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PREMIERE PARTIE.

Détermination des orbites des corps célestes , par quatre ou un plus
grand nombre d’observations yoisines.

LA méthode que je vais tracer, dans cette premiére partie, est di-
recte ; elle est fondée sur la plus saine théorie; et elle réduit au premier
degré un probléeme généralement regardé comme tres-difficile. Neéan—
moins , on la jugera peut-étre plas curieuse qu’utile. Elle suppose ,
en effet, que I'on a au moins quatre observations complétes de lastre
dont il s’agit de déterminer les élémens; elle suppose, de plus, que

Tom. II. 3



2 DETERMINATION DES ORBITES
Vintervalle de temps qu'embrassent ces observations n’est pas trés-con=
sidérable ; elle suppose, enfin, que ces observations sont assez exactes
pour qu’il soit permisde compter sur les troisiémes différences des don~
nées qu’elles auront fournies ; et 'on sent que ce sont la autant de
circonstances trés-difficiles & réunir.

C’est donc moins dans la vue des applications pratiques que j'in-
dique ici cette méthode, que pour montrer 1.° quelle influence exerce,
dans la solution du probleéme, la considération des lois du mouvement
auquel lobservateur est assujetti; 2.° quel parti on peut tirer de la
méthode des differences dans les applications de l'analise ; 3.° enfin,
combien il importe de perfectionner I'art d’observer, puisque des ob-
servations plus exactes, en méme temps qu’elles conduisent & des Té-
sultats plus précis, permettent, dans la recherche de ces résultats , de
substituer , & des talonnemens toujours incommodes et souvent trés—
compliqués , des méthodes directes extrémement simples.

Toutefois , & ne considérer méme la méthode que je vais sommai-~
rement présenter que comme propre sculement & fournir une approxi-
mation grossiére, peut-étre serait-elle encore de beaucoup préférable
a toutes celles qui reposent sur I'’hypothése d’'un mouvement sensi-
blement rectiligne et uniforme , pendant l'intervalle de temps qu’em-
brassent les observations ; hypotheése tout a fait illusoire, comme M.
Tagrange I'a prouvé dans l'un de ses mémoires sur la détermination
des orbites des cométes , et comme je 'ai fait voir, par de nouvelles
considérations, dans un mémoire que j’ai lu, il y a quelques mois,
3 lacadémie du Gard (*). Fajeuterai qu’en réduisant ainsi le probléme
au premicr degré , en méme tem>s qu'on le simplifie , on élude une
discussion , toujours pcnible, et souvent trés-délicate , entre les diver-
ses sclutions que peut admettre un probléme d'un degré plus dlevé;
ce qui e parait étre un avauiage irév-précieux,

(*) Jai prouvd, eatre actres chuses ) dans ce znémoire , que, dans Vhypothése dun
mouver:ent sersiblement 1000l me et unliorias, les mémes donndes pouvaient rée
pondre & une mbaité de trajecteires duidientes
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Je montrerai, au surplus, dans la seconde partie de ce mémoire,
que ,méme en n’employant seulement que les premiéres et secondes dif-
férences des données fournies par les observations , le probléme de la
détermination des élémens du mouvement d’un astre, n’est que da troi-
sitme degré , si l'orbite de cet astre est assez alongée pour pouvoir
étre considérée comme sensiblement parabolique, et quil nest que du
second degré seulement si, au contraire , le peu d’excentricité de cette
orbite permet de la considérer comme circulaire ; de manitre que le
cas ol lexcentricité n’est ni trés-grande ni trés-petite , c’est-a-dire ,
le cas le plus rare dans la nature, est le seul ou le probléme , méme
pour une premiére approximation , soit indvitablement du septiéme
degré. Mais ces simplifications ne peuvent avoir licu qu’autant quon
emploie concurremment les premicres et secondes différences tant des lon-
gitudes que des latitudes observées , ce que 'extréme précision que I'on ap=
porte aujourd’hui dans les observations , semble d’ailleurs suflisamment
autoriser , du moins dans un grand nembre de cas.

Les seules suppositions que je me permettrai dans ce qui va suivre,
et elles sont indispensables pour le but que j’ai en vue, sont 1.° que
les observations sont faites au centre méme de la terre; 2.° que le
centre du soleil est dans une immobilité parfaite ; 3.° que les masses
de la terre et de l’astre observé peuvent étre considérées comme nulles ,
par rapport a la sienne ; 4.° que conséquemment ces deux corps n’exer=
cent aucune attraction I'un sur l'autre ; 5.° qu’enfin il n’cxiste , d’au-~
tre part , aucune cause perturbatrice du mouvement. Au surplus, si
Pon en excepte, peut-étre, la belle méthode de M. Gauss, il n’en est
aucune qui ne soit fondée sur ces diverses hypothéses.

A Tavenir, lorsque j’emploirai les coordonnées rectangulaires , le
centre du soleil sera lorigine; la ligne des équinoxes sera l'axe des
@ ; celle des solstices sera Paxe des y ; 'axe de I'écliptique sera celui
des z, et 'angle des coordonnées positives sera compris entre Ariés,
le Cancer et le péle boréal de Iécliptique. Je prendrai le jour moyen
pour unité de temps, la distance moyenne du soleil & la terre pour
unité de longueur, et l"angle droit pour unité de mesure des angles.
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Enfin, je considérerai les latitudes comme positives ou comme néga~
tives , suivant qu’elles seront boréales ou australes.

I. Cela posé, soient, pour une époque quelconque 7,

X, Y, Z, les coordonnées d'un astre observé, et R son rayon vec-
teur ;

&, ¥, les coordonnées de la terre, et 7 son rayon vecteur;

«, sa longitude , ou celle du soleil augmentée de deux angles droits ;

£, v, les longitude et latitude gdocentriques de P'astre.

1l est aisé¢ de voir qu’on aura

X=rCos.«--ZCos.sCot.y ,

Y =rSin.«~ZS8in.sCot.y ;
on aura d’ailleurs

(1) x=rCos. , (2) y=rSin.« ;
posant donc, en outre ,
p=Cos.eCoty , g=>Sin.eCotvy ,
ou, ce qui revient au méme,
3) pSin.y =Cos.8Cos.y , @A) ¢Sin.y=pCos.y ,

les deux équations ci-dessus deviendront

(5) .XZ.Z'—I—pZ 9

(6) Y=y+q¢Z .

II. Soit considéré le temps comme variable indépendante, et soient
adoptees , pour plus de simplicité, les notations de M. Lagrange. Eh
di.férentiant trois fois chacane des deux équations (5, 6), il viendra

(7) X =al vpt ZpZ)

(8) Y =y’ =g Z+492/ ;

(9) X0 =gl Sp!! Z-op! Zi4-pZ" ,

(10) Y/ =yl gl Zdoy Z/-qZ

({ 1) ,X///:-36///+/)///Z+3/J//Z/+3P/Z” +pZ/// N

(12) Y =yl e g/l =31 Z/A=3q' Z1 - Z"" .
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Mais , par le principe des aires, on a
(13) X¥Y"—YXV=o, (16) XY —YX!14- X' Y1 Y1 X/ =0 ,

/ — LAY
(14) YZ/'—ZY'=o0,\dous (17) YZ'"—ZY""{-Y/Z!—Z/ ¥V =0 ,
(15) ZX'—XZ!"=o0, (18) ZXN—XZM-Z/XN—XrZ11 =0 .
Dans chaque colonne, chacune des équations est comportée par les
deux aatres, en sorte que les six équations n’équivalent réellement
qu'a quatre ; mais, réunies aux huit équations (5,6, «vev.u, 11, 12),
olles sont en nombre suflisant pour déterminer les douze inconnucs
ey
X, X, X, X,
Y, ¥, Yy, yw,
zZ,z, 2", Z,
IIl. On a aussi, en vertu du méme principe,
(19) xy//_yx//:o N d’Ol‘l (20) xy///__y-x///—i—x/y//_y/x//_—_0 H
et, bien que ces deux derniéres équations n’expriment que de simples
relations entre les données du probléme ,leur considération n’en est pas
moins trés-importante , & raison des simplifications qu’elles introdui-
sent dans la recherche des valeurs des inconnues.
IV. Pour parvenir aux valeurs de ces inconnues d’une maniére sim-

ple, soient d’abord substituées , dans I’équation (19), les valeurs de
@, 2, ¥, y” ,données par les équations (5, 6, 9, 10), il viendra

(Xemp Z) (X! Zimm2q! Z e 21 ) ( X =g Z) ( XV epl! Zm2p Z/—p Zy=0
équation qui, en vertu des équations (5, 6) , peut étre derite ainsjl
(X—=pZ )T "‘éz N—a(q! Z~4-29'Z")
—(Y—gZ (X' —pZ/ Ay (pZ+-2p'Z') -
En développant la partie
(X—pZ) (Y=g Z! ) (Y—q Z ( X/'—pZ")

de cette dquation, et P'ordonmant par rapport a p et ¢, on voit qu'elle

(o8
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s'évanouit, en vertu des équations (13, 14, 15), en sorte que 'équa-
tion devient simplement
(21) (p!y—q"2)Z+-2(p'y— ¢'x)Z' = 0.
V. Soient, en second lieu, substitudes dans ’équation (20) pour
x, &l al, a
A AN YA

leurs valeurs données par les équations (5, 6, ...., 11, 12), il viendra

(X—p2Z)( Y”"—q N Z 3 g/ ZI—3q' Zill g Z1 YA (X! Zmep Z)) (X Vg Zo2 Z—qZ")
—( Y—q Z) (X///__p/// Z_3]]// Z/.__.3p! Z”—]J VAL (]/ Z—-q A (X//__.p// Z—zp/ Z/._pZ” )
Cette équation peut d’abord ,en vertu des équations (5,6,7,8,9, 10),
étre écrite ainsi:

( X—-p Z) (Y’”—‘f] Iy ( Y—z] Z)( X’”——-p Z’”)-{—(X/——p Z( Y//__q ZNywm( Y/__q Z( X”-—p Zm)
-—x((]”’Z+3q”Z’+3q’Z”)-—(x/+p’Z)((]”Z+2q’Z’)——p"y”Z
+y(plllz+3p/.’z/+3p/Z//)+<‘?~/+qlz> (p”Z+:p’Z’)+q'x”Z

En développant la premiére ligne , et l'ordonnant par rapportap et g,
on voit qu’elle s’évanouit, en vertu des équations ( 16, 17 ,18);le
surplus de I’équation est , en réduisant ,

(ply==q"'x) | ZA-3(p"ly==yq"'x) | ZI~-3(ply =g @) 2l (p!glems'p'") L2500

(22) l“*‘@”y’—v”x’) +2(ply'—g')

——(p/‘y//..__(]/xl/)

r

VL. Soit enfin différentiée 'équation (21) ; on aura ainsi

(p"y—y""x) | Z4-3(p"y—4"x) | ZIr2(p'y—g'x)Z/=0.

(=23) %
+2(ply'—q'x)

+-@'ly'—g" "),

. . 1 77 r . . .
Eliminant alors Z7/, entre les équations ( 22, 23 ) , il viendra

==0.



DES CORPS CELESTES.
(p"ly=—q'1x) | ZA3@y=gx) | Zid2(plgemgipt) Zos=o;
) H @y—ge) | d2py—g'e)
F2(ply"—g'="

Eliminant enfin Z/ entre les équations { 21 , 24 ) , et divisant par Z 1'é~
quation résultante , on en tircra

3(p!ly=—q ) 2y (py =g ) (p'y"'—q 1300 mm (emmg P (Y Yo (P e ) (P .
4P —q PPy —q'x) ‘

V1. Pour calculer cette valeur de Z, il faudra d’abord , & ’aide des
valeurs de 7 et « qui répondent & I'époque 7, et que donneront les
éphémeérides , et par les lois connues du mouvement de la terrc, déter-
miner 7/, 7/ et «/; d'ou, par les équations (1, 2) , et leurs différen-
ticlles premiéres et secondes, on conclura, pour la méme- époque,
les valeurs de @/, %/, 2/, y/, dont les dernieres , en vertu de I'équa-
tion (19), ne renfermeront pas «”.

Ensuite , 3 Paide de plusieurs longitudes et latitudes observées,
dans le voisinage de 1’époque #, on calculera, par la méthode que
M. Laplace a indiquée (*) , les valeurs approchées, toujours pour
Vépoque 2z, de 8, &/, p”, 875 v, o, ¥, ¥+ Recourant alors
aux équations (3, 4), et & leurs différentielles des trois premiers ordres,
on en conclura les valeurs correspondantes de p, p/, p”, p/, ¢,
9’5 g, ¢”/; au moyen de quoi tout se trouvera connu dans la
valeur de Z.

Z ¢tant ainsi déterminé , Péquation (21) fera connaitre Z7, et on
obtiendra ensuite X', X/, ¥, ¥7, par les équations (3,6, 7, 8)
Appelant donc 22 le rayon vecteur , pour I'époque ¢, on aura

=X~ Y427
de plus, en formant la quaniité

XN--YYV4-22/ ,

() Voyea Mianique celeste , tom, 1, pag. Igj
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suivant quon la trouvera positive ou négative , on saura yque 1’épo--
que ¢ suit ou précede celle du périhdlic,

VII. Ces préliminaires établis , rien ne eera plus facile que de
déterminer les élémens de lorbite, en suivant la marche tracée par

Villustre auteur de la Mécanique céleste (*) et qm revient & peu prés
A ce qm suit :

Soient posés

YZi—ZY'=A, X§ —(Y/=+Z/2)§+X/(YY/+Z"Z/)=D ,

n

ZX—XZ/=3B, Y%-’i — (71X )§+Y/(ZZ/+XX/)=E ,
XV—¥X=C, Z{% —-(X/2+Y/2)§-|—Z/(XX’+YY/)=F ;

équations dans lesquelles, en désignant pap S la durée de Pannée sy-

dérale, on a -

4=
©= T

52 ’
posant , en outre,

LB =6, D+ EAF=H
on trouvera

it
2R (X2 Y 12 212) ?

1.° demi-grand axe =
o , o ) H
2.° rapport de excentricité au demi-grand axe =— ;

A
3.° Tang. Long. du neeud ascendant = =—

VA B

C 5

4.2 Tang. inclinaison de Porbite =—

*Y Voyez DMécanique céleste , tome 1, page 160.
¥ q ’ » Pag

5.
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5. Tang. Long. du périhélie sur Pécliptique = —112- ;
. . DX4EY4FZ

AR ] _— .

6.° Cos. anomalie vraie = Th s

enfin, désignant par ¢ le demi-grand axe , par e le rapport de l'ex-

centricité & ce demi-grand axe, par ¢ I'anomalie, ct posant

I— 1 1
V?Ii Tang.;¢=Tang.1z ,

on aura

7.2 Epoque du périhélie =¢ j(u—eSin.u)Va%; le signe == ou le

signe — devant étre pris, suivant que 'époque # précéde ou suit celle

du périhélie.

DEUXIEME PARTIE.

Détermination des orbites des corps célestes , par irois ou un plus
grand nombre d’observations yoisines.

Dans la premidre partie de ce mémoire, je n’ai fait uniquement usage
que du principe des aires, et il m’a fallu, pour suppléer aux autres
circonstances connues du mouvement des corps célestes , reeourir aux
troisitmes différences des longitudes et latitudes observées, ce qui sup-
posait quatre observations au moins. Ici j’aurai indifféremment recours
A toutes les lois qui résultent du principe de la gravitation , ce qui
n’exigera plus que Uemploi des secondes différences, et ne supposera
pas conséquemment que les observations doivent étre au nombre de plus
de trois. Je conserverai d’ailleurs les conventions et notations déja adop-
tées dans la premiere partie.

VIII. L’équation (21) donne

2/l np gy 125
(25)  Z/=— z%p%:i’mz ,
d’ol résultent, par les équations (7, &)
Tom. II.

i»
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26 X =z S /_Mi
( ) x+(p 2(ply—q'x) Z 2.

( O(P”y’-‘i”x)g
o Y/ = /+ . e .
( /) y lq 2(ply=—q'x) ’

si ensuite on substitue dans I’équation (13) les valeurs données par les
équations (5, 6,9, 10) , en ayantégard aux équations (19, 21) ,il
viendra

(py—q%)2" = (py" —qa') Z~+-(pg"'—qp") Z*-2(pg'—qp Z Z'

multipliant cette équation par p/y—g¢’z et éliminant Z/ au moyen de
Véquation (21), il viendra

(Py—g2)(py—g'2)Z =
Py =gy =g 3" ZA(pq P Py =g By (pg=gp') (p"ly =g}
équation qui se réduit a
(py—g2)ply—q'2)2" =
(p/y__q/x) (py//_qx//) Z+(p/q//_._q/p//>(py_qx) Z3 ;
mais , en vertu de I’équation (19), on a
substituant donc et divisant par py——qx' , On aura

. B A (Y, P YA
o8 2= $(ply"'—g' x4l q g 'p) 2} .
Py—q'x

d’ott on conclura , par les équations (g, 10) et par la formule (25),
en ayant toujours égard & Péquation (19) ,

(290 X'= @l =g 1=z
Py—g'z
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(30) Y= QAI2HPy g il "y P2
Py—q'x
Voila done X, Y, X', Y, Z/, X/, YV, Z", déterminés en fonec-
tion de Z; etil est essentiel de remarquer 1.° que les valeurs de X,
Y, X/, Y sont complétes du premier degré en Z ; 2.° que celle de Z/,
aussidu premier degréen Z, ne renferme point de terme sans Z; 3.° que
les valeurs de X/, Y7/, sont completes du second degré ; 4.° enfin
que celle de Z”/, aussi du second degré en Z, ne renferme point de terme
sans Z.
IX. Il nous faut donc une équation de plus pour déterminer nos
inconnues , et le principe de la gravitation donne, comme lon sait,

Z( X Y422 =2 2

équation dans laquelle  a la méme valeur que mnous lui avons déji
assignée ( VII ). Faisant donc les substitutions et divisant par Z* il

viendra
(1) {(armga (g =g PV I (o 2y BV 2
= (ply—g/x)"-
Cette équation semble devoir monter au 8.™¢ degré; mais elle ne s'¢-

Iéve réellement qu'au 7.™¢, comme nous allons le voir (*).
Le dernier terme de cette équation est .

Py —q'a) (@ —y* P —e* (Ply—q'%) 3

mais , les lois du mouvement étant, pour la terre, les mémes que
pour lastre observé, on a

X/ = d » ) #y 3
3
(xz_*v,z):‘ (x:+y:)‘;

(") Cette équation équivaut i celle qui a été donnée par M. Laplace. Voyez Iz
Mécanique céleste, tome 1.5F, page 209.
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_ pplr—gly |

7 x//_q/),.// — — 3
(w2y2)e

c¢ qui donne, en quarrant, chassant le dénominateur et transposant,
(p/ ! gy !y (@ Ay = (ply—q/ @) =0 3

d’ou P’on voit en effet que , le dernier terme de ’équation (31) étant zéro,

elle ne doit s’élever seulement qu’au septiéme degré.

Cette équation étantrésolue , on en déduira les valeurs de 2/, X, X/,
Y, Y7, comme ci-dessus , et on achevera absolument le calcul comme il
a été indiqué dans la premiére partie. ‘

X. Nous allons montrer maintenant comment le probléme se simplifie
dans les cas les plus ordinaires, c’est-a-dire, dans les cas d’une trés-grande
ou d’une trés-petite excentricité,

Supposons , en premier lieu , que le demi-grand axe soit assez grand
pour pouvoir sensiblement étre supposé infini, ou, ce qui revient au
méme , supposons que l’astre observé soit une comete ; d’apres I'expres~
sion que nous avons donnée du demi-grand axe , nous aurons alors

(32) 2p=RX*4-Y"4Z/*) ;

ee qui donnera, en quarrant etintroduisant la valeurde R*en X, Y, Z,
(33) 42 = (XY A-Z )X -T2 Z77)2,

il est aisé de voir que la substitution des valeurs de X, ¥', X/, ¥7,
Z’, ne fera monter cettc équation, en Z, quau 6.m° degré seule-
ment (*) ; mais ce n'est pas la plus simple que l'on puisse employer ,
dans ce cas, pour parvenir 4 la solution du probléme.

On a, en effet, par le principe de la gravitation , ainsi que nous
Vavons déja rappelé ,

(*) Cette équation équivaut & celle qwa donné M. Laplace. Voyez la Mécanique
céleste , tome 1.°% , page 216,
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2N XY -2 =z

et Iéquation (32) peut d’ailleurs étre mise sous cette forme
24 = (X X2 XD+ 27 5

multipliant donc ces deux équations I'une par l'auatre, il viendra, en
réduisant et transposant

T I 76 XS R ORE 15 CRE G DR

équation qui, par la substitution des valeursde X, ¥, X/, ¥/, Z/,
Z'", ne s’élevera, en Z , qu'au troisieme degré seulement ; elle pourra
donc c¢tre résolue directement , par les tables trigonométriques ; et si
elle a toutes ses racines réelles, on n’admettra que celle d’entre elles
qui satisfera & peu prés & Déquation (31); Phypothése d’une orbite
parabolique pourra étre admise avec d’autant plus de fondement que
cette valeur y satisfera d’une mani¢re plus approchée (*).

On voit donc que , dans le cas de la parabole , on a une équation
surabondante ; on en pourrait faire usage pour éliminer les secondes
différences soit des longitudes soit des latitudes géocentriques, et c’est
ainsi qu’en use M. Laplace. Il résulte de 1a que cinq données seulement sont
suffisantes pour la détermination compléte des ¢lémens du mouvement
d’une comete,

XI. Supposons , en second lieu, que Torbite soit assez peu excen~
trique pour pouvoir &tre sensiblement considérée comme circulaire , ainsi
quil arrive pour la plupart des planétes , du moins lorsqu’on n’aspire
(2’4 une premicre approximation ; dans ce cas, f1 et conséquemment f22
devra étre constant ; on aura donc, a la fois,

(35) XX'+YY'+ZZ'=o0,

(* Les équations (32, 33) étant combinées entre elles, pourraient conduire a une
équation du premier degré seulement qui serait, sans doute , fort difficile a obte~
nir; mais qui, par Peffet des réductions, powrrait peut-étre devenir assez simple.
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(36) XY 22X XA Y V-2 21 =0,

Apres les substitutions , ces équations seront , la premitre du second
degré et la seconde du troisitme , en Z ; il sera donc facile d’en déduire
une équation de relation entre les données du probléme et une valeur de
Z au premier degré, Cette valeur substituée dans I’équation (31) donnera
une nouvelle équation de relation. Si ces deux équations se trouvent sa-
tisfaites , on sera assuré que Lorbite est en effet circulaire ; et comme, par
leur moyen , on pourra éliminer de la valeur de Z les secondes diffé~
rences tant des longitudes que des latitudes géocentriques , il s’ensuit que
deux observations seulement seront alors suflisantes pour résoudre com-
pletement le probleme.

XII. Considérons maintenant le cas ot la trajectoire décrite serait rec—
tiligne : on aurait alors

X=mZ4g, Y=nZ+h,
m,n,g,k étant des constantes ; de 14 résulte
X =mZ', Y =Zn’,
X' =mZ Y/ =nZ"
et par suite
XIZN—Z/Xl!=0, Y'ZI—Z/X'=0 ;

équations qui, en vertu des équations ( 14, 15 ), peuvent étre changées
en eelles-ci

(37 XZ—ZX'=o, (38) YZ'—ZYV/=o;

ces dernitres prouvent qu’alors le mouvement cst dirigé vers le soleil.
Aprés les substitutions , ccs équations ne seront que du premier degré
en Z , et elles fourniront , avec I’équation (31) , deux équations de con—
dition qui serviront & vérifier ’hypothése du mouvement rectiligne , et au
moyen desquelles on pourra faire disparaitre de la valeur de Z les se-
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condes différences des longitudes et des latitudes observées ; ainsi,encore
ici , deux observations suffiront pour résoudre complétement le probléme.

XIII. Pour compléter cette théorie , il nous reste encore 4 examiner
deux cas : ce sont 1.° celui ol I’astre observé serait dans une immobilité
parfaite ; 2.° celui ot son mouvement serait a la fois rectiligne et uni-
forme. Dans le premier cas on a, alafois,

X =0, Y =0, Z/’ =0,
X'=o0, Y/'=0, Z/=0;

et comme les équations du mouvement sont en général
[-LX /"’Y [AZ
//, — — //, — — //, ——
Xl =o0, Y4+ =0, Z/'+ =0,

on voit qu’elles ne peuvent étre satisfaites qu’autant que R est infini,
c’est-a-dire, qu'autant qu’une au moins des trois coordonnées X, ¥, Z ,
est elle-méme infinie.

Les équations (7 , 8) deviennent simplement dans ce cas

wtpZ=o , yAq¢Z=o0,

-d’olt on tire

l
I
|
|
|
I

si donc ni p ni ¢ ne sont infinis , c’est-a~dire, si v n’est pas zéro , on
devra avoir
p/=o, p=~Constante ,

c’est-a-dire
g'=o, g=~Constante ;

9 - Tang.s=Constante

N

V p4g:=Coty=Constante ;
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ainsi les angles 8 , » , doivent étre les mémes pour des observations faites

a diverses époques. Clest , par exemple , ce qui arrive pour les étoiles
fixes.

X1V. Dans le cas d'un mouvement  la fois rectiligne et uniforme ,
on a seulement

X'=0, YV'=o0, Z'=o0;
ce qui suppose encore qu’une au mMoins des coordonnées X, ¥, Z , est
infinie , du moins en ayant égard 4 toutes les lois qui résultent du prin~
eipe de la gravitation ; mais P'équation (28) donnant alors
. P plyllameglalt .
— I et ———— ,
p/q//__qlpll

si p ou ¢ ne sont pas infinis , c’est-a-dire, si I'on n’a pas y=o0, on devra
avoir

P9—qp’=0,
équation dont I'intégrale compléte est
Mp+4-Ng=13;
ou, par les équations.( 3, 4 ),
MCos.t~4NSin.e=Tang.y 3
on aura pareillement , pour deux autres observations,
MCos.p,-+NSin.g, =Tang.y, ,
MCos.p,=+NSin.g, =Tang.y, ,

¢liminant les deux constantes J et N entre ces trois équations , on arri—
vera a I’équation de condition i

Sin(8,~¢, ) Tang.y4-Sin.(6 ;«==). Tang.y ,=Sin.(¢—8,). Tang.y, =0 ;

et hypothdse d’'un mouvement rectiligne et uniforme ne pourra étre
admise qu’autant que les données fournies par trois observations vérifie~
ront cette dernitre équation.

GEOMETRIE.
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GEOMETRIE.

Solution d'un probléme de gcomelrie , dépendant de la
théorie des maximis el mininis ;

Par M. LHUILIER , professeur de mathématiques a académie
impériale de Geneve.

[a Vo U VL, VI, Vo N, W ¥, 9

_P ROBLEME. Par un point donné de position , dans un angle
connu , faire passer une droite de maniére que sa partie interceptée
entre les cbtés de Pangle soit la moindre possible ? (*)

Soit ACA’ ( fig. 1 ) un angle donné, et soit P un point donné entre
les c6tés de cet angle; il s’agit de mener, par ce point P, une droite
dont la partie interceptée dans I'angle ACA’ soit la moindre possible.

Solution. Soient XX’ et ZZ/ deux droites égales inscrites dans I'angle
ACA’ ct passant par P. De ce point comme centre , avec les rayons
PZ et PX’, soient décrits deux arcs de cercle Zz et /X/a:/, compris

dans les angles XPZ et X/PZ/

Puisque XX/'=77/ ,
on doit avoir Xz=Z/a".
Or, LimXz :Zz =1:TangX ,

Lim.Z z : X/2/=PX :PX/,

(*) Ce probléme a été traité par M. Puissant , ( Recueil de diverses propositions , etc.,
deuxiéme édition, pag. 423); mais son analise est toute difficrente de celle de M.

Lhuilier.
( Note des éditeurs, )

n

Tom, 11, 2
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Lim X/%/: 2/ 2/=Tang.X’: 1 ;
done LimX z : 7/ 2/=PX.Tang.X’: PX"Tang. X,
Donc, lorsque XX/ est la plus petite , on doit avoir
PX. Tang.X/=PX". Tang.X ,
d'out PX : PX/=Tang.X : Tang. X/,

Par P soient mendes & CA et CA’ des paralleles rencontrant ces
droites en B et B/; et, par le méme point soient menées aux mémes
firoites des perpendiculaires les rencontrant en D et D/; on aura

PX :PX/:: BX:PB/:: BX:CB ;
donc BX: CB:: Tang.X: Tang.X".
Premier cas. Que Vangle C soit droit, on aura
Tang. X/=Cot.X ‘et BX=BPCot.X ;
done BP Cot.X : CB=Tang X : Cot.X ,
et par conséquént

CB_ Cot.2X _
BP ™~ TangX

BX3
Cot.3 : u—— -
X BPs ?
done
BX*=CB.BP* ;
on aura de méme

B'X”=CB.BP>=BP.CB".

Le probléme sera donc résolu puisque BX et B/X/ seront donnés en
fonctions de quantités connues , et on voit qu’il n’aura alors qu’une
solntion.

Deuxidme cas. Que Pangle C ne soit pas droit. On parvient 3 une
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dquation du troisitme degré (*); soit qu’on prenne pour inconnue la
distance du point X a quelque point donné sur CB, soit qu"on prenne
pour inconnues les tangentes des angles X ou X,

Je vais, par exemple, chercher la posit’.on du point X , par sa
distance & quelque point donné sur CB , et construire 'équation ¢or-
respondante.

(*) On parvient 4 une équation fort simple en procédant comme il suit :

Soit ACB, (fig. 2) l'angle donné, soit P le point donné et soit enfin XY la
droite cherchée. Soit mené CP=K ; soient faits Ang.PCA=«, Ang.PCB=g,
Ang.CPX=0; on aura Ang.CPY===—4; donc

Ang.CXP==z—(t-}-2) , } % Sin.CXP=S8in.(¢+4-=) ,
d’ot

Ang.CYP=(4—p) ) Sin,CYP=Sin.(¢=—8) ,

donc
Sin.3 Sin «
Y= o S ——— = o S ——— b4
PY=K Sin.(6—g) -’ PX=K Sin.(b4-) ’
ét par conséquent
Sin.g Sin.e . Sin.¢ )
XY=PY+PX=K g Sin.(6—8) + Sin. (6-4-) } =K Sin.(a-2) - Sin. (¢4-2)Sin.(6—pg)

11 faudra donc, pour avoir la valeur de # qui convient au minimum , égaler & zéro
la différentielle de -
Sin.é .
Sin.(64) Sin.(6—p) ’

ce qui donnera
Sin.(é—{-u)Sin.(é——ﬁ)Cos.0—-{Sin.(é+u)Cos.(0—/3)+Sin.(é—ﬁ)Cos.(é—}-x}}Sin.Gzo,
En diyisant cetle équation par Sin (¢~}2)Sin(é—pg)Sin.é elle devient
Cot.4=Cot.(¢~}2)+4Cot.(6—p) ;
équation équivalente a celle-ci

Cot.2Cot.6—~1  Cot.gCot.0+-1

Cot.4= Cot.oo4-Cot.0 ' Cot.g—Cot.0 ’

Iaquelle devient, en chassant les dénominateurs et réduisant ,
Cot.3¢-4-(24-Cot.2Cot. ) Cot. 04-(Cot.a—Col.f.)=0 ;

équation du troisitme degré, sans second terme.
( Note des éditeurs. )
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On a, comme il vient d’étre prouyé ci-dessus ,
BX: CB=Cot.X’: Cot.X ;

DX DX’
or, Cot.X:?ﬁ R Cot.X’:-l—,ﬁ; H
donc

DX DX DX DX
: T —— = — — (*
BX:CB PV © PD CB ' PB ) -

et conséquemment

BX : PB=D/X’: DX=BX’--B/D’: DX ,

| =B/X/<BX—BD/xBX : DXxBX ,

=BD/<XBE—B'D/<BX : BX xDX (**),

=B'D/'<EX : BX xXDX ;
donc
BX:PB=BD/}XEX:BXxDX ,-

on BX:: PBX<BD/'=EX: DX=EXxDX:DX? ,
ou enfin  BX*:CBXBD =EXXDX:DX2 (***).

Sur ED, comme diamétre , soit décrit un cercle , et du point X soit

(™ A cause des triangles semblables PDB et PD/B/,
(**) Par les triangles semblables, on a les deux proportions

B'X’: BP=BP : BX ,
dolt B/X’: BD/=BE: BX ou B/X/xXBX=B/D/XBE,
BP : BD'=BE : BP ;
(***) A cause de BD: B’/D'==PB: PR’ ou CB, qui donne
PBxBD'=CBxBD.

( Notes des éditeurs. )
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¢levée 3 DE une perpendiculaire rencontrant en V la circonférence de ce
cercle; on aura EX DX =XV?*; substituant donc dans la proportion ci-
dessus , elle deviendra

BX>: CBXBD=XV2:DX*>,

ou BX :y/CBxpD=XV : DX ,
d’ol BX<XDX=XVy/CBx<BD.

De 13 découle la construction suivante pour déterminer le point X.
Soit PB paralléle & CA’ rencontrant CA en B; soit PD perpen-
diculaire 4 CA ; soit aussi PD/ perpendiculaire 3 CA’ et rencontrant
CA en E.Sur DE comme diamétre , soit décrit un cercle ; soit en-
suite décrite la parabole qui est le lien géométrique de I'équation

BXD <X =XVyy/CBxBD ; par le point V ol cette parabole ren-
contre la circonférence du cercle soit abaissée une perpendiculaire VX
sur CA ; alors le pied X de cette perpendiculaire sera le point cher-
ché; de maniere qu’en menant par X et P une droite terminée en X’
a CA’/, cette droite sera la plus petite de toutes celles qui, passant
par P, se termineront & CA et CA’.

Remarque 1.*¢ L’équation PXTang.X’ =PX’Tang.X devient indé-
pendante de la nature des lignes entre lesquelles il faut inscrire la
plus petite des droites qui passent par le point donné ; en substituant
aux angles X, X/ les angles que fait XX/ avec les tangentes menées
par les points X, X/ aux courbes sur lesquelles ces points se trou-
vent situés.

Remarque I1™° Lorsque le point P est sur la droite qui coupe I'an-
gle ACA’ en deux parties égales, la plus petite des droites & ins—
crire est { comme il est connu ) perpendiculaire & la droite CP.

Remarque I1° On pourrait obtenir le minimum proposé , en ré-
solvant ce probleme détermind : Inscrire @ un angle donné une drotte
d'une longueur donnée passant par un pornt donné? et en cherchant
les limites résultant de la construction. Or, ce probléme déterminé
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est susceptible d’une construction élégante par le cercle et par I'hy-
perbole rapportés & ses asymptotes.

Remarque IV.™° On rameéne i peu prés de la méme maniére i un
probléme déterminé les problémes suivans: Par un point donné , sur
une surface , sphérique , et dansun angle sphérigque formé sur cette
surface ; mener un arc de grarnd cercle dont la partie inscrite dans
langle sphérique soit la plus petite , ou tel que laire ou le contour
du triangle retranché soit un minimum ?

QUESTIONS RESOLUES.

Solutions des deux problemes proposés & la page 318
du premier volume des Annales ;

Par MM. VEectEN , professeur de mathématiques spéciales
au lycée de Nismes, Rocuar , professeur de navigation &
St-Brieux, et FAuQuiEr , éleve du Iycée de Nismes.

o Vi W, VL, W, WL, O, V1o W ¥

LES trois solutions de ces deux problémes qui ont été regues par
les rédacteurs des Annales , ayant entre elles plusieurs points de
ressemblance , on croit devoir, pour abréger, en rendre compte dans
un seul article. ’

Le premier probléme , comme ont le va voir tout a I'heure, se
radméne trés-facilement 3 celui-ci @

LEMME. Deux cercles se coupant , sur un méme plan , mener
par Lune quelconque de leurs intersections , une drotte dont la partie
interceptée entre les deux cercles soit d’'une longucur donnée ?
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Soient O, O’ (fig. 3, 4, 5 ) les centres de deux cercles se cou-

pant en C et D, et soit AB une droite donnée; il s’agit de mener

par le point C une droite CA’ ou CA’ de maniére que sa partie
A’B/ ou A”B/, interceptée entre les deux cercles soit égale & AB.

SOLUTION DE M. VECTEN,

Construction. A partir du centre O de I'un quelconque des deux
cercles , (fig. 3 ) soit portée, sur la droite OO’/ qui joint ce centre
au centre O/ de l'autre cercle, une longueur OE=AB ; soient tirées
DO, DO/, et, par E, soit menée & la premiére de ces deux droites
unc paralléle coupant la seconde en @ ; du point D comme centre,
et avec Dz pour rayon, soit décrit un arc de cercle coupant en A’
et A’ le cercle dont le centre est O/; par ces points A/, A7, et par
le point C soient menées des droites coupant en B/ et B” le cercle
dont le centre est O; ces deux droites seront les droites cherchées,
en sorte qu'on aura A”B”/=A/B’=AB.

Démonstration. Sojent joints DA/, DB/, DA”, DB/, et par @
soit menée 4 OO/ une paralltle coupant DO en 2. Les angles DA’R/,
DA”B” , ayant I'un et lautre leurs sommets & la circonférence du
cercle dont le centre est. O/, ont également pour mesure la moitié
de Parc DA”C ; ils sont donc égaux 3 DO/O et conséquemment
4 Dab. Parcillement les angles DB’A’, DB”A”, ayant I'un et I'autre
leurs sommets & la circonférence du cercle dont le centre est O, ont
également pour mesure la moitié de I'are DB/C ; ils sont donc égaux
a DOOY et conséquemment & Dba ; les trois triangles A/DB/, A”DB//,
aDb , sont donc semblables ; ils sont de plus égaux, puisque , par
construction , DA’=DA”=Da ; donc A’B/'=A/B/=ab=0E=AB ,
ainsi qu’il était exigé.

Limite du probléme. Les points A/, A’ , étant déterminds par
Tintersection de la circonférence dont le centre est O/ avec une
circonférence décrite du point D comme centre et avec Dz pour ra-
yon, il s’ensuit que le probléme ne sera possible qu'autant que ces
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deux circonférences se couperont, c'est-a-dire, qu’autant que Dea
n'excédera pas le double de DO’; ou, ce qui revient au méme,
quautant que ab=0F=AB n’excédecra par le double de OO/ ; cest-
a-dire, qu’autant que la longueur donnée n’excédera pas le double
de la distance entre les centres des cercles donnés. Si cette droite
était précisément égale au double de cette distance, l'arc A’aA” serait
simplement tangent au cercle dont le centre est O/, et le probléme
n’aurait qu’une solution.

De 1a il est facile de conclure le théoréme suivant : De toutes les
droites menées par lune des intersections de deux cercles , et ter-
minées a lun et & lautre, la plus grande est parallele & la droite
qui joint les centres , et double de cette drotte.

SOLUTION DE M. FAUQUIER.

La solation de M. Fauquier differe peu de celle de M. Vecten, Il
mene par le point C (fig. 4 ) une droite quelconque terminée en 7 , m/
respectivement aux circonférences dont les centres sont @, O/; ayant tiré
Dm, Dm/ , et coupé sur nm’ une partie E=AB ; il tire par E paral-
ltlement & D , une droite coupant 72/D en a ; il déerit alors du point D
comme centre , et avec Da pour rayon , un arc dont les intersections A/ ,
A7, avec la circonférence dont le centre est O/ sont les mémes que les
points désignés de la méme maniere dans la figure 3. Cette construction
se démontre en conduisant par ¢ une paralléle & 7/m , se terminant 3

-Dm en b, et prouvant ensuite , & peu prés comme le fait M. Vecten , que
les trois triangles A’DB/, A”DB” , aDb, sont égaux. L’avantage de
cette construction est quelle n’exige pas que les centres des cerecles
donnés soient connus.

1l est assez remarquable que tous les triangles construits sous les
mémes conditions que 72D/ sont semblables , et que le plus grand de
tous est celui quia pour hauteur la corde commune aux deux cercles.

SOLUTION DE M. ROCHAT.

M. Rochat a traité le probléme analitiquement de la maniére suivante,
SC»it
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Soit prise pour axe des x la droite indéfinie qui passe par les centres

des cercles donnés ; soient 7, 7/, les rayons de ces cercles , et «, o/, les
abscisses de leurs centres , leurs équations seront

(—eybyr=r, (=,
En retranchant ces deux équations 1'une de l'autre , on obtiendra »
comme l'on sait , celle de la corde commune aux deux cercles ; on aura
ainsi
2(x-—-x’)x—l—(l"—-—ﬂ)—-(r/’——aﬁ) =o.
Si-Pon veut profiter de 'indétermination de « et «/ pour faire en sorte

que la corde commune aux deux cercles devienne l'axe des y, il faa-
dra, dans cette équation, faire #=o0, ce qui donnera I’équation de rela~

tion
Pttty 5

posant donc

7 —a® =gt , re ___._13:__‘_“2 ,

d’ou

r/z__u/z =ﬁz ; r/2=,6’+u/2 ;

les équations des deux cercles deviendront
x—2ax-4y>=8* , x*—2d/ 22 =p* ,
et, comme elles sont satisfaites 1'une et l'autre par
=o0 , y==+sa,

il en faut conclure que g est I'ordonnée de Vintersection des deux
cercles et conséquemment la moitié de leur corde commune.

Présentement , toute droite passant par Iintersection dont 'ordonnée
est =g, aura une équation de la forme

y=az+ts ,
dans laquelle & est tangente de son inclinaison sur I’axe des z ; en com-

binant successivement cette équation avec celles des deux cercles, on

Tom. 11, 4
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obtient pour les coordonnées des intersections de la droite avec chacun
d’eux les valeurs suivantes

g 219 2(a'—af)
- 1+4-a2 ’ r= 14-a2 !
2(e—ap) _ 2(«—ap) .
y—a*—1+a= +l3, y'—a 1+a2 +ﬁ’

si donc on veut que la portion de cette droite interceptée entre les
deux cercles soit d’une longueur donnée K, on devra avoir

N

2(a——ap) 2(a/—ap){2 2(at—a 2(a/—ap)}?
K*:‘ (e—ap)  2(« /s‘§+a2( (e—af)  2(= a/a}
( 1~-a? 1~}-a? 1 14-a2 14-a2

ou
b(otmmatl)? (a—a))>—K2
Ki\ = —-1—-—‘-—2—' d’()l‘l a= i\/-i-_-k—_— ;
Q N

telle est donc la tangente de I'angle qui doit faire la droite cherchée
avec laxe des #, d’oi lon voit que le probléme aura en général
deux solutions, a cause du double signe du radical ; on voit de plus
qu’il ne pourra étre résolu si I'on a K> 2(e—a’), c’est-a-dire , si la
longueur donnée surpasse le double de la distance des centres ; on
voit enfin que, si K est indéterminé , la plus grande valeur qu’il pourra
avoir sera 2(a~—a’) , c’est-a~dire , le double de distance entre les centres ,
auquel cas, @ étant nulle , la droite cherchée devra étre paralléle
a l'axe des #. Ainsi, si on proposait de mener, par 'une des interse-
tions de deux cercles, une droite de telle maniére que la partie de cette
droite interceptée entre les deux cercles fiit la plus gramde possible , on
résoudrait le probléme en menant par ce point une paralléle  la droite qui
joint les centres; et la partie interceptée serait double de la distance entre
ces centres. :

La valeur générale de 2 fournit cette construction : soient EX (fig. 5)
la droite qui joint les centres , et EY la direction de la corde commune ,
de manit¢re que E soit le point d’intersection de ces deux droites. Soit
prise sur EX, A partir de E , une partie EF égale i la longueur donnée
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AB ; du point F comme centre , et avec le double de la distance OO/ des
centres pris pour rayon , soit décrit un arc coupant EY en G et H , et
soient menés FG , FH ; en tirant par C des paralléles & ces deux
droites, rencontrant les deux circonférences , I'une en A/, B/ et l'autre en
A7, B, oun aura A”/B/=A’B’=AB.

PROBLEME 1. Construire un triangle qui soit égal & un triangle
donné , et dont les cdtés , prolongés s'il est nécessalre , passent res-
pectivernent par trots points donnés.

Il est entendu que I’on désigne a I’avance ceux des points donnés par
lesquels doivent passer respectivement les c6tés ou prolongemens de
cotés du triangle donné, Mais, il en était autrement , il arriverait seu-
lement que le nombre des solutions du probléme en deviendrait, en géné-
ral , six fois plus grand , comme I’a observé M. Rochat.

Soient donec ABC (fig. 6) un triangle donné, eta , 4, ¢, trois points
donnés , il s’agit de construire un triangle égal 2 ABC, et tellement situé
que le point & soit sur la direction du c6té égal a BC , le point & surla
direction du c6té égal 2 AC , et le point ¢ sur la direction du c6té égal
a AB.

Solution. MM. Vecten , Rochat et Fauquier ont également réduit la
solution du probléme a ce qui suit.

Sur les distances ¢z , ¢b, de 'un quelconque ¢ des points donnés
aux deux autres @, & , prises pour corde, soient décrits des arcs respec—
tivement capables des angles A , B , du triangle donné ; par ¢ soit menée
(Lemme) une droite dont la portion interceptée entre les circonférences
dont ces arcs font partie soit égale & AB ; soient respectivement B/, A,
les points ott cette droite coupe les circonférences passant par @ , & ; en
menant B/a et A’b se coupant en C/, le triangle A’B/C/ sera le triangle
cherché. 1l est clair en effet que , parla construction , les points @, 4 ,¢;
se trouveront respectivement sur les directions de ses cotés B/C/, C/A/,
A’B/ ;5 de plus son coté A/B/, etles deux angles adjacens se trouvant
aussi , par construction , égaux au c6té AB et aux deux angles adjacens
du triangle donné , ot il résulte que ces deux triangles sont égaux.

On peut, par le point ¢ , mener de deux maniéres la droite dont Ia
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portion interceptée entre les deux circonférences doit étre égale & AB,
ce qui fournit déja deux solutions du probléme : cette observation a été
également faite par MM. Vecten , Rochatet Fauquier. M. Vectena remar-
quéde plus que les arcs capables des angles B et A pouvaient étre indiffé-
remment décrits de 'un ou de l'autre coté de ca et ¢b, ou , ce quirevient
au méme , qu’on pouvait décrire d'un méme cété de ces droites , des arcs
capables tant des angles B et A- que des supplémens de ces angles , ce
qui donne lieu & quatre solations du probléeme. A la vérité , les deux
arcs décrits sur ca peavent étre combinés avec les deux arcs décrits sur
¢b de quatre manicres différentes , ce qui semblerait devoir conduire a
huit solutions du probleme ; mais il est facile de se convaincre que des
quatre combinaisons dont ces arcs sont susceptibles, il n’y en a que deux
seulement qui donnent un triangle égal au triangle ABC. Les deux
aatres donnent un triangle dont un coté est égal au coté AB de ce
triangle, et dont un des angles adjacens est égal & un des angles A ,
B, mais dont le second est supplément de l'autre. La figuré 7 représente
les quatre solutions indiquées par M. Vecten ;on y a ponctué de la
méme maniére les cercles qui doivent étre combinés ensemble ; g, 8/
sont les centres de ceux qui sont décrits sur ac , et «, «/ sont les centres
de ceux qui sont déerits sur f¢, de manitre que les centres des cercles
4 combiner sont «g , «/p’.

M. Vecten a soin de remarquer que le probléme ne peut avoir quatre
solutions qu’autant que la moitié¢ da c6té donné AB sera moindre que
la plus petite des deux distances 28 ,«/s’; que si elle est égale & cette
distance , le nombre des solutions se réduira a trois ; qu’il n’y en aura
que deux si : AB se trouve compris entre «8., «/#’ ; quil n’y en aura
qu'une scale si - AB se trouve ¢galalaplus grande de ces deux distances ;
et quenfinle probleme sera impossible s'il la surpasse. :

M. Rochat, en considérant que l’arc capable de l'angle C, construit
sur la troisitme distance @b , doit couper les deux premiers au méme
point , a déduit de cette observation les deux théorédmes suivans :

1. Trois poinis a, b, c, étant pris respectivement d’'une maniére

arbitraire sur les cotés BC, CA., AB, d'un triangle ABC, si lon
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Sait passer des circonférences par les systémes de: points a; b, C;
b,c,A,c,a, B, ces circonférences se couperont toutes en un méme
point.

=}

II. Trois circonférences passant par un méme point P et se cou~
pant de plus deux & deux en des pointsa, b, ¢, il existe une infinité
detriangles dont les cOtés passent respectivement par ces trois points et
dont les sommets sont respectivement sur les trois circonférences données.

Tous ces triangles sont semblables entre cux et au triangle dont
les sommets sont aux centres des irois cercles, et ils ont tous
le point P pour point homologue commun. Le plus grand de tous est
celui dont les cotés sont paralléles aux droites qui joignent deuz
a deux les centres des trois cercles.

Larc capable de I'angle C décrit sur @b peut, entre autres usages,
servir a lever lincertitude ol Pon pourrait étre sur la maniére de
combiner deux & deux les quatre arcs décrits sur ca et ¢b; on voit
en effet, par ce qui précede, qu’il ne faudra prendre ensemble que
ceux qui couperont ce troisieme arc , dderit soit d’an c6té soit de
Lautre de @b, en un méme point.

Les trois points donnés. 2, &, ¢, pedvent étre situés sur- une
méme ligne droite, et c’est un cas qui a été examiné par M. Vecten:
Il n’y a alors aucun changement & faire dans la 'constructioh‘déjé’
indiquée. 1l arrive seulement, dans ce cas particulier’, que les deux
distances que nous avons désigndes par «g’et «/s/-sont dgales, et §ii&
conséquemment , suivant que AB' sera'-plys- petit’ que le double  de
V'une d’elles, égal & ce double ou plus. grand que ce double , le probleme
aura quatre solutions, deux solutions ou sera impossible.

PROBLEME II. Construire un triangle qui soit égal & un trian~

gle donné et dont les sommets soient respectivement sur trois- droites
données ? (*)

(" Ce probléme a été traité par M, Carnot ( Voyez Gcomctrze de posztzon,
page 277 ) ; mais Pauteur s’est contenté de donner une formule ﬁlgebrxque. 11’ a aussi
é1¢ traité par Newton : voyez les Prineipes , livie 1, lemme ' XXV
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- Oh suppose encore ici que I'on a désigné,d P'avance,les sommets
“qui doivent se trouver sur chacune des droites données, ce qui rend
le nombre des solutions six fois moindre qu’il ne le serait si l'on
-pouvait indifféremment établir chaque sommet sur chacune des droites
données.

MM. Vecten , Rochat et Fauquier ont également ramené ce pro-
bléme au précédent , et il n’est pas difficile de voir que réciproque~
ment le précédent pourrait étre ramené 2 celui-ci. Voici donc a quoi
'se réduit la construetion de ce dernier probleéme :

Soit ABC le triangle donné ( fig. 8 ) et bc, ca, ab, trois droites
données; il s'agit de construire un triangle égal au triangle ABC ct
dont les sommets des angles égaux 4 A, B, C, soient re pectivement
situés sur be, ca, ab.

Construction. Soit construit ( Probléme 1. ) un triangle a/d/¢c/, égal
4 abc , et dont les ebtés passent respectivement , savoir, &/¢c/ par A, ¢/a’
par B, «/6/ par C. Soient alors coupés bc, ca, ab,en A/, B/, C/,
de la méme mani¢re que le sont ¢/, ¢’a’, a’b’, en A, B, C; ti-
rant alors A’B/, B/C/, C’A/, le triangle A’B/C/ sera le triangle demandé.

M. Vecten observe qu’en général. quatre triangles pouvant se trou-
ver dans les mémes circonstances ou se trouve le triangle a’é/¢/ , il
s’ensuit que pareillement quatre triangles peuvent se trouver dans les
mémes .circonstances ou se trouve le triangle A/B/C/ ; c’est-a-dire R
que ce §ecomi probléme , comme le premier , peut admettre quatre
solutions. La figure g représente ces quatre solutions , telles qu’elles
ent été indiquées par M. Vecten.

M. Vecten observe cnsuite que la construction indiquée ci-dessus
devient illusoire toutes les fois que les trois droites dopnées ne for-
ment pas un triangle ; ce qui peut arriver de diverses maniéres qu’il
considére successivement. '

1.2 I peutarriver (fig. 10 )queles droitesdonndes O’/A’, O/B/, O/C/,
se coupent en un méme point O/ ; alors déerivant sur deux quelcon-
ques CA, CB, des cotés du triangle donné, pris pbur cordes , et du
c6té de lintérieur de ce triangle , des arcs COA, COB , capables des
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angles C’O’A’, C’O’/B/, et tirantOC, OA, OB ;en portant ces longueurs
sur 0/C’ , WA/, O/B/,de O’ en C/,A’, B/, ettirant A’B/, B/C/, C’A/,
le triangle A/B/C/ résoudra le probleme. Ce probléme a deux solu-
tions ; car, en prolongeant A’0/, B/O/, €/0/, au-deld du point O
des quantités O’A”, O/B”, O/C”, quileur soient respectivement égalet;
et menant A”/B”, B/C”, C/A”, le triangle A”B//C/ sera aussi égal
au triangle ABC, etaura ses sommets sur les droites O’A’, O’B/, O/C/.

2.° I peut arriver ( fig. 11 ) que deux @a’, b}/ des droites don-
nées soient paralléles , la troisitme C/ C/les coupant respectivement er
« et g; alors, l'angle égal 2 C dans le triangle cherché étant celui
dont le sommet doit étre sur C/ C, il faudra sur CA, CB, pris pour
cordes, décrire des arcs respectivement capables des angles gza/ 6t £857
menant ensuite par C ( Lemme ) deux droites dont les parties /g,
g/ , interceptées entre les deux arcs, soient égales & «g, et tirant
/A, /A, ¢/B, #”/B, les deux derniéres droifes:sé -trouvéf{pr‘?t, d’elles-
mémes , respectivement paralléles aux deux premieres ; coupant donc
zg en C/, C”7 de la méme maniére que «/a’ ét «//g// le sont en C ;et
faisant de plus «A’/, «A’”, B/, gB”, respectivement égales a /A ,
«/A, #’B, 8B, et tirant A’B/, B/C/, C’A’, A/B/, B/C/, C/A”,

les triangles A’/B/C/, A”B”C//, seront deux solutions, du probléme.:
8 ’ P

Au moyen de ces deux solutions on en obtiendra facilement deux
autres, enimaginant que ’on fasse tourner les triangles C’A’B/, C/A//B//
autour de deux perpendiculaires & @a’/, b5/, I'une passant par C/ et

Pautre par C” ; les deux nouveaux triangles seront C/A//B//. et

C// AR,

3.2 11 peut enfin arriver que les trois droites données aa’ , b8/ , c¢/
( fig. 12) soient paralléles , et alors il est facile de comprendre que le
triangle donné ne saurait étre quelconque , et que, s’il est tel qu’il rende

le probléme possible , ce probleme sera indéterminé. Si en effet le triangle-,

A’B/C/ satisfait aux conditions du probléme , en faisant glisser deux.

de ses sommets , suivant les paralltles sur lesquelles ils se trouveront
situds , le troisitme ne quittera pas la troisi¢éme de ces paralléles , et
conséquemment le triangle satisfera toujoursaux conditions du probléme.
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Supposant donc , pour rendre le probléeme possible , que les deux
cétés CA, CB, du triangle CAB sont seuls donnés ; de I'un quelconque
C/ des points de c¢/ ct avec CA , CB pris successivement pour rayons ,
on décrira deux arcs , le premier coupant @a’ en A/, A’ , et le second
cogpant 44/ en B/, B/ ; tirant alors C/A/ , C’A# , C’B/, C/B”7, A’'B/,
AVB” , A”B/, A/B” , on formera les quatre triangles C/A’/B/,
C/AB” , C/A7B” , C/A//B/ , dont les deux derniers ne différent des
deux premiers que par leur situation entre les paralléles , et dont cha-
cun , & cause de l'indétermination du point C , donnera lieu & une infi~
nité de solutions.

QUESTIONS PROPOSEES,

Problémes de Géeomeétrie.

1. A un polygone rectiligne donné , inscrire un autre polygone recti-
ligne , d’un pareil nombre de cétés, équivalant & une surface donnée ,
et dont les cotés ou leurs prolongemens passent respectivement par un
égal nombre de points donnés de position.

IL.‘Construire un quadrilatére dans lequel on connait les quatre e6tés
et la droite qui joint les milieux de deux cotés opposés.

Théoréeme de Géométrie,
Les droites qui vont de l'un quelconque des points d’une hyperbole

équilatérale aux deux extrémités d’un méme diamétre transverse quel-

tonque ; sont également inclinées & ’'une quelconque des asymptotes.
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GEOMETRIE ANALITIQUE.

Deétermination de la longueur des axes principaux dans
les surfaces du second ordre qui ont un centre;

Par M. Brer, professeur de mathématiques transcendantes
au lycée de Grenoble.

[o Vo W Vlo NI, Wi, UL Vo Ol V)

L’EQUATION générale des surfaces du second ordre est
Ax2+A{y2+A”Z2+2Byz+2B’zx+zB”xy+2Cx+2C{y+zC”z+D‘.:o.

Si on ne considére que les surfaces qui ont un centre , on pourra,
en transportant l'origine des coordonnées 4 ce centre, faire disparaitre

de cette équation les premitres puissances des variables #, ¥, 2, et
on obtiendra I’équation plus simple

Ax*-A'y* A" z*~4-2Byz=-2B/zo~+2B" xy = H.

Substituons 3 x, y, 2z, les valeurs qui servent & passer du systeme
de coordonnées rectangulaires # , ¥, z, 3 un autre systéme de coor-
données aussi rectangulaires 'y, ¥', &5 et pour ‘cela rappelons les
formules connues

2z =2x'Cos.a=y/Cos.a’~42z/Cos.a"
y=2a/Cos.g-+4y’/Cos.s’-}2/Cos.p” ‘
z=ua’ Cds.y—l-y’ Cos.y/~-2z/Cos.”

ensuite les dquations de condition
Tom., 11,

ot
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Cos.*« +4-Cos.’g }-Cos.>, =1 R
Cos.?o’ 4-Cos.2p’ +Cos.>/ =1 ,
Cos.?a//4-Cos.?g/4-Cos.2y /=1 3
Cos.« .Cos./ +Cos. s .Cos.s’ +Cos.y .Cosy/ =0 , - ()
Cos.«’ .Cos.a’-Cos.p’ .Cos.s”’-+Cos.y’ .Cos.y”/ =0 ,

2

Cos.«’”.Cos.e —Cos.p””.Cos.8g +4Cos ”/.Cos.y =0 ;
lesquelles peuvent, comme lon sait, étre remplacdes par les suivantes

Cos.?u~-+Cos.2o/4-Cos.2a//=1 ,

Cos.?>s+4-Cos.*p/-+Cos.2p"" =1 ,

C05-27+C“03.27’+Cos.27/’: 1 (B)
Cos.«.Cos.p+4Cos.«/.Cos.p’4Cos.«/.Cos.z" =0 ,
Cos.3.Cos.y~-Cos.s’.Cosiy/4-Cos.£” . Cos.y/ =0
Cos.7.Cos.«~4-Cos.9/.Cos.o/4Cos.y” .Cos.a/ =0 .

Nous aurons, en faisant disparaitre de la nouvelle équation les rec-
tangles a/y/ , y/z/, z'x!, ce qui est toujours possible (*) , 'équation
Pa*4-Ply*4-P"2/>=H.

Nous allons maintenant chercher 'équation du troisitme degré qui
a pour racines P, P/, P/,

On trouve cette équation , de la manitre la plus simple, en pas-
sant de l'équation

Px/z—*-P()//z_l‘_P//z/z =H (I)

2 celle-ci

Ax*4-A'y* A" 2> 4-2Byz+2B/zx4-2B"xy = H. an

(*) Voyez ' Application de lalgébre 4 la géométrie de MM. Monge et Hachette
voyez aussi la Géomdirie analitique de M. Biot. '

( Note des éditeurs. )



DES SURFACES DU SECOND DEGRE. 33
Pour cela posons les valeurs de #/, 5/, 2/, en @, y, z, ces valeurs
sont

2’=xCos.« ~yCos.p —+2Cos.y
y/=axCos.o’ 4y Cos.8’ +2Cos.,/ ,
z’:xCos.u//+yCos.ﬁ//+zCOS7// .
Substituant ces valeurs dans I’équation (1), et compz;rant celle qui en
résulte a 'équation (II), on trouve
PCos.? a~+-P/Cos.> /4P’ Cos.> /' = A
.PCOS.’/3+P/C03.2;3/+P’/Cos.’/3”=A’ R (©)
PCos.>y-P/Cos.>y/~P"Cos.20// = A"
PCos.p.Cos.y~4P/Cos.p’ .Cos.o/+P"Cos.p".Cos.// =B
PCos.y.Cos.a—P/Cos.y’.Cos.a/4P"/Cos.y/".Cos.«// =B/ (D)
PCos.u.Cos.s~+P/Cos.«’.Cos.p'~P/"Cos.«/’ Cos."/ = B" .
Il cst visible que Ion parviendra a I’équation dont les racines sont
P, P/, P, en déterminant , au moyen des équations de condition,
les valeurs de P-P/+-P/”, PP/'-+P'P//4+P"P, PP/ P/,

Drabord, si l'on ajoute les équations (C) on a, en vertu des équa-
tions (A),
PA-P/4-P//= A A"+ A".
Pour simplifier les calculs suivans, je ferai usage des notations que
voici
AA A A" A A=[AA
P2Co0s.22,Cos.24-P/2Cos.2.Cos.29/-P/2Cos.2 #".Cos.2 /== P2C0s.28Cos.24 ,
ete., etc., ete.

Cela posé , dans les équations (C), effectuons le produit 4.4/, nous
obtiendrons

AA’= fP*Cos.>.Cos.” =4/ P P’ (Cos.*«.Cos.* /4 Cos.> «/*.Cos.%8) ;
or, les équations (D) donnent

B/ = [P?*Cos.?a.Cos.* g2/ P P/Cos.«Cos.«'Cos.8Cos.8’ ;
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retranchant donc ce dernier résultat du précédent, on aura
AA'—B"> :fPP/(COS.u.COS.ﬁ”—COS.a/.COS.ﬁ)z 5
on aura pareillement ’
A’ A"—B> = /P P/Cos.p.Cos.y/—Cos.£".Cos.%)* ,
A".4 —B"*=[PP/{Cos.y.Cos.e/!—Co0s.5/.Cos.2)* ;
donc
(Cos.z.Cos.p’~—Cos.«'.Cos.p)* ,
JAA'—fB*=/PP’/{ -(Cos.8.Cos.,’ —Cos.8/.Cos.5)* ,
‘ +(C05.y.COS.oc/-—COS.y/.COS.u)z

Mais , si du produit des deux premiéres équations (A) on retranche

le quarré de la quatriéme, on aura
(Cos.x.Cos.p’'—Cos.2/.C0s.8)2~§~(Cos.8.Cos.o'—Cos.8.Cos. y) 2~}-(Cos,y.Cos.a/~—Cos.9/.Cos.«)>=1 ;

on a donc simplement

SAA'—[(B*= /PP’ , ou fPP/'=fAA'—[B".

\

Il nous reste encore a trouver PP/P/ ; pour y parvenir formons l¢
produit 44’4’ , dans les équations (C) , nous aurons
s JP3Cos.22.Cos.28.Cos.2y
AA' A= "{ 4-fP2P'(Cos.x.Cos.2.Cos.»'4-Cos.28.Cos.2y.Cos.2>#'-4-Cos.2y.Cos.2#.Cos.8) ,
+KPP'P/ ;

K représentant la fonction de cosinus qui multiplie PP/P/,
Effectuons aussi le produit des équations (D), il viendra

JP3Cos.?e Cos B.Cos.y
BB/B/'= +fP1P’(COS.%c.COS-ﬂ.Cos.y.Cos.ﬁ’.Cos.1/+Cos.2/3.Cos.y.Cos.x.Cos.y’.Cos.u’—i—COS-’?-COS-“-Cos.ﬁv.Cos.u’.Cos.ﬁ’)
~4-K/PP/PY, '
K/ étant le cocflicient de PP/P/.
Les équations (C) et (D) donnent encore
S SP3Cos.22.Cos.2£.Cos.2y ,
AB2= 4-fP2P!(Cos.28.Cos.>5.Cos.2e'4-2Co0s. 2.C05.8.Cos.5. Cos.4 Cos.%)
+K/pPIPr ;
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JP3Cos.22.Cos.28.Cos.2y ,

A B2 = +fP2P’(Cos.2y.Cos.=u.Cos.216’2+2COS.2ﬁ.COS.y_cos,a.cos_.%cos‘”r)
+-K"PPIP!

W
~7

JP3Cos.2#.Cos.28.Cos'y

A1B1a = +fP2P/(Cos.2aa.Cos.ﬁ[s.Cos.2y/+2Cos.2y.Cos.ac.Cos.,G.Cos.a’.Cos.p/)
~-KimppIpr

Avec un peu d’attention , on conclura facilement de ces trois der—
niéres équations et des deux précédentes.

AA/A/~-2BB/ B/ —AB*—A/B*—A/'B/»=F.PP'P", (E)

Pour obtenir la valeur de #, j'observe qu’étant simplememt nne fonc-
tion de cosinus , sa valeur est indépendante de cclles que lon peut
attribuer aux coelficiens A4, 47, A", B, B’, B’ ; ainsi posons

A=1, A'=1x, A’=1, B=o, B'=0, B’'=o,

Les équations (C), (D), deviennent les équations (B), lorsque P=1,
P/=1, P’=1; donc l’équation (E) sera vraie, dans la méme hy-
pothése , et comme elle se réduit & F/=1, on en conclut que

PP/P/= AA' A/~+2BB/B/ — AB*~A! B*—A//B/*

partant 1’équation du troisiéme degré qui a pour racines P, P/, P,
sera

(A Al A A A=A Ade A A'—B>—B2—B/2) 4 AB2~-A'B/ 2l AV B2 2 BB/ Bl e A A A1'—054
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ANALISE ELEMENTAIRE.

Application aux équations du premier degré de la me-
thode d'élimination par la recherche d'un commun
diviseur entre les équations données.

Par M. G. M. Raymonp, principal du collége de Chambéri,

membre de plusieurs sociétés savantes et littéraires.

’
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A MM. LES REDACTEURS DES ANNALES.
MESSIEURS,

VOICI encore un article trés—élémentaire que je soumets 4 votre indul-
gence et & celle de vos lecteurs. Peut-étre les détails les plus minutieux
ne sont-ils pas toujours inutiles aux intérets de l’enseignement. Le
grand NEWTON n’a pas dédaigné de descendre jusqu’a la soustraction
et & 'addition , pour y introduire la lumiere de son génie , et, apres
lui, les Lagrange et les Laplace se sont arrétés , avec complaisance ,
sur les opérations les plus simples du calcul pour en développer la
métaphysique. Qu’il me soit donc permis, MM. , pendant que les savans
auteurs et collaboratcurs des Annales rassemblent dimportans maté-
riaux autour de Dédifice de la science, pour son accroissement et sa

perfection , d’apporter quelquefois mon grain de sable dans la masse
commune.

1. Les méthodes d’élimination entre plusicurs équations simultandes
ont , en général , pour objet de réduire deux queclconques de ces équa~
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tions & une seule. Pour obtenir ce résultat , dans les équations du pre-
mier degré , on indique ordinairement trois méthodes qui consistent ou
4 prendre la valeur d’une inconnue dans 'une des équations pour la subs-
tituer dans lautre , ou & égaler entre elles les valeurs d’une méme incon-
nue tirées des deux équations , ou enfin & modifier les ¢quations par
voie de multiplication , de manitre qu’en les ajoutant l'une & Vautre,
Vinconnue qu’il s’agit d’éliminer disparaisse d’elle-méme. On aurait pu
facilement remarquer que ces trois méthodes qui, au surplus , ne sont
que la méme présentée sous différens aspects , reviennent au fonds a la
recherche d’an commun diviseur entre les équations données ; diviseur
composé de 'une des inconnues et subordonné aux valeurs des autrés
inconnues déterminées convenablementala question. En cherchant ce com-
mun diviseur par la division ordinaire, on emploirait une méthode d’élimi-
nation qui aurait le double avantage d’¢tre souvent plus courte que les
procédés rappelés ci-dessus, et d’¢tre uniforme et applicable A tous les
degrds : on préparerait ainsi , a 'avance, la théorie de I’élimination ap-
pliquée aux équations supérieures,

2. Soit le systtme des deux équations simultanées

a x=+by—c =o,
) ) — (A)
o' 2-4-b'y—c’'=o .

Puisque la valeur de 2 doit étre la méme dans ces deux équations ,
ainsi que la valeur de y , il est évident que, sil’on y remplace y par
sa valeur effective , les deax équations devront contenir une valeur
commune de # exprimée par un facteur de la forme

X=—a=0.

Et, comme nous supposons que les équations (A) different essentielle-
ment , elles deviendront alors de la forme

a(x—e)=0, a/(x=—u)=o.

D’ou Ion voit que le commun diviseur #—« se trouverait par la di~
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vision, en supprimant dans le diviseur le facteur @ ou 4/, comme ne pou-
vant faire partie du commun diviseur cherché.

3. Si Ton a un nombre » d’équations simultanées ; que , dans ces
équations , @, @/, a’,.... désignent les coefficients respectifs de = ;
b, b, b ,....ceux de ¥; ¢, ¢/, ¢ ,.... ceux de z; et ainsi de
suite; et qu'en méme tems «, B, ¥ ,.... désignent respectivement les
valeurs simultanées de #, ¥, Z,.... qui conviennent a la question;
il est facile de prouver quayant remplacé {z—1 inconnues par leurs
valeurs respectives, les équations données se trouveront réduites a I'une

v

des classes de formes suaivantes:

a (x—a)=o0 , b (y—e)=o , ¢ (z—y)=o , crsnesae
o' (x—a)=o0 , ¥ (y—p)=o , ¢ (z—y)=o0 ,
@ (x—a)=o0 , b'(y—s)=o0 , (z—y)=o0 ,

essesasccsene o ssctecssestce o Sesveccrcsee o LA

elles acquerront donc un commun diviseur qui , égalé a zéro , donnera
la valeur de la n.ime inconnue.

4. La découverte du diviseur commun #—w« , entre deux équations 4
deux inconnues , est donc subordonnée i la conmaissance et & la substi—
tation de la valeur de y convenable & la question ; or on trouvera cette
valeur en ordonnant d’abord les équations données par rapport & x, en
divisant le premier membre de 'une par le premier membre de lautre ,
et en égalant & zéro le reste indépendant de « : car I'andantissement du
reste donne au diviseur employé la qualité de mwmmun diviseur en tant
que Von remplit la condition qui résulte de 'anéentissement de ce reste
fonction de y , c’est-a-dire , en tant que I'on donne & 3, dans les poly~
nomes dividende et diviseur, la valeur qui rdsulte de cet andantissement.

Je sais bien que je ne fais que reproduire ici le raisonnement exposé
dans tous les traités élémentaires d’algebre, & larticle de I’élimination
appliquée aux équations des degrés supérieurs ; mais il me semble
qu'employer d’abord ce raisonnement pour les équations du premier
degré , c’est le mettre 4 sa premiere place -naturelle, en-lui donnant
une application facile & saisir , qui comme je l'ai déja remarqué , a

l’avautage
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lavantage de coordonner toute la théorie de I’élimination sur un plan
unique et régulier.

5. Divisons donc la seconde des équations (A) par la premiére , dans
la vue de déterminer leur plus grand commun diviseur; la division
étant faite et le reste égalé & zéro, on aura

(ab/—ba"\y+ca'—ac’=0, (R)
d’ott
ac'—ca’

abim=ba!

y:

Si l'on substitue cette valeur de y dans les deux équations proposées ,
elles deviendront, toutes réductions faites ,

br—bot b—be!
a{x—-—c : g:o R a/gx—-c - %:o; (B)

abl—ba’ ab/—ba’!

ce qui met & découvert le diviseur commun en x qui résulte de la
valeur qu’a pris ¥ , dans l'anéantissement du reste de la division ; ct
le diviseur commun, égalé a zéro, donne la valeur de # qui con-
vient 4 la question.

Soient ces équations numériques
3x—2y—4=0 , S52-+3y—51=0.
Divisant le premier membre de la seconde par le premier membre

de la premiére, au moyen de lintroduction du facteur 3 dans le di-
vidende, on trouvera le restc 19y—133 qui, étant égalé i zéro, donnera

Cette valeur de y, mise dans les deux équations proposées , les réduit
a celles-ci

3(x—6)=o0 , 5(z—6)=0 ,
qui ont pour commun diviseur le facteur #—6 , exprimant la valeur

de £ commune aux deux équations.

Il est inutile d’observer que, dans la pratique, il suffit de substi-
Tom. 11, 6
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tuer la valeur de y dans 'une des équations proposées , pour en tirer
la valeur correspondante de z (*).

6. Si les équations proposées n’avaient pas de dernier terme, auquel
cas on sait que les inconnues sont nécessairement nulles ou indéter~
minées , le reste (1) égalé a zéro, se re¢duirait a

(ab/—ba’)y=o0 ;

condition qui ne peut étre satisfaite que de deux manicres , savoir :
1.° par la nullit¢ du cocllicient de y, cc qui rentre dans le cas ex-

posé plus bas (10) et donne y=3; 2.° par la valeur y=o , d'oit
résulte ausst 2=o.

7. Soit maintenant le systtme des trois équations
a 24b y+c z—d =o
a’ 244 y4-¢’ z—d’ =o , ) (C)
@ a4V y4-c z—d' =0 .

Divisant saccessivement le premier membre de chacune des deux der-

nieres par le premier membre de la premiére, et égalant les restes
A zéro, on aura

(alb/'—ba’ Yy ac'—ca’ )z de/—ad’ =o , (R/)
(@b/’'—ba'"yy4~(ac’"—ca’)z+-da""—ad" =0 . (R")

Divisant ensuite le premier membre de 1’équation (R%) par le pre-

mier membre de Péquation (R’), et égalant & zéro le nouveau reste,
on aura \

(" On peut objecter que la m'thode de soustraction ne différe en aucune maniére
de celle que j'indique , soit dans la modification préalable des deux équations don-
ndes , soit dans 'usage du reste cmployé & déterminer Linconnue quonn’a pas éliminée.
Cela est vrai, et je 'ai d'ja obrervé plus haut (1). Mais je réponds que le raisonne-~
ment différe complétement dans les deux procédéds ; que celui de la soustraction,
employée comme telle , ne se présente gue comme un simple artifice de caleul ; quil
n'éclaire pas Uesprit et ne répand aucun jour sur la détermination simultanée et récipro-
que des deux inconuues 3 gwenfin il exclut toute application aux équations des degrés
supérieurs,
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§ (ab —ba’)(ac!'—=ca')y=—(ac'—ca') (ab”—ba//)}z—{-fab'_bal) (da/'—ad")y—(abl'==ba')(da'—ad)=0.
Développant , réduisant , simplifiant et dégageant z, on trouvera enfin

ab’d”—-—ad’b”+da’b”——ba’d”+b dlal'—dblg!

ablc!'—ac' b 4-ca'b! —ba'c! G-bcla' —cblait®

Ces opérations , dont la longueur provient de 'emploi des lettres,
deviennent trés-expéditives sur les nombres , 3 cause des réductions
qui s’exécutent immeédiatement. Au surplus les autres méthodes , ap-
pliquées 4 des équations littérales, comportent exactement les mémes
détails de calcul ; mais, quand bien méme celle-ci n’aurait pas tou-
jours 'avantage de la briéveté, on ne saurait, du moins, lui con=-
tester celui de la généralité.

8. En divisant, comme nous I’avons fait , les deux dernitres équations
(C) du N.° précédent par la premiére , on coungoit que les conditions
(/) (B#) font acquérir aux premiers membres de ces trois équations
un commun diviseur , fonction de x, que l'on mettrait en évidence
en substituant dans les équations (C) les valeurs de x et y données
par les équations (R’) , (R”), comme nous lavons vu pour le cas de
deux inconnues.

Donnons maintenant un exemple numérique , et soient pour cela les
trois équations

226—3y-2z—3=o0,

S5x—4-2y—2z—8=0,

3x~41y—5z—7=0.
En divisant le premier membre de chacune des deux derniéres par le
premier membre de la premiere , et egalant les restes & zéro , il vient

d’abord
.19y—14z—-1 =o, ()
23y—16z—5=o0. (/)
Divisant ensuite (7//) par (r) , et égalant encore le reste & zdéro ,on a

18z2—72=0 , dou z=4;
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substituant la yaleur de z dans (+/) ou (/) , on trouve
y=3;

substitaant enfin les valeurs de y et de z dans les équations proposées ,
elles deviennent

o{x—2)=o0 ,

5(xz—2)=o0 ,

a2/ \ —

3(@—2)=o0 ;

d’olt l'on voit que la valeur de x se présente sous la forme du com=
mun diviseur z—=2 (*).

9. Si les équations proposées n’avaient pas de dernier terme , les
restes (R/) et (R”) se réduiraient a

(ab! —ba’ Yy-4-(ac’ —ca’ Yz=o0 ,
(@b/—ba')y4-(ac’’'—~ca)z=0 ;

équations qui , appartenant au cas indiqué (6) , font voir sur-le-champ
quon aurait y =0, z=0 ,d’ot #=0; A moins cependant que les restes
ci-dessus ne fussent nuls d’eux-mémes, par la nullité des coefficiens
de y et de z, ce qui donnerait des valeurs indéterminées pour les
inconnues.

10. Si quelques-unes des équations proposées rentraient les unes
dans les autres, le caractere indéterminé de la question se manifes—
terait par la nullit¢ absolue du reste de la division. Soient, par exem-
ple les équations

ax--by—c=o , m(ax—-by—c)=o.

(*) Siles équations proposées appartenaient respectivement a trois plans, la con-
dition (/) exprimerait la projection, sur le plan des yz , de lintersection du premier
et du second plan; la condition (r7) la projection, sur le méme plan, de I'intersection
du premier et du troisitme ; enfin I'élimination de y , entre () et (), la projection,
sur l'axe des z, de lintersection de ces deux droites; ou, ce quirevient an méme,
la projection, sur I'axe des z, de lintersection des trois plans , laquelle aurait uinsi,
pour ses équations =4, y=3, x=z,



AU PREMIER DEGRE. 45
La division de la seconde par la premitre donne le quotient exact 7z,
et en égalant le reste & zéro, comme il n’était pas nécessairement
nul , on obtient I'équation

(mb—mb)y~4me—mec=o ,
d’ol Ton tire, pour y toutes ces formes de valeurs

- __c(m—m) m(c—c) m(c—c) _ c(m=—m)

J/._-m(b—b) ? ‘y_b(m—-m) ? y—m(b—-b) ? . ——b(m—-m)'
Les trois premiéres se réduisent nécessairement 3
Y=z

quant  la derniére elle devient , par la suppression du facteur commun,

c
Y=<
cette valeur , substitude dans 1’équation
ax—4-by—~c=o ,
donne
ar=o ;

ce qui exige que l'on ait #=o0, si toutefois & n’est pas nul. Ces ré-
sultats sont exacts, puisque la nullité de l'une des inconnues déter-
mine nécessairement l'autre, en sorte qu'alors I’équation proposée n’en
renferme proprement qu'une seule.

11. Si Pon avait trois équations, l'indétermination pourrait d’abord
dépendre de ce que deux d’entre elles ne différeraient que par un
multiplicateur commun a tous les termes de I'une d’elles, ct cette
circonstance se manifesterait, comme dans I'exemple précédent , par
la nullité absolue du reste de la division de ces deux équations I'une
par lautre, ou par léquivalence des équations en y et z qu’on ob-
tiendrait en égalant & zéro les restes de leurs divisions par la troisiéme.

Si,en second lieu ,l'indétermination résultait de ce que I'une des
¢quations serait la somme des produits des deux autres , chacune par
un certain facteur , cette circonstanee se manifesterait encore par
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I'équivalence des équations en y et z qu'on obtiendrait en égalant
4 zéro les quotiens de la division de deux quelconques d’entre elles
par la troisiéme.

Si enfin le probleme était plus qu'indéterminé , c’est-a-dire , si les
trois équations prises deux a deux ne différaient que par un multi~
plicatecur commun A tous les termes de l'une d’elles, dans ce cas
le reste de la division serait identiquement nul , quelles que fusser®
les deux équations sur lesquelles on l'opérerait.

12. Si la division de deux des équations du probléme l'une par
Pautre donnait pour reste une quantité toute connue, l'impossibilité
d’égaler ce reste a zéro , annoncerait qu'il ne peut exister de commun
diviseur entre ces équations qui par conséquent. ne sauraient avoir lieu
en méme temps; le probléme serait donc alors impossible.

Soient par exemple les deux équations évidemment incompatibles

ax-by—c=o0,  maxdmby—nc=o ;

en dgalant & zéro le reste de la division de la seconde par la pre-
miére, on aura :
(m—n)c=o ,
condition absurde , tant que 72 est différent de » , et ¢ différent de zéro.
Si Ton écrivait le reste, sans y opérer de réductions, on aurait

(m—n)c
5

(m—m)by+(m—n)c=o0 , dou y=— -

symbole de linfini, qui peut seul lever labsurditd exprimée par le
systtme des deux équations proposées (*).

(*) Liimpossibilité des probléemes a plus de deux inconnues présente plusicurs cas
qu'il peut étre utile de faire remarquer aux commengans.

Supposons que 'on ait seulement trois équations entre trois inconnues ; il pourra
d'abord arriver que , de quelque maniére qu'on prenne ces équations deux a deux, elles
soient également incompatibles ; ce qui revient, en géomeélic, a chercher le point
commun 2 trois plans paralléles.

Il peut ensuite arriver que , I'ane d’clles pouvant avoir liew avec chacune des deux
autres , prises separément , ces derniéres soient incompatibles cntre clles, ce qui
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1l résulte des considérations précédentes que la méthode d’édlimina-
tion par la recherche du commun diviscur, fait reconnaitre toutes les

circonstances et tous les cas particuliers que peut présenter un Probléme
du premier degré (*).

revient, en gbomélrie, A chercher le point commun 4 trois plans dont deux sont paralléles.

11 peut arviver aussi que deux des équations proposées soient ¢quivalentes, etalors,
si la troisitme estincompatible avec I'une d’elles, elle le sera aussi avec 'autre; ainsi, dans
ce cas, le probléme sera indéterminé dans un sens , et impossible dans l'autre. Ce cas
répond , en géométrie, & la recherche du point commun & trois plans dont deux
se confondent et dont le troisitme leur est paralltle.

