ce résultat s nous avons été obligés de calculer les espérances des
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dpux joueurs , dans d'autres hypothèses que nous n'avions pas en
vue; ce qui , à raison des longueurs qui en résultent, est un incon-
yenient que ne présentera plus l'emploi des formules générales que
nous allons chercher à construire.

I V .

Soit s le nombre total des jetons des deux joueurs. Considérons
les états successifs A, , IVi "» A , , B5.2 ; A, , Bx . , ; A,., , B5 ;
&S-J > B 2 ; A,_, , B, ; et désignons respectivement par jrx ,xx ,x^ , . . . .
xs-i ? xs,x , xs.iy ' c s espérances de A qui leur répondent. Si m et n
représentent les adresses respectives des deux joueurs, la probabilité

que A gagnera une partie quelconque sera —— , tandis que la pro-

babilité qu'il la perdra sera • ; en raisonnant donc comme ci-

dessus , on obtiendra cette suite d'équations
771

1 m+n '
m

—— x3

772-f-« 4 772+»

m n
772+» 77i+?l

lesquelles seront toujours en môme nombre que les inconnues quelles
renferment.

Si maintenant on suppose successivement s~2 , 3 , 4? •• •> c e rIui
Teduira aussi à 2, , 3 , 4 >•••• , le nombre des équations ; on trouvera

, . 772 771 (m n)

Pour deux jetons, x, = =
772+72
772+72 7712
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i x.

Pour trois jetons

Pour quatre jetons

m (m-—n 2)

—n)

m3+7722n+7727î2+7î3
 m+ nk *

m2(772+72) m-(ni2 722)

772+ 7î4

772(77?^ 723)

272-f-m 72

+77?7î-4-72 2)

et ainsi de suite.
La loi de ces résultats est manifeste, et on en conclut facilement

que ,.# et y désignant respectivement les espérances de À et B qui
répondent à l'état A , B , on doit avoir généralement , à cause
de xp-hfq= 1 ,

11 faudra seulement avoir l'attention , dans le cas particulier ou Ton
aura n — m9 de délivrer ces formules du facteur 772—n qui affecte
leur numérateur et leur dénominateur , avant d'en faire l'application.

Pour donner un exemple de l'usage de ces formules, supposons
que le joueur A ait 6 jetons , et que le joueur B en ait 4 seule-
ment ; il faudra faire/? = 6 et ^ = 4 J les formules deviendront donc

m i o rti

Si nous supposons , en outre, que l'adresse de A soit double de
celle de B , ce qui donnera 772 = 2 , 72 = 1 y il viendra

2 4 ( 2 6 _ 1) 10 .63 33B ^4—1 i 5 5
^6 =

2 1 0 1 1023 2 1 0 1 IO23

les espérances respectives de A et B seront donc —̂  et —̂  ;
seront donc dans le rapport de 336 à 5,
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V.

On peut faire diverses observations curieuses sur la question qui nous
occupe. Nous nous bornerons aux deux suivantes qui peuvent être utiles»

i.° En délivrant les valeurs de xp et yq du facteur m—n qui
afTe-te leur numérateur et leur dénominateur , et posant ensuite
n~m , elles deviennent toutes réductions faites

ainsi , lorsque les deux joueurs sont d'adresse égale ? leurs espérances
respectives sont dans le rapport du nombre de leurs jetons ; comme
on pouvait bien le prévoir*

2*0 Mais ce serait une erreur de croire qu'à l'inverse 9 lorsque
les jetons sont également répartis entre les deux joueurs 5 leurs espérances
sont proportionnelles à leurs adresses respectives. Si en effet on fait
q=p t on a

_ mF - nP

XP =
 mP+nP

 5 yP ~~ mp+nP '

d'où Ton voit que leurs espérances sont dans le rapport de mF à np ;
lequel ne devient celui de m à n que dans le cas particulier où p=i*

Deuxième solution ;

Par MM. LHUILIER 3 professeur de mathématiques , et PES-

CHIER , professeur de philosophie et inspecteur à l'académie
impériale de Genève. (*)

Que les deux joueurs soient désignés par A et B (**) i
Que leurs adresses respectives soient m et n ;

(*) Après nous être communiqué nos solutions ? nous les a>ons trous ces si
semblables l'une à l'autre , que nous avons cru devoir les réunir sous une rédaction
commune.

(**) Pour faciliter la comparaison des résultats ? on a cru convenable d'employer
ici des notations pareilles à celles du mémoire précédent.

( ISote ues éditeurs. )
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Que létat du jeu lorsque A a p jetons et que B en a q soit

désigné par Ap 9 Bq ;

Qu'enfin l'espérance de A lorsqu'il a /? jetons soit désignée par xp.
A chaque distribution de jetons, le joueur A a m cas pour obtenir

lin jeton de plus et n cas pour en avoir un de moins.
En remarquant donc que ,ro = o 5 on aura les équations

772+72

x, =
772

772+72

772

V V

* T H + T T * ' 772+72 l >

î ~"7?2+72" r 4 " + "7n+72 a r 2 *

772+72%

m

772+72 fl

$ 772 772

772+72 72

4 772 * 772

I *

772+72 72

Partant les attentes successives de A forment une suite récurrente
dont l'échelle de relation est

772+7Z 72

772 ' 772

Cette suite provient du développement de la fraction

71 / 72 \ *
- . * * (l — Z ) ( l Z )
m v ' \ 772 /

772+72

laquelle équivaut à la somme de ces deux-ci

772 72 1 ' Z 772 72

Partant , on doit avoir ,

(m —?2
* i ;

mais ? si l'on suppose que p devienne p-\-<J et que soit le
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nombre total des jetons des deux joueurs 7 on doit avoîr Sp^^i ; don*

et partant

Xp

Ainsi p étant le nombre des jetons de A 9 et q le nombre des jetons
de B ? leurs espérances respectives sont

Remarque 1. Ces expressions peuvent toujours être délivrées dix
facteur #2—/2 , commun à leur numérateur et à leur dénominateur.

Remarque / / . Lorsquem~n 9 ces expressions ainsi réduites deviennent

P+V * P+1

ainsi alors les espérances des deux joueurs sont proportionnelles a
leurs nombres de jetons. Ce résultat est indiqué par le simple bon
sens ? mais il était convenable de le confirmer par le calcul.

Remarque III. La solution du problème proposé n'est pas com-
pliquée par le retour aux mêmes états de distribution des jetons entre
les deux joueurs ? provenant des compensations de gains et de pertes 't
bien que cette alternative de gains et de pertes ait une grande in-
fluence sur la durée du jeu. (*)

Remarque IV. Plus m est grand relativement à n , et plus le

(*) On dît communément que , pour obtenir la probabilité d'un événement , il
faut diviser le nombre des chances qui peuvent y donner lieu par le nombre total
des chances , ou plus généralement > la somme des probabilités des chances qui peu-
vent y donner lieu par la somme des probabilités de toutes les chances ; et cela
est exact. Mais il conviendrait d'ajouter qu'il y a des cas où cette méthode est
impraticable , et tel est le cas de la question présente ; puisqti'à raison des retours
aux mêmes états , qui peuvent se répéter indéfiniment, le nombre total des chance*
possibles et celui des chances d'où peut résulter l'événement dont on cherche la
probabilité , sont, l'un et l'autre , infinis. ( bîote des éditeurs. )

rapport
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rapport des attentes des deux joueurs approche d'être celui des puissan-
ces des nombres qui expriment leurs adresses respectives, ayant pour
exposans le nombre des jetons de A ; et partant 5 l'attente de À
approche alors d'autant plus de la certitude que le nombre de ses
jetons est plus grand.

Post-scriptum. Après avoir terminé ce petit mémoire, nous avons
pensé à consulter le beau mémoire de M. Laplace ? sur les probabilités,
inséré dans le Recueil de Vacadémie des sciences de Paris , pour
l'année 1778 ; et nous avons vu que le problème était en efFet résolu
par ce profond mathématicien (*). Cependant, nous n'avons pas cru
devoir supprimer notre travail. La solution de Lapiace diiTère de
la nôtre par sa marche; elle est fondée sur la méthode des équa-
tions aux différences finies. Il n'est pas inutile de voir un même
sujet traité par des procédés différons ; et il est tout au moins agrcablc
à ceux qui ne sont pas exerces aux méthodes générées , de voir
ramenées aux élemons des questions qui paraissaient surpasser leur
portée.

(*) Ce problème a été indique aux Rédacteurs des Annales, par un de leurs
correspondais ; et ce n'est que par M. Lhuiiier qu'ils oui appris qu'il a\ait déjà
été résolu.

Le mémoire de M. Laplace, qui en contient la solution, commence à la pnge 227
du volume de l'académie pour 1778, et celte solution se trouve à la page .201.
L'auteur ne s'en occupe, au surplus , que p:<r occasion, et seulement pour montier*
combien l'inégalité d'adresse des deux joueurs influe sur leur situation , lors même
que ceile inégalité n'est que soupçonnée , sans qu'on sache quelle en est la quantité
ni quel est le plus adroit des deux.

M. Laplace remarque , à ce sujet , que si , dans le cas d'une parfaite égalité
d'adresse, les «leus: joueurs peuvent doubler , tripler , etc. , le nombre de leurs
jetons respectifs sans changer leur situai ion , il n'en est plus de mime , dès
qu'il y a entre eux la plus légère inégalité ; c'est aussi ce qui résulte des for-
mules ci-dessus.

( Note des éditeurs, )

Tom* II 48
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Troisième solution ;

Par M. TÉDENAT , correspondant de la première classe de
l'Institut, recteur de l'académie de Nismes.

Soient A et B les deux joueurs 9 m et n leurs adresses respec-
tives , p et q le nombre des jetons qu'ils ont chacun.

Soient, dans un état quelconque du jeu , x le nombre des jetons
de A et Zx son espérance; au coup suivant , cette espérance devien-
dra Zx^x ou Zx., ; or 9 la probabilité qu'elle deviendra Zx+l

e s t et la probabilité qu'elle deviendra Zx_x est - .On aura

donc, en vertu d'un principe connu (*) ,

ou

Z { \ r i ) Z { Z l = o ;

équation linéaire du second ordre, aux différences finies P entre les
deux variables x et Z.

Pour l'intégrer , nous ferons usage de la méthode donnée par
M. Lagrange , dans les Mémoires de Vacadémie de Berlin , pour_

Posant donc

ZX=S , d'où Z x + l = ^ + I , Zx.t=*Xml }

il viendra, en substituant, et divisant par #x"1 ;

(*) Voyez ci-dessus pat^e 341.

(**) Voyez aussi le Traité élémentaire de calcul différentiel et de calcul intégral de
M# Lacroix , deuxième édilion, pa^eâ 5j3 et suivantes,

( Notes des éditeurs. )
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ou encore

ce qui donne pour * ces deux valeurs

d'où on conclura

tt par conséquent

/
,

G et H étant des constantes arbitraires.

Pour déterminer ces constantes , nous remarquerons i.* que, si A
n'avait plus aucun jeton , son espérance serait absolument nulle,
puisque la partie se trouverait terminée au profit de B ; 2.0 qu'au
contraire s'il avait p-i-ç jetons ; son espérance se trouverait changée
en certitude , puisque la partie se trouverait terminée à son profit.
On voit donc que

à x~o doit répondre Zx"=zo >

à x=p-{-ç doit répondre ZK~i y

ce qui donne les deux équations

m

substituant donc dans la valeur de Zx, elle deviendra
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or, lorsque A a # jetons, B enap-{-q—x ; désignant donc par y le

nombre de jetons de B lorsque A en a x , on pourra écrire

SI Ton désigne par Zy l'espérance correspondante de B , on aura

pareillement

Telles sont donc les espérances respectives de A et B , lorsque le
premier a x jetons et le second y ; si donc on désigne simplement par X

et Y leurs espérances respectives lorsque le premier a p jetons et
le second q v ainsi que la question le suppose , on aura

-y

Dans le cas particulier où. l'on a n~m, ces valeurs semblent

devenir \ ; mais , si on les réduit d?abord à leur plus simple expression y

on a pour ce cas

p+q *

comme on pouvait bien le prévoir.

Les résultats auxquels nous venons de parvenir serrent a résoudre ,

non seulement la question proposée, mais encore les deux questions

suivantes :

i.° Quelles doivent être les adresses respectives des deux joueurs ,

pour quen leur distribuant un nomlre de jetons donné dune manière

déterminée, hurs espérances respectives soient proportionne/les à des

nombres donnes ?

2.° Les adresses respectives des deux joueurs Haut connues, dâ

quelle muni ère faut-il répartir entre eux un nombre de jstc>;?s donné f

pour que leurs espérances respectives soient proportionnelles èi des
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Nous allons donner un exemple de chacune de ces deux questions.
Exemple I. On donne 4 jetons à A et 2 à B ; quelles doivent

être leurs adresses respectives pour que l'espérance de A soit à celle
de B comme 85o est à 81 ?

_ . . _ 85o 8->O ,
On a ici A = = — ; on a de

800+81 y , i

772=(772 • •—n+)__ ma(7722-f.722)

ou , en chassant les dénominateurs 5 transposant , réduisant et divi-
sant par n+ ,

Cette équation donne d'abord

mirait

d'où

771

n

m

n

imagii

5
• z z ——

3~ T
ainsi l'adresse de À doit être à celle de B dans le rapport de 5 a 3.

Exemple IL L'adresse de A étant à celle de B dans le rapport
de 3 à 2. , de quelle manière t'aut-il repartir 5 jetons entre eux
pour que leurs espérances soient dans le rapport de i35 à 7G ?

On a ici A~= -77—7, = — , 772 = 3 , 72 = 2 , T?+/7 = 5 , d'où
IOJ+JO 211 ' '

p 3 —p -, donc

ou
n - / o r t'y \ ~ \

V o
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d'où

(l\p~ i-f2

donc pzz2 et conséquemment y = 3 ; ainsi il faut donner 2 jetons
à A et 3 à B.

Quant à la question proposée dans la note de la page 224 de
ce volume ? sa résolution cornplette exigerait une discussion dans
laquelle nous n'avons pas actuellement le loisir de nous engager. (*)

Nous nous bornerons donc à remarquer que ? x désignant toujours
le nombre des jetons de À , à un coup quelconque, et / expri-
mant le nombre des coups qu'il reste encore à jouer ? pour que la
partie finisse; si l'on représente par Zx y t la probabilité que la partie
finira précisément après ce nombre de coups, cette probabilité, au
coup suivant , deviendra Zx+x , t^x ou Zc_, , f_£ ; or 9 la probabilité

qu'elle prendra la première de ces deux valeurs est , et la pro-

habilité qu'elle prendra la seconde est ; on doit donc avoir

cquation du second ordre aux différences finies et partielles entre
les deux variables indépendantes x, t et leur fonction Z. En posant,
pour abréger ,

elle devient

Zx>t=MZx+1 ,,.,+NZ^ , ,., : (A)

Pour Intégrer cette équation , on peut encore faire usage de la

(*) Ce problème a été aussi traite par INI, Laplace : ro>ez les Mémoires des
étrangers") tome VII , page i53 .

( Note des éditeurs, )
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méthode de M, Lagrange déjà indiquée (*). Posant donc

Zx%t=a**ffi , d'où 2 ^ , ^ = 0**+*pt-i f zx.It tml=a*x'*ft-% ,

il viendra , en substituant , divisant par a**mlp*~l et transposant ,

cette équation étant successivement résolue par rapport à « et
à £ donne

de là, en développant en série,

i ( x x a*—3

Mx\ I 1 * 3

t , t t—I

donc

I * 3

or5 on sait qu'à ces valeurs on peut substituer celles-ci

x N x *—3 N*
—— — - - ~ ç x~\~t---'2Î)m\m -*• . " •••• —— <p(j
I ]\lx~l X 2 JVZ*"" *

puis encore celles-ci

«- _ . X.,.^ Z.-——Z JL .f. j?

(*) Voyez le Traité de calcul différentiel tt de calcul intégral de M. Lacroix ;
tome iu.e , page 248, n.° 1012.

( Note des éditeurs, )
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1

voilà donc deux Intégrales de l'équation (A) , et il est même aisé
de s'assurer 5 a priori , qu'elles la rendent identique ; mais on voit
qu'elles supposent que Ton connaisse l'une ou l'autre des premières
bandes horizontale ou verticale de la table à double entrée dont cette
équation exprime la loi.

QUESTION PROPOSÉE.

Problème d Arithmétique.

JLJEUX suites composées chacune de n nombres positifs et ine'gaux
étant données ; comment faut-il déposer entre eux les nombres de
ces deux suites 5 pour que la somme des produits des ternies de la
première par les termes correspondans de la seconde soit la plus
grande ou la plus petite possible ?

Comment faut-il disposer entre eux les nombres de ces deux
suites , pour que la somme des quotlens des termes de la première
par leurs correspondans dans ja seconde soit la plus grande ou la
plus petite possible ? (*)

(*) On pourrait supposer que les -j.n nom ,tvs donm's ne sont pas , à l'avance 9

partages en deux suites, et demander d'eu l'a r-j le p.uta^e de manière à oîuenir
le maximum ou le minimum absolu pouf h soninu des produits ou des quotient
tics termes de la première suite par leurs correspondant clans la seconde»
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GEOMETRIE ELEMENTAIRE.