1l peut enfin arriver que, de quelque maniére que 'on prenne les trois équations
deux & deux, elles ne soient pas incompatibles, et que néanmoins le probléeme soit
impossible , a raison de la contradiction qui existera entre les deux équations qui
vésulteront de I'élimination d’une méme inconnue entre elles. Cest, en géométric,
le cas de la recherche du point commun & trois plans qui, sans étre paralléles entre

eux , sont paralléles & une méme droite, et se coupent conséquemment deux & deux
suivant trois droites paralléles. . \

(*>) On ne saurait contester & M. Raymond lutilité , on pourrait presque
dire la nécessité , de commencer par le premier degré Vapplication des procédés
généraux d’élimination; mais ce serait une erreur de croire qu’il faille se borner , pour
ce degré, a ces procédés généraux qui ont principalement pour objet d’éluder la
résolution des équations par rapport aux inconnues qu'il s'agit de faire disparaitre ,
ce qui n'est en effet d’aucun avantage lorsque les équations sont du premier degré.
Lamdthode du commun diviseur en particulier n'a pu naitre que de réflexions qui
supposent déja une certaine habitude de I'analise , tandis que , pour le premier degré,
P'élimination, soit par les substitutions soit par I'expression de I'dgalité entre diverses
valeuys d'unc méme inconnue, se présente , pour ainsi dire , d’clle-méme & Uesprit.

La méthode &’¢limination par les multiplicateurs indéterminés ne doit pas non plus
étre négligée , d'autant qu'elle a pour analogre, dans les degrés supérieurs , celle qui
a été présentée par Bezout dans sa Théorie des équations algébrigues ; mais , pour
lui donner toute I'élégance et la simplicité dont elle peut éure susceptible, il convient
d’employer autant de multiplicateurs que d'équations ; ce qui permet de n’admetire , pour
ces multiplicateurs , que des valeurs entiéres, et montre ainsi, dés les premiers pas
dans lanalise , Pavantage qu'il peat y avoir a introduire dans une question plus d'in~
déterminées que sa nature ne semble l'exiger.

Soient d’abord les deux équations

ax~-byc=o , a/xbydc=o0 ;
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I.a méthode d’'Euler , fondée également sur la considération d’un

commun diviseur , peut aussi s’appliquer au premier degré ; nous n’en
donnerons qu’un seul exemple.

la somme de leurs produits par les indéterminées m et m/ sera
(ma—-m'a’) x=-(mb—-m'0") y—4-(me4-m’c’)=o0.
si I'on veut que y disparaisse , il faudra poser

mb—-m’b'=0 d ol m=—=——;

posant donc, pour plus de simplicité m===b', on awra m/==325; ainsi, on fera
disparaitre y de ces équations , en prenant la somme de leurs produits par b/ et TR0
on trouverait de méme que, pour en faire disparaitre « , il faut prendre la somme de
leurs produits par Z=a’ et J=a, on obtient ainsi

bl —be! ac'—ca’
X ———— ey e,
ab/'—ba’ J abl—ba!

Soient ensuite les trois équations

e x4b y+¢ z4-d =o ,
o x40 y4-c' z4-d =o ,
ox~4-b"y-c"z-}-dl"=0 ;

la somme de leurs produits respectifs par m, m’, m’, sera

(na—-m'a'4m''a" ) x=(mb4-m'b'4-m"b" )y 4=(me—m/c'-m/c!) 2~ (md4-m! d'4-m/ dy==s,
Si 'on veut que y et z disparaissent, il faudra poser
mb~4-m'b'4-m/"b'—0 , me~m/c/'~m'lcl'=o0 ,
d’ot on tirera, par ce qui a été dit ci-dessus,

, bel—cb! » , cb—bc
m—_=———m, m—=—— ee——m -
blcl—clhit blcll—cipt

posant donc , pour plus de simplicité , m===k (J/c/'—c/b") , il viendram’== == (cb/'—~bc"),
m/'=—=zt=(bc/—cl’). Ainsi, on fera disparailre, a la fois, y et z de ces trois équations,
en prenant la somme de leurs produits respectifs par
o= (bl —clblty == (be—c'b) == (bcl—cby. ’
On en ferait disparaitre x et z, en prenant la somme de leurs produits par
=+ (Jal'—alc") , =+ (¢a—a'lc) , &+ (ca’—ac)) ;
et on les délivrerait enfin de et y, en prenant la somme de leurs produits par
-+ (a'b'—baty , == (a'b—b"a) , == (abl—ba’).
Tt est facile d’étendre ces considérations & un plus grand nombre d'équations renfer-
mant un égal nombre d’inconnues.
( Note des éditeurs. )
Soient
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Soient les deux équations
ax=-by—c=o , A L~4-b/y g/ =0,

[l

On posera
ax+by—c=p(x—-=) , & oAby =p/ (v—u)
d'ott, par Iédlimination de x—e« , on conclura Iidentitd
ap/a—-(bply—cp)—a'pa—py—cp)=o ;
laquelle fournira les deux équations
ap'=ap ,  ply—=o=plly=c),
qui sont suffisantes pour éliminer p et p/; et qui, par l’édlimination
de ces quantités , conduiront a3 l'’équation finale en y.
11 serait facile d’étendre ces diverses considérations & un plus grand
nombre d’inconnues ; mais c’est déji occuper trop long-temps ici unc
place que nous devons céder a des théories plus importantes.

J’ai I'honneur d’étre, cte.

GEOMETRIE.

Becherche de la plus grande des projections ortogra-
phigues d'un systéme de figures planes, données de
grandeur sur des plans donnés de position dans ['es-
pace , et de la plus grande des projections ortographi~
ques d'un triangle spherique ;

Par M. LuviLier , professeur de mathématiques a I'académie
impériale de Geneve.

[a Yia Vo Vo Vo Ela Vo T Y

LA doctrine des projections ortographiques est de la plus grande im~

portance , soit dans les mathématiques pures, soit dans les mathéma-

tiques mixtes. Elle sert de base aux propositions les plus générales

de la polygonomeétrie et de la polyhédrométrie. Elle trouve des ap-
Tom. 11, 7
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plications fréquentes et importantes dans l'optique, dans la perspec~
tive , dans la géographie, dans la gnomonique ct sur-tout dans l'as-
tronomie. Tout ce qui peut contribuer & étendre ou & éclairer cette
doctrine est d’une utilité ou immeédiate ou indirecte. L’objet de ce
mémoire est intéressant et remarquable , soit par la réduction d’une
question geéndrale de maximum aux simples élémens, soit par l'accord
de ses résultats avec les propriétés générales des polyhedres (*).

§. 1.

Lemme. Soient deux droites dont on connait seulement la somme
des quarrés : on demande la plus grande valeur de la somme de leurs
rectangles par des droites données de grandeur. Ou, soit un triangle
rectangle dont I'hypothénuse seulement est donnée de grandeur, on

demande la plus grande valeur de la somme des rectangles de ses
cotés par des droites données de grandeur.

c g

Soit XCY un triangle rectangle dont on connait 1’hypothénuse CY.
Soient 7 et n deux droites données de grandeur. On demande la plus
grande valeur de la somme mX<XY~4nX><CX ?

(*) Nous saisirons cette occasion pour exprimer le veeu qu'a lexemple de M.
Fronceur , ceux qui écrivent des élémens de géometrie y introduisent Pimpor-
tante notion des projections, que par-tout on suppose codnue et qui n’est pour ainsi
dire présentée nulle part ; cettenotion , entre autres avantages , serait irés-propre & abré-
ger, et conséquemment a rendre plus clairs les énoncés d'un grand nombre de théo=-
rémes. On dirait, par exemple: les quarrés des cordes qui, dans un demi-cercle,
partent des extrémités du diaméire sont proportionnels & leurs projections sur ce

diamétre. Linclinaison d’une droite sur un plan, se mesure par U'angle que fait
cette droite avec sa projection sur ce plan. etc., etc.

¢ Note des éditeurs. )
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Que la somme 7 XX Y47 <X CX soit égale au rectangle de la droite
n par une droite CZ dont on doit déterminer le maaimum. On ob-
tient m X XY =nXXZ; donc XY : XZ=n:m. Dans le triangle XYZ,
le rapport des cétés XY et XZ se trouvant ainsi connu, ce triangle
est donné d’espeéce ; et , en particulier, laugle en 7. est connu, ct
la droite ZY est parallele & une droite donnée de paosition, De 13, la
plus grande valeur de CZ a lieu lorsque la droite ZY est tangenie
au cercle dont C est le centre et dont CY est le rayon. Dans le cas
du maximum , ZX : XY=XY:CX=m:n; savoir, les droites XY et
CX sont entre elles directement comme les droites 72 et 2 qui lewr
correspondent. '

. , (XY ‘
Puisque XY:CX=m:n, on a CY*:{ __ =mm~tnn: " Qo

l CXe nn’
XY=CY x m : CX:CYX———n_-—E' CZ___CYX\/mm—{—mz ;
\/ mm~nn \/m/n—{-nn n

et n X CL=CY X/ mm~-nn.
Remarque. Ce résultat d’un procédé purement élémentaire , sac-—
corde avec celui du calcul différentiel.
En effet, soient

) ~ o— d .
w3 ~yy=aa oy Lo
dx s N\
on aura d’ott xiy=m:n
dy
. m=n===o0
mx--ny=maxim. + dx

En général , soient deux quantités variables dont la somme des quar-
rés est donnée. La somme de leurs produits par des quantités don-
nées est la plus grande , lorsque ces premieres quantités sont entre
clles comme les dernitres quantités qui leur correspondent (*).

(*) Ce théoréme peut encore éire démontré d'une maniére asscz simple el assez
€légante en procédant comme il suit :

Seit proposé de déterminer deux inconnues a ety au moyen des deux équations
L
x2pyr=r2 , maxdny=K ;
la premiére pourra étre considérée comme appartenant a un cercle ayanl son centre
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Application. Soient des quantités variables en nombre quelconque
dont la somme des quarrés est donnée: j’affirme que la somme de
leurs produits par des quantités données est la plus grande , lorsque
ces variables sont entre elles comme les quantités données qui leur cor-
respondent. .

En effet, toutes les variables excepté deux quelconques d’entre elles
restant les meémes, ces derniéres doivent étre entre elles comme les
quantités données qui leur correspondent. Donc toutes les variables doi-
vent étre entre elles comme les quantités données qui leur correspon-
dent.

a Porigine des coordonnées rectangulaires et son rayon égal & 7, tandis que la seconde
sera celle d’une droite. Ainsi les valeurs de « et de y qui résoudront le probléme
seront les coordonnées des points d’intersection de ces deux lignes , de maniére
que , généralement parlant , le probléme aura deux solutions ; mais, comme la dis-
tance du centre du cercle a la droite a pour expression

K
\/7712+n2 ’

le probléme ne sera possible qu’autant que cette quantité ne sera pas plus grande que 7.

Si maintenant on suppose K indéterminé et quon demande quelles valeurs il faut
donner a @ et y pour qu'il soit le plus grand possible , comme K est proportionnel &

K
——F
\/mz+n2

la question reviendra & rendre cette derniére quantité la plus grande possible ; il fau=
dra donc poser

K ——————
\/’;z————_w:r s d’out K=r\m:+n* ,

on aura donc
many=r\/m>~4n> , ou (mx~f-ny)2=r(m2--n2) ;

¢liminant donc r2entre cclle équation et celle du cercle, il viendra, en développant ,
m

x
transposant , réduisant et exlrayant la racine quarree , my=——nx=—0, ou }- = —
n

comme dans le texte.
( Note des éditeurs.)
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§ 2

Probléme. Soient des figures planes données de grandeur, sur des
plans donnéds de position ( non paralléles entre eux ). On demande
le plan sur lequel on doit les projeter ortographiquement pour que
la somme de leurs projections soit la plus grande possible.

Comme les projections sur une méme plan de deux figures planes
de méme grandeur , situdes sur des plans paralleles , sont égales entre
elles 5 on peut, pour plus de simplicité, rapporter les figures propo-
sées a des plans qui se coupent en un méme point; et en particu-
lier on peut prendre ce point pour l'origine des coordonnées.

Soient F', F/, F/ , ..... F=1, F™  les figures donnédes de gran-
deur. g

Que les équations des plans sur lesquels ces figures sont rapportées,
et que nous avons supposé passer par lorigine des coordoniées, soient

2Cos.e  —yCos.g  —+=zCos.y =0,
xCos.e/  —4yCos.p” —+zCos.y/ =o0,
xCos.e’/  —yCos.g” —+zCosy” =o0,
2Co0s.28" -y Cos. " V4-zCos.o " V=0 ,
2Cosie™®  ~4yCos.6"  —42zCos.s™ =o0 .
Que I’équation du plan sur lequel on projette des figures, et que
nous supposons aussi passer par L'origine , soit
2Cos. X—yCos. Y +4-zCos.Z = 0.

Les cosinus des inclinaisons de ces premiers plans sur le dernier seront
respectivement

Cos.« » Cos. X~+4Cos.g « Cos.Y-+Cos 5. Cos.Z ,
Cos.«’ . Cos. X~4-Cos.p’ . Cos. Y~+Cos.y’ . Cos.Z ,
Cos.«”.Cos. X-4Cos.””.Cos.Y+Cos.y"/.Cos.Z

R R S N I N I N N I B A AR N N I A W N RPRY WY b
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Cos.2""1C08.X—4Cos, 2D Cos,Y4Cos.,, "1 Cos.Z ,
Cos.e® Cos. X—4-Cos.z  Cos,Y4-Cos., @  Cos.Z .

La somme des projections des figures proposées sur ce dernier plan
sera donc
§ FCos.a+-F/Cos.a/4-F7Cos.e//4 . 0o % . +F@=0Cos.at-D4F ™ Cos.a™ } Cos.X ,
~} { FCos.s4F/Cos.a’F//Cos.8/— ... . . +F@-1Cos.80=4-F® Cos.t™ | Cos.Y ,
~+ { FCos.y~4F/Cos.y/+F//Cos.o/'.. . . .. ~+-F-1Cosip - D4F® Cos. ™ } Cos.Z.
Or,la somme Cos.*X~+4Cos.*Y-+-Cos.*Z =1, est une quantité cons-
tante ; donc la somme des projections des figures proposées est la plus
grande , lorsque les quantités variables Cos.X, Cos.Y, Cos.Z, sont
entre elles respectivement comme leurs coefficiens.
Or, les coefficiens de Cos.X , Cos.Y , Cos.Z , sont respectivemént
les sommes des projections des figures proposées sur les trois plans '
coordonnés. Pour abréger , que ces sommes soient désignées par
JSF.Cose , fF.Cos.e , [F.Cosy ; les quantités inconnues Cos.X ,
Cos.Y , Cos.Z , sont entre elles respectivement comme les quantités
connues f.F,Cos.« , f.F.Cos.e., f.F.Cos.y. De la on obtient
fF.COS.u
V/2F .Cos.e4-/2F.Cos.p4/>F.Cos.o °
J.F.Cos.p
VJ2E . Cos.a~f .21 .Cos. g4 2F.Cos.y i
JSF.Cos.y
\[f*F.Cos.a~4/.2t'.Cos.f4/-2L-Cos.y
La plus grande somme de projections cherchée est
Cos.X./.F.Cos.a~+Cos.Y./.F.Cos.e~+4Cos.Z./ F.Cos.y ,
_ J2F.Cosiaf*F.Cos.p4f>F.Cos.y
" \/3F.Cos.a4-f2F.Cos.ptf2F.Cos.yy
=\/ /.>F.Cos.a~-/.2F".Cos.f+4/.2F'.Cos.y .

Savoir : le quarré de la plus grande somme de projections des

Cos. X =

Cos. Y=

Cos.Z=
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Sigures proposées est égal a la somme des quarrés des sommes des
projections de ces figures sur les trois plans coordonnés.

$ 3

Dans un tétraddre trirectangle, le quarré de Phypothénuse (la face
oppasée 4 l'angle solide droit ) est égal & la somme des quarrés des
autres faces. Donc, si l'on réduit la somme des projections des figures
provosées sur chacun des plans coordonnés en un triangle rectangle
ayant pour sommet lorigine des coordonnées (*), le plan de la plus
grande projection est celui de Uhypothénuse de ce tétraedre ; et la plus
grande projection cherchée est cette hypothénuse elle-méme (**).
Remargue. Lorsque , dans un tétratdre trirectangle , les trois faces
de T'angle droit sont données de grandeur, chacune de ces faces est
aussi donnée d’espece. La plus grande projection cherchée , ou I'hy-
pothénuse de ce tétraddre est la somme des projections de. ses faces
sur cette hypothénuse ; et partant , cette plus grande projection est

la projection des sommes des projections des figures données sur les
trois plans coordonnés.

™ U faut, en outre, que les deux cdtés de Vangle droit de chacun de ces trian-

gles soient respectivement égaux aux cOtés des deux autres qui se trouvent situés
sur les mémes axes. '

(*" Ce plan est trés-facile 3 déterminer : soient, en effet, A, B, C, les seg-
mens quwil délermine sur les axes, a partiv de Vorigine, son équation sera
x Yy, =z
— o =1
A + B +C ?
on aura dailleurs
BC=2fF.Cos.zt , CA=2fF.Cos.8 , AB=2/F.Cos.y ;

d'olt

A= V 2f.F.Cos.px/.}.Cos.y , B= V 2/.F.Cosuyx f.F.Cos.« , C= V 2/ F.Cos.ax/}.Cos.p ;
JF.Cos.z JSF.Cos.8 S E.Cos.y

substitnant ces valeurs dans V'équation du plan cherché, elle deviendra, toutes réduc~
tions faites ,

%/ F.Cos.ayf F.Cos. 4z/.F.Cos.y==\/2/ F.Cos.wx/ .F.Cos. 5% J F.Cos.7.

( Notes des éditeurs, )
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§ 4

On peut aussi exprimer la plus grande projection cherchée dans
les figures données et dans les inclinaisons de leurs plans, deux & deux.

Qu’on développe, en effet, 'expression

J*F.Cos.e~/*F.Cos.e~/.*F.Cos.y.

Le cocfficient du quarré de l'une des faces , telle que F' est Cos.*«
»}-Cos.*p+Cos.>, =1 ; partant , ce développement comprend la somme
des quarrés de toutes les figures données. Le coefficient du produit de
deux faces , telles que F et F/ , est 2(Cos.2Cosa’+4Cos.sCos.p/—
Cos.yCos.y’) , et partant le double du cosinus de l'inclinaison entre
elles des perpendiculaires & ces deux faces , ou le double du cosinus

da supplément de Tinclinaison de ces deux faces. Partant, le quarré
de la plus grande projection cherchée est 'excés de la somme des

quarrés des figures proposées sur le double de la somme de leurs
produits , deux a deux , par les cosinus de leurs inclinaisons ( prises
intérieurement a la figure formée par les plans sar lesquels elles sont

tracées ).

ot
(e77

§. 5-

Le résultat que je viens d'obtenir présente une analogie remar-
quable entre le sujet de ce mémoire et les propositions les plus gé-
nérales de la polyhédrométrie. En effet, dans tout polyhedre , Ie
quarré de l'une des faces est égal & T'excés de la somme des quarrés
des autres faces sur le double de la somme de leurs prodaits, deux
4 deux , par les cosinus de lcurs inclinaisons (*). Partant , si T'on

(* Cette belle proposition est développée par CARNOT , dans son ouvrage ingénieux
intitulé : Géoméirie de position. Yen avais envoyé le développement & IInstitut avant
la publication de ce bel ouvrage. ( Voyez les Mémoires présentés & Ulnstitut , et
la note de cet auteur, P.306 ). Il a été bien flatteur pour moi de me trouver
d’accord avec ce grand glométre , soit pour 'objet de mes recherches, soit pour
la marche qui mw'a conduit aux résultats obtenus.

( Note de lauteur. )
congoit
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congoit un polyhedre dont toutes les faces { excepté une ) scient respecti
vement égales et paralleles aux figures données de grandeur, la face
restante ( si le polyhedre est possible ) est , soit quant a la gran-
deur , soit quant & la position,la plus grande projection des figures
proposées. .

En effet, une face quelconque d’un polyhedre est égale & la somme
des produits de toutes les autres par les cosinus de leurs incli-
naisons sur elle; ou elle est la somme des projections sur son plan
de toutes les faces restantes ; et la somme des projections de toutes
les faces, excepté l'une d’elles, sur un plan quelconque, est égale &
la projection dc la face restante sur le méme plan. Or cette der-
nitre face est plus grande qu’aucune de ses projections faites sur un
plan qui ne lui est pas paralléle ; partant la plus grande somme de
projections de toutes les faces d'un polyhédre , excepté une , est cette
face restante. )

Cette proposition est évidente , lorsque les premitres faces font
avec la face restante ( que j’appelle base ), des angles aigus , pris
intérieurement au polyhedre. Lorsque quelquun de ces angles est
obtus , I'expression somme se change en différence , en changeant les
signes des cosinus qui répondent a des angles obtus.

La possibilité du polyhédre proposé peut étre éclaircie comme il
suit. J’ai démontré ( voyez mes Elémens & analise géométrique , etc
pag. 25-28 ) la proposition suivante : D’un point pris dans lintérieur
d’un polyhedre soient abaissées, sur ses faces , des perpendiculaires ; sur
ces perpendiculaires soient prises , depuis ce point , des droites res—=
pectivement proportionnelles a ces faces , ce point est le centre des
moyennes distances des extrémités de ces droites.

I’application de ce théoréme au sujet de ce mémoire est évidente.
D’un point P soient abaissées , sur les plans donnés de position , des
perpendiculaires ; sur ces perpendiculaires soient prises , depuis le
point P, des droites respectivement proportionnelles aux figures don-
nées de grandeur (en tournant toujours dans un méme sens ). Si le

point P se trouve éire le centre des moyennes distances des extrémités
Tom, I11. 8
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de ces droites , la somme des projections des figures proposées sur
un plan quelconque est zéro ; et partant la position du plan estindé-
terminée. Que le point P ne soit pas le centre des moyennes distances
des points donnés ; soit déterminé le point P/, tel que le point P soit
le centre des moycnnes distances des points donnés et du point P/;
la distance du point P au point P/ est proportionnelle & la plus grande
somme de projections des higures proposées ; et tout plan perpendi-
calaire & la droite PP/ est I'un des plans paralleles entre eux sur
lesquels a lieu cette plus grande projection.

§. 6.

Cc que j’ai dit sur les projections des figures planes peut s'appliquer
aux projections de quelques surfaces courbes, et , en particulier, il sap-
plique aisément aux projections des triangles et des polygones sphériques.

Soit un triangle sphérique , et qu’on demande le plan sur lequel
on doit projeter ce triangle orthographiquement pour que la projection
soit la plus grande possible.

Soit concug la pyramide sphérique ayant pour base le triangle
sphérique proposé, et ayant pour sommet le centre de la sphere &
laquelle ce triangle appartient. La projection du triangle sphérique
sur un plan quelconque est égale & la somme des projections des
faces latérales de cette pyramide sur le méme plan. Partant, la pro-
jection du triangle sphérique est la plus grande, lorsque la somme
des projections des faces de la pyramide est la plus grande. Soient
I, I, F7 , les faces de cette pyramide , et que leurs inclinaisons ,
deux & deux ( prises intérieurement au solide ) soient désignées par

J s LS, J7f 5 la plus grande projection du triangle sphérique est

VE2e-F 2 b 121, Cos, f 1 f =2 FV/E Cos,f /1f —2EF" Cos,[f /.

La position du plan de plus grande projection se détcrmine comme
il suit. Que les faces latérales de la pyramide sphérique soient con-
cues converties en triangles ayant le méme sommet et les mémes cotés
adjacens , de maniére que les triangles rectilignes égaux a ces faces
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deviennent les faces latérales d’une pyramide triangulaire. Le plan de
la base de eette pyramide est le plan, cherché¢ de la plus grande pro-
jection du triangle sphérique proposé.

" On raméne , de méme , la projection d’un polygone sphérique, a
la projection des faces ( planes ) d’une pyramide sphérique ; et par-
tant , on détermine la position et la grandeur de la plus grande pro-
jection de ce polygone.

Remarqgue. La projection d’un polygone sphérique est composée
d’espaces elliptiques , appartenant & des ellipses différentes dont Tes-
pece dépend des inclinaisons des faces de la pyramide sphérique sur
le plan de projection ; et , malgré cette complication, la grandeur de
la plus grande projection est facilement déterminée.

Post-Scriptum. Je me suis entretenu de l'objet de ce mémoire
avec mon ami et collégue, M. le professeur ScHAUB : il m’a averti
que M. PoissoN avait traité le méme sujet. En effet , dans le N.° 10
(avril 1808 ) dela Correspondance sur I'école polytechnique ,se trouve
un mémoire de ce profond mathématicien dont une partie est relative
a lobjet principal de celui-ci. Il m’a été fort agréable de me rencontrer ,
dans le sujet d’une recherche , avec un savant aussi distingué. Ce-
pendant , je n’ai pas cru devoir supprimer mon travail. Nous avons
suivi , pour parvenir au méme but, des marches sensiblement diffé-
rentes. Le rapprochement que je fais, des propriétés obtenues et des
propositions fondamentales de la polyhédrométrie , me parait , en par-
ticalier , mériter lattention des mathématiciens.




6o NOTE SUR IINSCRIPTION

GEOMETRIE.

Note sur le probléme de Uinscription de (rois cercles &
un triangle, traité a la page 343 du premier volume
des Annales ;

Par 1.Es REDACTEURS DES ANNJLLES.

AN

PLUSIEURS géometres ,n’ayant pas sous la main les derniers volumes
des Mémoires de la société italienne, ont manifesté le désir de con-
naitre , par la voie des Annales, Vanalise qui a conduit M. Malfatti
a Iélégante construction A laquelle il est parvenu, pour Uinscription de
trois cercles & un triangle. Les rédacteurs, dans la vue de répondre
a leur veeu, se sont adressés a M. Bidone qui a bien voulu leur faire
parvenir un extrait de la solution de M. Malfasti. Malheureusement
cette solution est peu propre a éclairer sur les moyens par lesquels
Pauteur I'a obtenue ; elle se réduit uniquement, en effet, & former
les équations du probléme et les valeurs des inconnues, et a prouver
ensuite , & 'aide des relations entre les données, que les derniéres sa-
tisfont aux premiéres. M. Bidone termine ainsi son extrait :

« Tel est le précis de la solution de M. Malfaiti, qu’il dit avoir
» converti en un théoreme, comme on le voit par ses procédés, pour
» la présenter sous une forme plus simple, et pour ne pas étre obligé
» d’exposer le nombre de calculs quil a sans doute di faire pour
» arriver i cetlte construction, en cherchant & résoudre directement le
» probleme. M. Malfatti n'indique nullement la trace qu’il a suivie
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» pour parvenir auX valeurs des inconnues, et 'on peut dire que son
» mémoire est tout renfermé dans ce précis, & quelques développe-
» mens prés ».

Au lieu de vérifier les valeurs des inconnues sur les équations de
M. Malfaiti , les rédacteurs des Annales préférent les verifier sur les
leurs qui sont plus simples, attendu que M. Malfatti emploie six
inconnues au lieu de trois, et"qu’en outre, n’ayant pas représenté par
des symboles particulicrs les distances des sommets du triangle donné

au centre du cercle qui lui est inscrit, ses formules se trouvent ainsi
compliquées de radicaux.

Avant de venir au but, il faut d’abord établir entre les données du

probleme des équations de rélation propres & simplifier le calcul. On
@ ( tom. 1.°% pag. 343 )

cA-c'H-c' =25
s—c/ = ¢/

s—ill= !

A 1

en ajoutant ces équations et réduisant, il vient
c=¢+p"
d’ol
c* ou o(s—p)=p*2/ " ,
ou, en multipliant par ; et mettant pour p¢/p”/ sa valeur A%s,
pse= 2R srcip A 5
en mettant pour s, dans le second Iﬁembre sa valeur ¢4 il vient

pse= 2R c~-2R*pt-cp* o> p'* 5

smails on a

pEE—R,  p=doR,  pr=deeR
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substituant donc, il viendra, en réduisant
¢ = cRP~cd*—-pd/*~4-pd/*
ajoutant a cette dernitre équation , 1’équation
o=2Rcd—2rd/d"’
Véquation résultante pourra étre mise sous cette forme
pse=c(B4-d)-p(d'—d")* ;
en y mettant pour ¢ sa valenr s—; , elle deviendra
A B (=P =s {(Red) ) 5
ajoutant 3 cette équation, ’équation identique
—2ps(R4d) =—25p(A+-d) ,
Péquation résultante pourra étre mise sous cette forme
p{(s-—B—d)’-—(d/——d”)z’:s(B—l—a’—-p)’ H

et comme , dans toutes ces fmmules, on peut A volonté , permuter
les accens , on aura

(A)  p {(6—B—d Y= (& —d"}=5(B+d — )* »
(4) ¢ {o—R=d/ Y —(d'—d P|=s(B+d —( )" ,
A" p”{(s;"B‘—d’/)z—-(d —d’ =5/ R+ Ay

Cela posé, on a vu ( tom. 1.t%, pag. 344 ) que les équations du
probléme sont

(B) o 1/ 2R\ 7/ r/4/r"=Rc -,
(B/) P//r//_l_.zB‘/r//r +P r :BC/ 2
(BY) o1 =2Ryr v =Re!

et 1l sagit de prouver quon y satisfait ,-en posant
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(€) 2f 7 =R(s—B+d —g/—d) ,
() 27/ =R(s—R-4-d/ —dri—q y |
(¢ 20//r" = R(s—R+4d"—d —d' ) (.

Pour cela soient d’abord ajoutées, deux & deux, les équations { C ,
C’, €, )il viendra, en divisant par 2,

(D) ¢ 1! e/’ = B(sm—BR=—d ) ,
@) ¢/r/’¢ r =R(s—R—d’") ,
(D) pr =+t =Rs—R—d") ;

multipliant les mémes équations deux & deux, il viendra

(E) 4w/ r/=R{s—B—d y—(@ —d')},
(E) 4270 1/'r =R*{(s—R—d' )*—(d/—d )%},
(E) 4e ¢ 1’ =B’{(s¥-—R—d”)*—(d —d/ )-} 5

maltipliant respectivement ces derniéres équations par ¢, F, ¢/, ef.
changeant ¢¢/#/ en R*s, il vient

(F) 4R2sr’ =R {(s—R—d )*—(d' —a)}
(F") 4R srlr =R {(s—R—d')*—(d/'—d )} ,
) 4Rt 1/ =R#{(s—R—d/y—(d —d' )} .

Par leur comparaison avec les équations ( A4, 4/, A7), et la di-
vision par s, ces équations deviennent

(G) 4Rzr/ r//:B:(B_l_d — )z N
(6') 4Ber/r =R*(BA-d —v ) ,
(6) 4Rr 7/ =R (BA-d/—p1)*

dott , par lextraction de la racine quarrée , on déduit celles-ci

(*) Voyez tome 1.8, page 3.8
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(H) 2Ry T/ T/ =R(R4d —t ) ,
(H) 2Ry 1'r =R(B4d —') ,
(") 2Ry/r 1/ =R(B4d"—")

lesquelles ajoutées respectivement aux équations (D, D/, D", don-
nent

V! 2Ry T 4" =R(s—p )=Rc
VirttoRy/ rr 4+ r =R(s—¢ )=Rc ,
¢ r 2By r v/ 4¥ r =R(s—¢)=Rc ;

qui sont précisément les équations du probléme.

- = ~——

QUESTIONS PROPOSEES.

Problémes de Geometrie.

L T'ROIS figures planes étant données de grandeur seulement sur trois
plans , non paralleles deux & deux, donnés de position ; déterminer
un quatriéme plan sur lequel ces figures étant projetées orthogonale-
ment, les aires de leurs projections soient proportionnelles & des nom-
bres donnés ?

IL. Soient divisés, dans le méme sens, tous les cétés d’un polygone
P donné, de m cotés, en deux parties qui soient entre elles dans le
i‘apport de p & ¢g. Si Von joint les points de division consécutifs par
des droites , ces droites formeront un nouveau polygone P/, aussi de
m cotés. Opérant sur celui-ci comme sur le premier, on obtiendra un
nouveau polygone P/ duquel on pourra déduire un quatritme poly-
gone P’/ et ainsi de suite.

Les ¢6tés de ces polygones décroissant continuellement, si I’on pour-
suit opération & I'infini, le dernier polygone se réduira nécessairement
3 un point. On demande de déterminer la situation de ce point relative-
ment au polygone primitif P ?

INTRODUCTION
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INTRODUCTION
A la Philosophie des Mathematiques

Par M, Hokxt pe Wronski, ci-devant officier supérieur
d’artillerie au service de la Russie (*).

ANNONCE;
Par rLEs REpAcTEURS DES ANNALES.

NN ANN N

L’ABONDANCE des matériaux qui nous sonf parvenus pour la com—
~ position des Annales , ne nous a pas permis jusqu’ici , et ne parait
guere devoir nous permettre davantage , pour I'avenir, d’y présenter
A nos lecteurs, ainsi que nous nous l’étions promis, I’analise des ou-
vrages nouveaux relatifs aux sciences exactes ; mais , loin que nous
croyons devoir nous justifier de cette sorte d’omission , nous pensons , au
contraire, que le motif quila nécessite ne peut que la. faire tourner a I’a-
vantage du recueil. En effet, outre que plusieurs écrits périodiques sup-
pléent , & cet égard , & ce qui manque A celui-¢i , des analises d’ouvrages
nouveaux , guelque soin qu’on y mette d’ailleurs , n’ont au fond qu’un
intérét éphémere , et demeurent & peu preés sans objet , dés quune fois
ces ouvrages sont répandus , ou lorsque , frappés par l'opinion,ils sont
tombés dans Poubli ; & quoi Fon peut ajouter que, le plus souvent , la
réputation acquise des auteurs fixe , & I'avance , d’une maniére 3 peu pres
certaine , le degré de confiance et d’estime que doivent mériter leurs pro~

(* Volume in-4.9 de prés de 300 pages; & Paris, chez Courcier, libraire pous
les mathématiques , quai des Augustins, 0,0 57¢

Tom,. 11, 9
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ductions, En composant , au contraire , notre recueil de mémoires
inddits , sur les diverses branches des mathématiques, nous en formons
un corps d'ouvrage d'un intérét durable, ¢t qui pourra étre utilement
consulté dans tous les temps.

Il est néanmoins certains éerits qui semblent réclamer de nous une
exception : ce sont ceux qui, par la nouveauté des vues qu'ils pré-
sentent, tendent & produire quelque révolution dans les sciences exactes ;
et telle est, en particulier, Vintroduction a la philosophie des mathé-
matiques , par M. DE VY RONSKI: aussi , avant méme que l'oavrage eut
paru, avions-nous déji congu le dessein d’en présenter l'analise dans ce
recueil ; mais un coup d'ceil jeté rapidement sur cette production vrai-
ment originale, tout en nous montrant l'utilité , nous pourrions pres-
que dire lindispensable nécessité du travail que nous avions projeté,
nous a presque 6té le courage de lentreprendre.

Nous ne sommes point, en effet, initiés dans la doctrine du Trans-
cendantalisme ; nous en ignorons jusqu’aux premiers élémens, et la lan-
gue méme qu’il lui a plude se créer nous est tout a fait étrangere. Cepen-
dant, une connaissance parfaite de cctte nouvelle scolastique , semble
étre une condition presque indispensable pour bien saisir les idées de
M. de Wronski. On peut en juger par le début de son livre qui, bien
qu’il n’en soit pas ’endroit le moins intelligible , paraitra sans doute
aussi obscur 4 la plupart de nos lecteurs, qu’il nous I’a paru a nous-
mémes ; le voici :

« Le monde physique présente , dans la causalité non intelligente,
» dans la nature , deax objets distincts : 'un, qui est la_forme, la ma-
» nitre d’étre ; Vautre qui est le contenu , I'essence méme de I'action
» physique.

» La déduction de cette dualité de la nature, appartient a la phi-
» losophie : nous nous contenterons ici d’en indiquer I'origine transcendan-
» tale.— Elle consiste dans la dualité des lois de notre savoir, et nom-
» mément dans la diversité qui se trouve entre les lois transcendantales
» de la sensibilité (' de la réeeptivité de notre savoir ), et les lois trans-
» cendantales de Pentendement ( de la spontandité ou de Vactivité de



A LA PHILOSOPHIE DES MATHEMATIQUES. 67
» notre savoir ). C’est, en effet, dans la diversité qui résulte de 'ap~-

plication de ces lois aux phénomenes donnés A postériori , que con-
siste la dualité de l'aspect sous lequel se présente la nature ; dua-
lit¢ que nous rangeons , conduits de nouveau par des lois trans—

cendantales, sous les conceptions de forme et de contenu du monde
» physique ».

»
»

»

Ce n’est certainement pas dans ce style que Lezbnitz et Euler ont
waité des sujets de philosophie ; mais, si le style de M. de Wronski
est obscur, son livre n’est pas cependant du nombre de ceux qu’il
soit permis de négliger. On ne saurait, en effet, contester a ’Auteur
d’étre trés—versé dans toutes les branches des sciences exactes ; de con-
naitre parfaitement tout ce qu’on en a derit; et d’avoir lui-méme, sur
la philosophic de ces sciences, des vues non moins profondes et non
moins générales qu’clles sont nouvelles.

Nous ferons donc tous nos efforts pour tenter de traduire en frangais,
pour notre usage, 'INTRODUCTION A LA PHILOSOPHIE DES MATHEMA-
TIQUES , et nous destinerons ensuite plusieurs articles des Annales a
en faire connaitve la substance; si toutefois, dans la tiche pénible que
nous allons entreprendre , nous obtenons quelques succes.

Cet ouvrage n’étant pas, au surplus, le seul que M. de Wronski
se propose de publier ,nous croyons convenable de placer ici quelques
réflexions que , pour l'intérét méme de sa gloire , nous désirons vi-
vement que lauteur veuille bien prendre en considération.

M. de Wronski, dans I'une des notes de son livre , observe que
Papplication que Condillac et Limmer ont voulu faire aux sciences
mathématiques , 'un , du systtme de sensualisme de Locke, ct Vautre,
du systtme d'intcllectualisme de Leibnitz ,a été d’une nullité absolue
pour le progrés de ces sciences, et cette remarque nous parait d’une
exactitude parfaite ; mais nous pensons qu’elle doit étre indistincte~
ment étendue A tous les systemes philosophiques qu’il a plu ou qu'il
pourra plaire encore & P'esprit humain d’imaginer. Nos opinions spécula=
tives, en cffet , n’ont guere plus d’influence sur notre entendement que sur
notre volonté , sur notre savoir que sur notre conduite; et , quoi qu’en
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veuille prétendre la modestie de M. de Wronski , sila fait des dé—
couvertes dans les sciences exactes , s’il en a reculé les limites, c’est
a son génie et & son rare savoir quil en est redevable , bien plus
quaux dogmes métaphysiques qu’il a adoptés.

Nous osons dire plus encore , et nous pensons que, si M. de Wronski
elit uniquement dirigé I’activité de son esprit vers ces mémes sciences,
que sl fit né et qu’il edt vécu jusqu’ici en France, il serait déja,
trés-problablement , en possession d’une réputation qu’il travaille seu-
lement A acquérir ; nous pensons qu’alors, donnant & ses idées un plus
libre essor, il ne lui serait pas échappé quelques erreurs évidentes,
quelques divisions et distinctions également forcées et inutiles , que
sa raison désavoue peut—étre A son insgu , et qui ne se sont glissées dans
son livre que sous l'influence despotique des principes de la scolastique
du Nord: nous pensons qu’alors enfin son ouvrage, a la fois plus clair et
plus coneis , n’elit pas été déparé par un néologisme fatigant et par
une métaphysique ardue qai, nous le répétons , ne saurait aucunement
contribuer 3 Pavancement des sciences positives.

Sans donc prétendre que M. de Wronski doive abandonner des
systtmes philosophiques auxquels il parait sincérement et fortement
attaché , nous pensons que , pour son intérét et celui du public, il ferait
bien de rendre & 'avenir moins dépendans de ces mémes systémes les ou-
vrages qu’il se propose de nous donner encore. S'il veut , en effet, queces
ouvrages soient lus et appréciés par notre natien: et il le veut sans doute,,
puisque c’est au milieu de nous qu’il les publie ; il faut qu’il ap-
prenne d’abord & bien nous connaitre ; il faut qu’il sache bien que
nous n’estimons vrai que ce qui peut étre clairement exprimé en lan-
gue vulgaire ; que nous n’aimons pas d’acheter I'instruction par trop de
de peine; que nous voulons que les idées méme les plus abstraites soient
revétues de formes agréables ; qu’enfin , nous sommes une nation un peu
légére chez laquelle le livre le plus profondément pensé ne se sauve pas
du discrédit, s’il exige, pour étre compris, une contention d’esprit
dont notre caractére et nos habitudes nous rendent également incapables.
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ANALISE.
Formule nouvelle pour calculer les logarithmes ;

Par M. Dusourcurr, professeur de mathématiques spéciales
au lycée impcrial.

[a Vo Vio Wio Vo W W, Vi, W, W, V)

ON sait qu’en représentant par 1 la caractéristique des logarithmes
naturels, on a généralement

4
(x—1) (x—1)2 (r—1)3 (x—1)%
o= — o —— e (A)
1 2 3 4

Cette série, qui ne peut converger lorsque #>2 , a cependant été
mise par Lagrange sous une forme trés—convergente , en substituant 3 x

la quantité y a3 ce qui a donné & ce grand glometre l'équation

A n7 s 1\a (71;_1)3
(ﬁl\)_(\/;:z 1) + \/ - —_— <B)

lr=nr

dont le second membre converge rapidement lorsqu’on prend 2 asscz

grand pour que v/ @ nexcéde l'unité que d'une trés—-petite fraction ; mais
la longueur da calcul qu’exige I'extraction de la racine z de &, lozs
méme qu’on prend 2 égale A une puissance exacte de 2, alin de n'a-
voir que des extractions de racines quarrées a elfectuer, a fait rejeter
cette formule , lorsqu’on a voulu calculer des tables de logarithmes.

Si Pon substitue successivement 1~y et 1—y & la place de 2 dans
I'équation (A), qu'ensuite on retranche la seconde équation trouvée

Tom. 11, ' 10
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. 14y , a—T .
de la premitre ; en posant == d'oty Y= o obtiendra la

formule déja connuc

lr=2 %C:)’FC-: ’+;(::)5+.. . } . (©

qui est convergente et asscz simp]e.

Voila les seules formules de ce genre, du moins & ma connaissance ,
qui ont été trouvées jusqu'd présent. Mais mes recherches sur cet objet
m'ont conduit 4 la formule suivante

1x:"‘:_1{"+’_ : ”‘“>+ x_‘>+ ”"’>+....]§(D}

x 2 x—{-x x~4-1 x—+41
qui est beaucoup plus convergente que la formule (C), et qui se dé-
montre comme je vais U'expliquer (*).

On sait qu'en prenant lintégrale de la formule dzy/ i+-22, de ma-
niére que cette intégrale s’évanouisse lorsque z=o , on a complete-
ment

Ao/ T T =2 ey T Ay TF)}

(™ &i, dans les formules (C), (D), on fait x_.g- , elles deviendront

b=l (+t)+ (u+t>+ C:i +} ©

u-t u——t u—t 1 [u—t ;
lu= ll+_§—— [ (u—}-t +3 5(u+t + 5, 7\u+r) +-.- ']§ @
formules qui convergeront rapidement , si 'on prend pour ¢ et u deux nombres trés-
grands et trés-peu différens, et qui seront susceptibles de toutes les applications
qui ont été détaillées dans ce recueil ( tom. 1, pag. 79 et suivantes ). Mais, ce
qui rend sur-tout précicux le concours de ces deux formules, c'est que, la premiére
étant toujours faulive par défaut et la seconde par excés, leur emploi simultané peut
seul faire connaitre la limite de Perreur que peut donner P'usage de 'une ou de l'auires

( Note des éditeurs, )
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d’ot l'on tire
1z 142*)=2fdzy/ 14-2*—zy/ 142, ‘E)

Mais, en se servant de la méthode d'intégration par approximation
que j'ai donnée au chapitre 1V de la premiere section de mon calcul
intégral ( art. 257 et 258 ) (*), et que je crois nouvelle , on a

z3 z2

Vi+4-z2 3.5(1+z2) -.'-5.7(1-|—z2)2

de\/I "z-z‘/ —z2— +§, €D

1
3
en prenant, comme précédemment, l'intégrale de maniére qu’elle s’¢-
vanouisse lorsque z=o.

Substituant cette valeur de Jdzy/ 1+z dans l'équation (E), on a

g, R
et/ 1+4-2%) =2/ 14-2"— \/—_—{ +3 5(1+z2) mJ'_S(G)

Soit fait ‘/;:z—*—‘/ 1-—‘—2‘ ) d’ou z:.x_____l. 5
2\/;

o=y =" o=
\/1+z__\/x——z—2\/a_c, zy/ 14zt = et

223 (x—1)3

_ x——l>
\/T_F;;—’zx(x—{-l) > I+z2_<x+1

substituant ces valeurs dans 1’équation (G), en observant que Iy/z=
21z, et multipliant toute 1’équation par 2, on obtiendra la formule

(D) qu'il s’agissait de démontrer.
. ey e x—1
Si, apreés avoir divisé les deux membres de I’équation (D) par ——,
X

on y suppose x=0, elle deviendra en transposant

(*) Cet ouvrage se trouve & Paris, chez PAuteur, rue St-Jacques, n.° 121, ¢t
chez Courcier, quai des angustins, n.o 57.
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I

T
—1.3+§+1.—'+——}———-+... )

z

{ neoe RS RS R 1 *
résultat assez remarguable ™).

GEOMETRIE.

Détermination du centre des moyennes distances dun
triangle spherique.

Par M, Luuinier , professeur de mathématiques a Iacadémie
impériale de Geneve.

b Sla Vg Vi Vo Y ¥ Vi Vi, Vo Vo b V)
S L

LE centre des moyennes distances d’an triang'e rectiligne est le
point de section des droites menées de chacun de ses sommets aux
milieux des cotés opposés , ou ce centre est sur chacune des paralltles
aux cotés du triangle dont les distances & ces cotés sont moitié de
leurs distances aux sommets des angles opposés.

Cette propriété du centre des moyennes distances d'un triangle
rectiligne découle de cette autre propriété du méme triangle : la droite
menée de I'un des sommets d’un triangle rectiligne au milien du

(" On sassure & prior: de lexactitude de ce résultat, en remarquant que la

somme géndrale des termes de la série dont il s'agit est ou

n 1
— dont
2n-4-1 24 %

la limite est 1. .
( Note des éditeurs,)
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c6té opposé coupe en deux parties égales chacune des droites paral-
leles & ce coté terminédes aux cotés adjacens i ce sommet.

Cette derniére proposition n’a pas sa correspondante dans les trian-
gles sphériques. Aussi la détermination du centre des moyennes dis-
tances d’un triangle sphérique n’est-elle pas susceptible du méme
degré de simplicité que la recherche analogue relative au triangle
rectiligne. Jai fait des efforts inutiles pour la ramener aux simples
élémens. Parmi les divers procédés qu’on peut suivre peur parvenir
4 cette détermination , le suivant m’a paru le moins compliqué ; et,
en particulier , il me parait plus simple que celui qui serait fondé
sur la doctrine générale des coordonndes,

dz
Lemme. Soit — = une ¢ ; CFérant -
SO e T St cCone quation différenticlle pro

posée. Dans la double supposition que z et & doivent devenir nuls
en méme temps, et que @*>b*~-c* , on a

= 2 Arc { Tan ___\/a?-—bﬁ—ﬁ.T:mg. ix
Vai—bi—qcz & = a+4-c+4-bTang. + x ‘

Cette intégrale sc vérifie facilement par la différentiation ; mais,
comme le moyen de l'obtenir ne se trouve indiqué dans aucun des
ouvrages qui sont & ma disposition ,ct en particulier dans celui d’Euler,
je crois devoir indiquer ici la route par laquelle j’y suis parvenu ,

et considérer , en méme temps, les différens cas qu’elle peut présenter.
Seit done

dz 1
dx a+4-bSinx—~4-cCos.x

T2

soit fait Sina=—2 , ol Cosr=

J T
A T et partanty._Tang, Iz
De Iy

dz 2

d‘y- (a=c)-20y~~(a=—rc)y? )
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Premiére supposition. Soit c=a, on aura
dz _ 2 1 2b
dy  (ado)420y" b ° (a~c)~-2by

T Y
=, a-+-c¢
b )4y
\ 1 - H
d’ou = C—i—z Log.g a——"};‘ +Tang.; x} -
Si, en particulier , on suppose que z et z doivent étre nuls en méme

temps, on aura
¢ 28 .
z—-ZLog. { -+ prnd Tang.* x % .

Seconde supposition. Soit ¢>a, on aura

dz 1
— =5

de : (ca)t2by—(c=a)y>

2 I
g tta 20 —y
c—a c—a
2 1
B e b 2
{c-—-—-a ! (c—a)? §_ C—aQ J %
2 I
—"‘.:_—__; . C:_az+bz b 2
(c—a)> - c—a -y }
— _ 2 1
_C—a i g\/(cz__az_i_y;‘.)_*_b SV(C:__az_i_[).:)_.b—i—
{ c—a -y { c—a Y

I

—— § ! 4 2
-Vg;_.az_i_bz \/Cz_a2+bz y \/cc__a:__i_bl

e e~

+r

c—a c——a

d’olt on conclura

=C—r .
z +\/m§ Lob.[
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— C+ \/ c --—ll‘+b +((—(1)‘)
VC"-—G +b“ \/C-—az_‘_bz__(c.__a)f

~1

=C4 —=————Log Vet +C—aTang,
Ver—ar4-02 Ver—a2 b2 —(c—a)Tang.

o

MPR O

Si l'on veut, en particulier, que z et  soient zéro en méme temps ,

la constante C devra étre nulle.
Troisiéme supposition. Soit enfin c¢<a , on aura

dz__ 2

21;' - (a~4-e)4-2by4(a—c)y2

= EE

a—C (a—c)> a—¢
2 X
gt a@*—b2—c? 14 2
(e—c)? {a-—c +)’ }
a—c ) I
2

@
az_—bZ—cZ

b a—c 2
! + {Vaz—b2—cz+\/a2:bz—cz ‘y}
a=—=—C
o N
Vet z =
]

d'ol on conclura

e=C-

- ! bet-(am=c)y
-  Are ! T ——eeeel,
\/a2~b2wcz (Tang \/az....(,z....c;

ot
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bf-ra—nTang. tv
N

=C+ . Arc gTang.-—-

2
Vet—pimy 2

si, en particulier ,on veut que z et-x soient zéro en méme temps ,
O adra

b 1

2 Z;+(a__r)T*mo' tx 3 _A g§
—_——— I | I C' Pang. = i
o \/az..._[,:._.cz * g Arc ang. = N gi—bh2—g2 ‘ 8 \/‘a‘—b-——c i

_\/(au—b«-—c“)Tang x
"‘—“‘"'\/“—————__62_ =, Arc {Tang o Tang.
§. 3.

Soit une partic de la surface sphérique terminée par deux arcs égaux
de grands cercles et par l'arc de petit cercle qui, joignant leurs ex-
trémités , a pour pole leur point de section. On demande le moment
de cette surface relativement au plan tangent mené a la sphére par

. le point de concours des deux arcs égaux?

Soit BAB/ ( fig. 1 ) une partie de la surface sphérique terminéde
par deux arcs de grands cercles AB, AB/, égaux entre eux , et par
Parc de petit cercle BB/ joignant leurs extrémités , et ayant le point
A pour péle. On demande le moment de cette surface relativement
au plan tangent mené par A.

Soit mené le rayon AC. Quec les arcs AB , AB/ soient divisés en
un méme nombre de parties égales, et soient menés les arcs de pe-
tits cercles qui joignent les points -correspondans , et qui ont pour
pole le point A. Que les arcs Mm , Mm/, soient deux de ces par-
ties correspondantes. Sur le rayon CA soient abaissées les perpen-
diculaires MP , mp. Que les arcs AB , AB/ rencontrent, en X , X/,
le grand cercle dont A est le pole. Quenfin le rayon de la sphére
soit désigné par r ; et soit = la circonférence du cercle dont le dia-
métre est l'unité , on aura

Hémis. : XAX/ = 2a7: XX/,
XAX/
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XAX?: Mmm/N'= r :Pp;

donc Hémis. : Mmm/M/=2ar* : Pp.XX".
Mais Hémis, =272 ;
donc Mmm/M/=Pp. XX/

La limite du moment de ’espace Nmm/M/’, relativement au plan
tangent en A est Pp. XX".AP , et partant, le moment de 'espace MAM/
est: AP*XX/= > XX/.4r*Sin.* ; AM=2r>.XX".Sin.* : AM.

Or, 'espace MAM a pour expression XX/ AP =27.XX".Sin.* ;AM ;
donc la distance du centre des moyennes distances de I'espace MAM/
au plan tangent en A, est - AP=rSin,* 2 AM.

Remarque. 11 est facile de ramener aux simples élémens cette pro-
position particuliére.

§ 4.

Soit un triangle sphérique dont un des cotés est constant, et dont
un des angles, ayant pour sommet une des extrémités de ce coté, est
aussi constant. On demande le moment de ce triangle relativement au
plan tangent 4 la sphére mené par l'autre extrémité de ce coté.

Soit ABB/ ( fig. 2 ) un triangle sphérique dont le c6té AB est cons-
tant , ainsi que l'angle B. On demande le moment de cc triangle re-
lativement au plan tangent & la sphére mené par Pextrémité A de
ce coté ?

Soit décomposé le triangle proposé en espaces sphériques MAM/ ayant
en A leur sommet commun. Que les arcs AM, AM/ rencontrent, en
X, X/, le grand cercle dont A est le pole. Soit aussi Mm/ un arc
de petit cercle dont A est le pole, et terminé en 7/ & 'arc AM.

Le moment de 'espace MAm/ ou MAM/, relativement au plan pro-
e s Mm/

posé, est ( §. 3. ) 2r2. XX/, Sin.t; AM=272,Sin.*: AM., SiAM
J130F WA

Tomo Il- - Il
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MM".Sin.M Sin.AM .Sin.M
ar?, Sing o —— = o Sind AN | — /=
2r*.Siné T AM ¢ —g—a= = 27 Sind FAM L ———m . MM
Sin.B. Sin.AB
..7". 1 ."I‘A . . PAS /
2r*, Sint JAM . —————. MM

=7 MM".Sin.B.Sin. AB Tang.*;AM

1—Cos.AM
14-Cos,AM

=:r2,Sin.B.Sin,AB. MM,

—12 / B. 2 L
: 72 MM.Sin.B.Sin. AB(”“""“+COS.AM }
_ r2,Sin,B.Sin, AB, MM/

"~ 1+4-Sin.AB.8in, BM, Cos.B4-Cos.AB.Cos.BM

— 2 MM/ Sin.B.Sin.AB ;

en observant donc que
1—Sin.?AB . Cos.*B—Cos.?AB=Sin.AB.S8in.?B ,
on trouvera pour le moment du triangle ABM ( §. 2.)

Sin.AB.Sin.B.Tang. : BM
14-Cos.AB-+Cos.B.Sin, AB, Tang, ; BM

2rd.Arc % Tang. = } — z7r28in.B.Sin, AB.BM.

Le moment du triangle ABB/, relativement au méme plan, sera done

Sin.AB.Sin.B.Tang. + BB/
1+4~Cos.AB~-Cos.B.Sin, AB,Tang. £ BB/

2r3."Arc§ Tang. = | —:rSin.B.Sin. ABBB.

Q. 5

Comme on a Sin.B.Sin.AB=>5in.B/. Sin.A’B/, tout est symétrique,
dans cette expression par rapport aux angles B, B/, ¢t aux cotds op-
posés AB/, AB, excepté le dénominateur; mais nous allons faire voir
que ce dénominateur peut aussi étre readu syméirique, ainsi que cela
doit étre.

Cos.AB/—Cos.AB.Cos.BB/

Sin.ALSin BB/ g

Co5.AD/—Cos.AB.Cos.BB/ _ Cos.AB'—Cos.AB.Cos.BB/
SnBBY = Sm.iDB.Cos BB’

En effet,Cos.B =

donc Cos.B.Sin.AB =
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Cos.AB/—Cos.AB.Cos.BBr

done aussi, Cos.B.Sin,AB.Tang.>BB/= ,
2Cos.2 - BB/

Cos.AB/==Cos.AB.Cos.BB/

ou Cos.B.Sin.AB.Tang.-BB/= 1-4Cos. BB/ 5

donc enfin

1~}-Cos.AB+4-Cos.AB/4-Cos. BB/
1+4-Cos. BB/

.

1+4-Cos.AB+Cos.B. Sin.AB. Tang.: BB/ =

5. 6.

Le moment du triangle sphérique ABB/, exprimé d’une manitre
symétrique dans les cétés AB, AB/, et rapporté au plan tangenten A ,
est donc

Sin.AB.Sin.B,Sin.BB/
1+4-Cos.AB+-Cos,AB’~4-Cos, BB/

2riArc {Tang.: }—}r’BB/.Sin.AB.SinAB.

Que le produit continuel des sinus de la demi-somme des trois cotés
du triangle sphérique et des sinus des excés de cette demi-somme
sur chacun d’eux, soit désigné par P ; on aura Sin.B.Sin.AB.Sin.BB/=
2y/P; que de plus I'arc BB/ soit exprimé dans le rayon pris pour
unité ; le moment du triangle BAB/, relativement au plan tangent
en A, sera

2VP %——rﬂ/:‘.’. i .
1-4-Cos.AB-4-Cos.AB’4-Cos, BB/ Sin, BB/

2rd. Arc { Tang. =

Soit 72§ la surface du triangle sphérique , rapportée & I'octant pris
pour unité de surface ; et partant, soit S=B-+B/+A—-2 droits ; on
aura

Tang.: = 2P .
1-4Cos,AB+4-Cos. AB/~4-Cos. BB/

( Voyez la Géométrie de LEGENDRE. )
Donc le moment du triangle , relativement au plan tangenten A, sera
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— BB
3 IQ___ 3
ariS—ryPeasy
— BB
— 3 3
=T S—I‘ Vl).sin,BB’.

§ 7.

Puisque 7°S est la surface du triangle BAB/, la distance au plan
tangent cn A da centre des moyennes distances de ce triangle, est

VP BW

V=T o ——s .
S Sin.BB/

La distance de ce centre au plan mené par le centre de la sphére
perpendiculairement au rayon CA , est donc

D ’
7. £ . BB 5
S Sin.BB/

ce qui donne la proposition suivante :

THEOREME. Du centre des moyennes distances d'un triangle sphé-
rique soicnt abaissées des perpendiculaires sur les rayons menés & ses
sommets. Les scgmens de ces rayons retranchés depuis le cenire dela
sphére , sont entre eux comme les exposans des rapports que les arcs
opposés & ces rayons ont & leurs sinus ; et le coeflicient constant de

l’exposant de ce rapport est 7‘\/{5

—
Q

Remarque. On a /P =28in.28.Cos.2 AB.Cos.= AB/.Cos.2BB/; done
ce coeflicient constant est aussi
Sim 1S

r.
;S

. Cos.2 AB. Cos. > AB/. Cos.: BB

5 8.

Soit Z le centre des moyennes distances du triangle sphérique BAB/
( fig. 3), et soient Za, Zb, 2/, les perpendiculaires abaissées du
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point Z sur les rayons CA, CB, CB/; les droites Ca, Cl, C), sont
entre elles respectivement comme les cosinus des angles que fait la
droite CZ avec les rayons CA, CB, CB/; ct la droite CZ est le dia-
métre d’une sphére qui passe par les points C, @, &, 4/; ou qui
est circonscrite au tétratdre dont les sommets sont C, a, &, 2.

Or, le quarré du diameétre de la sphére circonscrite & un tétratdre
est exprimé , comme il suit, d’'une maniére symétrique , dans les ¢lé-
mens d’un de ses angles solides.

Soit prise la somme des trois produits des quarrés de chacune des
arétes de cet angle solide par le quarré du sinus de la face opposée.

Soit prise la double somme des trois produits continuels des arétes
deux a deux par les sinus des deux faces non comprises entre ces
arétes et par le cosinus de linclinaison de ces deux faces.

De la premiére somme soit retranchée la seconde.

Que Pexces soit divisé par le quadruple du produit continuel des
sinus de la demi-somme des trois faces et des exces de cette demi-
somme sar chacune d’elles.

Le quotient qu'on obtient est le quarré du diamdtre de la sphere
cherchée.

Partant on a, dans le cas présent,

Ca.Sin. BB/—2C5.Cs/ .Sin.AB.Sin. AB/.Cos. A

czz_—.fl—) +Cp*.Sin. AB/— 2Ca.C4/.Sin. AB.Sin.BB/.Cos.B
~+Cb6/2,Sin. AB—2Ca.C4.Sin. AB/.Sin.BB/.Cos. B/

S AB* —2,AB/.BB/.Cos.B/

’_‘E —+AB~_2.AB .BB.Cos.B

? —+BB/*—2.AB .AB/.Cos.A

Savoir: Le quarré de la distance du centre des moyenncs distances
d'un triangle sphérique au centre de la sphére & lagquelle il appar-
tient, est au quarré du rayon de cette sphére , comme lexces de
la somme des quarrés des cotés de ce triangle sur le double de la
somme de leurs produits ,deux ¢ deux , par les cosinus de leurs in-
clinaisons , est uun quarré du double de la surface du iriangle.
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Pour abréger, soit le troisitme terme de cette proportion désignd

r
par Q*, on aura CZ:—E- Q ; d’olt on conclura
2

\/I; BB/
T em——— o . =~
C S ' Sin.BB_\/P BP
Cos.ZCA = —=—2 =35 S35
- 2Q ' Sin.BB

CZ 2.0

5 -

On aura done

Cos.ZCA= Ve L

2Q ' SinBB ?

VP AW
COb.ZCB——;—Q- . m >

Cos.ZCB/=V¥E = _AB |
2Q  Sin.AB

Partant, la position du centre des moyennes distances d’un triangle
sphérique proposé est entiérement déterminée, soit par la position du
rayon sur lequel ce centre se trouve, ou par les inclinaisons de ce rayon
aux rayons mends aux trois sommets, soit par la distance de ce centre
au centre de la sphére a laquelle ce triangle appartient.

Exemple.” Que le triangle proposé soit un octant, on aura

CZ>=:ir* ; CA=CB=CB/'=:Ir

Application. La distance au sommet du centre des moyennes dis i

Q

tances d’une pyramide dont la base est un triangle sphérique , est £ .=

V3

Que le triangle soit un octant, cette distance seraTr=f§r 4 peu

7]

prés.
§ 9.
Au lieu d’exprimer, comme je l'ai fait dans le § précédent, le
rayon de la sphére circonscrite au tétraédre dans les neuf élémens



DU TRIANGLE SPHERIQUE: 83
de I'un de ses angles solides, savoir : dans les trois arétes de cet
angle solide , dans les angles que font ces arétes deux a deux,
enfin dans les angles que forment deux 3 deux les faces qui les
contiennent ; il est aisé d’exprimer ce rayon dans six seulement de
ces €lémens, en substituant aux inclinaisons des faces les angles de
es faces et réciproquement. .

Mais , de méme que le rayon du cercle circonserit & un triangle
peut étre exprimé dans deux seulement des ¢lémens de ce triangle :
savoir , dans un de ses c6tés et dans l'angle qui lui est opposé; on
peut aussi exprimer le rayon de la sphére circonscrite & un tétratdre
dans quatre sculement des élémens de ce tétratdre : savoir, dans une
de ses arétes, dans linclinaison des deux faces dont cette aréte est
la commune section et dans les angles opposés & cette aréte dans
les plans de ces faces.

En effet, solent A, A’ (fig. 4) les extrémités de 'une des arétes
d’un tétratdre ; soient B, B/, les scmmets apposés i cette aréte ,
dans les plans des faces ABA, AB’A’; que les angles B, B/, soient
donnés ; et que linclinaison BAA/B/ de ces deux faces soit aussk
donnée. Je dis que le rayon de la sphere circonscrite au tétraédre est
déterminé par ces quatre élémens du tétraédre.

Soient G, C/ les centres respectifs des cercles circonscrits aux
faces ABA’/, AB/A’/; laréte AA’ ainsi que les angles B, B/, étant
donnés, les points C, C/ seront donnés sur les plans de ces faces.

De ces points C, C/, soient abaissées sur I'aréte AA/ des perpendiculaires ;
elles rencontreront cette aréte au méme point D qui en est le milieu,, et
Pangle CDC/ sera l'inclinaison connue des deux faces ABA’, AB/A’.

Des points C, C/, soient élevées aux plans des faces ABA/, AB/A/,
des perpendiculaires qui se coupent en Z , le point Z scra le centre
de la sphere circonscrite au tétraédre proposé.

Or , dans le quadrilattre CDC/Z dont les angles sont donnés, ct
dont les cotds CD, C’'D, sont aussi donnés, la diagonale DZ est dé-
terminée , et partant, le quarré de AZ qui est égal & la somme des
quarrés de DZ et de AD, est aussi déterminé,
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Calcul. CD=AD.Cot.B 5 C'D=AD.Cot.B/ ,
cos

~ SinD
CC’2=CD2+C’D2-—2CD.C’D.Cos,D:ADﬁiClot. 2B—2Col.B.Cot.B/.CosD~-Cot.2B}

done

Dz

Cot.2B~2Cot.B.Cot.B".Cos.DF-Cot.2B/
Sin.2D 2

DZ2=ADx.
donc aussi

Cot.>B—2Cot.B.Cot,B/.Cos,D--Cot.2B/ ?

AZ*=AD*+4DZ>=1AA"{ 1+ Sin.D §

De 14 on peut exprimer le rayon de la sphére circonscrite 3 un
tétraédre dans les élémens de P'un de ses angles solides tels que A,
en substituant & Cot.B et Cot.B, les valeurs suivantes.

B—AA/.Cos.BAA/ AB/—AA/.Cos.B/AA/

A
= B =
CotB=—rreman— » CotB AA’.Sm.B/AA/

TRIGONOMETRIE.

Démonstrations de quelques formules de (rigonométrie
spherique ;

Par M. Servois , professeur de mathématiques aux écoles
d'artillerie de Lafere.

AV NN

I.

ON trouve, dans les ceuvres de Goudrn ( Paris 1803 ), un mémoire
qui a pour titre: Usages de Pellipse dans la trigonométrie sphérique ,
et ol l'autetr, entre autres applications , s’occupe de la résolution de
Véquation

Cos.
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Cos.a+ASin.e=RB (1)

dans laquelle « est 'inconnue, et 4, B, des quantités données dont
la derni¢re n’excéde pas l'unité.

On peut parvenir fort simplement au but sans recourir aux pro-
prictés de Dellipse dont I'emploi, en cette rencontre , semble tout %
fait hors de propos.

Soient posés , en effet,

B=Cos.p , (2)
A=Sin,g.Cot.y 3)
I'équation (1) deviendra
Cos.z+Sin,«.Sin.s.Cot.y=~ Cos.6 =0 ,
d’oli on tire en do\ublant,

2Cos.a—2Co0s.8 2Cos.y

T Tty ==
Sin.«.Sin. g 2Cot.y Sin.y

ou encore

(14-Cos.«) (1—Cos.)—(1—Cos.4) (14-Cos.f) __ (1—Cos.3)—(1-}-Cos.5)
Sin,Sin. s - Sin,y ?

équation qui peut étre mise sous cette forme

2Cos.2 L #.25in.2 1 p—2Sin.2 L a.2Cos.2 L 8 2Sin.2; 9—2Co0s.2 1y

28in, £ #Cos. ¢ «,25in, + 8Cos.1 8 T 2SinigCosaiy 7

ouen simplifiant,
Cot.z«.Tang.2.g—Tang.!«.Cot..g="Tang..»—Cot.2y ;
équation qui peut étre écrite ainsi
(Cot.;e—Cot.; . Tang.; v)(Tang.2 s+Tang.2 w.Cot.ly) =0 ;
égalant successivement chaque facteur 4 zéro, on obtiendra
Tang.i«e= Tang.le. Cot. 1y , (4)

Tang.;«=-—Tang.;e. Tang.2y . (5)
Tom. 11,
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Ainsi, en supposant B<1, et c’est le cas des applications trigo-
nométriques , on obtiendra 'angle auxiliaire g par I'équation (2) ; I'é-
quation (3) donnera ensuite I'angle auxiliaire », et on obtiendra enfin
les deux valeurs de « par les formules (4), (5); ce qui est exacte=
ment conforme aux résultats obtenus par Gowdin.

II.

M. Gauss a donné, sans démonstration (*), les formules trigono-
métriques que voici: @, b, ¢, élant les trois cotés dun triangle spheé-

rique, et 4, B, €, les angles respectivement opposés, on a

Sin.1(a—b) _ Sin.2(A—B)

L Sin.i¢ ~ CosiC  ?
I Sin.;(a+4-58) _ Cos.;(A—B)
' Sint¢  SiniC ?
0 Cos.}(a—-b)_Sin.{(A—}—B)
B Cosic ~ CosiC ?
Cos.t(a+b) Cos.t(A+4B)
IV. D) _ SR ey
Cos.1c Sin.:C

Il m’a paru que ces formules pouvaient étre assez facilement démontrées
comme il suit. ’

Les équations fondamentales de la trigonométrie sphérique sont,
comme lon sait, '

Sin.4Sin.cCos.A=Cos.a—Cos.5Cos.c , Sin.BSin.CCos.a==Cos.,.A-}-Cos.BCos.C ,

Sin.aSin.cCos.B=Cos.b—Cos.aCos.c , Sin.A4Sin.CCos.b==Cos.B--Cos.4Cos.C +
Sin.aSin.b Cos.(=Cos.c—Cos.aCos.b ; Sin..4Sin.BCos.c=Cos.C+4-Cos.4Cos.B

(*) Voyes Théoria motus corporum ceelestium ; Hambourg, 1809, page 51,
**) Ces formules ont aussi été donndes par M. Delambre , dans la Connaissance
des temps pour 1809, page 443,

( Notes des éditeurs. )
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Eliminant, dans les équations des deux premiéres lignes, Cos.c et
Cos.C , au moyen de celles de la derniére , en se rappelant que
1—Cos.2>=S8in.z* , et supprimant ensuite le factcur commun & tous
les termes des équations résultantes , il viendra

Sin ¢Coc..4=Cos.aSin.b—=Sin.aCos.6Cos.C , Sin,CCos.a==Cos.ASin.B4Sin, ACos,BCos.c
Sin,¢Cos, B=Sin.aCos.b—Cos.aSin.6Cos.C , Sin.CCos.L=5in,.4Cos E-4Cos.4 Sin.BCos.c;

en ajoutant et retranchant successivement les équations de chaque co-
lonne , les résultats qui en proviendront, pourront étre écrits ainsi

Sin.c(Cos.B4-Cos.4)=(1—Cos.C)Sin.(a4b) , Sin.C(Cos.b-4Cos.a)=(1~4-Cos.c)Sin.(4-}B) ,
4

Sin.c(Cos.B—Cos,.4)=(1-4Cos.C)Sin.(a=—b) 5 Sin.C(Cos.b—Cosa)=(1=-Cos.c)Sin.(4~—B) ;
en observant que
Cos.y--Cos.x==2C0s.2(x~-y) Cos. L (x==y) , Cos.y—Cos.x==28in.%(x~4~y)Sin.;(x=y)
1—Cos.x==2Sin.2% x , 1-}-Cos.x=2Cos.2 L x ,
Sin.x==28in, £ xCos. L x ,
ces équations deviendront
28in.c. Cos.2(A~+B)Cos.}(A—B) =4Sin.*2C.Sin.( a5 )Cos.2(a+-H ),
2Sin.c. Sin.X(A+4B)Sin.2(A—B) = 4Cos.>:C.Sin.2( a—b )Cos.;(a—b ),
28in.C.Cos.2(a~+b)Cos.X{ a—b ) =4Cos.*>c. Sin.;(A-+B)Cos.;(A+B),
28in.C.Sin.2 (@44 )Sin.2( a—b )= 4Cos.*;¢. Sin.H(A—B)Cos. (A—B);
divisant successiveinent les deux premitres par chacune des deux
dernieres , il viendra
Sin.c _g Sin. £ C.Cos. £ (e )
Sin.C~ { Cos. 2¢. Cos. & (A4-B)
Sin.c Sin, £ C.Sin. 1 (a4b)
sm.czi Sin. L. €os. 2 (A—B)

}2 Sin. £ ( a4-b )Cos. X (a—b)
Sin.c sCos. £C.Cos,i(a—b) §2 Sin. L (a—b)Cos. £ (a-}-b)
%2

" Sin. & (A4-DB)Cos. + (A—B)’

Sin. 2 (a—b)Cos. X (a4b)
Sin. £ (A—B)Cos. * (A4-B)’

z 2

Sin.C~ {Cos. : c.Sin.  (A4-B)§ * Sin, 2 (4—B)Cos. : (A4-B)’
Sin. 2 (a5 )Cos. 2 (a—b)

Sin, £ (A4-B)Cos. £ (A—B) ?

Sin.c _%Cos. LC.Sin, 2 (a—b)

Sin.C~ { Sin, 2 ¢.Sin. * (4=—B)
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mais , par la proportionnalité des sinus des angles aux sinus des cotds
opposés , on a

Sin. % (a4-b)Cos. 2 (a—=b ) _ Sin. a-}-Sin. & Sin.c

Sin. £ (A-4-B)Cos. £ (A—B) Sin.A—[—Sin.B_— Sn.C

Sin. £ (@—b)Cos. £ (a4b) _ Sin.a—Sin.b__ Sin.c

Sin. * (A—5)Cos. & (A4-B)~_ Sin.A—Sin.B_ Sin.C”

susbtituant donc , rédaisant et extréyant la racine quarréc, on tom-
bera sur les formules annoncées, On se convaincra d’ailleurs que les
racines doivent toutes étre prises avee le signe =, en considérant le
cas particulicr o le triangle serait bi-rectangleen B et C ; on aurait
alors B=C=b=c¢=¢, ¢ éant le czdran et A=ga; valeurs qui ne
peuvent satisfaire qu’avec le signe =~
Il est presque superflu d’observer que les formules 1,11, 10, IV,

donnent, en les combinant, par voie de division , les Analogies de
Néper , lesquclles se trouvent ainsi démontrées par ce qui précede.

\

e

QUESTIONS RESOLUES.

IV. B. Le défaut d’espace, le grand nombre des solutions obtenues pour les mémes
problémes et I'analogie entre ces solutions obligeront souvent a Pavenir les Rédac~
teurs des Anrales & les comprendre toutes dans un seul article et 4 n’en présenter
qu'une courle analise. Ils auront soin , au moins , d’étre équitables et de ne rien omettre

de ce qui pourra piquer la curiosité de leurs lecteurs,
Solutions des deux problémes proposés & la page 384
du premier volume des Annales ;
Par MM. Rocuar, Vecren , FavQuier , PiLATTE , etc,

L Wi Vo Wi, W Wi, W W, W1, Vi Vo Y2 V]

.P ROBLEME 1. A un triangle donné circonscrire un triangle
semblable & un auire triangle donné, et gui soit le plus grand
possible ?
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PROBLEME 11. A un triangle donné inscrire un triangle sem-
blable & un autre iriangle donné , et qui soit le plus petit possible ?

MM. Rochat , professeur de navigation & Saint-Brieux, Fecten ,
professeur de mathématiques spéciales au lycée de Nismes, et Fauguier,
éleve du méme lycée , ont également fondé les solutions qu’ils ont
données de ces deux problémes sur les considérations suivantes.

1.° Deux triangles # et #/ étant donnés d’espéce , et deux autres
triangles T', T/, respectivement semblables A ceux-la, étant inscrits
Pun alautre, T/a T par exemple; si T/ est le plus petit des triangles
semblables & #/ qu’il soit possible d’inscrive & T', ce triangle T sera
le plus grand des triangles semblables & z qu’il soit possible de cir-
conscrire a 17, et réciproquement.

Voici a peu prés de quelle manitre M. Rochat démontre cette
proposition. Soit ABC ( fig. 5) un triangle semblable & #, et soit
DEF le plus petit de tous les triangles semblables & # qu'il soit pos-
sible de lui inscrive, Si ABC n’est pas le plus grand des triangles
semblables & 7 qu’il soit possible de circonscrive 3 DEF, on pourra
circonscrire & ce dernier un triangle semblable & #, plus grand que
ABC; soit A’B/C/ ce triangle ; soient coupés les cétés de ABC en
D/, E/, ¥/, comme le sont ccux de A’/B/C/ en D, E, F, et soit
formé le triangle IVE/F/. Ce dernier étant disposé par rapport 3 ABG
de la méme maniere que Vest le triangle DEF par rapport au triangle
A’B/C/, on doit avoir évidemment

ABC DEF

256 =pmF *
si donc on pouvait avoir A/B/C’>ABC , on devrait avoir aussi
DEF >D/E/F/; ainsi, contrairement a hypothese, le triangle D/E/F/,
semblable & # comme DEF, et inscrit comme lai 8 ABC, serait
moindre que DEF.

La réciproque de cette proposition n’est pas plus difficile & établir.
Soit en cffet ABC le plus grand des triangles semblables & # qu’il
soit possible de circonscrire 3 DEF ; si DEF n’est pas le plus petit
de tous les triangles semblables a 2/ qu'il soit possible d'inscrire 3 ABC,
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on pourra lui en inscrire un autre plus petit que DEF et toujours
semblable & #/; soit D'E/F ce triangle; par D, E, F, soient menées
trois droites B/C/, C/A’, A/B/, faisant avec ses cotés les mémes angles
que font BC, CA AB, avec leurs homologues dans le triangle D/E/F/;
e triangle A’B/C/ se trouvant alors , par rapport au trlangle DEF, ce
qu’est le triangle ABC par rapport au triangle D/E’E/, on aura

DEF _ABC/

D/w/e’ ABG 7

si donc on pouvait avoir IVE/F/<DEF, il faudrait qu’on efit ausst
ABC < A’B’C’; ainsi , contrairement & ’hypothése , le triangle A/B/C/,
semblable & # comme ABC, et circonscrit comme lui & DEF, serait
plus grand que ABC.

2.° Si deux cercles se coupent, de toutes les droites menées par
Pune de leurs intersections et terminées & leurs circonférences , la
plus longue est la paralléle & la droite qui joint leurs centres , ou, ce
qui revient au méme , la perpendiculaire & leur corde commune; et
la longueur de cette droite est double de la distance entre les centres
des deux cercles (*).

Ces principes établis, voici 3 quoi se réduit la solution des deux
problémes proposés.

Solution du 1.°* probléme. Soit ABC ( fig. 6 ) un triangle
donné , auquel il faille circonscrire un triangle semblable 3 un autre
triangle donné def, et qui soit le plus grand possible.

Sur les cotés CA et CB du triangle ABGC soient décrits extérieure~
ment des arcs CEA , CDB respectivement capables des angles ¢ et &
soient H et G les centres des cercles dont ces arcs font partie ; soit I
Vintersection de ces cercles, et soient menées HG et CIL Par le point
C soit menée DE par-llele & GH, ou perpendicalaire & CI, et terminée
en D et E aux deux arcs; en menant ensuite DB et EA concourant
en F, le triangle DEF scra le triangle demandé.

(*) Voyez les pag, 24 et 26 de ce volume,
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Solution du I1.° probléme. Soit ABC ( fig. 7 ) un triangle donné,
auquel il faille inscrire un triangle semblable & un autre triangle donné
def , et qui soit le plus petit possible.

Au triangle def soit circonscrit ( probléme 1.) un triangle abc, sem=
blable au triangle ABC, et le plus grand possible; soient coupés les
cotés du triangle ABC en D, E, F, de la méme manitre que le
sont ceux du triangle abc en 4, ¢, f; formant enfin le triangle DEF,
ce scra le triangle demandé. .

Ce qui précede suppose tacitement que I'on a indiqué, a l'avance,
a quels cotés du triangle donné d’espéce seulement , doivent étre ho-
mologues ceux des cotés du triangle & circonscrire qui doivent passer
par chacun des sommets du triangle donné i la fois d’espéce et de
grandeur ; ou a quels angles du triangle donné d’espéce seulement ,
doivent é&tre homologues ceux des angles du triangle & inscrire dont
les sommets doivent étre sur chacun des cétés du triangle donné & la
fois d’espéce et de grandeur. §’il n’en était pas ainsi, il est clair que
chacun des deux problémes pourrait, en général , admettre six solu-
tions ; et qu'ainsi il y aurait lieu & un meximum maximorum ou a
un minimun minimorum. M. Rockat 3 qui l'on doit cette remarque,
a calculé les expressions de 'un des cétés du triangle cherché qui
répondent a ces six solutions ; mais il n’a pas eu le loisir de les
discuter.

Ces six solutions se réduisent & une seule lorsque le triangle &
construire est équilatéral. M. Pecten observe a ce sujet que, si, dans
ce cas on meénc du point 1 (fig. 6) des droites aux points A, B, C,
ces droites , respectivement perpendiculaires aux cétés du triangle DEF,
feront, autour da point I, des angles égaux entre eux et au tiers de
quatre angles droits , d’ott il suit qu’alors le point I sera celui dont
la somme des distances aux sommets A, B, C, du triangle donné,
est la plus petite.

Ainsi, le plus grand triangle équilatéral qu'il soit possible de
circonscrire & ur iriangle a:mmé est celui dont les cotés sont per-
pendiculaires aux droites qui joignent aux sommets de ce trigngle
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donné le point dont la somme des distances & ces sommets est la
plus petite.

Et, comme la somme des distances aux trois e6tés d’un triangle
équilatéral d’un point quelconque pris dans son intérieur, est égale 2
la hauteur de ce triangle, il en faut conclure que /e Aauteur du
plus grand triangle équilatéral gqu'il soit possible de circonscrire
& un triangle donné , est égale a la somme des droites menées aux
sommets de ce triangle du point dont la somme des distances &
ces sommels est la plus petite.

M. Pilatte, professeur de mathématiques spéciales au Iycée d’Angers ,
ancien éléve de I'école polytechnique , a traité ces deux problemes
par lanalise et d’une maniére tout & fait différente de celle qui vient
d'étre expliquée. 1l a d’abord soin d’observer que, par triangle ¢ircons-
crit a un triangle donné, il faut entendre un triangle dont les cétés ,
prolongés s'il le faut ,passent par les sommets du triangle donné :
‘et que, par triangle Zzscriz & un triangle donné, il faut entendre un
triangle dont les sommets sont sur les cotés ou sur les prolongemens
des coteés du triangle donné. Il se propose ensuite ces deux problémes :

1.° Connaissant les coordonnées des sommets d'un triangle T,
déterminer l'expression de la surfuce S d'un iriangle circonserit
@ celui-la et semblable & un iriangle donné t?

2.° Connaissant les coordonnées des sommets d’un triangle T ,
déterminer lexpression de la surface 8’ d'un triangle inscrit & celus-la
et semblable & un triangle donné t ?

Ces problémes étant V'un et l'autre indéterminés, les expressions
trouvées par M. Pilatte pour S et &/, sont fonctions d’une certaine
arbitraire « qui est la tangente tabulaire de I'angle que fait I'un des
cotés du triangle cherché avec 'axe des a5 ainsi les triangles S et S
peuvent étre assujettisa une nouvelle condition choisie comme on voudra.

Suppoesant donc 1.° que les triangles S et 8 doivent étre a la fois
#zaux et semblables au triangle 7, « se trouve donné pour l'un et
Yautre. par des équations du second degré, et les deux problémes pro-
posés ala page 318du 1.¢% yolume des Annales se trouvent ainsi résolus.

Supposant ,
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Supposant , 2.° que les surfaces S et &/ doivent étre des maximae’
ou des minima, M. Rochat trouve pour S un maxémum lini ct un
minimum zéro et pour & un minimum fini et un maximum infini.

Passant alors au cas particulier ou le triangle demandé doit étre
équilatéral , M. Rockat détermine les valeurs de « qui, dans ce cas,
conviennent au maximum de S et au minimum de §, etil enseigne i
construire ces valeurs.

Retournant ensuite aux valeurs générales de S et §/ et supposant
que lindéterminée « est la méme dans Vune et dans Pautre , ou, ce
qui revient au méme , que les cotés homologues des triangles S et §7,
le premier circonscrit et le second inscrit3 T sont parall¢les; il obtient, cn
multipliant ces valeurs, §8/=T?, d’ou il conclut cet élégant théor¢me.

Si dun triangle quelconque T on en circonscrit un autre aussi quel-
conque T ; qu'a celui-ci on en circonscrive un troisiéme TV, ayant
ses cOtés respectivement paralléles & ceux de 'T 5 puis, qu'on circons-
crive & T un nouveau triangle T, dont les cdtés soient respectivement
paralléles & ceux de N/, et ainsi de suite, les aires des iriangles
T, T/, TV, T",..., lesquels seront semblables de deux en deux
formeront une progression par quotiens.

Nous croyons devoir , & ce sujet, mentionner ici un autre théo-
réme fort analogue & celui-la, et qui se démontre facilement , soit
par l'analise , soit par la géométrie.

Si¢ des triangles T, T/, T/ T .., sont tels que les cbtés de
chacun soient respectivement égaux aux droites qui , dans celui qui
le précéde, joignent les sommets des angles aux milieux des cétes
opposés ; les aires de ces triangles , lesquels seront semblables de
deux en deux , formeront une progression décroissante par quo-
tiens dont la raison sera .

Nous terminerons par observer que les deux problémes qui font
le sujet principal de cet article , ont été résolus par M. Lhuilier, dans
les Elémens danalise géométrique et d’analise algébrigue , ouvrage
remarquable par le grand nombre des problémes qui y sont traités.

Tom, II. 13
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1

Demonstrations du théoréme éenonce & la page 334
du 1.5 volume des Annales ;

Par MM. Senvois , LuuviLier , RocHAT , LABROUSSE ,
FauvqQuier, etc.

[ o W Wo Vo Vo Wo W, Vo Ve W, W, V]

THE’OBEME . Le volume d'un tronc de prisme quelconque, droit
ou oblique , s'obtient en multipliant l'aire de une quelconque de ses
bases par la perpendiculaire abaissée sur son plan du centre de
gravité de lUaire de lautre base.

Toutes les démonstrations qu’on a données de ce théoréme reposent
sur les deux propositions suivantes.

1.° Le volume d’un tronc de prisme triangulaire , droit ou obli-
que, s'obtient en multipliant I'aire de l'une quelconque de ses bases
par la perpendiculaire abaissée sur son plan du centre de gravité de
Vaire de Pautre base.

2.° Si 'on décompose les deux bases d’un tronc de prisme quel-
conque en triangles, par des diagonales correspondantes , les aires des
triangles homologues seront dans un rapport constant qui sera celui
des aires des bases elles-mémes, ‘

La premitre de ces propositions est une suite de ce que le volume
d’un tronc de prisme triangulaire est le produit de l'aire de l'une
quelconque de ses bases par le tiers de la somme des perpendiculaires
abaissées sur son plan des sommets de I'autre base , et de ce que
la distance du centre de gravité de laire d’un triangle & un plan
quelconque est le tiers de la somme des distances de ses sommets
au méme plan (*).

*y La vérité de cetle derniere proposition s’apercoit sur-le-champ, en remarquang
I} G )
que le centre de gravité de Paive d’un triangle est le méme que le centre commun
de gravitd de trois masses dégales situdes % ses sommets.
& 3
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La seconde proposition n’est pas plus difficile & dédmnontrer: Quon
imagine en effet une section perpendiculaire aux arétes latérales , et que
cette section soit décomposée en triangles correspondants & ceux des
deux bases ; comme ces derniers seront les projections des premiers
sur le plan coupant, ils seront a la fois entre eux dans le rapport
des triangles de l'une des bases et dans le rapport des triangles de
Pautre ; d’ou il suit que les triangles correspondants de l'une et de
Paatre base seront eux-mémes dans un rapport constant.

Pour parvenir, d’aprés ces principes, 4 la démonstration du théoréme,
MM. Labrousse , maitre de mathématiques & Nismes , et Fauguicer ,
éleve du lycée de la méme ville , ont démontré , par la composition des
forces paralleles, que, sila proposition était vraie pour un tronc de
prisme ayant des bases de n—1 cotés, elle devait I’étre aussi pour
un tronc de prisme ayant des bases de 2 cOtés; et ils en ont con-
clu que la proposition étant vraie , en effet, pour des troncs de prismes
triangulaires , elle devait étre vraie pour des troncs de prismes quel-
conques.

Les démonstrations donndes par MM. Servois, Lhuilier et Rochat
reviennent au fond & ce qui suit:

Soient IT la base supérieure du tronc et G la distance de son
centre de gravité au plan de la base inférieure ; soient 4, ¢, ¢/,...,
les triangles résultant de la décomposition de cette base et g, g/, 877, ...,
les distances de leurs centres de gravité particuliers au plan de la base
inférieure ; soit P cette base et #, #/, ¢/ ,..., les triangles résultant
de sa décomposition et correspondant a ¢, ¢, ¢/,...; soit enfin V lo
volume du tronc, on aura d’abord '

V=igt/gi—4t/g/’4=.0. .05
mais, 72 étant un nombre constant choisi convenablement , on doit avoir
P=mnll , i=mo , =mv , =mt .. 000,

ce qui donne d’abord
V=mlg4-vg/+0"g"4i..00)

mais on a, par le principe des momens,
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tettg'oiglig-. .. .. =TIG,
done enfin
V=mIIG=PG.

Les rédacteurs des Annales ont recu diverses autres démonstrations
du méme théoréme qui rentrent toutes dans les précédentes. Les auteurs
de quelques-unes d’entre elles ont remarqué que la méme proposition
pouvait étre étendue aux troncs de cylindres droits ou obliques &
bases quelconques. L'un d’eux a observé, en outre, qu’il suivait de cette
proposition qu'on ne change pas le volume d’un tronc de prisme ouw
de cylindre , droit ou oblique , & base quelconque , en substituant 2
Iune de ses bases une autre base passant par lc centre de gravité
de l'aire de celle-la.

Le théoréme qui fait le sujet de cet article se trouve traité par
M. Blondat , dans le dernier cahier de la Correspondance sur Fécole
polytechnique ( janvier 1811, pag. 267 ).

QUESTIONS PROPOSEES.

Theoréme d analise.

\\

ON propose de démontrer I'équation suivante :

. m  (m—I1) M meml (mem2)B¥
2.3.3.4e v eenam= (mr e o __—__,(_.3_.2
2 i 2

m me=I m-—2 (m—3)

m-t 1 . m
m  Mme=1 me—z2 m—3 (m=—3i) +1
+ — . +_— . . - . —_— e
1 3 4 3 2 3 4 5

Probléme de statique.

2

Une table triangulaire , dont les dimensions sont données , est soutenue
-horisontalement, & ses trois angles, par trois piliers verticaux dont les
forces ', ¥/, ¥/ sont données. On demande

1.° Le plus grand poids que peut supporter chaque point dela table ;

2.° La courbe renfermant tous les points de la table qui peuvent
supporter un poids donné P ?
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ASTRONOMIE.

Examen dune nouvelle théorie du mouvement de la
terre , proposée par le docteur VWWoop ;

Par M. D. EncoxTrE, professeur, doyen de la faculté des
sciences de l'académie de Montpellier.

L Yo Vo Vo Yo Y S Nla ¥ Y Yo 2 ]

LE n.° 372 de la Bibliothéque britannique, etlen® 118 du jour-
‘nal de NICHOLSON annoncent « une nouvelle théorie de la rotation
» diurne de la terre , démontrée d’aprés les principes mathématiques,
» et fondée sur les propriétés dela cycloide et de I'épicycloide ; avee
» uneapplication de cette théorie aux phénoménes des vents, des marées
» et des concrétions pierreuses et métalliques qui tombent des eieux
» sur la terre. » '
La théorie dont il s’agit se trouve amplement développée dans un
grand ouvrage publié¢ & Richmond , en Virginie, par le docteur ¥Woon;
mais, les libraires de ce pays-la mayant pas de communications bien
regulieres avec les notres , on ne connait guére cet ouvrage en France
que par l'extrait qu’en ont donné les auteurs de la Bibliothéque bri-
tannigue; extrait qui, bien que peu étendu, renferme heureusement tout
ce qu’il faut pour eclairer Vopinion des physiciens géométres. Nous
pouvons , en effet, mous passer des raisonnemens du decteur 'Wood,
pcurvu que nous ayoms une idée bien nette des principes sur lesquels
il les établit. Ce sont ces principes , tels du moins que ta Bibliothé-
que britannigue neus les donne, que je me propose de soumettre ici

dom, 1I, 14
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3 une analise rigourcuse. 1l est d’autant plus nécessaire de les bien
discuter que les conséqaences en sont tout-a-fait alarmantes, et ne ten~
dent & rien moins qu'ad renverser entiérement le magnifique édifice de
la Mécanique céleste,

Le premier principe posé par le docteur Wood est que, lorsqu’un
cercle roule sur une ligne droite ou courbe, la partie supérieure de ce
cercle est animée d’une vitesse plus grande que celle de sa partie
inférisure, .

Le second est que, la vitesse variant dans les difiérens points de
la méme circonférence , il est absolument nécessaire que la force cen-
trifuge y varie aussi. Le docteur 'VVood regarde ce second principe
comme une congquence mathématigac et rigoureuse du premier. Exa-

minons, avec guelque détail, jusqu’a quel point et dans quel sens son
opinion peut étre admise.

§. 1.

'"QUESTION. Lorsque la roue d’un char, ou tout autre cercle solide,

roule sur une ligne droite , la partie supéricure de la circonférence
a-t-elle plus de vitesse gue r'en a sa partic inférieure ?

1. Cettc question qui fut , dit-on,le sujet d’un pari considérable ,entre
quelques savans Anglo—-Américains, n’est pas bien difficile a résoudre.
On congoit, en effet, qu'au point le plus élevé de laroue ,le mou-
vement de rotation ct le mouvement de translation s’exécutent dans le
méme sens, tandis quan point le plus bas, qui estaussi le pointtangent,
ils ont lieu en sens contraire. La vitesse absolue da pointle plus élevé est
donc la sommie deos vitesses de rotation et de translation, tandis que
la vitesse absolue du point le plus bas en estla différence: ces deux
vitesses sont done essentiellement inégales. La premitre peut méme
¢tre infiniment plus grande que la seconde ; et c’est ce qui arrive ,
lorsque la vitesse de translation est égale & la vitesse de rotation; car
alors la vitesse absolue du point le plus bas est sensiblement nulle,

tandis que celle du point le plus haut est double de celle du centre.
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§. 2.

Généralisation de la question précédente.

2. Ces expressions : partie supéricure, partie inférieure , point le
le plus haut , point le plus bas, ont quelque chose d’équivoque et
peuvent induire en erreur, sur-tout lorsqu’on en fait usage en astro-
nomie et qu'on dit; avec le docteur VWood , quun méme point de
la terre est plus haut, quand on y compte midi, qu’il ne lest quand
on y compte minuit.

D’un autre coté, la roue qui roule sur une droite et qui applique
successivement chacun de ses points sur cette droite , de maniere
que la longueur parcourue, pendant le temps que dure une révolution
entiére , soit exactement égale & la circonférence de la roue, ne nous
présente qu’un cas trés-particulier de la génération des cycloides.

II importe donc de se faire un langage plus géométrique, et de
considérer la question sous un point de vue plus général et plus simple
4 la fois , en concevant toutes les cycloides , tant communes qu’allongées
et raccourcies, engendrées par un point pris sur la circonférence d’un
cercle qui tourne autour de son centre, tandis que ce centre est lui-
méme emporté, d'un mouvement uniforme, le long d’une droite située
dans le plan du cercle tournant.

3. Soient AB, DD/ ( fig. 1) deux diamétres d’un méme ccrcle se cou-
pant a angles droits. Soient EE/, F'F/ deux droites qui touchent le cercle
aux points A, B, et qui parconséquent sont parall¢les 'une a l'autre et
au diameétre DD’ Que le cercle tourne uniformément autour de son
cenire, tandis que ce centre lui-méme se meut uniformément le long
de D’D. Chaque point S de la circonférence du cercle décrira une
cycloide , laquelle sera commune, accourcie ou allongée , suivant que
Pespace parcouru par le centre du cercle , pendant une révolution,
sera égal & sa circonférence, moindre que cette circonférence ou plus
grand qu’elle.

4. Dans cette hypotheése , les droites EE/, FF/ paraissent étre sem-
blablement placées relativement au cercle tournant; et, si pour dyiter
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toute difficulté , on suppose le plan de ce cercle horizontal, il n’existera
absolument aucuae raison , soit physique soit géométrique, de regarder
Iune deces deux lignes comme supcrieure et l'autre comme infé-
ricure ; mais, dés qu'on aura determiné le sens de la rotation du cercle,
et le sens de la translation de son centre, on rcconnaitra sans peine
que le mouvement du point tangent a I'une des deux droites dont il
s'agit , cst trés—différent du mouvement du poini tangent a lautre.
Concevons , par exempie, que le centre se meuve dans le sens CD,
et que le cercle tourne dans le sens AD; le point A, par le seul
elffet de son mouvement de rotation , doit décrire, au premier instant
une petite droite suivant AE, et, par le seul effet de son mouvement
de translation, une autre petite droite , dans le méme sens. Il est donc
évident que le point A , par Deffet simultané de ces deux mouve-
mens , doit décrire suivant AE, au premier instant ol il se meut, un
espace dgal 4 la somme des espaces que ces deux mouvemens lui fe-
raicnt séparément parcourir.

Le point B, au contraire, est sollicité par la rotation dans le sens
BI7 et par la translation dans le sens BF , directement opposé. La
vitesse réelle de ce point B, en vertu des deux mouvemens dont il est
animé, n’est donc que la.différence des vitesses que chacun de ces
mouvemens tend & lui imprimer.

5. On voit donc clairement que , si un cercle tourne sur son centre,
et se mecut en méme temps d’un mouvement rectiligne et uniforme ,
entre deux paralleles qu’il touche continuellement , les vitesses absolues
des deux points tangens sont' trés inégales : I'un se mouvant avec la
somme et 'autre avec la différence des vitesses de rotation et de trans-
lation. 1l a plu au docteur ‘Wood dappeler demi-circonférence su-
périeure , celle qui contient le point tangent qui a la plus grande vitesse,
et demi-circonférence infeérieure, celle qui contient le point tangent
qui a la moindre vitesse. Ainsi, dans notre hypothése et dans son lan~
gage , DAD/ est la demi-conférence supérieure, et DBD/ est Iinfé-
rieure ; mais si, le cercle continuant A tourner dans le méme sens , son
centre , au licu daller de C vers D, allait dans le sens CD/, la demi-
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circonférence DAD/ devrait étre regardée comme inférieure , et la demi-
circonférence DBD/ comme supéricure. Ceci suffira, sans doute, pour
prévenir toute équivoque a cet égard.

§. 3.
Recherche de la vitesse absolue dans la cycloide.

6. Quoi qu’il en soit du langage adopté par le docteur VWood, sa
premiére proposition n’en est pas moins certaine , et, le point A se mouvant
plus vite que le point B, nous sommes en droit d’affirmer que les diffé-
rens points d’une méme circonférence roulant sur une droite , ne sont
pas tous animés d’une méme vitesse absolue. Toute courbe d’ailleurs
pouvant étre regardée comme formée d’une infinité de petites droites,
et tout mouvementcomme une suite de petits mouvemens uniformes,
la méme proposition s’éiend généralement a toute circonférence de cercle
roulant d’'un mouvement quelconque sur une courbe quelconque.

7 Mais il ne suffit pas de savoir que les différens points de la cir-
conférence sont animés de vitesses inégales, il faut encore étre en état
de comparer la vitesse absolue d’un point avec celle d’un autre point quel-
conque , prissur la méme circonférence. VVood, en s’'occupant de cette
recherche , ne parait pas avoir embrassé la question dans toute sa géné-
ralité, si du moins nous jugeons de son travail par l'extrait qu'en a
donné la Bibliothéque britannique , oi l'on ne trouve d’ailleurs qu’une
formule algébrique, sans aucune trace de l'analise que I'auteur a pu
suivre pour y parvenir. Il ne sera donc pas inutile de donner ici une
solution directe et complette de ce probléme intéressant,

8. Proposons-nous donc de trouver, dans 'hypothése d’un cercle
tournant uniformément sur son centre , avec unec vitesse donnée ,
pendant que ce centre se meut d'un mouvement rectiligne ct uni-
forme avec une vitesse aussi donnce ; propesors-nous , dis-je ,
de déterminer la vitesse d’'un point quelconque de la circonférence,
laquelle est aussi la vitesse , au point correspondant de la cycloide
décrite. Soit S ce point, et soit sa position déterminée par le nombre
de degrés de 'arc AS : le point A, que nous appellerons aussi l'ori-
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giue , étant supposé celni des deux points tangens dont le mouvement
de rotation est dirigé dans le sens du mouvement de translation.

Menons la tangente ST, et concevons qu’en vertu du mouvement
de rotation, si lui seul avait lieu, le point S dat parcourir, pendant
Pélément do temps , I'arc élémentaire SM, se confondant avec le prolon-
gemeat de la tangente; et que le méme point S, soumis au senl mou-
vement de translation , dut, dans le méme temps, parcourir la petite
droite SN , parallele & BF. Soient m et 7 les quotiens respectifs de SH
et SN par I'clé¢ment du temps ; 7z et 2 seront ainsi les vitesses de rotation
et de translation.

Achevons le parallélogramme SMNP; sa dianogale SP sera I'espace
parcouru par le point S, pendant ’élément du temps, en vertu des
mouvemens combinés de rotation et de translatien; soit p le quotient
de la division de SP par I'élément du temps ; p sera conséquemment la
vitesse absolac cherchée.

Soit prolongée NS jusqu’a la rencontre du diamétre AB en R, et
soit mené le rayon CS; nous aurcns MP=8N; de plus, & cause des
angles égaux MSN et ACS, le dernier de ces angles sera supplément
de SMP, en sorte qu’on aura

Cos.SMP=—Co0s.AS ;
or , par un des théorémes fondamentaux de la trigonométrie, le
triangle SMP dorne
—_—1 3  e—3 R — .
SP =oM 4MP —25n.MP.Cos.SMP ;
substituant donc , il viendra ,
Lt — — [ —
SP =SM +SN —+428M.SN.Cos.AS ,
ou enfin, en divisant par le quarré de ’édlément du temps
pr=m>*~+n*+4-2mnCos.AS.

Ainsi la vitesse de translation ou, ce qui revient au méme, la vitesse
du centre est 4 la vitesse absolue d'un point quelconque S de la cir-

conférence , comme 2 est a y/ m ~-n*~-2mn.Cos.AS ; AS étant arc
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compris entre ce point et celui dont la vitesse est la plus grande.

g. Si on suppose successivement que le point S devient chacun

des points A, D, B, I'arc AS deviendra successivement o , AD,

ADB ; son cosinus deviendra donc successivement =1 , 0, eI ;
on aura donc

pour le point A, p=m-+tn ,

pour le point D, p=y m*~n*,

pour le point B , p=m—rn ;
le premier et le dernier de ces résultats sont, comme l'on voit, exac~
tement conformes & ce que nous avions \trouve’ (1et4)

10. Silonobserve que 72 et 2 sonttous deux positifs, et que Cos.AS
est positif ou négatif, suivant que le point S se trouve entre A et D
ou entre D et B, il sera facile d’en conclure que tout point situé entre
lc point A et le diameétre DD/ a plus de vitesse absolue que le point D,
et qu’au contraire tout point situé entre le point B et le méme dia-
meétre a moins de vitesse absolue que le point D; de manitre que la
vitesse absolue croit sans cesse de D en A ou clle atteint son maximum,
tandis qu’au contraire elle décroit sans cesse de D en B o elle atteint
son minimum.

11. Déterminons présentement les composantes de la vitesse absolue
du point S, dans le sens des axes AB, DD/, Si nous abaissons PQ
perpendiculaire sur RS, cette droite PQ exprimera la vitesse dans le
sens AB, tandis que SQ exprimera la vitesse dans le sens CD; or
PQ=PM.Sin.AS=m.5(n.AS et SQ=SN~NQ=nr-+m.Cos.AS.

12. Si le point §, se détachant de la circonférence, se mouvait
uniforme¢ment, dans la direction SP, avec la vitesse absolue que nous
lui avons trouvde, et parvenait, au bout d’un certain temps #,au point S/,

en abaissant de ce poini une perpendiculaire $/1 sur le prolongement
de RS, on aurait.

88 =1y/ m*-n*~+2mn.Cos.AS ,
81 = tn41tm.Cos.AS ,
&1 =1tm.Sin.AS.
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§. 4.

Détermination dela vitesse absolue dans les hélices. Relation curieuse
entre les hélices et les cycloides.

13. Si, tandis que le cercle tourne uniformément autour de son
centre, ce centre, au lieu de parcourir une droite située dans le plan
du cercle, se meut uniformément sur une droite dirigée d’'une ma-
nidre quelconque dans l'espace, en sorte que cependant le plan du
cercle reste constamment parallele & un plan invariable ; chaque point
de la circonférence décrira une sorte d’hélice.

14. Concevons d’abord que la droite directrice du centre soit per-
pendiculaire au plan du cercle générateur; la courbe engendrée par
un point quelconque de la circonférence sera I’hélice droite ou vulgaire,
celle dont il s’agit dans la statique élémentaire, lorsqu’on y traite de
Véquilibre de la vis.

Soit toujours 7 la vitesse de rotation ; soit ¢ la vitesse de trans—
lation, perpendiculaire au plan du cercle générateur, il est zisé de voir,
sans recourir a une nouvelle figure, que Ia vitesse absolue d’un point

quelconque de la circonférence génératrice cst /m>—-¢*. Cette vitesse
absolue est alors évidlemment la méme pour tous les points de la cir-
conférence.

15. Concevons, en second lieu, que la droite directrice du centre
soit oblique au plan du cercle générateur, il en résultera une hélice
oblique qui, bien gu'clle 2it lieu dans la nature, n’a été encore,
jusqu’ici , d’aucun wsage dans les arts,

Concevons, par la directrice, un plan perpendiculaire & celui da
cercle générateur et, dans ce cercle, soit mené un diaméeire perpen-
diculaire & I'intersection des deux plans; menons encore deux droites
qui touchent le cercle générateur aux extrémités de ce diamétre, La
projection du cercle , emporté le long de la directrice , en quelque point
gqu'on le suppose arrété, sera constamment un cercle égal au premier
et tangent a ces deux mémes droites.

Décomposons
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Décomposons le mouvement du centre en deux autres , l'un per-
pendiculaire au plan du cercle générateur et I'autre dirigé dans cc plan,
parallelement aux deux tangentes. Chaque point de la circonférence
pourra étre considéré comme étant animé de trois vitesses : savoir 1.°
la vitesse'z de rotation ; 2.° la vitesse 7 de translation paralléle aux
tangentes ; 3.° enfin la vitesse g de translation, perpendiculaire au
plan du cercle.

Soit toujours p la vitesse du point déerivant, dans le plan du cercle
mobile , et soit ¢ sa vitesse absolue dans l'espace; les deux vitesses p
et ¢ étant perpendiculaires l'une a 'autre, et se composant dans la vi-
tesse unique ¢ , on aura y=1/¢*~p*; mais on a (8) p*=m =+n*

~t2mn.Cos.AS , donc
v=\/ m*~-n*~g*+2mn.Cos.AS.

Telle est Fexpression générale de la vitesse absolue dans les hélices.

16. On voit, par ce qui précede, qu’il existe entre les hélices et
les cycloides une relation trés-remarquable ; ou plutét que les cycloides
ne sont que des, hélices d’'une espeéce particuliere. Si la directrice du
centre du cercle générateur est perpendiculaire au plan de ce cercle,
on obtient I'hélice droite, ainsi que nous l'avons déja observé., Silon
donne & la directrice différens degrés d’inclinaison, on obtiendra les
différentes sortes d’hélices obliques. Si enfin, en inclinant de plus en
plus la directrice, on finit par la coucher dans le plan méme du cercle
générateur , les hélices dégénéreront en cycloides.

17. Aussi la formule du n.° 15 embrasse-t-elle tous les cas. Si la
directrice est perpendiculaire au plan du cercle géncrateur, ona n=o

et par conséquent ¢=1{/ m°~¢* , comme nous 'avons trouvé (14) pour
I'hélice droite. Si, au contraire, cette directrice est dansle plan miéme du

cercle générateur, ona g=o ct par conséquent v =/ m:Jn:fomn.Cos.AS,
comme nous l'avons trouvé (8) pour la cycloide.

18. Si la vitesse du centre du cercle générateur sur la directrice rec-
tiligne , au lieu d’¢tre constante, variait d’'une maniére quelconque,
n et ¢ seraient variables, et on déterminerait la vitesse absolue d'un

Tom. II. Id
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point de la circonférence, pour une époque quelconque, en substituant
pour n et ¢, dans la formule générale, les valeurs qui répondraient &
cette époque.

19. Si, au contraire, le mouvement du centre du cercle générateur
était uniforme, mais curviligne , il faudrait considérer ce centre,
chaque instant, comme étant mu sur la tangente & la courbe; ce qui,
déterminant la situation du point A, et conséquemment Ja grandeur
.de l'arc AS, permettrait de faire encore usage de la méme formule.
~ 20. Enfin le mouvement du centre du cercle générateur pourrait
étre cn méme temps varié et curviligne, et il est aisé de voir, d’aprés
ce qui précéde, comment, dans ce cas, on ferait usage de la formule
générale (*).

21. On pourrait aussi supposer que le rayon du cercle générateur
varie , pendant le mouvement, suivant une loi quelconque; ce qui

(*) Soit, en général, un cercle tournant uniformément sur lui-méme; que te
plan de ce cercle demeure constamment paralléle 4 un plan fixe, pendant que son
centre esl emporté d’un mouvement varié d’une maniére quelconque, sur une courbe
4 double courbure, et proposons-nous de déterminer la grandeur et la direction
de la vitesse absolue de 'un quelconque des points de la circonférence, .

Soit r le rayon du cercle générateur et soit m la vitesse de rotation com-
mune & tous les points de sa circonférence. Soit pris un point quelconque de
Pespace pour origine des coordonnées rectangulaires, et soit prise pour axe des z

une perpendiculaire au plan fixe auquel celui du cercle générateur est constamment
paralltle. Enfin soient

x! x
y" V les coordonnées du centre; y les coordonnées du point décrivant.
z/ z

‘Supposons que les équations du mouvement du centre soient

'f(x’»yia Zyt)=o0 , @,y ,z,t)=o0, 'J’(x”_')'li z, =0 ; (A)

en sorte que I'élimination de ¢, entre ces équations , conduise 4 celles de la directrice,
On en tivera, par la différentiation ,

d.’\?’_ d)l__ di'.,__ .
=X g=Y o = ®
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donnerait naissancea des especes de spirales ou volutes planes, ou & double
courbure, ou que la vitesse de rotation est elle-meéme variable, ou
enfin que la direction du plan du cercle générateur varie dans l'espace
suivant une loi connue ; mais toutes ces recherches, dailleurs tres—
curieuses , ne paraissent guére susceptibles d’une utile application.

X, Y, Z, ¢tant, ou du moins pouvant toujours devenir des fonctions de ¢ seule-
ment , el représentant les vitesses du centre parallelement aux axes,

Soit # I'angle variable que forme avec Paxe des x la projection sur le plan des
xy du rayon mené au point décrivant, en sorte qu’on ait

0= Zi4Const C
== onst. ( )

on aura évidemment
x—x/=rCos.6 , y—y'=rSin.t , z=z'; )]

et I'dlimination des variables a/, y’, 2/, ¢, 4, entre les sept équations (A, C, D)
conduira & I'équation de la trajectoire décrite. Si au contraire on n’en élimine que
xf, y', 2!, 8, les trois équations qu'on obtiendra seront celles du mouvement du
point décrivant.

Cela posé , dans les équations (D), tout, excepté r, étant variable et fonction de ¢,
en les différentiant sous ce point de vue, elles deviendront

de dx/ de dy dy’ de dz__dz/ |
ToT e g ETRe T E

é&quations d’ol on tirera, en ayant égard aux équations (B) et observant que I'é-

dé
quation (C) donne r—=m ,

dt
dx dy dz
m —=X—mSin.¢ , -Jt—_—:Y—l—mCos.a » T= Z.

Désignant donc par ¢ la vilesse absolue du point décrivant, il viendra

=V G s

c’est-3-dire ,

;’:—_\/m2+X2+Y2+Zl+2m (¥ Cos.8—XSin.0).

Quant aux équations de la direction de cette vitesse, et conséquemment celle de
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§. 5.
QUESTION. La vitesse absolue étant variable , la force centrifuge le
sera-t-clle aussi ?

22. Aprés avoir suffisamment éclairci tout ce qui concernc la varia-
tion de la vitesse absolue, il nous reste

a examiner le second principe
posé par le docteur VVood , savoir : que,

la vitesse absolue variant

la tangente & la trajectoire, en désignant maintenant par a/, 37, z’, non pas les

coordonnées du centre,, mais celles du point de contact, elles seront

K==

X——r_;‘Sin.ﬂ Y-}-mCos.4 ().

(z2—2) , y—y'= 7

L’axe des x , et conséquemment angle ¢, étanit arbitraire par rapport 4 la directrice ;
_ Bubstituons a cet angle un autre angle » , dépendant de la nature de cette directrice

et de la maniére dont elle est parcourue par le centre du cercle générateur.
Prenons , par exemple,, pour cet angle @, l'angle que forme la projection, sur le
plan des xy, du rayon mené au point décrivant , avec la normale 2 la projection de
la directrice sur le méme plan. Les équations de ces deux droites étant

Sin.s dx’ X
IV o) YTYE T == g @
Dn aura -
X.Sin.o
1 ¥ Cosuo Y.Cos.6—X.Sin. 0
Cos.o = T S0 — \/m 5
V(x—i— ?}(I_‘_ Cosﬁ.e) :

d'olt

Y.Cos.—X,Sin.b=Cos.s.\/ X>-4-Y2=n,Cos,s ,

en désignant par 7 la vitesse estimée dans le sens du plan du cercle générateur, Substi-
tuant donc, dans la valeur de ¢ , elle deviendra

y= \/ mr~-n2~4-Z2-4-2mn.Cos,w }

formule générale , de laquelle on déduira facilement tous les cas particuliers discutés
dans le texte.

¢ Note des éditeurs, )
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chaque point de la circonférence , la force centrifuge varie aussi. Or,
la premiére chose & faire pour se mettre en état de décider cette ques-
tion , c’est de bien déterminer le sens qu’on attache au mot force
centrifuge

Un grand nombre de physiciens I'emploient comme synonyme de
forcetangentielle ou projectile; voyez entre autres la Physique méchanique
de FISCHER, sec. 11, chap. XIII, §. VI, pag. 49. Mais HUYGHENS,
NEwTON, JEAN BERNOULLI, et une foule d’aatres illusties géo-
métres entendent , par force centrifuge, la force avec laquelle un point
contraint de décrire une courbe , tend A

s’en écarter a chaque instant
suivant la direction de la normale.

Ici méme , c’est-a-dire, dans le cas d’'un cercle tournant autour de
son centre , pendant que ce centre est emporté dans ’espace d’une ma-
ni¢re quelconque, on peut établir une distinction qui donne lieu. &
considérer quatre sortes de forces centrifuges: on peut, en effet, con-
sidérer la force centrifuge ou par rapport a la trajectoire réellement
décrite dans lespace par un point de la circonférence , ou considérer
cette force centrifuge par rapport A la circonférence; et, dans chaque
cas, cetteméme force centrifuge peut étre envisagée sous les deux points
de vue que nous venons d’expliquer.

On aura donc ainsi a considérer 1.° la force suivant une dircction
tangente a la trajectoire, laquelle sera variable comme la vitesse absclue;
2.° la force suivant la direction tangente a la circonférence sur laquelle
se meut le point décrivant ; 3.° la force normale & la trajectoire ; 4.°
enlin la force normale & la circonférence, ou dirigée suivant le pro-
longement da rayon mené au pomt décrivant.

Or, de ces quatre sortes de forces centrifuges, dont lcs trois pre-
miéres varient de grandeur suivant le point que 'on considére, il n’y
aurait proprement que la derniére qui, si elle variait aussi, pourrait
détruire 'équilibre entre les parties d’un cercle tournant sur son centre.
1l est clair, en effet, que , si les points de la circonférence sont éga-
lement poussés vers le centre par la force d’attraction qu’on suppose
la méme pour tous ces points, et inégalement sollicités dans le sens
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opposé par la force centrifuge , qu'on suppose varier d’un point 4
Pautre, 1'équilibre sera nécessairement détruit, et sa destruction exer-
cera vraisemblablement une influence sensible sur les phénomenes des
vents et des mardes; mais si, au contraire , tous les points de la cir=
conference sont, en méme temps, également attirés et également re-
poussés , I’équilibre devra nécessairement étre maintenu.

Prouvons donc que, dans le cas de la cycloide , qui parait étre
celui duquel Wood s’est principalement occupé , le point A et un
autre point quelconque S, s’ils cessaient d’étre retenus sur la cir-
conférence , en conservant d’ailleurs leurs vitesses acquises , s’éloigne-
raient également du centre dans des temps égaux.

23. Concevons , pour cela, que le point A qui, comme nous l'a-
vons vu, est animé de la vitesse absolue m-n, suivant AE, par=
vienne en A’ au bout du temps 7z, nous aurons ainsi AA/=rtm-}-tn.
Or, dans le méme temps que le point A parcourt AA/, le centre C
parcourt aussi une certaine longueur CC/, laquelle est nécessairement
égale & n ; si donc nous abaissons sur AA/ la perpendiculaire C/H,
coupant en K le prolongement de SN, nous aurons AH=1m.

"Nommant donc r le rayon CA = C/H, nous aurons C’A/=
V/ r*=-t2m*. ‘

D’un autre c6té le point S, devenu libre, sera mu dans la direc-
tion SP avec unevitesse y/ m*4-n*~+-2mnCos.AS et parviendra, au bout
du temps 7, en un point §/ du prolongement de cette dreite telle-
ment situé qu’en abaissant de ce point, sur le prolongement de SN
la perpendiculaire S/I coupant en L. le prolongement de CC/, on
aura (12)

S I=#n41m.Cos.AS ,
&M =1tm.Sin.AS.
d’ott
RI=RS+SI=rSin. AS--tn-+tmCos.AS ;
donc

CL=KI=RI-RK=RI—CC’=rS8in.AS-}+#mCos.AS ;
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on a de plus, & cause de CR=r.Cos.AS ,

SL=51-L1=Y1—CR=#m.Sin,AS—r.Cos.AS ;

on aura donc

C/S'_=]/Exi'+’s'7i’ =/ (7S AS—+1m.Cos. AS - Sin. AS—rCos. AS) ,
ou, en développant et réduisant ,
CS/= vrdem=CA
ainsi, au bout du temps #, le point A et le point quelconque S,
devenus libres, pendant que le cercle continuera A se mouvoir, se

seront également écartés de son centre ; d'out I'on voit que la force

centrifuge , proprement dite , la seule qui puisse troubler 1’équilibre,
est la méme pour tous les points de la circonférence (*).

(*) En conservant les notations et conventions de la note précédente, le centre du
cercle est sollicité , & I'époque £, parallélement aux axes par des forces qui sont res-
pectivement

d2r  dX d2y dY d2z/ dZ

T e @ To& o
et le point décrivant est sollicité , au méme instant, parallelement aux mémes axes,
par des forces qui sont

dze dX déC p dx __dY mdAS'no dzz_dZ .
A e e T Q@ @™ Tmooa?

mais les axes faisant, avec le rayon mené au point décrivant), des angles dont les cosinus
sonl respectivement ,
Cos.0 Sin.¢ o ;

Al N
‘Tes forces de la premitre sorte, estimées suivant ce rayon, seront

dx dY
_ -&Cos.é, -d—t-Sin.a y 03
et les forces de la seconde sorte, estimées suivant ce méme rayon, seront
dX d¢ dY de
g :i-t-_m:i-t Cos.f gCos.a . { a:—-m -d—tSin.o ESin.o 5 0.

Ainsi le rayon mené au point décrivant sera sollicité, suivant sa direction, savoir:
A P'une de ses extrémités, par une force unique égale &
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On voit donc que lo systtme da docteur VWood n’est absolument
pas soutenable. Son premier principe est vrai; quand au second, il
est vrai dans un sens et faux dans un autre, et c’est dans ce der—
nier sens qu’il en a préténdu pouvoir faire I'application a la rotation
diurne de la planéte que nous habitons.

.

f

QUESTIONS RESOLUES.

Solution du premier des deux problémes proposes &
la page 32 de ce volume ;

Par M. LuviLiEr , professeur de mathématiques & V'académie
impériale de Genéve.

[a e Vi ¥ W Vo Vo Vo Vo Ve Vo V)

LEMJWE I. Partager deux droites données de grandeur, l'une et
Pautre en deux parties, de manitre que le rectangle d’une partie de
P'une de ces droites par une partie de I'autre soit donné de grandeur,

et que le rectangle des deux autres parties soit aussi donné de gran-
deur ?

dX dY
—d-?Cos.é-}— T Sin.f,
et, & son autre extrémité, par une force unique égalc &
ax dy d¢e  dX dy m2
5 Cos. i+~ 7 Sin, §=— 5 = - Cos.é-4- Ty Sin.0— —>

la force centrifuge, proprement dite, évidemment égale & la différence de ces deux-

! - m2 0 1\ 3 A .

14, sera donc simplement — , c’est-a-dire, exactement la méme que si le centre
r

dtait fixe, et tout & fait indépendante dela situation du point dlcrivant sur la circonférence.
( Note des éditeurs.)
Soient
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Soient AB, A/B/ ( fig. 2 ) deux droites données de grandeur; on
demande de couper ces droites 'une et lautre en deux parties aux
points X et X/, de maniére que les rectangles AX <X A’X/ et BX X<B’X/
soient I'un et lautre donnés de grandeur ?
Soient

AXXA’X/'=ABXA’a et BXXDB’X’=ABxB/%* ,
on aura
AX:AB=A’a’:A’X’ et BX:AB=DB/:BX’ ;
donc
"BX: AB=¢/X/: AKX/ et AX:AB=¢/X’:B’X’ ;
donc aussi \ ‘ ‘
/X A’X/=B/b : B’ X! et b’X/:B'X/'=Aa’: A’X/

ce qui donne

/X! X}V X'=Ala/ X B

-On connait donc la somme @/4’ des deux distances /X’ , #X/ et
le rectangle de ces mémes distances ; ainsi elles sont données de gran-
deur et conséquemment le point X/ est donné de position.

Remargue 1. Pour fixer Iattention sur un cas déterminé, j’ai supposé
que les positions des points donnés et des points cherchés sont respecti-
vement AXB, A’X/B/, et que les droites A’a’/, B/}’ , sont données de
grandeur de manitre & répondre & cette supposition. Si l'on voulait faire
I'énumération de toutes les positions dont ecs points sont susceptibles,
il parait d’abord qu'il y aurait neuf cas a examiner ; mais quelques-uns
de ces cas rentreraient les uns dans les autres; ils dépendraient de la
grandeur des droites données A’a’ ,B/b/ et des directions suivant les—
quelles on les porterait depuis les points A’ et B/. La géométrie et
Valgebre indiguant la hiaison quiregne entre ces différens cas, par les
ehangemens de directions et de signes des lignes obtenues, j’ai cru
devoir me borner a l'exposition sommaire de I'un de ces cas.

Remarqgue 11, On obtient , comme il suit, la condition de possibilité
du probléme proposé :

Tom. II, 16
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a/b/2§4A/a/><B/l/ R

[A/B/-—(A/a/+B/5/)]=§4A/a/><BW ,
NB—(Na+BY) 3 2y Mo/ <BY

A’B’; Alg/ Y2/ Ala! XBO4-BY

\/A/B"—; v Na'+y/ B

LEMME 11. Partager trois droites données de grandeur chacune en
deux parties de maniere que l'on connaisse de grandeur chacun des
rectangles suivans : savoir, le rectangle d’une partie de la premiere
par une partie de la seconde ; le rectangle de lautre partie de la se-
conde par une partic de la troisi¢tme ; enfin le rectangle de autre partie
de la troisitme par 'autre partie de la premiére

Je vais montrer comment le probléeme proposé, sur trois droites,
peut étre ramené au probléme correspondant sur deux droites seulement.

Soient AB, A’B/, A”B/”/ ( fig.3 ), trois droites données de grandeur,
3 couper en X, X/, X/, de manitre que I'on connaisse de grandeur
chacun des rectangles AXXA/X/, B/X/ X A”X/ , B/X”xBX ?

Soient

AXXAX/'=AB/'xAa et BX/<A/X/'=AB'<XAal’
on aura
AX:Aag=AB/:A’X/ et AB:BX/=A"X":AN'g! |
donc .
AX:aX=A/B:B'X/ et AB:A'X/'=A"X/:0/X" ,
et par conséquent
AX:aX=A"X/":AVa" et AX:Aa=AvX!:q/X" ,

d’ou résulte

aX:Aa=A'ag/:a"X" ,
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ou aXXa"X"=Aag><Aq",

Donc on connait les droites ¢B, a”B/, ct en outre les rectangles
aXxa"X" , BXXB/X/ sont donnés de grandeur ; done le probléme
sur trois droites données de grandeur et sur trois rectangles formés
par leurs parties, d'une manitre conforme a I’énoncé , est ramené au
probléme correspondant sur deux droites seulement.

Remarqgue. On ramenera précisément de la méme maniére le probleme
proposé¢ sur quatre droites , au probléme correspondant sur trois droites;
et généralement, le probléme étant proposé sur un certain nombre de
droites , on le ramenera au probléme correspondant sur un nombre de
droites inférieur d’une wunité.

Probléme. A un triangle donné, inscrire un triangle dont les cétés
passent par des points donnés ?

Soient A, A/, A, les sommets d’un triangle donmé ; soient P,
P/, P7, trois points donnés sur le plan de cc triangle. On demande
d’inscrire au triangle donné, wun triangle XX/X7, dont les cotés XX/,
X/X", X”X, passent respectivement par les points P, P, P/ ?

P I sA A/, A A7 P o ,P b7,
Par { P/ \ soient mendes aux cdtés { A/ A/, A/ A ) les paralléles (P’ a”/, P/ & ,
P/ AVA ,AVA/ Pla ,PUY .

X XX, aXUXIX , a/XI}XV,

Les rectangles { aA/ <A 5 a’Al XbA!, /A XA

sont égaux deux & deux ; ainsi seux de la premiére ligne sont donnés
de grandeur; et, comme on connait en oatre les distances a6, a’4 , a’/b" ,
le probléme se trouve ramené au Zemme précédent.

Bemarque. A Vaide de Pextension dont on a vu toutd I'heure que
ce lermme est susceptible, on résoudra d'une manitre semblable le pro-
bleme général. A un poligone donné , inscrire un poligone de méme
nem , dont les cétés ( ou leurs prolongemens ) passent respectivement
par des points ( en méme nombre ) donués de position ?
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Autre solution du méme probléme ;

Par M. SErvois , professeur de mathématiques aux €coles
d'artillerie de Liaftre.

[ Ula o W, Ul WXy Wl W, ¥

1.° SI Pon construit une suite de poligones de 72 cotés dont les c6tés
ou leurs prolongemens passent respectivement par 72 points donnés et
dont les sommets, excepté le dernier, soient respectivement sur 77—t
droites données , le lieu des derniers sommets de ces polygones sera
en général une courbe du second degré ( Voyez, pour la démonstra-
tion de cette proposition , la Correspondance sur école polytechnique,
tome 1.°*, n.° 3, page 309 ). A quoiil faut ajouter qu'avec la regle
seulement il sera facile de determiner cinq ou un plus grand nombre
de points de la courbe.

2.° Si donc le dernier sommet est assujetti, comme les autres, a
se trouver sur une droite donnéde ou, ce qui revient au méme, s’il
sagit d'inscrire & un polygone donné de m cdtés un polygone d'un
pareil nombre de cdtés , dont les cotés , ou leurs prolongemens , passent
par m points donnés , 'un quelconque des sommets du polygone cher-
ché¢ devrase trouver & l'intersection du coté correspondant du polygone
donné avec une courbc du second degré dont cing points au moins
seront déterminés ; d’ot L'on voit que le probléme ne pourra admettre
que deux solutions aa plus.

3.° On voit, en outre, que larésolution de ce probléme se trouvera
réduite & celle du probleme saivant : cing points étant donnés de
position par rapport & une droite indcfinie , consiruire les inier-
sections de cette droite avec la courbe du second degré passant par
les cing points donnds? Or ce problemeaété résolu ( Yoyez la Corres-
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pondance sur I'école polytechnique, tome 1.2¥, n.® 10, page 435 )3
et il peut Iétre facilement de diverses autres manieres.
4.° Dans des cas particuliers, il peut arriver que, par la nature du
polygone donné et la situation des points donnés, I'un des sommets
du polygone cherché cessant d’étre assujetti & se trouver sur un cété
du premier, ce sommet décrive une ligne droite ; alors le probléme
rentre cn totalit¢ dans le domaine de la géométric de la régle. Ces
cas sont en trés-grand nombre dans le probléme général ; car seulement
le probléme particulier du triangle préscnte celui des trois péles en
ligne droite, celui de deux poles en ligne droite avec un sommet, etec.

e ——

Solution du dernier des deux problémes proposés & la
page 32 de ce volume ;

Par M. LuviLier , professeur de mathématiques & 'académig
impériale de Geneéve.

b Vo Vi Vo Vo Vo W Vi VL, W W, WL V]

P ROBLEME. Déterminer un quadrilatére dont on connait les qua=
tre cOtés et la droite qui joint les milieux de deax cétés opposés ?

Je remarque d’abord que ce probléme donne lieu & un cas indé-
terminé. En effet , lorsque les cotés opposés d'un quadrilatére sont
¢gaux , deux a deux, le quadrilatére est un parallélogramme; la droite
qui joint les milicux de deux cotés opposés est déterminée a étre
égale et parallele & chacun des deux autres c6tés, et le nombre des
quadrilatéres assujettis aux conditions donndes est illimité,

Supposons donc que la double égalité qui rend le probléme indé-
terminé n’ait pas liea.

Soit AA’CC/ ( fig. 5 ) un quadrilatére dont les cotds sont donnés
de grandeur de maniére qu’on n'ait pas, en méme temps, AA/=CC/
et AC= A/C/; que les cotds opposés AC et A’C’/ soient coupés
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en deux parties ‘égales , en B et B/, et quc la droite BB/ soit donnée
de grandeur; cn demande le quadrilatere.

L application des propositions générales de la Polygonométrie m’a
para le moyen le plus convenable pour résoudre le probléme proposé :
savoir, je vais chercher, au moyen de ces propositions , les angles en
Bet en B/ que la droite BB/ fait avec les cotés du quadrilatere dont

elle joint les milieux.

Que dans le quadrilatére ABB/A’ les angles extérieurs soient désignés
par B et par B/; dans le quadrilattre CBB/C/ les angles extérieurs
seront les supplémens des premiers.

Dans le quadrilattre ABB’A’, on a l'équation

AA»=AB*+4-BB/*4-B/A”*+4-2ABXxB B'><Cos.B ,
“+2ABXB/A’x< Cos.(B+DB) ,
—+2BB/><XB/A’< Cos.B'.
Dans le quadrilattre CBB/C/, en remarquant que BC=AB et que
B/C’=A’B/, on a l'équation
CC*=AB*+-BB/*~+B’/A”*—2AB xXB B’ Cos.B ,
~+2AB XB/A’< Cos.(B+4B/) ,
—2BB/ X B/A’ < Cos.B’.

Ajoutant et retranchant successivement la seconde équation & la
premiére , il viendra, en réduisant,
AA?4-CC2=2AB+-2BB+4-2B/A”4-{AB <X B/A/>< Cos.(B+B/).
AA»—CC»=4AB X BB’ X Cos.B~+4BB/><B/A’<Cos.B’.

Ce qui donne
AARLCC = ( AB24-PBB/2--P’A/=
Cos.(B4-B/) =22 CCn (DA PIHTAD

4ABRXB/AY

2

A A/+CC'X AN—CC
AB.Cos.B++A’B/.Cos. B/ = —

a

b/

Par la premiére de ces équations, on connait la somme des angles
q ; 8
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B et B/, par le cosinus de cette somme ; par la seconde qn connait
la somme des produits des cosinus des mémes angles par les droites
donnédes AB et A’B’. Partant, le probléme est ramené 4 cet autre :
trouver deux angles dont on connait la somme , et la somme des
produits de leurs cosinus par des droites données.
Remargue 1. Lorsque AA’=C(C et AB=A’B’ , on a aussi
BB/=AA’=CC’; il vient conséquemment

Cos.(B+B)=—1 ;
donc la somme des angles B et B/ vaut deux droites, et conséquemment

les droites AC et A/C/ cont paralltles entre elles. Alors Cos.B/=
—Cos.B, et la seconde équation deyient

(AB—A/B)Cos B=AA’'—CC/ ;

d'ott Cos.B=3; partant, l'angle B est indéterminé, comme il doit
Vétre en effet.

Remarque 11. Le probléme : couper un angle donné en deux parties
telles que la somme des produits de leurs cosinus par des droites
données soit donnée de grandeur, peut étre résolu de différentes ma-
nitres, soit par l'algébre soit par la gdométrie. I.e procédé suivant,
fondé sur la doctrine des centres des moyennes distances , me parait
T'un des plus élégans.

Soit ACA/ ( fig. 6 ) un angle donné, on demande de le partager
en deux parties ACX; A’CX, par une droite CX, de manitre que
les sommes de leurs cosinus , pour les rayons donnés de grandeur
CA et CA’, soient égales & unc droite donnée de grandeur 2« ?

Soit menée AA’, laquelle soit coupde en deux parties égales, au
point Z ; de cc point, comme centre, et avec un rayon ¢gal a la
moitié « de la droite donnée, soit décrite une circonférence de cercle;
du sommet C soit menée ( s'il est possible ) une tangente a ce cercle,
et du point C soit élevée & cette tangente une perpendiculaire CX ;
cette perpendiculaire sera la droite qui divisera ’angle proposé dans
les parties cherchdées.

Your que le probléme soit possible, le point C ne doit pas étre au
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dedans de la circonférence dont Z est le centre et dont « est le rayon,

z CZ. Or,
CA*+-CA/*=2CZ*=2AZ*=2CZ*+;AA”
= 2CZ CA24-CA72—2CAXCA/.Cos.C .

2

¢’est-3-dire , qu’on doit avoir «

done

. CA2>--CA72-4-2CAXCA’.Cos.C
2CZ2= 2

2

et
CA>4-CA/24-2CAXCA.Cos.C

Cz: 7 5

on doit donc avoir

% < CA>+4-2CA X CA’.Cos.CHCA”.

Dans le cas présent, cette inégalité devient

{“AA*CCE; Aa—ce 'S AB - AB o ABX AR

' AA24 CC2—2(AB24-BB4A'B2)
< JABXAE/ ’
AA"4-CCr2—2 (AB2-}-BB/24.AB’2)y

2

ZABABA+-

= AALCOr
< 2

BB/ :(AA/—CC) ,
by . >
De 12 on tire

BB/?% (AA/4-8C)

—BB~-.

savoir 3 Dans tout quadrilatére , la droite qui joint les milieux de
deux cétés opposés n’est pas plus petite que la demi-différence des

deux aulres cotés , et elle n'est pas plus grande que leur demi-somme.
Remarque
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Remargue I11.1.équation

AB.Cus.B-+A/B/.Cos By = AATHECOX (AA—CCY
BB/ ’

donne lieu 4 la construction suivante :
Des points A et A/ soient abaissées sur BB/ les perpendiculaires
Ab et A’l/ ; on aura

B)=AB.Cos.B , B4/ =A'B/.Cos.B’ ;

done

bi/'= BB/~ AB.Cos.B-H-A/B.Cos. = S HEOX D)
Or, le rapport de AA’ & §4/ est le rapport du sinus total au cosinus
de l'inclinaison du coté BB/ au c6té AA’; donc on connait cette incli-
naison ; et, par la premitre équation, on connait celle des deux cotés
AC et A’C/ 'un a lautre.

Remarque 1V. De la le probléme proposé est ramené au suivant :
soient deux cercles donnés de grandeur et de position , et soit une
droite donnée de position ; mener une droite paralléle a Ja droite donnée
de position,de maniére que sa partie comprise entre les circonférences
des deux cercles soit de grandeur donnée.

En effet, les points B et B/ sont a des circonférences donndes, dont
les centres sont A et A/, et dontles rayons sont AB et A/B/; et la
droite BB/, donnée de grandeur, doit étre inscrite entre les circon-
férences de ees cercles , de maniére qu’elle fasse un angle donné
avec la droite AA/ qui joint leurs centres.

Par le centre A soit menée une droite A, égale & BB/ et é-cant
avec AA’/l'angle donné. Du point « comme centre, avec le rayon AB,
soit décrite une circonférence de cercle qui rencontre ( s’il est possible )
en B/ la circonférence dont A’/ estle centre et A‘B’ le rayon; soit
enfin menée B’B parallele & Aw, et terminée en B a la circonférence
de autre cercle; la droite B/B sera la position de la droite qui joint
les milieux des cotés opposés AC et A/ C/.

Si la circonférence décriie du centre « avec le rayon AB, coupe la
circonférence décrite avec le rayon A’B/ et le centre A/, le probleme

propos¢ a deux solutions,
Tom, II. 17

+BB.
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Si la rencontre de ces circonférences n’a pas licu, le probléme est
impossible.

Si enfin la rencontre se fait par contact, il y a une limite entre
les quantités données.

Pour que le probleme soit possible , on doit avoir les deux conditions

o ABT Alw— = 2 ’ Alwr—(AB-+-A/BN2
I, AB>A,¢ A'B/ A’£<AB+ A/B/ : L4 <( -+ )
ou _ onc — )
2.0 AB2A1“+A/B/ A/“;AB__AIBI A/“z> (AB_.A/B/), :
or, A/t =AA A —2AA/X Ax.Cos. A’Aw

=AA’4-Ar —2BB/ X b
=AA/}BB” —2BB/ <0/

e . ( HAAH-CCHX F(AA—CO)
=AA”4-BW ———zBB/tBB’+ BE

= AA~—BB/—I(AA—CC)
—:(AA”+CC)—BB> ;

on a donc les deux limites

(AB4-A/B) T

*(AA24-CC*)—BB.
(AB—A’B’)Z?

Autre solution. Le probleme proposé peut aussi étre résolu, indépen-
damment des propositions générales de la polygonométrie, commne il suit.
Que les cotés AC, A’C’ se rencontrent ( il y a lieu ) en S,
( fig. 7 ) on aura
CC2=C8*4-C/8*—2C8 < (C/8.C0s.S ,
=(BS—BC)"+-(B’S—bB/C)*—2(BS—BC)(B’S—B/C/).Cos.S ,
=BB/2——2B SxB C -4-2B SxB'C.Cos S4-BC24~-B/C2=—2BCxB'C/.Cos.S,
—2B/S X B/C/4-2B/S < BC.Cos.S.
On trouvera par un calcul & peu prés semblable,
AA=BB/*-2BSXBC—2BSXB/C’.Cos5.S4-BC4-B/C/2—2BCKB/C. Cos.S.
“4-2B/S <X B/C/—2B/S <X BC.Cos.S.
dela AA~ +CC”—2BB/’+°BC2+ B’C/“——qBCXB’U Cos S,
AA—CC?=4BS < BC—/BS xPB(.Cos.S ,
—+4B'S X< B/C/—4B’S xB C.CosS.
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La premiére des ces équations donne
2(BB/>~4-BC2-B/C’2)— (A A" /2
Cos.S—= +BC (AARCC)
ACxA/C/ ?

et de la seconde on tire
4BS(BC—B/C.C05.8)44B/S(B/C'—BC.Cos.8)==AA—CC,

Partant, dans le triangle BSB’, on connait la base BB/, I'angle S
au sommet, et la somme AA”?—CC’* des rectangles des deux cotds
BS et B’S’ par les quantités données BC—B/C/.C0s.S et B¢/
—BC.C0s.S 5 lesquelles quantités donnédes reviennent respectivement a

AN CCr—2BBd2BC2—2B/C2 AA”-CC o BB2—nBCofea B2

4BG ’ 4B0C/

Ainsi, le probléme proposé , sur le quadrilatére, est ramend an

probléme suivant, sur un triangle : on demande un triangle BSB/
dont on connait la base BB/, langle au sommet S, et la somme
des rectangles des cotés BS et B/’S par des droites données ?

Solution analitique dw méme probléme ;

Par M. Rocuart, professeur de mathématiques et de
navigation a St-Brieux.

[a S Vo Vo Vig Vo Vla Vo VI Vo Vo V)

Sorr 1o quadrilatire BCDE ( fig. 8), dont les milieux des cotds
BC et DE sont respectivement A et K, et dans lequel on connait
AK=a, BC=4, DE=¢, CE=d, BD=¢. Soient pris AK pour axe
des x, et le point A pour origine ; et soient les coordonnées des sommets
ainsi qu’il suit :

~+m , —n a—p , a+tp ,
pour B g pour C pour D pour E
+n —n +q —q 3
les coordonnées des milieux respectifs G, H de BD, CE seront
((a—p+m) , : (¢tp—m) ,
pour G pour H

1(g4n) ; —i{g=+n) ;
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soit fait enfin GH=Z; on aura les dquations de condition
Kmkm)=0 , (a—p—mp-tig—n)y=c ,
“Wptg)=c , (atptmy+g—ny=d,

En traitant p+m et g—n comme inconnues dans celles de la seconde

(p—my—(g+ny =2

colonne , et quarrant il viendra

. d2e—e2 )2 . 802(d2+£2-——2a‘)—(d2-—82)2 )
prmy={ =28, gny= - ;

ajoutant ces équations & I'dquation en Z, il viendra, en doublant et

retranchant les équations de la premiere colonne,
22 4-d*e* = 2a*-b*~-c*
au moyen de quoi Z peut étre regardé comme connu.

Cela posé , les coordonnées des points M et P, milieux 1espectxfs
des diagonales' BE et CD, sont

Hatp+tm) , 1 (@—p—m) ,

pour M pour
—i(g=n) 3 2(g—n) 3
d’olt il suit que la droite PM, passant par V'intersection O des droites

AK ct GH, aura pour équation
1 g—n
y+ig—m=—12 o (arbprtm) } 5

ainsi AK forme avec PM un angle dont la tangente tabulaire est

p—n ___ \/802(d“-l-e2-—2(12)---(d2—e2)2 .
g+m - d2—e> ?
on trouvera de méme que GH forme avec la méme droite un angle
dont la tangente cst

— \/?5:2(b2+z:2—252)—(172—02)2 .

br—c2 ?

Vangle formé par les droites AK et GH; angle qui estla somme ou
la différence de ces deux-la, pourra donc étre déterminé ; et, comme
les grandeurs de ces droites sont connues , et que d’ailleurs leur inter-

section O est leur milieu commun, on aura tout ce qui sera néces~
saire pour construire le quadrilatére demandé.
Cette analise s'applique également aux trois sortes de quadrilatéres, et
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les limites du probléme sont données par celles de laréalitd du radical (*).

Construction gcéomelrique du méme probléme ;

Par M. PiLATTE, professeur de mathématiques spéciales
au lycée d'Angers.

[a Vi Vi S, WL W, V1 W 41

_P ROBLEME. Construire un quadrilatére dans lequel on connait les
quatre cotés et la droite quijoint les milieux de deux cdiés opposés ?

Solution. Supposons que ce quadrilatére soit déja construit et que ce
soit le quadrilatere ABCD ( tig. 9 ) dans lequel, outre les quatre cotés,
on connait la droite EF qui joint les milieux E, F des cotés opposés
AB, CD. Soient I, Kles milicux des deux autres c6tésBC, AD; soient
menées les diagonales AC, BD, dont les milieux soient H, G; en
exécutant les constructions indiquées dans la figure, on aura (**)
EH=GF=:AD, HF=EG=:BC, KH=GI=:AB, KG=HI=:DC;
le parallélogramme EHFG, dans lequel on connait, outre les cotés,
la diagonale EF, peut donc étre construit ; sa construction fera con-
naitre sa diagonale HG , laquelle est aussi diagonale du parallélogramme
HKGI dont on connait , en outre, les c6tés ; ce dernier parallélo-
gramme peut donc aussi étre construit, et conséquemment les points
I et K peuvent étre déterminés ; menant donc par E, F, 1, K, des
droites respectivement paralltles a GI, GK , HF , GF, ces droites, par
leur rencontre, formeront le quadrilatére demandé.

Le parallélogramme HKGI, tournant autour de celle HG de ses

(*) On parvient encore assez facilement au but, en prenant I'un des c6tés opposés
du quadrilatere dont la distance des milieux est donnée pour axe des & ; son milieu pour
origine ; et en cherchant & déterminer la situation du milien du cdté opposé, Ce milieu
est donné par lintersection d'un cercle ayant son centre & lorigine avec une para-
bole ayant pour axe I'axe des x; ce qui conduit, par Pélimination, & une équation
du quatri¢me degré se résolvant a la maniére du second.

(**) Voyeaz les pag. 313 et 353 du tom. 1.°T des Annales:

( Notes des éditeurs. )
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deux diogonales qui lui est commune avec le parallélogramme EHFG,
peut prendre, par rapport 4 ce dernier, la sitaation HK/GI/; et, si
Von constrait sur celui-ci, comme sur le premier , on formera un
nouveau quadrilatére A’B/C/D/ qui, sans étre égal au premier, rem-
piira comme lui les conditions du probleme.

Quant & limpossibilité de cc probléeme , clle se manifestera par
celle de la construction de I'un ou de Pautre des parallélogrammes

EHFG et HKGI.

Deémonstrations du héoréme é€noncé & la page 32 de
ce volume.

Par MM. Ravmoxp, Vecten , LuuiLier , ExconTRE ,
Lsrousse , Ferrior, RocuaT, FauQuier et Ajasson,

) o Ul Vo Vo W, VL, Wi, W, W, W, V. VI

QUELQUES~UNS des géometres qui se sont occupés de ce théoréme,
en ont donné, a la fois, des démonstrations analitiques et des démons~
trations synthétiques ; d’autres se sont bornés & une démonstration de
T'une ou de l'autre sorte ; enfin deux en ont donné des démonstrations
mixtes, ¢’est-d-dire , partie analitique et partie synthctique.

M. Raymond, principal du collége de Chambery , a donné deux
démonstrations purement analitiques ; et MM. Fecten , professeur de
mathématiques spéciales au lycée de Nismes, Roclat, professeur de
navigation & St.-Bricux, et Ajasson , éleve du lycée d’Angers, en ont
chacun donné une. Ces diverses démonstrations reviennent & peu prés
a ce qui suit,

L’équation d’une hyperbole équilatérale, rapportée & ses asymptotes
prises pour axes, est de la forme

ay=4A4 .
et, Si « ct g sont les coordonnées de 1'une des extrémités d'un diamétre ;
—a et —p seront les coordonnées de son autre exir¢mité ; en sorte
que, si par un point dont les coordonnédes sont & et y, on mene des
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droites & ces deux-li, en désignant par 72 et m’ les tangentes tabu-
laires des angles que feront ces droites , d’un méme c6té , avec I'asymp-
tote prise pour axe des &, on aura

m="T—F —y+e
T x— x+u

Mais comme on a

ay=A*, ap=d*,

on a aussi

N uﬁ
zy=ap dou Y=

donc

=-—£— > m’=+-§* 3
et par conséquent

m! =w—rn
les angles formés d’un méme c6té avec I'asymptote par les deux droites,

sont donc supplémens l*'un de laatre ; ces deux angles, pris de diff¢-
rens cotés, sont donc egaux.

Ainsi , Les droites qui vont d’'un méme point quelconque d'une
hyperbole équilatérale aux deux exirémités d'un méme diamétre trans-
verse , sont également inclinées @ lune quelconque des asymptotes.

Passons actuellement aux démonstrations synthétiques. M. Baymond
a déduit la sienne de ces deux propositions connues.

1.° Dans Vellipse et dans I'hyperbole, les deux cordes supplémen-
taires qui répondent a2 un méme diamétre, indiquent, par leur direc-
tion , un systtme de diametres conjugués.

2.° Dans toute hyperbole, le parallélogramme construit sur deux diame-
tres conjugués quelconques, ases diagonales dirigées suivantles asymptotes.

Il est évident en effet, par la premitre proposition, que les droites
qui vont d’un point quelconque d’une hyperbole aux deux extrémitéds
d’un méme diamétre transverse, sont paralléles & deux autres diamétres
conjuguds I'un a l'autre; ces droites sont donc, en vertu de la seconde
proposition, paralléles aux droites qui joignent les milieux des coté
opposés d’un certain parallélogramme dont les diagonales se confondent
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avec les asymptotes de L'hypeibole; si donc eette hyperbole est équi-
latérale, ce parallélogramme ayant ses diagonales rectangulaires devient
un rhombe; les droites qui joignent les milicux de ses cotés opposés
sont donc également inclinées & une quelconque des diagonales, c’est-
a-dire, 4 une méme asymptote ; il en doit donc étre de méme de
deux paralleles & ces droites.

- Quoique la premiere des deux propositions sur lesquelles M. Ray~
mond a fondé sa démonstration se trouvedémontrée dans divers ouvrages
clémentaires , on verra sans doute ici avec plaisir la démonstration trés-
simple qu’il en donne lui-méme, et qui peut également étre appliquée
a lellipse,

Soient HBK ( fig. 10 ) 'une des branches d’une hyperbole, C
son centre , AB 'un quelconque de ses diamétres transverses, MA et
MB des droites menées aux deux extrémités de ce diamétre, d’un point
quelconque de la courbe; si, par le centre C, on meéne des paralleles &
MA et MB, coupant ces droites en E et ) ; parce que C est le milicu
de AB, E sera le milieu de MB ; le diamétre CE couperadonc en deux
parties égales toutes les cordes paralleles 8 MB ; son conjugué sera
donc parallele a cette corde, et sera par conséquent CD.

Voici présentement la démonstration de M. Lhuilier.

~« Soit C le centre d’une hyperbole équilatére ( fig. 11 ). Soit ACA/
» un diamétre transverse de cette hyperbole, dont les extrémités soient
» A et A’. Soit M un point de cette hyperbole auquel soient menées
» les droites AM, A/M. Par M soit menée une droite paralléle & I'une
» des asymptotes; et, sur cette droite, soient abaissées les perpendi-
» culaires AB, A/B/. Jaflirme que les angles AMB, A/MB/ sont
» égaux entre eux.

» Soit, en effet, menée par C l'antre asymptote , qui rencontre en
» P la droite BB/ ; et, sar CP , soient abaissées les perpendiculaires
» AD, A/DV.

» On a, par la propriété fondamentale de I'hyperbole rapportde &
» ses asymptotes, )

ADXCD=MPXCP, ou AD: MP=CP: CD;
de 1A
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» de la
AD—MP : AD+MP=CP—CD . CP+4-CD,
» ou, a cause de AD=A/DY=DB'P, et de CD=CD’
MB : MB/'=AB : A’D/;
- » les deux triangles rectangles MBA ct MB/A/ sont donc semblables

» entre eux ; et, par suite, les angles AMB et A/MB/ sont égaux

» entre eux.

» Application. Soient deux points A, A’ donnés de position, ct
» soit une droite BB/ quise mcut parallélement 4 elle-méme dans un méme
» plan passant par ces deux points. Dans chacune des positions de cette
» droite, soit déterminé, sur elle , le point M dont la somme des
» distances aux points A, A’ est la plus petite; le lieu de ce point
» M est une hyperbole équilatére dont AA’ est un diamétre trans—
» verse, et dont une asymptote est parallele & BB/,

» Ce point est aussi le point d’incidence des rayons qui, partant de l'un
» des points A, A/, sont réfléchis & 'autre point, par la droite BB/ »

La démonstration de M. Encontre, Professeur doyen de la faculté
des sciences de I’académie de Montpellier, suppose , outre le premicr des
deux principes employés par M. Raymond ,les deux autres principes que
voici 3 1.° la tangente & I’hyperbole, terminée aux asymptotes, a son
point de contact & son milicu; et elle est égale au conjugué du dia-
“meétre mené par ce point de contact; 2.° deux diametres conjugués
quelconques d’une hyperbole équilatérale sont égaux entre eux.

Ces principes posés, soient C ( fig. 12 ) le centre d’une hyperbole
équilatérale , AA’/ un diameétre, MA , MA’ des droites joignant un
point quelconque M de la courbe aux extrémités de ce diametre, ct
supposons que ces droites coupent 'une des asymptotes en B et D.
Soit EF une tangente paralléle & MA , soient E le point de contact de
cette tangente et F le point ol elle coupe I'asymptote ; en menant
le diametre EE/ il aura pour conjugué le diamétre parallele & EF on
MA ; ce diametre EE/ sera donc, par la propriété des cordes sup-
plémentaires , parallele 4 MA’; les deux triangles CEF et DMB
seront donc semblables ; mais, si hyperbole est équilatérale, on a

dom, 11, 18
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EC=EF, et conséquemmentle premier de ces deux triangles est isoctle;
le second doit donc I'étre aussi; on doit donc avoir AngMBD=Ang.
MDB.

M. Encontre remarque de plus que, si 'on désigne par G et H les
points ot MA’ ¢t MA remontrent I'autre asymptote, on aura, par ce

qui précede et par les propriétés géndrales de I'hyperbole ,

MB=MD,
MH=MG,
AB=MH;

retranchant la derniére équation de la somme des deux premiéres , il
vient, en réduisant ,

MA=DG.

Les démonstrations synthétiques de MM. Pecten , professeur de ma-
thématiques spéciales au lycée de Nismes , et Labrousse , maitre de
mathématiques dans la méme ville, sont absolument les mémes et
reposent uniquement sur P'égalité des portions de sécantes interceptées
entre les asymptotes et la courbe; elles reviennent & peu prés & ce
qui suit.

Soient toujours C ( fig. 13 ) le centre de la courbe, BE et CH
les asymptotes, AA’ un diametre, MA, MA’ deux droites joignant
ses extrémités & un point quelconque M de 'hyperbole; la premiere
de ces droites coupant les asymptotes en B et H, et la seconde en
DetG.

Soit menée par A’ une parallele & MA terminée en E A Iasymp-
tote, et soit joint EH ; & cause de I’égalité des triangles CAB et CA’E,
et de MH=AB, HE sera paralléle & MA’, et conséquemment les
triangles EHB et DMB seront semblables ; mais, parce que HC per-
pendiculaire 4 BE tombe sur son milieu , le premier de ces deux
triangles est isoctle; le dernier I'est donc aussi; on a donc Ang.MBD
=Ang.MDB.

La démonstration donnée par M. Ferrioz, principal du collége de
Baume, est d’une forme particuli¢re 3 il démontre d’abord, comme
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il suit, que la proposition est vraie , dans le cas ou le diamétre dont
il s’agit est l'axe transverse lui-méme.

Soient G ( fig. 14 ) le centre de hyperbole, CD son asymptote,
AA’ son axe transverse, prolongé vers X, MA et MA/ les droites
joignant les extrémités de cet axe a4 un point quelconque M de la
courbe , ces droites coupant 'asymptote en D et E ; soit enfin AF
une perpendiculaire 4 I'axe, coupant 'asymptote en F.

Dans I'hyperbole équilatérale, deux diamétres conjugués, et consé-
quemment deux cordes supplémentaires, terminées au premier axe,
font d'un méme coté avec cet axe des angles complément Pun de
Vautre 3 ainsi MA’C est complément de MAX,, et, comme FAD lest
aussi , il en résulte que ces deux angles sont égaux ; mais, d’un autre
coté, les angles A/CE et AFD valent I'un et lautre un angle droit
et demi ; donc les triangles A/CE et AFD sont semblables. On a
donc Ang.MDE=Ang.CEA=Ang.MED.

Cela posé, soit un plan arbitraire passant par CD, et soit projetée
la figure sur ce plan;sa projection sera toujours une hyperbole équi-
latérale, ayant encore CD pour asymptote , mais dont la projection de
AA’ ne sera plus l'axe, mais un diamétre transverse , lequel pourra
étre quelconque, 3 cause de Vindétermination du plan conduit par
CD ; d’un autre coté, a cause de la situation arbitraire du point M,
les projections de MA et MA/ pourront, dans la nouvelle hyperbole,
devenir des droites joignant un point quelconque de la courbe aux
deux extrémités d’un diametre transverse quelconque; et, comme les
projections des angles égaux MDE et MED seront encore des angles
égaux , il en résulte que la proposition aura encore lieu dans ce cas.

La démonstration mixte de M. Pecten , et celle de M. Fauquier
éleve da lycée de Nismes, consistent également a prouver d’abord ,
par l'analise , que les droites.-qui vont d'un point quelconque d’une
hyperbole équilatérale aux deux extrémités d'un méme diametre trans-
verse font, d’'un méme co6té, avec le premier axe, des angles com-
plément 'un de P'autre; ce qui est évident, d’aprés ce qui précede , puis—
que ces droites sontrespectivement parallelesa deux diamétres conjugués.
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Cette proposition une fois établie, la proposition principale s’en
déduit facilement.

Soient, en effet, C ( fig. 15 ) le centre d’unc hyperbole équila-
térale, XX/ la direction de son premier axe, YY/ celle da second,
CD et CG ses deux asymptotes, AA/ un diametre transverse quel-
conque , MA et M.\ des droites joignant les extrémités de ce diametre
& un point quilcongne M de la courbe , F et F/ les points ou ces
dioites coupent le premier axe; soient enfin B et H les intersections
de MA avec les asymptotes, D, G, celles de MA/ avec les mémes ;
droites, et I lintersection de DG avec CY.

Par ce qui précede, Pangle MFX est complément de 'angle MF/X ;
il est donc égal a CIF/; mais MFX et CIF/ sont respectivement des
angles extérieurs dans les triangles CFH et CGI, d’ou il suit qu'on
doit avoir

Ang ICH-+Ang.IGC=Ang.CHF+-Ang.HCF ;
ou simplement, 4 cause de AngICH=Ang.GCF ,
Ang.IGC ou Ang.HGM:Ang.CHF ou Ang.GHM ;

et, comme les angles MDB et MBD sont les complémens respectifs
de ces deux-la, ils doivent aussi étre égaux.

M. Fauquier a déduit de cette proposition la conséquence que voici.
Soient C le centre ( fig. 16) et A, A’ les sommets d’une hyperbole
équilatérale ; soient pris les arcs

Am=A/m', An=A'n’, ot mn=m’'n’;
soient joints les points 2, m’/, n, n/, & un point quelconque P de
la courbe par des droites coupant I'une des asymptotes en g, g7, £, A/.
Les points m et m’/, ainsi que les points n ct n/, se trouvant, par
la construction, les extrémités d’'un méme diamétre , les triangles
mPn et m’Pn’/ seront semblables , par ce qui précéde, comme ayant
des angles égaux en g et g/, 2 et A/ ; on aura donc
Ang.mPn=Ang.m/Pn’.
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GEOMETRIE.
Analogies entre le triangle et le tetraédre

Par M. FErr10T , principal du collége de Baume.

o e %o W, SL ¥, Vo S 9

ON trouvera dans ce mémoire quelques propositions déji connues ,
mais que j’ai cru néanmoins devoir y comprendre, afin d’en former
un tout plus complet.

§ 1

1. Avec trois droites données , telles que chacune soit moindre
que la somme des deux autres , on peut toujours former un iriangle,
el on n’en peut former qu'un scul.

2. Avec sixz droites données et inégales, telles que chacune d'elles
sott moindre que la somme de deux quelconques des autres , on peut
toujours former 6o télraédres différens, dont 30 sont symétriques
par rapport aux 3o auires, €t on n'en saurail former un plus grand
nombre.

Soient en effet a, &, ¢, d, ¢, f, les six droites données , on pourra
ehoisir trois d'entre elles de 20 manitres différentes pour former la
base du tétraedre ; et, le choix de ces trois étant fait, il y aura en~
core six maniéres d’ajuster d’'un c6té de cette base les trois arétes res-
tantes , ce qui fera en tout 120 tétraédres, et on en obtiendra 120
autres symétriques a ceux-la, en ajustant les mémes trois arétes res-
tantes de lautre c6té de la face prise pour base; nrais il est évident
qu’en proeédant ainsi, les tétra¢dres ne difléreront, quatre & quatre ,
que par la face sur laquelle ils se trouveront posés : donc, en effet,

Tom, 11, 19
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le nombre des tétratdres essenticllement différens se réduira d 6o seu=
lement, dont 30 seront symétriques par rapport aux 3o autres.

Demarque 1. 1a condition que l'une quelconque des six droites
donunées soit moindre que la somme de deux prises d’une maniére
quelconque parmi les cing autres , équivaut & 6o inégalités lesquelles
doivent toutes avoir liecu pour que les 6o tétraedres soient possibles.
Si done quelques-unes de ces inégalités n’étaient pas satisfaites , le
nombre des tétraédres possibles s’en trouverait d’autant diminué. II
serait plus long que difficile de déterminer & combien il se réduirait
dans chaque cas.

Remargue 11. Si plusicurs des droites données étaient égales entre
elles; quand bien méme toutes les conditions d’inégalité se trouve—
raient satisfaites , il pourrait y avoir diverses séries de tétratdres dgaux
et superposables , en sorte que le nombre des tétraedres différens tom-
berait alors au-dessous de 6o. Il serait encore facile ici de déterminer
4 combien leur nombre se réduirait dans chaque cas. En particulier
si les six droites donndes étaient toutes égales , auquel cas les 6o con-
ditions d’inégalité se trouveraient satisfaites d’elles-mémes, tous les
tétraédres se réduiraient 3 un seul qui serait le tétraddre régulier.

Remarque 111. Enfin, il pourrait arriver & la fois que les droites
données ne satisfissent pas aux 6o conditions d’inégalité et qu’en outre
plusicurs de ces droites fussent égales entre elles ; on aurait alors deux

causes qui conspireraient 4 la fois & réduire le nombre des tétraddres
possibles et réellement différens.

§. 2

1. Les perpendiculaires élevées sur les milieux des cbtés d’un trian-
gle se coupent routes trois en un méme point qui est le centre du
cercle ecirconscrit.

2. Les plans perpendiculaires sur les milicux des arétes d'un té-

traédre, se coupent tous six en un méme point qui est le centre de
la sphére circonscrite.

Ou autrement;
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Les perpendiculaires élevées aux faces d'un tétraddre par les eentres
des cercles circonscrits @ ces faces ,se coupent loutes quatre en un
méme point qui est le centre de la sphere circonscrite.

Ces propositions deviennent évidentes si l'on considére que les arétes
d’un tétraddre sont des cordes de la sphére qui lui est circonscrite ,
que les cercles circonscrits a ses faces, sont des cereles de cette méme
sphére , et que les plans perpendiculaires sur les milieux des cordes
d’une sphére ainsi que les droites menées par les centres de ses
cercles perpendieulairement A leur plan , passent nécessairement par
le centre de cette sphere.

§. 3.

1. Les drottes qui partiagent les angles dun triangle en deux
parties -égales ,se coupent toutes trois en un méme point qui est le
centre du cercle inscrit.

2. Les plans qui divisent les angles diédres d'un tétraddre cn
deux parties dgales , se coupent tous six en un méme point qui cst
le centre de la sphére inserite.

Ou autrement,

Les droites qui, partant des sommels des angles tricdres d'un
#étraddre , font des angles égaux avec les faces de ces angles iriédres ,
se coupent toutes quatre en un méme point qui est le centre dela
sphére inscrite.

En effet, 1.° les deux faces de 'un quelconque des angles ditdres
d’un tétraddre sont des plans tangens a la sphére inscrite , ct il est
évident que le plan qui divisc en deux parties égales l'angle formé
par ces deux-lia, doit passer par le centre de la sphére.

2.° Soit un angle tri¢dre circonscrit & unc sphére ; le cone droit
inscrit 4 cet angle triédre sera comme lui circonserit a la sphére ; or,
il est facile de voir que l'axe dc ce cére , lequel ne sera autre
chose qu’une droite qui, partant du sommet del'angle triedre, fera des

angles égaux avec ses faces, passera par le centre de la sphere (*).