Relation entre le dodécaèdre et Ticosaèdre réguliers
inscrits à une même sphère;

Par M. FLAUCERGUES , astronome , correspondant de la
première classe de l'institut.

JL HÊORÉME. Soit ÀB ( fig. i ) une ligne coupée en moyenne
et extrême raison au point C ( AG étant la médiane ). Je dis que
l'angle solide du dodécaèdre est à l'angle solide de l'icosaèdre (*)

comme (AB + A C )T est à io.AB (AB + B C )7 ; ces deux corps
étant supposés înscriptîbles à la môme sphère (**)•

Démonstration I. Imaginons ( fig. 2 ) trois pyramides dont le
sommet commun soit au centre D de la sphère 9 qui aient pour
bases trois faces contiguè's à un angle solide du dodécaèdre inscrit ?

et qui soient par conséquent égales au quart de ce solide. Ayant
tiré les lignes FE , EG ? GF , imaginons des plans qui passent par

(*) L'auteur entend ici par angle solide d'un polyèdre régulier, la portion de
ce polyèdre détachée par un pian passant par les extrémités de celles de ses
arêtes qui concourent à un même sommet ; portion qui est conséquemment une
pyramide régulière.

(**) Si Ton prend AB pour unité on aura AC=f( \ /J—1), EC—i-(3—\l^)\

et la proposition de M. Flaugergues revendra à dire que l'angle solide du dodé-

caèdre est à l'angle solide de i'icosacdre comme \J2:—nyjTvsi ù 3\/3(3—\'o).
( ZYy^j des éditeurs. )

Tom. IL l(\
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ces lignes et par le centre D ; on aura trois pyramides triangulaires,
et chacune de ces pyramides étant à la pyramide pentagonale comme
le triangle EIIF est au pentagone FHE1K, le solide formé par
ces trois pyramides réunies 3 et qui est composé de deux pyramides
opposées qui ont pour base commune le triangle FEG 5 et dont les
axes sont sur le rayon DU perpendiculaire à cette base 5 est au quart
du dodécaèdre dans la même raison.

Cela posé ? nommons P la surface du pentagone FHEIK ; nom-
mons S la solidité de la pyramide ou de l'angle solide HGEF ;
nommons s la solidité de la pyramide DGEF ; nommons enfin D
la solidité du dodécaèdre et a le diamètre de la sphère circonscrite.
Du centre L du pentagone FHEIK ayant tiré les rayons L E ? LF ,
LH , le dernier coupant EF en M , on aura

LM:MH:;ELF:EHF ;

donc 5 componendo

LH : MH : : LEHF(=£P) : EHF= — .P ;

mais , par la propriété du cercle ,

donc

5LII*

puis donc que

IIEIKF:EHF::iD:S+j :

on aura

5LH soLH

Suit présentement abaissée du point E , dans le plan FGE , la
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perpendiculaire EN sur DH ; puisque la ligne HE est inscrite à
la sphère , on aura

DN : HN : : s : S ;

DH(= ;*):!»/= : S

II. Imaginons ( fig. 3 ) cinq pyramides qui aient leur sommet
commun au centre D7 de la sphère ? pour bases les faces contiguè's
de l'icosaèdre inscrit ? et qui soient par conséquent égales au quart
de ce solide. Ces pyramides formeront , par leur réunion un solide
TOPQRSD' composé de deux pyramides opposées qui ont pour
base commune le pentagone OPQPiS , et dont les axes sont sur le
rayon D7T perpendiculaire à cette base.

Gela posé ? nommons I la solidité de Ticosacdre ? S / celle de la
pyramide ou de l'angle solide TOPQRS , et s/ celle de la pyramide
IH)PQRS ; ayant tiré-, dans le plan OPQRS, la perpendiculaire OV
sur D7T , et désignant toujours par a le diamètre de la sphère ; la
corde inscrite TO donnera

• t

— tf:OT:TV=— >
a

mais on a

D'V : VT : : s' : S7 ,

d'où ? componendo

D'T(= \a): V T \ = ~ ) : : (&+s'' (= \ W : S'= — . I ,

III. On a donc
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o.LH
c'est-à-dire,

S : S ' : : H Ë 4 x D I S L H

mais i.° ( Euclidc XIV. 7 et XIII. 18 )

2.° ( Euclide XIII, 12 )

I i Ô T 1 : : I : 3LH* ;

3." ( Euclide XIII. 9. 10 et XIV. 11 )
4 ——4 /——l A i ——4

HE :LH ::UB +AC ) : AB ;
multipliant toutes ces proportions par ordre , et simplifiant, II

viendra

S : S' I ICÂB'+AG 1 ) ' : i5ÂB4(ÂBZ+Bc0r-
C.Q.F.D. (*)

GÉOMÉTRIE ANALITIQUE.
De la génération des lignes du second ordre , par

Tintersection de deuoc lignes droites ;

Par M. G. J\L RAYMOND , principal du collège de ChamLcd ,
membre de plusieurs sociétés savantes et littéraires.

JLJA génération des courbes , par l'intersection de lignes droites ,
assujetties à certaines conditions 5 a fixé plus d'une fois l'attention

(*) En suiw.uL la marcnc trrct-o par M. Fiau^crr^ues , on «Jtmoiûrera que l'angle
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des géomètres , à raison de l'intérêt que présente ce mode de cons-
truction , et des conséquences auxquelles il peut conduire. Je m*oc «s
cupais d'un cas particulier de cette génération 5 pour les sections coniques,
lorsque j'ai reçu le numéro des Annales pour février 1812, où M.
Rochat (*) traite un objet qui a quelque analogie avec le mien.

Je vais indiquer ici la génération dont il s'agit , parce qu'elle me
paraît propre à rendre raison , en particulier, de l'analogie remar-
quable et des différences respectives que l'ellipse et l'hyperbole
présentent, dans quelques points de leur théorie.

Soient deux droites IM , FM ( fig. 4 ) assujetties à tourner autour
des points fixes I et F , en faisant continuellement entre elles un
angle variable IMF ; la nature de la courbe décrite par le point M,
dépendra des conditions auxquelles on soumettra l'inclinaison respective
des deux droites génératrices sur Taxe des &.

Pour plus de simplicité , j'établis l'origine des abscisses au point
O , milieu de la distance IF ? et je suppose les coordonnées rectan-
gulaires. Soit 01—A. Les droites IM et FM auront respectivement
pour équations

a 3 af étant les tangentes trigonométriques de leurs inclinaisons
respectives sur l'axe des x.

Si le produit aa1 de ces tangentes est donné et constant, l'équation
de la courbe décrite par le point M sera

y2=aa/(sc2—A2) ou y2— aa'x2^— aa'A* ; (E)
et elle présentera deux cas , suivant que les facteurs a et a1 seront de
signes contraires ou de mêmes signes ? c'est-à-dire , suivant que le
produit aaf sera négatif ou positif.

solide du cube est à l'angle solide de l'octaèdre comme le enté d'un triangle équthuci ai

est au triple de sa hauteur, c'est-à-dire , comme 2 est à o\f J.

C) Vt»\ez la page 22.2 de ce volume.
( Notes des éditeurs. )
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Or , sî les lignes génératrices sont constamment inclinées en sens

contraire , le point décrivant M se trouvera toujours compris entre
les perpendiculaires Tït et Hft* menées à la droite IF par les points
I et F ; en sorte que ces perpendiculaires seront ? dans le sens des
co ? les limites de la courbe qui sera entièrement comprise entre elles.

Posant donc ? dans ce cas,

1
B étant une nouvelle ligne 5 dont la valeur est donnée par la formule

B

Péquation deviendra

c'est-à-dire , celle d'une ellipse dont les axes sont 2A et iB,
Si , en particulier 3 on avait aa1——i , il viendrait B—A; et

l'ellipse deviendrait un cercle , ce qui est d'ailleurs évident 9 puisque
la condition aa'——i ou i-Hzr/i^o étant celle de la perpendicu-
larité des deux génératrices ? l'angle M devrait constamment être droit*

Suivant qu'on aura

—aa*'<i ou — a a ; y \ ,

c'est-à-dire > suivant que l'angle M sera obtus ou aigu , on aura

JB2 B-
~<X OU - > I ,

c'est-à-dire ?

B<A ou B>A ;

l'ellipse sera donc décrite sur son grand axe dans le premier cas et
sur son petit axe dans le second.