(*) 11 existe toujours quatre cercles tangens & la fois aux trois cot's d’un mime
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§- 4
1. Les droites qui joignent les sommets d'un triangle auzx milieux
des cotés opposés , se coupent toutes trois en un méme point qui est
le centre de gravité ou le centre des moyennes distances des trois
sommets de ce triangle.

triangle,, considérés comme des droites indéfinies; I'un de ces cercles est intérieur
au triangle et touche , & proprement parler, ses trois cotés; les trois autres lui sont
exlérieurs, et chacun d’eux touche un c6té et les prolongemens des deux autres au
deld du premier. )

Si, pour chacune des droites qui par leur intersection forment un triangle , on
regarde comme coté positif celui des deux cotés de cette droite qui regarde linté-
ricar du tlriangle , et comme négatif le cdté opposé, on pourra dire que, des quatre
cercles qui touchent 2 la fois les trois cotés d’'un triangle , un touche ces trois cotés
positivement , tandis que chacun des trois autres touche seulement deux cétds positive-
ment et le troisiéme négativement.

Huit sphéres différentes ‘peuvent , en général , toucher & la fois les quatre faces
d'un méme téwatdre, considérées comme des places indéfinies; et ces huit sphéres ,
considérées relativement & leur situation par rapport au tétraédre , peuvent étre distribuées
dans les trois classes que voici : 1,0 une sphére intérieure qui esl proprement la sphére
inscrite; 2.% quatre sphéres sur les faces dont chacunc touche une face extérieurement
et touche les prolongemens des trois autres au deld de cette premiére; 3.° enfin
trois sphéres sur les arétes , touchant les prolongemens des quatre faces au deld
de 'une des arétes ; ces dernitres répondent toujours aux trois arétes d’'un méme
angle tri¢dre ou aux trois arétes d’'une méme face.

Si, pour chacun des plans qui par lear intersection forment un tétratdre, on
regarde , comme coté positif, celui des deux cités de ce plan qui regarde lintérieyr
du tétratdre , et comme négalif le coté opposé , on pourra dire que , des huit sphéres
qui touchent & la fois les quatre faces d’un tétraédre, celle qui est inscrite touche
ces quatre faces positivement ; que les spheres sur les faces touchent seulement trois
faces posilivement et la quatriéme négativement ; qu’enfin celles qui répondent aux
ardles touchent deux faces positivement el les deux autres négativemgnt.

Si, en particulier , le tétracdre est régulier, les spheres qui répendent aux arétes
ont leur centre 4 une distance infinie et leur rzyon intini ; de plus chacune d’clles peut
étre indifféremment considérée comme répondant a une aréte ou & son oppesée ; en
sorte quon peut dive également, ou que les faces d'un tel tétraédre ne peuvent étre
touchées que par cinq sphéres sculement , ou gw'elles peuvent étre touchées par onze
sphéres dont six sont infinies, ( Note des éditeurs.)
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2. Les droites qui joignent chaque sommet d’'un téiraédre au cenire
commun de gravité ou des moyennes distances de ses trois autres som-
mels , se coupent toutes quatre en un méme point qui est le centre de
gravité ou des moyennes distances des quatre sommets de ce tétraédre.

On peut se convaincre facilement , comme il suit, de la vérité
de ces deux propositions : 1.° si I'en joint les milieux des cotés du
triangle donné par des droites, on formera un nouveau triangle ins-
crit au premier et dans lequel les droites , joignant les sommets aux
milieux des cotés epposés , seront encore les mémes que dans le pre-
mier ; en opérant d’une mani¢re semblable sur ce nouveau triangle
et poursuivant ainsi a I'infini, on formera une série de triangles con-
tinuellement décroissans , dont le dernier se réduira 2 un point uni-
que qui, contenant toujours les trois droites dont il s’agit , sera consé-
quemment leur commune section,

2.% Pareillement, en considérant les centres des moyennes distances
des aires des faces du tétraédre donné comme les sommets d'un nou-
veau tétraédre inscrit a celui-la, il est facile de voir que les droites
qui, dans ce dernier, joindront les sommets aux centres des moyen-
nes distances des aires des ‘faces opposées , seront les mémes que dans
le premier ; opérant donc de la méme maniére sur ce nouveau tétracdre
et poursuivant ainsi a l'infini, on formera une série de tétratdres con=
tinuellement décroissans , dont le dernier se réduira 3 un point uni-
que qui, contenant toujours les quatre droites dont il sagit, sera
conséquemment leur commune section.

Corollaire. Les triangles et tétratdres dont il vient d’dtre question
étant tous semblables et ayant leurs c6tés et faces homologues pa-
ralleles , on peut établir les propositions suivantes :

1.° 87 par les sommets d'un triangle donné on méne des paral-
léles auxw cdtés opposés , ces paralléles formeront un nouveau triangle
tel que les sommets du premier se trouveront sityés aux milteux de
ses ¢Otés.

2.° 8 par les sammets d'un tétraédre donné on méne des plans
paralléles aux faces opposées , ces plans formeront un nouscau
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tétraédre tel que les sommels du premier se irouveront situés aux
cenires des moyennes distances de ses faces.

Remarqgue 1. Les triangles inscrits les uns aux autres dont il a
été question ci-dessus étant tels que les cotés de chacun sont moitiés
de leurs homologues dans celui qui le précéde immeédiatement; si
I'on prend pour unité le contour du plus grand , la somme des contours

des autres sera
Y 1 1 1
punaeinsiecie brin EREE S

Et, si l'on prend pour unité Vaire du plus grand, la somme des aires
des autres sera
) ¢ ) 4 ¢ X I
Z+Z:+Z;+4‘ +e=z
Remargue II. Les tétraddres inscrits les uns aux autres dont il a
été question ci-dessus, étant tels que les arétes de chacun sont le tiers
de leurs homologues dans celui qui le préceéde immédiatement; si
Von prend pour unité la surface du plus grand, la somme des sur-

faces des autres sera
I

I I I ) 4
——t e ==
9 9 9*_*—94 8

Et, si Pon prend pour unité le volume du plus grand , la somme
des volumes des autres sera

1 + I + I + X + _
27 = 27@ 273  ajé Ut a6
§. 5.

1. L'un quelconqgue des cdtés d'un triangle est égal & la somme
des produits des deux autres par les cosinus de leurs inclinaisons

sur celui-12.
2. L'une quelconque des faces d'un tétratdre est égale & la somme
des produits des trois autres par les cosinus de leurs inclinarsons

sur celle-{a,
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Soient ¢, ¢/, ¢/, les trois c6tés d’un triangle ; le cété ¢/, par
exemple , n’est autre chose que la somme des projections des cotés
¢ ¢, sur sa direction ( le mot somme étant pris ici comme en algebre );
ainsi on doit avoir
¢/'=cCos.(cc’)4c/Cos.(c'c").
Soient 2, #, 2, ¢/, les quatre faces d'un tétratdre ; la face /77,
par exemple , n’est autre chose que la somme des projections des

faces ¢, ¢/, ¢/, sur son plan ( le mot somme étant toujours pris
dans le méme sens ); ainsi on doit avoir

2 = tCOS-(l’t’”)—i—t’Cos.(l’t’”)—}-ﬂ/Cos.(t”t//’);
§. 6. '

1. Le quarré de Pun des cdtés dun triangle égale la somme des
quarrés des deux autres moins le double du produit de ces mémes
clés et du cosinus de leur inclinaison l'un & lPautre.

2. Le quarré de laire de lune des faces d'un tétraddre égale la
somme des quarrés des trois autres moins les doubles des produits
de ces mémes faces multiplides deux & deux et par le.s cosmus de
deurs inclinaisons les unes aux autres.

En effet 1.° on a, par ce qui précde,

¢ =¢’ Cos.(c ¢/ )4c//Cos.(c c) ,
¢/ =c"Cos.(¢’¢"y+¢ Cos.(ce')
¢’=¢ Cos.(c ¢')4=¢/ Cos.(c'c!)

e

multipliant respectivement ces équations par leur premier membre,
et retranchant ensuite la derni¢re de la somme desdeux premiéres ,
il viendra, en réduisant et transposant,

¢/ = c*~-¢/*—2¢¢'Cos.(cc’).
2.° On a aussi, par ce qui précede,
¢ =¢/ Cos.(2 2/ )41/ Cos.(¢ #// )4-1/""Cos.(24) ,
¥ =t/ Cos ¢t/ )4-t"'Cos(t’t/}4-t Cos(tt’ ) ,
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! =1""Cos.(""t"")=41 Cos.(¢ 1/ Y=t' Cos.(' /') ,
M=t COS.(t t///)+t/COS.(t’t///)+t//COS.(t//l//’) R

multipliant respectivement ces équations par leur premier membre
et retranchant ensuite la derniére de la somme des trois Premleres,
il viendra, en réduisant et transposant,

ta==t2uft/3udt/2em 28t/ Cos. (£1)) =211/ Cos. (11 )—21/t/ Cos. (£/1/1).

Corollaire. 11 suit de 1a 1.° que, dans un iriangle rectangle, le
quarré de lhypothénuse est égal & la somme des quarrés des deux
autres cétés ; 2.° que , dans un tétraédre rectangle , le quarré de
Paire de la face hypothénusale est égal & la somme des quarrés
des aires des trois aulres faces.

§ 7

t. Dans tout triangle, la somme des irois angles est constante
el égale & deux angles droils.

2. Dans un tétraédre dont les arétes opposées sont perpendiculaires,
la somme des six angles diédres augmentée de la somme des douze
inclinaisons des six arétes sur les quatre faces est constante et égale
@ douze angles droits.

Soient A, B deux arétes opposées du tétratdre ; par A soit fait
passer un plan perpendiculaire & B ; ce plan déterminera un trian-
gle dont un des angles mesurera l'inclinaison des deux faces qui
passent par B, tandis que les deux autres mesureront les inclinai-
sons de laréte A sur ces deux faces; opérant de méme successive-
ment sur chaque aréte , on en conclura que la somme des angles di¢dres
et des inclinaisons des arétes sur les faces est la méme que la somme
des angles de six triangles; c’est-a-dire, que cette somme est cons—
tante et égale a douze angles droits.

8. 8.

. I . . -
. Les perpendiculaires abaissées des sommets d'un iriangle sur

des directions des cOtés opposés se coupent toutes trois en un méme point.
2.2
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2.0 Si deux aréles contiguis dun tétraédre sont respectivement
perpendiculaires @ leurs opposées , les deux aréites restantes seroni
aussi perpendiculaires l'une @ Lautre , et alors les perpendiculaires
abaissées des sommets du tétraédre sur les plans des faces opposées
se couperont {loutes quatre en un méme point lequel est aussi le
point d’intersection des sixz plans conduits par chaqgue aréte , perpen—
diculairement & son opposée.

Ce méme point est encore celui o se coupent les quatre perpen~
diculaires élevées aux faces du tétraédre par les points de ces faces
ou se coupent les trois perpendiculaires abaissées de leurs sommels
sur les directions des coiés opposés.

Soient @, &, ¢, les trois arétes de la base d’un tétraédre 3 a/, 4/,
¢/, celles qui leur sont respectivement opposées et qui conséquemment
concourent au sommet ; supposons que &’ et [! soient respectivement
perpendiculaires & @ et 5 ; par @/ ct &/ soient fait passer deux plans
A et B respectivement perpendiculaires 4 @ et 4, et ayant pour in-
tersections avec la base du tétraédre deux droites « et g se coupant
en o: ces deux plans se coupant eux-mémes suivant une droite p pas-
sant par o et par le sommet du tétratdre ; enfin, par ¢/ et p soit
conduit un plan C, dont l'intersection avec la base scra une droite
¥, passant par o:a ¢étant perpendiculaire 3 A doit I'étre aussi 3 «,
et 4 doit pareillement étre perpendiculaire 3 g; « et g ne sont donc
autre chose que les perpendiculaires abaissées sur les directions de «
ct & des sommets qui leur sont opposés ; donc y qui passe par o,
intersection de « et g, est aussi une perpendiculaire abaissée sur la
direction de ¢ du sommet de I'angle opposé : de plus A et B étant
respectivement perpendiculaires 4 @ et b, sont perpendiculaires & la
base du tétraddre, et conséquemment leur intersection p est aussi perpen—
diculaire & cette base , et par suite & ¢ ; le plan C qui passe
par p et par » perpendiculaires & ¢, est donc lui-méme perpendiculaire
a cette droite ; la droite ¢/ qui est dans ce plan est donc aussi perpendicu-
laire & ¢; ce qui démontre la premiére partie de la proposition. Le
méme raisonnement prouve aussi que , dans un tétraedre dont les

Jom, 1. 20
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arétes sont & angles droits ,la perpendiculaire abaissée sur le plan d’une
face , du sommet de l'angle opposé , se termine au point de cette face
ol se croisent les perpendiculaires abaissées sur les directions de ses
cotés des sommets des angles opposés.

Le tétratdre ayant ainsi ses ardtes opposdées perpendiculaires I'une
4 l'autre ; concevons que, par les trois arétes de sa base, on conduise
des plans perpendiculaires aux arétes qui leur sont respectivement
opposées ; ces trois plans se couperont en un certain point suivant
trois droites passant par ce point, et qui, par ce qui vient d’étre dé-
montré, ne seront autre chose que les perpendiculaires abaissées res-
pectivement des trois sommets de la base sur les plans des faces
opposées. De plus, il arrivera aussi, par ce qui précede , que le
point de chacune dec ces faces ou se terminera la perpendiculaire
tombant sur son plan, sera celui ou se croisent les perpendiculaires
abaissées des sommets de cette face sur les directions des cétés
opposés.

Ainsi, dans un tétratdre dont les arftes opposées sont i angle droit,
chacune des perpendiculaires abaissées d'un sommet sur le plan de
la face opposde., se termine au point de cette face ot se croisent les
perpendiculaires @baissées de ses trois sommets sur les directions des
cotés opposés ; ét'trois de ces perpendiculaires se coupent , et se coupent
-en un méme point; d’ott il résulte qu’elles se caupent toutes quatre
en ce point; et, comme chacune d’elles est la commune section de
trois des plans conduits par des arétes perpendiculairement & leurs op~
posées , il faut en conclure que les six plans conduits de cette ma-
niére passent aussi par ce point.

Remarque. 11 est facile de sassurer que ces propositions ont leur
réciproque , et qu'ainsi, si un tétratdre a seulement deux arétes op~
posées perpendiculaires , les perpendiculaires abaissées de ses quatre
sommets sur les plans des faces opposées se couperont deux a deux
et seront comprises dans deux plans , tandis qu’il n’y aura aucun
point commun a plusicurs de ces perpendiculaires, si aucune des
arctes du tétraddre n'est perpendiculaire & son opposée.
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§- 9

1. Dans tout triangle, les perpendiculaires élevées sur les milicuz
des cOtés se coupent ioules irois au méme point.

2. Dans tout tétraédre dont les arétes opposées sont & angle
droit , les perpendiculaires élevées aux plans des faces par leurs
centres de gravité se coupent toutes qualre en un méme point.

En eftet, les centres de gravité des faces du tétraédre dont il s’agit,
peuvent ( §. 4. ) étre considérés comme les sommets d’un tétraédre
semblable & celui-1a , et ayant ses faces paralleles & leurs homologues
dans le premier : ce nouveau tétraédre a donc , comme le tétraédre
proposé , ses arétes opposdes & angle droit; et par conséquent (§. 8.)
les perpendiculaires abaissées de ses sommets sur les plans des faces
opposées , lesquelles ne sont autre chose que les perpendiculaires éle~
vées aux plans des faces du premier par les centres de gravité de
ces faces , doivent toutes quatre se couper au méme point,

§. 10,

1. Dans tout triangle , l'intersection des perpendiculaires sur les
milieux des cdtés, le centre commun de gravité des sommets et linter—
section des perpendiculaires abaissées de ces sommets sur les’ di-
rections des cbids opposés, sont trois points situés sur une méme
ligne droite , de maniére que le sccond est intermédiaire aux deux
autres. De plus , la distance entre les deux dernicrs est double de
la distance entre les deux premiers. ‘ '

2. Buns tout téiraédre dont les aréles opposées sont @ angle droit,
Pintersection des perpendiculaires élecées aux plans des faces par
leurs centres de gravité, le centre commun de graviié des sommels du
tétraédre et l'interscction des perpendiculaires abaissées de ges sorm-
mets sur les plans des faces opposées sont tro’s points sitwés sur
une méme ligne droite , de maniére que le sccond est intermédiaire
aux deuz autres. De plus , la distance entre les deux derniers est
triple de la distance entre les deux premicrs.
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Soit T un triangle , g son centre de gravité et p le point de son
plan ol se croisent les perpendiculaires abaissées de ses sommets sur
les directions des cotés opposés. Soit T/ un autre. triangle ayant ses
sommets aux milieux des cotés du premier ; soit g/ son centre de gravité
et p/ le point ol se croisent les perpendiculaires abaissées de scs*
sommets sur les directions des cétés opposés. Les deux triangles T
et T/ étant semblables ( §. 5.) , ayant leurs c6tés homologues paralleles
et dans le rapport de 2 & 1, il en résulte que les distances gp et
g’p’ qui sont des lignes homologues de ces deux triangles seromt pa-
ralltles ou dirigées suivant une méme droite et qu’on aura gp=2g"p’;
mais g/ étant le méme que g (§. 4. ), il sensuit que p, g, p/ sont
trois points en ligne droite , parmi lesquels g est intermédiaire a p
et p/, puisque 17 est situé en sens inverse de T : or, si I'on désigne
par ¢ le point ol se croisent les perpendiculaires élevées sur les mi-
lieux des cotés de T, ce point ¢ ne sera autre chose que le point
p’ 5 donc les points p, g, ¢, sont en ligne droite, dc telle maniére
que g est intermédiaire & p et ¢ et qu'on a gp=2gy.

La méme démonstration a lieu pour le tétraédre , en recourant
un second tétraddre ayant ses sommets aux centres de gravité des faces
du premier.

GEOMETRIE ANALITIQUE.

Recherche de la position des axes principausx dans
les surfuces du second ordre ;

Par M. Brer, professeur de mathématiques transcendantes
au lycée de Grenoble.

[g Via Wio Wo W, W, Vo Vo Vo Vi Vo V)

LF.S formules qui servent A passer d’un systdme de coordonnées
cectangulaires #,% , 5, & un systémc de coordonnées obliques 2/,
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¥/, 2/, ayant méme origine que les premitres sont , comme l'on sait
x=2a/Cos.a—y’Cos.a/42/Cos.«"
y=a’Cos.p~4y’Cos.p'+4-z'Cos.p"
z=2'Cos.y4y/Cos./=z/Cosy’ .

>

Nous allons donner & ces formules une forme plus commode pour
Pobjet que nous avons en vue. Soient les équations des axes des z/ ,
¥/, 2/, ainsi qu’il suit

r=az, r=alz, r=a’z,
axe des a7/ axe des y/ axe des z/ )
y=bz; y=bz; y=>b'z
et soient posées les équations
' 1 1 1
=, W=, }=m—m——
\/ I-a*4-b? \/ 1-}-a/2=}-b/2 \ {I+a//z+b//a

nous aurons
Cos.e=ah , Cos./=a’h’/ , Cos.’=a’k’ ,
Cosg=0% , Cos.g’=bk' , Cos.g”’=b'k",

Coswy= £ 3 Cos.o/= # 3 Coss’= I’

A 1)

et par conséquent
= ahx/+a'by'ath'
y=bhalbly bR
z= hx'—~ Ky'4- Rz .
Si l'on substitue ces valeurs dans 'équation générale da second degré
entre les trois variables z,y, z,
Axr4-A'y>4 A'z242Byz2Blxz4-2B/xy 4 Caxd-Cly - C"z4-D=0 ,

on obtiendra une nouvelle équation du méme degré que l'on pourra



146 AXES PRINCIPAUX

simplifier en disposant des quantités arbitraires @, o/, a”/, b, &7, 8",
qui déterminent la pusition des nouveaux axes. Faisant donc dispa-~
raitre tous les rectangles des coordonnées, nous aurons les équations

(1) (Aa' +B'Y 4-B)a 4({B'"a! 4A'b' 4-B)b +(B/a’ B +4")=o0 ,
(2) (Aa"+B'b/'4-B"a+-(B'a" 4 A'b"4-B)b+(Bla"+-Bb/'4-A")=0 ,
(3)  (Aa'+-Bib4-Blya'4-(Ba! - A'b"4-B)b'4-(B'a/4-Bl!sf-A")=0 .

Cela posé, en éliminant @ et & entre I’équation (2) et les équations
x=az, y=bz de l'axe des 2/, on tombera sur I’équation d’un plan
tel que, l'axe des 2/ y étant situé d’une maniére quelconque , I'équa-
tion de la surface sera délivrée du terme en 27z, Parcillement, si entre
Péquation (3) ct les équations x=a’z, y=~4/'z de l'axe des y/ on
élimine @/ et 4/, on obtiendra 'équation d’un plan tel que, 'axe des
¥ y étant situé d’une mani¢re quelconque, Péquation de la surface
sera délivrée du terme en y/z/. Mais, par la forme des équations (=)
et (3) les équations des deux plans doivent étre les mémes; donc,
en écrivant sculement les équations (2) et (3), on obtient pour un
axe quelconque des z/, un plan unique des 2/y/ tel que la nouvelle
équation de la surface du second ordre scra privée des rectangles
x’'z/, y’z’; et, comme il est toujours facile, 'axe des z/ étant cons-
tant , ainsi que le plan des 27y/, de donner aux axes des 27 et des y/
une direction telle que le troisieme rectangle a’/y/ disparaisse aussi ;
il s’ensait que 'on peut, d’une ighnité de maniéres, donner & ]’équaﬁon
générale des surfaces du sccond ordre, la forme plus simple

P/ -Plys e P12 Qu/ -y '@/ /D=0,
L’équation du plan des z/y/ sera

(da//~B/ b/ By x-( B/ a!! A/ b+ By (B a! B/ 4-A"z = o.

Parmi tous les systémes d’axes pour lesquels I’équation prend cette
forme , il n’en est généralement qu’un seul qui soit rectangulaire.
En effet, assujétissons l’axe arbitraire des z/ , dont les équations
sont x=q¢’z, y=4"z, 4 étre perpendiculaire au plan des 27y dont

nous venons de trouver 'déquation,
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(Aa”4-B"b'4-B')x+B"a""+A'b"'+B)y+B'a/+Bb/'4-A4")z=0}
nous obtiendrons les équations de condition

Aa!'4-B/y'+B'= (B'a"+-Bb/'4~A"Na"

(*) B”a”—l—' A'b"4B = ( B’a’4Bb/~ A//) 2

substituant dans la premitre la valeur de @ donnée par la dernidre ,
on parvient a I’équation du 3.® degré
{( A—.A'YBB/'4-(B>—B'2) B”}b’“
(A1 — A) (A — A" Bl (A4 A/ —2 A7) BB# (2 Bi3i—B2—B/1 ) B b=
) +{ (Al == A) (A" —A") B! —( A=A =2 A") BB +(2B/? =B2~—B''2) B”;b’l
+{ (A —~A")BB'4-(B2—B/2) B/}=o.

(5

Or, on démontre, dans les élémens d’algtbre, que cette équation
4 toujours au moins une racine réelle, et que méme , lorsque le
coeflicient de son prendicr terme s’évanouit, cette racine est alors infinie,
ce qui n’implique point ici contradiction; car 4/ exprime une tangente
trigonométrique. Par conséquent il existe, pour toutes les surfaces du
second ordre, un axe des z/, perpendiculasre & un plan des a/y/, de
mani¢re que I’équatién générale de ces surfaces ne renferme plus les
rectangles 272/, y/z’/; et , comme on peut toujours chasser le rectangle
a’y’/ qui reste encore dans 1’équation, on en conclut que, non-seule-
ment on trouve un axe des z/, perpendiculaire au plan des 27y/, qui
prive la nouvelle équation des rectangles 272/, ¥/’ , mais encore qu'il
existe un axe des z/, perpendiculaire au plan des y/z/, et un axe
des y/, perpendiculaire au plan des a/z/, jouissant des mémes pro-
priétés ; donc si , au moyen de I'équation (3) et des équations de
Paxe des z/, on détermine le plan des #’y/, on trouvera que son:
dquation est

(Aa/+-B"b'+Bjx~4~(B" /4= A'b 4By +4~(B’a’4Bb'- A" )z=o0.

Ecrivant que l'axe des y/, dont les équations sont x=a’z, y=¥'z,
est perpendiculaire & ce plan, on parviendra aux mémes équations



14 AXES PRINCIPAUX
{4): donc l'équation (5) détermine &/ en méme temps que 5”7 on
prouvera de meme que sa troisieme racine doit &tre b.

On conclut de tout cc qui précede,

1.° Qu’il n’existe, généralement parlant, pour unc origine donnée,
qu'un systtme d’axes rectangulaires tel que les surfaces du second
ordre , rapportées i ce systéme , soient privées, dans leur équation, des
rectangles ay , 2z, yz.

2.° Que les équations des nouveaux axes dtant

r=az, S x=a'z , y=a'z ,
y=bz; Iy:lz/z 3 x=b"z ;

I’équation (5) a ses trois racines réelles qui sont &, 4/, 4”/; la seconde
des équations (4) donnant les valeurs correspondantes de @, @/, a’.
3.° Que léquation

P (A A A (A AV A A A Al B2 B2 B2 64 (A B2 A5 3 AV B3y BB/ Bl A A/ AT)=0

a ses trois racines réelles et donne les valeurs de P, P/, P/ dans
I'équation transformée

Patsc-Plyi-P-Qu/+Qy+Q/24D=0 () ;

car le procédé que nous avons suivi, dans la recherche de I'dquation
en ¢, n'oblige point de faire d’abord disparaitre les premiéres puis~
sances de z, ¥, =z

Nous observerons en passant que , pour les surfaces du second ordre
qui n’ont pas de centre, l’é‘quation en £ a nécessaircment une ou deux
racines qui s'évanouissent,

1 équation (5) pouvant avoir une racine infinie et pouvant aussi
étre identique, il est ndcessaire d’examiner ces différens cas.

D’abord, le premier terme seulement de I’équation (5) s’évanouis-
sant, on a

(A—A"BB/~4-(B>—B"*)B"=o.

(*) Voy. notre précédent mémoire , page 33 de cc volumes

Dans
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Dans ce cas, une des racines 4/ est infinie, @/ est aussi infini;
ainsi les équations 2=a”z, y=4"zde l'axe des z/ deviennent z=o0;

cet axe est donc situé sur le plan des ay. Pour le déterminer, on

b R .
cherchera le rapport = : or la derniére des équations (4) , dans la

supposition de a’/ et. 4 infinis se transforme en celle-ci

(B'a’4-Bb")=0 , dot ===z
ainsi, les équations de l'axe cherché sont
. z=o0 , By+-B/x=o0 ;
3 Iégard des deux autres axes, on les obtient en résolvant une équa-
tion du second degré.
Supposons, en second lieu, que les deux premiers termes de I'équa-
tion (5) s’évanouissent ; alors les deux autres termes disparaissent d’eux-

mémes ; ainst les deux équations

, (4—A' BB/ +~(B—B"* )B/'=o0 ,
6)
(A—A")BB/4~(B*—B/" B =0 ,

expriment que Péquation (5) est identique. Il existe donc, dans ce
cas, pour une méme origine donnée, une infinité de systémes d’axes
rectangulaires pour lesquels I’équation générale des surfaces du second
degré ne renferme aucun des rectangles des coordonnées. Pour étudier
ces différens systémes , nous remonterons aux équations (4), mises sous
cette forme

Bla/ =B o/ (A/—A Yo/ —B/b/—B/ =0 ,

B b/134-Bla// bl ( A/ —A))b/ —B/ 2/ —B =0 ;
tetranchant du produit de la premiére des équations (6) par B” le.
prodtitde la seconde par B/, en divisant le résultat par B, il viendra

( AN e A/) B/ B//+(B//=___ _B/z) B=o,
éliminant 4//==A et A/——A’ des deux équations ci-dessus, au moycn
de cette derniere et de la dernitre des équations (6),1l viendra
(B o/'~B")(B'B"a"+4BB/b"'4BB=o0 ,
(B'8//~—B")(B'B"a"'+BB"}/'4BB)=0 .
Tom, I1. 24
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Ces deux équations sont satisfaites en posant

Ba'’—B!"=o0 ,

Bl —Br=o ;
ce qui détermine un axe dontles équations sont

B x—B/z=o0 ,

B/y—B"z=o0 ;
ensuite on a ’équation commune aux deux autres axes

B'B"a!"+BB"b""4BB' =0 ;
dliminant a”/ , b”/, entre cette équation et les équations z=a"z, y=b"z
de l'axe des z/, on obtient le résultat
B/'B"x4B"'By+BB'z=0 ;

équation d’un plan perpendiculaire A 'axe déja déterminé, et qui con-
tient les deux autres axes rectangulaires. La rencontre de ce plan avec
la surface du second ordre donne une courbe du second degré qui
aura par conséquent une infinité de systimes d’axes rectangulaires ,
puisque son équation sera dépourvue du rectangle des coordonndées 3
or,on sait que le cercle est la seule courbe du second degré qui
jouisse de cette propriété ; donc la section faite par ce plan est un
cercle. Si l'on transporte Porigine des coordonnées au centre de ce

cercle, I'équation de la surface rapportée au nouveau systeme prendra
la forme

2y -k -k z-h' =0 ,
équation qui appartient & une surface de révolution.
On conclut de 14 que I'équation
AxidAly> A" 2242 By z-4-2B' zx4-2B" y 4-Cx4-Cly~4-C/'z=-D=0 ,
lorsque les ¢quations (6) sont satisfaites, représente toujours une sur-
face de révolution du second ordre; et que, si I'on veut chasser de

eette équation les rectangles xy, yz, zx, en passant 4 un nouveau

systéme rectangulaire , on obtiendra une infinit¢ de ces systtmes, 'un
des nouveaux étant fixe.

Il nous reste encore a discuter ce qui arrive dans les surfaces
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du second ordre, lorsque un, deux ou trois rectangles des coordonnées
manquent dans leur équation.

Drabord, pour qu’il y ait une infinité de systtmes de coordonnées
rectangles , il faut toujours que les équations (G) aient lieu. Soit
donc B’=0 ,nous aurons B=o ; et comme alors le plan dont I'équa-
tion est

B/B/'2~+B!"By+BB'z=o0 ,
n’existe plus, puisque son équation se réduit 2 0=o0, nous repren-
drons I’équation des surfaces qui aura la forme
Ax*-A'y* A" 222 B/ xy4Cax-+4-€'y+Cz+-D= o.
Faisant disparaitre le rectangle 2y , en passant & un nouveau systeme
rectangulaire dans le plan des xy, nous obtiendrons l’e’qua’tion
Px>*~4-Ply* 4 A/ 22 4-gzx+g'y+C/z4-D=0 ,

dans laquelle P et P’/ seront les racines de I’équation

r—(A+ANtH(AA'—B/"*)=0. ().

Maintenant il s’agit de produire tous les systémes rectangulaires
de maniére que l'équation des surfaces conserve toujours cette forme
Px*4-Ply*4-A"z>4-ga—+g'y+C"z+D=o.

Substituant & #, ¥, z, les formules
a=ahx/'-a'b'y'{-a’k/ 2
y=bha'-bhy bR 2
2= ha'd Wy'4~ W',
et faisant disparailre tous les rectangles qui s’introduisent, on trouvera
des équations qui servent & déterminer le plan de deux axes,
Pa/’x4-Plh/ly-A"z=0 ;
derivant que la droite dont les équations sont a=a"z, y=0"z, est
perpendiculaire & ce plan, on aura les équations
(P—A"ya'=0 ,
(Pr— AN =0 .

(") Foy. le mémoire déja cité,
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1.> Supposons que P, P/, .4/ soient différens ; il s’ensuivra que
a’=o , b'=o0 ;
¢onséquemment on retombera sur le systtme d’axes rectangulaires d’o
Pon était parti.
2.° Supposons P=P’, et A7 de grandeur différente ; on aura

encore
a’=o , ?'=o ;

ce qui redonne l'axe primitif z; mais les axes des z et des y pou-
vant étre pris rectangulaires d’une infinité de maniéres différentes, la
surface sera alors de révolution autour de l'axe des z.

Si l'on supposait P=A4", et P/ de grandeur différente, on dé-
montrerait également qu’il existe une infinité de systémes rectangu-
laires et que la surface du second ordre est de révolution autour de
Paxe qui est fixe. Comme P est racine de équation )

£ —(A+A)tA-(AA'—B"") =0 ,
Vhypothese de P=_4" donnera
AP (A4 AN A AA’'—=DB"* =0
ou - (A —A)(AV—A")—B*=0
3.2 Soit enfin. P=P/=A" ; alors ’équation de la surfacé devient

celle d’une sphére , et elle a évidemment une mﬁmte de systemes
daxes rectangulalrea prmmpaux.

ANALISE.

Mecthode nouvelle et fort simple pour la résolution de
U'équation generale du quatrieme degrée ;
Par M. PiLaTTE, professeur de mathématiques spéciales
au lycée d'Angers.

[a < Vg Vo Vo Vo Yo Yo o Via Mg 7]

SOIT ’équation du quatriéme degré, sans second terme,

riprid-gr-tr=o. - (A)
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- Soit fait =y~ il viendra, en substituant et ordonnant par
rapport a y,

Y4ty 6 | 48 |yt | =o.  (B)
+2p L A2pr | At

~+ g -+q¢

-+ r

Soit fait
4y’ H4rteprtg)y=o0 5 (Q)
Péquation ( B ) deviendra
Y61 2p)y* (4 Fpt-gt4r)=o0. (D)
Mais I'équation ( €), délivrée du facteur y, denne

e p P 1 E
Y=t (E)
En substituant cette valeur et son quarré dans I’dquation (D), on
obtient la- rédaite ’

P (P I \p_ L=
z+2t+(‘6 Yr—L=0  ®

Soient &/, #/, 1/ wmt! , wmt!’, =1/, les six racines de cette équa~
tion , on aura, par la théorie connue,

LA SV S/ Y L gy ou L =y,
2 64 4

Le signe supérieur répondant 3 la valeur ~~#/ et linférieur & la
valeur —7#.

Substituant dans la valeur (E) de #* en y mettant pour # l'une
des trois valeurs #/, #//, ¢///, la premitre par exemple, on trouvera,

a cause du double signe de la valeur de% R

y-:i(t//,..t///) R y: i(t//,.*_t///) H
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mais on a, dans le premier cas, z=y~¢ et dans le second x=y— I
il viendra danc

x=+ﬂ+z’”—t’” 3

X =ttt

&=t/ V!,

————— .

QUESTIONS RESOLUES.

Solution du premier des deux problémes proposés é
la page 64 de ce volume ;

i

Par M. RocHAT; professeur de mathématiques et de
navigation & St-Brieux.

[a %2 o Y ¥ W, Vi, N, ¥

P ROBLEME. Trois Jigures planes étant données de grandeur seu-
lement , sur trois plans, non paralléles deux & deux , donnés de
posttion ; déterminer un quatrieme plan sur lequel ces figures étant
projetées orthogonalement , les aires de leurs projections soient pro-
portionnelles & des nombres donnés ? ‘

Solution. Représentons par 4, B, C, les aires des trois figures ‘_
données ; par @, &, ¢, les nombres proportionnels aux projections
orthogonales de ces figures ; par =, g, 4, les angles diedres que
forment, deux 2 deux, les plans de ces figures ; enlin par z, ¥, z,
les angles que forment ces plans avec le plan cherché.

Les plans des trois figures données et le plan cherché forment une
pyramide triangulaire dont les angles ditdres sont «, g, %, 2,%, 43
or, d’aprés un théoréme connu, on a
0==1—(Cos.32-Co0s.2 p4-C05s.294-Cos.224-Cos.2y4-Cos.32)

" 4-(Cos.a2.Cos.2x4-Cos,28.Cos.2y4-Cos.29.Co0s.22)

w-2(C0s.7.Cos.2.Cos y-4-Cos.a Cos.y.Cos.z4Cos..Cos.z.Cos.a4-Cos.«.Cos.8.Cos.x)

w2 (C05,4.C05.8.C05.%.Co5.y4C0s.8.Cos.5.Cos.y . Cos.z4-Cos.7.Cos.4.Cos.z.Cos.x)e
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Mais, d’aprés un autre théoréme connu, les projections orthogonales
des figures 4 , B, €, sur le plan cherché sont représentées par
A.Cos.x , B.Cos.y , C.Cos.z; et puisque ces projections doivent étre
‘porportionnelles dux nombres @, &, ¢, on aura

¢A.Cos.x=aC.Cos.z , ¢B.Cos.y=0.C.Cos.z.

Or, si, dans léquation ci-dessus, on substitue pour Cos.z et Cos.y,
les valeurs que donnent ces deux derniéres , l'équation résultante
n’étant que du second degré en Cos.z, l'angle z pourra étre déter-
miné, et par suite les angles z et y.

Le probleme est donc ramené & celui-ci : deux plans qui se cou-
pent étant donnés de position , mener un troisitme plan qui fasse avec
ces deux-la des angles respectivement égaux a deux angles donnés.

Or, on a des méthodes graphiques et des méthodes de calcul pour
résoudre ce dernier probléme; on voit, en effet, qu’il est question

de résoudre un triangle sphérique dans lequel les trois angles sont
tonnus.

e

Autre solution du méme probléme ;

Par M. LuviLier , professeur de mathématiques & Pacadémie
impériale de Geneve.

L %o ¥a Vo Vo Vo Vo Vo ¥ Vo Vo S Y]

LEMME. Soient trois points (non en ligne droite ) donnés de po-
sition dans I'cspace , et soit un quatridme point (‘hors de leur plan )
donné de position ; on demande de mener, par ce quatriéme point,
un plan sur lequel abaissant des perpendiculaires des trois premiers,
les rapports de ces perpendiculaires soient égaux a des rapports donnés ?

Ce lemme donne lieu a différens cas, suivant que les trois pre=-
miers points donnés sont supposés devoir étre situés d’'un méme coté
du plan cherché ou de différens cétés de ce plan. Pour fixer les idées,
je supposerai d'abord que les trois premiers points doivent étre situés
d'un méme c6té du plan cherché.



156 QUESTIONS

Pour abréger, que les trois premiers points soient désignés par
A, A, A7, et que le quatritme point donné soit désigné par B.

Que les rapports donnés soient des rapports d’inégalité , et quela
perpendiculaire abaissée du point 4 doive étre plus grande que cha-
cune des autres, '

Soient 'prolongées les droites A7 A, A7A’ en D, D/, de manitre
que les rapports de 47D & AD et de A”L’ a A’DV soient respecti-
vement égaux aux rapports donnés. Le plan mené par les points B,
D, I/, scra le plan cherché.

Remargque 1. Pour que le probléme ( s%il est possible ) soit déter-
miné, les points 4, 4”, A, ne doivent pas étre situés sur vne méme
droite, et le point B, s'il est situé sur quelqu’une des droites 474,
A"A’, ne doit pas coincider avec l'un des points D, D'.

Remarque 11. Lorsque I'un des rapports donnds, tel que celui des
perpendiculaires abaissées des points A4 et 4’ est un rapport d’¢galité,
le plan cherché est parallele & la droite A4/ A’; et partant il passe par
la droite menée par B parallélement & 474/,

Si les rappor'ts donnés sont chacun des rapports d’égalité, le plan
cherché est parallele au plan A.A4/47.

Remargue IIL. Que les points donnés doivent étre situés de diffé-
rens c6tés du plan cherché ; que, par exemple, le point 47 doive
étre sitné d’un c6té de ce plan, et les points A, A’ du c6té opposés

Alors les points D, I/ au lieu d’étre sur les prolongemens des droites
A" A, A”A’, devront étre sur ces droites elles—-mémes.

Remarque IV. Cette conception géométrique de la solution du lemme
proposé me parait plus lumineuse que le développement algébrique
( appelé analitique ).

Que le point donné B soit pris pour lorigine des coordonnées
rectangulaires ;

A a ., 6 9 C
que les coordonnées des points { 4’ § soient respeciivement { o/ , b’ , ¢/ »
A a” b

que I'équation du plan chegché sqit
#Cos.
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2Cos.e~yCos.p4-zCos., = 0.

Les perpendiculaires abaissées des points dennés sur ce plan seront

pour 4 a Cos.e+tb Cos.e~+4c Cos.y
pour A/ a’ Ces.a=t-4' Cos.e~-¢c/ Cos.y 3
pour A", a’’Cos.a—-0"'Cos.p~4c""Cos.y .

. Que les rapports de ces perpendiculaires soient respectivement ceux
des quantités données m , m’, m’/; on obtiendra, entre les cosinus
des angles «, 8, v, deux équations desquelles on déduira les rapports
de ces cosinus; puls on déterminera chacun d’eux au moyen de 'équa-
tion de condition

Cos.?«~+4Cos.*g+Cos.2y = 1.

PROBLEME. Soicnt trois plans ( non paralliles deuzx & deux )
donnés de position. Sur ces plans , soient irois figures données de
grandeur. On demande la direction du plan sur lequel, ces trois
Sigures étant projetées orthographiquement , les rapports de leurs pro-
jections soient donnés?

Solution. Du point de scction des plans donnés soient élevées & ces
plans des perpendiculaires respectivement proportionnelles aux bigures
données de grandeur qui y sont tracées. Par ce méme point soit mené
( lemme ) le plan dont les distances aux extrémités de ces perpen—
diculaires soient respectivement dans le rapport des projections des
figures données. Ce plan ( ainsi que tout plan qui lui sera parallele )
pourra étre pris pour le plan demandé.

Solution du dernier des deux probléemes proposes a la
page 64 de ce volume ;
Par M. PiraTTE , professeur de mathématiques spdeiales
au lycée d'Angers.
[a Ja Vo Vi Vla Ve Yo Vo Sada
MONTUCLA, qui a considéré un cas particuber de ce probléme,

dans I'edition qu’il a donnée des récréations mathématiques d'Ozanam ,

Tom. JI. 2
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le regarde si non comme impossible, du moins comme trés-difficile &
résoudre , par des considérations purement géométriques. 1l parait
quen le proposant, dans les Annales, on n’a eu en vue que les poly-
gones plans ; je vais le généraliser un peu, en étendant son énoncé
a un polygone gauche.

PROBLEME. Soient divisés, dans le méme sens, tous les cdtés
d'un polygone donné P, plan ou gauche, de m cotés, en deux parties
qui soient entre elles dans le-rapport de deux nombres donnés p et q.
Si l'on joint les points de division consécutifs par des droites, ces
drottes formeront un nouveau polygone Y/, plan ou gauche , aussi
de m cOtés. Opérant sur celui-ci comme sur le premier , on obtiendra
un troisiéme polygone P duguel on pourra déduire , par un semblable
procédé , un quatriéme polygone P ; et ainsi de suite.

Les cotés de ces polygones décroissant continuellement , si l'on
poursuit Popération & Uinfini, le dernier polygone se réduira néces-
sairement & un point. On demande de déterminer la situation de
ce point, relativement au polygone primitif P ?

Solution. Soit rapporté le polygone proposé a trois plans rectangu-
laires quelconques ; solent §, , 8, , 8,, «oeev Sns Spors Sy o les
sommets consécutifs du polygone P ; soient 8/, , 8, , &5 5 .ee. m_y
8 mrs m > ceux du polygone P/, et ainsi de suite. Supposons de
plus que 8/, soit entre §, et §,; que §/, soit entre §, et §;; et

ainsi de suite ; et soient les coordonnées de ces différens sommets ainsi
quiil suit :

ay a, ., gam-lﬂ Im s
pour §,( &, , pour §,§ &5, e.oupour S, { &, , pour Sp, { b,
e s ? et 3 Cm s
{l/l9 all? safn—l 2 a/m7
pour &/, (07, , pour S/, (&, , ...pourS,  { &p y , pour S, {0,
s s écm-x 5 o

€9 080 0 000 4 00 0080 8 00 0PSRN Ee B0 s
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on trouvera facilement, d’aprés cela,

_gc.~pe,
c/I T e

ptq

/ _qcz+pvi
2 p+q ?

o = I0HPes
3 ?
pt9q

® 0 o0 0o om0 0t

__YCm_.pem_,

“'m-2= g

o —9Cm_Fpe,,

m-x = ?
ptq

) = 9CmtPes

T optg

prenant alors la somme de ces valeurs, il viendra, en réduisant
exécutant la division,

o’,+c',+c’1+ . ‘+C/m-a+c/m-x+c,m=cx+‘:n+cs+ L +cm-=+cm-:+'cm;

139

et

Ainsi la somme des distances des sommets du polygone P/ au plan
des zy, c’est-a-dire 4 un plan quelconque, est égale & la somme

des distances des sommets du polygone P au méme plan.

La vérité de cette proposition pcut au surplus &tre apergue sans
calcul. Que P'on congoive en effet des masses égales entre elles, et

représentées par p—-g, appliquées aux sommets §,, §,, §,, ...

du

polygone P, on pourra composer en une seule la portion p de la masse
appliquée & chacun de ces sommets avec la portion ¢ de la musse
appliquée au sommet suivant; en procédant ainsi, on aura substitud
aux m masses p~+¢g , appliquées en S, , §,, §,, «., m nouvells
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masses , aussi ¢gales & p~+7, lesquelles se trouverout précisément ap-
pliguées aux points 8/, , &, , 8, , ... Ainsi la somme des memens
de ces derniers points par rapport & un plan quelconque sera cgale
a la somme des momens des premiers par rapport au méme plan.
Otant donc de ces sommes ¢gales le facteur commun p-t¢, on en
conclura que la somme des distances de ces derniers points & un plan
quelconque est égale a la somme des distances des promiers au méme
plan. Clest & peu prés de cette maniére que Moniucla traite le cas
particulier qu’il considere. (V)

Il suit de Ia généralement que la somme des distances des sommets
de chacun des polygones £/, P77, P/, ... & un méme plan quel-
conque est une quantité constante et dgale & la somme des distances
des sommets du polygone P au méme plan ; il en sera donc de méme
pour le dernier polygone; et comme ce dernier polygonc se reduira
2 un scul point, la somme des distances de ses sommets & un plan
quelconque ne sera autre chose que m fois sa distance & ce plan.

Ainsi la distance du point cherché & an plan quelconque n’est autre
ehose que la m.°™¢ partie de la somme des distances des sommets
du polygone donné au méme t)lan; ou en d'autres termes :
~ Le point demandé n’est autre que le centre de gravité ou le centre
des moyennes distances des sommets du polygone proposé.

Il est aisé de voir que cette proposition aurait également lieu si
les nombres p et g » au lieu d’étre constants , variaient d’'une maniére
quelconque d’un polygone & Pautre.

(* Pendant que ceci s'imprimait , les rédacteurs des Annales ont regu de M.
Fauquier , éléve de I'école polytechnique , une solution fondée sur cette considération.
( Note des éditeurs. )

s




EPHEMERIDES ABREGEES DE T.A COMETE DE 1811. 161

il

ASTRONOMIE.

Ephémeérides abrégées de la cométe de 1811 ; dressees
pour le merzdzen de Paris , d'aprés les elemens cal-
culés par M. BURCKHARDT ;

Par M. GERGONNE,

AN AV

LA premiére colonne de ces éphémérides indique , en temps solairc
vrai, les époques pour lesquelles les positions de la comete sont cal-
culées; elles embrassent un intervalle de plus de 13 mois et un mouve-
ment en anomalie de 220 degrés dont 110 avant et 110 apres le périhélie.

Les 2.% et 3.° colonnes indiquent , pour les mémes époques , les dis—
tances ‘de la cométe tant an soleil qu'a la terre; la moyenne distance
du soleil & la terre étant prise pour unité. Ainsi, les nombres renfermés
dans ces deux colonnes étant multipliés par 30 680 097 deviendront
des distances en lieues métriques de 5 kilomeétres,

Les quatre colonnes qui suivent donnent, toujours pour les mémes
époques , les longitudes et latitudes géocentriques, ainsi que les ascen-
sions droites et déclinaisons de la comete. Elles pourront servir A tracer
la route de cet astre sur les cartes célestes.

On trouve, dans les trois colonnes qui viennent aprés, les heures en temps
vrai, du lever apparent, du passage au méridien et du coucher apparent
de la cométe ; vers les époques portées a la prémiére colonne. Ces indica-
tions pourront aider & retrouver I’astre , dans cette saison pluvieuse , ot on
risque de le perdre souvent de yue pendant plusieurs jours consécutifs.

Les deux derniéres colonnes n’ont besoin d’aucune explication.

“Jai mesuré, le 6 au soir, la queue de la cométe; je I'ai trouvée de
plus de 10.° ce qui, eu égard A sa position obiiqué ct A la distance
qui nous en sépare , indique une longuecur absolue de plus de dix
millions de licues ou 150 fois la distance qui nous sépare de la lune.

NISMES, [e g doctebre 1811,
Tom. I 23
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— =N
Epoques en temps vral , Distance | Distance | Longitudes Latitudes Ascensions Déclingisons

pour le méridien “de. DParis. au soleil.la la terrve | géocentriq. | géocentriques. |  droites, N

H. Al D. M. D. M. D. M. D. M

(21 Février. . d 1. 33. soir.| 3,11 2,46 | 159. 34.| —56. 56. | 135, 1. | —43. o2

16 Avril. o . a 4. 2. sar] 2,47 2,16 } 123, 3.| —37. 4o. [ 116. 53 | —17. 14

22 Mai .. a 2. 10, soir.| 2,04 | 2,32 | 120. G| —19. 59. 118, .1 + o 3o,

‘ 16 Juin. . . a & 3a. soir.| 1,74 | 2,41 [122. 45| — 9. 37. | 122, 4q.] 10, 11
I 5 Juiller .. % o 3. soir| 1,52 | 2,00 L126. 1| — 2. 25. {127, 46.] 416, 2
20 Juillet. . & g. 11. ma 1,36 | 2,33 {129. 8. | 4 3. 21. | 132 31.] ~2r1. 12

t Aout . .4 g. 36. ma.| 1,2 2,20 [ 132, o.]| &+ 9. 12. [ 137. 19 26, 1

1 Aout .. 4 2. 32 soir. 1,16 | 2,12 | 140. 58, =13, 15, { 148. 5. =270 1

20 Aodt . . a4 2. 7.soin| 1,00 | 201 | 142, 34| =17, 50. | 151, 36.| +J0. 49

28 Aout .. G 23 soir.| 1,05 | 1,86 {141, 2| <422, 58 | 152 18, 36, 2

1811 7 Septembredto. 5. ma. | 1,03 | 1,72 | 144, 45.| +29. o. | 158. 54 —+39. 34

- at . T H

12 Sei)tembrgia e 2. soir. | 1,02 | 1,59 | 148, 53.| 434 8. [166. 34| 443 1

20 Septembred 8. 4g. ma. | 1,03 | 1,46 | 155. 56.| 4-4o. 59. [ 178, 3. 446, 24

28 Septembred 1. 21. ma.| 1,05 | 1,34 | 165. 51.| 448, fo. | 193. 15, ~+48. 51.

6 Octobre . & 5. 38. ma.| 1,10 1,25 | 182, 53. -56. 43 | =213. ro. +49. 0

1o Octobre . 4 1.4. ma.| 1,16 1,20 | 212, 57. | 4+61. 5g. | 236. 4. +4o. b

25 Octobre . A10. 10. ma. | 1,24 | 1,25 | 250. qu| +38. 4g. | 257. 25 ~+36., 13,

G Novembre d10. 35. ma. | 1,36 | 1,42 | 275, 49.| =47, 49. | 274- 18.] 24 40

21 Novembre d 3. 43. ma. | 1,52 | 1,73 | 291. 47.1 435, 52. | 288, a.| +13. 40

\ 9 Décemlve 11, 120 soin | 1,74 | 2,19 | 302, 50 25. 10. | 299.732.| + 5. 10

s 4 Jamsicr .4 5. 25 ma.| 204 | 2,79 | 312, 3g.| 416, 33, | 310. 32,1 — . 3!

1812 g Fevrler . 2 3. 19. ma. | 2,47 | 3,44 | 322. 56.| =+ 9. 34. | 322. 6. — & 14
24 Mars. , . & = 230 soif.] 300 | 3,90 1331, 23.1 <= 3. 2. [332. 20| — & @
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o == =
Heure Heure Heure Constellations
1 . du passage du coucher ot lon wvoit PrincipAUX  PHENOMENES,
Lulever apparent. L . \
viever #pp au méridien. apparent. la Cométe.
H. M. H. M. H. M.
o . . M.
vees e .| 10, 43. soir. e+« { Le Nayire. C N X Fl‘aug/e_rgues a apergu la
' . omete a Vivier, le 25 mars.
1. 38. soir. | 6. 12. soir. | 10. 47. soir. | Le Navire. ’
. . .. Passage & léquateur
9. 93. ma. 3. 58. soir. § 10. 5. soir. | Le Petit—Chien. '8 1
- 41. ma. 2, 36. soir. 9. 3o. soir. | Le Cancer.
6. 8. ma. 1. 37. soir. } 9. 5. soir. | Le Cancer. I
Passage 3 1écliptique res
5. I. ma. . 59. soir . 56. soir ° Phqie > p
S 0. 59. soir. § 8. 56. soir. | Le Cancer. de Lorbe de Mars.
3. 50, ma. 0. Jo. soir. | 9. 2. soir. | Le Lion.
3. 52, ma. 0. 31. soir. | 9. 10. soir. | Le Lion.
3. 19, ma, 0. 11. soir. | Q. 9. soir. | Le Lion.
1, 26. ma. | 11. 41. ma. | 10. 3. soir. | Le Petit-Lion.

Durant cet | 11. 34. ma. | Durant cet La Grande-Ourse.

intervalle , 11. 44. ma. intervalle, | La Graude-Ourse. Moindre distance au Soleil.
la cométe o. 8. soir. la cométe | La Grande-Ourse.
ne quittera 0. 40. soir. | ne quittera | La Grande-Ouarse.

paslhorison| 1. 3x. soir. | paslhorison| Le Bouvier.

de Paris. 2. 3o. soirs de Paris. Hercule. Moindre distance 4 la Terre.
4 26. ma. 3. 106. soir. 1. 3g. ma. | Hercule.

. 17. ma. 3. 37. soir. o. 0. ma. | Le Rameau.

", 2G. ma. 3. 31. soir. | Toa 46. soir. | L’ Aigle. Passage par « de PAIGLE du 2
8. 2=, ma. 2, 56. soir. g. 26. soir. | L’Aigle. au 3 déce“\‘br?:

~. 6. ma. 1. 4G. Soir. 7. 44. soir. | Le Petit-Cheval. Passage a 'équateur,

6. 21, ma. 0. 4. soir. 5. 47. soir. | Le Verscau.

4 33, ma. 9. 52, ma. 3. 19. soir. | Le Verscau.
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QUESTIONS PROPOSEES.
Probléme d'hydrodynamique.

ON suppose qu'une cuve cylindrique dont 'axe est vertical, et qui
est remplie d’eau jusqu’a une certaine haateur connue , est percée laté-
téralement , et dans toute sa hauteur, d’une fente paralléle a son axe,
par laquelle 'eau s’écoule. ‘

On suppose que l'eau évacuéde de cette cuve tombe dans une autre
cuve de meéme forme et de dimensions connues, percée aussi latérale-
ment comme la premieére.

On suppose que la quantité d’ecau qui s’écoule par chacun des points
de chacune des cuves pendant le méme temps est constaute et indé-
pendante de la pression exercée par la colonne supérieure , et que
cette quantité est connue pour P'une et lautre cuves.

Cela posé, on propose 1.° de déterminer la hauteur de I'eau, dans
Pune et 'autre cuves au bout du temps ¢; 2.° de déterminer le maxi-
mum de hauteur de Veau dans la seconde cuve et Iépoque a laquelle
ce maximum aura lieu ? .

On peut ensuite supposer que l'une ou lautre cuves, ou toutes
les deux sont des troncs de cones droits ou obliques.

Théoréeme de Géométrie.

Si, par l'un quelconque P des points du périmétre d'une hyper-

bole, ou méne deux droites P.4, PB, respectivement paralléles 4 ses
> I p

asymptotes , et que, par un autre point quelecnque A7, pris sur ce

périmétre , on meéne une suite de droites coupant PA ena, o/, a”, ...,

PB en b,4/, b7 ,..., et la courbe en m, m/, m/, ...; on aura
2 > b 2

am a'm’ a’m/!
== T e = constanle.
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GEOMETRIE.

Lettre auax rédacteurs des Annales , renfermant quelques
remarques sur le probléme de l'inscription de trois
cercles a un triangle ;

Par M. TepeNaT, correspondant de la premiere classe de
I'lnstitut , recteur de lacadémie de Nismes.

L W W Vo Vo Vo W WL, W Ve % e ]

MESSIEURS ,

LE silence de M. Bidone , ou plutét celui de Malfatti lui-méme,
sur la nature des considérations qui ont pu le conduire & l'¢légant
résultat que vous avez fait connaitre aux pages 347 et 348 du L1.°F
volume des Annales , m’a entrainé a quclques recherches sur ce cu-
rieux probléme. A la vérité la solution” en est maintenant eonnue,
et vous avez prouvé , Messieurs , 4 la page 60 du 2.™¢ volume , qu’elle
est exacte ; mais , faute de savoir par quelle route on y parvient, cette
solution ne peut étre considérée que comme un théoréme dont on
peut raisonnablement désirer une démonstration simple comme son
énoncé. Si le peu de temps qu’il m’est permis de consacrer & la géo~
métrie ne me laisse guere d’espoir de parvenir & une pareille démons~
tration , je pense que du moins les réflexions que jai faites a ce sujet,
pourront aider dans sa recherche ceux de vos lecteurs qui ont tout
le loisir nécessaire pour s’en occuper.

Suivant Malfatti, si R estle rayon du cercle inscrit & un triangle s
fs 5 ¢, les distances de ses sommets aux peints ol ce cercle touche

Tom. 11, 27
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ses cotésy ., d/, d,les distances de ces mémes sommefs au centre

du cercle; 7, 7/, r//, les rayons de trois cercles inscrits, de maniére

que chacun touche les deux autres et deux cétés du triangle ; et

enfin s la demi-somme des trois c6tés de ce triangle, on doit avoir
2 1 =R(s—RYd —d'—d") ,
2/ 1/ =R(s—RA-d —d/'—d ) , (A)
27/ = R(S—B-{—d”——a’ __d/) ;
en ajoutant ces équations deux & deux , et supprimant le facteur a
dans les équations résultantes, il vient
¢ 7 ' 1’ =R(s—R—d") ,
p’ r/ +p//l‘//:B(.S‘-—B——a’ ) > (B)
¢/r'’'4= r =R(s—R—d'). .
Mais, ¢, ¢, ¢/, étant les c6tés du triangle, on a aussi ( tome 1.t*,
page 344 ) les équations
p—
p 7 2Ry r r/ 4 r' =Rc" ,
o 7/ 2Ry T/ iyt =Re Q)
//r//+')R‘/r//r +P r -—Bc/ R
Retranchant de chacune de celles~ci sa correspondante parmi les équa-

tions (B) , et divisant par R les deux membres des équations résul-

tantes, en se rappelant que s—¢, s—¢/, s—¢//, sont respectwcmnnt
¢gaux a p, ¢/, ¢/, on obtient

2Vr r’ =d/’-4~R—"
oy r’=d +R— D)
2‘/7-“-’7;_:'-{2’ ~RA~y¢ .

Cela posé, soient pp’p”” ( fig. 1 ) le triangle dont il sagit; C le

centre du cercle inscrit; £, #/, 2//,les points de contact de ce cercle

avec ses cotésy th¢/, 'kt , 1kt , des arcs décrits des sommets

comme centres et avec leurs distances respectives aux points 7, ¢/, ¢/,
pour rayons ; soient enfin o, o/, 0/, les centres des cercles dont les
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rayons respectifs sont 7, 7/, r//, et soient m , n , m/ sn/ . ml, n
les points de contact de ces cercles avec les cotés du triangle. Soient
enfin g, ¢/, ¢/, les points ou pC, p’C, p”/C, prolongés au-dely du
point C, rencontrent la circonférence du cercle inscrit.
11 a déja été démontré, et il est d’ailleurs facile de s’assurer immédia-
tement que
ay/rr=m'n ,
2/ rl'=m'n' E)
D’un autre edté, il estaisé de voir que
d +B—p =p ¢tcqg —p k =k ¢ ,
d/ +R_P/ :P/ [:+cq/ __‘P/ A/ _—_—k/ q/ R (F)
d'//+H__P//=p//c+cq//__.p//]i//: k//q// H
d’ou il suit que les équations (D) reviennent a celles-ci -
m'’'n’ =k q y
mn'=kgq (G)
m'n =k'g" ;
lesquelles présentent un théoréme fort remarquable.
Posons pour abréger ,

kg =d +B—p =a , 2/r'r’=a
kg =d'+R—¢ =a’ , d’ou 2\/;7’7‘-20’ ’ (H)
Ic//q//zd/’-l-ﬂ——p/’:d” ; 2y/ o =a" .

En prenant le produit de ces derniires équations, il viendra
ar.arf.ar’/=aa'a" ;

Cest-i~dire , que le parallélipiptde construit sur les diametres des

rois cercles cherchés est équivalant au parallélipipéde eonstruit sur

les trois longueurs connues kg, A'q’, k'¢".

Si, au contraire, on divise successivement par chacune des équa~
tions (H) le produit des deux autres, il viendra
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.oalall ala aa’
b Ay . » 7‘/:-—_ ) 7/ = — H (K)
20 2a/ 2a/

valeurs incomparablement plus simples , et peut-étre tout aussi faciles
A construire que celles de Malfatti ; puisque les longueurs a, 2/, o’ ,
sont données immédiatement par la construction de la figare (*).

Si on supposc admises les équations (G) ou, ce qui revient au méme,
les équations (D); les équations (C) du probléme deviendront les
équations (B); et en retranchant successivement chacune de ces der-
nitres de la somme des deux autres,” on en déduira les formules (A)
de Malfatti. Lie probléme. ne sera ainsi que du premier degré.

On voit donc combien la solution de ce prqbléme deyiendrait fa-
cile , si l'on pouvait parvenir a démontrer , & priori, que les droites
kg, k'g’, k’q” , sont respectivement égales aux droites m/”/n’ , mn’/,
m/n ; ou simplement que lfz]:m”n’; c’est sur ce point capital que
jai cru, Messieurs , devoir appeler l'attention de vos lecteurs.

L

Loag

(*) Nous placerons ici une remarque qui peut souvent étre d’une utile application.

Le probléme dont il sagit ici, s'éleve naturellement au 8.% ou toul au moins au
4.¢ degré , du moins tant qu'on n’emploie dautres données que les trois cotés du triangle
proposé. Voila pourtant des valeurs rationnclles extrémement simples ; mais, sous
leur simplicité apparente, clles renferment implicitement les diverses solutions qu’en
général le probleme peut admettre, Les quantités @, a’, @/ sont en effet des fonctions
de R, d,d,d", p,¢, ¢, et ces derniéres prennent diverses valeurs suivant
qu'on les rapporte au cercle inscrit, proprement dit, ou qu'on les considére par rap~
port & chacun des trois cercles exinscrits.

II en doit toujours étre de méme ; cest-a-dire, qu'en général un probléme
susceptible d'un grand nombre de solutions , ne peut étre que d'un degré élevé, tant
quon n’y emploie que des données invariables; et quon ne doit espérer de I'abais-
ser & un degré inférieur , qu’en subslituant A ces données d’autres données dont les
valeurs ne soient pas lesmémes pour les diverses solutions dont ce probléme est susceptible,

1l a souvent été remarqué qu’en heureux choix d’inconnues pouvait simplifier d'une
manicre notable la solution,des problémes ; mais il n'avait pas été observé jusqu'ici,
gne des données choisies convenablement peuvent procurer le méme avantage.

( Note des éditeurs, )
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On pourrait parvenir a sassurer de I'exactitude des valeurs que jai
assignées a r, 1/, r’/, en posant

2‘/777:7/’( B-d/'— 7y,
ay/ 7/ r=nx (BAd —¢ ),
oy/7r = (B4+d —¢) ;

et prouvant, par la substitution dans les équations du probléme qu’on
doit avoir a=»’=»”=1 ; mais , outre que celte vérité ne pourrait
étre mise en évidence que par un calcul assez prolixe ; il resterait
toujours & savoir ce qui a pu conduire 2 poser les équations ci-dessus,
de manidre qu’on ne ferait par la que reprodmre, sous une autre
forme la vérification que vous avez présentée vous-mérmies, Messieurs ’

3 la page 61 du tome I de votre recueil, .

Je n’ajouterai plus qu'un mot ; d’apres les valeurs que jal assxgnees
ci-dessusa r, 7/, 7/, ona ‘

r a® T” ax
r a/'a ,, .., alla 2

<

mais ,_ 4 la page 346 du tome I, vous avez fait, Messieurs

r/:rx/l ) r//:rx//z .

d’ott
r r
donc
/= = JBitd—y pir=m &= B
o Red—y ’ o' Repdl—p! ’

ce qui donne

o _ R
x Rgpdmy °
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mais ," dapres les valeurs que vous avez trouvées pour &/, 2/, 3
I'endroit cité, on a

& Al —ided

x T d c—d4d ’
done

&/ dA-d) (RAdV/ ") = ! —d—-d/(B-d'—)-

En permutant convenablement les accens , on aura donc, entre les
données du probléme, les relations suivantes

2 (¢ —d/bd YBAd — ) =d! (o —did XBAd = ) 5

' () —d +d'"(BA-dt—y)=d/!(c/'—d ++d' ) BY-d' —') 5

I -3 \BAd =1 )=d (¢ =+ Bd—)
relations qu’il doit étre facile de vérifter.

Agréez , Messieurs , etc,

Nismes, le 18 d’octobre 1812

E———— .o e .ol

ASTRON OMIE.

Elémens elliptiques de la Cométe de 1811 ; °

Par M. FLAUGERGUES , astronome correspondant
de ‘1Tnstitut.

[a Sa s Vo Vb Vo NI S o Y1 9

LA comdte que je découvris , le 25 mars dernier, et qui , dans ce
moment , occupe lattention des astronomes et du public, me semble



DE LA COMETE DE 181 S
dtre la méme que celle qui parut au mois de septembre 1301, et

qui fut remarquée par toute 'Europe et observée en Chine, En effet,
les élémens de la comete actuclle représentent trés-bien les obser-

vations des astronomes chinois sur la comete de 1301, pourvu quon
suppose seulement que, lorsqu’ils disent que la cométe passa de la
constellation T'sing & Nan-ho (Procion), ils entendent qu'elle fut
en conjonction avec cette étoile , et qu'on admette , en outre, que
les trois Koung qu’ils remarquérent qu’elle traversa, ne sont pas trois
étoiles de la constellation. des Chiens-de-Chasse , au sud de la queue
de la Grande Ourse, comme le prétend M. Pingré, d’apreés le pere
Gaubil, ( puisqu’il ne se trouve a la téte d’Astérion , que deux étoiles
de cinquiéme grandeur qui n’ont rien de singulier ) mais plutot
trois étoiles voisines ¢, ¢, ,a la main du Bouvier, qui sont de qua-
tri¢me grandeur, et qui forment dans le ciel un petit triangle fort
remarquable. L’apparition de cette cométe ne dura, suivant ces as-
tronomes , que quarante-six jours; mais il y a apparence qu’ils n’ont
entendu_parler que de la durée de son plus grand éclat ou du temps
‘qu’elle employa & parcourir les constellations que je viens de désigner;
car les historiens d’Europe donnent & son apparition une durée bien
plus longue , et Villani, en particulier , assure I’avoir encore vue au
mois de janvier 1302 ; ce qui s’accorde fort bien avec 'hypothése que
cette- eomete est la méme- que -celle-de cette année 1811 , dont la
période scrait ainsi d’environ 510 années , de sorte qulelle pourrait
xeparaitre en Pannée 2321,

)

Cette conjecture est encore confirmée par, l'apparition d’une comdte,
dans le signe de la Vierge, 510 ans avant l'année 1301 , cest-a-dire
en 791, suivant Eckstormius , Lubinictzki , Zahn, etec.

Dans cette supposition d’une période d’environ 510 ans , et d’aprés
mbs’ observations ; j’ai calculd des Elémens elliptiques dé 1d comiie
de cctte année ( 1811 ) qui représentent les ohservations avec une
précision singuliére; ce qui fournit une nouvelle preuve de lidentité
de cette copidte avec celle de 1301, Voici ces élémens.
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anneées
Révolution périodique . .. . ... ... 509, 8846

Erand axe . . .. .. . 127,640, . du soleil
Petit axe. . . .. . .. 228084, I.a‘rr;oyenne d:stailce du solei
. e a la terre étant prise pour
1stance a N §<] 7 .,
D e aphdlie . 126,6170, wnité.

Distance périhélie . . . 1,0272. )

Rapport de excentricité au demi-grand axe . 0,983g

Neeud ascendant. . . . .. .. .. 140° 16/ 56/
Inclinaison . . ... ....4s ... 72° 59 10/
Longitude du périhélie sur Porbite . 74° 29/ 40/
Passage au périhélie . . . .. .. . 12 septembre 1811,

(U

6h. 59/ 30” du soir , temps moyen & Paris.

Sens du mouvement . . . . ... .. .. rétragrade (*)

La queue de la cométe de 1301, avait de dix & douze degrés de
longueur, comme la queue de la comete actuelle.

A Pobservatoire de Viviers, le 10 d’octobre 1811,

(") En prenant pour unité la licue métrique de 5 kilometres , on parviendra aux
xésyltats que voici : <

Grand axe « « v v vt o« .+ 3 916 136 438 licues.
Petit axe 4 « o ¢ o o o o« oo . 609 763 924 leues.
Distance aphélie . . . .. ... 3 884 621 8j2 lieues,
Distance périhélie . « . .. ..o . 31 514 596 lieues.

On trouvera aussi, d’aprés les lois de la gravitalion, que les vitesse aphélie et pé=
rihdlic sont telles qu'il suit : ,
Vitesse aphélie , environ 249 lieues

. e L. . par heure.
Vitesse périhélie y environ 30684 lieues

( Note des éditeurs. )
tres—
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———————————— - —
GEOMETRIE.

Li1EU AUX SECTIONS CONIQUES , relatif aw probléme trai:é
& la page 302 du premier volume des Annales.

Par M. LuuiLIER , professeur dé mathématiques & 1’§cadémic
impériale de Geneve.

[a 2o SR ¥ Vo Ul Vi V2 ¥

LE probléme proposé i la page =232 du L°F volume des Annales ,

relativement & deux canaux. rectiligres , a été discuté, d’une maniére
trés—intéressante par M, Tedenat, & la page 302 du méme volume.
Cette discussion m’a”engagé 4 présenter la question sous un autre
point de vue , et airechercher le lieu des points de chacun desquels
abaissant dcs perpendiculaires sur deux droites données de position ,
et menant une droite 3 un poirit donné, 'la somme de ces perpendi-
culaires et de cette droite soit d’une grandcur constante. - .

Lemime. Soient deux droites données de position, et soient. deux
droites correspondantes données de grandeur. D’un point quelconque,
pris sur le plan de ces droites, soicnt abaissces sur elles des per-.
pendiculaires. Soient pris les rectangles de ces perpendiculaires par
les droites correspondantes données de grandeur , et soit prise la somme
de ces rectangles.

On pcut substituer 4 cette somme le rectangle ‘de la perpendiculaire
abaissée du méme point sur une-droite.d déterminer de position par
une droite & déterminer de grandeur de la manicre suivante :

Soient SA et SA/ ( fig.-2 ) deux droites donndes de grandeur et de
position qui se coupent en S. Soit prolongée A’S au-dcla de S d’une
quantité So/=8A’; soit menée A/, et soit coupde cctte droite en deux
parties égales au point Z; enfin soit menée SZ, cette derniére droite

*Tom. I 23
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sera la droite & déterminer de position , et son double sera la droite
A déterminer de grandeur ; c’est-a- d\re que , st d’un point quelconque
M on abaisse sur SA , SA’, 87, les -perpendiculaires NP, MP/, MR ,
on a I'équation SAXMP-4-SA/ X< MP/=28Z><MR. (*)

En particulier, si les droites SA et SA’ sont égales entre elles, la
droite SZ coupe en deux parties égales I'angle ASa’ , et eclle est
perpendiculaire 4 la droite qui coupe en deux parties égales I'angle
ASA/. Tiexpression de SZ est alors SA.Sin.;S ,eton a MP—{—MP/
=>MR.Sin. & S.

Cette proposition n'est qu'un cas particulier d'une propriété géné-
rale du centre des moyennes distances, que j'ai développée dans mes
Elémens danalise , etc. , pag. 52-5q.

Application. Soient deux droites qui se.coupent données de posi-
tion , et soit un point donné de position. On propose de trouver le
lieu des points de chacun desquels abaissant” des perpendiculaires
sur les droites données de position , et menant une droite au point

donné , la somme dec ces perpendiculaires ¢t de cette droite soit donnée
de grandeur.

Soient SA et SA’ ( fig. 3 ) deux droites données de position , se®
coupant en S. Soit C un point donné de position. Soit M un point
duquel on abaisse sur SA et SA’ les perpendiculaires MP , MP/,
et on meéne la droite MC. Que la somme MP4MP/4MC soit
donnée de grandeur; on demande le liea du point M?

Par le point S soit menée la droite 84 qui divise en deux parties
égales langle de suite de V'angle A’SA. Soit aussi MR perpendicu-
laire & SZ. Par le lemme précedent MP—-MP/=2MR.Sin. 2 S ; done
la somme 2MR.S5:n.; S4-MC: est donnée de grandeur. Soit SD la

s

) En effet, en prolongeant $7. d'une quantité ZS=78, et menant S’A et &/,

la figure SAS/a’ sera un parallélogramme, et couséquemment 88/ pourra étre considérée

comme représentant en grandeur et en direction la résultante de deux forces, repre-

sentées en grandeur ct en direction par SA et Sa’, Alors , en considérant le point M
comme le centre des momens , on devra avoir en effet I'équation ci-dessus

( Note des éditeurs, )
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droite qui divise @i+ deux parties égales 'angle ASA% , et sur SD
soient aba'ssees less perpendiculaires CB et MQ.

Premiére supposition. Que la somme donnée soit 2SB.Sin. =S, On
aura 2MR.S772. - S4-MC=28B.5/n. ; S d'ott MC=2(SB—MR).8/2.18
=2(SB—QS.8:n. 2 S=2BQ.S/n. 2 8.

1.° Soit 28/7.28=1 ; ou que l'angle S vaille le tiers de deux droits
(fig. 3); on aura MC=BQ; partant le lica du point M est une
droite donnée dc position , menée par C parallelement & celle qui
divise I'angle A/SA en deux parties égales.

2.° Puisque MC. (fig. 4 ) n'est pas plus petit que BQ; 28in. 7 S
n’est pas plus petit que l'unité, ct partant 'angle S ne peut-pas étre
plus petit que le tiers de deux droits, Soit donc 28:2.:S>1; on a
MC:BQ=28:n.;8:1.Le licu des points M est donc une droite menée

1
2S8in. 18"

Seconde  supposition. Que la somme donnée soit différente de
28B.S5in. 2 S ; soit cette somme égale & 2SD.Sin. £ S,

par C et rencontrant SB sous un angle dont le cosinus est

Puisque 2MR.Sin. 2 S4+MC=28D.Sin. 1 S,
on aura MC=2DQ.5/n. : §
ou MC:DQ=2S8:n. : S:1.

1.° Soient 28772.25=1 ; on aura MC=DQ. Ainsi le lieu des points
M estalors une parabole dont C est le foyer , ct dont la dircctrice
est la perpendiculaire élevée du point D & la droite SB.

2.° Soit 28/n.:S <1 ; on aura aussi MC<DQ ; et le rapport de
-MC a DQ scra un rapport constant. Le lieu des points M sera donc
alors une ellipse ayant le point C pour un de ses foyers et dont
la directrice correspondant a ce foyer sera la perpcndlculalrc élevée
du pomt D 4 la droite SB.

° -Soit enfin 2877.28>1 ; on aura aussi MC>DQ, et en rapport
constant, Lie lieu des points M sera donc une hyperbole dont le
point C sera l'un des foyers et dont la directrice correspondant a ce
foyer sera la perpendiculaire élevée du point D & la droite SB.
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Remargue I.On peut substituer aux droites dont on prend la somme,
la somme de leurs rectangles par des droites données.

Remarque I1. On peut aussi généraliser cette recherche , ct I'étendre
4 un nombre quelconque de droites données de position , qui partent
ou non d’'un méme point ; vu que le lemme sur lequel la proposition
repose , s’¢tend 4 un nombre quelconque de droites données de position
sur un plan.

Remargue III. Aux droites données de position sur un plan, on
peut substituer des plans donnés de position , qui se coupent ou non
en un méme point; vu que le lemme sur lequel la proposition est
fondée , s’étend a4 des plans donnds de position. ( Voyez louvrage
déja cité, pag. 150-155). Le licu cherché dans I’espace est un plan
ou une surface de révolution du second ordre.

Remarque 1V, Comme la comparaison des méthodes est un des
points les plus importans dans les sciences de raisonnement, je crois
devoir ajouter ici le procédé fondé sur la doctrine des coordonnées.

Que les équations des droites donndes soient,

2Cos.aySina=d , 2Cos.«/4-ySin./=d’ ;

que les coordonnées du point donné soient @ et 43
que les coordonndes du point cherché soient z et y.

Les perpendiculaires abaissées du point cherché sur les droites
données sont,

2Cos.a4ySin.e—d , 2Cos.a/+ySin.x~d’ ;

La distance du point donné au point cherché est

vV (@—a)y~4y—0b)* ;
soit enfin s—(d--d”) la somme constante donnée , I’équation du licu
géométrique des points M sera

2(Cos.a4-Cos.e/j~ty (Sin.a+-Sine’)y/ \@—a)* 4y —0)* =s.

Si Ton désigne par ¢ I'angle des deux droites donndes , cette ¢qua=
tion deviendra :



SECTIONS CONIQUES. 171
2xCos.§¢.Cos.§(a+a')+2_yCos.{-¢.Sin.§(a-}-al)+\/(x—mgm ;

d’olt on conclura, en transposant et quarrant
¢ s*—4sx Cos. 19.Cos. H{at-u)
—4sy Cos. 2¢.Sin. ;(+ta’)
() 4y =by={ —F8ryCos. i0.5in. 2(eto/)Cos. (am-u')
~+-422Cos.*29.Cos.*2(+~+)
V' 4y*.Cos ie.Sin H(a4w) ;

ou en développant et ordonnant
@ { 4C05.220.C08.% (4 o)1}
82y Cos.*20.Sin. (a4-a’).Cos.:(a-a)
+ 7 {4C0s 20 Sin Y ebw)—1 } = ' (@),
—2x {a—zs.Cos.§¢.Cos.§(u+u/) }
2y §{b—25.Co5.;0.8in.2(a4o’) }

Remarque V. Que le point cherché doive étre situé sur la cir-
conférence d’un cercle donné dont le point donné est le centre ; la
somme des perpendiculaires abaissées du point cherché sur les droites
donndes de position sera susceptible de limites, soit en grandeur,
soit en petitesse ; et on déterminera ces limites comme il suit.

Du point donné soit abaissée une perpendiculaire sur la droite
qui divise en deux parties égales l'angle de suite de langle S;les
peints dans lesquels cette perpendicalaire rencontrera la circonférence
du cercle , seront les points auxquels répondront la plus grande et la
plus petite valeurs des sommes de perpendiculaires abaissées sur les
droites données de position.
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ANALISE.

Remarques relatives & la formule logarithmique qui se
trouve & la page 70 de ce volume ;

Par M. SERvoIs , professeur de mathématiques aux écoles
d'artillerie de Lafere.

[ Via Vlo Vi Ul Vo VR Vio Vo Uo Vo ¥
A MM. LEs REDACTEURS DES ANNALES ;

MESSIEURS ,

EN cherchant 3 me démontrer, d’une maniére purement élémentaire, la
formule donnée par M. Dubourguet & la page 70 du 2.6 volume des
Annales , il m’a paru que cette formule était entachée d’une petite
inexactitude que j'ai cra nécessaire de faire remarquer, et dont j’in-
diquerai la source , apres avoir exposé bridvement le moyen fort simple
que j’ai employé pour parvenir & la formule exacte.

Soit la série

3 LR 2n-1 ! 2n-+1
y+_}y1+;ya+“+__l__}/ -+ y -+ +

_2n—I 2n--1

Si on la multiplie par 1—y?, le terme général du produit sera

2

—— e Ap AN
(zn—x)(zn-{-l)y ?

en sorte qu’on a

§y+§y3+%)’3+------§

1—y* :y—-—z—; y3——- :2—_-)‘5-——-;3—_y7—‘.... H
1.3 3.0 3.7



LOGARITHMIQUES. 179

mais , dans le systéme de logarithmes de Neper, on a aussi

Formant le produit de ces deux équations, Uéquation résultante de-
P q

viendra , par la suppression de la série commune 2 ses deux membres ,
et la division par 1—y?

Hy\N__2 __..2_ 5 T
1<I—y —I—yzg y y ' %

Posant alors

14y \ a—1 2 (x41)2
1—y X1 ’ 1-—_73_ 2 '

il viendra

lx—-(x+l)2( L1 2 [ x—1 ( )
T ax (<x+1>—— x+1 x=f-1 —“” )

Formule qui revient a

x=1{ x~}-1 1 (a—1)2 I (x—1) 1 (x=—1)6 .
1 I _—1 = — — Tese .
¥ x { 2 1.3 (x4-1) +3.5 (x4103 5.7 (x~f1)° + ] g

La formule donnée par M. Dubourguet est

1 x—1 g a1 1 x—1)2 1 x-——t x-—-l) +
X = — — — — see
X Q 2 x~-1 x+! 57 \x41
et son calcul est exact jusquau bout; de maniére que lerreur ne
peut venir uniquement que de ce que , dans la substitution de la valeur

223 . L. (@e—1)3 (x—1)3
, il aura sans doute écrit

— ———, au licu de .
Vi4-z2 22 (x4=1)2 22 (x1)
11 est facheux, au surplus, que cette formule doive avoir la forme
> ptus, q
que je viens d’indiquer , attendu qu’elle perd ainsi un peu de sa
convergence.

Agréez , Messieurs , etc.

Lafére, 2 octobre 1811,
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GEOMETRIE.

De Uinscription du quarré aw triangle , et de celle
du cube au létraédre ;

Par M. FErrioT , principal du collége de Baume.

[a. T Vi Vi ¥io Vb W Vo V1

I UN quarré ayant quatre angles et un triangle ayant sculement
trois cOtes 3 la premiere de ses figures ne saurait étre inscrite a la
scconde a moins que deux de ses sommets ne scient situés sur un
méme coté du triangle ct que conséquemment un coté de la premiére
figure se trouve appliqué sur un coté de la seconde.

Mais , d’autant que le coté du triangle avec lequel doit se con-
fondre un coté du quarré a inscrire peut ¢tre cheisi de trois manieres
différentes , on voit que le probléme a, en général , trois solutions.

_Entre les diverses méthodes que 1'on peut indiguer pour inscrire
un quarré & un triangle , la suivante parait devoir meriter la préfeérence ,
tant & cause de sa simplicité que parce qu’elle peut étre facilement
étendae 3 linscription da cube au tétracdre.

Soit ASB ( fig. 5 ) le triangle proposé ; soit AD le cété de ce
triangle sur léquel on veut que repose un coté du quarré a inscrire
et soit A’B/D/E’/ ce quarré. Sur AB, comme coté, soit consirzit un
autre quarré ABDE ; les triangles ASB et A/SB/ étant semblables,
les pentagones ASBDE et A/SB/D/E/ doivent I'étre aussi, d'ou il est
aisé de conclure que le point E/ doit étre sur la droite SE.

La construction se réduit done a ce qui suit: A 'une quelconque
A des extrémités de AB soit clevée a cette droite du coté opposé
au triangle, une perpendiculaire AE égale 4 elle; en menant SE,
son intersection E/ avec AB sera I'un des sommets du quarré cher =

ché , et alors le probléme pourra étre considéré comme résolu.
1L
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II. Un cube ayant huit sommets , et un tétracdre ayant quatre faces
seulement , mais qui, trois & trois, concourent en un meme point ;
il est impossible que les huit sommets d'un cube inscrit & un tetrae-
dre soient distribués deux a deux sur les quatre faces du tetracdre.
D’un autre coté, il est aisé de voir que trois des sommets d’'un cube
ne sauraient étre sur une des faces d'un tétraédre, dans lequel il
est inscrit, sans qu’'un quatrieme sommct soit aussi sur la méme face
du tétraédre , et qu’alors cctte face n’en peut recevoir un plus grand
nombre ; et, comme alors les quatre sommets restants doivent étre
distribués sur trois faces seulement, l'une d'clles devra en contenir
deux, et contiendra conséquemment une des arétes du cube.

Lors donc qu’un cube est inscrit & un tétraddre , 'une des faces
du cube doit se confondre avec le plan de 1'une des faces du tétrae-
dre , et la face opposée de ce cube doit étre un quarré inscrit a la
section faite au tétraédre par le plan de cette face.

Or, la face du tétratdre qui doit recevoir une des faces du cube
peut étre choisie de quatre manitres diflérentes, et, dans chaque cas,
cclle des trois autres faces du tétraédre qui doit contenir une des
arétes du cube, peut étre choisie de trois maniéres ; ainsi, on peut,
en géndral , inscrirc & un tétra¢dre douze cubes différcns.

Cela posé, qu'il soit question d’inscrire un cube au tétratdre SABC
( fig. 6 ), de telle maniére que la face ABC du tétraedre contienne
une des faces du cube, ct que la face ASC du tétratdre contienne
une des arétes de ce cube.

Soit D/E/F/G/H/I/K/L/ le cube demandé, dont la face H/I’K/L/ soit
sur la face ABC du tétraédre , aréte D/G’ sur la face ASC de ce
tétra¢dre , et enfin les sommets E/, F/, sur les faces SBA, SBC,
respectivement. Soit joint le point S aux peints D/, E/, ¥/, G/,
par des droites se terminant en D, E, F, G, au plan de la face
ABC; il est aisé de voir que ces points seront les sommets d’un quarré
DEFG inscrit & cette face. Sur ce quarré, et du coté opposé au té-
traédre soit construit le cube DEFGHIKL. ; & cause de Ja similitude
des pyramides quadrangulaires SDEFG et SD/K/F/G/, ces pyrami-

Tom. 1I. 26
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des augmentées des deux cubes formeront deux polyddres semblables;
d'ou il est aisé de conclure que , si 'on meéne SI, cette droite contiendra
le point I,

La construction se réduit donc 4 ce qui suit: soit déterminé (I)
le point D de AC sur lequel doit étre situé I'un des sommets du
quarré inscrit au triangle ABC ; soit menée DE, perpendiculaire 8 AG
et se terminant en E 3 AB; soit ensuite élevée au plan de ABC,
par le méme point D ,une perpendiculaire DI égale & DE ; enfin soit
mence SI coupant en I’ la base ABC; ce point I/ sera 'un des som-
mets du cube cherché ; et, ce sommet étant ainsi déterminé , le pro-
bléme pourra étre regardé comme résolu,

QUESTIONS RESOLUES.

Démonstration du théoréme énonce ¢ la page gb de
ce volume ;

Par M. TEpENAT, correspondant de la premiere classe de
I'Institut , recteur de lacadémie de Nismes.

L Vo Vi Vo Vg Vo W, Wo W Vo Vo L V]
A MM. LEs REDACTEURS DES ANNALES ,

TIESSIEURS ,

JE viens de recevoir le 3.° numéro du 2.™® volume de vos Anna-
les. Pour me distraire un moment de mes occupations ordinaires, je
I'ai parcouru, et je me suis arrété sur le théoréme d’analise que 'on
trouve énoncé & la page g6. La démonstration n’en sera pas difficile
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pour ceux A qui le calcul des differences est familier. Je me conten-
terai d’en indiquer la marche, sans entrer dans aucun detail.

On sait que y, ¥y, %2 9835000 ¥y, désignant les ctats succes-
sifs d’une fonction y dune variable 2, on a géneralement

n n—1 n n—1 n—2

n n
A-y:yll_—l_yu-l_‘—_ T)‘u-l——’ : .‘——.Vn~3+-u<A)

1 ) I 2 vl
Soit

y=a",
et supposons que z prenne successivement des accroissemens égaux
désignés par Ax; on aura
¥ =fa+ Da)",
y,:{x—i—zAx)m s
Yuor =4 (n—2 425" ,
Yooy ={rt-(n—1)Aa}"
Y. =frdndal” .

Substituant donc dans ’équation (A), il viendra

Ay =t nAaf"— 2 faot (n—1) Az)" 4 = T frp (i—2)Aal" -

2

équation qui, en y supposant n=m , se change en celle-ci
Am _— A m m. A m 7_71_ m—T, +/ "’\A wm N
)f_-{x—}-m a3 —-:(x+(m-—-1) x4 - le(m—2)Aa " (B

Mais , d’un autre coté , d’aprés la valeur y=am, et I'égalité des ac-
eroissemens de la variable independante z, il est connu qu'on doit
avoir

Amy=1.2.3.4......mAz" (*) ; (C)

(*) Cette proposition n'est qu'un cas particulier de la suivante :
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on aura donc, } cause de l'équation (B);
o Az ={x4mAa" L A am_y mom—t \Ax™
1.2.3 cwmAz" ={x4-mAa} —--I-kx—i-\m-—l,'Ax; +T - {t-(m—2)Az"=.... ; (D)

équation qui, en y faisant #=(z—m)Ax , et divisant ensuite ses
deux membres par Aaz™ devient

« Si dans une fonction rationnelle et entitre, telle que
Ax"Bx™ - Cax™ = o -Gx-+-H (M)

» on substitue pour x les termes consécutifs d’'une progression par différences dont
» la raison soit & ; les résultats des substitutions formeront une suite dont les m.¢mes
» différences seront constantes et dgales a

1.23 .0 00... m A7,

Cette dernicre trouvant une utile application dans la recherche des Limites des
racines incommensurables des équations numériques , nous croyons convenable d’en
présenter ici une démonstration générale purement élémentaire.

Supposons qu'elle soit déja démontrée pour toutes les fonctions des degrés infé~
rieurs a m , et soit k 'un quelconque des termes de la progression des nombres 4
substituer dans la fonction (M) ; le suivant sera k==& ; exécutant donc la substitu-
tion de ces deux termes, et prenant la différence des résultats ; il viendra

mAs/}m-'-;-"’—:-‘ agzb’+md3 ' (N)

tel est donc le terme général des premitres différences de la suite dont il s'agit , et
on en conclura ces premicres différences, en y substituant successivement pour k la
suite k4-3, k423, k<4-38,....; mais cette suile étant une progression par dif-
férences , dont la raison est 8, et la fonction (N), dans laquelle il faut la substituer,
élant une fonction entiére et rationnelle du degré m—1, dont le premier terme a
pour coefficient m.dd ; il résultc de lliypothése que les résultats des substitu-
tions , c’csi-a-dire, les premiéres difféiences Ce la fonction (M) formeront une suite
dont les (n—1)emes diliérencés, lesquelles seront par conséquent les m.S™*¢ dif-
férences de la fonclion (D) seront constantcs et égales &
1.2 cv e n—1)0Kom ARSI =1,2.3 ..... mAI™,

Il est donc prouvd, par ld, que la proposition serait viaie pour une fonction
du digre m, sio e dtait vraie pour une foncticn du degrd m—1. Or il est trés-
facite de sc conva'neie gu’elle est vraie pour les fonctions des deux ou trois pre=
micrs degiés, dot il faut conclure quelle est géndrale,
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m —
123000 . m=2"— (z—1)"} Zu(z—z)”’-. 3
I 1 2

faisant , dans cette derniere , z=m-}1 , on obtiendra celle qu’il
s’agissait de démdntrer. (*)

Agréez , Messieurs , etc,

Nismes , le 2 septembre 1811.

Sur les différences des ordres successifs des puissances
semblables des termes d'une progression arithmeétique;

Pour servir de réponse & la méme question ;

Par M. LuviLier , professeur de mathématiques  Tacadémie
impériale de Geneve.

[a Ja Th Vo Ml S e Vo ¥

LE théoréme algébrique proposé & démontrer 3 la page g6 du
2. volume des Annales , 'peut étre énoncé comme 1l suit: Les
différences de lordre m.*™¢ des puissances m.*™° des nombres
naturels successifs sont une quantité constante ; savoir : le pro-

On pourrait prouver, plus généralement, que si , dans une fonction entitre et
rationnelle du degré m , on substitue les termes d'une suite dont les n.€"M® di-
férences soient constantes , les résultats des substitutions formeront une suite dont
fes mn.t™ différences seront constantes,

{*) M. Servois , professeur de mathématiques aux écoles d'artilleric de T.afére, a
aussi adressé aux védacteurs des Annales une démonstration de cetle formule ; mals
elle ne differe en rien de celle de M. Tédenat,

( Netes des éditeurs. )
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duit continuel des nombres naturels depuis lunité jusqu'd I'expo-
sant m.

Cette proposition appartient A la doctrine des différences finies ,
qui sert d’introdaction aux calculs supérieurs. Je I'ai demontrée dans
mon ouvrage intitalé : Principiorum calculi differentialis et integralis
expositio elementaris. En travaillant de nouveau ce sujet, & l'oc-
casion de la demande faite dans les A4nnales , j’ai établi la loi générale
des différences de tous les ordres des puissances semblables des termes
successifs d’une progression arithmétique. Le théoréme proposé devient
alnsi un cas tres — particulier de cette doctrine genérale,

§. 1.

Pour abréger et poar faciliter le développement de ce sujet , je
vais d’abord .établir quelques symboles.

Je désignerai par S P, , [.P,, P,y fPysei P, , [P,
les sommes des produits de 1, 2, 3, 4,.... n—1, 1, dimen~
sions , faits avec des lettres proposées et leurs pflissances.

Les lettres proposées étant A, , A, , 4, , A, ,
produits de 2 dimensions, faits avec ces lettres determinées , sera
exprimée comme il suit: /P, A,....4,.

Que les lcitres qui composent ces produits soient au nombre de

la somme des

deux seulement; on conservera cette symbolisation , en supprimant
les points mis entre ces lettres. Ainsi Pexpression [.P,.4,A4, est
celle de la somme des produits de 2 dimensions , faits avec les deux

lettres A, et A4, (*).
§. 2.
Sur les différences premicres.

Soicnt A et A’ decux termes successifs d’une progression arithmé-
tique , des termes de laquelle oa prend les 7.emes puissances; et les -
differences premiéres de ces s emes puissances : on aura

(*) Ces sortes de fonctions ont déja ¢té considirees ¢ uue manicre spéciale par
M. de Wronski; ¢ Voy. son Introduction & la philosophie des mathématiqyues,
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A d" =l =AY HA A A A o d A STATY
3 1 2 z 2 2 : 3 3 3 E I § |4
=(d —A)fP. AdA.
3 H m-1 3 I

Savoir: un terme des différcnces premiéres des puissances m.emes des
termes d’une progression arithmétique , est le produit de la diffé-
férence constante des termes de cette progression par la somme des
produits de 7z —1 dimensions , faits avec les termes dont on prend les
différences premieres des puissances.

§. 3.
Sur les differences sccondes.

Soient 4 , 4 , A, trois termes successifs d’une progression
) 2 3

arithmétique , des termes de laquelle on prend les 72.°™¢ puissances ,
et les différences secondes de ces puissances , on a , par ce qui
précede ,

m

A —Ad =4 —A MP.A4d,

pag. 65 ) il les désigne par la caractéristique hébraique ( Aleph ) ; ainsi, par
exemple , la fonction

a*=b2d-c2-ab4ac-f-be
que M. Lhuilier désigne par
S.P,.abc,
est désignée par M. de Wronski ainsi qu'il suit :
N latb4c]? ;
de manitre qu'en général
S P’.nabc oo k=2 N (oo s K™

( Note des éditeurs. )
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m m
14 -.«'4 = (‘4 "".14 )/:P - A A ;
3 T 3 3 m~-1 3 2

d’ou
A" o= (4 — )g SP . AA—fP.AA ;
3 2 T 2 H m=-1 3 2 m.g s 1
m 1 m-2 m-2 m-¥
(A +A4 A+ uit-d 444 )
=<A —A ) 3 3 X 3 2 2
H H :

(A" A At A4 )
3 2 2 1 I

X

2 2
=1.2(A—A) {f.P AAYA P AAASP . A A A
: 1 m-3 3 .t 2 m-3 3 1 2 m-4 3
m-3 m-~ )
veee-A SP . 4444 23
2 1 3 1 )
ou enfn
. m m m
A =24 +A4 =1.2(A4 —A4 )P . 4 .4.
3 2 3 2 I m-2 3 1
Savoir : un terme de différences secondes des puissances 72.5™¢3 des
termes d’une progression arithmétique est le double du produit du quarré
de la différence constante des termes de la progression par la somme des
produits de 72— 2 dimensions,, faits avec les termes dont on prend les diffé-
rences secondes des puissances.

S 4.

Sur les différences troisiémes.

Soient A4, , A, , A, A, quatre termes successifs d’une progression
arithmétique , des termes de laquelle on prend les m.emes puissances

et les différences troisiémes de ces puissances. Ona, parce qui précéde ,
m

A
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3 2

A —2d A =1.2{4d —A V[P . Ard
3 2 4 m-2 3 b 4

A o A =12 —A V[P . A ud ;
3 2 2 1 Mm-2 4

2
4 2

d’out
A3 43— A =10 A __4)25( SP . Aud —[P . 4. 4)
4 3. 2 1 2 1 m-2 4 2 m-2 3 xs
(4=4"")
4 1
(A4 Y P 4 4
4 1 x 3 2
H(A—4 YfiP A A
4 1 2 3 2
=r1a(d, =4, (+eeeieinni..n
(A —A4 YfP . A 4
B 1 m.s 3 2

4( A—d4 YSP . A4 A
4 t m.g 3 2

+( A —A YSP . A 4 ;
k 4 I m-3 3 2

ou enfin

B

A" 34434 —A"=1.23(4 —4 ) [P . A it
2 I 2 b m.3 4

4 3 1

savoir : un terme des différences troisidmes des puissances  772,6mes
des termes d’une progression arithmétique est le produit con-
tinuel des trois premiers nombres naturels , du cube de la dif-
févence constante des termes de la progression et de la somme
des produits de 72— 3 dimensions, faits avec les termes dont on prend les
différences troisiémes des puissances.

dom, 11, 2

-3
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§. 5.

En procédant continueliement de cette manidre , on parvient A
déterminer les différences quatriémes d’aprés la  connaissance des
différences troisitmes, puis les différences cinquiemes , et ainsi de
suite.

En général ; soient A, , A,, 4, w4, , Auyy i n=1 termes suc-
cessifs d’une progression arithmétique, des termes de laquelle on prend les
m.t™*puissances , et les (n~-1)emes différences de ces puissances. Qu’on

se soit assuré qu’on a ’équation

A —""—A +'_' n—1‘4m ——cete. j: _Z_

n I 1 2 n-2

=1.2.3... )z—l)(d —-A) fP o oA wd o,

m-n+1 =n 1
jaffirme qu'on a aussi ’équation
m n I m n In m n In
A ——t/l +—j:-—/1 —~....+~t—A "r‘n+!,4 +A

ntt X n I 2 g 1 3

=1.2.3..n(4d —-A )fP A e A .

m-1t p+1 1

En effet, des deux équations supposées vraies pour les termes
A iec 4 et A wee. 4 , on tire

n+1I 1 n T
m n+-1 nd1n ™ —ndrn ™ 1
A -——-———'14 +——'—'—A e e o —A +n+A +A
PP 2 per I 3

=123 uln—1)( A — A ){ SP . A A—fp . 4 }
2 I n *

m-fn+41 n43 g m-n-1

=r1.23...nA ——-4 ;_/P A . .

m-g Hi—l I

On a douc le théoréme général suivant :

Soit une progression arithmétique des termes de laquelle on prend
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les m.emes puissances et les différences 7.°™¢$ de ces puissances. Un
terme quelconque de ces differences est le produit continuel des nom-
bres naturels, depuis I'unité¢ jusqua n; de la n.f™¢ puissance de la
différence constante des termes de la progression, et de la somme des
produits de m—n dimensions, faits avec les termes des puissances,
desquels on prend les différences n2.™¢%.

En particulier, soit 7e=n; la somme des produits qui forme le
troisiéme facteur est l'unité ; et partant, les différences de 'ordre
m.*™° des puissances m.¢™¢* des termes d’une progression arithmé-
tique sont unc quantité constante : savoir , le produit continuel des
nombres naturels depuis l'unité jusqu'a 7, et de la puissance m.c™¢

de la différence constante des termes de la progression.

Solutions du probléme de statique proposé & la
puage 9b de ce volume ;

Par M. D. ExcoxtrE, professeur, doyen de la faculté des
sciences de l'académie de Montpellier;

Et M. Rocuar, professeur de mathématiques et de
navigation a St-Brieux (¥).

h Vg Vi Vo Wi Vo Wi Vo W W Vo B V)

NOUS allons comprendre ces deux solutions dans une rédaction uni-
que , en faisant remarquer toutefois les différences, trés-legeres dail-
leurs , qui les distinguent,

PROBLEME. Une table horizontole , non pesante , de forme

(*) M. Tédenat a aussi remis aux rédacteurs des Annales quelques notes relatives
4 ce probléme ; elles rentrent , quant au fond, dans les solutions donl en va
rendre compte.
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guelconque., posant, par des points déterminés, sur trofs piliers

verticaux , susceptibles , au plus , de résistances respectivement re~

presentées par ¥, ¥/, ¥/ et quon supposc données ; on demande :
1.° Quel est le plus grand poids que puisse supporter un point

déterminé quelconque de la table ?

2.° Quels sont les points de cette table qui peuvent supporter
un pords donné quelconque P ?

3.° Quel est le plus grand poids que la table puisse supporter ?

4.° Enfin quel est le point de cctte lable qui peut supporter ce
plus grand poids ?

Solution. Soient f, f/, f”, (hig. 7) les points respectifs de la
table ou répondent les piliers dont les forces sont F', F’, F// ; soit
P un poids placé en p , et cherchons comment la pression qu’il
exerce en ce point se répartira entre les trois points d’appui f, /7, f7/.

Pour cela, formons le triangle ff/j//, et , par p et ses som-
mets, menons des droites se terminant aux c6tés opposés en ¢, ¢/, g/
Soit décomposé le poids P en deux autres situés en f et ¢, il ne
s'agira plus cnsuiie que de décomposer ce dernier en deux autres
situés en f7, f”. Mais comme, au lieu de décomposer, en premier
licu , suivant f¢, on pourrait d’abord décomposer suivant f7 ¢/ oun
S g”, il Sensuit qu’on peut obtenir trois expressions différentes de
chacune des pressions excrcéesen f, f7, f/. En les égalant entre
elles , on obtiendra , entre les parties de la figure , diverses équa=
tions qui , par leur combinaison , donneront naissance a plusieurs théd=
réemes de géométrie parmi lesquels M. Rochat remarque le suivant,

PIL G S 1 ey S S S = 1S S s

on peut y ajouter encore celui-ci

Py 4 Py’ rq”
7 T

——

!
Ji

En désignant par ¢, 9/, ¢, les pressions exercées en f, f7, f,
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fespectivement , leurs expressions les plus simples seront les suivantes :

! 4
o=P.PL &=p. L gr=p P .
fq S9! VT
ee sont aussi celles qu’adopte M. Rochat ; mais M. Encontre remarque
qu’a cause des triangles de méme base , en désignant par 7 Paire du
triangle fff , et par ¢,/ , ¢/ les aires respectives des triangles

Sef" s fpf 5 fpf’ s on a

r9 _ & pql _ i/ pql/ . i
ST T g TP

d'od résulte

4 24 fud
d=P.r ¥=P. =, 9/=P.oz ;

et conséquemment
Q. Pt 1,
I. Ces préliminaires établis , si le point p est donné , et qu'on

demande la plus grande valeur qu’il soit possible de donner 3 P,
eette valeur sera limitée par les trois inégalités

*LF, LF, ¢ EF,

ou
PLcF Pl PL <y
;< y '5,'< s -,f,'< N
GU encore

T
PLFL,  P<RL, PP,

!

le signe < n’excluant pas P'égalité , et deux de ces inégalités étant
ndcessairement comportées par la troisitme, Ainsi il faudra prendre P
égal 3 la plus petite des trois quantités
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T T T
F' - b Fn/—- 9 .F-//-"— .
t t/ t

II. On peut supposer , en second licu, que c’est le poids P qui
est donné , et qu’il s’agit de déterminer quels sont tous les points
p de la table qui peuvent le supporter. Dans ce cas , les mémes
inégalités doivent encore avoir lieu, & la fois.

Si T'on désigne par &, &/, d’, les distances respectives du point
p aux droites f7f7, ff, ff’, et par D, D/, D", les distances des
points f, //,  f”, aux mémes droites; & cause des triangles de mémes

bases , on aura

] a i V4 P2 ar
TS5 TS ToD

substituant ces valeurs dans les inégalités ci-dessus, on en tirera

¥ ¥ 2 Fn
— ' I . — 1 DI — .
d&<D = > d' <D = d’"< D =
- A des distances de 7/, ff, ff ( fig. 8 ), respectivement éga-
F R Frn . . .
les & D. - D, - L. - et du cété de l'intérieur du trian-

gle , soient mendes des paralleles m/m/” , m/”m , mm’ a ces cotés. Le
point p scra assujéti, par la premiére conditicn a étre enire j7/7/ et
m’m’ , par la seconde a étre entre f”/f ct m/”m , et enfin par la
troisitme & étre entre ff7 et mm’. Ainsi on ne pcurra prendre pour

le point p que I'un de ceux du triangle mm’/m’ (*).

(*) Nous saisirons cette occasion de remarquer qu'en général , de méme que I'équa-
tion y==ax-4-b exprime tous les points d'unc dioite indcfinie, tracée sur un plan,
les inégalitds y>ax4b, y Lax4-b expriment, 'une tous les poiats du plan de cette
droite qui sont situés au-dessus d’elle, et I'autre tous les points de ce plan qui sont
situés au-dessous. De méme des deux indgalités x2~y2<r?, x24-y2>r2, la premicre
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8i le triangle mm/m// , au lieu d’étre tourné en sens inverse du trian-

gle fff", était tourné dans le méme sens que lui, le probléme se-

rait impossible , puisque alors le point p serait assujéti & se trouver

a la fois dans les trois espaces déterminés par chaque coté du trian-

gle mm/m/’ et par les prolongemens des deux autres au-dela de
celui-ci.

I1I. Quant au plus grand poids que la table puisse supporter, il
-est clair qu’il ne saurait surpasser la somme des résistances ', F’,
F7, puisque , dans ’hypothése contraire , I'une au moins de ses com-
posantes surpasserait la résistance qui lui correspondrait.

IV. Ce plus grand poids doit donc étre égal & F—-F/—-I", ct
il est aicé de déduire dece qui précéde, qu’il ne peut étre appliqué
qu’en un point unique qui n’est autre que le centre commun de gra-
vité des trois forces £, F’, F". Alors aussi le triangle mm/m/ se
réduit 4 un point.

M. Encontre termine par observer que, quand méme la table sc-
rait supposéc pesante, le probleme n’en serait pas pour cela plus
difficile , pourvu que l'on connuit son poids et son cenire de gra-
vité ; il est clair, en effet, qu'en décomposant ce poids en trois
autres appliqués en S /5 f", et prenant seulement pour F', F/, F/,
non les résistances des piliers , mais les exces de ces résistances sur
les portions du poids de la table qui leur correspondent, le probléme
se trouverait réduit au cas ou la table est sans pesanteur.

exprime tous les points d'un plan qui sont intérieurs & un cercle, et la seconde tous
ceux qui lui sont extérieurs.

Draprés ces considérations, qu'il est facile d’appliquer a I'étendue & trois dimen-
sions , il est aisé de voir qu’il nest aucune portion d’étendue limitée , en tout ou en
partie qu'on ne puisse parvenir & exprimer analitiquement, par un systéme d’équa-
tions et d'indgalités considérées comme ayant lieu 4 la fois; ainsi, par exemple, ua
arc de cercle avant son centre a l'origine sera exprimé par le systeme

yoax+b , y<Ldx-fb , acrfyi=r2
( Note des éditeurs. )
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w

QUESTIONS PROPOSEES.

Probléemes de Géometrie.

1. A un polygone donné, inscrire un autre polygone de méme
nom dont les cétés soient respectivement paralleles & un méme nombre
de droites données de position ?

II. Trouver le plan sur lequel projetant orthogonalement un trian-

gle donné , sa projection soit un triangle semblable & un autre triangle
donné ? (*)

Théoréeme de Géometrie.

Dans tout quadrilatére , plan ou gauche , la somme des quarrés des
dcux diagonales est double de la somme des quarrés de deux droites qui
joignent les milieux des cotés opposés.

(*) Ce probléme se trouve résolu , pour le cas particulier ot la projection doit
étre un triangle équilatéral , dans la Correspondance sur I'école polytechnigue ; vom. 11,
n® 1.7, page 20,
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PUISSANCES DES POLYNOMES. 1

D
~1

ANALISE ELEMENTAIRE.

Becherche directe du terme ge’ne’z‘al du deéveloppement
duné puissance quelconque d'un polynome ;

Par M. GERGONNE.

[o Vi VB O Vi, Via o S Vi

NEWTON a donné, pour le développcment d'une puissance quel-
conque d’un binome , une formule qui, 4 raison de son importance
et de la multitude d’applications dont elle est susceptible , doit étre
considéréde comme un des points fondamentaux de l'analise algébri-
que. Ce grand géomeétre ne parvint a cette formule, résultat de ses
premicres recherches , que par une simple induction ; et Clairaut est
le premier, je crois, qui ait tenté d’en donner une démonstration
proprement dite. On a ajouté depuis & cette démonstration quelques
perfectionnemens tendant & la rendre plus rigourcuse ; mais clle est
demeurde la méme quant au fond ; ct tous ceux qui, dans ces der-
niers temps , ont écrit des élémens d’algebre ont pensé ne pouvoir
rien faire de plus convenable que de Vadopter. On a aussi étendu
la formule de Newton au-développement ‘des puissances des polyno-
mes d’un nombre de termes quelconques; et on a prouvé enfin que,
bien que les raisonnemens qui y conduisent, supposent essentiellement
que lexposant de la puissance est un nombre entier positif , elle peut
néanmoins étre appliquée, en toute confiance , au développement des
puissances fractionnaires et négatives (*) , et méme & celles dont 'ex~
posant est incommensurable ou imaginaire (**).

(*) Voy. le Complément d'algébre de M. Lacroix.
(**) Voy. les notes & la Gn du 1.6T vol. de U'Introduction au ralcul diffcrers-

Tom. I1I. 28
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Pour suivre donc, dans cette recherche d’analise, la méthode gé-
néralement admise -aujourd’hui ,on est d’abord obligé de déterminer
quelques formules appartenant & la théorie des permutations et des

combinaisons. On forme ensuite divers produits de factéurs binomes
ayant tous le méme premier terme : un examen attentif de ces
produits conduit bientot & faire soupgonner une loi geénérale a la-
quelle ils paraissent devoir étre assujettis, quel que soit le nombre
de leurs facteurs ; et l'on parvient en effet & justifier, par un rai-
sonnement rigoureux , cet apercu fourni par la simple induction.
Supposant enfin que les seconds termes des facteurs multipliés de-
viennent dégaux, et faisant subir au résultat d’abord obtenu les mo-
difications qu’entraine cette circonstance , on arrive ainsi 4 la formule
de Newton, de laquelle on peut déduire ensuite Pexpression du terme
générhl du développement d’une puissance quelcdnque d’un polynome ;
alors , sculement , on s¢ trouve en état d’écrire ce développement
tout réduit. '

Cette marche d’ailleurs trés-rigoureuse , est, comme on le voit,
assez longue et peu natarelle; car, outre quil semble plus direct
et plus élégant de considérer les binomes comme des cas particuliers
des polynomes , que de déduire des premiers ce qui est relatif aux
derniers, la supposition de I'inégalité des seconds termes des binomes
que Von muliiplie,, supposition tout-a-fait étrangeére a la question,
ne peut tendre qu’a en compliquer la solution ; puisqu’en général le
résultat d'un calcul est d’autant plus compliqué qu’il y entre un plus
grand nombre d’¢lémens inégaux. Aussi arrive-t-il que, dans la plu-
part des traités d’algébre; la formation des puissances et I'extraction
des racines des polynomes, au’lieu de suivre immédiatement leur
multiplication et lear division, comme la filiation des idées semblerait
Pexiger, sont pfésentéés "beaucoup plus loin, parce qu’on les fait
dépendre de la formule du Binome de Newton dont, i raison des

tiel @Euler , traduction de M. Labey. Voy. aussi le Calcul des fonctions de M.
Lagrange , lecon 111.°
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longuears et des difficultés qu’entraine sa recherche, on croit deyoir
faire un objet & part, une espce de Lors-d euvre. Souvent méme on
ne dit absolument rien, dans ces sortes d’ouvrages, du développement
des puissances des polynomes de plus de deux termes.

Toutefois, s7il n'y avait, pour parvenir au but, d’autre route qué
celle qui a ¢té tracée par Clairaut, quelque longue et quelque dé-
tournée qu’'elle fut, il faudrait bien nécessairement s’y assujettir. Mais

par une vole plus courte, plus facile et non moins rigourcuse , on
peut parvenir directement au terme général du développement d’une
puissance quelconque d’un pof)'i}onlc, de quelque nombre de termes
qu'on le suppose d’ailleurs formé, il n’y a point de doute qu’alors
cette voiec ne doive étre préférée, et que le développement des puis-
sances d’un binome ne doive étre considéré que comme un cas par—
ticulier du résultat général qu’on auraobtenu.

La méthode que je vais exposer me parait réunir ces avantages.
Ce n’est qu'aprés m’étre assuré,par une expérience de dix années
au moins , qu'elle n’est pas plus au-dessus de l'intelligence des com-
mencans que tant d’autres théories qu’on cst dans I'usage de leur en-
seigner , quc je me suis déterminé a la rendre publique.

Pour ne rien emprurter d’ailleurs; je m’occuperai d’abord de la re-
cherche de la scule formule de la théorie des permutations qui me
soit nécessaire pour parvenir & mon but. Je le fais d’autant plus
volontiers que les .recherches de cette nature ne me paraissent pas

exposées d’une mamure assez nette dans la plupart des ouvrages dcs-
tinds A lensexsnement.

L Soient ¢, 7, c,. ceenny des Tettres toutes différentes les unes
des autres, au nombre de m , et proposons-nous de déterminer de
combien de maniéres elles peuvent étre disposées entre elles, ou, ce qui
revient au méme, cherchons combien elles peuvent fournir de mots
différens, de m lettres chacun.-

Soient, pour cela, désignés respectivement par

Mm7 ]’l[m-l 2 Mm—z,lv.l-tM;, 1W17 Ml’
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les nombres qui expriment combien on peut faire de mots au moyen
des divers arrangemens de différentes lettres au nombre de

My M—1, M—2,0e00s3, 2, I3

on aura évidemment 3, =1.

Cela posé, il est clair que, dans la totalité des mots de m lettres,
chaque lettre devra occuper & son tour la dernigre place, et qu’il y
aura autant de ces mots terminés par 'une quelconque de ces lettres
quil y aura de manitres de disposer les m—1 autres a sa gauche ou,
cc qui revient au méme, autant que m-1 lettres peuvent fournir
de mots différens.

Il suit de la qu'on doit avoir, entre M, et M, ,, la relation
suivante

M, =mM__.;

m

et, comme cette relation est indépendante de la grandeur de 72, on
"pourra derire successivement

M, = mM

m-1 1
Mm-l f':‘(m_‘l)Mw—z ?

L N A N I )

=R
I
-

=

d’ol on conclura, sur-le-champ, par la multiplication et la suppres-
sion des facteurs communs aux deux membres de l'équation produit

Mp=1.23.00us . (m—1)m. (*)

(*) Cetle maniére assez simple et assez nelle de parvenir au but peut étre appliquée
avec avantage 4 une multitude d’autres recherches du méme genre.

Que YTon proposc , par exemple , de déterminer le nombre des mots distincts , de
wn lettres chacun , que Uon peut former avec m lettres données , toutes différentes
les unes des autres > Pour y parvenir , soient d,ésignés respectivement pac

-Zux 2 J‘[! 2 _/1[, > e '*-7”11-: 3 Mu-x ? Mu '
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II. Voila pour le cas ol toutes les m lettres sont différentes les unes
des autres. Concevons maintenant que plusieurs de ces lettres, au nombre

les nombres qui expriment combien avec les m lettres données on peut former de mots
dont le nombre des lettres soit
I, 2, 3,0c.00..n—2, R—1, I

on aura dvidemment 31 ==m. Concevons de plus que les mots de n—1 lettres soient
déja formés; si I'on dcrit successivement , 4 la droite de chacun , chacune des m—(n—1)
ou m—n-1 lettres qui ne s’y trouvent pas, on formera évidemment m—n--1 fois
autant de mots de n letires chacun quon en avait d’abord de n—1 lettres. Je dis
de plus quon formera ainsi tous les mots de = lettres que peuvent fournir les lettres
données , et quon ne formera chacun d'eux qu’une fois seulement.

Cette derniére assertion sc prouve en faisant voir que, si Pon compose au ha-
sard un mot de n letires , prises parmi les m letires données , ce mot doit se
trouver , et se trouver une scule fois parmi ceux qu’on aura formé. Or, soit

gla......dhp,

le mot den lettres dont il s’agit; puisque , par hypothése, on avait,, une fois seulement ,
tous les mots de n—1 lettres , on devait avoir et n'avoir qu'une fois le mot

gla......dh ,

ne différant du précédent que par la suppression de la lettre p ; puis donc quon
a écrit , et quon n’'a derit qu'une seule fois & la droite de chacun, chacune des
lettres qui n’y entrait pas, on a du écrire, et n’écrive qu'une fois la lettre p a la
droite de ce dernier ; on a donc formé l'autre, et on ne 'a formé quune seule fois,
D’aprés ce qui précede , on doit avoir, entre M, et M, , la relation suivante :

v M y=(m—n41)M,_; ;

et, comme celle relation est indépendante de la grandeur de 7, on pourra crire
successivement

M, =(@m—n4-1)M,_, ,
M, _,=(m—n+2)M,_, ,
M, (m—1)M, ,
M, = m

i

e



202 PUISSANCES
de « sc changent toutes en @; il est clair qu’alors tous les mots
olt les autres lettres se trouveront occuper les mémes rangs respec-

d'olt on conclura, sur-le-champ , par la multiplication et la suppression des fac-
teurs communs aux deux membres de I'équation produit,

M, =m(m—1). . ....(m—n42).(m—n-t1).

En faisant , dans cette formule, m=n, et renversant , dans le second membre,
il vient .

M =1.23.¢...001;
n 2

formule des permutations, démontrée dans le texte,

A laide de ces deux formules, il est facile, comme l'on sait, de résoudre cette
question : Combien , avec m nombres donnés, tous différens les uns des autres,
peut-on faire de produits distincts, de n facteurs chacun P Mais M. A. Ollive ,
ancien éléve du lycée de Nismes, est parvenu a résoudre directement cette der-
ni¢re question par les considérations suivantes qui me paraissent assez simples.

Soient représentés respectivement par

P, P, P,.....P_,, P_., P,

les nombres qui expriment combien, avec m nombres donnés , tous différens les
uns des aulres, on peut faire de produits dont le nombre des facteurs soit exprimé

par .
1, 2, 3,000cesll—2, N—1, n;

on aura évidemment P, =m. Concevons de plus que tous les produits de n—1 fac-
teurs soient déja formés , et quon introduise , tour 4 tour , dans chacun d’eux, chacun
des m—n—-1 facteurs qui 0’y entrent pas ; on formera ainsi des produits de n facteurs
dont le nombre sera m—n--1 fois plus grand que celui des produits de n—1 facteurs
quon avait d’abord; je dis de plus que, par ce procédé, on aura formé n'fois chacun
des produits de n facteurs.

Pour prouver cette derniére assertion, il suffit de faire voir quun tel produit ,
composé au hasard, se trouve n fois parmi ceux qwon aura formé : or, clest la
une chose facile ; car soit ce produit

a.&.c... ..g};ﬂf ;

si l'on en dte successivement chacun de ses n facteurs , on formera les » produits
de n=1 facteurs que voici :
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tivement , se réduiront 4 un mot unique : or, il y aura autant de
ces mots, pour un arrangement donné des lettres demeurées inégales,
quil y a de maniéres de permuter entre elles les lettres qu’on sup-
pose étre devenues égales; mais ce nombre est, d’aprés ce qui pré-

bocoiiniini gk,
VNP N R
abecooveeioo. gk,
abeioo. oo gk

lesquels devaient se trouver , une fois chacun, parmi ceux dont il a éié question ci-

A

dessus ; puis donc quwon a du introduire la lettre @ a son tour dans le premier, la
lettre & & son tour dans le second , et ainsi de suite, on a du former n fois le
produit a.b.c.....g.h.kc, et on en peut dire autant de chacun des autres,

D’aprés ces considérations, on doit avoir, entre P, et P,_; , la relation suivante

nP=(m—n—+-1)P,_, ;
et, comme cetle relation est indépendante de la grandeur de », on peut derire

nP, =(m—n+1)P,.,,
(n—1)P,., =(m—n—+-2)P,_,,
Gecteittsarassenenionneny
2P, = (m—1)P, ,
1P, = m 5
d’olt on conclura, sur-le-chamyp, par la multiplication et la suppression des facteurs
eommuns aux deux membres de I'équation produit ,

1.2.3.000. 0 0Py =m(m—1)(m—2)...0s (n—n-1) ,

ot par conséquent
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céde, 1.2.3.....2, et doit conséquemment, dans le cas présent, de-
venir diviseur de la formule ci-dessus; et, ecomme le méme rai-
sonnement est applicable a tout aatre groupe de lettres devenues
pareilles, on peut établir généralement que, si l'on a « lettres pareilles
a a, # lettres pareilles a &, » lettres pareilles a ¢, et ainsi de suite,
de ganiére qu’on ait at-g4rv4...=m, le nombre des divers ar-
rangemens dont ces m lettres scront susceptibles, aura pour ex-

pression

123 0 it i e (M—1)m
?

(A) 120 o0 X120 0 0 oBXI20 00 ¥ Xe o

c’est 13, par exemple, le nombre qui exprime de combien de ma-
nicres différentes on peut écrire, les uns a coté des autres, les

facteurs du monome
®
a“ WP ..

si toutefois on a eteto9d-.....=m.

L. Ces préliminaires établis, qu’il soit question d’assigner la forme
du développement de (a4b~c+-.....~4r )™, ou plutét celle de son
terme général; le moyen le plus naturel de parvenir a ce dévelop-
pement , si l'indétermination tant de 7 que du nombre des termes
de la racine ne le rendait impraticable, serait dc multiplier le poly-
nome a—4b-4-c+4.....4r par lui-méme m-1 fois. Concevons néan-—
moins que Pon procéde de cette maniére; mais que, pour éviter
des réductions qui ne laisseraient , dans les coefliciens des termes
réduits , aucune trace de leur origine , on convicnne, dans le cours
des multiplications de monome a monome qui doivent conduire au
dernier résultat , d’écrire constamment la lettre multiplicateur a Ia
droite du terme multiplicande, tout comme on le ferait si les ex-
posans n’étaiént pas d'usage, et quen outre on ignorat qu’il est
permis, dans une multiplication , d’intervertir 4 volonté l'ordre des
facteurs (*). Alors, comme on n’exécutera aucune réduction, il est -

(* Je dois la premiére idée de ce moyen de démonstration & M. Laverncde qui,

depuis long-temps, en fait usage pour parvenir a la formule du Binome.
L
ase
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aisé de voir qu'en désignaut par 7z le nombre des termes de la racine,
le premier produit aura 2 termes de o dimensions, le second en
aura 7’ de 3 dimensions, et aiosi de suite, en sorte que la puis-
sance cherchée sera un polynome homogeéne de 72 dimensions ayant
n™ termes , sans cocfliciens ni exposans , et dont les termes seront
formés de letires prises parmi celles du polynome propesé, et écrites
une ou plusieurs fois.

Je dis présentement que ce preduit contiendra, une fois sculement,
chacun des mots de 7 lettres qu’il est possible de faire, en n'y
employant que des lettres prises parmi celles du polynome proposé,
et répétant chacune d’elles autant de fois qu'on voudra. Soit en ellet
formé, au hasard , un pareil mot, et soit cc mot -

dbba..... gacl ;

d’apres la manidre dont on suppose que les résultats successifs ont
été formds, pour que ce mot ne fit pas partic du dernier produit
ou s’y trouvat plusieurs fois, il faudrait que le mot

‘ dbba..... gac

ne fit pas partie de I'avant-dernier ou s’y trouvat plusicurs fois; par
la méme raison, le mot

dbba......ga

manquerait dans le précédent ou s’y trouverait plusicurs fois, et,
en continuant ainsi, de proche en proche, on serait conduit & cop-
clure, contrairement & I'hypothése, que la lettre & manque dans le
polynome proposé, ou s’y trouve plusicurs fois.

Rendons présentement & chacun de ces termes la forme ordinaire 3
Pun quelconque d’entre eux deviendra

a7 . ..,
avec la condition a-g-4»=......=m; mais il nc sera plus alors
seul de son espéce, d’autant que ceux qui, jusque-li, ne différaient

de lui que par la disposition des lettres , lui deviendront absolument
Tom. II. 29
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semblables ; et, comme le développement renfermait, avant d’avoir
subi la modification dont il s’agit ici, tous: les mots qui pouvaient
&tre formés de cette maniere, et ne renfermait chacun d’eux qu’une
fois seulement , il s'ensuit que ce développement , ainsi modifié,
renfermera autant de termes pareils 4 celui que nous venons d’écrire,
quil y a de manitres de disposer , les uns & c¢oté des autres, les
facteurs dont ce terme cst composé; il faudra donc, pour faire la
réduction de ces termes, n’en derire qu'un seul, et lui donner pour
coefficient la formule (A), & laquelle nous sommes parvenus (II).

Le terme général du développement de (a--b--c—+......~4r)" est

donc

a*bPc¥.....
T2iie X200 ee BXI2 00 0oy Xone

et on en déduira tous les termes de ce développement en y admettant
successivement, pour «, £, y....., tous les systtmes de valeurs en-

titres et positives , y compris zéro , qui pourront satisfaire a la
condition

a+[3+'y+.. cse—172.
IV. Silon suppose actuellement que le polynome a--b—4-c+....~4r

se réduise au binome z-+a, le terme général du développement de
(#~4-a)™ scra simplement

1.23....0..0m

- , ala®
1,230 00 aX1.2,3.... 8

avec la condition «~-g=sm. Soit changé g en n, on aura a=m-—n;
ce terme général pourra alors étre éerit comme 1l suit

m@m—1)(m=—2) ... (m—n-4-1)(m-—n)...3.2.1

-
an xm

B . »
1.2 . 3 .ieien W (m—n).,.321

ou, en réduisant,

m m—1 m—2 m—nt1 L omen
- . - s ses a’a ?

I 2 3 n

cest1d le terme général connu de la formule du binome.
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V. On peut, ‘au surplas, parvenir directement a ce dernier résul-
tat, sans rien emprunter de la théorie des permutations et combi-
naisons, Il suffit, en effet, de formor les premieéres puissances du
binome z~-a pour étre conduit & scupconner que , dans toute puissance
de ce binome, le coefficient d’'un terme quelconque pourrait bien
étre le coefficient du terme précédent multipiié par I'exposant
de z dans ee méme terme , et divisé par le rang qu’il occupe
a partir du premier.

Cette obscrvation une fois faite, il n’est plus question que de
changer en certitude le soupcon auquel elle conduit. Pour cela, sup-
posons que la loi dont il sagit de prouver Iexistence, se soutienne
jusqu’au développement de (z—4-a)" " ; il est aisé de voir que, dans
cette hypothese, en faisant pour abréger

m—1 m—2 m—n-{-1
—— o8 g m— :P Py
1 2 n—I

trois termes généraux consécutifs de ce développement seront

m=n M —n-—1

au+ T ym-n-z

m—n
Pau— lxm~n+P. ”uxm-n- I+P.
7 n X

Pour passer de 13 au développement de (a4-2™, il suffira d’exdcuter
la multiplication par a-fa; or il est aise de voir que le produit de
cette multiplication renferinera les deux termes généraux consécutifs

que voici

m—n m=—n  r—n-d-1 i1, Ml
P. a"a™ 4P . ?
n sl
—+-P 4P m—n
n

lesquels deviennent, en réduisant

m m MN=—T2
P, —aram-ni-P, = . et gmeu=~1
n n n

ct sont évidemment encore assujetfis & la méme loi. Cette loi exis-
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tera donc pour la 7m™° puissance, si elle a lieu pour la (m-1)®°;
et, puisquelle se vérifie pour les premicres, on en doit conclure
qulelle est générale; le terme général du développement de (x4-a)"
-est donc

m
P.’; anpm-n s

ou, en remettant pour P sa valeur,

m  m—1 m—n-1

aﬂxm-ﬂ ;
1 2 n

c’ost-3-dire, le méme que ci-dessus.™

Parvenu ainsi au terme général du développement de (a-fa)m, il
est facile d’en déduire celui du développement de (e-+b-4+cb.... 47",
duquel , par une marche inversc de celle que nous avons saivie
dans ce qui précede, on pourra conclure les diverses formules de la

théorie des permutations et combinaisons. 1l est trés-utile 4 ceux qui

étudient les sciences , d’apprendre & parcourir ainsi, en divers sens, la
chaine des propositions dont elles se composent.

Methode facile pour exécuter le deéveloppement des
puissances des polynomes ; '

Pour faire suite & larticle précedent ;
Par M, THoMAs-LAVERNEDE.
~.\~~-~~~~

1. D.\NS le mémoire qui préctde, M. Gergonne est parvenu,
d’unc maniére simple et élégante, au terme général du développe-

ment d’une puissance quelconque d’un polynome. Je me propase
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. 3 N\ M 1) 3
ici de donner des regles faciles pour effectuer ce développement d'apres
la connaissance de son terme général.

2. 1l vient d’étre prouvé que le terme général du développement

de (at+d4-ct+d+......0" est

1.2.3 001 ciin a0 (M=) (M=1)M

a“bPcvad ., ..
1.2, 2XI.2 . BX1.2. ¢ ¥X1.204 0X oo

avec la condition e~-g4-y~-y=......=m; or, ce ferme peut étre
écrit comme il suit: '

1.2.3, ... a(ad1) . .. (M=—2)(M~—1) -
+ A ) b ...,
L2, eX 1200 BXI20. . X120 0 0% .0

et deviendra conséquemment , en réduisant ,

MmM=—=1) e o on.e. (ade2)(u4-1)
1.2, .. BX 12000 ¥X1a20 .. OX 1o,

b3 d°. .. %,
Mais, par ce qui précede, on a

U M Bty ==y ss s }
il viendra donc, en substituant,

MM—1)(M—2) e+ v s e v o « (M Pfmtym—=0— . .00 F-1)

bReYdd. . (i gF RS
1200 BXI,2 0w ¥XI o« 240000, X -

cc qui fournit la régle suivante :

Le coefficient d'un produit quelconque des lettres a, b, ¢, d,...:
dans le développement de (a-t-b~4-ctd—4-......)" est une fraction
qui a pour numérateur le produit d’autant de termes consécutifs de
la suite m, m—1 , m—2,.... quil ¥ a d'unités dans la somme
des exposans des lettres qui multiplient a, et pour dénominateur le
produit dautant de termes consécutifs de la suite naturelle , a partir
de lunité, pour chaque lettre qui multiplic a, qu'il vy a dunitis
dans Uexposant de cette lettre.

3. Concevons présentement que le développement soit ordonné
par rapport 4 a, et considérons , comme un terme unique , I'ensem-
ble de tous ceux qui sont affectés d’unc méme puissance de cctie
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lettre. Dans le n.™¢ terme, @™+ sera muitiplid par tous les pro=
duits de n—1 dimensions que l’on peut faire avec les lettres 4, ¢,
d,.....; et, dans le (n=-1)™e | gm-n sera multiplié par tous les pro-
duits de 2 dimensions que lon peat faire avec ces mémes letires,
Or, en supposant déja formés les produits de n—1 dimensions que
peuvent fournir les lettres 4, ¢, &, ...., il est évident qu'en les
multipliant par 4, on aura tous ceux de 72 dimeusions qui doivent
contenir cette lettre comme facteur ; et on aurait de méme tous
ceux de 2 dimensions qui doivent renfermer la lettre ¢, en les
multipliant par cette dernitre lettre , au licu de les multiplier par &;-
mais, comme parmi ces derniers, il y aurait des produits qui ren-
fermeraient le facteur 4 et que ceux-ci sont déja determines par la
premic¢re multiplication, il est clair qu’en multipliant par ¢, il faudra
opérer seulement sur les termes de n—1 dimensions qui ne con-
tiendront pas le facteur &; réunissant donc les deraiers résaltats aux
premiers, on aura ainsi tous ceux des termes de 2 dimenvsions dans
Tesquels doivent entrer les lettres & et ¢. Par un sembiable raisonne-
ment on trouvera qu’en réunissant & ces termes les produits par
de tous ceux des termes de »—1 dimensions ¢ui ne renferment ni
b, nic; les produits pare tous ceux quine renfermentni b, nic, nid, et
ainsi de suite, on parviendra & cbtenr tous les produits de 2 dimen-
sions qu’il est possible de faire avec les lettres 4, ¢, &,..... Ncus
d¢duirons de 1a la régle suivante pour former le (z—-1"¢ terme de la
m.™e puissance du polynome a—-b~c4-d—+-......, ordounée par rap-
port & @, lorsque le 7.™¢ terme de cette puissance est déja connu.

- b . .
Multiplicz par — tous les produits des lettres a, b, ¢, ... qui
a
c . 3
entrent dans le n™¢ ierme, par — tous ceux des ces produils qui
a
. d
ne contiennent pas le facteur b , par— tous ceux de ces mémes
a

- - . . . e o
proz]wts qui ne contiennent ni' b, ni ¢, par - lous ceuxr qui

ne contiennent ni b, ni ¢,ni d, et ainsi de suite; enfin , donnez
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a chacun des produits obtenus le coefficient que Iui assigne la régle
prescrite (2).

Cette régle étant générale, et le premier terme du développement
de (a=4b-tc+d=+.....)" étant toujours connu et égal 3 am; il est
évident que son application fera trouver successivement tous les au-
tres; elle suffira donc pour développer (e-d—-c+d+-..... J)™ en une
suite de monomes.

4. Examinons présentement, d’une mani¢re plus particuliere, la
loi que suivra le développement ; et, pour cela, considérons un pro-
duit quelconque BPe7d? ... .. o™ Pv=3 dans lequel, B, v, &, ...
dtant des nombres entiers ou zéro, on ait g4y—s54..... é m. Si
nous supposons la somme g~y—+34-...... constante et égale a n,
quelles que soient dailleurs les valeurs particuli¢res des exposans
By ¥, &ye.ney il est visible que BRc7d. D am sera I'expression
générale des produits des lettres @, b, ¢,.... qui doivent entrer
dans le terme du développement de (e-+b~4-c+d=+.....)" dont le
rang est désigné par p4»—+9—+...... 41 on z—4-1. Or, nous avons
vu (2) que le coefficient de BBcYdP. ....a™ est

I.2.300c00cecenes (M—2)(m—1)m

1200 BXT2 000 ¥X1e2 con OXoene XIa2ee oo (m—n) °

ou ce qui revient au méme

m@m—1)(m—2)... (n41)nn—1)...3.2.1
1200 BRL 200 o X130 ee 0% oo X 1.2, (M —0) °

ou encore
nNA—T1)(N=2) s vrsress 3 2.1 mm—1)(m-=—2) ... ... (n41)
120 AXLe2 0o ¥ XI200 e 0X oo 1.23. 44 .. (In—n) °

et, comme on a évidemment

m(m—1)(m—2) ... (n=1) __ mm—1)(m—2) ... (m—n-}-1)

1.2.3.. . (Mm=—n) 123,000 ’

on pourra écrire encore

n(n—1)(n=—2)......3.2,1 m(m=—=13}(M=—2) .. .. .. (M=n41)
1.2 0 BXL.2 000 X102 10 §Xore 1.23..00..8 ’
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2
d’ou il suit que la formule

123 i i ieiene e 2

534)?(]3 e X

am-t

m m—1  Mme=p-j-r
1 ) 2 n

2000 BXTZ0 0 o« X120, 00X .«

représentera généralement les quantités monomes qui doivent com-

poser le (n=1)™° terme du développement. Or, dans cette expres-
sion, le facteur

m m—1 m—n--1 _—
—  ammtat g s s ¢ Se— (] ’
1 2 n

est constant, et son co-facteur B

!.2.3..-.......-......72 B v &
Ltc?d’ ..,

2400 BXE20 0 o YXI20 000X

qui est-variable, 3 cause des exposans variables «, 8, v,...., est,
d’aprds le précédent mémoire , le terme géndral du développement de
(b4-c+d—+.....)n ; donc le (n-+1)*™° terme du développement de
(a+dtct-d4...... )™ sera

m me—1 m—n-}-1

L= (bfetdt..ya™"

”

et conséquemment , em posant b—4-c4d-...... =s, ce développe~
ment est

m=—-1 OB 7Rl B (2

m+____3dm-;+__ ———S 2 ym= 1+__ _3__534"!‘7._‘—

comme il re’sulte d’aillears du développement de (a+4-5)™, par la
formule du binome.

5. I résulte de ce que nous venons de dire, que, 72 étant un nombre
entier positif , le développement de (a2-4-b—4-c+-.....m, donné par
la regle (3), revient & celui qu'on obtiendrait par Iapplication de la
formule du binome; puis donc qu’il est démontré que cette formule
a lieu quel aue soit Pexposant 7z, il parait légitime d’en conclure
que la regle dont il s'agit, pourra également ¢tre appliquée quel que
soit m2 5 ce qui se vérifie, en effet, pour des cas particuliers. =

6. 1l suit de tout ce qui vient d’¢tre dit 1.°, que p , exprimant

' le
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le nombre des termes du polynome, et m étant un nombre entier
_positif, la somme des coefliciens des monomes qui composent le dé-
veloppement de (2--b—4-c+d—-......)™ est p™, ce qu'on apercoit
dailleurs sur-le-champ , en supposant ¢=b=c=d=.....=1; 2.°
que lorsque I’on connait, abstraction faite de leurs coefliciens , les monomes
qui dc'veat composer le développement de (a+b+4c4d+4-..)", on en
peut déduire ceux qui doivent entrer dans le développement de
(e+b~4c+d..)"*+* , toujours abstraction faite de leurs coefficiens , en
les multipliant d’abord tous par @, puis par 4 tous ccux qui ne contiennent
pas @, puis par ¢ ceux qui ne contiennent ni ¢ ni 4, par & ceux qui ne
contiennent ni @, ni &, ni ¢, ct ainsi de saite ; de maniére qu’il ne
sera plus question alors que d’affecter chacun des termes obtenus du
coefficient convenable..

7. Le sujet que nous venons de traiter nous conduit 4 nous occu-
per de la recherche des formules qui expriment les puissances entieres,
et de degrés déterminés, d’un polynome a~-b~4-c4-d=+......, quel
que soit le nombre de ses termes. Ces formules peuvent étre écrites
d’une manicre fort simple, et les considérations qui précedent, fournis-
sent un moyen trés-facile de les construire.

8.° Tl est d’abord & remarquer que, parmi les termes du déve-
loppement de (@=b+4-c4d—4-.....)", ceux qui ne différent que
par Vordre suivant lequel se succédent les mémes exposans «, g,
%s 8 +e-euy tels, par exemple, que les termes a“bﬁgy...., albc”. ...,
a”b%P...., .....doivent étre affectés des mémes coefficiens , ainsi qu’il
résulte de la forme assignée au coefficient du terme général,” dans
le mémoire précédent, etcomme on peut aussi le déduire, a priors,
de ce que (a+b-c4d+.....)™ est une fonction symétrique des
quantités a, b, c, d,.....

Cela posé, désignons par («gys.....) la somme des produits des
facteurs a, &, ¢, d, et de leurs puissances, dans lesquels les ex-
posans sont «, 8, v, 3, ... quelles que soient d’ailleurs les lettres que
ces exposans affectent. Dans le développement de (a—b—4c+d+...)",
il y aura, outre la classe de produits comprise dans I'expression (a8y.....),

Lom. 11. 30
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autant d'autres classes de produits qu'il y aura d’autres maniéres de satis-
faire 2 la condition a—~g—+»—4p~4....=m avec des nombres entiers positifs
ou nuls, cest-a-dire, autant. qu'il y aura d’autres maniéres de former
le nombre m, par addition, avec des nombres compris dans la suite
naturelle, depuis 1 jusqu’d m inclusivement. Nous voila donc con-
daits d’abord & cette question: trowver toutes les maniéres de former
par addiiion de nombres entiers posiiifs un nombre donné m?
Nous indiquerons ici, pour résoudre cetie question, deux régles
fort simples; et d’abord, pour fLixer les idées, nous supposerons que
le nombre 7 quiil s’agit de former par addition , est 8. Alors toutes
les manieres de le former seront comprises dans le tableau suivant,
dans lequel les chiflres écrits les uns & c6té des autres, sans au-
cune interposition de signe, doivent étre considérés comme séparéds en-
tre eux par le signe -~, et conséquemment comme devant étre ajoutés
ensemble pour former le nombre demandé,

FAIIIIII, IIITIIE2, 11F122, 11222, 2222, 224, 26, 8.
111113, 11123, 1223, 233, 35

11114, 1124, 125, 44
1133, 134, 17

1115, 116,

La formation de ee tableau présente peu de difficultés. Sa premiere
eolonne verticale & gauche n’a qu’un seul terme, et, quel que soit
le nombre proposé, ce terme est toujours compesé d’autant d’unités
que ce nombfe en contient. Quant aux autres chlonnes , elles se
déduisent successivement les unes des autres par la régle que voici:

Pour former la colonne du rang v, changez deux unités en 2
dans les termes de la (r—1)™° colonne , trois unités en 3 dans
ceur de la (r—2)™° qui ne renferment pas 2, quatre unités en 4
dans ceux de la (x—3)™° qui ne renferment ni 2 ni 3, et ainsi



DES POLYNOMES. 215
de suite, jusqui'a ce que yous soyez parvenu & la premiire colonne
dans lagquelle vous changerez v unités en r.

Cette regle étant générale pour toutes les colonnes qui suivent la
premicére , ct celle-ci étant toujours connue, il est clair qu’elle fera
trouver successivemnent toutes les colonnes qui doivent composer le
tableau, et par conséquent toutes les manicres de former, par addi-

tion, le nombre donné.
On peut encore disposer le tableau des diverses maniéres de former

Fl

le nombre 8 dans l'ordre suivant.

IITIIIII, XITIIII2, FII122, 11222, 2222;
111113, 11123, 1223

11114, 1124, 224

1115, 125, 233
116, 26,
17, 1133,
8, 134,
35,
44,

alors chaque colonne dépend uniquement de celle qui la précede,
et on forme celle du rang r par la régle qui suit: changez dans
les termes de la (v—1)™° colonne deux unitésen =, puis trois unités
en 3 dans tous ceux de ces termes qui ne renferment pas 2, puis quatre
unités en 4 dans tous ceux qui ne renferment ni 2 ni 3, et ainsi
de suite; Uensemble des termes obtenus par ce procédé formera
la colonne du rang r. ,

On doit observer, dans l’application de I'une ou de lautre régle,
que, si un terme d'une colonne sur laquelle on opére ne contient
pas le nombre d'unités nécessaire pour faire I'échange prescrit, ce
terme ne doit point étre employé dans la recherche de ceux de Ia
colonne que l'on calcule.
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Lorsqu'on a obtenu toutes les différentes maniéres de faire, par
addition, le nombre 7, on a, d’aprés la convention établie, toutes
les classes de produits qui doivent entrer dans la 72.™¢ puissance du
polynome a~-b4c4-d—+-..... ; mais nous avons vu que tous les pro-
duits d’'une méme classe doivent avoir le méme coefficient ; on aura
donc une formule qui exprimera le développement de (a-4-b4-c+d+-...)"
en donnant 4 chacune des manidres de former le nombre m le coef-
ficient qui convient aux produits dont elle représente la somme. En
posant donc, pour abréger

a+t-b4-c+d+.....=P

on trouvera

Pr=(1),

Pr=(2)4=2 (11),

Pr=(3)43 (12)46(111),

Pi=(4+4 (13)4r2(ri2)4-24(11rr),
46 (22)

Ps=(5)+5 (14)-420(113)4-60(r1112)4120(11111),
+10(23)430(122)

P =(6)4-6(15)+30(114)+120(1113)4-360(11112)+720(111111),
1 5(24)460(123)4180(1122)
+-20(33)+g0(222)

Piz=()+ 70160+ 42(115)4210(1114)4 840(11113)42520(1 1111245040 1111111)
J-21(25)4-105(124)4420(1123)f~1260(11122)

+-35(34)4140(133)4-630(1222)
~}-210(223)
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Pr=(8)4 8(17)- 56(116)4~ 336(1115)41680(11114)4 6720(111113)4-20160(11T1112)440320(1111111)
428(26)4  (125)4 840(1124)4-3360(11123)4-10080(x111122)
F-56(35)4-280(134)4-1120(1133)4-5040(11222)
+70(44)+420(224)4-1680(1223)4-
+560(283)4-2520(2222)

P=©)+ 9uB4 72011704 504(1116)4 3o24(11115)4-15120¢11111)4-60480(1tr1113)181440(11111112)
+ 36(27)4 252(126)4-1512(1125)4 7560(11124)4-30240(111123)4-g0720(1111122)
-+ 84(36)- 504(135)+2520(1134)+10080(x1'133)-}-45360(111222)
F126¢45)4 756(225)4-3780(1224)4-15120(11223) +4-362880(z11I11111)
- 630(144)4-5040(1233)4-22680(12222)
~}-1260(234)47560(2223)4-
F1680(333)

et ainsi de suite.

9. Je terminerai par les deux observations suivantes. p désignant
le nombre des termes du polynome, m le degré de la puissance 2
développer , et 2 le nombre des lettres différentes qui doivent entrer
dans une méme série de termes, 1.° si l'ona p<m, toutes les classes
dans lesquelles on a n>p doivent étre regardées comme nulles,
pasce que les produits qui leur appartiennent, doivent avoir zéro
pour facteur ; 2.° si, dans unc classe quelconque, représentée par
(ase.eceBBes.ciyyeen.s.) les exposans «, £, v, ..,. sont répétés des
nombres de fois exprimés respectivement par «/, £, ¥y veu, le
nombre des produits de cette classe aura pour expression

pp—1)(p=—2) .c.... (p=—n~}-1)

12,0 /X12 00 B/XI2.0 07X o

Cette derniére remarque , qui se déduit aisément de la théorie des
combinaisons , ofire un moyen de s’assurer que l'on n’omet aucun des
produits qui doivent entrer dans la puissance cherchée.
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GEOMETRIE ANALITIQUE.

Discussion des équations du second degré entre deux
variables ;

Par M. Brer, professeur de mathématiques transcendantes
au lycée de Grenoble.

[a Vo Vo Vo VL VL, W, W, ¥l Vo ¥

§ 1.

Construction des courbes qui ont un centre.

L’IiQUATION générale des courbes du second ordre qui ont un centre,
peut toujours, comme lon sait, étre facilement ramenée & la forme
ay*~2bxy—-ca*=P; (1)

z et y désignant des coordonnées rectangulaircs.

Nous allons chercher & construire, le plus simplement  possible ,-
les différentes courbés que cette équation peut représenter.

L’équation ' ‘

gy*+ha?=P, (2)

construite sur les axes obliques des 2/, y/, déterminés de poéition
par rapport aux premicrs, et ayant la méme origine, donnera les
mémes courbes, si, en substituant pour #/, y/, dans Péquation (=),
Yes fonctions équivalentes de x, y, on obtient une équation identi-
quement la méme que Péquation (x).

Or, les. formules connues qui donnent les valeurs des coordonnées
obliques 2/, ¥/ en coordonnées rectangulaires , sont

aSin. #'—y Cos.z/ /\__ fSin.a—-_yCos.x

e T = ;
> J —Sin.4

Sin.é

2
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-dans lesquelles « et « désignent respectivement les angles que font
les axes de a7 et y/ avec I'axe des x, du coté des x positifs, et ou
on a fait, pour abréger o/—a=¢.
Euectuant donc le calcul que nous venons d’indiquer, et exprimant
que 'équation résultante est identique avec 'équation (1), il viendra
gCos.2 a7/ Cos.* e/ =aSine
gSin.?a—+/ Sin2o/ = ¢Sin.?0 (3)
gSin.«Cos.e~+/4Sin.«/Cos.#’ = — b Sin.?¢.

De ces équations on déduit facilement; savoir : la valeur de la somme
g-+7%, en ajoutant les deux premitres, et la valear du produit g4,
en retranchant de leur produit le quarré de la troisiéme. Ces valeurs
sont

g+r2=(c 4¢)Sine , 2 D
gh=(ac—0b*)Sin.*s , s v
et par conséquent I'équation du second degré qui a pour racines g
et A,sera
2% —(a~40c)zSin2+4(ac—5*)Sin2 =0 ; (5)
ses racines sont imaginaires lorsqu’on a
(a-4-¢)*Sin® b—j4(ac—b")< 0 ,

ee qui emporte la condition -

ac—b*>o0
et donne
. L (ac—b>
Slﬂ.20< 4 ) ;
(a4-c)*

dans ce eas seulement I’équation (2) cesse de representcr ]es courl»e&
comprises dans 1équation (1) Aifisi, Ta plus petite valeur que pume
atteindre Sin.¢ est donnée par l’equatxon

4(ac—b?)

ater

alors les racines de P’équation (5) sont égales, c’est-i-dire, quon a

Sinz2e=
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alors g=4%; ce qui démontre que l'angle obtus formé par les dia-
metres conjugués égaux est le plus grand de tous ceux que puissent
former deux diamétres conjugueés.

En éliminant g et % entre les équations (3) on obtient

aSin.«Sin.«'4-5{Sin.«Cos.«’~Sin.«’Cos.==cCos.«Cos.«’ =0 ,
ou
aTang.«Tang.«'+b4(Tang.«+Tang.e )4c=0 , (6)
cette équation sert-d fixer la position des nouveaux axes.
On conclut de tout ce qui précéde qu’il y a une infinité de systémes

de coordonnées pour lesquels I’équation des courbes du second ordre
qui ont un centre , conserve la forme

gy *+ha*=P. (*)

Cherchons maintenant si, parmi ces systémes, il en peut exister
de rectangulaires. Supposons l'angle ¢ droit et prenons l'axe des 2/,
dans l'angle des x et y positits ; il viendra

Cose/===Sine , Sine/=Cose ;
d’aprés quoi les équations (3) se transformeront en celles-ei
a=gCos.*«a~+/Sin >« ,
c=gSin.’ ao~+-ACos.>x,
b= (k~—g)Sin.«Cos. ,
prenant la différence des deux premitres , il viendra
a+-c=g—")(Cos.?«—S8in.*x) ;
or, .

Cos.?«—Sin.2«=Cos.22 et  2Sin.«Cos.z=Sin.2x;

(*) Non seulemeunt il y a une infinité de systtmes de coordonnées pour lesquels
I'dquation conserve cette forme , mais il n’est aucune droite menée par le centre
de la courbe, qui ne puisse étre prise pour 'un des axes d’'un de ces systémes; et
¢’est 1a un point sur lequel il conviendrait d'appuyer un peu plus dans les élémens.

( Note des éditeurs. )
done
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done
a=—t . 25 25
Cos.2e= ~— , Sinza=——, dod Tang.ra=— ;
g-—h h-—g a—c

cette dernitre formule fait connaitre la direction des axes principaux.

Mais il est nédcessaire de distinguer , par queclques caractéres, la
valeur de g de celle de 4. Pour cela nous observerons que « étant,
par hypothése, moindre que le quadrans, 2« est plus petit que deux
angles droits; d’ou il suit que Sin.2e est positif : la différence ~—g
aura donc le signe qui affectera b ; c’est-a-dire , que, si b est positif,
on prendra pour % la plus grande racine, et que, si & est négatif,
on choisira, au contraire , pour % la plus petite de ces racines. Ainsi,
par ce qui précéde, les courbes du second ordre qui ont un centre,
se trouvent entiérement connues de grandeur et de situation par
rapport aux axes primitifs.

Les racines de I’équation

z*—(a~4-c)z¥+(ac—b*)=o0

sont essentiellement réelles.

1.° Si ces racines sont de méme signe, la courbe est une e/ipse.

2.° Si clles sont de signes contraires, la courbe est une Zyper—
bole.

3.2 Si, en particulier, elles sont numériquement égales , la courbe
sera un cercle on une hyperbole équilatérale.

On déduit trés-simplement des équations (4 et 6) les relations qui
ont lieu entre les grandeurs des axes principaux et les grandeurs
et directions des diametres conjuguds. Considérons, en cffet, 1’équation

gy'*+ha*=P
dans deux systémes différens de coordonnées; nous aurons deux équa-

tions correspondantes des mémes courbes auxquelles nous donnerons
les formes suivantes :

La premi¢re , dans laquelle z, y désignent des coordonnées rec-

Tom. II, 31
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tangulaires , répond 4 I'équation (1); et la seconde, dans laquelle
@/, y/ expriment des coordennées obliques, répond & 'équation (2)
Comparant ces équations entre elles, on obtient

I Y I I‘
o=t =, b=o,c=—, g=L5» b=

d'aprés quoi les équations (4 et 6) deviennent
I 1

X 1 )
tTotm= + 3;4-2;)8111.’0 )

1

I S, 2
AsB/2 - AzxBa2 i, ?

1 b 3
=+ ™ Tang.aTang.a/- - =05

2

d’ot on déduit, sur-le-champ, les relations connues
AB=A/B'Sin.(«/—z), A*+B*=A"+B", A*Tang.«Tang.«/ T B*=o.

Nous terminerons par l'application de ces méthodes a la construc-
tion d’'une ellipse donnée par 1’équation

5y*42ay+4-522—12y—122=0 ;

b

en portant lorigine au centre, dont les coordonnées sont 'une et I'autre
égales A lunité, cette équation deviendra

Sy*d-ozy-dar=12.

Reprenant alors les formules

ay*4-2baxy—t-ca*=P , gy’ *+ha/*=P

. 2b 2b
Sin.2a= T Tang.za_—-—;—:e
z2=~(a—-c)z4(ac—b*)=o0

on trouve

. 2
Sin.2gms m—

&
2*—10z424=0, d'ot z==4 ou 6;

, Tang.2e=co
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or, commec Sin.2¢ doit étre positif, il s'ensuit que £=6, g=4;
en sorte que Dellipse a pour équation

62/ 4-4y* =12, ou 3 ~4-2y2=8,
§. 2.
Construction de la parabole.

L’équation générale de la parabole est
ay*+-2bxy+-cx*-2dy—t2ex4f=0 ,
en dcrivant que 5*=ac

Si on la résout successivement par rapport & z et par rapport i
Y, on trouvera

y_—:__?_x;f —+ -i— V 2(bd—ae)z-(d*—af ) ,
x:-—-by j—e -+ -z- V 2(be—cd)y+(e*=—cf ) .

Soient ensuite posées les équations

ay~+bzx+d=o, (1)
by4cz~+e=o , (2)
2(bd—ae)x--(d*—~af)=o0 , (3)
2(bemcd)y4(e*—cf)=0 . (4)
Soient désignés par A et B les points ou la droite (3) coupe les
diametres (1) et (2), et par C et D ceux o la droite (4) rencontre
ces mémes diametres. On voit que ces droites (3) et (4) sont tan-
gentes & la parabole aux points 4 et D). Si maintenant des points A
et D on abaisse sur les droites (2) et (1) des perpendiculaires qui
aboutissent respectivement aux points £ et F de ces lignes , et qu’en-
suite on joigne le point 4 au milieu de BE et le point D au mi-
lieu de CF, par deux droites, ces droites se couperont au sommet
S de la parabole.
Cette construction est fondée sur cette propriété de la parabole
rapportée soit i son axe soit & ses diamétres , savoir : que la sous-
tangente est double de P'abscisse du point de contact.



IV QUESTIONS PROPOSEES.

On peut employer une construction ‘semblable pour déterminer
d’autres points que le sommet. Si, en effet, au lieu d’abaisser des
points A4 et D des perpendiculaires sur les diamétres (2) et (1), om
mene, par ces points, des paralléles AE , DI, sous un angle
quelconque; en continuant la construction, comme ci-dessus , on
obtiendra le point de la parabole ol sa tangente est paralléle aux
droites AE ou DF.

Ayant le sommet, il est facile de trouver le foyer; il suffit, en
effet, pour cela de mener le rayon vecteur du point A4, c’est-a-dire,
de mener par le point A4 une droite faisant avec la droite (1) un
angle égal A celui que fait celle-ci avec la droite (3), cette droite
par sa rencontre avec 'axe de la courbe qui est maintenant connu,
déterminera le point cherché. On pourrait aussi déterminer le foyer
par lintersection des rayons vecteurs des points A4 et D; mais quel-
quefois ces rayons vecteurs pourraient se confondre.

Ayant ainsi le sommet et le foyer de la courbe, il est facile de

la tracer, soit par points, soit par un mouvement centinu.

QUESTIONS PROPOSEES.
Probléme de Probabilite.

DEUX joueurs , dont chacun a un nombre de jetons connu , et
dont les adresses respectives sont 72 et n , conviennent de ne quitter
le jeu que lorsque l'un d’eux aura gagné tous les jetons de lautre.
A chaque partic le perdant donne un jeton au gagnant ; on demande
quelle est lespérance de chaque joueur ? (*)
Probléeme de Géomeétrie.
A un polygone donné circonscrire un polygone de méme nom,

dont les angles soient respectivement égaux a des angles donnés,
et dont lairc ou le contour soit donné ?

(*) On pourrait aussi demander quelle est la probabilité que le jeuw finira aprés
un nombre de parties déterminé ?
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'GEOMETRIE ANALITIQUE.

Recherche de quelques proprielés des tangentes aua
sections coniques ;

Par M. RocuAT, professeur de navigation a St-Brieux.

[ Yo ¥o Vo Wo Vo W, Vo Vo Vo V]

SOIT A*y*4-B*2* = A*B* Iéquation d’une ellipsc rapportée i son centre
et a ses axes; soient de plus
y=az+0b , y=a2=4b" ,
les équations de deux droites quelconques.
Nous exprimerons que ees droites sont tangentes a Dellipse , en

derivant
A *4-B=p, Aa*4-B> =4,
ou bien
Aa *-B>=y*—2a xy—+a *2* ,
Aa’* B =y e—2d/zy +-a"2* ,
ou encore

2x B2e—y2
@+ —T=o,
dr—x2 A2

2x By
a4 =2 a+ L =0 ;

Ll r—n? A3

X

N ’ M 3 . . ’ . (3
d’olt I'on voit que @ et @’/ sont racines d'une meme ¢quation qui n’est
autre que l'une des deux précédentes, et quainsi on doit avoir

B?__Y;: _
— =aaq’. Q)

Tom. II.

(O8]
™
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Si lon suppose le produit @a’ constant et négatif , Péquation (M)
sera

yitao'z* = B*~-aa’ 4* ;
elle apparticndra donc & unc ellipse concentrique A la premiére, dont
les axes 24/, 2B/ auront meme direction que les axes primitifs, et
seront déterminés par les ¢équations
—4“:}7?4-17/1’/12

au’

R Brr=DB*+-aa' 4* ;

en sorte que leur rapport sera
B —_—
- = Vad.

Si 'on suppose au contraire le produit @a/ constant, mais posi=
tif , I'équation (M) deviendra
y*—aa’z*=B*—aa’ A* ;
elle appartiendra donc alors 3 une hyperbole concentrique & Vellipse
proposce ; les axes 24’ et 2B/ de cette hyperbole, qui auront en-
core méme direction que les axes primitifs, seront déterminés par
les équations

P B2—aqaal A2

R Br=B*—aa’4* ;

aal

en sorte que leur rapport sera
B —
== Vad ;
Bs

S / . —
et , suivant que ga’ sera plus grand ou plus petit que = Iaxe

transverse de cctte hyperbole sera dirigé suivant le grand ou le pe-
tit axe de Dellipse.

Comme on parviendrait évidemment aux mémes conséquences , en
rapportant lellipse & son petit axe , on peut établir le théoréme sui-
vant :

THEOREME. 8¢ deux droites touchant continuellement une méme
ellipse , se meuvent de maniére que le produit des tangentes trigo=
aométriques des angles qu'elles forment avec un des axes soit conse
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tant , le point dintersection de ces deuw droites dicrira une sec—
tion conigue concentrique @ lellipse proposée , et dont Ics azxes auront
mémes directions que ceux de cette eliipse.

En général, cette section conigue sera une ellipse ox une hyper=-
bole, suivant que le produit constant sera negaif ou positif. Lans
Pun et dans l'autre cas, le rapport des devx axes de la section co-
nique sera la racine quarrée du produit constant.

Si a Dellipse qui a pour équation

y*~4aa'x*=B*~aad’ A*
et dont les axes 24/ et 2B/ sont conséqucmment déterminés par les
équations
B24-aa’ 42

aa’

A=

s Br=DB4aa’ 4> ;

si & cette ellipse, disons-nous, on méne deux tangentes de maniére
que le produit @a’/ conserve la méme valeur que précédemment et
soit négatif, la courbe décrite par ces nouvelles tangentes sera une
troisitme ellipse dont les axes 2.4/, 2B/ seront déterminés par les
équations

Brr-aal A

aa’

A//zz

’ B/r=Brr4-qa’ 4%

mettant pour B’* et A’* leurs valeurs déji détermindes , il viendra
(B2 ' A2
A’“:z\B +aa’ A?)

=24*, B"=2B*~aa’4?)=2B".

aa’
Si, en obscrvant les mémes conditions , on cherche le lieu de I'in-
tersection des deux tangentes menées a cette troisitme ellipse , on
en déterminera une quatriéme dont les axes 247/, 2B/ seront don~
nés par les équations
Alr=oAd/ B//*=2 B |
et ainsi de suite: on aura donc
- B B B
I—m— = = )
Vad=—=- =—=,,.,
At A 4 ’

ec qui donne lieu & ce théordme,
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THEOREME. §i deux droites . touchant continuellement une
méme ellipse , se mewvert de maniére que le produit des tangentes
trigonomdiriques des angles qu'elles forment avec lun des axes
soit constanl et négatif , le point d'ntersection des deux tangenies
dicrira une scconde ellipse. Si on congoit deux tangentes a cetle
seconde cllipse , mobiics comme les premiéres , et assujetiies eux
mdémes condiiions qu'elles , Pintersection de ces derniéres décrire
ure troisicme ellipse de laguelle, en suivant les mimes procédls ,
on en pourra déduire vnc quairicme, et ainsi de suiie. Cela posé :

1.° Toutes les ellipses construites sur la premiére seront sembla-
bles entre elles; elles lui seroni concentrigues , et leurs axes auront
la méme direction que les siens. .

2.° Les aires de ces cllipses formeront une progression croissante
par quotiens dont la raison sera =a2.

3.0 Enfin les tangentes dont lintersection décrira lune quelcon-
que de ces ellipses, seront continuellement paralléles & deux cordes
supplémentaires de Uellipse qui la précédera imméaiatement , dans
lordre de leur génération successive. “

Considérons présentement gnelques cas particufiers.

Soit 1.° ga/=—1; dans ce cas ’équation (M) deviendra simple-
ment

ytar=A4B ;

ce qui donne cc thdoréme connu :

THEOREME. Si les deux cités d'un angle droit mobile sont
continuellement tangens & une méme cllipse, son sommet décrira
un cercle concentriqgue & cette ellipse, et ayant pour rayon la corde
qui joint lunc des extrémités du grand axe @ lune des extrémiids
du pelit.

Soit 2.° ga/=-1; l'équation (M) deviendra alors

ya_mz :_<A:___Bz> 3

ainsi, dans ce cas, le licu du poiat d'intersection des deux tangen=
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tes mobiles est une hyperbole cquitatiiale dont les axes sont ¢gaux

\

a la distance entre les Eoyers de Teilipse.

Ba
Soit 3. (m/-—__'z lequahon (M) deviendra

Az‘),z+Bzx2=2‘4sz 3
on aura donc une ellipse dont les demi-axes seront Ay/ >, By/ 2 ;
By/2 B |- . IR
et , comme BV: = — et (Ay/ 2)*=24", cette ellipse sera semblable
A2 A
3 la premidre, et son aire sera double de la sienne 3 1a condition
B2
aa’=— —; convenant d’ailleurs aux cordes suppl¢mentaires de l'el-
lipse propoeee , on en peut conclure ce théoréme :
T. HEOBE]‘JIL St deux droites mobiles, continuellement langen-~
tes & une méme ellipse , sont constamment paralléles & deuzx cordes
)l\ -
supplémentaires de cette ellipse , le liew géométrique de l'intersec-
lion de ces deux tangentes scra une autre ellipse , concenlriquc et
semblable & la premiére , ayant ses axes dans la méme direction

et dont laire sera double de la sienne (*).