La droite FM s'inclinant de plus en plus, viendra enfin coïncider avec
VI ; alors ? af devenant zéro 5 a devra devenir infini , c'est-à-dire .
qu'alors 1M se confondra avec Tt j ainsi I est un point de la courbe v

et on en dirait autant de F.
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Si présentement on suppose, au contraire , que le produit constant

aaf soit positif ou , ce qui revient au même , que les deux facteurs
a et a1 soient constamment de mêmes signes ; les droites DI et l 'M
se trouvant constamment inclinées dans le même sens , leur point
de concours M' se trouvera toujours hors des parallèles T/ et T7/'' qui
conséquemment seront encore dans ce cas les limites de la courbe „
mais de manière que cette courbe , qui d ailleurs passera toujours
par les points I , V 9 n'aura aucun de ses points compris entre elles.

Posant alors

en sorte qu'on ait

l'équation (E) deviendra

B2x2—A2y2=:A2B2
 5

qui est celle d'une hyperbole dont le premier et le second axe sont
2.A et 2B.

Si l'on avait aa'—i > il en résulterait B=AV et l'hyperbole serait
équilaterale.

Si ? sans statuer sur le signe de aa/
 7 dans l'équation (E) 7 on

y
fi

>^aa/=— d'où i?=:-t~^i/— aa/ ,
A2 — Y

cette valeur de B sera réelle ou imaginaire , suivant que aaf sera
négatif ou positif; ce qui explique pourquoi le demi-axe des y ètaîit

exprimé par B dans l'ellipse , il se change en By/—1 dans
Vhyperbole , et réciproquement.

La longueur de A étant déterminée , pour une ellipse ou une
hyperbole ? on voit que la longueur de B dépendra du produit aa/

?

et que , pour obtenir l'une ou l'autre courbe , il suffît de faire ce
produit constant, en lui assignant d'ailleurs 5 pour chaque cas , une
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valeur arbitraire. De là la raison pourquoi on peut établir * sur un
même premier axe , une infinité dellipses ou d'hyperboles qui ne
diffèrent que par leur second axe,

II est presque superflu d'observer que , si Ton établissait les lignes
génératrices LN , L'N sur le second axe 5 et qu'on les assujettit à

la condition aa' = , le point N d'intersection circulerait sur la

même ellipse , en dedans des perpendiculaires Xz 9 ZJ
/z/ menées à

A2

L L ' par ses extrémités ; mais qu'aussitôt qu'on supposerait aa/= •—•, le

point N7 sortirait de ces limites , pour décrire l'hyperbole conjuguée
de la première.

Menons maintenant , dans l'ellipse, les diamètres Gg et H^ , res-
pectivement parallèles aux génératrices MF et MI , et les coupant
en R et S ; à cause des parallèles , puisque O est le milieu de IV,
les points R et S seront les milieux respectifs de MI et MI7 ; les
deux diamètres G^ et îik seront donc conjugués l'un de l'autre.
Les mêmes considérations s'appliquent à l'hyperbole ; et de là cette
propriété commune aux deux courbes que deux cordes supplémentaires s

soit de l'ellipse soit de l'hyperbole, indiquent, par leurs directions%

un système de diamètres conjugués.
La tangente da l'angle M est s en général ,

jg2
si l'on y met pour aa/ la valeur qui répond à l'ellipse 3

on aura

Tang .M = ^ , (P)

le minimum et le maximum de cette valeur correspondent respec-
tivement au maximum et au minimum de l'angle des deux droites
génératrices, lorsque cet angle est obtus , c'est-à-dire ? lorsque l'ellipse
est construite sur son grand axe. Or * si a et a' étaient numérique-

ment
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ment égaux, à cause des signes contraires de ces deux nombres 5

cette valeur deviendrait 5

ou y à cause de a^=-
A

Tang.M=-

B

gM=-^3 ; (PO

quantité plus petite que la valeur (P) 9 tant que tf et #̂  ne seront
pas égaux. (*)

Ainsi , dans l'ellipse , le maximum de Tangle formé par 1rs
diamètres conjugués est l'angle formé par les diamètres conjugués
égaux.

SI Ton avait Z?> A , la valeur (P7) ne ferait simplement que
changer de signe ; ainsi l'angle formé par les cordes supplémentaires
établies aux extrémités du petit axe de l'ellipse est supplément de Vangle
dôs cordes supplémentaires établies aux extrémités de son grand axe*

Soient menées les ordonnées GP ? HQ des points G , H. Faisons
d'abord

l'équation du diamètre OG sera

y-rz.^x t d'où y2=a/2x*.

Mettant cette valeur dans l'équation (E) , il viendra

(*) Car, en général, de pq=m2 , résulte nécessairement 2.m<^p-$-q. On a , en
en eiFct, o<(^—y)2 , ou 4pq<(p—q)2+tyq , ou 4/>7<V+?)% o u 4»*2<(p+<i)* ,
ce qui donne 27?i<?p-\~q.

Si l'on égale à zéro la différentielle de l'expression (P) il viendra da'zzzda ; mai»,
d'un autre coté , à cause de ua' constant , on a odfl'-f-tf'da^o \ ce qui donne r

en ayant égard à la dillércucc tlt1*» oi^ties de a et af, afz=u comme ci-d

Tom. H 5o
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donc

OG = a r a + v a =
J a——a

Par un semblable calcul on trouvera
t —n'A2—a-a'Az

on — — ,
a—a1

et de là
OG 2 +«H X =( i— aaf)A* ;

désignant donc par A/, B/ les demi-diamètres conjugués OG , OH,
et se rappelant que —aa'A2 = B2 , il viendra

c'est-à-dire , que la somme des quarrès des demi-diamètres conjugués
de Vellipse est une quantité constante.

Comme le calcul est absolument le même pour l'hyperbole, sauf
le signe du produit aaf , on trouvera ? en tenant compte de cette
différence , que la différence des quarrès des demi-diamètres con-
jugués de F hyperbole est une quantité constante.

Le calcul précédent donne

p a—a'
or y en désignant par <p l'angle des deux génératrices , lequel est
aussi celui des demi-diamètres A', B/, on a

de Va

Le calcul étant exactement le même pour l'hyperbole , il en faut
conclure que, dans l'ellipse et dans Vhyperbole , les parallélogram-
mes construits sur les grandeurs et directions des diamètres conjugués*
sont tous équivalents.
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En prenant le produit aaf négativement pour l'ellipse et j .sitlve-
ent pour Thyperbole 3 on trouvera que l'expression de rexcen-rnent pour

trlcite est

pour l'ellipse 5 À\/\—au' : pour l'hyperbole , As/\-\-aaf.

Et si l'on détermine 5 d'après ces expressions , celles des rayons vecteurs
pour les deux courbes ? on trouvera tGutes leurs propriétés qui y
sont relatives , et Ton verra également que la différence des propriétés
de l'une et de l'autre tient à la différence de signes du produit aa/

 5

c'est-a-dire ? à la différence de direction de Tune des droites géné-
ratrices. 11 en est de môme pour ce qui regarde les tangentes aux
deux courbes.

Si Ton emploie l'équation (E) telle qu'elle est , sans changer le
signe de aa;

 ? auquel cas elle exprimera une hyperbole , on pourra
la mettre sous cette forme

qui annonce le caractère asymptotique de cette courbe ; puisque sont
équation tend , de plus en plus 5 à se changer en celle-ci

y£y/aa!

qui serait enfin

si les droites génératrices devenaient parallèles. Pour s'assurer de ces
résultats , il faut observer que l'abscisse du point de concours ayanf
pour expression

ce — ———— jj^
a—a1

devient x^ 9 si l'on a af~a 9 dfoù aa^a2 ; ce qui fait évanouir

o

la fraction ..
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SI l'origine des abscisses était au point V 5 les équations respectives

des droites génératrices I M et 1M seraient

y=La'x , y~a{x—2. A) ;

supposant aaf négatif, et faisant

aafw=. , d'où —zaa fA~ — — ,

l'équation de l'ellipse serait

La quantité —* étant l'expression du paramètre de l'ellipse , en îa

désignant par P , il viendra

y*~Px-\-aa'x\

I^a construction sera la même ? quel que soit Téloignement du point

I ; or 9 si l'on suppose que IM devienne parallèle à l'axe des x , on

aura a~o , et l'équation deviendra simplement

équation de la parabole. Or , comme on a

B=Ay/—aa' , d'où A~

la supposition de # = o donnera ^=roo ; ce qui exprime, en effet,

comme l'on sait, le passage de l'ellipse à la parabole.