. B> ..
Soit 4.0 aa’=- - Péquation (M) donnera

c’est-d-dire, qu'on aura alors, pour le licu géométrique cherché,
les diagonales du rectangle dés ‘axes.

Si, dans tout ce qui préctde, on change B en B\/:‘I,la'ccmi"be
primitive sera une hyperbole, et on pourra établir , pour cette courbe,
des théorémes analogues aux précédens.:

Enfin, en appliquant le méme procédé i la parabole, on parvient
4 cc théoréme.

THEOREME. Si deuzx droztes mobzles touchant continuellement

(*) Ce theoréme est un corollaire du deuxitme de ceux qui précedent.
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nne méme parabole se meuvcent de maniére que le produit des tan-
geates trigonomdétriques de leur inelinaison @ laxe de cette para-
bole soit constant , le liew de [I'intersection de ces deux droites sera
une droiie indefinie perpendiculaire & cet axze.
Cette drorte indéfinie sera la directrice de la parabole , si les
deux tangentes sont constamment perpendiculaires l'une & lautre.
St-Bricux, le 20 de novembre 1811,

ANALISE INDETERMINEE.

Résolution, en nombres entiers positifs , de I'équation
génerale du premier degré o deux indéterminées.

Par M. PirnATTE, professeur de mathématiques spéciales
au lycée d'Angers.

A Vi Vg Vg o Wi W Vo W YL Y

NOUS nous proposons ici de résoudre en nombres entiers positifs ,
lorsque cela est possible , I'’équation da premier degré & deux indé-
terminées.

a, x4ax, =b.

En supposant que @, a,, & sont des nombres entiers, que
aet g, sont premiers entre eux , et qu’on a @a>a, , nous aurons
a considérer successivement les trois équations

a,74Vax,=b,

e, x—ax,=b,

axr,—a,x=b;
ce sont, en effet, les seules variétés de la proposée , compatibles
avec les conditions du probléme.
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§. 1.

Solution de I'équation a,x-{-ax, =b,

Opérons sur 4 et @, , comme si nous cherchions leur plus grand
eommun diviseur ; nommons @, , @; , ...,y , a, les restes succes—
sifs dont le dernier sera nccessairement égal i l'unité , et Ti»r G5
7y se++duy > g, les quotiens, nous aurons cette suite d’¢quations

e =a, 7, —+a, ,
a, =a, ¢, +a; >
a, =a; gy +ta, ,

)

® 8 00 00 800 00 00 80 ,
Uyoy =0, §up-Fa, ,

alz‘lzqn .

Mettant pour @ sa valeur dans la proposée , divisant par &, et trans-
posant, on aura

bema, 2,
xr=

— x'-
z, 71%y 3

mais x,2, devant é&tre des nombres cntiers , et ¢, édtant lui-méme
un nombre entier , en désignant par #, un nombre entier indéter-
mniné , on devra avoir

b=—a, x,
2, =——, dou a,rtVaz,=b;
0, . -
ainsi l'on a
d’une part T=x,~q.7, ,
et de l'autre a, v ~+ax,=b .

Opdrant sur cette derniére ¢quation , comme sur la proposée , en
continuant les mémes raisonnemens et les hypothtses analogues, nous
formerons ces deux séries d'équations
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a * -+ta x, =p, X =x, =7 X ;)

a2, ¥y ~+ta, x, =b, ' T, =Xy —f, Ty,

a; x, +a, x, =p, X, =Xy —F3 T3

e Y B e L ) (©

n-, X0 ;+”"- 3¥n_ = 53 Tn-3 = Tn-r"Fn-2% -2

Ay Ty Va2, =0, Ty-z :a‘"' —_—q’f'lx"_l ’
‘Tn—x+”n-1fn =10; Ay =5 _[‘;ﬂ"‘x" | >

1

. . . - 4 : ) .
Si maintenant on substitue Ta valeur de o, _;

dans celle de z,_, ,
celle-ct dans celle de Zyoy , ot ainsi de suite on parviendra, a la
fin, 4 des valeurs enticres- des &, et #; mais, en exécutant ces subs—
titutions , on s’apergoit bientot qu'clles deviennent plus faciles et plus
symétriques , en posant @’abord les équations suiyantes :

0‘”_,—[ 9

' “n-il__ “po1n-v s

%3 — %y 2{n- z+“,~;_x >

- D

v

® s 0 o8 s 0 s % v 0’0 s s
.

@y ey gy Ty
@y =, ¢, +°‘; B
o '::“:;71 ~te, ° }

Procédant alors aux substitutions, on aura pour 1.7 équation
T, 1 :“11—17)—011-[‘7" >

M J— 4
puis Tn.y=—a,  Gur b0, 1,11 o,

v ( . —
observant alors que , par les dquations (D) > ey Py =¥

et qué
par les équations (A) , a,.,¢,..=+1=a,,, U viendra

n-22

Th 2 :'_“n-zb"i'"ﬂn- 2 X,

En continuant ce procédé, on formera le systtme d’équations

Trey
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| EIN
(&%)
o

a‘,,_,=+u,1_,5——-a,,.,xn s )
xu-zz'—“n-zé—'l_””-zx" )‘
Tn-3 :—i-u“_;b—'[/,,.;fn 9

e s Y (B)

x, Zi”z &+a, Ty
&y = OFap aa,
X :i—_ﬁ Z’lﬂ Xy 5

p:

équations dans lesquelles il faudra prendre les signes supérienrs ou
. les signes inférieurs, suivant que n scra impair ou pair. Cette re-
marque s’étendant également & tout cc qui va suivee , nous nous
dispenserons de la répéter.

Pour calculer rapidement les valeurs des inconnues x, et z, on
cherchera d’abord les quotiens ¢,, ¢,, ¢35, ... , ¢, =@, ; on dcerira
ensuite «, , ou 1 sous le quotient ¢, ,; on multipliera ¢, , par 1
et I'on aura «,, qu'on écrira sous ¢,., ; on multipliera ¢,., par
.2, au produit on ajoutera «,_,
sous ¢, ; ; on multipliera ¢, ; par «,.; , au produit on ajoutera «,_, ,

ou 1, et 'on aura «, ;, qu'on derira

et I'on aura «, , : on continuera ainsi jusqu'a ce qu'on soit par—
yenu a «; et o .

Nous ne répéterons pas ici les remarques connues, sur les diverses
valeurs qu'on peut obtenir pour x et &, ; nous observerons seulement
que , bien que le nombre entier x, puisse étre pris & volonté, il est
néanmoins compris entre certaines limites , déterminées par la condi-
tion que & et x, soient des nombres entiers positifs ; il faudra done
qu’on ait généralement.

z, si n est impair ,

Tem. II, 33
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x, sl n est pair,

Il y aura autant de solutions différentes qu’il se trouvera de nombres
ab e, b

entiers compris entrc — et — ;et, s'il ne s’en trouve aucun entre
a a

.
ces deux limites , la proposée n’aura aucune solution en nombres en-
tiers positifs.

On peut, a la simple inspection de la proposée , assigner, au moins
% une unité prés , le nombre des solutions qu’elle peut admettre.

. ab . 0‘1[7 . . . .
En effet , depuis — jusqua —, il doit y avoir au moins autant
a (3%
de nombres entiers ou, au plus, autant de nombres entiers plus un
. «b b . . e, .\ .
que la différence +( — — — | contient d’unités entiéres ; mais on a
- a ay
b b b
i(_..._..—):i —( a2 —a=,
a & aa;
— b )
froed [— ) SR,
—+- P 21 1%2
=+

b
—_— a0 ,—a,a
o, 372 2%3

—— 8 43 88 00 sg 0 s e g

3 ()

done la preposée admet autant de solutions, au moins, en nombres

b b

%y 1
aa, aa;

Il

(*) Pour obtenir ces résultats, il faut d'abord substituer pour @ et « , ensuite
pour a: et a;, a, el «, etc. , leurs valeurs tirées des équations (A) et (D). Il st da
plus essenticl de se rappeler quil faut prendre les signes supérieurs ou inférieurs ,
suivant que n est impair ou pair.
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positifs, qu’il y a d’unités entitres dans b—,et clle ne peut en admetire
au,
qu'une de plus.

§. 2.

Solution de léquation a,x—ax,=Db.

T.a méthode 3 suivre dans ce second ras est exactement la méme
que pour le premicr. En conséquence, les systtmes (A) ct (D) ue
subissent aucun changement , et il suffit d'indiquer les modiiicutions

quéprouvent les systemes (B), (C), (E) qui deviennent alors

a x —a x, =-+b, r =2, +q¢, ¥ ,
a, ¥, —a, z, =—0b, x, =ax; g, x, ,
a; &, —a, x¥; =+b, T, =x4 gy 2y,
Oy Tyt 3T, =10, Zyy =Xy G, 2%, 4,
Ty 1Ty 2=y 2 ¥ny = 157 Tp-2 =Ty +7,,- 1 Xyors

Tyr— 0y 1 ¥y :iba x]['lziﬁ +[’,‘-1x3 7

xrt-x :i“n‘lé_'!—an—lxu 2
xn-z:i“n-zé"*'”n-zﬂ‘n s
Xy =T b4a, 2,
z, =tu, bta, z, ,
x, == b+ta, =z, ,

x ix &+ﬂ‘ x" Py

f

On voit qu’ici x, ne sera susceptible que d’une seule limite. Si 7 est
impair , on pourra prendre pour x, un nombre entier positif quel-

conque ; et méme un nombre négatif , pourvu qu’il ne soit pas plus

. ., ab b
grand que la plus petite des deux quantités —> —Z——.
F
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Si n est pair, on ne pourra prendre pour 2, quun nombre posi-
tir, ct ce nombre ne devra pas étre oindre que la plus grande des
eeh alb

deux quantités —, —
a a,

"
§. 3.
Solution de l'équation ax,—a,x=b.

En mettant cette ¢quation sous la forme a,x—azx,=—>b , on voit
quiclle ne differe de celle qui vient d’étre discutée que par le signe
de 43 il suffira donc, pour la résoudre, de changer le signe de &,
dans toutes les formules du §. 2 : on aura donc

xl:+¢16+alxn 9
z =T4btax,.

1l faudra donc appliquer & n pair ce qui a été dit de 7 impair,
8t vice versd.

(E”)

Applications.

1.° Soit I"équation 1344192, =1000, qui se rapporte au §. 1. On

b 100
a d'abord ——=-— 2
aay 1319

et cinq au plus.

>4 il y aura donc quatre solutions au moins

Suite desd'\v'xscursa,(l.,a,,a;.........,....19\13 61«
Suite des quotiens Tis Gos Ggaeevvnenennens Ll 216
Suite des quantités B B e, 3,2, 1.

Puisque 2=3 est un nombre impair, on aura, cn remplagant @y
par e.

&, =—2.1000413¢ ,

2 =--3.1000—10e¢ ;
d7 \
oti on eonclura

t006 ___ ol T
> T — 100 el

L T BLL
1) T 107 19 9

{
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on fera donc successivement e =154, 135 , 156 , 1373
. r= =2 15 28 41

et on aura.......o0cununnn § ' T T
T =74, 99, o6, 17

2.° Soit encore l’é'quat'xon 3gr—>56r, =11, qui se rapporte au §. 2.
On aura ici
Suite des diviseurs @, a,, a,, a;, a,, a,..56 |3q}17|5
Suite des quotiens Gis Gas Gy Gasr Jsoe lT\T?
Suite des cocfficiens  « , @, , @, @3, a4 . 23,16, 7,2, 1.

Et, puisque =5 est impair, il viendra, en remplacant toujours =,
pare,

a, =-+16.1143ge=-+176-+3ge ;

2 ==—23.114566=—253-+}56¢
faisantdonc........... e= 5, 6, 7, 8,...::
2, =371 4 410 5, 449 5 488 , ... ..

o= 27, 8 ,139g.195,.....

e

ON trouvera . e o oo o cvee

Ces dcux exemples sont tirés de Palgtbre d’Euler.

I i
———m—m

ASTRONOMLIE.

Formules pour la détermination de lobliquité de
lécliptique , et du liew de l'équinoxe;

Par M. GERGONNE,

L Yo W W VR Vo W VL Vo V1, V)

S()’IENT «, o deux aseensions droites du centre du soleil rapportdes
4 une méme ¢toile qudconque , et solent @, @’les ascensions droites
da méme astre comptées depuis I'équinexe ; soient 3 et 3/ les dé-
elinaisons correspondantes prises avec leurs signes , et soit enfin » 'obli-
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quité de I'écliptique. On aura , par la théorie des triangles sphériques
rectangles ,
Sin.gTang.e= Tang.y , Sin.a/Tang.e=Tang.y’ ;
on aura de plus
O —a=o'mmu , dol a'=a4(s—2),
et conséquemment
Sin.a’=S8in.aCos.(«/—«)~+ Cos.¢Sin.(o'—z) ,
substituant , dans cette équation, pour Sin.z et Sin.a’, les valeurs
que dennent les deux premiéres, elle deviendra , en transposant,
Tang.sSin.(«/—a)Cos.a =Tang.;/—Tang.§Cos.(«/'—«) ;
mais la premitére des équations ci-dessus étant multipli¢e par
Sin.(«/—«) devient ‘
Tang.«Sin.(«/—«)Sin.z=Tang.sSin.(«/—z) ;
ajoutant donc les quarrés de ces deux équations , et ayant égard
a ce que
Sin2g4-Cos*e==1 , Sin.*{e/—a)4-Cos.*(s/—a)=1 ,

on cn tirera

Tang.wz \/Ta‘ng.ié\»’—z’fang. 8. Tang.8'Cos. (a/—a)=-Tang.2 8’ .

Sin. (a/—a)

On calculera aisément le numérateur de cette valeur en considérant
que c’est un cété d'un triangle rectiligne dont les deux autres sont
Tang.y et Tang.y/ et dont langle compris entre eux est o/—az.

Mais , quelque symétrique que soit cette formule, on préférera sans
doute , pour le calcul par logarithmes , le procédé que voici : on

poscra d’abord

Cos. 2 (&)

m Tang - (u/—-a) :Tang_ % <‘/+0) ;

Sin, 1 (843

(3/ T ang.; (u — :—Tan <9/—-€)
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par ces formules on détermincra les angles auxiliaires ¢/, ¢, et Fon
aura ensuite

Cos.«=Cos.3’Sin.¢’ = Cos.§Sin.0.

L’obliquité de Iécliptique se trouvant ainsi déterminée , on déterminera
la position de I'équinoxe par I'une ou l'autre des deux équations

Sin.z=Tang.;Cot.s , Sin.a’=Tang.;/Cot..

Si Ton a le choix entre plusicurs observations , et qu'on ne
veuille en employer que deux , il faudra les choisir de préférence,
de maniére qu’elles ne soient pas trop rapprochdes soit entre elles , soit
des solstices , et qu’elles ne comprennent pas un solstice entre elles.
"Le mieux sera peut-étre de les préndre 4 environ six semaines avant
¢t aprés I'équinoxe. :

Mais , dans le cas ot I'on aura plus de deux observations, il sera
plus convenable de les combiner deux & deux de toutes les maniéres

n—1i

différentes ; » observations donneront ainsi - . —— résultats desquels
17 2

on pourra déduire un résultat moyen trés-approché. On pourra aussi
de cette maniére suivre , pendant un long temps , toutes les va-
riations que lobliquité de l'écliptique pourra éprouver.

Jai été toujours surpris que des méthodes si simples n’aient été
consignées jusqu'ici dans aucun traité d’astronomie (*).- Il peut bicn
se faire qu’elles présentent quelques inconvéniens dans l'application ;
mais , comme elles s’offrent , pour ainsi dire, d’elles-mémes a la pensée ,
il serait du devoir des astronomes de nous expliquer les motifs qui
les déterminent A les rejeter.

(*) M. Biot, dans la nouvelle ¢dition de son Traité élémentaire d'astronomie
physique (note de la page 15 du 2.° volume ), indique bien céte mcthode ; mais
seulement comme moyen de vérification du mouvement du soleil , suivant un geand
cercle de la sphire céleste, Il ne donne d’zillgurs aucune formule applicable au caleul
par logarithmes.
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GEOMETRIE.

Application de la doctrine des projections ¢ la recherche
des principales propriéles de Uellipse ;

Par Al. FErrioT , Licencié ¢s scicnces , professeur de
mathématiques au lycée de Besancon,

[ Sla W Sl V1o Ve . ¥

1. J’APPELLE Ellipse la projection orthogonale d'un cercle sur un
plan qui n’est pas paralltle au sien. Jappelle Centre d= cette el-
lipse la projection du centre du cercle sur son plan. Jappelle en-
fin Diamétre de Uellipse toute droite qui, tracée sur son plan , passe
par son centre , ct se termine de part ct d’autre 4 la courbe. Tout
diametre de Vellipse est donc la projection d’un diametre du cercle.

Toutes les projections d’une méme: figure sur des plans paralleles
entre eux étant dgales, je supposerai , d I'avenir, pour fixer les idées,
que le plan de Vellipse passe par le centre du cercle , de maniére
que lellipse et le cercle auront le méme centre. Je désignerai par
a le rayon du cercle , par ¢ linclinaison de son plan a celui de
Iellipse , et je ferai , pour abréger, aCos.e=5b.

2. On voit par la que lellipse a avec le cercle un diametre commun
égala 24, et que le diamétre de lellipse perpendiculaire & celui-la est
2aCos.o=25. 1l est de plus facile de démontrer que le premier de ces
diametres est le plus grand, et que le dernier est le plus petit de
tous les diametres de Dellipse. Je les appellerai a lavenir /e grand
axe ct le petit axe.

3. Soient pris le grand axe pour axedes # et le petit axe pour axe des
4 sde maniére que le centre de la courbe soit Vorigine des coordonnées.
z et y élant les coordonnées d'un point quelconque de Iellipse, les

coordonnees
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coordonnédes du point correspondant du cercle seront x etcl-‘ ; on
0S8,
aura donc, par la propriété du cerele,
2

x4 (Jy - =a*, ou 2°Cos.’t4y*=a*Cos.>s. ;
08,2

ou , en multipliant par 2*,
a*2*Cos.*t+-a*y*=a*Cos.”s ;

ou enfin

bzx2+azy::d253 3

équations connues de lellipse d’ott on déduira que les quarrés des
ordonndes , soit au grand axe, soit au petit axe, sont aux produits
des abscisses correspondantes dans un rapport constant qui est celui
des quarrés de ces deux axes.

4. Soient menées dans l'ellipse , sous une inclinaison quelconque,
tant de cordes paralléeles qu'on voudra ; les cordes du cercle dont
elles seront les projections seront aussi paralléles; ces derniéres auront
donc leurs milieux sur un méme diamétre qui sera perpendiculaire a leur
direction commune, et les tangentes aux extrémités de ce diamétre seront
paralleles & ces cordes.

Les projections , tantdu diametre que des tangentes, seront un diamdtre
et des tangentes a lellipse ; ce diameétre de Dellipse passera donc par les
milieux des cordes paralléles, et les tangentes 4 ses extrémités seront
paralléles & ces cordes.

Ainsi, Dans lellipse , des cordes paralléles ont toujours leurs
milieux sur wun méme diamétre , et les tangentes aux extrémités
de ce diamétre sont paralléles @ ces cordes. De cette propriéié
résulte le moyen de déterminer le centre d’'une ellipse donnce.

De méme qu'une suite de cordes paralleles ont toujours leurs
milieux sur un méme diameétre de Vellipse , réciproquement tout
diametre de lellipse coupe en deux parties égales un systeme de
eordes paralléles. En effet ce diamétre étant la projection d’un diametre

Tom, 11, 34
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du cercle, ct ce dernier coupant ea deax parties ¢gales toutes les
cordes de ce cercle qui lui sont perpendiculaires , sa projection cou-
pera aussi en deux parties ézales les projections de ces cordes.

5. Parmi toutes les cordes qu'un méme diametre de Dellipse pai‘—
tage en d:ux parties égales , il en est une qui, passant par le
centre , est elle-méme un diam>tre. Lies diametres du cercle dont ces
deux-1t sont les projections étant perpendiculaires entre eux, les tangen-
tes aux extrémités de chacun d’eux sont paralleles & I'autre; il enest done
de méme des projections de ces tangentes d 1'égard des projections des dia-
metres. Ainsi, Dans Uellipse , un diamélre étant mené arbitrairement ,
on cn peut tovjours mener un second de maniére que les .lﬂngenles
aux extrémilés de chacun d’eux soient paralléles a lautre; Alors

aussi chacun de ces diametres partagera en deux parties égales les
cordes paralleles & l'autre.

Deux diamdtres ainsi disposés sont ce que mnous appellerons 3
Vavenir des Diamétres conjugués de ellipse. Ces diametres conju-

gudés sont donc les projections de deux diamétres rectangulaires dans
le cercle.

6. 1l est aisé de voir , I'aprds cela, que,dans Tellipse, il ne peut
y avoir qu'un seul systtme de diamétres conjugués rectangulaires,
et que ces diamdtres sont les deux axes de lellipse.

7. Pour que deux diamétres conjugués de lellipse soient égaux
entre eux, il faut que les deux diamétres rectangulaires du cercle
dont ils sont les projections soient ¢galement inclinés an plan de
cette ellipse 5 ils doivent donc aussi ¢tre également inclinés A la
commune scction des plans des deux courbes. De 14 ils est aisé
de conclure que les deux diametres du cercle dent les projections
sont des diamétres conjuguds égaux de Uellipse, doivent dtre dirigds suivant
les diagonales du qunarré circonserit doat deax cotés opposes sont
paralleles et les deux autres perpendiculuires au grand axe de lel-
Jdipse. De la résulte la propesition suivante :

Dans [cllipse, les diametres conjuguls dgaur sont diriges suivant
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les diagonales du rectangle circonscrit dont les cétis sont paralicles
aux deux axes.

8. Soit circonscrit & Pellipse un paraliclogramme dont les cotés soient
paralleles & deux diamétres conjugués; ce parallelogramme sera 75)
la projection d'un quarré circonscrit au cercle. La're de ce quarié
étant 4a* , celle du paﬁ!h,?ogramme seta 4@ Cosb= Jab=1na.2b.

Ainsi, Tous les purallelojremmes circonserits a ellipse, de ma-
niére que leurs cotés soicnt paralléles & deux diamétres conjuguds
sont équivalens entre eux et au rectungle construit sur ses deux
axes. (*)

9. Scit 24/ un diamétre quelconque de ellipse , projection d’un
diametre du cercle faisant un angle « aves le diametre de ce cercle
perpendiculaire au gravd axes s»it o labscisse commune au cercle
et a lellipse répondanta Uexwremite du diamétre 24/, et soient enfin y
Pordonnée de Pellipse ct.y/ l'ordenuee du cercle répondant & cette
méme extremité, oa aura

x=aSins , y/=aCoss, y=y/Cos.s,
donc
a’* =z*~+y*=a*Sin.*}y/*Cos.26=a>Sin.*+aCos.’1.Cos.*¢ 5
c’est-a—dire ,
a*=a*8'n.*~+Cos.%:Cos.?0).
Si, ayant ensuite mené dans le cercle un diamétre ’perpendicuhfrel
au premicr, on designe par 4/ ca projection sur ellipse , laquelle

sera le conjugué du diamétre 24/, on trouvera, par des considéra-
tions semblables ,

(*) I faut bien se garder de dire , comme on le troave dan. quelques traitds élé-
mentaires , que tous les parallélogrammes circonscrits & une méme ellipse sont
équivalens. Loin que celte proyosition soit vraie , on peut toujours se propesc: de
circonscrire a une ellipse donnée un parallélogram@e dont laire et les angles soient
donnéds.
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b =a*Cos.*+Sin.%Cos.*) ;

&

donc
a’*~+-b* = a*(1+4Cos.*6y=a*+4-0* ;
ou
fa* 107 = fa*4-40" 5
c’est-a-dire :

Dans Uellipse, la somme des quarrés de deux diaméires conju-
gués quelconques est une quantité constante et égale & la somme
des quarrés des deux axes.

10. Désignons par « et 8 les angles que font les diamétres con-
jugués 24’ ct 24/ avec les diametres du cercle dont ils sont les
projections. Soient &/, y/ les coordonnées d’un point de Pellipse
rapporté & ces deux diametres, et x, y les coordonnées correspon~
dantes du cercle, on aura ‘
x! bl

X = - =
Cos.a’ ¥ Cos.2

2
mais on a
2*~y*=a* :
substituant donc, il viendra
27> Cos.?g+4y/*Cos.*w=a*Cos.*aCos.*8 ;
mais on a aussi .
a’=aCos.« b’=aCos,s ;
substituant donc, il viendra
5/zx/z+a/syla — a/:[,/z_

Ainsi; L'équation de lellipse rapportée & deux diamétres conju—
gués quelconques , est de méme forme que Péquation aux axes.

11. On sait que laire de la projection de toute ligure plane sur
un plan incliné au sien,est ie produit de laire de cette figure par
le cosinus de linclinaison des deux plans. En remarquant donc
que laire du cercle est =a®, et désignant par E laire de lellipse,
on aura

E=w%a*Cosst==ab==(y/ab )*
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¢’est-a~dire :

Laire de Uellipse est égale & celle d’un cercle dont le diamétre
serait moyen proportionnel entre ses deux axzes.

12. On appelle cordes supplémentaires d’une ellipse , deux cordes
qui partant dan méme point se terminent aux deux extrémités d'un
méme axe ou d’'un méme diametre. Il est aisé de voir que deux
pareilles cordes sont les projections de deux cordes supplémentaires
du cercle, lesquelles étant essentiellement perpendiculaires entre elles
sont conséquemment paralléles & deux diamétres rectangulaires dont
les projections sont des diamétres conjugués de Vellipse.

Ainsi, Dans lellipse , deux cordes supplémentaires sont toujours
paralléles & deuzx diamétres conjugués.

De ce principe résultent 1.° le moyen de mener une tangente a
Pellipse par un point pris sur la courbe ; 2.° le moyen de déter-
miner deux diamétres conjugués qui fassent entre eux un angle
donné.

13. Soient p , g les angles formés respectivement d'un méme .
cOté , avec Iaxe des z , éar les deux diameétres conjugués 24/ et 24/ ;
et soient p’, ¢’/ les angles formés avec le méme axe par les deux
diametres rectangulaires du cercle dont ceux-ld sont les projections:
on aura,comme l'on sait

1+Tangp/Tang.g’=o ;
mais on a aussi
Sin.p=Sinp’Cos.¢ , Sin.g=S8in.¢’Cos. ,
Cos.p=Cosp’ ; Cos.g=Cos.¢’ ;
d’ou
| Tang p=Tangp’Cos. , Tang.q:Tang,qlcos,"
ee qui donne

‘TangpTangg a>
Tangp/Tang.g’= e =b—3Tang.pTang.q ;

il viendra donc en substituant,

b~-a*TangpTang.g=o ;
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relation connue et dont la combinaison avec les théordmes énoncés
(8) et (9, fournit la scluticn de tous les problémes relatifs au rap-
port dc grandeur et de situation des diameétres conjugués et des
axes.

14. Par le petit axe de Dellipse soit cendait un plan faisant avee

le sien un angle dunt le cosinus scit — , et soit projetée Dcilipse
a

orthogonalement sur ce plan ; soient 2, y les ccerdennées d'un point

quelconque de lellipse, et @/, y/ celles du point correspondant de

sa projection, on aura .

a
= -[;x’ s Y=y’;
mais, on a d’ailleurs
Voot =atl?
substituant donc , il viendra, en divizant par @,

altyr=10t 5
ainsi la projection de lellipse est un cercle dont le rayon est 4.

15. Par les deux extrémites du grand axe de I'ellipse et par l'une
des extrémités du petit, soit fait passer un arc de cerele; ces trois
points seront les seuls points communs aux denx courbes, puisqu’elles
ne peu\'enf se couper en plus de quatre points, et que, si clles
avaient quatre points communs, & cause de la symetrie de la figure,
elles en auraient au moius cing. Il est en cutre aisé de voir que
le centre du cercle étant sur le petit axe de Ueilipse au-deld du
centre de cette coarbe, les tangentds mendes a ce cercle par les
extrémités du grand axe coupcront leilipse puisqu’ellés formeront
des angles aigus avec ce grand axe.

Ainsi , L'arc de cerele qui pesse por les deux  extrémités du
grand axe et par l'une des catrimiics du petit est intéricur &
lellipse. : o )

Oa démontrera , par d» semblables esn<idérations , que L'arc de
eercle qui passe par les devx extremités du petit axe et par lune
des cxirémités du grand est extérieur & [lellipse.
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De 1a il est facile de conclure, 1.° Que de tous les angles ins-
crits qui s'appuyent sur le grand axc ,le plus grand est celui qui
a son sommet a [lexirémité du petit 5 2.° Que de tous les angles
inscrits qui s'appuyent sur le petit axe,le plus petit est celui qui
a son sommet a lextrémité du grand.

De l'une et de Pautre de ces propositions et de ce qui a ¢té dit,
(7) , résulte que Zangle obtus formé par les diaméires conjugues
égaux de lellipse estle plus grand que puissent former duwx dia-
métres conjuguds.

16. Soient une suite de cercles égaux situds dans des plans diffcrens ,
sc¢ coupant tous suivant un diamétre commun. Sion les projette sur un
plan quelconque passant par ce diamétre, leurs projections seront une suite
d’cllipsesayant le indme grand axe. Soit pris cet axe pouraxedesabeisses
si, pour une abcisse quelconque , on mene les ordonnées correspondantes
de tous les cercles, les projections de ces ordonnées se confondront en
une seule droite qui sera une ordonnée commune a toutes les
ell'pics. Que par les extrémités des ordonnées aux différens cercles on
mene des tangentes a ces cercles, ces tangentes iront toutes se
terminer au méme point du prolongement de leur diamétre commun ,
c’est-a-dire , du grand axe des ellipses; et les projections de ces
tangentes , lesquelles seront des tangentes aux cllipses , concourront
aussi en ce point,

Ainsi , 8¢ une suite dellipses ont le méme grand axe , les
tangentes menédes @ ces ellipses par les points ou elles sont cou-
pées par une perpendiculaire quelconque a ce grand axe, concourront
toutes en un méme point de son prolongement. On démontrerait
facilement, & P'aide de ce quia été observé (14), que la méme pro-
pri¢té a licu par rapport a une suite d’ellipses qui auraient toutes
le méme petit axe.

Ce qui precede suffit pour montrer combien la doctrine des pro-
jections est propre & simplifier la dé¢monstration d*un grand nombre
de propositions de géamétrie. Nous terminerons par observer qt'on

se procurcrait plus de ressources encore en recourant aux princi es
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de la perspective , comme quelques géomedtres en ont déji fait
Vessai. En particulier, il serait tres-facile de déduire de ces prin—-
cipes les methodes connues pour mener, avec Jz régle, une tangente
3 une section conique, soit par un point extérieur, soit par un point
pris sar la courbe (*).

QUESTIONS RESOLUES.

Solution du probléeme d’hydrodynamique proposé a la
page 164 de ce volume ;

Par M. GErconNE. (*)

[a Sa Vg T W W W, Vo W W V)

1.ON a deux vases V et V/, en forme de prismes ou de cylindres
droits. Leurs bases sont horizontales et ont des aires respectivement
égales & & et 5. Ces vases étant remplis d’eau jusqu'd des hauteurs
% et A/, on pratique a la fois & I'un et a l'autre et latéralement
une fente verticale d’une largeur uniforme par laquelle 'eau s’écoule.
L’eau du vase V est recue dans le vase V/ et celle de celui-ci est
évacuée au dehors. On suppose d’ailleurs que la quantité d’eau qui
s’écoule des deux vases est indépendante de la pression du liquide
supérieur , que conséquemment , pour chaque vase, elle est constante
dans toute l’étendue de la fente qui répond au liquide. On suppose
enfin que le volume d’eau écoulé pendant I'unité de temps, par une
unité de longueur de la fente , est ¢ pour le vase V et ¢/ pour le
vase V7.

Cela posé, on propose de déterminer , 1.° quelle sera la hauteur
du liquide dans les deux vases & une époque donnée quelconque;

(M Voy. la note de la page 338, du I1.¢¥ volume des Annales.
(**) Ce probleme a été proposé par M. Bret, professeur & la faculté des sciences
de l'académie de Grenoble.

2.°



RESOLUES, 249
2.* 3 quelle époque I'eau aura atteint son maximum de hauteur dans
le vase V/; 3.° enfin quelle sera alors la hauteur du liquide dans ce
vase.

2. Soit z la hauteur du liquide dans le vase V } I'époque 7 ; A

Vépoque #~47 cette hauteur sera

dz & dxz 12 '
+_$ ~+tw o e 3 (A)
elle aura donc diminué de la quantité
dz 1 d:z 12
& 3 de o1e

d’'od il suit que le volume du liquide évacué durant l'intervalle de
temps I sera
dz 1 d2z 12
_El == ;-;_.) ,
c’est-a-dire ;
dz ¢ dzz 12 . /B)

—_—l e e ) — ..

dt 1 dtz 1.2

3. Présentement si, pendant lintervalle de temps 7, le liquide

elit été constamment entretenu dans le vase V 4 la hauteur z, le
volume d’eau évacué durant cet intervalle eut ¢été

i
pZ— 3 ©)
et si, au contraire , le liquide et constamment été , pendant le méme
temps, 2 la hauteur ol il n’est parvenu qu’d I’époque 77, le vo-
lume de la partie évacuée durant le temps Z n'elt été que
3 dz ¢ dzz 72
(24 2 - _— s 000 0
<+dt x+dt2 1.2+ )’

c’est-a-dire ,

i dz 12 73

d2z
P w— +2;) — — +3‘; —
1 dt 1.2 d=t

Hier (D)

Or il est visible que I'on peut toujours supposer # assez petit, sans
Tom. 11 35

1.2.3
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étre nul, reur que le volume d'eau recllement évacué soit compris
entre ces Ceux-la; clest=i-dire, peur que la fonction (B) soit com-

prise entre fes fonetions (€) et (D), et quialors il en sera de meéme

pour toutes les valeurs de 7 inferieures a celle-la 5 on doit done
avoir , rigoureusement en vertu d’un théoréme connu (*),
dz
-0 — =vz ,
de
c’est-a-dire
1z 4
=iz, (M) ®)
dt b
. . , . dz . dx . .
4. Si Pon fait z=¢*, d'ot — =¢* — , il viendra, en substi-
de de
tuant et divisant par ¢
dx 0
& b

(4
x=T——1¢,
b
T étant une constante arbitraire. On aura done

v
T —t

z=e b (F)

au bout du temps 74/, z sera donc devenu

T v( H T v v, v,
(i ——t - -—i
e b =c¢ b Xeb =ze?,
c’est-a-dire ,
[ ) 02 e
T — Z— b —z— ..., G
b I 2 1.2 ( )

(" Voyez le Caleul des dérivations & Arhogast, note de la préface , page X1V.
Voyez aussi le Traité de calcul différentiel et de caleul intégral de M. Lacroix,
deuxi¢me ddition , tome 1.6T | introduction , page 62.

(**) On parvient a ce résultat. d'une maniere moix‘)s rigourcuse , 4 la vérité , guant
au langage , mais beaucoup plus courte, en remarquant que vzds et —24dz ne sont que

deux expressions diflérentes du volume de liquide ¢vacud durant Pinstant dt,
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formule qui doit coincider avee la forinue A, et qui montre que
Vavaissement da liquide dans le temps 7/ ook

[ o2 72
[ S A TY
b 1 b-’~x.:—+,'”“ )

5. 81 Pon veut compter les tewps depuis epeque ot Pcoule-
leinont a commence , on devra aveir & la fuis s=4 et =0, ce
qui deancra

T
L=¢
ivisan tuation (I ar ceile-ci, il viendra , cunassant le dd-
d t Pdquat ) p il , il 1dra , en cl le d
nominatear ,
v
-t
z=/e b
c’est 14 Pexpression de la hanteur du lignide dans le vase V au
bout du temps 7: elle montre gue cette hautear, bien qu’elle dé~
croisse continucllement, ne pourra jamais devenir tout & fait nulle,

6. Considérons actucllement ce qui se passe dans le vase V/; soit
z’ la hautear du liquide dans ce vase a U'cépeque £; a l'époque 1~4-7
elle sera

dzr ¢ d2z’ g2
/ — - —_— — “ 0 s v 0 ; 1
z + de 1 + 2 .a + ’ ( )

et le volume de liquide introduit dans ce vase pendant le temps ¢
sera (H)

"y i 2 72
b TZ-I——E:-T—Z-—“'...) . (K)

Si ce volume eiit été subitement introduit & 1'époque #, il edt élevé
le liquide d’une quantité

c’est-a-dire ,
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de manitre que ce liquide se fut trouvé, & I’époque #, 3% une
hauteur

~/ — — e — —_—
+ bb’ 1.2 +
sa hauteur 3 I'époque t+z' eut donc été dans cette hypothese (G)

2/ — "L—-——z———!— > z’+—z——. )-—-

T T

/ —_—
1,/; (z —+.... ) .
c'est-d-dire ,

o z' ol2 o2 (24 72

z/ — = -z — 2 — z—3 — z)— e M

+( v )x 7 7 w e T )

7. 8i, au contraire ce volume de liquide eut été subitement in-
troduit & Pépoque 747 ; comme a Dépoque z il se trouvait a la
hauteur 2/, sa hauteur & I’époque 74~z se fut trouvée d’abord (G)

ol i v’z iz
/. / o
2/ ——z/ - = o 2 ——..
o I 5 bz 1,2 ’

4 quoi ajoutant l’élévation (L) due au liquide subitement introduit,

¢'est-a-dire ,

on aura pour hauteur totale , a I'époque #+4-7,

A+ (- a— R
z+<b/ /> +(m A=)t M)

8. Présentement il est facile de voir que 7 peut toujaurs étre

supposé assez petit , sans étre nul, pour que la hauteur effective

du liquide dans le vase V’/, a Dépoque 747 soit moyenne entre
celles qui résultent de ces deux hypothéses , c’est-a-dire, pour que
la fonction (I) soit comprise entre les foncticns (M) et (N) ; diod
Pon doit conclure, comme ci-dessus,

dz/ I of

I TR A i
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ou

, dz/ i) e
Z.-Et-—-pz—-pz ™. (0)

9. Pour que la hauteur z/ du liquide dans le vase V/ soit un
2!

mazimum , il faut qu'on ait?t— =0, ce qui donne

vz—p'2/ =0 d’ou vz=y¢'z/ ;

or vz et ¢/z/ sont les d<penses respectives des vases V et V/ dans
le méme temps; ainsi le liquide sera & sa plus grande hauteur dans
le vase V/, lorsque ce vase perdra précisément autant d’eau dans
un instant que le vase V lui en fournira, ce qui était d’ailleurs
facile & prévoir.

10. Si entre les équations (E) et (O) on élimine d#, on obtiendra

dz!
bz wmm = h(v/ 2/ = :
— b(v' e/ —pz) ;
V4

dz’ d o .
posant alors z/=2zy d’'ot Ezz— =z ‘—;-' ~+y, il viendra, en substituant

et divisant par z,

by ( —j% +y ):5(9’}'——;') y

ou
dz Yvdy _ (bo'=b'v)dy
Z _(bv’—b’v)_y—bv T by—bly (bpl==b'y)y—by g
d'o
by
Log.z—i—Log.C:W_b,v Log. { (bo'—b/0)y—1bs} ;

z/ U
ou en remettant pour ¥ la valeur — et réduisant
z
by

byl—b'y

Log. { (bs/'—blv)z/—bez} .

——I)L- Log.z+Log.C=

bol—Ub'y

(*) On parvient sur-le-champ 2 ce résultat , en remarquant que Faccroissement da
volume du liquide dans le vase V/, durantl'instant dt , peut étre ¢galement exprimé

par b'dz’ et par (vz—y/z")dt,
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11. En considérant qite les valenrs 4 et A/ de z et 2/ doivent se
correspoadre, on aura pareillement
b e
e L= 1,00 § (o' —b0) e —Usl} s

l/\ _-l./
équation qui, retranchée de la préncdome , dorne

b, - Flo (1,’;/__](/ .):/__]7 oz
Il()g- — H

. ’
byl (' =—=0" ' -=ovh
ou simpiement

(el="") D
lfv’Log ———ZMLO oo P

o’ bv v, i —uvle

e

ee qui revient 4
o N ( bz —boz b
(%)

—_— P
((bv/——[)’ _)h’——t’whg 4 ( )
ou encore
bt
. z N\ 3
{ (Gor—b/ —bv]x}(T >b"’ =(bp!—b'v)e!—boz ,
)
et donne
z\ by
{(b"’—b"’)h’—bvh 7(7‘ } by L bz
z’: !
bv'—b'y »

formule qui donnera z/ lorsque Z sera connu.
12, Nous avons trouvé (5)

by
v v — L4
b T -t © 2 N\bY -t
z=he , ot —=¢ b et —) =¢ ¥ 3
h h
substituant donc, il viendra
/ d ¢ v
v 5 P_. T ¢
Z=lle +Zu b, £ : i *). «Q
v '—b'v

(*) Si dans I'équation (O) , on subslitue pour z sa valewr en t, clle deviendra

v
dz! -—!

/ 2l
b E—‘/e —5/..,
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C’est 13 la hauteur du liquide dans le vase V7 ) I'époque 7.
13. Si dans 'équation (P) on met pour z/ sa valeur _‘; qui con-

vient au maximum, elle deviendra

b2 Ny
wa’blv__—__]‘b\"' 14 .
! (b li—(by'—b"v) '] ’

en remettant pour z sa valeur en #, on aura

14 v/ [ blo by
. T'T)t:;,b/v = . ———————— 5

v/ byl—(by'—0'y )

ou en passant des nombres aux logarithmes
( ____“_ t=Y.og./b" { —. b }M’;
¢ by h~—(bv'—blv ) I/
équation qui donnera Pépoque # ou le liquide du vase V/ aura
dtteint son maeximum d'élévation,
14. Ces derni¢res formules se simplifient lorsque le vase V/ ne
contient d’autre liquide que celai qu'il regoit du vase V. On a alors

/=0, ce qui donne pour la hauteur de Peau dans le vase V/ &

I'époque 7,

et pour 'époque du maximum de hauteur du liquide dans ce vase,

Log{ 4 }—Tog/ <
\ o

T—bT

il est remarquable qu’alors I'époque du maximum est indépendante
du volume d'eau contenu dans le vase V.
- 15, Si de plus on suppose les vases” Vet V/-absolument égaux

et percés de la méme manidre ,on tronvera 1.° pour la hauteur du

cetle ¢quation, qui ne parait étre fucilement intégrable par aucun mozen connu , a
done” pour intégrale Péquation (Q).
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liquide dans le vase V/ i I’époque ¢

~t

b =
z’:/z.—b- te b ;

2.° pour ka plus grande hauteur du liquide dans ce vase
h
z/=—
[
3.° enfin pour I'époque ol le maximum d’élévation du liquide aura lieu
dans le vase V¢

b
I:'—’ .
14

On traiterait de la méme manieére le cas ot 'un des vases ou tous
les deux seraient construits en forme de cénes ou de pyramides,
tronqués ou non tronqués , et celuil ou 'on aurait égard 4 la pression
du liquide supérieur ; mais il est douteux qu’alors on parvint & des
formules intégrables.

— —

e e

QUESTIONS PROPOSEES.

Probléemes de Géometrie.

1. ETANT donnés, dans un quadrilatére complet, le triangle formé
par deux c6tés et la diagonale qui joint leurs extrémités, et connaissant,
en outre , la position , par rapport i ce triangle, du point de concours
des dcux autres diagonales ; construire le quadrilatere , en n’employant
que la régle seulement ?

II. A un méme triangle donné quelconque , on peut inscrire une
infinité de systémes de trois cercles é¢gaux , tels que chacun de ces cer-
cles touche les deux autres et 2 cé2¢ du triangle.

On propose de construire le plus petit de ces systemes ? (*)

(*) On pourrait généraliser le probléme , en demandant que les rayons des trois ser-
cles , au licu d'¢tre égaux , soient entre cux dans un rapport donné, On pourrait aussi le
renverser , en proposant de circonscrire , au systéme de trois cercles qui se tou-
chent deux & deux, un triangle donné d'espéce, qui soit le plus grand possible.
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GEOMETRIE.

Eclaircissemens sur le troisieme et sur le sixiéme cas
de la trigonometrie spherique;

Par M. LuviLier , professeur de mathématiques & académie
impériale de Gentve.

(o Vo W1, W, WL, VL VI, W Vi

J ’APPELLE Zroisiéme cas de la trigonométrie sphérique celui dans
lequel on donne deux cétés et I'angle opposé a I'un d’cux. Jappelle
sizieme cas celui dans lequel on donne deux angles ct le coté opposé
a 'un d’eux.

Par les propriétés des triangles polaires , 'un de ces cas est ramené
4 lautre ; en particulicr, le sixi¢me est ramend au troisitme. Quoi-
qu'on puisse traiter chacun d’eux séparément, et indépendamment
des triangles polaires, j’examincrai particuliérement ce qui concerne
le troisiéme cas; il sera facile ensuite d’appliquer au sixiéme ce qui
aura été dit sur le troisi¢me.

Lorsque le troisitme cas est possible et déterminé, on a coutume
de dire qu'il admet tantét deux solutions , tantét une solution et
méme aucune , en ayant égard 4 la grandeur du cété donné opposé
a langle donné, relativement au coté qui est jambe de cct angle.
Je pense , au contraire,, qu'on doit regarder ee cas ( lorsqu’il est
possible et déterminé ) comme ayant toujours deux solutions.

Pour éclaircir mon avis & cet égard, je vais discuter le cas corres—
pondant de la trigonométrie rectiligne , dans lequel on connait deux
cotés et 'angle opposé a I'un d’eux.

Pour construire le triangle proposé, sous les conditions données,
on fait l'angle A (fig. 1, 2 ) de la grandeur donnée ; sur une de

Tom. II, : 36
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ses jambes, on prend AB de la grandeur donnée; de son extrémité
B on abaisse sur l'autre jambe la perpendicalaire BD. Pour que le
triangle soit pessible,, le cot¢ donné opposé 4 Langle A ne doit pas
étre plus petit que la perpendiculaire BD. Lorsque ce coté est égal
4 sa limite en petitesse, le triangle ABD, rectangle en D, est le
seul qui satisfasse aux conditions.

La condition de possibilité ¢tant remplie; du point B comme centre,
avec un rayon égal au coté donné opposé a I’angle A, on déerit un
arc de cercle qui coupe la jambe AD en deux points G et €/, situés
de part et d’autre du point D, et & une méme distance de lui,
auxquels répondent deux triangles BAC , BAC/.

Partant, en tant que la construction du triangle proposé dépend

de Dintersection ( supposée possible ) d’'un cercle et d’une droite, le
probléme a toujours deux solutions.

Si le coté BC (supposé plus grand que BD ) est plus petit
que le coté AB, jambe de Vangle donné; les deux points C et C/
sont situés d’'un méme coté du point A ( fig. 1 ), relativement 4 la jambe
AB, ct l'angle donné A est déterminé a étre aigu. Les deux trian-
gles ABC, ABC/ont entre cux les rapports suivans: les angles C
et C/ sont l'un supplément de lautre, les cotés AC et AC/ sont
Tun la somme et l'autre la différence de DA et DC ou DC/, et les
angles ABC et ABC/ sont aussi I'un la somme et Vautre la différence
des angles DBA et DBC ou DBC.

Que le c6té BC soit égal au c6té AB; le point D/ tombe en A,
le triangle ABC/ dégénére dans laligne AB, et le coté AC/ devient
zéro , en conservant le type de son inclinaison & AB.

Que le coté BC (hig. 2) soit plus grand que le c6té AB ; les
points G et C’/ sont situés de différents cotds du point A, relativerment

au co6té AB. Dans le triangle ABC/, Uangle A est déterminé a &tre
obtus. Dans les triangles ABC , ABC/, les angles C et C/ sont égaux
entre eux , le coté AC/ est 'excés de DC sur DA , et 'angle ABCY
est l'cxces de DBC sur DBA. Quant aux angles en A, les deux
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triangles différent entre eux en ce que ces deux angles sont l'un
le supplément de l'autre.

Cest cette différence qui fait regarder ce dernier cas ccrmme n’ayant
qu'une solution , en tant quon regarde Pangle A comme ¢tant
déterminément aigu ou comme étant determinement obtus.

Lorsque deux droites ( non perpendiculaires I'une 4 lautre ) se
rencontrent, chacun des angles, 'un aigu et 'autre obtus, qu’elles
font entre elles, peut étre pris pour leur inclinaison, jusqu’a ce qu'il
y ait quelque raison qui leve le doute qu’on doit avoir & cet égard.
Or, la grandeur du coté BC, relativement au eoté AB, leve ce
doute : de maniére que, lorsque le c¢6té BC est plus petit que le
cété BA , il détermine l'angle A A étre aigu , dans chacun des trian—
gles qu’on obticnt ; et lorsque, au contraire, BC est plus grand que
BA , il détermine I'angle A & étre aigu dans 'un des ces triangles , et
obtus dans I'autre. Donc chacun de ces triangles doit étre regardé
comme remplissant les conditions de la question , tantét pour l'angle
aigu A dans lun et dans lautre { fig. 1), et tantdt pour l'angle
aigu A dans l'un et 'angle obtus A dans lautre (fig. 2) (*).

L’algebre vient 4 appui de ces considérations géométriques.

En effet, en regardant BC et BD comme connus, on a DC*=
BC*—BD*, et partant DC=1/BC*—BD* ; partant la ligne DC
a toujours deux valeurs, les mémes quant & la grandcur , et diffé-
rentes par le signe , soit que DC soit plus petite ou plus grande que
AD , et partant, soit que I’angle A soit aigu ou obtus. L’algebre et la
géométrie sont donc d’accord pour faire regarder chacune des deux
solutions qu’on obtient comme devant étre admise. Le probléme pro-

(*) On peut concilier I'opinion de M. Lhuilier avec ceile qu’il combat, en disant
qu’a la vérité le probléme a toujours deux solutions , mais qu'il arrive ici ce quon
rencontre dans la plupart des problémes du sccond degré ot, par des circonstan-
ces particulieres a la question quon traite , une des dcux solulions doit étre
rejetée ; il parait méme que ce nest que dans ce sens que les géométres disent
que le probléme dont il s'agit ici, peut souvent n’admettre qu'une solution unigue.

( Note des caiteurs. )
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posé , lorsqu’il est possible et hors de la limite , a donc toujours deux

solutions.

Qu'on cherche immédiatement le c6té AC , sans considérer le seg-

ment AD, on l'obtiendra par I’équation
BC:=AC*—2AB X< ACCos. A+AB*,

laquelle donne
AC=ABCos. A+t BC—AB>.8/n>A.

Partant , lorsqu'on a BC>ABS/.A, AC a deux valeurs.

En regardant A comme aigu, l'une de ces valeurs est toujours

positive ; l'autre est aussi positive , si 'on a
ABCos. A >y bu—AB*5m A ou AB>BC ;

cette valeur est zéro, si AB=BC ; ct elle est négative, si 'on a
AB < BC.

Ainsi encore, I'algtbre fait regarder I'une et l'autre des détermina-

tions du point G, dépendantes de la grandeur de AC, comme réelles,
et comme pouvant différer entre clles par la direction de la droite AC.
Avant de passer & mon but principal, relatif & la trigonométrie
aphérique , je crois devoir faire précéder la proposition suivante.
LEAMME. Soit un point donné de position, sur la surface d’un hemis-
phere , hors de sa base et différent de son pole. Par ce point, soient
menés des arcs de grands cercles 4 la circonférence de la base de
I'hémispheére. Le plus grand de ces arcs est celui qui passe par le
pole; le plus petit est le supplément de celui-la. Les autres sont
dautant plus grands ou plus petits qu’ils font des angles plus grands
avee le plus petit ou le plus grand de ces arcs 3 de manitre quiils
passent par toutes les grandeurs intermédiaires entre leur plus petite
et leur plus grande valeur. R
Soit P (fig. 3) le pole d’'unhémisphére;soit B un point hors de sa basa
et diflérent du pole ; par B soit mené & un point C de la circonférence
de la base de I'hémisphere I'arc de grand cercle BC 3 soit aussi mené
par B le demi-grand cercle DBD’ dont la partie BD/ soit celle qui
passc par le pole I, en scrte que ce ne soit que le prolongement
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de BD qui passe par ce pole ; jaffirme que I'on a BD<BC et
BD’ > BC.

Soit BQ une droite perpendiculaire au plan de la base de I'hé-
mispheére ; et soient mences les droites QC, QD, QD

On a, quel que soit le point C,

BC*=BQ>+QC.

Dans toutes les équations semblables, BQ est constant ; donc le carré
de la corde BC croit avec le carré de QC; mais QD est la plus
petite et QD la plus grande des droites QC; donc aussi la corde
BD est la plus petite , et la corde BD/ la plus grande des
cordes BC ; mais les arcs BD , BD’, BC sont plus petits que
la demi - circonférence ; donc aussi I'arc BD est le plus petit
et 'arc BD/ le plus grand de tous les arcs BC. De plus, comme
le carré de QC passe par tous les degrés de grandeur intermédiaires
entre le carré de QD et le carré de QD/, le carré de la corde
BC passe aussi par tous les degrés de grandeur intermédiaires entre
les carrés de BD et BD/, et partant aussi, les cordes BC et les
arcs BC passent par tous les degrés de grandeur intermédiaires entre
les cordes et les arcs BD et BD.

En particulier , les arcs qui font avec l'arc BD ou BD’ des
angles ¢gaux de part et d’autre de ces arcs, sont ¢gaux entre cux.

Ccla pos¢, soit ABC (fig. 4) un triangle sphérique dont on
connait les cotés AB et BG et l'un des angles en A opposé au
coté BC.

1. Que les cotés AB, BC, soient tous deux des quadrans , le
point B est le pole de 'arc AC; les angles A et C sont déterminds
a &tre Vun et Pautre des angles droits; le c6té AC et 'angle ABC
sont quelconques ; ct le triangle ABC est indéterminé.

Réciproquement , que Vangle A soit droit et que sa jambe donnée BA
soit un quadrans ; le coté BC est déterminé a &tre aussi un qua-
drans ; langle C est déterminé & étre droit ; et le triangle est
indéterming,
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II. Que Tangle A soit droit, ct que le coté AB soit différent
d’'uvn qgnadrans; que AB prolongé rencontre en A’/ la circonférence

de la base AC.

rand etit
Le cot¢ BC est déterminé i étre plus grar que le plus P
petit grand

des arcs BA et BA“.

Cette condition de la possibilité étant remplie , il y a deux points
C et C situés de part ct dautre du point A et & une méme dis-
tance de lui (*), auxquels répondent des arcs égaux BC , BC/;
et on obtient deux triangles BAC, BAC/ qui ne différent l'un de
Vautre que par leur position relativement a AB.

III. Que I'angle A soit différent d’un droit, et que 'arc AB soit
un quadrans. Par B soit mené l'arc de grand cercle perpendiculaire
a2 AC rencontrant en D et D/ la circonférence dont AC fait partie.

L’arc BC est déterminé a étre plus %gm}%que le plusg pett

petit grand
BD et BD/, dont l'un est plus petit et 'autre plus grand qu’un

.

; desarcs

quadrans.
Que ces conditions de la possibilité soient remplies.

1.° Que l'arc BC soit plus petit qu'un quadrans, les deux points
C et C/ auxquels répondent les arcs égaux BC et BC/, également
¢loignés du point D, de part et d’autre de ce point, sont situés dans
celui des fuseaux ABA/D auquel répond Vangle aigu en A ; par-
tant , dans chacun des deux triangles ABC et ABC/, Tangle A est
aigu , et les triangles ABC et ABC/ ont entre eux les relations sui-
vantes : les deux angles C et C/ sont, I'un aigu et lautre obtus,
supplémens P'un de T'autre ; les cotés AC et AC/ sont, l'un la somme

ct Vautre la différence de AD et DC ou DC/ ; et les angles ABC

*) On n’a point cru nécessaire de faire une figure pour ce cas particulier qui est
3 P P
de lui-méme ¢vident,
( Note des éditeurs. )
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et ABC’ sont ,1’un la somme et l'autre la différence des angles DBA
et DBC ou DBC.

2.° Que Parc BC soit un quadrans, Pun des triangles ABC de-
vient le fuseau ABA/D, ct l'autre de ces triangles devient le coté
AB. Pour le premier de ces deux triangles , 'arc AC=AA’, pour
le second , I'arc AC devient zéro , et I'angle ABC devient aussi zéro.

3.° Que Yarc BC soit plus grand qu’un quadrans, les deux points
C et C’/ sont P'un et Vautre dans celui des deux fuseaux sphériques
dont Vangle en A est obtus ; 'arc BD, qui appartient & ce fuseau,
est le plus grand des deux arcs BD et BD’ ; les angles C et C/ sont,
Pun aigu et l'aatre obtus, supplémens I’'un de l'autre; les arcs AC
et AC/ sont respectivement la somme et la différence s arcs DA
et DC ou DC/; enfin les angles ABC et ABC/ sont, 1 . 1 la somme
et Pautre la différence des angles DBA ct DBC ou DBC.

IV. Que I'angle A soit différent d’un droit , et que I'arc AB soit
différent d’un quadrans.
, . . petit petit
L’arc BG ne doit pas étre plusggrandique leplusggrandg des ares
BD et BD/, perpendiculaires & AC, et supplémens 'un de lautre

3 s . . tit
alademi-circonférence. Lorsque BC est égal au plusi ;‘:d de ces arcs ,

R , v s aigu . .
I'angle A est déterminé a étre { ob?us ;; le triangle proposé est unique ,
et dans le cas de la limite.

Que les conditions de la possibilité soient remplies.

. etit etit
1.%2 et 2.° Que Varc BC soit donné plus P % 1 P
Que larc 1 P ggrand quele plus grand
des arcs BA et BA’/, supplémens I'un de l'autre i la demi-circon—

férence , on obtient deux triangles ABC, ABC’ I'un et ’autre dans

agu

cclui des deux fuseaux qui alangle A gobms§; et partant, dans

obtus

chacun de ces triangles , l'angle A est déterminé } étre { gt z
les angles en C et C/ sont l'un le supplément de l'autre ; les cotés
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AC et AC/ sont, l'un la somme et l'autre la différence des ares DA
et DC ou BC/: enfin les angles ABC et ABC/ sont, I'un la somme
et lautre la dilicrence des angles DBA et DBC ou DB{.

3.° Que le coté BC soit donné égal au coté AB ; l'un des trian-
gles ADC s'evancuit , parce qu’il se réduit au coté AB. Que le
coté BC soit donné ¢gal au supplément de AB, l'un des triangles
devient le fuseau sphérique ABAZA.

4.° Eufin que l'arc BC soit donné 4 la fois plusgiztilg que le
& Y
plus { ‘%l;::]ld } des deux arcs AB, A’/B; les deux triangles BAC, BAC/

sont 'un dans celui des fuseaux ABA’/D qui a l'angle aigu en A,
et lautre dans celui de ces fuscaux qui a l'angle obtus en A ; par—
tant , dans P'un de ces triangles, tel que BAC/, I'angle en A est
aigu, et dans lautre de ces triangles, 'angle en A est obtus. Les
angles BCA et BC/A sont égaux entre eux; les cotés AC et AC/
sont, I'un la somme et l'autre la différence de DC ou DC’a DA ;
et les angles ABC et ABC/ sont aussi,l'un la somme et l'autre la
différence de P’angle DBC ou DBC/ & l'angle DBA.

Récapitulation. BCa pour limite enggm_ndeurg le plusggrarfd} des arcs

petitesse ( petit ‘

supplémens l'un de Pautre dont le sinus commun est Sin.AB Sin.A.

Que BC soit plus petit que le plus petit des arcs BA , BA’, sup~
plémens l'un de lautre & la demi-circonférence ; l'angle A est dé-
terminé & étre aigu.

Que BC soit plus grand ‘que le plus grand des arcs BA et BA/,
supplémens l'un de l'autre & la demi-circonférence ; l'angle A est
déterminé a étre obtus.

Que BC soit, 4 la fois plus{

grand i .
grn }que le plus % pet; g des arcs BA

petit gran

et BA’, supplémens 'un de lautre & la demi-circonférence ; dans

XA

Pun des triangles obtenus , I'angle A est déterminé A étre aigu; et dans
I'autre de ces triangles , l'angle A est déterminé & étre obtus.
Le probléme : Déterminer un triangle dont on connait deux cétés et

langle
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langle opposé & lun deux? (lorsqu'il est possible et dcterminé)
a toujours deux solutions, en tant quon prend le mot inclinaison
dans son acception générale , et quon se réserve de lever le doute
si cette inclinaison est aigué ou obtuse, d’aprés la relation des deux
c6tés qui fournit une raison déterminante pour lever ce doute,

On a coutume de donner pour raison trigonométrique de l'indé-
termination du triangle proposé la double valeur d’un angle donné
seulement par son sinus, en tant que l'angle C est déterminé par la
proportion Sin.BC:Sin.AB=S8in.A : §in.C; cette raison s’applique seule-
ment aux deux premiers cas, 'dans lesquels les angles A de chacun des
triangles ABC , ABC’ sont I'un et 'autre aigus ou I'un et l'autre obtus;
mais elle ne ¢’applique pas au troisitme cas dans lequel les angles
en A sont I'un aigu, dans 'un des triangles , et l'autre obtus, dans
Vautre de ces triangles. Je pourrais aussi, pour soutenir mon opi-
nion , m’appuyer sur cette proposition : le sinus de A est le méme
pour deux valeurs de A dont I'une est le supplément de I'autre.

La véritable raison de la double solution du probleme proposé
me parait étre la possibilité de mener deux arcs obliques , égaux
entre eux a la circonférence d’un grand cercle , depuis un point
qui n’est pas le péle de ce cercle.

En admettant , dans tous les cas, la double solution du proble-
me proposé (du moins lorsqu’il est déterminé possible et hors de la
limite) , on léve l'anomalie de regarder un probléme du second
degré (lorsqu’il est possible) comme ayant tantét deux solutions ,
tantét une seule, et méme comme pouvantn’en avoir aucune. (*)

(*) Ce quon peut conclure de tout ceci, c’est que, pour s’exprimer d'une ma-
niére convenable, il faut dire que le probléme ol il s'agit de déterminer un trian-
gle sphérique par la connaissance de deux de ses cités et de I'angle opposé &
Pun deux, considéré d’une maniére abstraite , admet toujours deux solutions ; mais
que souvent, par les circonstances de la question dont on s’occupe, une de ces so-
Iutions et méme toutes les deux doivent étre rejetées. La méme remarque s'appli-
que au cas ou il s'agit de déterminer le triangle par la connaissance de deux de ses

angles et du cdté opposé & l'un d'eux.
( Note des editeurs. )

Tom. 11 37
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On sait en effet qu'on a I’¢quation

Cos. ABCus. ACH-S5:/n.ABSin. ACCos.A=Cos.BC ;

d’od on tire, en considérant AC comme linconnue ,

Cos.AC= Cos.EC Cos AB = \/Sin.2BC—Sin*ABSin.2A
1—Sin.;ADSin A ?

Sin.A C=Sin.ABCos.BC Cos A == Cos. AP\/5in.2BC—Sin.-AB&in2A
1—in.ABSIa2A

QUESTIONS RESOLUES.

Démonstration du théoréme énoncé a la page 164 de
ce volume;

Par MWM. PivaTTE , professeur de mathématiques spéciales
au lycée d'Angers, LEcrAND, professcur de Mathématicues,
et RlocHAT , professeur de navigation & St-Brieux.

[a o Ve Clo VE Vlo Vi Wia Sl Sl ¥

E NONCE. i, par lun quelconque Y des points du périméire

d'une hyperbole , on méne deuxr droites PA , PB, respecti-

vement paralléles a ses asymplotes , et que , par un aulre point

quelconque m, pris sur cc périmétre , on méne une suite de droites

coupant P\ en a,a’,a”, ..., PBen b, b/, b, ..., et la courieen
na n’a/ n’’a’

n,n,n’,..;o0n aurqa —— = — = — = ., = Constante.
nb u/y/ wlu

Démonstraiion. M2I Pilatte, Legrand et Rochat ont donné de ce
théoreme des démonstrations analitiques qui reviennent & peu pris &
ce qui suit.
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Soient pris ( fig. 5 ) le point P pour origine, la droite P4 pour
axe des z, et la droite PB pour axe des ¥ i Péquation de I'hyperbole
sera de la forme
ay=ha—+gy , (1)

et donnera
hx

y=—

§—x

si donc on désigne par « l'abscisse du point 72 , son ordonnée sera

ha
g—=
En conséquence l'équation de Mz sera de la forme
he
y——g_MZ/{(x—u) ; an

k déterminant la direction de cette droite.

Si, dans l'équation (II) on fait y=o, la valeur qui en résultera
pour z sera celle de Pz ; on aura donc
ha

.P (== o~ .
fr(g—e)

Si ensuite on élimine y entre les équations (I) et (IT), en divisant
I'équation résultante par #—a , la valeur qui en résultera pour & sera
alors 'abscisse du point 7, laquelle aura pour expression

gh
O e

b

k(g—a) >
ce sera donc la aussi la projection de 24 sur l'axe des x. Quant 4
la projection de 2z sur le méme axe , elle est la différence des
abscisses des points 72 ¢t @ prises avec leurs signes ; ce sera donc

gu-—- he §-—-§ —_— £ ou -]i-—'\g—z).
k(g—=) l k(g—w«) k ‘

Ainsi, les projections de za et nd sur l'axe des x scront respec-
tivement
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h \_h-—-k(g——u)
-]? - (g— %)= k ’
h h—k(g—=)
g— g ___, Tem ;

k(g=—=w) 8- k{ig—«)

et comme 2a et nb sont proportionnelles & leurs projections sur unc
méme droite , on doit avoir

na h—Fk(g—x) h(g—a) 1 a—g

nb k ’ h—k(g—=) g - 8
quantité indépendante de %, qui détermine la direction de mn, et qui
sera conséquemment la méme lorsque cette direction changera, pourvu
que le point m reste le méme.

Outre cette démonstration analitique , M. Legrand a donné du théo-
réme la démonstration purement géométrique que voici :

Soient € le centre de la courbe ; Cg, CA ses asymptotes; M,
N les points ol elles sont rencontrées par la droite mn; G, H ceux
ou elles sont rencontrées par les prolongemens de PB et PA; et
soit menée par le point 7 une paralléle & Cg, se terminant en & A
C’ et coupant PG en e.

Par la propriété fondamentale de I'hyperbole rapportée & ses asymp-
totes et par les paralléles, on a

dm:PG::de:Ge
PG:Ma::Ge:mM
mN:dm:: Nb:de
proportions qui, étant multipliées par ordre, donneront, en rédui-
sant ,
mN:Ma::Nb:mM ,
d’od
MaXNb=mM><mN.

On aurait semblablement

MaX No=nM>=nN ;
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ce qui fournit déja un théorme assez remarquable.
Maintenant la proportion

mN:Ma:: Noo-mM
donne
mN—=Ma: Nb—mM::Ma:mM ,
ou, en faisant attention que mM=nN ,
mn—ma:nb::Ma:mM:: PG:eG

ou
na.nb::PG:eG ,
d’ou
na PG
w G

quantité constante, quelle que soit la direction de mn, tant que le
point 72 restera le méme.

M. Pilatte indique, comme application de ce théoréme, la réso=
lution du probléme suivant:

Décrire une hyperbole qui passe par trois points donnés, et dont
les asymptotes soient paralléles & deux droites données ?

On tire, en effet, de la proportion ci-dessus

na—nb:na:. PG—eG: PG ,
ou
ab:na::Pe: PG
et, si 'on mdne par 7~ une parallele 3 C%, coupant PH en f, on
aura pareillement

ab:mb:: Pf: PH.

Cela posé, soient m, P, n les trois points donnés; par P soient
menées des paralleles aux droites données, et conséquemment aux
asymptotes; soit mende mn, coupant PA et PBen a etd; et soient
enfin menées, parallélement aux mémes droites, les droites me et
nf, rencontrant en ¢ et f les prolongemens de PB et P.A. Alors les
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trois premiers termes de chacune des deux proportions ci-dessus se
trouvant connus, on pourra déterminer PG et PH, et conséquem-
ment les points &, H par lesquels menant des paralicles Cg et Ch
aux droites données, ces paralltles seront les asymptotes de la courbe,
dont la construction, par points , ne présentera plus alors aucune

difficulté,”

Solutions du premier des deux problémes proposés &
la page 196 de ce volume.

Premiére solution

Par M. LuuiLiEr , professeur de mathématiques & I'académie
impériale de Geneve.

[a Yo S Sla Vi Vo W V0 %1

LE cas dans lequel le polygone propoesé est un triangle, est de
premiére facilité; en particulier il se construit par fausse position de
la maniére la plus simple. II n’en est plus de méme lorsque le
nombre des cétés du polygone proposé est plus grand que trois.
LEJMJIE. Soient des droites donnédes de grandeur. On demande de
couper chacune d’elles en deux parties , de manicre que les rap-
ports de ces parties , deux & deux, soient donnés, sous les conditions
suivantes : on cecnnait le rapport d'une partie de la  premiere

4 une partie de la seconde ; celui de lautre partie de la seconde
a une partie de la troisitme; celui de l'autre partie de la troisieéme
\
a

unce partie de la quatrieme , et ainsi de suite , jusqu’a ce qu’on
parvienne au rapport de la seconde partie de la dernicre & la seconde
partie de la premiére.

Premicr exemple. Que les droites donndes soient au nombre de
deux seulement. Soient AB ct A/B’ deux droites donndes de grandeur

( bhg. 6 ). A couper en X et X/, de manicre que les rapports de
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AX i B’X’ et de A’X’ a4 BX soient, l'un et lautre, égaux a des
rapports donnés.
Que le rapport donné de AX & B’/X’ soit égal au rappert de
AB 2 B/l/; et soit porté B/l/ sur BN de B/ vers A/,

On a AX :BX/=AB:DB/%
d'olt BX :y/X/=AB:B
si donc on pose A’X/:BX =L :AB,
il viendra AR X/= L : B

on connait donc la différence A’4/ (il y a lieu) et le rapport des
droites A’X’ et #’X’, et conséquemment ces droites sont l'une et
Vautre déterminées.

Construction. Que le rapport donné de AX & B/X/ soit présenté
sous la forme du rapport de AB a B’4/, et soit portée B/4/ sur B/A/.
Que le rapport de A’X/ & BX soit aussi présenté sous la ferme du
rapport d'une droite L & AB. Enfin soient détermindes les droites
A’X’ et /X’ dont la différence A’l’ est donnée , ct dont le rapport
est celui de L &4 AB.

Remargue. Pour que le probleéme soit déterminé , les points 47
et A’ ne doivent pas coincider. En effet, si le rapport de AX & B/X/
est donné dgal au rapport de AB & A’/B/, le rapport de BX 3 A/X/
se trouve déterminé a4 étre égal au méme rapport, ct la question
proposée demeare indéterminée. Cette question est impossible , si le
rapport de AX & B/X’ étant donné égal au rapport de ABa A’D/,
le rapport d2 BX a A’/X’ n’cst pas donné égal au méme rapport.

Second exemple. Que les dreites données soient au nombre” de
trois. Soient AB, A’B/, AVB”, (fig. 7 ) trois droites , données de
grandeur , & couper en X, X/, X/, respectivement , de manitre
que chacun des trois rapports AX : B/’X/, A’X/: B/X”, A/X/: BX
soient égaux a des rapport donnés.

Que le rapport de AX & B/X’/ soit égal au rapport d= AB i
B/a’; et scit port¢ B/e/ sur B/’A’ de B/ vers A’

On a AX IYX/'=AB: DB/,
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dott B X :a/X/=AB:Ba ;
posant done AYX":BX = L :AB ,
il viendra AX": ¢/X'= L :Ba’ .

Soit en outre

L :Ba =AB/:¥a ;

donc A/X gt X =AVBY b a’

et B7X7: 0 X =AVB": b o,
posant donc A/ X BX7"= M :AVB”7,
il viendra enfin AX v Xi=M:ba .

On connait donc la somme A’/ ct le rapport des droites A’X’
et #X’; donc ces droites sont l'une et l’autre connues.

Troisiéme exemple. Que les droites données soient au nombre
de quatre. Soient AB , A’B/, A“B/, A/B/ ( fig. 8 ), quatre
droites données de grandeur, a couper en X, X/, X7, X/, de
maniére que chacun des quatre rapports AX : B’X/, A’X’: B”/X”,
AX s BrXnt, AiXi: BX, soient égaux A des rapports donnés.

Soit fait AX :B’X/’= AB : B,
d’o BX :¢’X/’= AB :Ba’;
posant done AX/:BX = L :AB,
il viendra AVXM g/ X/= L :Ba .

Soit encore L :Ba/=A"B": ald ,
d’ou ANX!M : g!XI=AB! gl
et conséquemment  B//X/ : p/X/=A/B" : a’b’
posant done A7X BIXM = M AVBI
il viendra AVX7 b XV =M: ol .

Partant, on connait, de grandeur, les droites A’%/ et AV/B//, et
les rapports A’X/: B/X/”, A/X”:4/X’ ; donc la question proposée
sur quatre droites est ramende a la question correspondante sur deux
droites. Et, comme cette derni¢re est susceptible d’indétermination
et d’impossibilité,, aussi la question proposée sur quatre droites est
susceptible d’'indétermination et d’impossibilité.

On montrera précisément, de la méme maniére, que la question

proposée
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proposée sur cinq droites est ramence i la question correspondante
sur trois droites; et parlant la question est tcujours pessible, dé-
terminde et susceptible d7ane seule solution. On montrera aussi que la
question proposée sur six droites est ramence & la question corres-
pondante sur quatre droites, et partant quelle est susceptible d'im-
possibilité et d’'indétermination.

En général, la question étant proposée sur un ncmbre quelconque
de droites ( plus grand que deux ), elle est toujours ramenée i la
question correspondante sur des droites dont le nombre est inférieur
de deux unités. Si donc le nombre des droites données est impair,
le probletme est finalement ramené 4 trouver deux droites dont on
connait la difference et le rappori. Afin donc que, dans ce cas, le
probléeme soit possible et déterminé, la différence ne doit pas ¢éva-
nouir, ct le rapport donné ne doit pas étre un rapport d’égalité. Si
la différence évanouit, le rapport est déterminé a étre celui d'égalité,
et alors la question est indéterminde.

Remargue. On résout sensiblement de la méme ™ manitre les cas
dans lesquels les droites donncées sont, cn tout ou en partic, des
différences des droites cherchdes, Le nombre des droites données étant
quelconque, pair ou impair, si le nombre de celles auxquelles ré-
pond une somme est pair, la question est susceptible d’indétermina~
tion ou d'impossibilité. ,

PROBLEME. A un polygonedonné , inscrire un polygone de méme
nom, dont les ¢btés soient respectivement paralleles a des droites
données de position ?

Solution. Dans chacun des triangles retranchés par les cétés du
polygone inscrit, lesquels ont pour bases les cotés de ce polygone
et pour sommets les sommets correspondans du polygone donnd;
dans ces triangles, dis-je, les angles sont donnds: partant, ces trian-
gles sont donnés d’espece, et en particulier les rapports de ceux de
leurs cotds qui font partie des cates du polygone proposé, sont dennes.
Dela la question est immédiatement ramende au /emme qui vient

de nous occuper.

Tom. Il 58
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Savoir : désignons par A, A/, AZ,... A¥*', A¥, les sommets
du polygone donné, ct par X, X/, X/, X*1!, XV, les som-
mets du polygone cherché, de manitre que le somwmet X scit sur
ANA, le sommet X/ sur AA/, et zinsi de suite. Cn connait les
droites AXA, AN/, A’A7, ... .A¥-'A¥, ct les rapporis AX XA/,
AX XA AN XOAY G ARKN N A de leurs parties.

Puisque cette inscriptien est ramence & notre lernme, eile est pos-
sible ¢t unique, lorsque le nombre des cités du polygone proposé
est impair; cile est susceptible dimpossibiliié ou d'indetermination ,
lorsque le nombre des cotés de ce polygone est pair.

Je crois devoir celaireir Vindétermination, si clle a lieu, par quel-
ques exemples.

Premier exemple. Soit un quadrilatire AA’A”A/ ( fig. g Ydont AAY
et A7A’/ soicnt les diagonales. A la diugonale A/A// soit menée arbi-

trairement une parallele, se terminant en X et X/ aux cotés AA/

et AA// de ce quadrilatere. Par les points X et X/ soient menées

a lautre diagonale AA” des paralleles, se terminant en X/ et X/ aux

cotés A”A’ et AVAM, et soit enfin menée X/X7, Jaflirme que cette

droile sera, comme XX/, parallele & la diagonale A/A//; et par-

tant que le quadrilatére XX/X#/X// est un parallélogramme,

On a, en cffet, par construction,

AXAX = AVAAA
AX CAX = AN AAV
AR AV == A A A A7 ;

done AVX AX I = NVATANAN

done X3/ est parallele & A/A7,

3

Ou bien, les rapports VA A, XA AXr, Y Aui ArX
étant respectivement cgaux aux ranports AYAV A/A, A/ATAAY,
ANV NANE ) e vapport AVX/ AN st déiermind 3 étre dgal au
rapport AYAZ: AL et e nombre des polygones équiangles ins=
criptibles au quadiilaiive proposé - illimité,

Second excmple. Soit AA/AY XA AY un hexagone. ( fig. 10 ) Soient
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mendes les diagonales AA%, A7Awr A i A1AY | A1ITA qui retran-
chent deux cétés. Par un point X, pris arbitrairement sur 'un AA/ des
cotés, soit menée a la diagonale AA” une parallele terminée en X/
au coté A’A7; par X/ soit mende & la diagonale A’\// une paralltle
terminée en X/ au coté A”A/, soient de mcme menées X7/ X/
paraliele & A7ZA/7 XX/ parallele & A" AV, X" XV parallele 2 A4,
et soit enfin mende XVX ; jaffirme que cette derni¢re droite est
parallele & la diagonale A7A%

On a, en effet , par construction

X A A XV =A A A A

A X/ XV A=A AV AV AN

X/ A A XM= AV AN A AN

A/ X XAV = NITA . AVITAY

XmmAv XV AY =AY A AV,
donc X A :XVA"=A A A AT
donc la droite XXV est parallele 2 la diagonale AZAY.

Partant , les rapports XA7: \/X7 | A/X7 e X/ A1 KIAN 2 AKX
AVXN XAV, XAV X VAV étant respectivement égaux aux rap-
ports AAZ: A7A”  A/AY 2 VALY AVNIY 2 AN NIAII L AIITAY
A/7Av: AAY , le rapport XA/ : XVAV se trouve ddterminé & étre égal
au rapport AA’: AAV ou encore, dans le polygone X X/X”7X// X/ XV,
les cotés XX/, X/X77, X/ X, XnrXnr, X//X v étant respectivement
paralleles aux diagonales AAY, A/A/ , A/A/ , NUAY, AA, e

coté restant XVX se trouve déterminé a étre parallele a la diagonale

e

AYA’; et le. nombre des hexagones , équiangles entre eux, inscrip-
tibles & I'hexagone proposé , sous les conditions données, demeure
illimité.

Cette propricté s’étend & tous les polygones d'un nombre de cétés
pair , en menant des paralleles aux diagonales qui joignent les
extrémités des cotés des angles du polygone donné.

Sclolie. Le probléeme proposé trouve une application qui mdrite
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d’¢tre mentionnée. Qu'on demande dinscrire & un polygone donné un
polygone de méme nom dont le contour soit le pius petit 2 1l est
ais¢ de démontrer que les deux cotés de chacun des angles du poly-
gone cherché doivent faire des angles égaux avec le coté du poly-
gone donn¢ sur lequel est situé le sommet de cet angle (*). Sile
polygone propos¢ a un mnombre impair de cotés , ces angles sont
determines par les angles du polygone proposé , et linseription deman-
dee est unique et determinée. Mais , si le polygone propose a un nombre
pair de cotds, pour que le probitme soit possible , la somme des
angles de rang pair du polygone proposé, & partir de 'un quelcon-
que, doit étre cgale & la somme de ses angles de rang impair (**).
Cette c¢galité étunt suppesée, le nombre des polygones a inserire est
illimité ; et ils ont tous le méme plus petit contour. Cette application
remarquable fait Pobjet d’une dissertation qui est & la suite de mon
ouvrage inttulé : De relatione mutua capacitatis et terminorum
JSigurarum.

(™) Yoyez le lome 1 des dnnaies , page 375, lemme L.

(**) Cetle proposilion revient A la suivante: si entre n iRconnues Xy, &, y X, 3
Xy-y , &y, 0n @ 0 équations de la forme
%, -, ==A,
a,~x =4,
xu-;+-7",‘:An T
xytx,=A,
et que n soit un nombre impair , ces inconnues seront dé‘erminées. Sty au contraire,
nest pair , le probléme ne sera possible yue sous certaine relation entre les don=
nées; relation qui, si elle a liew , rendra ce problime indéterminé,
On a, en eifet, 1.0 dans le cas de n impaw
(A A A=A A A Ay )22
2.2 Dans le cas d¢ n pair.
A AA b o D= A A A A =0
dquation de condilion qui , sivaat qu'ellc aura ou n'aura pas licu, rendra le pro=

bieme indéterminc ou impossible, . o
( Notes des éditeurs, )
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YTa différence que présentent, i Vegard du sujet de ce mcmoire,

les polygones rectilignes , suivant que le nombre de leurs cot<s est
pair ou impair, n’est pas la seule qui distingue ces deux classes
de polygones. Je vais encore en donner deux excmples.

Qu'on demande d'inscrire 2 un cercle donné un polygone dont
les angles soient donnés. Cette condition suffit pour determiner le
pelygone cherché, lorsque le ncmbre de ses cotés est impair , de
maniére que linscription est toujours possible. Au contraire , le
nembre des cotés éiant pair, Dinscription est possible seulement,
lorsque la somme des angles donnés de rang pair est égale & celle
des angles donnés de rang impair. L’égalité entre ces deux sommcs
ayant licu cn eflet, le nombre des polygones inscriptibles, sous les
conditions données , demeure illimité ; et, pour que le probléme soit
determiné , on doit ajouter quelque condition indépendante de la connaic-

sance des angles , et qui soit , par exemple , relative au contour
ou & la surface.
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De méme, qo’on demande de circonscrire & un cercle donné un
polygone ( dont le nombre des cotés est plus grand que trois )
ayant des cotés donnés; ce probleme est susceptible d’une seule solation,
si le nembre des eotés du polygone & construire est impair. Mais »
que le nombre des cotés de ce polygone soit pair , une condition
essentielle, pour que le probleme soit possible, est que la somme des
cotés de rang pair soit égale & la somme des cotés de rang impair.
Cette égalité (tant supposde , le probleme est susceptible d'un nom-
bre illimité de solutions.