Quant à cette dernière courbe , nous pourrions nous en tenir à

cette considération 9 qui fait dériver son équation d'une origine com-

mune à celle des autres courbes. On pourrait aussi employer direc-

tement une construction analogue aux précédentes ? en cherchant la

courbe décrite par l'intersection de deux droites mobiles dont l'une

est constamment parallèle à l'axe des x ? pendant que l'autre passe

constamment par un point de cet axe. Mais nous nous réservons de

revenir sur ce qui concerne la parabole en particulier 9 par un autre

méthode de laquelle nous déduirons , d'une manière plus lumineuse,

les principales propriétés de cette courbe.
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QUESTION S RÉSOLUES.

Solutions du premier des deux problèmes de géométrie
proposé à la page 256 de ce volume ;

Par MM. LEGRAND ; ROGHAT et PENJON. (*)

XVVAKT d'en venîr à la solution du problème propose ^ MM. Lc-
grand , professeur de mathématiques , et Rochat , professeur de
navigation à Saint-Brieux , ont cru nécessaire d'établir d'abord un
théorème préparatoire. Ce théorème , qui peut être considéré comme
un des points fondamentaux de la Géométrie de la règle , a été
énoncé par M. Legrand, ainsi qu'il suit :

THÉORÈME. Soit un quadrilatère complet quelconque ? dont les
cotés soient indéfiniment prolongés ; que ses trois diagonales soient
aussi indéfiniment prolongées ; elles se couperont ? deux à deux , en
trois points. Par chacun de ces points soient menées des droites
aux deux extrémités de la diagonale sur laquelle il ne se trouve
pas 9 on aura ainsi six droites dont chacune déterminera deux
points sur deux côtés du quadrilatère; en sorte quon aura en tout
douze de ces points , distribués , trois par trois , sur les quatre
cotés de ce quadrilatère.

(*) M. Penjon a adressé aux Rédacteurs une solution du problème de la page 3 i8
de ce volume ; mais ceLte solution est parvenue trop tard pour pomoir itre pu-
bliée avec les autres ; elle diffère peu , au surplus , de relie de M. Rochat.

( Note îles éditeurs, )
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Or , il arrivera que ces douze points se trouveront 9 deux à deux*

situés sur douze nouvelles droites > concourant quatre à quatre aux
trois points d'intersection des diagonales du quadrilatère proposé»

Les démonstrations de ce théorème ^ données par SIM. Legrand
et Rocliat, sont , Tune et l'autre ? purement analitiques 9 et revien-
nent à peu près à ce qui suit.

Démonstration. Soit AA /A / /B /BB / / ( fig. 5 ) le quadrilatère pro-
posé , dont les diagonales sont AB ? A

/ B / , A^B77, se coupant, savoir :
AB et A7B7 en C7/ , AB et A " B " en C7 , A787 et A77B77 en C.
Soit joint Je point C aux points À et B par deux droites dont la
première eoupe les côtés BA77

 5 BA' en n et q , et dont la seconde
coupe les cotés KAf/

 ? AB7 en m et /?. Comme la construction serait
évidemment la même pour le point C7 , relativement à la diagonale
A /B / > et pour le point Q/1 , relativement à la diagonale A ^ B " ;
il suint de démontrer i.° que les droites np et mq concourent au
point C ; ; 2.0 que les droites rnn et qp concourent au point C/7,

Soient prises A/7A pour axe des a; et A/7B pour axe des y >
et soient

en aura ? d'après cela , pour les équations

du côté A B 7 . . . . . . . . . . . . . . . a

du côté A7B afyA^b x-=.afb P

de la diagonale A B , a y-\-h x~ab %

de la diagonale A /B / . . . . . . . . a/y-\-b/x^=^a/b/ ;

on conséquence ? les équations du point W' seront

__ aaf(b—b') ___ bb'ia—a1}

^~~ ah—a'b< ? ^ " ~ ab—afbf '

l'équation de la troisième diagonale A^B '̂ sera donc

D'après cela on trouvera s pour les équations
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aa'J—b") û )

^i—5

du point C 5 cc=i

du point C;
 s # =

du point C / ; , # = • , ,
r ab'—a'b J ab'—a'b '

on aura donc pour les équations

de CA , a[zb—b')y-\-bl'jc=.abb' 9

d'après quoi on trouvera les équations des points 772 > 71 , p 9 q.

ainsi qu'il suit

aa'(b—b')

pour ?n

aaf

2.a-—a'

fr=o
pour

zab—a'

J

72

x=o

w
pour q

zab—b'{a-\-af)

il est remarquable que la situation du point 771 est indépendante de

celles des points B et B ; et que celle du point 72 est indépendante

de celles des points A et Ax.

D'après ces résultats 9 les équations des quatre droites 77272 , pq, m-] ,

np 5 pourront être mises sous cette forme

aaf ( bb'ia—af) ) bbf ( aa'{h—b') )
DOUr 77272 , '{y + - 7,~^
* * za—a1 (J ab'—a'b ) 2b—b' <

pour
bb'(a—a')

ab'—a'b

cib'—a'u )

:Î*-Hfl4?-T^ = o
ai'—a u
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aa ( bh'(a—a') } bb1 ( caf(b—b?) )
pour np7 "i o < y — —•— ; /, ^\ 77—17à "r"-" --' A# a-'7 '- -J"^ == ̂

aaf(b—b0 }
pour/72^ ——/ jy— ^ ^ ^ ^ ^ J - ^ Z

or 9 on voit que les deux premières équations sont satisfaites par
les coordonnées du point C /7 , et que les deux dernières le sont par
les coordonnées du point C7.

Soient r ? s , / , v les intersections de mn et CÂ ; /
 9 de ^/? et CB/,<

de pq et CE77, de mq et CA7 : ces quatre points étant situés par
rapport au quadrilatère mnpq de la même manière que le sont les
quatre points m , / ? , / ? , q par rapport au quadrilatère A / / A / B / / B / ,
on en peut conclure , par ce qui précède , que les points r , s ainsi
qae les points ç , t sont en ligne droite avec le point B 5 et que
les points r , 9 ainsi que les points s , / sont en ligne droite avec
le point A.

En général, en remarquant que la propriété qui est contenue dans
Ténoncé du théorème appartient non seulement au quadrilatère pro-
posé ? mais encore à tous les quadrilatères que forment les lignes
de la ligure , prises quatre à quatre , on trouvera une multitude de points
qui jouissent de la propriété d'être trois à trois sur une même ligne
droite ; et c'est une remarque qui a été faite également par MM.
Legrand et Rochat.

Le théorème qui vient d'être démontré se déduit aisément de 1%
proposition suivante :

Si par un point P , pris comme on le voudra sur le plan- d*un
angle quelconque ASB ( fig. 6 ) , on mène tant de droites qu'on
voudray coupant l'un des côtés de l'angle en A , A7 , A77...., et l'autre
en B , W y B

/ x , . . . . , et que C > C 7 , C77...., soient les poinls d'intersection
des diagonales des quadrilatères A/'ASB-'B" , A^ABB" , A/ABB7....; ces
points C , C7 , C77.... seront tous en ligne droite entre eux et avec le
sommet S de l'angle dont il s'agit.

Cette dernière proposition se démontre facilement P en considérant
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que le quadrilatère A'-ABB'' est toujours . pour une situation con-
venable de l'oeil et du tableau , la perspective d'un rectangle A' ABBV

( fi g- 7 ) 9 clue B/A/ ( lig. G ) , concourant au même point que
BA et B^A" , doit être la perspective d'une parallèle B /A / ( fig. j )
à BA et B^A"; que conséquemiuent les points C , C , C 7 ( fig. G )
doivent être les perspectives des centres C , C , C/y ( iig. 7 ) des
rectangles Kf'JSJ&B'' , A^ABB'' , A'ABB' ; et que ces centres se
trouvant sur une parallèle à AA7/ et B B 7 , les perspectives de ces
trois droites doivent concourir en un même point S. ( fig. 6 )

Ce tour de démonstration, outre son extrême brièveté, a encore
l'avantage précieux de faire apercevoir sur-le-champ, dans la figure 6,
une multitude de points qui doivent se trouver en ligne droite.

On pourrait aussi démentrer la même proposition en observant
que ? par une propriété connue des lignes du second ordre, et qui
a été employée, avec avantage , par M. Rochat lui-même (*) , cette
proposition serait vraie 5 si Ton substituait une quelconque de ces
lignes à l'angle ÀSB ( fig. 6 ) ; et qu'ainsi elle doit avoir également
Heu pour cet angle , puisque le système de deux droites est véritable-
ment une ligne du second ordre»

M. Legrand remarque encore que , dans le cas particulier où les*
droites AB , A ' B ' , A^B" ( fig. 8 ) , sont parallèles , elles sont toutes
divisées en deux parties égales par la droite qui joint les points C

p, c».
La solution du problème proposé est une conséquence toute naturelle

des considérations précédentes : voici à quoi elle se réduit.
PROBLÈME, On connaît dans un quadrilatère complet ( fig. g )

deux cotés A /7A, A/7B , Ja diagonale ÂB qui joint leurs extrémités ,
et le point C d'intersection des deux autres diagonales; il faut?

avec la règle seulement ? achever le quadrilatère ?
Construction* Soient m le point de concours de A/;A et BC 3 et

n celui de A / /B et AC ; soit C/V le point de concours de AU et

O Voyez le tome i,er des Annales , page o-j-2*

'Tom. JJ> " 5 Î
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mn ; Soient enfin B' et Kl les intersections de À ; /B et À"A. avec
C / 7C; les droites AB ' ? BA' seront les deux autres côtés du quadri-
latère che relié.

Cette construction est aussi celle qu'indique M. Penjon , professeur
de mathématiques au lycée d'Angers , qui renvoie, pour sa démons-
tration 5 à la Géométrie de position de M. Carnot, et à son Mémoire
sur les transversales. Il remarque que ce n'est que par pure élégance
qu'on opère sur le point donné C , et qu'en lui substituant tout autre
point de la droite A/7C les points qu'on substituerait aux points m
et n appartiendraient a une droite qui couperait le prolongement
de AB au même point C/; où elle est coupée par mn. M. Penjon
observe encore que , si le prolongement de A/7C passe par le milieu
de AB 9 mn se trouvant alors parallèle à cette dernière droite , le
problème ne peut plus être résolu avec la règle seulement.

Solutions du dernier des deux problèmes de géométrie
proposés à la page 256 de ce volume.

I. A un même triangle donne quelconque 9 on peut
inscrire une infinité de systèmes de trois cercles durit les rayons
soient proportionnels ù des droites données > et dont chacun touche
les deux autres et un cote du triangle donné.

On propose de construire le plus petit de ces systèmes ?
/ / . Au système de trois cercles donnés quelconques , se louchant

deux à deux 5 on peut circonscrire une infinité de triangles sem-
blables à un triangle donné , de manière que cl ta que côté du triangle
touche un des cercles donnés*

On propose de construire le plus grand de ces triangles ?
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Première solution ;

Par M. BIDONEJ professeur de mathématiques à l'académie
de Turin.

Soit AA /A / / un triangle ( fig. 10 ) , et soient C , O , C- 5

les centres de trois cercles dont chacun touche les deux autres et
un cote de ce triangle.

Je dis que , si le triangle AA /A / / est le plus grand , parmi tous
ceux de son espèce , qui puisse être circonscrit au système des trois
cercles dont les centres sont C , C / , C 7 / , ces cercles seront, à
l'inverse , les plus petits de tous ceux qui , ayant leurs rayons dans
le même rapport que les leurs, puissent être inscrits au triangle
AA /A / / , de manière que chacun d'eux touche les deux autres et
un coté du triangle.

S i , en effet, on pouvait , sous les conditions données, inscrire
au triangle AAXA7/ trois cercles plus petits que ceux dont les centres
sont C , C7

 P ÇJ/; ; en faisant croître proportionnellement les dimen-
sions de la figure, on parviendrait à rendre ces trois cercles éga^ux
à ceux dont les centres sont C, O , C7/ ; et alors le triangle , devenu
plus grand que AA7A//r se trouverait circonscrit comme lui à ces trois
cercles ., ce qui est contre l'hypothèse.

Je dis , en second lieu , que réciproquement, si le système des
cercles dont les centres sont C , CJ , C/y est le plus petit de tous
ceux de même espèce qu'il soit possible d'inscrire, sous les conditions
données, au triangle AA'A'' , ce triangle sera, à 1 inverse , le plus
grand parmi tous ceux de son espèce, qu'il soit possible de riiT«»ns-
crire , sous les mêmes conditions , au système de ces trois cercles.

Si 5 en effet , on pouvait, sous les conditions données. circonMrlr^
à ce système un triangle plus grand que AAOtv , en faisant ÎU-
orcitre proportionnellement les dimensions de la figure , en paitiendrai
à rendre ce triangle égal à A A"'A , et alors le système <!es h
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cercles devenus plus petits 9 se trouverait comme celai des trois
cercles dont les centres sont C ? C% C7/

y inscrit à ce triangle, ce
qui est contre l'hypothèse.

Il résulte de ces considérations _, et de ce que ? sur une ligne
donnée ? on peut toujours construire une figure semblable à une
ligure donnée 5 que chacun des deux problèmes que présente la
question proposée * peut, par de simples proportions ? être ramené à
l'autre. Or , comme un problème est réputé résolu 5 lorsqu'on en a
ramené la solution à celle d'un autre problème qu'on sait résoudre ,
et comme d'ailleurs le dernier des deux problèmes proposés permet
wnc construction facile ? c'est le seul dont nous nous occuperons ici.

Soient donc ( fig. 10 ) C , G' , C" les centres de trois cercles
donnés, se touchant deux à deux ; et proposons-nous de circonscrire
à leur système , un triangle donné d'espèce ? dont chaque côté touche
un de ces cercles , et qui soit le plus grand possible. Concevons que
le problème soit résolu ? et que le triangle cherché soit AA'xV7. Par
les centres C 5 C/ 9 O 7 soient menées les droites B / B / / , B;/B , B B / ,
respectivement parallèle? à h!SJ/

 9 A/;A , AA7 et formant par leur
concours le triangle BB'B''7 , semblable à AÀ^V7. Soient enfin joints
les centres C , C7 , C/x par des droites qui formeront un triangle
C C C " , inscrit à BB'B".

Cela posé, je dis que le triangle B B ^ ^ est le plus grand de
tous les triangles semblables à AA/A// qu'il soit possible de circons-
crire au triangle donné CC'C7, Si ? en effet 5 il n'en était pas ainsi,
on pourrait, au triangle CC /C / / , circonscrire un triangle semblable
à AA /A / / plus grand que BB /B / / ; et 5 en menant au cercle des tan-
gentes parallèles aux eûtes de ce dernier triangle , ces tangentes
formeraient un nouveau triangle circonscrit aux trois cercles , sem-
blable à AA^N/7 , et évidemment plus grand que lui-, en sorte que,
contrairement à l'hypothèse, ce dernier ne $erait pas celui qui résout
le problème.

Le dernier des deux problèmes proposés 5 et conséquemment le
preipier j se trouve donc ramené au suivant; A un triangle donné,
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circonscrire un autre triangle, donné d'espèce * qui soit le plus
grand possible ?

Or , on sait résoudre ce problème (*), et on sait , de plus 5 qu'il
n'admet qu'une solution , si l'on indique à quel côté du triang]e
donné doit répondre chacun des angles du triangle cherché , qu'il
en a six dans le cas contraire, et qu'alors conséquemment il donne
lieu à un maximum-maximorum qu'on obtiendra de la manière sui-
vante , ainsi qu'il sera démontré plus loin.

Sur les côtés du triangle CC/O7
 y pris pour cordes, et extérieure-

ment à ce triangle, soient décrits des arcs de cercles respectivement
capables des angles donnés du triangle cherché B B 7 ^ , de manière
que Farc capable du plus petit angle, réponde au plus grand des
trois côtés du triangle donné CC'C/'', et que Tare capable du plus
grand angle, réponde à sorï plus petit côté; menant alors , par les
points C , C ; , C7 / , des droites respectivement parallèles à celles qui
joignent les centres de ces arcs, ces droites formeront, par leur rencontre,
le triangle cherché BB /B / /.

Pour achever la solution du dernier des deux problèmes proposés ,
il suffira donc de mener aux cercles donnés des tangentes respective-
ment parallèles aux côtés du triangle BB'B'7 ; ces droites formeront ?

par leur rencontre , le triangle demandé AA'A/7.

Si c'est 9 au contraire , le premier problème qu'on veut résoudre,
on décrira d'abord arbitrairement trois cercles , se touchant deux à
deux , et ayant leurs rayons dans le rapport des droites données.
On circonscrira ensuite , par ce qui vient d'être dit , au système de
ces trois cercles, un triangle semblable au triangle donné, et le plus
grand possible. Construisant enfin une figure semblable à celle qu'on
aura obtenue , mais dans laquelle le triangle circonscrit soit égal au
triangle donne, le problème se trouvera résolu.

Dons le cas où les rayons des trois cercles donnés ou cherchés
doivent être égaux , et dans celui où le triangle donné ou cherché

(*) Voyez les pages 88 et suivantes de ce volume.
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doit être e'quiîatéral , il n'y a plus lieu au maximvm-maxîmoTum ,
ni au mi * ihhum-mi ai morum \ parce que les six solutions du problème
se réddisent alors à une solution unique.