Le procédé que jai suivi pour résoudre le probleme proposé,
consiste 4 diminuer successivement de deux unités le nombre des
cités du pelygone & construire , et partant a4 réduire finalement
la question proposée & linseription d'un triangle , d'une part,
pour les polygones impairs , et 4 celle du quadrilatere , pour
las pe.)‘.}w:;m;es p;:'zrs. On peut aussy traiter chaque polygone immeédia-
tement , sans ramener Ja question & un pelygone d’un moindre
normbre de cotds, il me suflira d'exposer ce procédé sur un quadrilatere.
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Soit AA’A”A/7 un quadrilatére auquel on doit inscrire un autre
quadrilatere XX/X”X// | dont les cotés soient respectivement paral-
leles & des droites données.

Que les angles du premier quadrilatére soient désignés par A
A/, AV AN et soient faits

AngA X XM=a , Ang A’ X X/ =g

b4
Allg.A/ XX =« Ang.A// X/ X/ =g
Ang. AV XN XS =l Ang. AWK XM = pl!
Ang AW XWX = oM, Ang A XWX =g/
soit enfin XA’=x, on aura
Sin.z Sin.
A X = s AVX/=A'AV— g, — )
Siine! Sin, &/
i in.s.Sin.@/ Sin.@/ Sin.s.Si
A/ XN = A/A/, Sin.& - Sin.8.Sin.8 A= AV A — A A, S ) Sin. 8.Sin, &
Sin,«/ Sin«/.Sin.« Sin.a/ S/, Sin. /!

. Sin.p Sin p” Sin.8.S8in.2".Sin.g"
A’”X”“—‘-A”}U”.Sm.ﬁ —A/A in.B 8 _ Sin.8.Sin.2.Sin.g

x.
B . e s S " - 2
Sin,a/!! Sin.a/'Sin.e’" Sina/, Sinw’’,Sin, e/

.8 in.8.Sin. 8" in..Sin.8".Sin. 5/
A X///:A///A__A//A///_S'”‘ﬁl +A/A//S’ #.Sin.g Sin.g.5n.8'.Sin.

- - ——x. _—r——_———
Sin.al/ Sin.a”.Sina"" Sina/.Sine. S,/ 2

Sin.a" Sin.2".Sin.g" Sin.8’.Sin.g".Sin, g

A X =AmA, — AV NI e ——— A\ ¢ £l
>in. & Sinue.Sin.e’ Sin.a.Sin.a” . Sin.eh

Sin.5.Sin.#.Sin.3”.Sin g

—_ .= - ———— = ANz,
Sine.Sin.a”.Singe . Sina/

Cette derniére équation donne

Sin 8.8n.8.8in.2".Sin.8""
Sin.«.Sin.e/ . Sin.«.Sin. &'’

in.8". Sin.3”.8in 8" in.27.8n.s" m. g
Ve A Sin.#.Sin.3”.8n 3 \A S Shu s A7A Sin.p .
AN — /A | = — - AN eo——— — A"\, —
Sinz.Sin, &, Sin.a/’ Sz, Sina” Sine

d’ott on tire
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-

A A’ Sin.x Sin.e’ Sine”.Sin.«/"—A’ A” Sin.2’Sns’. Sin.g” .Sin.2"

- AVAY Sin.e Sid.e".Sin £7 Sin.@"—AA ,Sin.«’.Sina”.Sin.«'".Sin.g"
X =

.

Sin.e.Sin &S, &’ Sine//~—Sin.8.8in.3'.Sin.2".Sin.g""!

Le probléme est impossible si , entre les données , on a la
seule équation

Sin.e.Sin.e’ Sin.«”.Sin.«’//. = Sin.8.Sin.p’.Sin.p”.Sin.s?/,

Mais si l'on a , en outre,

A A \Sine .Sine/ .Sin.e/ . Sin.a A’A”.Sin.«’.Sin.g8 .Sin.g” .Sin. g’

~-A”AM Sinue! . Sin, e, Sin. 4. Sin. g -}-A’"A.Sin.«/.Sin.e”.Sin.&.Sin. "
le probléme est indéterminé.
Si, en particulier , on a
=g , &/:,5/ s u”"—‘ﬁ” ) “///:ﬁ”/ s
la premiere condition est d’clle ~méme satisfaite , et la seconde
devient
AA’SinaFA7A Sinw/’ = A’A Sin.«/4-A/" A Sin.e”’,

Il faut donc alors que cette condition soit remplie pour que le pro-
bleme soit possible ; ct, si elle 'est cn cffet, ce probléme demeure
indéterming,

Le procédé est exactement le méme pour les polygones d'un
plus grand nombre de cotés, et ne difftre de cclui-ci que pour
la longucur,

Yorsque le nombre des cotés du polygone proposé est impair , le
dénominateur de la fraction qui exprime la valeur de # , au lieu
d’étre la différence de deux produits , en est la somme ; et consé-
quemment il n’y a lieu alors ni & impossibilité nt & indétermination.

Selolie, On peut réunir, sous un méme énoncé , le probleme qui
fait I'chjct de ce mémoire, et celuil qui est résolu & la page 115 de
ce velume , comme il suit © A wn polygone donné , inscrire un
pulygore de méme nom dont quelques-uns des cotés passent par
des puinls downds de position , et dont les aulres soicnt parallcles
@ des droites donnces de position ?



280 QUESTIONS

Deuxiéme solution ;

Par M. Pexjon , professeur de mathématiques au lycée
d’Angers.

J'observerai d’abord que, pour que le probléme proposé n’ait qu’une
solution unique , il est nécessaire d'indiquer a laquelle des droites
dounées de position chaque coté du polygone cherché doit étre paralléle;
car autrement, m désignant le nombre des cotés du polygone donné,
et conscquemment aussi le nombre des droites donnces de position ,
le nombre des solutions du probléme scrait 1.2.3.....72.

Soient S,S, et §,8; deux cotés conséeutifs du polygone donné
( fig. 11 ), et soit X, X, le coté du polygene cherché qui répend
3 langle S,. Par §; soit menée S,K, paralltle & celle des droites
données de position a laquelle X, X, doit étre lui-méme paralléle.
Soient S,S,=a,, S,K,=4,5.X,=x,, §,X,=y,; nous aurons

e, b,
—_—=— ou ay,=bl,r, ,
Xy J'l

et il est clair que, sim est le nombre des cotés du polygone proposé ,
nous aurons m e’quations semblables enire les 22 inconnues

Ty s Ty p Xy geeveedy

yx > j’; 2 yz 9""':ym -
Nous aurons de plas, entre les mémes inconnues, 7, autres déqua-
tions de la forme x,4y,=a,, x,-+y,=a,,..... cc qui sera suf-
fisant pour les déterminer; et, comme ces ¢quations sont toutes da
premier degré , le probleme , lorsqu’il sera pessible et déterminé,
n’admettra jamais plus d'une solution.
Premier exemple. Pour le trianale , les équations seront
te) 2

”x)'z:bzﬂ‘x s L)'l:”x 2
— 7 - - e ——
1Y 3 =038, 5 X, .=,

ayy=biry , xydyy=ag,

d’od
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d’olt on tirera

alalax_b'alaz+bxa;b;

a,a.a,~+4b.b.b,

z,=a,

Deuxidme exemple. Pour le quadrilatére , les équations seront
a,y.,=b,x, , x4y, =a,,
a,y;=bx, , x,4y,=a,,
avy=bx, , z;ty,=a,,

a . =bx, , a,4y,=a,,
d’olt on tirera

17

a.a,0a,~baa0atba,ab,~babb,
T, =a, —= . S

.

a,a,a,0,—b.b,b,b,

Ces résultats , dont la loi est manifeste , se construiront par des
quatri¢mes proportionnelles.

Troisi¢éme solution ;
Par M. Rocuar , professeur de navigation d St-Brieux.

Jappliquerai seulement le procédé au quadrilatére ; son uniformité
laissant assez apercevoir de quelle mani¢re il peut étre étendu &
tout auire pelygone.

Scit 85575/ le polygone donnd ( hg. 12 ) et soit XX/X#X
Ie polygrae cherche. Soitconstruit arbitrairement un polygone AAZAZA/7 |
dont les ootes solent respectivenint paraileles aux droites donnces de
pusition , ¢t conséquemment aux cotes du polygone cherché, et dont
tous les sounnets A, A/, A7, excepte le dernier A7/, soient respee—
tivement sur les cotés 8§, 887, 8§78/ du polygone donné. Soient

dom. 11 39
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enfin M, N les points ot le dernier coté S//S de ce polygone est
coupé par les directions A7 ct AAY des cotés de Langle A

A cause des paralleles, on aura les proportions
N X7:AX ::§ N :§ A,
AX (A/X 0SS A S A,
A/ X7 AKX ST A LS AY
A/X NLX7: 8N SN

lesquelles, étant multiplices par ordre, donneront, en réduisant,

NX/7 s MXA 1 3 SNS/A RXSVA/XSMAN : SA X S/A/ X S/A/ < §///M.

donc

NX#MX/ ou MN : MX7/
SNXSAXS’A’% SMAN—=SAXS A’)(S” A% S SAXS’A'S(S” A”XS”’M R
done

, SAXTAXS A5 MM
MX”=DMN. - .
SNKSARS/A'RS Al SAXS/A'KS/ A S M

ectte valeur de MX// étant construite , par des quatriemes propor—
tionnelles , on connaitra la position du sommet X777, et alors il scra

facile d’achever le polygone.
Quatriéme solution ;

Par M. PiLaTTE , professcur de mathématiques spéciales
an lycée d'Angers.

Soit 88/ ( fig. 13 ) l'un des cotés du polygone donné ; scit X



RESOLUES. 283
celui des sommets du polygone cherché qui doit se trouver sur la
direction de ce coté, et soit fait SX =g,

Soit pris arbitrairement un point A sur la direction S8/, et soit
opéré avec ce peint A, comme on le ferait avec le point X, si, ce
dernier étant connu , on voulait construire le polygone demandé.
Si le dernier coté du polvgone construit, & partic de A, venait se
terminer & ce méme point, le point A serait , en effet , le point
cherché ; mais en général ce dernier coté viendra se terminer en un
autre point B de S8/

Si Pon opére ensuite par rapport au point B comme par rapport
au point A, on déterminera un treisienie point G, dépendant du point
B de la méme maniere que celui-ri depend du point A,

Soient faits SA=a, SB=), SC=c.

Si on prend le point 8 peur crigine, et le cété &S/ pour
axe des . on se cervamera fachicrent que la rolation entre les deux
variables @ et 4 doit ctre du premier degre sculement , et peut consé-
quemmeut ctre l‘cprésautc’e par l‘cquaiion

patgb=r; (0

dans laquelle p, 7 , 7 sont des constantes dépendant de la nature du poly-

gone donné , et de la dircction cenmue des cotes du polygone cherché,
Mais , puisque ¢ dépend de & de la méme maniere que cette

derni¢re quauntite depend de @, on doit avoir parcillement

pb-+qe=r ; (1n

or, si @ clt été pris égal & 2, & elt aussi ¢té égal & x ; on doit
donc avoir encore

pr-fqr=r . (111)

Retranchant successivement de Péquation (11I) les équations (T)
et (1, , il viendra, en trausposant,
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p(x_a):_{](x_"&) >
pla—b)=—glz—c) ;

équations qui, étant divisécs membre 3 membre, donneront

a—a x—b b>—ne
= -— doltl o= ———ro
x—0 X——C 2«/—-(11-{-4.)

cxpression facile & construirve.
Pour plus de simplicité, on peut prendre pour le point arbitraire A

le point S lui-méme; on a alors @a=o, et par consequeat

b2

¢c qui réduit la solution du probléme 4 la recherche d’une troisiéme
proportionnclle & deux Vges doundes.

Supposons qu’en ait pris ¢ <z , il est facile de se convaincre
que le nombre des cotes du polygone ¢étant impair, on aura 6>
et ¢c<x;on aura doncaussi e<b, c<b dot a4-c< 20, ainsi, dans
ce cas, le dénominateur de la valeur de # ne pouvant devenir nul,
le probléme sera toujoursr possibre.

Mais , @ édtant toujeurs pris <z, si le nombre des cotés du po-
lygone est pair, on aura a<x: b<x, c<x, ct il pourra fort bien
arriver qu'on ait @-\-c=2J, alors le proble¢me seraimpossible, & moins
cependant qu'on 2it , en outre , ac=)*, auquel cas le probieme
cerait indeterminé 5 or , des ¢quations

atc=2b et ac=10* ,
il est f{acile de conclure
a=l=c;

airsi, dans le cas d'un nombre de cotés pair , on reconnaitra que
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le prebiéme est impossible, si le point B se trouve au milieu de
Vintorvalle qui sépare les points A et C; et onreconnaitra qu’il est indé-
terminé, si, le point A élant pris quelconque, le point B cowncide
avec lai (*).

Cinquiéne solution ;
Par 3. GERGONNE.

1.° Soit m le nombre des cotés tant du polygone dorné que
du polygsas A construire ; concevons une  suite de polygones
P, P/, P7,... dont les cotes soient respectivement parali¢les aux
droites donnces de pasition, et doni les 72—1 premiers sommets scient
sur les zz— 1 premiers coiés du polygone donné, et soient §-, &, 87, ..
les 2.7 scramots de ces polygones.

2.° Le lica des points §, &, &7,....est une cerfaine ligne dont
les interscetions avee le #2.7¢ cote du polygone douné peuvent evidem—
ment élre prises pour le m.™¢ semmet du polygone cherché.

3.2 Or, il résolte des considérations développees dans les solutions
précédentes , ct il serait d’ailleurs trés—tacile de prouver @ priori,
par une simple ¢bauche de caleul , que le probleme proposé n’est
que du premier degré; done le lieu des points S, &, §7,.... ne
peut jamais couper le m.™® céit du polygone donné en plus d'un
point; douc ce lieu est une ligne droite.

4. La construction du probleme proposé se réduit donc & ee qui

suit rconstruisez arbitrairement les deax poiygones P et P’ qui vous

(*) Cette méthode peut, avee quelques moditications ¢tre appliquée i la solution
du probiime traitd & la page 116 de ce volime. Tl faut sculement alors déterminer
un quatricme point D, faive §D=d; posant alors

pab4-qatrb=s ,

pbed- i btre=s ,

ped-tge-frd=s ,

pxi-jx-re=s;
‘dlim'nation de p, ¢, r entre ces quauie ¢équations donnera les deux valears de
& qui rsoudront le probieme.
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dstermineront les deux points S et &; en joignant ces deux points
par une droite, Uintersection de cette droite avec le m.™¢ coté du
polygone donné scra le m.™¢ commet du polygone cherché.

5.2 Si la dreite 88 est parallele auw 72.7¢ e6té du polygene donné,
le probleme sera impossible ; si, au contraire , elle se confond avec
lui ou, ce qui revient au méme, siles sommets S et 8/ sont sur
ce m.™¢ cote, le probléme sera indeterminé,

6.° Si m cst un nombre impair, il est facile de voir que les
angles S et 8/ seront I'un dans [fautre , qu’ainsi leurs sommets ne
pourront s¢ trouver tous deux ni sur le m.™¢ coté du polygone
donnd, mni sur une droite qui lui soit paralitle, et que conséquem=
ment, dans ce cas, le probleme sera toujours possible et détermind.

7.° Mais il n'en scra pius de mi*me si 72 est un nombre pair, parce
qu’alors les angies S et &/ ne scroat plus Pun dans Pautre.

8.2 Cette coastractiom , qui diiiere peu de celle ds M. Pilatte, rentre
dans ce que les arithmencicis appel'ent Rézle de deux fausses
positions. Elle est parfaitcinent aczlogue & celle que M. Servois
a donnée d'un autre prob.eme & ‘a page 115 de ce volume.

LETTRE

De M. DvrovBcUuer , professeur de mathématiques
spéciules  aw lycde iiaperiul , aux rédacteurs des
Anuales,

L U Ve Ve 0 %a VA V1o V1, Vi

DM ESSIEURS ,

IJERRFUR g sest glissée , en derivant la formule logarithmique
qsi se trouve 4 la page 70 du 2.° volume des Annales , et dont
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M. Servois fait mention a la page 178 du méme volume, étant
corrigée , ma formule en acquxelt un plus grand degré de simplicité ;
et, avec la méme forme qu’elle avait d'abord , la série conserve toute
sa convergence. On a, en effet, toutes réductions faites ,

x’-—! a—1 x—1 1 ¢.__1\6 }
Logo=—= "-[15(x+x)+so<x+x BETA==h ]S'
J’ai T'honneur, ete. (*)

Paris , le 6 décembre 1811.

QUESTIONS PROPOSEES.

Probléeme de Geomeéltrie.

A. un tétraédre donné quelconque, inscrire quatre spheres de manicre
que chacune d’elles touche les trois autres et trois faces du tétracdre ?

Probléme d' Alliage.

Deux vases A et B, dont les capacités sont respectivement a et
b, sont remplis d'un mclange d’eau et de vin dont la proportion
est connue pour chaque vase. On a deux mesures égales dont la
commune contenance est ¢, et que Pon plenge, en méme temps,
dans les deux vases pour les remplir , aprés quot on verse dans
chaque vase le liquide tiré de Vautre. On reitere la méme opération

(*) Il est bien vrai quaa moyea de celle petite transformation, la scrie , cn
se simplifiant, repeend su forme primitive et avee clle, toute sa convergence, si
du moins, comme on le fail assez shuvent, on veut juger de la conver zence d'une

séric par le rapport de deux termes consceutits queicorues, Mais si, au contraire,, @t
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n fois consécutivement ; et on demande quelle sera alors la propor-
tion de Veau et du vin dans chaque vase 7

cela parait tout aussi naturel, on veut estimer le degré de convergence des sdries par
le nombre de leurs termes quil faut employer pour parvenir a ure approxima=

.
tion donnde , lassertion de M. Servois est execte. Les termes de la premicre

Ry a—1 .
série n'étaient, en effet, multiplies que par —— , tandis que ceux de la now
X
v 1‘2—'—'1 .oy I3 . 3 o
velle le sont par = » quantle necessairement plus grance guae la premiere,

si, comme Pexigent les usages de la formule , = est plus grand que lunité.

Il est donc vrai que la formule, en se modifiant, a un peuw perdu, sinon de
sa convergence , du moins de sa faculté approximative, et cest 14 sans doute ce
qua voulu dire M. Servois,

Mais la formule do M. Dubourguet, ainsi modifide n’cn est pas moins trés-
précieuse, parce qelle conserve towjours les avantages indiqués dans la note de
la page 70 de ce volume.

( Note des éditeurs. )




-Tom .1l,Plan. V.pag. 257~ 0
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STATIQUE.

Recherche directe et rigoureuse des centres de gravite
du triangle et du tetraédre ;

Par M. GERGONNE.

[a Yo Vo Vo W, W, W, Vo W VL V)

»DANS la Correspondance sur I'école polytechnigue (*), M. Berthot,
professeur au lycée de Dijon, a présenté la recherche des centres
de gravité du triangle et du tétraédre, dégagée de toute considéra-
tion d'infiniment petits et de limites. Sa methode ne laisse rien
désirer dua coté de la rigueur; mais c’est une réduction & I'absurde
qui, comme toutes les demonstrations de ce genre , a l'inconvénient
de supposer que l'on sache déja & I'avance & quel résultat on doit
parvenir. Le but que je me propose ici est de traiter les mémes
questions par des méthodes directes qui me semblent plus simples
et non moins rigoureuses que celles de M. Berthot.

AXIOME. Les centres de gravité des triangles et des tétraédres
semblables sont des points homologues de ces triangles et de ces

tétraédres. (**)

() Tom. 1, n° 7, pag. 229.

(**) A l'exemple ' ARCHIMEDE, j’ai cru pouvoir admetire cette proposition au
nombre des Axiomes ; mais , si I'on en jugeait autrement, on pourrait la remplacer
par la suivante qui se démontre facilement.

LEMME. Les distances des centres de gravité de deux triangles ou de deux
tétraédres semblables , aux bases de ces triangles ou tétraédres , sont proportionneiles
¢ leurs hauteurs.

Yeici de quelle maniére peut se démontrer cette proposition.

Towm. 11,

4~
=}
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PROBLEME. Déterminer le centre de gravité de Daire d'un

hy - k]
triangle quelcongue .

I. Svient H et & les hauteurs de deux triangics semblables; soicrt «, 8, les
angiles des bases de ces triangles ; soient enfin G et g les hauteurs respectives de
lews cenlres de gravilé au-dessus de ces bases. ;

H, «, g, éant donnés, le premier de ces deux triangles est absolument déter-
mind; son centre de gravité Vest donc aussi ; il en doit donc étre de meme de
la distance G Ce ce point & la buse du triangle; le rapport de cette distance a sa
hauteur doit done ¢tre également déterminé ; et conséquemment on doit avoir ,
au P'LUS ’

6 4
o == 8, H) ;
@ ddsignan¥ unc fenclion encore inconnue, mais absolument ddterminde.

Or, il est irapossible que H, qui est une ligne, entre dans le sccond membrs
de celie {quaiion , puisqualors cette ligne se trouverait étre seulement fonction des

. H . ..
deux angles «, B, et du nombre abstrait <" On doit donc avoir simplement
H
— T & *
o =05 8) 5

en auwra donc parcillement, pour Vautre triangle ,

h
= =¢le, B) 3
d'olt on conclura
H
G g ’

II. Si H ct E sont les hauteurs de deux tétraddres semblables dont € et g sciexs
Ies huutcurs respectives des centres de gravité au-dessus des plans de leurs bases;
¢n désiguit par ¢, B, deux des argles de ces bases, et par 5, s, les angles
di~dors que les trols auntres faces furment avec elles ; par un raisonnement sem-
Plase cn pricddeat en proavers que , bien que la détermination compléte des deux
Viraidres exige que Pon connaisse, ovire Iis cing angles a, B, v, o4, leurs
hawtewrs H et &, on doit ndaumoins avoir

p 24 . . h P .
.-.':V\“aﬁy‘?)?"/\) _:V(“?pﬂ'y?‘}?‘)’
[# Feg

el ¢cor. S RCTINeat

rr Fa
— T —,
@ S
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Solution. Soit ABC ( fig. 1 ) un triangle dont on cherche le
centre de gravité ; soient m , n , p les milieux de ses cotés. En
joignant ces points par des droites, on divisera le triangle donné
en quatre autres qui lui seront semblables, et dont les dimensions
seront moitié des siennes.

Soit pris AB pour base du triangle donné, et soient pris ses
bomologues Ap, pB, nm, mn, pour bases des triangles résultant
de sa décomposition. Soient 7' l'aire du triangle donné , H sa hau-
teur et G la distance de son centre de gravité 4 sa base; soient
¢, &, g, les quantités analogues, pour I'un des petits triangles; on
aura ( dziome)

T=4t, H=2%, G=n2g.

Remarquons présentement que les distances des centres de gravité
des deux triangles Anp et pmB 4 la droite AB sont également g3
que celle du centre de gravité de mpn a cette droite est —g ; et
qu'enfin celle du centre de gravité de 2Cm a la méme droite
est A--g.

Si donc on prend AB pour axe des momens , on devra avoir

T6 = tg-ttgmt{h—g)H(lig) = 21(g+11) 5
d’otz
4T6=4t(2g42h)=T(G+-H) ;
donc
36=H d’ott G=:II.

3

Ainsi, La distance du centre de gravité de laire d'un triangle
@ la base de ce triangle est le tiers de sa hauteur ; d’ou il est
aisé de conclure que ce centre se trouve a l'intersection des droiles
qui joignent les sommets du triangle aux milieux des cotés opposes.

LEMME. Le centre de gravité du volume d'un octaédre, régulicr
ou non régulier , mais dont les faces opposées sont des triangles
égaux ayant leurs plans paralliles , est @ son centre de figure ;
c'est-d-dire , au milieu de la droite qui joint deux sommels oppusés
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guelconques 5 ou encore a lintersection des trois plans qui divisent
Cociaédre en deux pyramides quadrangulaires égales; d'ou 1l suit
gue la distance de ce cenire & l'une des faces de I'octabdre est

moitié de lintercalle qui sépare celte face de celle qui lui est
opposce.

Dimonstraiion. 1l est aisé de se convaincre , en effet , que l'oc~
tatdre dont il s'agit ici est symétrique par rapport & trois plans passant
par le point que nous assignons comme sou centre de gravité. (*)

PROBLEME. Déterminer le centre de gravité du volume d'un
tétraédre ?

Soit ABCD ( fig. 2 ) un tétraddre dont il sagit de déterminer
le contre de gravitée A la moiti¢ de la distance entre ses sommets
et les faces opposées soient conduits des plans paralleles & ceux de
ces faces ; ces plans en détacheront quatre tétraédres gAnp , rpmB,
snCm , Dgsr , qui lui seront semblables, et qui, ayant leurs arétes
moitié des siennes , auront chacun le 8.™¢ de son volume. Ces
tétra¢dres enlevés , il restera un octaédre mnpgrs , ayant ses faces
opposées égales ct paralleles , et un volume moitié moindre que celui
du tétracdre proposé.

Soit prise ABC pour base du tétraddre ABCD, et soient prises pour
bases des quatre petits tétratdres les faces homologues & celles-la.
Soient désignés par 7' le volume du tétraédre proposé , par I sa
hauteur, et par G la distance de son centre de gravité au plan de
sa basc. Soient désignées par 7, 2, g les quantités analogues, pour
chacun des petits tétraddres ; et soit enfin désigné par O le volume
de Poctatdre ; nous aurons ( Aariome )

I=8, O=4t, H=2h, G=n2g
Remarquons présentement que la distance du centre de gravité de

chacun des petits tetratdres gAnp , rpmB, snCm au plan ABC est g;
que celle du centre de gravité de Dgsr a ce plan est g4/ ; et

9

(* Voyez le tome 1.5% des snnales, page 353 ct suivantes.
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gqu'enfin celle du centre de gravité de I'octaédre au méme plan est
¢ Lemme ) égale a; A.

En prenant donc ABC pour le plan des momens, on devra avoir

16 =1g+41g+15+tig+h)+0; h=4ig+1h+0h =145+ 3k) ;
donc

1676 =8¢(8g+4-6k)=T(46+4-3H) ;
ou
166=4G+3H ;
d’ol
G=:H.

Ainsi, la distance du centre de gravité du volume d'un 1ltraldre
au plan de sa base est le quart de sa hauteur ; d'ol il est facile
de conclure que ce centre est situé & lintersection des droites qui
jorgnent les sommets du tétraédre aux centres de gravité des aires
des faces opposées s et, par suite, qu'il est situé¢ au milicu de la
droite qui joint les milicux de deux arétes opposées quelconques. (*)

-—
-

QUESTIONS RESOLUES.

Solution du dernier des deux problémes proposés a la
page 196 de ce volume ;

Premiére solution ;
Par M. LuuiLier , professeur de mathématiques & lacadémie
impériale de Geneve.
§ 1.

LEJVI.ME. 1. Trouver deux droites dont on connait le rectangle ct
la différence des carrés ; ou, déterminer un triangle rectangle dont on

(*) Voyez la Correspondance sur Uécole polytechnique , tome 11 , ne 2,
age 96.
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connait une des jambes de 'angle droit, et le rectangle de Phypothénuse
par l'autie jambe de I'angle dreit ?

Soit ABX ( fige 3 ) un triangle rectangle dont on connait .une
des jambes AB de langle droit, et le rectangle de I'hypothénuse
AX par {'autrc jambe BX de l'angle droit ; on demande ce triangle.

Que le rectangle donné AX><BX soit égal au rectangle du coté
donné AB par une droite L , en sorte quon ait AXXBX=ABXL;
on déduira de la

AX :AB =L :BX ,
et AX*:AB*=L":BX?,
d’ol AX2:ABXL=ABXL:BX2.

Soit congue la droite XZ perpendiculaire 3 AX ct qui rencontre
en Z le coté AB prolongé, on aura

AX*=ABXAZ , BX*=ABXBZ ;
dane
AZ:L=L:BZ ;
donc on connait la diflférence AB et le rectangle Z* des deux droites
AZ et BZ ; donc ces droites sont données.

Construction. Que le c6té AB soit prolongé en Z , de manitre
que le rectangle AZX<XDBZ soit égal au carré de la droite donnée L.
Sur AZ, comme diamétre , soit décrit un demi-cercle dont la circon-
férence rencontre en X la perpendiculaire 3 AB élevée depuis le
point B ; cn menant AX, le triangle AXB sera le triangle

demandé.
En appliquant Ie calcul & cette construction, on trouve d’abord

AlL=\AB I 4:AD ,
DZ=(/:AL41*—1AB ;
et ensuite
AX*=AB/IAL L +:AB,
BX:=AR}y/I A +L*—1AB} .
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Remargue. On peut traiter ce prebléme d'une maniére purement
algébrique commne il suit,

Sotent

AX=z, BX=y, AD=gq,
Ies ¢quations du probléme scront
x‘.—y‘:‘.a‘ s xy:al >

ajoutant au carré de la premidre le quadruple du carré de la se-

conde , il viendra, en cxtrayant la racine quarrée de l'équation
résultante ,

T
oy =z2ay/ ia* 1
mais on a ZP—yi=a

dong

=al\/+I+1a} ,
y'=aly;e1r—z5df .

§ o

L3IME. I1 Soient deux droites paralltles entre clles, donndes
de poeition 3 et soit un point donné de position , sur le plan de
ces droites. On demande , sur Pune des paralléles, un point duquel
menant deux droites perpendiculaires entre elles , dont une passc
par le point donné , et dont Pautre soit terminéé a la seconde des
pereileles donndes, la différence des carrés de ces droites soit donnée?

Scient AA/, BB/, ( fig. 4 ) deux droites paralltles entre elles,
dennées de position 3 et soit P un point donné sur le plan de ces
parulicies. On demande , sur l'une de ces droites, telle que AN/,
un point X, duquel menant deux droites , une XP au point donné
T, ct lautre XZ , perpendiculaire & XP, ct terminée en Z a Pautre
passibcle; la difference des carrds de XZ ct de PX soit donnee de

Lios points P et 74 soiert alaise’zs sur AN/ los perpendiculaires
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PA et ZY. L’angle PXZ ¢tant supposé droit , les angles PXA, ZXY,
valent ensemble un angle droit, et partant les triangles PXA , XZY

sont equiangles ; donce

PA:AX=XY:ZY ou APXZY=AXxXY.
Mais les droites PA et ZY sont données de grandeur ; donc le
rectangle AXXXY est aussi donné de grandeur.

Or, PX>=AP~AX? ,
et X2 =2ZY*+XY*,
donc X7 —PX*=2Y'—AP*)4-XY*—AX?) .

Donc, on connait le rectangle des droites XY et AX, et la dif-
férence de leurs carrés ; donc ( Lemme 1 ) ces droites sont 'une ed

I’autre connues.
§. 3.
PROBLEME. Conper un prisme triangulaire donné par un plan,

de manicre que la section soit donnée d’espéce ?

Soit B ( fig. 5 ) un point donné , sur l'une BB/ des arétes d’un
prisme triangulaire , dont les deux autres arcétes sont AA/, CC/. On
demande de couper ce prisme par un plan passant par D , de maniére
que la section soit donnée d’espéce ?

Soit BXY la secction cherchée.

Analise. Du point B soit abaissée sur le plan de la face opposée
la perpendiculaire BP. Du point P soit abaissée sur la commune
scction XY de cette face et du plan cherché la perpendiculaire PZ ;
et soit mende BZ. La droite BZ scra la hautcur de la section, en
prenant XY pour base et B pour sommet.

Le triangle BXY étant donné d’espéce, le rapport de XZ a ZY
est connu, ct partant le point Z appartient a une droite donnée de
position, parallele & AA’ et CC/, et sur le plan de ces droites;
soit cette droite DD/,

Le rapport de XZ 4 BZ cst aussi donné; et partant si, sur la
droite XZ , on congoit portée une droite ZV ¢égale & BZ , le point

v
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V appartiendra aussi & une droite donnee de position, paralléled DD/,
et toujours dans le plan de AA’ et CC/. Soit EE/ cette droite.
Cela posé , la difference des carres de BZ et PZ est egale au
carré de la droite donnee BP ; donc aussi la différence des carrés
de ZV et de PZ est égale au carré de la droite donnée BP , et les droites
PZ et ZV sont I'une perpendiculaire a lautre ; donc ( Lemme ) ces
droites sont determinees. De 1a découle la construction suivante :
Construction. Du point B soit abaissée sur la face opposée une
perpendiculaire BP. Sur cette face soient determinées deux droites ( paral-
leles aux arétes du prisme ) telles que , menant une droite quelconque sur
le plan de cette face, les parties de cette droite,, comprises entre la premiére
parallele etles deux arétes, soiententreelles dans le rapportdonné des seg-
mens faits sur la base de la section , par la perpendiculaire abaissée de son
sommet sur cette base; et que la partie de la méme droite , comprise entre
ces deux paralleles, soit & la partie de cette droite comprise entre
la premiére et I'une des deux arétes dans le rapport donné de la
hauteur du méme triangle au segment correspondant de sa base. Que
DD/ et EE/ soient ces deux paralleles. Soit déterminé sur la premiére
( Lemme 2 ) un point Z tel que , menant de ce point deux droites
perpendiculaires entre clles, l'une ZP, terminée au pied P de la
perpendiculaire BP , et lautre ZV , terminée en V sur EE/,la
différence des carrés de ces deux droites soit égale au carré de la
perpendiculaire BP. La section XBZ qui passera par le paint B et
par la droite ZV, sera la section cherchde.

§o 4.

Application au probleme proposé. Que la projection donnde d’es—
ce soit prisc pour base d’un prisme droit ; soit coupé ee Pprisme
pe t p P base d P droit ; soit P p
par un plan, de maniére que la section soit semblable au triangle
donné. La base du prisme et la section sont entre elles comme la
rojection demandée du triangle proposé est & ce triangle.
projection d dée du triangle prop t triangl
Corollaire. Un parallélogramme étant proposé , on peut le projeter
Tom, Il 41
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orthographiquement , de maniére que sa projection soit un autre
paraliclcgramme donné d'espece. En particulier, on peut projeter un
parallelogramme orthographiquement , de maniére que sa projecticn
soit un carré.

On peut rechercher immédiatement les angles que les cotés BX et BY
font avec l'arcte BB/, et partant linclinaison des plans du triangle
projeté et de sa projection orthographique donnée d’espéce.

Que les cotés B et BC de la sectiva perpendiculaive aux arétes
adjacents au point B soient ddsignds par a ct ¢; que 'angle compris
soit designé par B; que les angles B/BX et B/BY soient désignés
par @ et par y; que Vangle B du triangle XBY soit désigné par 4 5
qu'enfin le rapport des cotés BX et BY soit celui de @ a o5 on
aura

a=BXSinx , ¢=BYSin.y
donc
a:c=aSin.x:4Siny d'ot Sinx=4Siny ;
donc

c
ve — . _ c2 .
Singy = - Sin.z , Cos.y_Vl____ Sinlz .

yz
Or, dans langle solide triangulaire formé en B, par les angles
B/BX, B’'BY, XBY, on a

Cos.b—Cos.xCos.
Cos.g= 4

Sin.xSin.y

Mettant pour Sin.y et Cos.y leurs valeurs et chassant les dénominateurs,
il viendra

¢Cos.85in2r =5 Cos.b—Cos.x.y/ »*—c*dm x ,

dégageant cette cquation de lirrationnalité , et mettant pour Cos*z
sa valeur 1—3in. 2, elle deviendra, toutes réductions faites ,

*S5in2 St r—{c*—2r, Cos.l Cos.a45*, Sin.2x»*Sinsd =0 ;
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on obtiendra de méme,
'yl's'ln."ﬁSil].4_)’—72(62—267(:05])(:05.‘s-Jr./z)Sin_z_)._{_[:y:S;n.zZ —o.

Lorsquon a déterminé les angles z et 3, on a déterminé les
rapperts des dimensions du triangle & projeter et de sa projection
partant aussi on a determiné le rapport des surfaces de ce triangle
et de sa projection. Or, ce rapport est celui du sinus total sau. cosinus
de l'inclinaison de leurs plans entre eux ; partant cette inclinaison

¢st connue.

§. 6

Le probléme qui fait Pobjet du Lemme premier est un cas par-
ticulier d’un probléme plus général , dans lequel I’angle B au lieu d’étre
droit est un angle quelconque.

Ce probléme général est solide. Je vais en exposer la solution
par lintersection du cercle et d’une parabole.

Soit ABX un triangle ( fig. 6 ) dont on connait un cété AB,
un angle B sur ce c6té, différent d’'un droit, et le rectangle des
deux autres cotés AX et BX, on demande ce triangle.

Soit A4 perpendiculaire & BX ; et que le rectangle donné soit égal
au rectangle de la perpendiculairc Ad par une droite / donnée de

grandeur.

Puisqu’on a

AXxBX=A/x/,
on doit avoir
AX:Ab=/:BX dou AX*:Ab*=[.BX:;
donc
AX:—Ab* : Ab*=/"—BX*:BX* ,

eu X2 A =]r—BX*:BX* .

Du point B comme centre , avec le rayon / soit déerit un cercle ;
et que la perpendiculaire élevée & BX depuis le point X rencontre



oo QUESTIONS
en Y la circonférence de ce cercle ; on aura 2—BX*=XY"*; done
{X:Ab=XY:BX ,

d’ott A< XY=iX<BX ;
doac le point Y est & une parabole dont Bé est une double coor~
donnee de l'axe, et dont le paramétre est la perpendiculaire Ad.

Remarqgue. La parabole qui passe par le centre B du cercle dont
le rayon est /, coupe toujours en deux points , au moins, la circon-
férence de ce cercle ; mais elle peut aussi couper cette circonference
en deux autres points , ou la toucher en un point ou ne la rencontrer
en aucun autre point. Au cas du contact répond une limite, en
petitesse , du rectangle proposé. Comme ce probleme est seulement
accessoire au but principal de ce mémoire , je ne crois pas devoir
insister sur la discussion de ces différens cas.

Ce dernier probléme , envisagé algcbriquement , conduit & une
équation du quatri¢me degré,

Soit AB=a , et que l'angle B soit désigné par ¢. Soit BX=x,

le rectangle donné est xy/a*—2400Cus.04-2*; que ce rectangle soit
P> on a l'équation
at—242°Cos.¢-a*2*—pt=o0 ;

ectte équation a au moins deux racines réelles.
Deuxiéme solution

Par M. D. ExcoxtrE, professeur, doyen de la faculté des
sciences de l'académie de Montpellier ;

I. Soit ABC ( fig. 7 ) le triangle qu’il s’agit de projeter , ses
projections sur tous les plans paralléles & celuisur lequel on le projetera
seront toutes égales. Nous pouvons donc supposer que le plan de
projection passe par tel point qu'il nous plairade choisir ; et nous choisi-
rons le point A.
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II. Soit mende AE paralléle a BC, les angles CAE et ACB seront
égaux et les projections de BC et AE seront paralleles. Si donc nous
parvenons a projeter AB, AC, AE, de mani¢re que Teurs projections
forment des angles donnés, les projections de AB, AC, BC for-
meront aussi des angles donnés; d’out il suit que la question se réduit
a trouver un plan sur lequel projetant orthogonalement deux angles
adjacens donnés , compris dans un méme plan , leurs projections soient
des angles donnés. (*)

HI. Soient BAC, CAD ( fig. 8 ) les deux angles adjacens pro-
posés ; prenons , a volonté, la longueur AB, et par B concevons,
dans le plan BAD, une droite BCD, parallele & la commune secticn
AE des deux plans ; la direction de cette droite n’est pas connue.

Soient mendes AF, perpendiculaire sur BD ; puis B4, Ff, Cc, Dd
perpendiculaires sur le plan de projection; ces perpendiculaires seront
égales, et auront leurs pieds sur une méme droite dd parallcle a BD.

Joignons Ab, Af, Ac, Ad, les angles AbB, AfF , AcC, AdD
seront droits , Af sera perpendiculaire & &4 qui est parallele & BD ;
ainsi les droites FA et fA étant toutes deux perpendiculaires au
méme point A de la commune section AE des deux plans, l'angle
linéaire FAf qu’elles formeront mesurera I'angle formé par ces deux
plans.

1V. Faisons 'arbitraire AB=1 ; faisons en outre SinBAC=« ,
Sin.BAD=p , Sin.bAc=y , SinbAd=.

Toutes ces quantités sont connues.
Faisons encore B6=Ff=Cc=Dd=z , et Sin.ABD=y.

Ces quantités sont inconnues.

(* Le probléme envisagé de cette maniére revient i celui-ci : Etant donfides
les différences tant des longitudes que des ascensions droites de trois points de
Vécliptique , déterminer son inclinaison & léquateur et le lieu de Iéquinoxe P
Les deux angles & projeter sont les différences entre les trois longitudes ; les
angles que doivent former leurs projections sont les différences des ascensions droites ;
eafin linclinaisen des deux plans est Iobliquité de Iécliptique.

¢ Note des éditeurs. )
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On a
Sin.ACB:Sin.(BAC—l—CBA:.:u‘/T_—_'F+7f‘/T:;T:p ,
Sin. ADB=Sin.(BAD~+-DDA)= ,3\/7:3:_}-}"/';—_:;: Q;
en faisant donc entrer P et Q dans le calcul, nous n’introduirons

pas de nouvelles inconnues.
V. d’apres cela on a

Sin.ABF f x
AF= ===y , SnFV=G=—,
L L AP _
COS.FAf—-,—Y-‘/-y 7 T Smack P °

1

Ac=\/AC—Ci= Ty y—Pa

AF

Y o
= Ab=y 1—a?
Sin.ADF Q ? ‘/ ?

AD=

Ad= \/Ai)z——l)d~‘ — \/y —{Jr?

VI. 1l ne s’agit plus ‘maintenant que de trouver .deux équations
entre les deux inconnues z et y. Or, on sait que les aires des
triangles BAC , BAD multipliées par le cosinus de I’'angle FAf doivent
donner pour produits les aires des triangles JAc , 6Ad; on sait
d’ailleurs que

BAC=:*ABx><ACXxSinBAC,
bAc=:AbxAc XSin.bAc ,
BAD=:\ABx<ADXxSin.BAD ,
bAd=1Ab <xAd XSinbAd ,

donc

ey yr—at =gy 1—ac/ y —Pat
pV‘)/‘z—.legV 1—0, ‘/‘},.:___Q.-J.z .

On peut simplifier ces ¢quations ; mais I'équation finale 3 laquelle

on parviendra, en éliminant, sera nccessairement trés—compliqude.
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Troisiéme solution ;
Par M. TEDENAT , correspondant de la premitre classe de
I'Institut, recteur de l'académie de Nismes.

Soit ACB le triangle & projeter, ( fig. 9 ) et supposons , ce qui
est permis , que le plan de projection passe par le point C; soit CD
Vintersection da plan de cette projection avec le plan du triangle ACB;
des points A et B soient abaissées , sur le plan de projection, les
perpendiculaires AA” , BB/ ; en joignant CA” , CB”, AVB/, le
triangle A”CB” scra la projection du triangle ACB, et les prolon-
gemens des droites AB, A”B” devront rencontrer en un méme
point D Vintersection des plans des deux triangles. Soient enfin pro-
longés les droites CA”, CB” en A’ et B/, de telle sorte que CA/,
CB/ soieut respectivement égales aux deux cotés de langle égal & G
dans le triangle donné d’espéce auquel la projection de ACB doit
étre scmblable. En joignant A/B/, cette droite sera parallele & A”B”,
et A’CDB/ sera ce triangle donné d’espeéce.

Les triangles ACB, A’/CB/ étant donnés, posons

CA=a2 , CB=%, AngACB=y , AB=¢
CA’=a’, CB/=¥ , AngA/CB'=y ; AB=¢
en désignant par a le rapport inconnu entre les c6tés homologucs
des deux triangles A/CB/, A”CB”, on aura
CA/=hna! , CB/=al/ , AB/=xrc ;
on aura de plus

Aire de ACB=140Sin.y , Aire de A”CB/=1x*a/b/Sin.,/ ;

>
8i denc Ton désigne par ¢ Iinclinaison des deux plans, on aura,
eomnie l'on sait

a?a’l/Sin.s/ =abSin.,Cos.¢ M
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Présentement , en faisant AA/ =1, BB”=y, les triangles rectangles
AA/Cet BBZC, et le quadrilatére bi-rectangle AA”B”B donneront

at=at—ata =l ,
(r—y ) =c*—a%c* ;

La derniére de ces équations étant retranchée de la somme de deux
autres, 1l viendra

22y =a’~-0*—c*— »* (a4 —c’*) = 2abCos.y—227a’t/Cos.y’ ;
ou en divisant par 2 et quarrant

x2y:=a2}2Cos.?y—292aba’b/Cos.yCos.o'4-2+a/2b2Cos 2y

égalant cette valeer de 22y A4 celle qui résalte de la multiplication
des deux premicres équations , cn changeant les cosinus en sinus,

il viendra 3
Ata’2b'2Sin, 2 p—{a2b'2—2a0'bb'C0s.5Cos.y'~4-a/2b2) A+ a252Sin.y=0 ;

substituant enfin pour a* sa valeur donnée par I’équation (1),

on aura
a2a'h2b'Sin.y Sin.y'Cos.28—ab(a>b’*—21a'bb'Cos.¥Cos.y'-4-a'h>) Cos.#
~-a2a’b2b'Sin.ySin_ y'==o0.

Cette équation donnera, étant résolue , la valeur de Cost. (*) d'ot

(» En posant, pour abriger,
a2h'*~—2aa'bb'Cos.(y+v')Fa'6>=D1> ,
azb/2—2aa'bb'Cos.(y~—y)4-a'*b>=N= ;

doi
a2b/1—2aa'bh'Cos.yCos.o'Fa/2b= L (M:-N2) ;
2aa'bb’Sin.yCos.y=1 (M=2—N32) ;
les valeurs de Cos.d prendront cette forme tiés-simple
MEN:_ M=*EN
Mi—N+  M=N°’

Cos. 6=

er. comme ['adoption des signes supérieurs conduirait & l'absurdité Cos.0>1 , i

faudra simplement écrire
C M—N
08, 4= ——
M+4-N 2

ee qui fournit cette construction trés-remarquable :
ou
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on conclura celle de A, au moyen de Iequation {I) ; alors on aura
x et y par les equations

= @t—rta* , oy r=hr—2le
il Vorela PO . , .
on pourra denc ceanaltre Pangle BCB” 5 cet angle étant déterminé,
Vangle tri¢dre rectangle dont les arcies soat CB”, CB, CD donnera
Em.pCB”

Sin.BCD= g’

et on aura enlin, dans lc méme angle tricdre
Tang.B”CD=Tang.BCDCos.¢ ;

alors on pourra sans peine construire la situation respective des deux

triangles ACB ct A”CB” sur le developpement de l'angle dricdre formé

par leurs plans.
Quatriéme, Cinguiéme et Sixiéme solutions ;

Par MM. Pivarte et Penjon, Professeurs de mathémati-
ques au lycée d'Angers ; et MM. Rocuar et LEcraxD,
professeurs & Saint-Brieux.

La marche de M. Penjon différe peu de celle de M. Tédenat,
si ce n'est qu’il prend pour inconnue le coté CA”/, ce qui le con-
duit & une équation du quatritme degré se résolvant comme unc

du second.

« Cherchez une moyenne proportionnelle entre CA et CB/, et une autre entre
CB et CA’; faites de ces deux lignes deux cotés de deux triangles, dont an-
gle compris soit pour l'un la somme et pour lautre la différence des deux
angles ACB ct A/CB’; si alors vous construisez un triangle reclangle dont 'hypo-
» thénuse soit la somme , et un cdté de langle droit la différence des troisicmes
» cOtés de ces triangles , 'angle opposé & I'autre cotd de 'angle droit dans ce triangle

»

?

rectangle , mesurera linclinaison des deux plans. »
( Note des éditeurs. )

’

Tom. II, 42
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M. Pilatte traite la question par la géométrie analitiqué, e prenant

.

le plan de projection pour le plan des zy et le point C pour origine
das coordonnées rectangulaires ; il ne se permet, au surplus, d'autres
simplifications que de prendre pour plan des 2z le plan méme du
triangle AA”C. Prenant alors pour inconnue la coordonnée CA” du
point A, ce qui rentre dans le systéme de M. Penjon, il parvient,
comme lui, & une équation du quatrigme degré se résolvant comme
une du second, et & l'aide de laquelle il constrait les projections du
triangle ACB sur les plans des 2z et des 2. Nous ferions connaitre
ses constructions, beaucoup plus simples que la forme de I'equation
uc semble le promettre , si nous n'avions i indiquer bientot une
méthode tres — ¢légante pour résoudre le probleme , par des consi-
dérations purement géométriques.

MDM. Rochat et Legrand ont réduit la question & chercher la direction
des arétes latérales d’'un prisme droit triangulaire ayant pour base
supdricure le triangle & projeter, et pour base inférieure la projection
de ce triangle. Soient donc ( fig. 10 ) ACB la base supérieure de
ce prisme , A/C/B/ sa bhase inféricure , et soit fait passer par C an

plan @Cb paralléle & cette derniere. Soient Ang. ACC’=x,Ang.BCC/ =y,

CA C/A/ s .
Ang ACB=y, Ang A/C/B/=+/, GET™ o o =m’; langle tricdre

dont les arétes sont CA, CB, CC/ donnera
Sin.zSin.yCos.;’ = Cos.y — Cos.2Cos.y 3

les deux triangles rectangles CeA, CIB donneront ensuite Ca ou
C/A’=CAS8inz ¢t Cb ou UB'=CBSin.y; dou l'on conclut , par
Sin.x

division , m/=m —— , cest-a-dire ,
Siny

mSinx=m'Siny ;
au moyen de cette ¢quation et de la précédente , on trouve facilement,

suit pour Sin.x, soit pour Sin.y, une équation du 4.™° degré se
résolvant comme une du second.
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Septiéme solution ;

Construction géomeélrique du probléme ;

Par M. Vecren, professcur de mathématiques spéciales
au lycée de Nismes.

LEMME I Siplusieurs triangles semblables ACB, A/C/B/ (fig. 11)
ont leurs angles hcmologues C, C/ inscrits au meéme arc aC/Ch , et
que , dans chacun d’eux , on meéne la droite CM, C/M/ qui joint le
sommet G, C/ au milieu M, M/ du coté epposé AB, A/B/; les
prolongemens dcs droites CM , C/M/ iront tous concourir cn un méme
point 7z, sur la circonférence dont l'arc «C/C) fait partie.

Démonstration. Dans les triangles semblables , les droites qui
joignent les sommets homologues aux milieux des cotds opposés
étant des lignes homologues, doivent faire des angles égaux avec leurs
c6tés homologues ; les angles 4CM et JC/M/ sont donc égaux, et
doivent conséquemment comprendre des arcs égaux entre leurs cotés :
puis donc que ces arcs ont une extrémité commune & et vont dans
le méme sens, ils doivent se terminer & un méme point 7.

Corollaire. 11 suit de 1a que, le triangle ACB étant seulcment
donné d’espéce , et inconnu , tant de grandeur que de situation par
rapport & la corde b, il est néanmoins possible de déterminer le
point 7 ol larc amb est rencontré par la droite CM menée de
son sommet C au milieu M du c6té opposé AB; il suffit en effet,
pour cela, de déterminer le point 72 pour un autre triangle A/C/B/
arbitrairement construit semblable & celui-la , et ayant son angle C/,
bomologue & C, inscrit comme ce dernier & I'arc aC/d.

LEMME 1I. Soient deux cercles ( fig. 12 ) ayant la droite a&
pour corde commune ; soit un troisiéme cercle ayant son centre O
sur ab, et coupant les deux premiers en m et m/ et la droite a4
en p et ¢ ; soient menées mp et m’/p, prolongées jusqu'a la ren—
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contre des deux circonférences en C et C’ ; soit enfin menéde CC/
coupant @b en 5 ; il s'agit de prouver que GU/ est perpeadiculaire
a ab.

Pour le démontrer, soit d'abord mende mm’ ; par les proprictés
- des cordes qui se coupent dans le cercle, on aura, a la tois ,

pC Xpm =pax<ph
d'ou pCXpm=pC/'Xpm’ ;

pC X pm!=pax<pb
donc les triangles CpC/ et mpm’ sont semblables, d’ou il suit que
Pangle C, ¢gal a angle 2/, est mesuré par la moiti¢ de l'arc pm ;
mais d’un autre coté, langle 5,.C , ¢gal & mpg , doit étre mesuré par
la mcitié de larc mg; done, dans le triangle Cyp, la somme des
deux angles C et p est mesuré par la moitié de la demi-circonference
pmq s cette summe vaut donc un angle droit ; ce triangle est donc
rectangle en 4 et par conséquent CC/ est perpendiculaire & ab.

Corollaire. St donc on proposait ce probleme : » Deux points 7
» et /n/ clant donnés sur deux circonfercnces ayant une corde com-
» mune ab ; déterminer , sur cette corde @b, un point p par lequel
» et par chacun des points m et m/ menant les cordes mC et m/C/,
» la droite CC/ soit perpendiculaire & @b ? » 1l faudrait , pour le
résoudre , décrire un cerele dont le centre fut sur @b, et dont la
circonference passit par les points m et m/; chacunc des intersections
p ct g de cette circonference avee la droite @b pourrait étre prise
pour le point cherché,

PROBLEJIE. Deux Iriangles ‘tant donnés , déterminer sur quel
plan il fuut projeter orthogonalement le premicr , pour que sa pro-
Jction scit semblable a Fautre; consiruire de plus cette projection
ainst que I'inclinaison des deux plens et Jéterminer , en outre , la
situation du triengle of celle de sq projection par rapport a la commune
sectior de ces deux plans?

Analise. Concevons que le probleme soit déja résolu. Soient ABC
( fig- 13 ) le triangle & projeter , ADYC/ sa projection , semblable
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3 un triangle donné, et @b lintersection de leurs plans. Soient D
et M/ les milieax de AB et A/B/; M/ sera la projection de M, et
il est clair que CA, CM, CB prolongés iront concourir aux mémes
points @, p, b de ab, avec les prolongemens de C/\/, CAl’, C/B/.
Soient enfin menées AA/, BB/, CC/, perpendiculaires au plan de
projection, et A« , Bg, C, perpendiculah‘cs a ab; en menant Alw,
B’s, C’y, ces droites seront aussi perpendiculaires a ab.

Concevons présentement que l'on fasse tourner le plan du triangle
ACB autour de la commune scction ab , jusqua ce que ce plan
soit devenu le méme que celui du triangle A/C/B/, comme on le voit
( fig. 14 ); daps ce mouvement, les points @, p , &, «, #, » demeure-
ront immobiles, et les droites Az, Bg, Cy, ne cessant pas d'étre
perpendiculaires & @4, deviendront les prolongemens de A/« , B/g,
Cy. Quant & la longueur de @b, cormme tout plan parailele & celui
de A’/B/C/ peut étre pris , comme lui > pour le plan de px‘ojection;
il s’ensuit que cette longueur est tout 4 fait arbitraire.

De cette analise découle naturellement la construction suivante.

Construction. Sur Varbitraire @b ( fig. 14 ) soient dcerits , de
différens cotés, des arcs capables de deux angles correspondans C
et C/ tant du triangle & projeter que de sa projection. Sur les parties
restantes des deux circonférences , soient déterminés ( Corollaire du
Lemme 1) les points m et m/ ou ces arcs seraient rencontrés par
les droites joignant les sommets C, C/ aux milicux des cotés opposds.
Soit enfin déterminé sur @b ( Corollaire du Lemme 2 ) un point p
par lequel et par les points 72 et 7,/ menant aux deux cercles les
cordes mC et m/C/, la droite CC/ soit perpendiculaire en » sur ad ;
alors C et C/ seront les sommets cherchés : formant donc sur 'angle C
un triangle ACB égal au triangle & projeter et’ abaissant des points
A, B, sur ab des perpendiculaires A« , Bg prolongdes jusqu'en A/
et B/ & leurs rencontres respectives avec C/a et C/b, le triangle A’C/B/
scra la projection demandée. Quant & Dinclinaison des deux plans,
ells sera l'angle aigu d’un triangle rectangle compris entre une
hypothénuse egale a 5C, et un coté de langle droit ¢gal & ,C%
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Comme le probléme de la détermination du point p a deux so=~
lutions ( fig. 12 ), savoir le point p etle point ¢, on pourrait croire
qic le prebiéme propesé eira deux aussi; mais, en exécutant opera~
tion sur le point ¢, on se convaincra facilement que le triangle rec=
tangle qui doit donner I'inclinaizon des deux plans ne peut étre construit,
de manicre que le prebléme n’a jamais qu’une solution au plus.

Ce prebliime serait meme impossible si la projectiondel’un des angles
du trivngle & prejeter devait étre égale & cet angle méme; a2 moins
cependant que les projections des deux autres ne dussent aussi leur
étre ¢gales; auquel cas les deux plans devraient étre paralleles , et la
situation du triangle & projeter indeterminée sur 'un de ces plans. (*)

Démonstrations du théoréme de geomeélrie enoncé a la
page 196 de ce volume ;

Par MM. ExcontrE , FERRIOT , LEGRAND , PoUzZIN , PENION,
Lenavnt , BRer, LaBrRoUssE et RocHAT,

[a % Vi Vo ¥ VL W, Vi Vo V0 Vi

E.l. JONCE. Dans tout quadrilatire, plan ou gauche , la somme
des quarrés des deux diagonales est double de la somme des quarrés
des deux droites qui joignent les milicux des cdtés opposés.

Les démonstrations de cette proposition données par MM. Encontre ,
professeur doyen de la faculté des sciences de l'académie de Mont~
pellier ; Ferriot, professeur au lycée de Besangon ; Legrand, professeur
de mathématiques a Saint-Bricux , et Pouzin, de Montpellier, se
réduisent également & ce qui suit.

(") Tout cela résulte aussi de ce qui est dit dans la note de la page 304
( Note des e€diteurs. )
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On sait (*) qu'un quadsilatire |, plan ou gauche ; étant donné,
si l'on en construit un autre dont les sommets soient les milicux
des cotés du premier, ce dernier sera un parallelogramme dont les
cotés opposés seront paralleles aux diagonales du quadrilatére donné,
et en seront respectivement les moitiés.

1l est connu dailleurs (**) que , dans tout parallélogramme , la
somme des quarrés des deux diagonales est égale a la somme des
quarrés des quatre cotés.

Soit donc ABCD ( fig. 15 ) un quadrilatire, plan ou gauche, et
soient M, N, P, Q, les milicux respectifs de DA, CD, BC et
AB ; par la premiére proposition on aura

AC=2MN, BD=:2NP,
AC=2PQ , BD=:2MQ ;
o

on aura donc, en quarrant, ajoutant ct divisant par 2z,
—1 — ) — 3 — J— 3 — 2
AC +4BD =2(MN -+NP -4-PQ +QM ) ;

mais , par la seconde proposition, on a

2(m1+ﬁz+}:az+®z) —, (m)z+mz) ;
done
—D n— 2, —— —— 2
AC 4-BD =2(MP 4NQ ).

M. Encontre remarque , 4 ce sujet, que tout paralltlogramme inscrip-
tible au cercle est nécessairement un rectangle , puisque les deux
diagonales se coupant en deux parties égales sont nécessairement des
diameétres et qu’ainsi ses angles se trouvent inscrits au demi-cercle.

M. Ferriot observe que, si 'on congoit une suite de parallélogrammes

tels que les sommets de chacun soient les milieux des cotés du
précédent, et quon désigne par 1 laire du premier, la somme de

-(*) Voyez le tome 1.6T des Annales, page 353.
** Voyez le corollaire de la proposition X1v du livre 111 de la Géométric de

M, Legendre,
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leurs aires sera celle de la pregression décroissante 1 -E- ~+ i +%— -+
4

“.e=2; il remarque que la méme proposition a encere licu sila pre-
micére Ligure, au licu d'étre un parallelogramme, est un quadrilatere
quelcon yie.

M. Legrand remarque d'abord qu'en prenant le mot quadrilatére
dans le sens le plus général , on peut, dans un quadrifatere plan
ou gaucie , considérer les deux diagonales comme deuX cotes op-
posts, el vice versd y si donc R et S sont les milieux des diagonales
BD et AC, (fig. 17 ) endevra avoir, en vertu du théoréme démontré ,

— 2 —— 2 —2 —_—

( A() s \ID '
DB 4AC —2 MP 4+NQ ),
—2 2 — 2 2
AD 4+DBC =20 +158 ),
—_—2z ——2 —_—2 —1
AB 4-CD =2(MP 4-1S );

ce qui donne, en ajoutant,

2 S—Y — — — — — 2 ek Ty
AB 4+AC 4+AD +BC +BD +CD =4(MP +NQ +RS ) ;
c'est-a-dire : Dans tout quadrilatire , plan ou gauche, la somme
de quarrés lant des cotés que des diagonales est quadruple de la
somme des quarrés des droites qui joignent tant les milicux des
cdtés opposés que ceux des diagonales.

Ou autrement : Dans tout tétracdre , la somme des quarrés des
six arétes est quadruple de la somme des quarrés des trois droites
qui joignent les milienx des arétes opposées. (*)

Si de la somme des deux dernitres équations on retranche la pre-

miére , il vient, en transposant

— — —_— —2 e—2 — —p

AB 4BC 4CD +DA =AC 4BD +4RS ;
cest-d-dire : Dans tout quadrilatire , plan ov gauche , la somme
des quarrés des quatre ¢6iés est égale a la somme des quarrés des

(*) Voyez la page 358 du tome 1.8% des Annales.
deux
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deux diagonales , plus le quadruple du quarré de la droite qui joint
les milicux de ces diagonales. (*) ™Y

Supposant ensuite que le. quadrilatere est plan, formant le qua-
drilatere complet, et appliquait le theoréme & chacun des quadrilateres
simples qui le composent,, M. Legrand parvient aux deux théorémes
que voici :

1.° Dans tout quadrilatére complet, la somme des quarrés des
trois diagonales est égale d la somme des quarrés des six droites
qui joignent les milieux des cotds vpposés, dans lestrois quadrilatéres

simples qui le composent.
2.2 Dans tout quadrilatére complet , la somme des quarrés des

douze cbtés des irors quadrilaleres simples qui le composent est
égale au double de la somme des quarrés des trois diagonales,
plus le quadruple de la somme des quarrés des trois distances
des milieux de ces diagonales , pris deux & deux.

M. Penjon , professeur au lycée d’Angers, a démontré la propo-

sition comme il suit:
Tout étant d’ailleurs dans la figure 16 comme dansla ligure 15,

soient menées NA et NB; par un théoréme connu (**) les triangles
ANB, CAD, DBC donneront
2(NA +NB )=AL 4430 ,
2(AC -+AD )=CD +4NA
2(}?1)_2—{—561):651-{—4:\731 .
Ajoutant les deux derniéres équations au double de la premitre , il

viendra , en réduisant, transposant et divisant par 2

—"-':1 — -—:—Z —_—1 ——;—_l — 2 ——

AC +4-BD =4NQ +(AB 4-CD )—(AD —4DBC );
cest-d-dire : Dans tout guadrilatére , plan ou gauche , la somme
des quarrés des deux diagonales est égale a quatre fois le quarré

(") Voyez le tome 1.er des Annales, page 358,
(**) Voyez la méme Page.

dom. 11,

B3N
(&)
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de la droite qui joinidgs milicuw de deux cités opposés quelconques ,
plus la somme des quarrés de ces mémes cbtés , moins la somme

des quarrés des deux qutres ; proposition qui rentre au surplus dans
I'une de celles de M. Legrand.

On aura donc pareillement
— Svm—— 2 — 3 P 2 — — ) —— )
AC +4bD =4MP 4 (AD +BC )—(AB 4-CD ) ;
prenant la demi - différence de ces ¢équations , il viendra , en
transposant ,

Xl-jz —}—EI)1 +2E_Qz :E&z +;-\-132+21:IF: 5

c’est-d-dive : Dans tout quadrilatire , plan ou gauche , la somme
des quarrés de deux cotés opposés , plus le double du quarré de
lu droite qui jornt leurs milieux o est égale a la somme des qrarrés
des deux autres cdtés , plus le double du quarré de la droite qui
joint les milicux de ces derniers.

Ou autrement : Dans tout téiraédre, la somme des quarrés de
deux arétes opposées quelconques , plus le double du quarré de la
droite qui joint leurs milievx , est une quantité constante. (*)

Si au contraire , on prend la demi-somme de ces équations , il
viendra

———) — — 2 —
AC +BD =2M +NQ ),

ec qui démontre la proposition annoncée.

Voici la demonstration de M. Lchault, éleve du lycée d'Angers.

Soient B, S ( fig. 17 ) les milicux respectifs des deux diagonales
BD ct AC, ct soient mendes les droites MR, MS, NR, NS, IR,
PS, QR, QS; on sait (**) que ces huit droites , moitids des cotcs
du quadrilatere ABCD sontles cotés de deux parallélogrammes dont

RS cst une diagonale commune ; on aura donc, par le théoréme
dé¢ja rappelé

(* Voyez le tome 1.er des Annales, page 350,

** Voycez le tome r.er des Annales , poges 343 et 353,
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ey ] ';_‘- 2 .‘—"‘ 2 — — —
MR +RP 415 453" ou MR 235

- —_— —_— —_—
ou 2(3AB +:1CD') =37 4-RS
ou

—_—1  —2 —_—
AB +CD = 2(MP 4RS);
on aura pareillement
—3 — 2 — 2 ——2
AD b =2/NQ i ).
LEn prenant la difference de ces dquations , on retomberait sur 1'un

des théoremes de M. Penjon; mais si I'on en prend au contraire
la somme, il viendra

AB —4BC 4CD —4-DA =2(MP 4NQ )44RS ;
c’est-a-dire : Dans tout quadrilatére , plan ou gauche , la somme
des quarrés des quatre cotés est égale au double de la somme des
quarrés des deux drottes qui joignent les milieux des cdtés opposés,
augmenté du quadruple du quarré de celle qui joint les milicux des

deux diagonales.
Or, on a, par un théor¢tme connu, (*)

AB +BC ~4CD +DA =AG —+DBD +4BS 3
donc , en retranchant et transposant,
— —_—2 —2 —
AC 4BD ==2(MP 4NQ );
ce qui démontre la proposition annoncée.

MM. Bret, professeur & la faculté des sciences de I'académie de
Grenoble , Labrousse , professeur de mathématiques & Montélimart,
et Rochat , professeur de navigation a4 St-Bricux, ont démontré le
théoréme par 'analise. Nous indiquerons sculement la démonstration

de M. Bret,qui nous a paru remarquable par sa généralité et son
élégante brieveté.

(") Voyez le tome 1.er des Annales , pages 313 ev 353.
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Soient A, B, C, D,.... tant de points quen veudra , disposés
d'une maniére quelconque dans l’espuce et rapportes a trois axes
rectangulaires quelconqucs ; soient @ , a’, a’ les coordonnecs du
point A b, &/, b7 celles du point B ; et ainsi des autres. Soit
designé par M, le milicu de la droite qui joint les points A et B
ct soient adoptées des notations analogues pour les milieux des
droites qui joignent les autres points deux & deux ; les coordonnées

a4-b  a'4-b ol '4-bY

du point M, scront, comme l'on sait, ——= , = ——; cellesdu

b
2 2 2
. c4-d 'd' d .
point M_, scront R R , et il en sera de méme pour
2 2 2

les autres.
Soienit enfin adoptées , pour abréger, les notations que voici ;

(@) (@) -(a - b7 =S a—b)?
a~}-b c+fl>2+< a'~-b! f’-}—d’) (a”-{—b" ”-{—/I”)ﬂ —S. /a5 fefd 2

- — )

2 3 /

en observant que , quelles que soient deux quantités p , ¢, on a

2 2

J’équation identique
g PN L (PN
rer== {5+
on aura

Sty 48 e—dy=a 8. ( T — Y s (VY

2
c’est-a-dire ,

— Y — L 2 2
AB4CD == { MM, = M, My, } 3
ce qui démontre la proposition annoncée.

Loin que la proposition ainsi démontrée en présuppose aucune autre ,
on peut au contraire en déduire facilement, comme corollaires , toutes
celles sur lesquelles on s’est appuyé dans les démonstrations précé=
dentes, et un grand nombre d’autres. M. Bret se contente d’en donner
les exemples qui suivent.

On peut d'abord supposer que le quadrilatere est un paraliclo=



gramme ; alors la droite qui joint les milicux de deux edtds oppesds
devient égale & chacun des deux autres coteés j le théoreme devient

dfmc al:‘)rs la Propriété .du paral]élogramme s1.u~ laquelle se sent appuyés
MAL Encontre, Ferriot, Legrand et Pouzin.
Dans la formule

—1 —1 3 3
AB4(D =2 { M, My, =+ MM, } ;
on peut permuter & volonté les lettres entre elles 5 on peut donc éerire

—2 —2 2 2
BG4 AD =2 { MM, + MM, } ,

—2 —3 2 2
Si, laissant la derniére de ces trois équations , on ajoute seulement
entre elles les deux premitres, il viendra

— w1 R — 2 2 — 3
AB4-BC - CD DX =2 § Mooy A4 Mo, 34 Mo, s
ce qui est un théoréme de M. Penjon; mais, en vertu de la propriété
du parallélogramme qui vient d’étre démontré, on a

3

2 2 2 P 2 2
2 (M, 4+, ) =2 (M, MM, AV, MM, )
3 3 ——13 — 2

done

— — 2 — — — v— 2 a

AB +BC +CD + DA =BD~+AC 44, M,

ea qui est le théortme d’Euler sur lequel s’est appuyé M. Lehault.
En prenant la somme des trois équations on obtient

— —— — — —1 —2 2 1
KB 5CAAD - B+ BD -+ CD =4 { MM, + Diodl, -+ Mg, §5
propriété du tétraddre démontré par M. Legrand.
Si, dans cette derniére formule, on suppose que le point D se
confond avec le point G, on aura

AD:=AC, BD=BC, CD=0, My=C, My=M,;,, Ma=2.;

elle deviendra donc
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et——- 3

— —_—1
Ab42 (AC+Du) =4 O 4830, 3
mais, par la proprié¢té des paralieles, on a

21\]‘”,.\‘]“: AB,
dod
s 2

SM My :..Aﬁ

substituant donc, il viendra, en réduisant,

2(AC4+BU) =AB4-4CM, 5

c’est la propriété du triangle, sur laquclle s'est appuyé M. Penjon:

M. Bret termine en observant que cette propriété du triangle donne
lieu & un théoréme assez remarqeable que voici :

La somme des quarrés des distances- d'un point fixe aux deuz
extrémités d'un méme diameétre quelconque d'une sphére est une quan—~
tité constante , égale au double du quarré du rayon de la sphére
augmenté du quadruple du quarré de la distance du point fize au
centre de cette sphire.

La méme propriété a évidemment lieu pour le cercle , soit que
le point fixe se trouve sur son plan ou qu’il soit hors de ce plan.

Solutions du probléme de géométrie €enoncé a la
page 224 de ce volume ;

[ Sa e Yo Sa Vi ¥l Vo Vo ¥ V)

ENONCE. A un polygone donné circonscrire un polygone de
méme nom , dont les angles soient respectivement égaux & des angles
donnés , et dont l'aire ou le contour soit donné ?
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Premiére solution ;

Par M. LuuILIER , professeur de mathématiques 3 Pacadémie
impériale de Geneve.

Comme le procédé que je vais développer , pour la solution de
chacun des deux problémes , est exactement le méme, quel que soit
le nombre des cotés ( plus grand que trois, lequel cas donne licu
4 une construction trés-simple ) du polygone proposé ; et que les
opérations different seulement par leur longueur, et par le nombre
des termes qui composent I'équation & laquelle ce procédé conduit;
je crois devoir me borner , par raison de briéveté, a le développer
sculement pour un quadrilatere.

Soit ABCD ( hig- 18 ) un quadrilatére proposé. On demande de
lui circonscrire un quadrilatére abed dont les cotés @b, be, cd, da,
passent respectivement par les sommets A, B, C, D, du premier
quadrilatére ; en connaissant les angles @, &, ¢, d, et le contour
ou la surface du quadrilatére abed.

Que les angles du polygone donné soient désignéds par A,B,C,D,
respectivement. Que les angles donnés du polygone cherché soient
desigués par @, b, ¢, d.Que I'un des deux angles que forment, avec
un coté du polygone cherché , les deux cotés du polygone donné
dont le point de concours est sur celui-la ; gque Pangle ¢AB , par
excmple , soit ddsigné par x; on peut exprimer dans cet angle et
dans les angles des deux polygones,les inclinaisons mutuelles des
antres cotés correspondans de ces deux polygones.

On trouve , en effet , successivement , l'angle droit étant pris
pour unité ,

aABb=x , aBA=2—{a+2) ,

IBC=ae¢—B+t=x , bCB=2—{a+b—B-+x) ,
¢cCD=a—B+4)—CH=x , cDC=2—(a+b+c—B—C+2) ,
dDA=a—B+—C4-c—D+2 , dAAD=2—{(a+b+}c+4d—B—C—D-}) ;
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d'ot résulte

Sin.(a4-2) Sin.
Aa=AD .____m”a-i—r y aB=AB. l.nx ,
. Sin.a Sin.a
By=BC. e yc=pc, et
S Sinb
Sin. (¢4 c—BeC- Sin.(u4-b—B=Cu}-s
Cc=CD.— S +r +0 R cD=CD. in (ot : +) ,
Sin ¢ Sin.c
Dd=DA. Sin.(a-{—b-}-{—}—ud——B—-C-—D-{-x) _JA=DA. Sirﬁ.(a+[>+r-TB— C—D+-x) :
Sin.d Sin.d

PROBLEME I. On donne le contour du polygone demandé.

Daprés ce qui précede, on a

Sin.x-4-Sin (a<-x)

Aa+-aB=AB.

Sin.a

Sin.(a—B-4-x)4-Sin.(a-4-b—B
Bb+5C=BC. n(a—B~-x -is-“z (a~4-b—B+-x)
CC+CD _ CD .Sinv(0+h»—B—c+xj—:S]n,(a..{._b_‘_c_B__C_’_x)

1,0

Sin. b4-c—R—C—=D—+r4-Si A JeDB—C—D

Dd--dA=DA 2t s +
Ol

prenant la somme de ces équations, en remarquant qu'en général
Sin.z=-Sin.(k4-z) A . . s
——-—-—s‘_‘T“’—“:(JOSCC.;Af.Sln.(:If‘*—Z) Py

11,

il viendra

AB.Coscc.ra.Sin( 2 a+4-x) ,
~+BC.Cosec.:5.Sin (o ; b—B—+-z)
—+-CD.Coscc.; e.Sin a4+ c—B—C42) ,
—+DA.Cosce, : 4.Sin.(¢ 4-0~4-c+ 2 d—B—C—D--z).
De 13 découle la construction suivante, fondée sur les propriétés

du centre des moyennes distances :

Sur une droite SE { fig. 19 ), et enunde ses points S, scient faits
les angles ESA , K8, ESc, ESd, respectivement (gaux aux angles

3
14,

al+-be4-cd4-da= l
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ia, a+ib, atb4ic, ad-b4-c41d, en tournant toujours dans
le méme seus,

Sur les droites Sb, Sc, S8d, scient faits les angles 8B, ¢SC , dSD
respectivement egaux aux angies B, B4+C, B4+C+D, en tournant
toujours dans un mdéme scats, cpposé au premier.

Sur les droites SA, B, SC, SD, soient prises des longueurs SA,

SB, SC, SD, respectivemeut égales a AB.Cosec.;a , BC.Cosec.25,
CD.Cosec.:¢ , DA.Cosce 5.
Soit cherché le cenue 7
A, B, C, D de ces droites. Du point Z comme centre, avec un
rayon égal au quart du coutour donné, soit dcerit un cercle. Du
point S soit menée ( s'il y a lieu ) une tangente & ce cercle. L'angle
formé par cette tangente et par la droite SE est 'angle cherché z.
Remarque. Le contour donné ne doit pas étre plus grand que le
quadruple de SZ. Lorsque le quart du contour donné est plus petit
que SZ, le probleme proposé a deux solutions. Pour que ce pro-
bléme soit determiné, le centre Z doit étre différent da point S.
PROBLEME 1I. On donne la surface du polygone demandé¢.
Draprés les formules ci-dessus et I'expression connue de la surface
d’un triangle dans deux de ses cétés et l'angle qu’ils comprennent ,

des moyennes distances des extrémitds

on a « . N
4AaB=2AB*. "Si *? i
4BIC=2BCe, Sty
4CeD = (D, et DOt e Bt

Sin. bd-c—BC—D Sin. 3 B C—Dx
4DdA =2DA» 20+ +x;):fd<a+ —~ot-d +)

En ajoutant ces équations , membre & membre , ajoutant aux deux
membres de I'équation resaltante le quadruple de la surface du poly-
gone ABCD, et remarquant qu'en general

Sin.zSin.(k4-z) Cosk—Cos.2( 2 k+4z) | Cos.2 (1 k-z2)
. = - =:Cotidt > ————

Sink 28in.k * 23in.k

Tom. Il it
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il viendra
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QUESTIONS

4ABCD~+AB*.Cot.a+BC>.Cot.54-CD*.Cotc+DA*.Cot.d
—AB*.Cosec.a.Cos.o T a41)
4abed= {—BC*.Cosec.b.Cos.2 (a4 b—B-+x)
—CD>.Cosec.c.Cos.2(a4-b+4 1 c—B—C+-x)
—DA.Cosec.d.Cos.2la+-b~4c+: d—B—C—~D-a).

DL‘ 14 déeoule la construction suivante fondée aussi sur lCS ro-
?
priétés du centre des m«:-ye;mes d'zstances.

Sur une droite SE ( fig. 20 ), et en un de ses points S, soient
faits les angles IESA, IS, ESc, ESZ, respectivement égaux aux
angles 2@, 2(a+10), 2(a+b+4¢), 2(a+b-+4c+:d), en tournant
toujours dans un méme sens.

Sar les droites S&, Sc, Sd , soient faits les angles 4SB, ¢SC,
dSD , respectivement égaux aux angles 2B, 2(B4-C), 2(B+C~+D),
en tournant toujours dans un méme sens, contraire au premier.

Du quadruple de Vexces de la surface du polygone cherché sur
celle du polygone donné soit retranchée la somme AB*.Cot.a--
BC2.Cot.p+4-CD*.Cot.c+DA*.Cot.d , et soit le reste égal au rectangle
de deux droites / et m.

Que les carrés des cotés donnés AB, BC, CD, DA, soient con-

vertis en rectangles ayant , pour un de leurs cotés, une des deux
droites , telle que m.

Que les autres cotés de ces rectangles soient «, £, , § , Tespective~
ment,

Sur les droites SA, SB, SC, SD , soient portées, depuis le point
5, des longueurs respectivement ¢gales a «Cosec.a , #Cosec.b , Cosec.c,
sCosec.d; que ces longueurs soient SA, SB, SC, SD.

Soit cherché le centre Z des moyenunes distances des points A,
B, C, D; et du point Z comme centre , avec unrayon égal & /7,
soit dlcrite une circonférence de cercle,

Du point 8§ soit menée , (sl y a lieu ) une tangente & cetle circon=
firence; et du mdéme peint S soit mende & cette tangente unc pev-
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pendiculaire. L'angle formé par cette perpendiculaire et par la droite
SA sera le double de l'angle cherche .

Remargue. On tire de cette construction, relativement i ce second
probleme , des conséquences analogues 4 celles qu'on a déduites de
la construction du premier.

Dsucxiéme solution ;

Par M. Piwatre , professeur de mathématiques spéciales
au lycée dAngers.

Par un calcul tout semblable % celui de M. Lhuilier , mais moins
développé, attendu qu’il n’a pour objet que de faire connaitre la forme
des résultats qu’on doit en déduire ; et en prenant d’ailleurs la méme
inconnue ; M. Pilatte prouve que, quel que soit d’ailleurs le nom-
bre des cotés des deux polygones , en ddsignant par ¢ le contour
du polygone & construire et par ¢ l'excts de son aire sur celle du

polygone donné, on aura, savoir : pour le premier probleme

pSina—+gCos.x=c , @
et pour le second

pSin.2x—+gCos.2x—-r=e , an

P> g, r étant des constantes, fonctions des données du probléme ,
et qui peuvent étre déterminées d’unc multitude de maniéres diflé-
rentes.

Pour les déterminer de la manidre la plus simple, M. Pilatte
suppose , pour le premier probléme, que I'on a circonscrit au polygone
donné deux polygones équiangles avec le polygone cherché ; mais
dans lesquels on prend , savoir, pour le premier x=o et pour le
second #=100°; désignant par ¢/ ct ¢/ respectivement les contours
de ces deux polygones, il obtient

g=1’ p=c/
ee qui réduit Péquation (1) & celle~ci.

'Sina—-¢’Cos.ax=c. (A)
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qui, combinde avec Sin.2r~+Cos*r=1 , donnera les deux valeurs
soit de Sin.x scit de Cos.x.

Pour le second probléme, M. Pilatte suppose que P'on a circonscrit
au polygone donué trois polygones équiangles avec le polygone
cherche (*) ; mais dans lesquels on prend successivementz=o0,x=>50°,
Z==100°; disignant respectivement par ¢/, ¢, &/, I'exces de aire
de chacun de ces polygones sur l'aire du polygone donné, il obtient

gr=¢ , ptr=c’ , r—g=e’ ,
doi p=cl—t(elde) ,  g=l(e—e’) , r=i(e/4e) ;
en conséquence, l'equation {II) devient

(2e//—e/—e""\Sin.2ax—-e/—e/" Cos.2a = ne—e'—e'!.  (B)
qui combinée avec Sin.*2x+4-Cos.*2z7=1 donnera les deux valeurs soit de
Sin.2x soit de Cos.2xr, doit on conclura ensuite celles de .

On peut consulter , au surplus , sur la résolution des équations (A)

et (B), la page 85 de ce volume.
Troisi¢me solution ;
Par M. RocHAT , professeur de navigation & St-Brieux.