Il reste à prouver qu'en construisant de la manière qui vient d'être
indiquée 9 on obtient 9 en efïet, le minimum-minimorum 5 pour le
premier problème > et consequement le maximum-maximorum^owc
le second.

Soit CC/C// ( fig. i l ) un triangle donné, dont les angles soient
y , yf , y" ; soient décrits 9 sur les côtés de ce triangle , pris pour
cordes, et extérieurement , des arcs de cercles respectivement capables
des trois angles /3, i6

/ , p" d'un triangle donné quelconque ; soient
D 9 D ; , D/y les centres de ces ares , et soient joints ces points par
des droites qui formeront le triangle DD'D" ; soit enfin circonscrit
au triangle CC'O7 un triangle BB-'B" dont les cotés soient respec-
tivement parallèles à ceux du triangle DD'D77.

Soient joints CD/ , CD7/ ; et des points D ;
 $ D / ; soient abaissées

sur CC/7 et CC7 les perpendiculaires D///z/ et D///72// ; les points ?n;

et m/f seront les milieux de ces droites ; les angles 772/D/C et
m^D^C seront respectivement égaux aux angles fi1 et $n ; et on aura
de plus D'D" moitié de WW*. (*)

Nommant donc c 9 cf
 5 c/; les trois côtés du triangle CCXO7 et

1) y h1
 P bn ceux du triangle BB/B^ ; on aura?^ étant le quadrans ?

Or , le triangle D'CD" donne

— 2.CD/.CD//.Cos.'D/CD//-\-CD//

substituant donc > il viendra

(*) Voyez la page 24 de ce volume.
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™'c" ç ' . 1
.=^' 4Sm./3'.Sin,,3" ^ '

.2/3"—arV'Sin S'Sin V'Cos.

37g

îs^ en désignant par C Taire du triangle C C C " , on a

donc

+4CSin./3Sin,/3/Sin./3/'

^

Posant donc

c 2Cos./3 Sin.^Sin.

îl uendra
M M M

Si l'on désigne par i ï Taire du triangle BEKB" , on aura

a aSui./SiJin./S'Sin.iô7 ?

et par conséquent
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^ ^ r c2Cos.SS!rt 3ySin.3"4-r^Sin..3Cos.3'Sin.3

S i 5 i S

Présentement pour que ce triangle soit un maximum absolu , il
faut qu'on ne puisse faire subir aux angles fi9 ?', fiff aucune per-
mutation sans en diminuer la surface ; il faut donc qu'on ait

- c-Cos /3SIn.3'Sin 3"-f-r/=Sin.3Cos.3'Sin 3'/+f "-Sîn. 3Sin.6'Cos fit'

2.S'm /3bin..3"Sin.3/

inégalité qui, pn remarquant que Sin.p , Sin./â', Sin./S'' sont essentiel-
lement positifs 9 devient 3 en transposant 5 réduisant et chassant le
dénominateur ,

il faut donc que
c1—cu e t fir?—fi* ?

soient de mêmes signes, ou qu'en supposant cf>cu on ait /S/</3//;
ainsi l'angle fi étant déterminé à correspondre au côté C , il faut
que le plus petit des deux autres angles corresponde au plus grand
des deux autres côtés r et vice versa ; d'où il est facile de conclure
la construction indiquée ci-dessus*

Nous croyons devoir faire remarquer, en passant ? que la valeur
àe B peut être mise sous cette forme très-sirnple

Si l'on suppose, au contraire , donnés les côtés du triangle B B ^ ^ et
les angles du triangle CC/C// , en posant , pour abréger

b

vn trouvera

(foi
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d'où on conclura

C=

-de cette valeur de C et de celle de B résulte cette relation re-
marquable

À l'aide de ce qui précède , on parviendra facilement aux résul-
tats suivants.

h Soient a , af, alf les trois cotes d'un triangle donné , A son
aire, A , x/

 ? h//f des droites auxquelles les rayons des trois cordes
inscrits doivent être proportionnels , et r , rf , rN ces ra} ons ; en
posant , pour abréger ,

(x/+^)»—(A

il viendra

II. SI au contraire ? les rayons r, r*, rf/ des trois cercles étant
donnés , on demande les côtés a $ af , an du plus grand triangle
circonscrit dont les angles soient a 5 J , */f \ en posant , pour abréger ,

(r +r/)2Sin,^Sin.«/Cos.«//

on trouvera
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at —

v rSin.«+r'Sin.*'4.r"S;.n.*/f4-P

SSl

Deuxième solution ;

Par M. LHUILIER , professeur de mathématiques à l'académie
impériale de Genève.

Lêmmc connu. Soit un triangle donné de grandeur et d'espèce.
Par les sommets de ce triangle soient menées des droites qui for-
ment un triangle circonscrit au premier. Que ce second triangle soit
donné d'espèce seulement. On détermine , comme il suit , le plus
grand de ces triangles.

Sur les cotés du premier triangle soient décrits ( extérieurement
a lui ) des segmens de cercles respectivement capables des angles
donnés du second triangle. Par chacun des sommets du premier
triangle 9 soit menée une droite parallèle à la droite qui joint les
centres des cercles dont les jambes de cet angle sont les cordes. Ces
parallèles formeront le plus grand triangle demandé. (*)

PROBLÈME L Soient trois cercles donnés de grandeur et de
position , dont cliacun touche les deux autres ( extérieurement ).
Mener à chacun de ces cercles une tangente y de manière que le
triangle formé par ces trois tangentes ait ses angles donnés , et soit
le plus grand possible '.'

Soient c , v1, i"'1 les centres donnés de trois cercles qui se tou-
chent extérieurement ( fig. 12 ). Soient R 3 IV , Rx/ leurs rayons
donnes. Soient T , 1V , I 7 les points de contact de ces trois cercles
et d»*s droites qui , par leur rencontre ? forment un triangle
X-X/X.'7 dont les angles sont donnés et qui doit ètrr le plus grand.

{*) V n \ w lt-5 \*A'^< «. 2"—— J2 de ce v o l u m e ; vo\cv: aus^i mus Ëltmcns

cl--.
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Ànalise. Le triangle CC'G7 est déterminé. Par les centres C 5 C ,

C ; / , soient menées aux côtés du triangle XXOC77 des parallèles ;
elles formeront un triangle 71ZJ7J* semblable au triangle XXO£" >
et circonscrit au triangle CC /C / /.

Des sommets . . . . . Z , Z ' y Z " ,
soient abaissées sur X X / , X X " ; X ' X " , X 'X ; X"X , X " X ' ,
les perpendiculaires ZQ , ZP ; Z'Q7 , Z 'P ' ; Z"Q" , Z"P".

Les quadrilatères Z P X Q , Z 'P 'X'Q' , Z^P/ 'X'/Q" sont déterminées ,
puisque , dans chacun d'eux, on connaît , outre les angles , deux
cotés adjacents . qui sont les rayons de deux des cercles donnés.

Les rectangles ZQP'Z ' , 7jQV"7Jf , Z^Q^PZ , dans chacun des-
quels un des côtés est donné ( savoir le rayon de l'un des cercles
donnés ) , croissent comme les côtés ZZX, U7Jf

 ? Z7/Z du triangle
II&TJ* \ et ? en particulier, le triangle XX7X ; / est le plus grand ,
lorsque le triangle 7JZJTJf est le plus grand. Partant, on détermine
comme il suit le plus grand triangle XX7X /y.

Construction. Au triangle CC/C" soit circonscrit ( Lemme ) le
plus grand triangle 7IZJ7J* ayant ses angles égaux aux angles donnés
du triangle XX'X77. Soient menées aux cercles donnés des tangentes
respectivement parallèles aux côtés du triangle TJLrLf/. Ces tangentes
formeront, par leurs rencontres? le triangle demandé XX'X".

PROBLEME IL A un triangle donné, inscrire trois cercles dont
les rayons soient entre eux dans des rapports donnés ; de manière
que chacun de ces cercles touche un des côtés du triangle donné,
que chacun d'eux touche aussi les deux autres cercles ( extérieure-
mont ) 5 et que le système de ces cercles soit le plus petit possible.

Solution. La solution de ce second problème est ramenée à celle
du premier ? par la méthode ordinaire de fausse position.

Remarque L Le cas particulier de l'égalité des rayons des cercles
donnés rend équilatéral le triangle CC/C".

Remarque IL Au lieu de s'occuper de la limite en grandeur du
îrîan-le donné d'espèce, circonscrit au système des cercles donnés >
on peut demander que ce triangle soit donné de grandeur. Et réciproque-
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ment , au tr'aj^le demie , on peut inscrire un système de cercles

donne de grandeur. Ces problèmes sont élémentaires ; et on peut

tirer de leur construction la limite pour l'un et l'autre cas.

Remarque III. Tout ce qui a été dit sur le cas du contact des trois

cercles s'applique à un système de trois cercles dont les rayons ont

des rappoits donnes, soit entre eux soit aux droites qui joignent

leurs centras.

Envisagé sous ce point de vue général ? le problème proposé donne

lieu à huit cas, suivant que les contacts des cercles et des côtés

du triangle , relativement à ce triangle , sont tous les trois intérieurs,

deux intérieurs et un extérieur, un intérieur et deux extérieurs, ou

enfin tous les trois extérieurs.

Troisiè?ne solution j

Par M. ROCHAT , professeur de navigation à St-Brieux.

M. Rochat, en traitant les deux problèmes d'une manière pure-

ment analitique 9 est parvenu à des formules assez simples 7 mais

dont il n'a pas indiqué la construction.

QUESTION PROPOSEE.

Théorème à démontrer.

a une ellipse on circonscrit un quadrilatère quelconque, le point

d'intersection des deux droites qui joindront les points de contact de

l'ellipse avec les côtés opposés de ce quadrilatère, coïncidera avec

le point d'intersection de ses deux diagonales.

F I N BU T O M E SECOND,
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Analogies entre le triangle et le tétraèdre ; par M. Ferriot. i33—i^4«
Solutions de ce problème : Trouver un plan sur lequel projetant orthogonale»

ment trois Jigures planes, données de grandeur et de situation dans l'espace ,
les aires de leurs projections soient proportionnelles à trois nombres donnés ? par

MM. Rochat et Lhuilier. iT>4—iS;.
Solution d'un problème de Montucla, relatif aux polygones; par M. Pilatte,

I 5 7 - * - I 6 I .

Remarques sur le problème de l'inscription de troij, cercles a un triangle ; par
M. Tcdenat. i65—070.

Lieu aux sections coniques ; par M, Lhuilier 170—17S.
Inscription du quarré au triangle et du cube au tétraèdre ; par M. Ferriot,

180—182.
Application de la doctrine des projections à la reclierclie des principales proprié-

tés de l'ellipse ; par M. Ferriot. 2+0—248.
Démonstrations d'une propriété de l'hyperbole ; par MM. Pi latte, Le grand et

Rochat* 2.66—270.
Solutions de ce problème : A un polygone donné inscrire un polygone de même

nom , dont les côtés soient respectivement parallèles à des droites données de
position ? par MM, Lhuilier , Rochat , Pcnjon , Pilatte et Gergonne* 270—286.

Solutions de ce problème : Déterminer un plan sur lequel projetant orthogona-
lement un triangle donné , sa projection soit semblable à un autre triangle donné?
par MAI. Lhuilier , Encontre , Tédenat, Pilatte , Penjon , Rochat, Legrand et
Vecten. 29 3—31 o.

Démonstrations de quelques théorèmes relatifs au quadrilatère ; par MM. En-
contre , Ferriot , Legrand , Pouzin , Penjon , Lehault , Bret , Labrousse et
Rochat. 310—318.

Solutions de ce problème : A un polygone domié circonscrire un polygone de
même nom , dont les angles soient respectivement égaux à des angles donnés ,
et dont taire ou le contour soit donné ? par MM, Lhuilier , Pilatte et Rechat,

318—'y~ 4»
Relation entre le dodécaèdre et l'icosacdre réguliers, inscrits à une même sphère;

par M. Flaugergues, 3J7—3l)cm

Solutions de ce problème : Connaissant , dans un quadrilatère complet , deux
cotés, la diagonale qui les joint , et l'intersection des deux autres diagonales ;
construire le quadrilatère , en n'employant que fa règle seulement .'' par IN1M,
Legrand5 Rochat et Penjon. 369—3-_'.

Solutions de ces deux problèmes : i.° A un triangle donné inscrire trois cercles
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dont le rapport des rayons soit donné , et qui soient les plus petits possibles ?

2..° ^-iu système de trois cercles donnés , se touchant deux à deux ? circonscrira

un triangle semblable à un triangle donné , et qui soit le plus grand possible ?
par MM, Bidone , Rochat et Lhuilier. 074."—364»

GÉOMÉTRIE ANALITIQUE.

Roc'ierchc des longueurs des axes principaux ? dans les surfaces du second ordre
qui ont un centre; par M. Brct, 33—08.

Recherche de la position des axes principaux , dans les surfaces du second ordre ;
par M. Bref, 14^—i52.

Discussion de l'équation du second degré entre deux variables ; par M. Brct.
218—.224.

Recherche de quelques propriétés des tangentes aux sections coniques ; par M.
Jiochat. 2.2.Z—2.')0.

Recherche de la grandeur et de la situation des diamètres principaux , dans les
lignes du second ordre ; par M. Rochat. 33 1—335.

Addition au mémoire de M. Rochat ; par M. Gcrgonne. 335—338.
Génération des lignes du second ordre , par l'intersection de deux droites mo-

biles ; par M. Raymond. 36o—36CJ«

HYDRODYNAMIQUE.
Solution d'un problème d'hydrodynamique ; par M. Gergonne* 248—206,

P R O B A B I L I T É .

Solutions d'un problème de probabilité ; par MM. Encontre , Lnuilicr, Peschier

el Tèdenat. 34o-—o56.

STATIQUE.

Démonstrations d'un théorème de statique , relatif à la mesure du volume du
prisme ; par MM. Servais , Uiuilier, Rochat , Labrousse , Fauquier , etc. 94—<j6.

Solutions d'un problème de statique ; par MM. Encontre el Rochat. 191 —196.

Détermination directe des centres de gravité du triangle et du tétraèdre ; par M.
Gergnnne* 289—ntp.

TRIGONOMETRIE.
Démonstration de quelques formules de trigonométrie sphérîque ; par M. Ser~

vois. 84——$$•

Formules pour la détermination de l'obliquité de l'écliptique et da lieu de i 'équi-

noxe ; par M. Gergonne. 207—-^4° '

Eci;.ii'cissemens sur le troisième et le sixième cas de la trigonométrie sphérique ;

par M. Lhuilier. ^7—^«
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ERRATA.

ERRATA

Pour le tome secoiid des Annales.

Pour les Planches.

Planche I I , fi^\ 7. — \\ faut u n a a u troisième sommet du triangle circonscrit

à âef.
Planche V , fig. 5. — II faut une M à l'intersection de Cg et Nm.

Pour le Texte.

Page 3a , dans l'énoncé du problème de géométrie, supprimes ces mots : équi-
valent à une surface donnée , et

Page 60 , ligne 3 , en remontant. — le nombre , lisez : le grand nombre.
Page 70 , ligne 8 ; pour la formule lx= etc. , consultez la page 178.
Page 88 , ligne 9. — cadran , lisez : quadrans.
Page 93 , lignes 2 et 5. — Hochât : lisez : Pîlatte.
Page 96 , ligne 8 et 9 , en remontant. — Les signes des termes du second mem-

bre de l'équation doivent être alternatifs.
Page i53 , équation (B). —Au second terme du coefficient de y1 , il faut p, au

lieu de np ; et au second terme du coefficient de y , il faut Jpt, au lieu de
2,pt%. Cette erreur qui s'est reproduite dans les équations (C) , (D) , (E) ,
n'appartient point à l'auteur du mémoire.

Page 237 , aux dernières lignes du mémoire , substituez ce qui suit :

xx = - } - I 6 . I i+3cje=: 1 76+390 ,
jr=:-f-23.i i-H>6e=:ï53-f-56e ;

faisant donc £ = —4 * —3 , —2 , —-1 , 4I0 , -j-i ,

on trouvera \ l ' o - / '- -> ->
| jr = 2 9 , c>3 , 141 , 197 , 2 J J , 009 ?

Cette erreur n'appartient pas h l'auteur du mémoire.
Page 283 > troisième ligne de la note. — alors , lisez ensuite.
Page 3o5 5 à la note.— Supprimez ces premiers mots; » Cherchez une moyenne
>» proportionnelle entre CA et CB'j et une autre entre CB et CAy » \ et substituez-
leur les suivons :
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a Construisez un demi-cercle dont le diamètre soit pîus grand que la plus

v grande des quatre lignes données CA , CB , CA' , CB'5 et portez-y ces quatre
M lignes comme cordes , à partir de Tune des extrémités de son diamètre. Cherchez
v une moyenne proportionnelle entre les projections de CA et CB7 sur le diamè-
» tre , et une autre entre les projections de CA' et CB sur ce même diamètre. r>
Page 338 , ligne 9. — Ajoutez : et leurs extrémités.
Page 342 , ligne 3. — 12.f, lisez 12.J.

Page 347 j ligne 4 ? e n remontant ; f •, lisez •—