La marche de la solution de M. Rochat ne differe en rien de
celle de MM, Pilatte et Lhuilier ; elle le conduit aux deux mémes

équations en x qu'i! ne construit pas.
—

f

N4 DNYPAOYCGCH K
QUESTION PROPOSEE.
Probléme de probabilite,

U_\‘Ii loterie dtant composée de 2 numéros 1, 2, 3....n, dont il
en sort # 4 chaque tirage ; quelle probabiité y a-t-il que, parmi les
¢ nameros d'un tirage , il ne se trouvera pas deux nombres consé-

cutits de la suite naturelfe ? **)

5 Hest entendu quici le mot cirae serat doit cie pris dans e sens le plus général.
(*") On pourrait aussi demander qulle est la probabilité qu'un tirage ne pré=
sentera pas deux nombres cons{eutits de la swile uatweile se succddunt couséeuti=

vemnent dans l'ordre de sortie.



Tom. A1, Plan. V1, pag 259 - >25.

—
p:293=310. X

; l), 239*293 .
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ANALISE TRANSCENDANTE.

Alethode de d{ﬁ”e’r@nt[ation , indéependante du dévelop=
pement des fonctions en scries.

Par feu Frangas , professeur aux écoles dartillerie. (*)

3
[a 0 Tla Vio VR Vo V1o Wi Vi Vo ¥

TOUTES les méthodes de différentiation , connues jusqu’d présent,
supposent le développement des fonctions en séries ; et la chose
parait méme , en quclque sorte , inévitable , puisque les différentielles
d’une fonction ne sont autre chose que les cocfliciens des termes
successifs du développement de ce que devient cette fonction , lorsque
la variable regoit un accroissement arbitraire. 11 peut donc paraitre
assez intéressant de dcéterminer les différenticlles d’une fonction, sans
recourir & ce développement ; c’est Pobjet de la méthode que je vais
exposer, Elle ne suppose connues que la différenticlle de la somme
2y , et celle du produit xy, et repose sur les deux lemmes suivans :

LEMME 1. x et y étant deux variables entiérement indépendantes,
et P, Q, R, § étant des fonctions quelconques de x et y; si
I'on a I’équation

Pdz+Qdy=Rdz—Sdy ,

(" Ce mémoire a ¢été communiqué aux Rédacteurs des Annales par M. J,
Frangais , professeur a I'école de lartilleric et du génie, fréve de I'Auteur.

Le méme géométre a aussi adress¢ aux Rédacteurs des Annales une démons-
tration du théoréme énoncé 4 la page 96 de ce volume , qui leur est malheurcusement
parvenue trop tard pour quil ait pu en étre fait mention a temps, Elle est, au
surplus, semblable en tout a celle qui a ¢été donnée par M. Tédenat a la
page 182. ( Note des editeurs ).

Tom. II 45
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on en pourra conclure ces deux-ci
P=R |, Q=Ss.

Démonstration. Si Véquation (P—R dx +(Q—S)dy=0 n'était
point identique , ce serait une équation differentielle en vertu de
lagnelle y se trouverait, contrairement & 'hypothese, une ceriaine
fenetion de 23 on a done nécessairement P—R=o0 et ¢—S8=o0;
donc , ete.

L ME 110 X et T étant deux fonctions composées de la méme
manicre , la premicre en 2 et la scconde en y, variables indepen-
dantes : si I'on a X=X, on cn pourra conclure X=counstante.

Limonstration. D'apres hypotheése , la fonction X doit devenir
la fonction ¥, si l'on y met 3 au lieude x; mais, 4 cause de
X=Y, la fonctien X nc doit pas changer de valeur , par lefTet
de cette substitution ; donc, puisque y, indépendant de x, peut
représenter des valeurs quelconques de &, la fonction X est tellement
constituée , qu'elle censerve la méme valeur , quelle que soit
d'ailleurs la variation de & ; propricté qui caractérise les constantes ;
donc, etc.

Cela posé, soit 1.° & différentier 2™ ?

Soient & et y deux variables absolument indépendantes ; on aura

(@)r=a"ym . (1)

Désignons la différenticlle inconnue de 2™ par e(z)dx ; nous

]
aurons, cn différentiant Véquation, (1)
¢lxy (ydotady)=y"e(x)da4a"o(y)dy ;
d’olt nous lirerons , par le Lemme 1,
yelry)=y"e(x) , xe(vy)=a"o(y) ;
ce qui donne , par lé¢limination de ¢(ay) et la suppression des
facteurs communs ,

M-y m-g

ga)=a™"¢(y) , ou — =

¥
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?(x) .o
on a donc , par le Lemme 11, = =C ; donc ola)=Cz™", et par

conséquent,
d.a"=Ca™ *dx.

2.2 Soit 4 différenticr &* ?

En supposant encore ¥ quelconque et indépendante de = |,
on aura

oY =a%a%. (2)
Soit ¢(x)dx la différentielle de a*; il viendra , en diflérentiant 1'é-
quation (2),
o(z-y)(de+dy)=a’o(x)da+a*e(y)dy ;

d’olt nous tirerons, parle Lemme I,

o(aty)=d"eix) , ela-fy)=a"e(y)

done
, olx) ol
@ o(x)=a%e(y) , ou —==—r

() ’ [
et, par le Lemme 11, — =C ; donc ¢{x)=_Ca", et par conséquent

d.e* =Cd*dx.
3.° Soit & diflérentiecr Log.z , pour un systtme quelconque ?
On aura par la definition de la fonction proposée,
Log.(zy)=Log.x+Log.y. 3)
Soit ¢(#)dx la différenticlle de Log.wr; il viendra en différentiant
I'équation (3)
o(zy)ydatady)=olx)dz+o(y,dy ;
donc ( Lemme 1)
yelay,=ea) , wae(xy)=ely) ,
d’ou
xol@)=ye(y) ;

c
donc ( Lemme Il )x¢(x)=C , ou ¢(x):-—; » et par conséquent
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Cdx
d.Log.x_-;-.

4.° Soit A différentier Sin.z ?
Soit d.Sin.z =¢(x)d.r ; en difFérentiant équation Sin.2x~-Cos.*r=1;

. . , Sin.x
il vient Sin.2.¢ 2).dz-4-Cos.2.d.Cos.#=o0;d’ou d.Cos.x =— o

¢\x\dx.

D'un autre coté on a, par la définition de la fonction proposee,
Sin.(2~4-y)=Sin.xCos.y+Cos.2Sin.y ; (4)

d’ou on conclura, par la différentiation ,

Sin
Cos.y.o(x dx—Sin. T

\d.y.
o 24y )(datdy) = s
-+ Cos.x.¢(y)dy —Sin.y. m o(x)dx
ou
. Cos. (r+ ) Cos.(x4y)
ooty )(dz-Hdy)= SR o)k DD oy
donc ( Lemme 1)
, R Cos.(x4y) Cos.(x4y)
¢aty)= " Cosx #(@)= —-E_os.—y-—¢<'y) ?
ou
o) ey
Cos.x Cosy ’
®(x)

donc ( Lemme II) > ; donc ¢/x)= CdaCos.x ; donc enfin

S.x

d.Sin.x=Cdx.Cos.x ;
et , puisquon a

Sin.x

d.Cos.r =—

¢ x)dx ,

Cosx
il viendra en outre

d.Cos.x=—CdxSin.z.

Il reste maintenant 4 determiner les constantes qui entrent dans
cos diverses diflerentielles.
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1.° Dans Péquation d.2™=Ca™'dz , la constante C ne peut étre
quune fonction de m ; en la désignant par f{m), elle se changera

en f(n) pour la différentielle de 2", et en S(m—+n) pour cclle
de z™*"; or on a

amtr=2a" 2" |
d’ott on conclura, par la différentiation,

Sim—n)am Tt do=fin) ™" do—=fn)a™ " e
c’est-a-dire ,
Sonmy=fimf(ny.  (5)
Soit df{rm)=1{m)dm ; en différentiant I'équation (5), il viendra
W m=-n)(dm—~-dn)=Y(m)dm—~++(n)dn ;
donc ( Lemme 1)
Y(m—n)=¥m)=y(n) :

donc ( Lemme Il ) ¥(m)=a, a étant une nouvelle constante; on a
donc d.f(m)=adm , &'o0 f(m)=am; nous n’ajoutons pas de nouvelle

constante parce que f{m) doit étre nulle en méme temps que m.
On a donc

d.a"=amamtdz ;
et, si I'on fait m=1, on en conclura dz=adx; donc a=1 ; donc
C=m; donc enlin

dam=mazm* dx.

2.° Dans la différentielle d.a*=Ca*dx , la constante € ne peut
étre qu’unc fonction de @ qu’on appelle /a base , et doit changer avec
cette base. Appelons ¢ la valeur de ¢ pour laquelle € devient 'unité,
10us aurons
' d.e*=0a"dx.

Faisons ensuite ¢*=e¢”; nous ecn conclurons, par la diflérentiation

d
Ca*dx=eYdy, d'ou C‘:di .

x

or , si nous désignons par la caractéristique / les logarithmes qui
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répondent & la base e et qu'on appelle Logarithmes naturels , et
par L ceux qui répondent & la base @, l'equation @*=¢” donnera
zla=y ct a=ylLe; donc

dy=drle , de=dyle;

d’'ou
dy 1 R b ¢
—_— == - d'ou C=lg=—.
dx lz Le’ Le
, . Cdx , . .
3.° La constante C, dans I'équation d.Lxr= —,se détermine bien
x

facilement par ce qui précéde. En  posant Lrx=y , il vient
Cix , ady ,

——‘—zd_y, d’ou C:T; or de La=y résulte 2=a” et conséquem-
x

* . aYdy ady 1
t de=la.a’dy=la.xdy, ou bien do=—= = donc C= —
men J ) Le Le la

=Le¢, et par conséquent

dx dxlLe
dlsr=—-=
xla x

-

4.° Si, dans I’équation d.Sin.z=CdxCos.x , on suppose que l’arc

@ décroisse continuellement, jusqu'a devenir nul, on aura Sinz=uz

et Cosa=1, dou d.Sinx=Cdx ou Sina=Cz , ce qui donne
Sin.x

€ =——; mais , on démontre rigoureuscment (*) qu’a la limite
* .

Sin.v ,
——=1 ;donc €=1, et conséquemment
x

d.Sin.xr=dxCos.x , d.Cos.z=—d2Sin.x.

D'aprés cette détermination des constantes , les différentielles des
fonctions 2™, a*, Log.x , Sin.z , Cos.z se trouvent ramenées a la
forme connue. Et, comme ces fonctions sont les elemens de toutes
les autres fonctions connues , on parviendra sans difficulté , par ce

qui précede , aux differentielles de ces derniores.

(") Yoyez le Calcul des fonctions , lecon ve.
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On voit, par la maniére dont nous avons determiné la constante

dans d.2™ , que notre méthode peut ¢tre employée a déterminer la forme
d’une fonction inconnue qui doit satisfaire 4 unec relation donnée.

GEOMETRIE ANALITIQUE.

Construction des formules qui servent & déterminer
directement la grandeur et la situation des diamétres
principaux, dans les courbes du second degré rap-
portées @ deux axes rectangulaires quelconques.

Par M. Rocnar, professeur de navigation a St-Brieux.

[a Ya VB Vip Vi, Vi Vo 1 V]

ON donne, dans plusieurs ouvrages élémentaires , des méthodes
propres 4 la recherche des diamétres principaux des courbes du second
degré , rapportées & deux axes rectangulaires quelconques ; mais, les
calcals relatifs & cette recherche n’y étant point terminés , j’ai pensé
quil pouvait étre utile de remplir cette lacune, en donnant des

A

formules propres & ramener directement I’équation
ay* +bay—-cx*+dy—4-ex+t-=o (1)
a la forme
Ay +B2a*=AB* ,
si b*—jac n'est pas zéro; et & la forme
y*=Pzx ,

dans le cas contraire.

Pour parvenir & cc but, changeons d’abord , dans I’quation (1),
x en a/~m , et y en y/~n, et ensuite a/ en 2//Cos.a—y’/Sin.« ,
et y/ en 2//Sin.a)//Cos.«; la transformée en z// et y// sera
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aCos.2aly”"*2aSin.2Cos.a 2"y "4 aSin.2a] x"2=-d'Cos.« y'4d'Sin.«

—2¢ Sin.«Cos @ ~+-b6Sin.z Cos « —e/Sin 2| —€'Cos.z
~}6Cosz« + cCos.2a

—5Sin.2e

x4 =0;

(883
[@X]
1

~38in.«Cos. «

~ cSin.z«

équation dans laquelle on a
d'=z2an4-bm—4d ,
f'=an*+-bmn—-cn*~+-dn—tem—f.
¢ =z2cm-4-bn—-c ,

Posons présentement
5(Cos.*a—Sin.*«)42(2—¢)Sin.«Cos.«=o0 ,
aCos.?e—bSin.«Cos.e——cSin2e=M ,
aSin.2e~40Sin.«Cosca—4-cCos.2a=N ;

nous trouverons ( Foyez Biot ou Garnier )
b M=:{(ato)+v vt a—c},

o N={a4c)—y *+(a—c)*} 5

Tang.z O T —

et la transformée sera

My!*4-Nz/"*F(d/ Cos.a—e!Sin.a)y"/~~{d'8in,a~e/Cos.a)x"/4f/=0.(2)
Y g 7Y \ )

Soit, en premier licu 4*—4ac positif ou négatif , différent de zéro;

en posant
d'Cos.a—e'Sin.e=0 , d'Sin.a}¢/.Cos.a=0 ,

U viendra ( Foyez les Auteurs cités )

20e—bd a2cd—be

’ b2—jac

.
?

a=
b2—jac

et la transformée sera simplement
My’ Na'*+-f7=o.

Si nous désignons respectivement par A4 et B, dans
tion , les valeurs de 2/ et y” qui répondent & y/==0 et 2”/=o0,

cette équa-

nous aurons
M
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e f N,
M=o N=—Fs

¢e qui donnera , en substituant et chassant les dénominateurs ,
Aﬁy//:-i—BzJ/“:A‘B‘.
Si présentement nous portons les valeurs déterminées ci-dessus pour
a et b dans celle de /7, clle deviendra, toutes réductions faites,

ae-cd*—bde
S'=—tf,
br—jac
et de 1a nous conclurons
. (Ode——ap2emmid2m— (62— )]
A= 2[bde—ae—ce ( tac)f] )

(br—4ac)[(a=4-c)—\b2~-(a—c)?]

B___Vz [bde—aer—cd—(b2—jac) f]
(b2 jac) (a4 ) VT Fa—c)7]
Ainsi le centre sera donné par les valeurs de @ et &, les grandeurs

des axes par celles de 4 et B, et leurs dircctions par celle de

Tang.2«

Soit , en deuxi¢me licu, b*—fac=o , d'ot M=a-4c, N=o ;
nous supposerons alors, dans I'équation (2)
S=an*~bmn—-cm*+dn—+-em—~+f=0 , d’Cos.a=¢/Sin,e=0 ;
et la transformée sera
My'>4~(d’Sin.a~-¢/Cos.x)x" =o0.

Présentement comme nous avons trouvé ci-dessus

b

Tang.2a =-—
g a—c >

puisquon a d’ailleurs
2Tang.c

Tang.22=

1—Tang.*a °
il viendra, en égalant ces deux valeurs
bTang*u=—2{a—c)Tang.a—b=0 ,

Tom. 11, 46
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d'otr
a—c) £ \fb2-(a—c)3 —) = (a4-C)
Tang.nz( )—-\/bll-i-( f):(a r,:';(-i—f ,

¢’est-a-dire ,
2a ac

Tang.e= - Tangue=— =,

d'un aatre edté I'équation d/Cos.a—e’Sin.«=o0 donne
. a' 2an-bm--d
Tange= —= 5
¢’ 2cti=~bn +4-e

. . R 2z RSN
valeurs qui ne saurait s’accorder avec Tang.«:—-—b— , parce qgvelles

conduiraienta la condition bd—2ae=o qui, jointc & b*—4ac=o0,exprime;
comme lon sait, que la courbe degenére dans le systeme de deur
. '| 26 !
droites. 11 faudra donc prendre Tang.«e=— — 5 en égalant cette
valeur & la précédente, et résolvant l'équation résultante per rapport
dom, il viendra
sl (o) n—"0d4=2ce)
o2f-4c2

En mettant cette valeur dans I'équation f/==0, et se rappclant la

77l = —

relation 4*—j2c==0, le coeflicient de n* disparaitra , ct il viendra
ccerdabdeoncer—acdz—i fla=-)2

n=—= ' 5
(e~ ) aed—obe)
ct par suite
" d*Abeded-zacdr—acer—4af(a--r)2
7= .
2{u—c)(2ae—bd;
On 2 ¢n outre
'Sinie4-¢/Cos.e="d'Tang.e=-0"}C25.0
ry =0 - \ ~ [! ,
o, Fange=—— , d'ot Cos.e=="====; >
v A
ced—le

JNY a0 Uos.e= — ————
AV
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posant donc

_ 2¢d—be )

oV |
lIa transformée sera

y/*=Pa/.

Ainsi les coordonnées du sommet seront données par les valeurs de
m et n, la dircction de P'axe par celle de Tang.«, et le parametre
par celle de P.

Au surplus, comme, dans certains cas particuliers, ces formules
pourraient devenir illusoires, il sera convenable d'y remplacer &
par 2y/ac; on aura ainsi

Tang.uz-—VL , P= L]_:L\/Z.j ,
a (u—{-(')\/u—i—-c
adz\/;+2rdp\/7+zr(7=\/—z;——rf vV 7—?_/’n+f~)z\/—(—;
m= — =
. hladc)2(eNa—d\ )
ceﬂ\/:'-}-zade\]; 2a82\/7—a(lﬁ\/:—4f(a+¢')2\/z-
4(a+c)2(¢1\/:—ey/u) 5

sous cette forme leur application nentrainera plus aucune difficulté.

3

n=—

Addition au preécédent mémoire ;

Par M. GERGONNE.

s Y Sl Vo Vi Vi U W ¥

O.\' peut atteindre au but que viont de remplic M. Rochat par
une autre méthode , moins ¢lémentaire il est vrai, mais quia l'avan—
tage de n’exiger aueune transformation de coordonnées, et qui peut
fournir une agréable et utile application de la doctrine des Maximis
et Minimis & ceux qui étudient le calcul différenticl ; je vais lex-

poser bri¢vement.



33¢€ DISCUSSION DES LIGNES
Soit reprise I'équation
ay*~bay—tert4dy+er+f=o0 ; (D)
et , outre le point de la courbe dont les coordonnées sont z et y,
considérons-en un autre dont les coordonnées soient 2/ et y/; nous
aurons pour ce nouveau point.
ay b’y 4 ca*H-dy'+ex’+f=o0 ; ()
posons
(x—x")’+(}'¥-y’)’=maxz'mum ; (N)
nos deux points seront alors les extrémités de la plus grande corde
de la courbe.
L'¢quation (N) revient a
(z—a")ox—32 ) Hy—y oy —dy)=0 5 (a)
d’'un autre coté, on tire des équations (M) et (M)

(2ay +-bx +d)sy +{2cx +by 4 sx =0 , (m)
(zay/—}-l;x/-l—[ljQy’—}—(zcx’—l—by’—!-—c);\x’=o : (m’)
ajoutant les produits de ces deux dernitres par les multiplicateurs

indéterminés A et —»/ a l'équation () il viendra
[(x—a )2 (2ex4-by+-0) Jsx—[ (a—a") =2/ 2ca’-by't-e) ] 2/ g
[ (y—y 2 2aybatd)Joy—[(y—y/ )+ (2ay'~-ba'4-d)]sy)
done '
(x—2)Ar(2cx+-byte)=0 , (2—2)4-»/(2ca'+by'+e)=0,
(g ay by d =0 5 (y—al)tol payHbwd)=0;
éliminant » et »/ entre ces ¢quations , elles deviendront
(2ay +bx A4-d) (v—2/)="2cx by 4} y—y') , (P)
(2ay’+bal4-d (x—a’) ={2c2’4-by'~e) y—y') . (P

\

On satisfait a ces équations, quel que soitle premier des points pris
sur la courbe, en supposant que le second se confond avec lui, ce
qui donne sur-le-champ la direction de la tangente en ce point,
ainsi que ccla deit ctre,
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Rejetant cette hypothése et retranchant lequatnon (P”) de T'équa-
tion (P) il vient

{oaly —y ) o—a)} (s =ac(am by =y Y y—y )
mais , en désignant par « 'angle que fait lacorde que nous considérons
ici avec l'axe des x, on a
=y

— !
substituant donc, il viendra , en réduisant, transposant et diyisant

par x—uz’

Tang. a=—, dot y—y/=(x=—2/)Tang.« ,

Tang.’«—2. a—_b%c Tang.u—1=0 . (K)

Ainsi , dans les lignes du deuxiéme ordre , les cordes dont la variation
est nulle, n’affectent que deux directions , et les tangentes des angles
qu’elles forment avec l'axe des x se trouvent déterminées par 'équa-
tion précédente. On voit de plus que ces directions sont perpendiculaires
Pune & lautre , puisque le produit des deux tangentes est égal
3

A —I1.

En ajoutant , au contraire, I'une & l'autre les équations (P), (P/),
substituant pour ¢—jy’ , dans léquation résultante , sa valeur
(z—a/)Tang.« et divisant par #—az’, il vient

(2a—bTang.«)(y+y")—(2cTang.e—b) (x4-x/)4-2(d—eTang.e)=o0.  (G)
D’un autre cété, en retranchant I’équation (M’) de I'équation (M),
le double de I’équation résultante peut étre mis sous cette forme

[2a(y—+y )bz )+2d](y—y')

[ 2c(v4-2)4-b(y+y) 2 e [(x—2')
ou , en chassant encore y—y’ et divisant par x—a’ ,
(2zaTang.a4-0) (y4y") 4 (2c4-bTang.a) (x4x')4-2(dTang.«4-e)=o0 , 143))

Les équations (G) et (H) donnent

—bd 20d——
o) =, ()=

—4ac b2—jac

?

ainsi , les cordes des lignes du second ordre dont la variation ezt
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uuile, ent leurs milieux au méme point qu'on appelle leur centre ;
ct, puivjre ces cordes doivent diailleurs se couper perpendiculaire-
ment, elles sont au nombre de deux seulement. On les appelle les
axcs Jde la courbe.

Ces axes ont donc pour équation commune

2cd—ae 5 2ae—bd T
— = L— ang.e«
J b.)—-*ul. ( &"""4[{1 g ,

équation double , & cause des deux valeurs de Tang.#; cette équa-
tion combinee avee celle de la courbe fera connaitre les longueurs

de ces mdémes axes.

e —————— ———— — —

ANALISE ELEMENTAIRE.

Demonstration du principe qui sert de fondement @
la théorie des équations ;

Par M. DusounGuET, professeur de mathématiques spéciales
au lycée impérial.

[a o Via Vi Vi Vo Vo Wi Vo W W)

TOUTE la théorie des équations algébriques repose sur le théoréme
sulvant :

Une fonction algébrigue |, rationnelle et entiére d'une scule variable
étant donnée ; parmi le nombre infini de valeurs , réclles ou ima-
ginaires , que lon peut donner @ la variuble , il en existe toujours
une, aumoins , dont la substitution rend nul le polynome proposé
ou, en dautres termes, touwte équation algébrique d'un degré quel-
conque , @ une seule inconnue, admet toujours vne racine , au moins.

Quelque fondamental que soit ce principe, plosicurs autcurs d’elémens
d'algebre ont négligé de le démontrer, ou ne l'ont fait que bien long-
temps aprcs avoir déveluppé la theorie des c¢quations @ ce qui est
contraire a la méthode et a lordre qui doit regner dans un livie
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élémentaire ot les théories qu'on développe ne doivent peser que
sur des principes déja démontrés. Cette sorte diinterversion , dans
Vordre des propositions , a ¢té considérée comme nécessaire , par les
auteurs en question, parce qu'ils ont jugé le principe dont il s'agit
ici d’une démonstration trop difficile pour de simples élémens. Je
crois donc faire une chose utile en ramenant la démonstration de
ce principe aux notions élémentaires que doivent déjh avoir acquises
les éleves qui parviennent & la théoric géncrale des équations,

Soit le polynome du n.™¢ degré
Az"4-Ba"t4=Ca" P 4. . -Paz4-Q (1)
dans lequel les coefficiens 4, B, C.....P, () sont des quantités
véelles fAnies quelconques , et ou & représente une variable. Puisque
ce polynome change de valeur , & chaque valeur qu'on attribue & x;
il peut lui-méme étre considéré comme une variable. Représentant
dene cette variable par 4, on aura l'équation
A2 -Ba" - Ca" A= APa+Q=y , (2)

qui établit entre les variables 2 et y une relation en vertu de laquelle
chacune d'elles est déterminée par l'autre.

De meéme done que , dans Iéquation (2), 4 se trouve exprimée
en fonction de a et des coefficiens, il doit y avoir réciproquenent
ane expression de a en fonction de y et des mémes coefliciens
de maniére qu’on doit avoir

a=9d,B,C,...P, Q,y), 3)
< désignant une fonction qui peut étre inconnue , mais qui, dans tous
les cas , doit étre absolument déterminée. Cette dernitre équation
n'est, au fond, qu'unc transformation de I'équation (2); et, sil'on
en contestait l'existence, il faudrait admettre qu’il y a des valeurs
de 2 inddpendantes de celles de y, et réciproquement, ce qui serait contra-
dictoire avee l'équation (2), et par conséquent absurde. (*)

(" Si {'équation (3) pouvdit ne pas exister, c’est-a-dire , si & pouvait w'étre
pre fonction de y-; alors, en représentant par @ une des valeurs de x quine dépendraicnt
pus de celles de 5, le polynome diterming
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Cela posé, il est clair quesi, danslequation (3), on fait y=n,
on ne pourra avoir 4==5 ni a=x ; car, dans le premier cas,
I'equation [2) donnerait (?=o, ct, dans le sccond , elle donnerait
¢ =—. ==, résultats contraircs & I'hypothése ; donc, lorsquon
pose =0, 2 doit aveir une valeur, réelle ou imaginaire, diffcrente
de zcro et de linfini, telle que

a=4(d, B, C.....P, Q) ;
qui satisfasse & 1'¢quation
A" -Bar-'Ca" ... . 4Pax+4Q=o0 .

a laquelle se réduit I'equation (2) dans la méme hypothese dey=o0;
donc il y a, au moins, une fonction des coelliciens de cette derniere
équation qui, substituée dans son premier membre, & la place de z,
réduit ce premier membre a zéro. Cest - la ce quiil s’agissait de

démontrer.

QUESTIONS RESOLUES.

Solutions di probléme de probabilité propose a la
page 224 de ce yolume.

[a Sia Vip Vi Wl Vo Ve Vi oY

ENONCE. Deux joueurs , dont chacun a un nombre de jetons
connu , et dont les adresses respectives soné m et n , conviennent
de ne quitter le jeuw que lorsque l'un d'eux aura gagné tous les
jetons de lautre. A chaque partie le perdant donne un jeton au
gagnant; on demande quelle est lespérance de chaque joueur ?

Aan4-Ba'=1+4-Can-2~4-. ... 4-Pa+4-0Q
devrait, en vertu de Péquation (2) Cre a la fois ¢gal & toutes les valeurs quon

voudrait douner & ¥ ; ce qui est absurde,
Premiére
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Premiére solution ;

Par M. D. ExcoxTRE, professeur, doyen de la faculté des
sciences de l'académie de Montpellier.

L

LORSQUE deux joucurs sont préts & commencer la partie, et ont
deja formé Denjen tutal, ils en cedent Fun et lautre lentiére pro-
pricté a cclui des deux qui gagnera. Chucnn a d'ailleurs dreit d'attendre
ce que le hasard doit prebablement fui denncr; et, sils se trouvent
contraints d’abandonner la partie , I'enjeu dcit étre partagé entre cux ,
non d’une maniére égale , mais de maniére que la parg de chacun
soit praportionnée a la prcbabilité quiil aurait cu de gagner le tout,
si la partic et ¢ié continuée,

Trés—généralement , les droits respectifs des deux joueurs sur 'en-
jeu total , au moment ol la partie se trouve interrompue, sont
en raisun des probabilités qui leur sont respectivement favorables,
ou, en d’autres termes, de leurs espérances mathématiquement cal-

culées.
11.

Lorsque , de deux chances donndes, une doit nécessairement arriver ;
que la premiére promet & un joueur une certaine somme ou un
certain droit , que la secondc promet au méme joueur une autre
somme ou un autre droit, et qu’elles ne sont pas également pro-
bables ; la somme ou le droit que le joueur dont il sagit doit
raisonnablement attendre, en vertu des deux chances données , égquivaut
a la somme ou au droit qu'apporterait la premiére chance multiplide
par sa probabilit¢ , plus la somme ou le droit qu’apporterait la
seconde , multipliée aussi par sa probabilité.

Supposons 1.° qu’il y ait, dans une bourse, deux billets, I'un
de 6 francs et l'autre de 12, et qu'un joueur ait actuellement le
droit de prendre , au hasard , un de ces deux billets, Les probabilitcs

Tom. II, 47
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étant égales , et exprimées, 'une et lautre , par I, le droit réel
de notre joueur équivaut a

G.:——l—l.’.’..';:g.

Supposons 2.° qu'il y ait, dans une bourse, trois billets: savoir,
deux de 12 francs ct un de G ; et qu’un joucur ait le droit de prendre,
au hasard, un de ces trois billets. La probabilité qu’il tirera un des
deux billets de 12 frances étant exprimée par 3, et la probabilité qu'il
tirera cclui de 6 francs étant exprimde par 1 ; la somme 4 laquelle
il doit raisonnablement prétendre sera

12.24-6.5 =10.

Supposons 3.° quiil y ait, dans une bourse , quatre billets , dont
un donne droitde prendre, au hasard , un des billets de la bourse
dua premicer exemple, et dont chacun des trois autres donne droit
de prendre , au hasard , un des billets de la bourse du sccond
exemple ; Vespérance du joueur qui aura le droit de prendre , au
hasard , un de ces quatre billets sera

2

9.2410.2=q, 75. .

4

ITL

Ces principes étant admis par tous les mathématiciens , nous ne
nous arréterons ni 4 les démontrer ni & les expliquer par un plus
grand nombre d’exemples, et nous passerons de suite a leur appli-
cation 4 la question proposée. Mais , pour nous ouvrir plus facilement
la voic & la solution générale, nous commencerons par un exemple
particulier.

Soient A et B les deux joucurs , et convenons , en général ,
de designer par AP et Bq leurs ctats respectifs , lorsque le premier
aura p jetons ct le second 4. Supposons, par exemple, que le premier
ait deax fois plus d’adresse que le second, en sorte qu'a chaque
partic il y ait deux & parier contre un que ce sera lui qui gagnera;
alors lears probabilités respectives de gagner une partie quelconque,
sceont = et 2. Donnons cnlin un jeton & A et quatre & B, ce que
nous e\primercns ainsi

A,, B,.
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Les conditions du jeu étant celles quon a vues dans I'énoncé du
probléme , proposons-nous de trouver, dans ce cas particulier , le
droit des deux joueurs sur l'enjen commun, ou quelles sont leurs
espcrances, mathématiquement calculées.

Soient désignées respectivement par x,, 2,, x,, z, les proba-
bilites favorables au joueur A, dans les hypotheses successives

A, 9B43A15B‘;5A;:B15A4’B1§
d’aprés quoi on aura, =0 ,.4,=1.

Il est évident que, suivant que A gagnera la premitre partie ou
qu’il la perdra, son espérapce deviendra 2, ou a,=o0; que sil la
gague , suivant qu’il gagnera ou qu’il perdra la seconde, son espérance
deviendra x, ou a, , ct ainsi de suite ; puis donc que les probabilites
quil ade gaguer oude perdre chaque partic, sont respectivement * ct 1,
on aura

xl_;'rl 9

x,=tx,+x,,
Zy=17,+57,,
r=t +ir,

ecs dquations étant en méme nombre que les inconnues qu'elles ren-
ferment, ces inconnues pourront étre déterminédes ct conséqucmment
on pourra assigner , pour chaque état du jeu, U'espérance de chacun
des joueurs.

En faisant le calcul, désignant en géndral par ¥ Pespérance de
B lorsqu’il a ¢ jetons, et se rappelant que la somuie des espcrances
des deux joueurs doit étre Vunité , on obtiendra le tableaa suivant

1

a

1

B4 -.........xl—‘:

p o—tr
(A:7 :7.}4“‘:’
—_ 12 e 7 .
1‘ /A,_,B,..........xz_i—‘,);_;,
Hypot]eses A B . s
) R N RN
. 30 PO
LA, , B, =2, =25

Ainsi, dans 'hypothése proposée A, B, , les espérances des joucurs
A et B sont respectivement 22 et . Mais on voit que, pour parvenir

- TR

4 ce résultat , nous avons ¢té obligés de calculer les espéranees des
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deux joueurs, dans d'autres hypotheéses que nous n’avions pas en
vue ; ce qui, a raison des longueurs qui en résultent, est un incon-
venient que ne présentera plus 'emploi des formules générales que
nous allons chercher & construire.
1V.

Soit s le nombre total des jetons des deux joueurs. Considérons
les états successifs A,, B4, Bi.ss Ay, Beyseonn i Ay, By s
A _,,B,; A, ,DB,;et designons respectivemnent parr, , &, , Ly,..e0
Tyy, Ty, X,y les espérances de A qui leur répondent. St m et n
représentent les adresses respectives des deux joueurs, la probabxh(é

. m N
que A gagnera une partie quelconque sera e’ tandis que la pro-

n . .
babilité qu’il la perdra sera - ; en raisonnant donc comme ci-
m n

dessus , on obtiendra cette suite d’équations

m
T, = —X
V= gt

m n
xz:m-{-nx;_‘—;-:{——r;xl ’

m n
x,::m_i_nx“—i—mx, >
[ A S

m n
xs~;=mx;-z+md‘:-4 s

m n
xpz_—m—f-n "'+m+n 30

m n
x:"zm-}—n +'::':" Ts-2 3

lesquelles seront toujours en méme nombre que les inconnues qu’elles
renferment,
Si maintenant on suppose successivement s=2, 3, 4y.0., ce quj
réduira aussi & 2,3, 4,...., lc nombre des équations; on trouvera
m m (m=—n)

Pour dcux jetons, z,= —
m--n mni=—n?
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. m3 _ m2(me==n})

—ﬂ32+mn+nz T ni—n3 ’

_ m(m--n) _ m(m3—n?2)

= — .
: nl=+mn+n2 mi3—n3 ’

x

I

Pour trois jetons

m3 m3(m=——n)
X, = =

' m3-men-mna-fn3 Mmi—ni

. m?(m~-n) m2(m3—n2)

Pour quatre jetons( z,= =— R

m3<4-m2n<-mn2~4-n3 mi—nt

m(m2~-mn-4-n?) m(m3—n3)
37 migemandmni4nd T mi—nt

et ainsi de suite.

La loi de ces résultats est manifeste, et on en conclut facilement
que , 7, et y, désignant respectivement les espérances de A et B qui
répondent a létat AP , Bq > on doit avoir geénéralement , & cause
de xp+yq==1 s

mI(mP—=nP) nP (md—n9)
)

—

X =— —_—_—
P mP+9e—pP+9 Ya mP+9-np+44

1l faudra seulement avoir Iattention , dans le cas particulier ol I'on
aura n=m , de délivrer ces formules du facteur m—n qui aflecte
leur numérateur et leur dénominateur , avant d’en faire I'application.
Pour donner un exemple de l'usage de ces formules, supposons
que le joucur A ait 6 jetons, et que le joueur B en ait 4 scule-

ment; il faudra faire p=6 et g=4; les formules deviendront donc
mé4(mb—nb) nb(mé—n4)

Hg=—— =
6 M1 0empy 10 ’ 4

nllﬂ_nlu

Si nous supposons , en outre, que l’adresse de A soit double de
celle de B, ce qui donnera m=2, n=1, il viendra

24(26—1) 10.63 336 EXTES ¢ 15 5

6 210mm] 1023 341 Y 210—1 1023 341

les espérances respectives de A et B seront donc ;7 et & ; elles
seront donc dans le rapport de 336 4 3.
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'\7‘
On peut faire diverses cbservations curieuses sur la question qui nous
occupe. Nous nous bornerons aux deux suivantes qui peuvent étre utiles.

1.°

Ea delivrant les valeurs de a% et 47 du facteur m—n qui
affecte lear numcrateur et leur dénominateur , et posant ensuite

n=m , clles deviennent toutes réductions faites

4 7

X, ==, Y, =T

Pt L A K
- . . ’ ‘ 4
ainsi , lorsque les deux joueurs sont d’adresse égale, leurs espérances
respectives sont dans le rapport du nombre de leurs jetons ; comme
on pouvait bien le prévoir.

2.> Mais ce serait une crrcur de croire qu’a linverse , lorsque

les jetons sont également répartis entre les deux joucurs, leursespérances
sont proportionnelles a leurs adresses respectives. Si en cffct on fait

g=p, on a
mP nP

X o= —— oo —
P pPgnf ? Yo = 4P’
d’olt Ton voit que leurs espérances sont dans le rapport de m” & nf ;
lequel ne devient cclui de 2 & 2 que dans le cas particulier ou p=1.

Deuxiéme solution ;

Par MM. LuviLier , professeur de mathématiques , et Pes-
CHIER , professeur de philosophic et inspecteur a T'académie
impdriale de Geneve. (*)

Que les deux joucurs soient désignds par A et B (*7)
Que leurs adresses respectives soient m et 2

(*) Aprés nous étre communiqué nos solutions , nous les avons trousdes si
semblables I'une & l'autre, que nous avons cru devoir les réuniv sous une rédaction
commune.

(**) Pour faciliter la comparaison des résultats, on a cru convenable d’employer
ici des notations parcilles a celles du mémeire précedent.

( Dote des éditeurs. )
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Que létat du jeu lorsque A a p jetons et que B en a ¢ soit
désigné par AP R Bq 5
Qu'enfin T'espérance de A lorsqu’il a p jetons scit désignée par z,.
A chaque distribution de jetons, le joueur A a m cas pour obtenir
un jeton de plus et » cas pour en avoir un de moins,
En remarquant donc que z,=o0, on aura les équations

m 1 m+n
X, = x X, —=—2x
= +n 2 1 . 1o
m—4-n n
X x,— Xygoe— — X
i m+n 3+ 3 m m =2
m n d’ou m4-n n

X, , X = .1;-—-——.2‘1 3
m

m

X == x
3 m4en 44ﬂm-{—n

® ¢ 00 00 ¢ e 08 801 0o e 6 00 0000 8 g% 0 90000

+ m--n n
Ap., = —2x -3 3 X =, — 27 5
AL m+n T G 4 m TPt g TP

Partanit les attentes successives de A forment une suite recurrente

dont Péchelle de relation est

+m+n, __r_z_ .

m m

Cette suite provient du développement de la fraction

1 I
.

T (i-2:)]
) S P —_——Z

m
laquelle éqmvaut a2 la somme de ces deux-ci

’+Z3+....+zp‘l+-....) Py

m +,z

m I

m—n 1—=z2

n 1 _n/ n n2 nP- P ..
T T e T e T )
m
Partant , on doit avoir,
mP—nTl o
T :m”" (m—n) i

mais, si l'on suppose que p devienne p4-g et que p4-g scit le
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nombre total des jetons des deux joueurs, on doit avoir #,,,=1; done

1
mP +9—nP+1 N (m—n)ymP+14-1
x, dott 2, =

| E—— e —
mb+9-1 (,,1._..]1) mlt+9=—pP+19 ’

et partant
m9(mP—nF)

Tp TP i pt+1 "

Ainsi p étant le nombre des jetons de A ,et ¢ le nombre des jetons

de B, leurs espirances rospectives sont
mTonP—nP) nP(m9—n9)
P+ Al +4 > mP+d—pP+4

Remargue 1. Ces expressions peuvent toujours étre délivrées duw
facteur m—n , commun a lcur numérateur et & leur denominateur.

Remarque 11, Lorsque m =12, ces expressions ainsiredaites deviennent

P
e’ ptg

ainsi alors les espérances des deux joucurs sont proportionnelles &
leurs nombres de jetons. Ce résultat est indiqué par le-simple bon
sens, mais il était convenable de le confirmer par le calcul.

Remarque 111, La solution du probléme proposé n’est pas com=
pliquée par le retour aux mémes états de distribution des jetons entre
les deux joueurs , provenant des compensations de gains et de pertes ;
bien que cette alternative de gains ct de pertes ait une grande in-
fluence sur la durée du jeu. (*)

Remarque IV. Plus m est grand relativement & n , et plus le

(*) On dit communément que , pour obtenir la probabilité d'un éveénement , il
faut diviser le nombre des chances qui pcuvent y domner liew par le nombre total
des chances , ou plus généralement 4 la somme des probabilités des chances qui peu=
vent y donner lieu par la somme des probabilités de toutes les chances ; et cela
est exact. Mais il conviendrait d'ajouter qu'il y a des cas ol cette méthode est
impraticable , et tel est le cas de la question présente; puisqu’a raison des retours
aux meémes élats , qui peuvent se répéter indéliniment , le nombre total des chances
possibles et celui des chances d'ott peut résulter I'événement dont on cherche la
probabilité , sont, I'un et lautre, infinis. ( Note des editeurs.)

rapport
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rapport des attentes des deux joueurs approche d’étre celui des puissan-
ces des nombres qui expriment leurs adresses respectives, ayant pour
exposans le nombre des jetons de A ; et partant , lattente de A
approche alors d’autant plus de la certitude que le nombre de ses
jetons est plus grand.

Post-scriptum. Apres avoir terminé ce petit mémoire, nous avons
pensé A consalter le beau mémoire de M. Laplace, sur les probabilités,
inséré dans le Recueil de l'académie des sciences de Paris , pour
Pannée 1778 ; et nous avons vu que lc probleme était en effet résolu
par ce profond mathématicien (*). Cependant, nous n’avons pas cru
devoir supprimer notre travail. La solution de Laplace differe de
la ndtre par sa marche; elle est fondée sur la méthede des équa-
tions aux différences finies. Il n’cst pas inutile de voir un méme
sujet traité par des procédés diffirens; et il est tout au meins agreable
a ccux quai ne sont pas exercés aux mcthrdes géudérales, de voir
ramendes aux élemoens des questions qu: paraissaient surpasser leur

portce.

23

(* Ce probléme a ¢t¢ indiqué aux Rédacteurs des Annales, par un de leurs
corvespondans ; et ce n'est que par M. Lhuilier quiils ont appris qu'il avait ddja
été résolu.

Le mémoire de M. Laplace, qui en contient la solution , commence 4 la page 227
du volume de l'académic pour 1778, el cette solution se trouve & la page =23r1.
L’auteur ne s’en occupe , au surplus , que pur occusion, et seulement pour montier
combien l'inégalité d’adresse des deux joueurs influe sur leur situation, lors méme
que ceite indgalitéd West que soupgonnde , sans quon sache quelle en est la quantité
ni quel est le plus adroit des deex.

M. Laplace remarque , & ce sujet , que si, dans le cas d'une parfaite égalité
d’adresse, les deux joucurs peavent doubler , tripler , etc. , le nombre de leurs
jetons respectifs sans changer leur situation , il nen est plus de meme , diés
quil y a entre eux la plus légére indgalité ; cest aussi ce qui résulte des for—
mules ci-dessus.

( Note des éditeurs. )
Tom. Il 48
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Troisieme solution ;

Par M. TEDENAT, correspondant de la premitre classe de
I'lnstitut, recteur de l'académie de Nismes.

Soient A et B les deux joueurs, m ct n leurs adresses respec-
tives, p et ¢ le nombre des jetons qu’ils ont chacun.

Soient, dans un état quelconque du jeu, 2 le nombre des jetons
de Act Z, son espérance; au coup suivant, cette espérance devien=
dra Z,,, ou Z,, ; or, la probabilit¢ qu’elle deviendra A,

n

.On aura

est——, et la probabilité qu’elle deviendra Z,., est
m

n’ m~n
donc, en vertu d’un principe connu (*),

ou
mZx+x"<m+n>Zx+”Z.v_1=0 H

équation linéaire du second ordre, aux différences finies, entre les
deux variables x et Z.

Pour Vintégrer , nous ferons usage de la méthode donnée par
M. Lagrange , dans les Mémoires de l'académie de Berlin , pour_
- 2 * %

775 (**).

Posant done

Zx:ux ’ d’ou Zx+,:ux+’ s Zx.lzxx"

il viendra, en substituant, et divisant par «*°'

ma*—(m=t-n)«—n=o ,

(*) Voyez ci-dessus page 341,
(**) Voyez aussi le Traité élémentaire de calcul différentiel et de calcul integral de
M. Lacroix , deuxi¢me édition, pages 575 et suivantes,

( Notes des éditeurs.)
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ou encore
(ma—nYw—1)=0 ;

b

ce qui donne pour « ces deux valeurs

d’ott on conclura

et par conséquent
ZI::G—}-H(-—Z-)! :
m

G et H étant des constantes arbitraires.

Pour déterminer ces constantes , nous remarquerons 1.° que, si A
n’avait plus aucun jeton , son espérance serait absolument nulle,
puisque la partie se trouverait terminée au profit de B ; 2.° qu’au
contraire §'il avait p~~g jetons; son espérance se trouverait changée
en certitude , puisque la partie se trouverait terminée & son profit,

On voit donc que

x=o0 doit répondre Z,=o ,

as

(A

x=p=t¢ doit répondrec Z,=1 ,

ec qui donne les deux équations

o=G-H |, 1=G+H<% >’“ ;

d’ott
mP—+1 7 mp+9
T mPAa—pP+d T PHi—prra ?

substituant donc dans la valeur de Zy, clle deviendra

mX——n*

S

. ZP-H{-:s 5
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or, lorsque A ax jetons, B enap—-g—a ; désignant donc par y le
nombre de jetons de B lorsque A ena x, on pourra écrire

mY (mYe—nX)
Z = ——,
nzp*i—q—-nl’"fq
Si I'on désigne par Z, l'espérance correspondante de B, on aura
pareillement
n¥ m¥—n")
YT PP+ "
Telles sont donc les espérances respectives de A et B, lorsque le
premicr a & jetons et le second y 5 si donc on designe simplement par X

et I leurs espérances respectives lorsque le premier a p jetons et
le second ¢, ainsi que la question le suppose , on aura

m(ml—r.?) nP(m9—n)
= ee——_— = ——
mP+9—pp+9 mP+9e—pf+9

Dans le cas particalier od 'on a n=m, ces valeurs semblent
devenir 2; mais, si on les reduit d’abord & leur plus simple expression ,
on a pour ce cas

=L, yr="1_;
Py Pty
comme on pouvait bicn le prévoir.

Les résaltats auxque!s nous venons de parvenir servent i résoudre ,
non seulement la question proposée, mais encore les deux questions
suivantes:

1.2 Quelles doivent étre les adresses respectives des deux joueurs
pour gi’cn leur disiribuant un nomlre de jeions donné dune maniire
deterininde , lours espirances respectives soient proportionnelics o des
nomlbres donndés ?

2.° Les adresses respectives des deux Jouenrs étant econnves, de
quclle snaniire faut=il ripariir entre ey un wombhre de joions donné,
pour que leurs espérances respectives soicnt propertionunelles ¢ dvs

nomlires donvdés ?
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Nous allons donner un exemple de chacune de ces deux quesiions.
Exemple 1. On donne £ jetons & A et 2 & B ; quelles doivent
dtre leurs adresses X‘CSPCCtiVES pour que l'espéranc(‘; de A soit a celle
de B comme 850 est & 81 7

. 830 830
Onaici X=———— = oev;

onadeplusp=4.g=1a_ et g="0 ;donc
FEE P Plusp=4,9=2, et pt¢g=0;

830  m(mi—nt) m2(m2-4-n2)
9ot mb——nb

Tm ipmeni4-n+ ?

ou, en chassant les dénominateurs, transposant, réduisant ct divi-

sant par n*,
3 2 Y812 ) —s50=o .
n n

Cette équation donne d’abord

( m \* —81%531
=)= ’

102

. . . . . m . . . . .
rejetant la racine négative qui rendrait — imaginaire, il vient
n

m Nz 5
——-) = d’ou
n

©

@]

w3
ainsi l'adressede A doit étre & celle de B dans le rapport de 5 4 3,

LExemple 11, T/adresse de A ¢tant & celle de B dans
de 3 4 2

le rapport

, de quelle maniére faut-il repartic 5 jetons entre cux

pour que leurs espérances soient dans le rapport de 135 & 56 2
AP 135 135
Onaict X= =

135476 ? ?

a1l
.7:3 P done

n=2, ptqg=5, dod

2 21X
Gu
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2 \p_ 4 s \2
(57=5=G)>
donc p=2 et conséquemment ¢=3; ainsi il faut donner > jetons
a2 Aet 33 B.

Quant a la question proposée dans la note de la page 224 de
ce volume , sa résolution complette exigerait une discussion dans
laquelle nous n’avons pas actuellement le loisir de nous engager. (*)

Nous nous bornerons donc i remarquer que, # désignant toujours
le nombre des jetons de A, & un coup quelconque, et z expri-
mant le nombre des coups qu'il reste encore & jouer, pour que la
partic finisse; si l'on représente par Z, , la probabilité que la partic
finira précisément aprés ce nombre de coups , cctte probabilité, au
coup suivant , deviendra Z_,, ,., ouZ,  ,  ,.,;or, la probabilité

qu’'elle prendra la premiére de ces deux valeurs est , etla pro=

m--n

. n . .
babilité qu’elle prendra la seconde est ; on doit donc avoir
(3

m

m n
Z, = — - ——Zt ar
Xt e x+:,t1+m+n X=Fyt=-1 9

équation du second ordre aux différences finies et partielles entre
les deux variables indépendantes #, ¢ et leur fonction Z. En posant,

pour abréger ,
m=M(m~+n) , n=N(m+nr),
elle devient

Zx;t=l7”Zx+l ,t-l+‘ZVZ Ty g1 o (A)

Pour intégrer cette équation , on peut encore fairc usage de la

(*) Ce probléme a été aussi traité par DM, Laplace: voyez les Mémoires des

Savans étrangers; tome VII, page 153.
( Note des editeurs. )
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méthode de M. Lagrange deja indiquée (*). Posant donc

— XAt ot —aa*t+1at- — -1at-
Zx,t—-a“ B" dou Zx~|-! sp-1— A + gt ' ’ Z:-r: ,_,——aa" xp"

il viendra, en substituant , divisant par a«*75** et transposant ,
T
ﬂ[&’——-,ﬂu-—i—]\ =0,

cette équalion étant successivement résolue par rapport i « et
a2 8 donne

- ﬁt\/,@*—-.‘.JIN _ ]Uu?-..‘_N .
= P VP74l | = ——
20 «

de la, en développant en série,

-

—3
,x-T ﬁa____MN 1-z+_’f_i__M\,3r- DR
gr=Mriat = M Nt — D N
1 2
done

z,, = _5;;3 ﬁ.r+t___ = MNﬁ’H-t-z_l,____ . __MzNzﬁx+X P ; ,

Zr , ,"—-"(l{ Mr“x+t+_t_ M-t _N“J:+f-z+_t_.i_'_—_l Mt*t]\"z“x+f.‘4+"_.
* I I 2

or, on sait qua ces valeurs on peut substituer celles-ci

N x x—3 N2
z ety = ol pt—z) e ot

x"'_nlx 2 DMx-3

Z,, = M (o) o = - N¢(x+z—z)+§ . i—-:]M PN Y@=+,

puis encore celles-ci

1 Z x N x x—3 N3 |
Zx;t"“ "M';" Jo:x+""'"l‘ FYCR .:x+t z+ ""- 2 MJ,,ZQ y X4-1-47 2%

(") Voyez le Traité de calcul différentiel et de calcul intégral de M. Lacroix;
tome I1L¢, page 248, n.® 1012,
( Note des éditeurs. )
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ZI) t:'NIth"’t b 0+—:.‘J‘[t‘-l‘A’Zx+f-2)e+ .[" :L_"it-z.;\'—:zx_*_t_‘ » °+..;
1 2

voila donc deux intégrales de I'équation (A), et il est méme aisé
de sassurer , @ priori , quclles la rendent identique ; mais on voit
qu'elles supposent que l'on connaisse I'une ou lautre des premicres
bandes horizontale ou verticale de la table & double entrée dont cette
¢quation exprime la loi.

= i —4

QUESTION PRCPOSEE.
Probléme d Arithmétique.

DEUX suites composdes chacure de n nombres positifs ct inégaux
étant données 3 comment faut-il dsposer entre evx les nembres de
ces deux suites, pour que la semme des produits des termes de la
premicre par les termes correspondans de la scconde soit la plus
grande ou la plus petite possibie ?

Comment faut-il disposer entrec eux les nombres de ces deux
suites , pour que la somine des quotiens des termes de la premiere

par leurs correspondans dans la scconde soit la pius grande ou la
plus petite possible ? (*)

(* On pourrait supposer que les 22 nom res donnds ne sont pas, & Pavance ,
parlag’s en deux suites, et demonder d'en lure le putae de manicre & chienir
le maximum ou le minimum absolu powr I3 somm: des produits ou des quotiens
des termes de la premicre suite par leurs corvespondaus dans la seconde,
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POLYEDRES REGULIERS.

GEOMETRIE ELEMENTAIRE.

Relation entre le dodécaédre et [icosaédre réguliers
inscrils ¢ une méme sp/zére;

Par M. FrAvcercues, astronome , correspondant de la
premiére classe de I'institut.

L Vo Vi ¥ 7 Vo o Vi Vo Y]

THEORE.ME. Soit AB ( fig. 1 ) une ligne coupée en moyenne
et extréme raison au point C ( AC étant la médianc ). Je dis que
I'angle solide du dodécatdre est & I'angle solide de licosatdre (*)
comme (KI?-{—X(—; )§ est & 15.AB4(ABI—I—BC1):; ces deux corps
étant supposés inscriptibles 4 la méme sphére (**).

Démonstration 1. Tmaginons ( fig. 2 ) trois pyramides dont Ie
sommet commun soit au centre D de la sphire, qui aient pour
bases trois faces contigués & un angle solide du dodccaedre inscrit ,
et qui soient par conséquent ¢gales au quart de ce solide. Ayant
tiré les lignes FE, EG, GF, imaginons des plans qui passent par

(") L'autcur entend ici par angle solide d'un polyédre régulier, la portion de
ce polyédre détachée par un plan passant par les extrémités de celles de ses
arétes qui concourent i un méme sommet ; porlion qui est conséquemment une
pyramide réguliére,

(**) Si l'on prend AB pour wnité on aura AC=1\/i—1), BC=1(E—\/);
et la proposition de M. Flaugergues reviendra & dire que l'angle solide du dodé-

—_— —
cacdre est a I'angle solide de Picosatdre comme V2 —11v/5 est & 3\/3(5—\/0).
C Doles des editeurs. )

Tom. I, o
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ces lignes ct par le centre D ; on aura trois pyramides triangulaires,
et chacune de ces pyramides ¢tant & la pyramide pentagonale comme
le triangle EHLE est au pentagone FHEIK, le solide formé par
ces trois pyramides réuuies , et qui est composé de deux pyramides
opposées qui ont pour base commune le triangle FEG, ct dont les
axes sont sur le rayon DII perpendiculaire a cette base , est au quart
du dodécacdre dans la méme raison.

Cela pos¢, nommons I' la surface du pentagone FHEIK ; nom-
mons S la solidit¢ de la pyramide ou de langle solide HGEF;
rommons s la solidité de la pyramide DGEF ; nommons enfin D
la solidité du dodécatdre et @ le diameétre de la sphere circonscrite.
Du centre L. du pentagone FHEIK ayant tiré les rayons LE, LF,
LH, le dernier coupant EF en M, on aura

LM :)MIH :: ELF : EHF ;
donc , componendo

LH: MH : : LEHF(={:P): EHF = o0 p

we

S5LH’
mais , par la propri¢té du cercle,
—
“oHL:HE : HM= ~
o 2LH
donc
HE
EHF=— .P ;
5L

puis donc que
HEIKF:EHF ::2D: 845 :

on aura

5LH 20LH

Suit presentement abaissée du point E, dans le plan FGE, la
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perpendiculaire. EN sur DH ; puisque la ligne HE est inscrite a
la sphére , on aura

n,I'

~4:HE:HN=

de plus
DN:HN::s5:S;

donc , com,vonendo

—2 —_
HLE HE

DH(=4):HN :: S5 D }:S8= ,-D
20l 112 10a2.LH

II. Imaginons ( fig. 3 ) cinq pyramides qui aient leur sommet
commun au centre D/ de la sphére, pour bases les faces contigués
de licosatdre inscrit , et qui soient par conséquent ¢gales au quart
de ce solide. Ces pyramides formeront , par leur réunion un solide
TOPQRSD’ composé de deux pyramides opposées qui ont pour
base commune le pentagone OPQRS , et dont les axes sont sur le
rayon DT perpendiculaire & cette base.

Cela pos¢, nommons I la solidité de Vicosatdre , S/ celle de la
pyramide ou de Iangle solide TOPQRS, et s/ celle dela pyramide
D’OPQRS ; ayant tiré, dans le plan OPQRS, la perpendiculaire OV

sur DT, et désignant toujours par @ le diametre de la sphére; la

corde inscrite TO donnera

0T TV=
Q
mais on a
DV :VT::s:8,
d’ott , componendo
D'T(=1a): VT( = ) (S5’ (=11 /= _‘ 1.

III. On a donc
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—4 — 1
HE T
S:5:: .D:(_)i-l;

. -
10a2.LH 2a*

¢'est-d-dire,

S:§8: :EE_‘4><D :S]TJ—‘IIX-(?I:zXI ;
mais 1.° ( Euclide XIV. 7 et XIII. 18 )
D:1:: 7 5B +AC : 7 AB +4BC
2.° ( Eaclide X1, 12 )

I:-(_)sz:: I 31_—41:12 3
3.> ( Euclide XIIL. g. 10 et XIV. 11 )
_}?154:_]1—'14:: Ez—{—‘;é’ 2: X-]y 3

multipliant toutes ces proportions par ordre , et simplifiant, il
viendra

s.8::(AB4-AC )

.15AB (AB 4BC )~
C.Q.F.D. (")

o p——
GEOMETRIE ANALITIQUE.
De la géneration des lignes du second ordre, par
Uintersection de deux tignes droites ;

Par M. G. M. Ravvoxp, principal du collége de Chambéri ,
membre de plusicurs sociétés savantes et littéraires.
[a S Sla Vi Vi, Vo W VL, Vi V)

I_J_\ génération des courbes , par lintersection de lignes droites,

assujetties & certaines conditions , a fixé plus d'une fois 'attention

("y En eudvant L marche weeee par M Flaugergoes , on démontrera que l'angle
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des géomitres, & raison de Dintérét que présente ce mode de cons-
truction , et des conséquences ~uxquelles il peut conduire. Je m'oc s
cupais d’un cas particulier de cette génération, pour les sections coniques ,
lorsque j'ai recu le numéro des Annales pour février 1812, ou ML
Rochat (*) traite un objet qui a quelque analogie avec le mien.

Je vais indiquer ici la génération dont il sagit, parce qu'elle me
parait propre a rendre raisom, en particulier, de Vanalogie remar-
quable et des différences respectives que lellipse et hyperbole
présentent , dans quelques points de leur théorie.

Soient deux droites IM , I'M ( fig. 4 ) assujettics & tourner autour
des points fixes I et 1/, en faisant continucllement entre elles un
angle variable IMI; la nature de la courbe décrite par le point M,
dépendra des conditions auxquelles on soumettra l'inclinaison respective
des deux droites génératrices sur laxe des a.

Pour plus de simplicité, j’¢tablis lorigine des abscisses au point
O, milieu de la distance 1I’, et je suppose les coordonnées rectan-
gulaires, Soit Ol=.A. Les droites IM et I’M auront respectivement
pour équations

y=alz—A) , y=a(z+4);
@ , o' étant les tangentes trigonométriques de leurs inclinaisons
respectives sur l'axe des a. '

Si le produit @a’ de ces tangentes est donné et constant, 1’équation
de la courbe décrite par le point M sera

yr=aa'(2*—A*) ou y*—aa'x*=-——aa'A* ; (E)
et elle présentera deux cas, suivant que les facteurs @ et 2/ seront de
signes contraires ou de mémes signes , c'est-i-dire , suivant que le
produit @a’ scra négatif ou positif.

solide du cube est a Pangle solide de I'octatdre comme le coté d'un triangle équilatéral
est au triple de sa hauteur, c'est-d-dire, comme 2 cst 3V,
(") Voyez la page 225 de ce volume.
( DNoles des éditeurs. )
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Or, si les lignes géndratrices sont constamment inclinées en sens
contraire , le point décrivant M se trouvera toujours compris entre
les perpendiculaires Tz et T’/ menées 4 la droite 11/ par les points
I et I; en sorte que ces perpendiculaires seront, dans le sens des
@, les limites de la courbe qui sera enti¢rement comprise entre elles.

Posant donc, dans ce cas,

Ba
ag/ =— z; N

B ¢tant une nouvelle ligne , dont la valeur est donnée par la formule

B=A\/—aua’ ,
Péquation deviendra
Ay* 4Bz =AB* ;
c’est-a-dire , celle d'une cllipse dont les axes sont 24 et 25.

Si, en particulier , on avait ge/=—1 , il viendrait B=.1; et
Vellipse deviendrait un cercle , ce qui est d’ailleurs évident, puisque
la condition @a’/=-—1 ou 1+4aa’=o étant celle de la perpendicu-
larité des deux génératrices, Pangle M devrait constamment étre droit,

Suivant qu’on aura

—aa’' L1 ou —aa’>1

c’est-a~dire , suivant que l'angle M sera obtus ou aigu, on aura

B= B
— I — I
PR < ou - >1,

c’est-a-dire ,
B« A ou B>A4;

Pellipse sera donc décrite sur son grand axe dans le premier cas et
sur son petit axe dans le second.

La droite I’M s'inclinant de plus en plus, viendra enfin coincider avec
Ul; alors, @/ devenant zéro, @ devra devenir infini, c¢’est-i-dire,
qualors IM se confondra avec T7;ainsi I est un point de la ccurbe
et on en dirait autant de V.
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Si présentement on suppose , au contraire , que le produit constant
aa’ soit positif ou, ce qui revient au méme, que les deux fucteurs
a ct a’ solent constarnment de mémes signes ; les droites 1ML et 1M
se trouvant constamment inclinées dans le méme sens , leur peint
de concours M/ se trouvera toujours hors des paralleles T# et T/ qui
conséquemment seront encore dans ce cas les limites de la courbe,
mais de manitre que cette courbe , qui dailleurs passera toujours
par les points I, I/, n’aura aucun de ses points compris cntre elles.
Posant alors

en sorte qu'on ait
B=Ay aa’ ,
I'équation (E) deviendra
Bzxz_dzy2=A:B2 )

qui cst celle d’une hyperbole dont le premier et le second axe sont
24 et 2B.

Si l'on avait @a’=1, il en résulterait B=4, ct 'hyperbole serait
équilatérale.

Si, sans statuer sur le signe de @a’, dans Déquation (E), on
y fait

2

B . —_—
—qa/=—~ dou B=7FAy —aa ,
42 -

cette valeur de B sera réelle ou imaginaire, suivant que 2o’ scra
négatif ou positif ; ce qui explique pourquoi le demi-axe des'y étant
exprimé par B dans lellipse , il se change en By —1 dans
Uhyperbole , et réciproguement.

La longuecur de A étant déterminée , pour unc ellipse ou wune
hyperbole , on voit que la longueur de B dépendra du produit aa’,
et que, pour obtenir l'une ou l'autre courbe , il suflit de fuire ce
produit constant, en lui assignant d’ailleurs , pour chaque cas, une
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valeur arbitraire. De I la raison pourquoi om peut établir, sur un
mime premier axe , une infinité dellipses ou d'hyperboles qui ne
différent que par leur second axe.

H est presque superflu d’observer que , si 'on établissait les lignes
géncratrices LN, I/N sur le sccond axe , et quion les assujettit 2

-

la condition ¢@/ =— o le point N d’intersection circulerait sur la
2

méme ellipse, en dedans des perpendiculaires Zz , Z/z/ menées a
LL/ par ses extrémités ; mais qu'aussitot qu’on supposerait aa’= E;’ lfa
point N/ sortirait de ces limites, pour décrire hyperbole conjuguée
de la premicre.

Menons maintenant , dans Vellipse, les diamétres Gg et HZ, res-
pectivement paralléles aux génératrices ML/ et MI, et les coupant
en R et §; a cause des paralleles, puisque O estle milieu de 11/,
les points R et S scront les milieux respectifs de M1 et MI/; les
deux diameétres Gg et HZA seront donc conjugués T'un de lautre.
Les mémes considérations s’appliquent & I'hyperbole; et de la cette
propriété commune aux deux courbes que deux cordes supplémentaires ,
soit de Dlellipse soit de Uhyperbole, indiguent, par leurs directions,
un sysieme de diamétres conjugués.

La tangente de l'angle M est , en général,

a'—a
1+aa’ ’
si 'on y met pour aa’ la valeur — B— qui répond A VDellipse ,
Az '
on aura
A(a’=a)

Tang. M= — 5 ™)

le minimum ct le maximum de cette valeur correspondent respec~
tivement au mazximum et au minimum de angle des deux droites
génératrices, lorsque cet angle est obtus , c’est-a-dire , lorsque Pellipse
est construite sur son grand axe. Or, si @ et @/ étaient numcrique~

ment
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ment égaux, a cause des signes contraires de ces deux mombres ,
octte valeur deviendrait,
2aA42

Tang M=
o} A:F2 ?

B
cu, a cause de a= —
Py
2.4R

Taxlg.1\1=_‘l:_B: H (P

quantité plus petite que la valeur {P), tant que et a’ ne seront
pas ¢égaux. (%)

Ainsi, dans lellipse , e maximum de Zangle formé par lcs
diamétres conjugués est Langle formé par les diaméires conjugués
égaux.

S. I'on avait B> A , la valeur (P’) ne ferait simplement que
changer de signe ; ainsi langle formé par les cordes supplémentaires
établies aux extrémités du petit axedelellipse est supplément de I'angle

25 cordes supplémentaires établics aux extrémités de son grand axe.
Soient mencées les ordonnées GI’, HQ des points G, H. Faisons
d’abord
OP=xzx , GP=y ;
P’dquation du diamétre OG sera
y=a'z , dou y*=a’z
Mettant cette valear dans I'équation (E), il viendra

A2 a’*a A2
aA d’Ol‘l J}{_____

2 -
X" = ’ P
a—a' a—a

(* Car, en général, de pg==m=, résulle nicessuirement am<p-}¢q. On a, en
en effet , o K (p—g)2, ou 4pg < (p—¢)*~+4pg 5 ou 4pg (p=4g)*, ou jmr(p—+g¢)2,
ce qui donne 2m Ip-yg.

Si Pon égale & zéro la différentielle de Pexpression (P) il viendra da’=da ; mais,
d'un autre coté, a cause de ¢a’ constunt, on a gda’4-a’da==0; ce qui donue ,
en ayant égard a la ditférence des sigues de @ et @/, @’=a comme ci-dessus.

-

Tom. 11 20
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done
—— Axdag2n 4>
oG :.7;2—{—)"_—-_0 Fate
a—a'

Par un semblable calcul on trouvera
[ L P £

e (1] ] 2

—_—
Oll = -
a—a

ctde 1a
0G +()11 ‘1—aahd?

désignant donc par A/, B’ les demi-diametres conjugués OG , OH
et se rappelant que —aa/ {*=PB>, il viendra

AP4-Br = 4B ;

c’est-d-dire , que la somme des quarrés des demi-diaméires conjugués

de lcllipse est une quantité constante.
Comme le caleul est absolument le méme pour T'hyperbole, sauf

le signe du produit @4’ , on trouvera , cn tenant compte de cette
différence , que la difference des quarrés des demi-diaméires con-

jugués de Uhyperbole est une quantité constante,

Le Calcul PréCédent dOnnC
) l-i- !/
92 .B AV (_..—(i_).(i ,

A/—AVU"F‘” Da r—
a-d/ a—a'
{ iy en

or, en ddsignant par ¢ Vangle des deux génératrices , lequel est
L/, on a

aussi celul des demi-diametres A7,
a—a/

Sine= T ag

de I
A'B’Sin.o=A*\/ —aa’=AB.

Lec calcul étant exactement le méme pour hyperbole, il en faut
conclure que, dans Lellipse et dans I'hyperbole , les parallélogram—
mes construils sur les grandeurs et directions des diamelres conjugués

sont tous équivalens.
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En prenant le produit @a’ négativement pour lellipse et | sitive-

ment pour lhyperbole , on trouvera que l'expression de lexcen-
tricite est

pour UVellipse , A/ 1~—ua’; pour Thyperbole,, Ay/ 1-+-aa’.

Et si Pon détermine d'apr?:s ces cxpx‘eSsions , celles des rayons vecteurs
pour les deux courbes , on trouvera toutes leurs proprictés qui y
sont relatives , et I'on verra également que la diflérence des proprictés
de I'une et de laatre tient 4 la difference de signes du preduit aa’,
c’est-a-dire , & la différence de dircction de 'une des droites géné-
ratrices. 11 en est de méme pour ce qui regarde les tangentes aux
deux courbes.

Si T'on emploie I'équation (E) telle qu’elle est, sans changer le
signe de aa’, auquel cas elle Acxprimera une hyperbole , on pourra
la mettre sous cette forme

e ——— et

— Az
y=>= aa’(r—-——— ,

x? p
qui annonce le caractére asymptotique de cette courbe ; puisque sor
¢quation tend , de plus en plus, & se changer en celle-ci

y==Xazyaa ,
qui serait enfin
y==tax,
st les droites géndratrices devenaient paralltles. Pour sassurer de ces
résultats , il faut observer que l'abscisse du point de concours ayant
pour expression

a--a’

a—a!

x

204 . e -
, silonaa/=a, dowaa’=a”; cc qui fait évanouir

devient 2=

. ad'A:
la fraction .
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Si Porigine des abscisses était au point I/, les équations respectives
des droites generatrices 1Ml et IM seraient

y=a'xr , _y:a(x—zA) ;
supposant aa’ négatif , et faisant
aq’ =— ‘é— , dou —zaa/d= %—E— >
I'équation de Vellipse serait
y= -2—;—::1’—{'—(7&/;3.
2D2
La quantité —- étant I'expression du parametre de Dellipse , en Ia
désignant par P, il viendra
y*=Px+-aa'x’.
T.a construction sera la méme, quel que soit Péloignement du point
I; or, si Fon suppose que IM devienne parallele a 'axe des #, on
aura ¢=o0 , et I'équation deviendra simplement
y*=Px ,
équation de la parabole. Or, comme on a
‘B

= \/—-aa’
la supposition de #=o0 donnera A=cw ; cc qui exprime, en effet,
comme l’on sait, le passage de lellipse & la parabole.

B=Ay —aa’ , dod

>

Quant & cette dernitre courbe, nous pourrions nous en tenir 3
cette considération, qui fait dériver son équation d’unc origine com-
mune & celle des autres courbes. On pourrait aussi employer direc-
tement une construction analogue aux précédentes , en cherchant la
courbe décrite par lintersection de deux droites mobiles dont l'une
est constamment parallele a T'axe des x, pendant que lautre passe
constamment par un point de cet axe. Mais nous nous réservons de
revenir sur ce qui concerne la parabole en particulier , par un autre
méthode de laquelle nous déduirons, d’une mani¢re plus lumineuse,
les principales propriétés de cette courbe.
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QUESTIONS RESOLUES.

Solutions du premier des deux problémes de séomélrie
- o] ’
proposé a la page 256 de ce volume ;

Par MM. Lecrasp , RocaAT et Pexson. (%)

s Yo o Vo Vi Vo Nl Vo V)

AVANT d’en venir & la solution du probléme proposé, MM. T.c-
grand , professcur de mathématiques , et Rochat , professcur de
navigation & Saint-Bricux, ont cru nécessaire d'établir d’abord un
théoréme préparatoire. Ce théordme , qui peut étre considéré comme
un des points fondamentaux de la Géométric de la rigle, a ¢té
énoncé par M. Legrand, ainsi quil suit:

THEOREME. Soit un quadrilatére complet quelconque , dont les
cbtés soient indifiniment prolongés; que ses trois diagonales sotent
aussi indéfiniment prolongées ; elles se couperont ,deux a deux , en
irois points. Par chacun de ces points soient menées des droites
aux deux extrémités de la diagonale sur laquelle il ne se trouve
pas , on aura ainsi six droites dont chacune déterminera deux
points sur deux cbtés du quadrilatire; en sorte qu'on aura cn tout
douze de ces points , distribués , trois par trois , sur les quatre
cdtés de ce quadrilatére.

(*) M. Penjon a adressé aux Rédacteurs une solution du probléme de la page 318
de ce volume ; mais celte solulion est parvenue trop tard pour pouvoir ctre pu-
blide avec les autres; elle differe peu, au surplus, de celle de M. Rochat.

( INote des editeurs.)
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Or , il arrivera qgue ces douze points se trouverent, deux & deux>
sttués sur douze nouselles droites , concourant guatre a quatre aux
trois poinis d'intersection des diagonales du quadrilatére proposé.

Les démonstrations de ce théoréme , données par MM. Legrand
et Rochat, sont, I'une ct l'autre, purement analitiques , et revien-
nent & peu prés a ce qui suit.

Démonstration. Soit AA’A”B/BB” ( fig. 5 ) le quadrilatére pro-
posé, dentles diagonales sont AB, A’B/, A”B//, s coupant, savoir :
AB et A’/B/ en C”, AB et A”B” en C/, A’B’ et A/B” en C.
Suit jcint Je point C aux points A et B par deux droites dont la
premiére eoupe les cotés BA” , BA’ en 2 ct ¢, ct dont la seconde
coupe les cotés AA” , AB’ en m ct p. Comme la construction serait
¢videmment la méme pour le point ¢/, relativement 4 la diagonale
A/B’ , et pour le point C/, relativement & la diagonale A”B/;
il sulfit de démontrer 1.° que les droites zp et mqg concourent au
point C/; 2.° que les droites mn et gp concourent au point C7,

Soient prises A”A pour axe des x et A”B pour axe des y,
et suient

A'A=a , AVA'=a’, A/B=b, A/B'=b;
on aura, d'aprés cela, pour les équations
du cété AB/ . .oiviiiennivs aytba=al’ ,
du coté A/B .. ... iveeiies @lydba=ad ,
de la diagonale AB ........ ay4dba=ab ,
de la diagonale A’B/ ........ &/y4-ba=a'l’;

en conséquence, les équations du point B’/ seront

aa'(b—b") bb (n=—==a')
= ab—u'bt "’ = ab—a't’
I'équation de la troisitme diagonale A”B/ sera donc
aa (b—=b")y—bb/(a—a’ x="0.

D’aprés cela on trouvera, pour les équations
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R aq’ ==} ) e=—3i')
du point C , TP e | = ———— R
G(b—b")+-b c—u") a{b—b")4-ba—a)
. aa’'(b—1U" L' a—c")
du point C/ , T= -, y= - T
a'(b—0")4-b'(a—a") a'G—b" )b {a—c")
. aa'(b—b") by (a=—c:'y
du point C” r=— = —
P ? ab'—a'y °’ ab/—a'h ’

on aura donc pour les équations
de CA, a 20—y +bl/e=all’
de CB , ad'y+bl2a—a)x=ad’b ;
d'aprés quoi on trouvera les dquations des points m, n, p, g,

ainsi qa’il suit
aa’(b—b")

i aa’ o
= 20m—qg' ’ = 20b—a/(b4-0') ’
pour m I)OUI' P :
) a2bb (a—a')
\y—o ? Y= 2ab—a'(b4-0") ’
{ 2aa'(b—b")
fomsnd X T st
T=0 > 2ab—0b/(a4-a’) ’
our n POU[' 7
P _ 124 _ bl (a—a’)
(7’— 2h—b' Y= 2ab—b' (u4-a’) ’

il est remarquable que la situation du point m est indépendante de
celles des points B et B/ et que celle du point 2 est indépendante
de celles des points A ct A’

Drapres ces résultats , les équations des quatre droites mn , Pg,my ,
np , pourront étre mises sous cette forme

aa’
our mn —
p ’ 20——0’{}’ ab/—a'b 5 20==b'

P I=0 .

ab’'—ua'h 5

I;b’(a-—a’)? 174 { aa'(h—b")

bb'(a—a') 1Y% ( aa'{(b—1")

pour 27 2a-fa’ (}’ ab'—a’b }+2b+(1'(x+ al’—a b ):O ?
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aa’ 5 . bb'(a—a’) b’ ( aa’(b—b" )
pour np, 2a—3a’ (‘) a'(0—=b")4b'a=—u")y  ab—b/ l = u'(o—b’)+b'(u—u')) =0
aa’ bb'(a—a’) 2% ‘ aa'(b—>b") )
/ —— — r— =03
peurmg, 20—u’ {‘} a'(h—v" )4t (a=—u") 2b-—-b’l a"(b—b’)—i—b’(u—a’)j 03

or, on voit que les deux premicres équations sont satisfaites par
les coordonnées du point G/, et que les deux dernitres le sont par
les coordonnées du point C’.

Soient r, s, £, ¢ les intersections de mn et CA/ , de np et CB/;
de pg et CB”, de mg et CA’: ces quatre points ¢étant situés par
rapport an quadrilatére znpg de la méme maniére que le sont les
quatre points m , n, p, ¢ par rapport au quadrilatere A”A’B/B/,
on en peut conclure, par ce qui précede, que les points r, s ainsi
q.e les points ¢, Z sont en ligne droite avec le point B, et que
les points r, ¢ ainsi que les points s, Z sont en ligne droite avec
le point A.

En général, en remarquant que la propriété qui est contenue dans
I'énoncé du théoréme appartient non seulement au quadrilatére pro-
posé, mais encore a tous les quadrilatéres que forment les lignes
de la figure , prises quatre 4 quatre , on trouvera une multitude de points
qui jouissent de la propriété d’étre trois a trois sur une méme ligne
droite ; et cest une remarque qui a été faite dégalement par MM.
Legrand et Rochat.

Le théoréme qui vient d’étre démontré se déduit aisément de la
proposition suivante :

Si par un point P, pris comme on le voudra sur le pllzm d’un
angle quelconque ASB ( fig. 6 ), on mene tant de droites qu’on
voudra, coupant 'un des cotés de 'angle en A , A7, A7..., et Iautre
en B, B/, B”,..., et que G, C/, C/...., soient les points d’intersection
des diagonales des quadrilatéres A”A’B/B”, A”ABB” , A/ABB'....; ces
points C, C/, C.... seront tous en ligne droite entre eux et avec le
sommet S de l'angle dont il s’agit.

Cette dernitre proposition se démontre facilement, en considérant

que
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que le quadrilattre A“ABB” est tonjours , pour une situation con-
venable de I'xcil et du tableau, la perspective d'un rectangie A ABB”
( fig. 7 )5 que B/A/ (lig. G ), concourant au mdéme point que
BA et B7A7, doit étre la perspective d'une paralléle B/A ( fig. 7 )
a BAet BZA”; que conséquemment les points C, C/, C7 { fig. 6 )
doivent étre les perspectives des centres G, C/, C” ( fig. 7 ) des
rectangles A”A’B/B” , AZABB”, A’ABB’; ct que ces centres se
trouvant sur une paralitle & AA” ct BB, les perspectives de ces
trois droites doivent concourir en un méme point S. ( fig. 6 )

Ce tour de démonstration, outre son cxtréme brieveté, a encore
I'avantage précieux de faire apercevoir sur~le-champ, dans la figurc 6,
une multitude de points qui doivent se trouver en ligne droite.

On pourrait aussi démcntrer la méme proposition en observant
que , par une propriété connue des lignes du sccond ordre, et qui
a été employée, avec avantage ,par M. Rochat lui-méme (*), cette
proposition serait vraie , si l'on substituait une queclconque de ces
lignes a Pangle ASB ( fig. 6 ); et qu’ainsi elle doit avoir dgalement
lieu pour cet angle, puisque le systéme de deux droites est véritable-
ment une ligne du second ordre.

M. Legrand remarque encore que, dans le cas particulier ot [es
droites AB, A’B’, A”B” ( hg. 8 ), sont paralltles, clles sont toutes
divisces en deux parties ¢gales par la droite qui joint les points C,
c, o

La solution du probléme proposé est unc conséquence toute naturelle
des considérations précédentes : voici 4 quoi elle se réduit.

PROBLEME. On connait dans un quadrilatére complet ( fig. 9 )
deux cotés AZA, A”B, la diagemale AB qui joint leurs extrémitds,
et le point C d'intersection des deux autres diagonales; il faut,
avee la régle sculement , achever le quadrilatere ?

Construction. Soient m le point de concours de A7\ ¢t BC, et
n celui de A”B et AC; soit C7 le paint de concours de AD et

(*) Voyez le tome 1.¢* des Annales, page 342,

dom. 11, S
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mn ; Soient enfin B/ et A/ les intersections de A“B et A”A avee
C”Cj3 les droites AB/, BA’/ seront les deux autres cotés du quadri-
latére chercheé.

Cette construction est aussi celle quindique M. Penjon , professcur
de mathématiques au lycée d’Angers , qui renvoic, pour sa démons~
tration , & la Geemdtrie de position de M. Carnot, et & son IMcmoire
sur les transeersales. 1| remarque que ce n'est que par pure ¢légance
guon opere sur le point donné €, et qu'en lui substituant tout autre
point de la droite A/C les points quon substituerait aux points m
et n appartiendraient 3 une droite qui couperait le prolongement
de AB au méme point C7 ou clle est coupée par mn. M. Penjon
observe encore que , si le prolongement de A”C passe par le milien
de AB, mn se trouvant aors parallele & cette dernicre droite, le
probieme ne peut plus étre résolu avec la régle seulement.

Solutions du dernier des deux problémes de gcomdétrie
proposes a la page 256 de ce volume.

o Vi Vi Vi, U Vlp W W VT S ¥

ENOZ\—CE I 4 un mime triangle donnt quelconque , on peut
inscrire une infinité do systémes de trois cercles dont les rayons
solent proportionnels a des droites donnies , et dont chacun touche
les deux autres et wn c6té du triangle donné.

On propose de construire le plus petit de ces systémes ?

I1. Au systéme de trots cercles donnés quelcongues , se touchant
deuvx @ devx , on peut circonscrive une infinité de triangles sem-
blables a un triangle donné , de maniére que chaque coté du triangle
touche un des cercles donnés.

On proposc de construire le plus grand de ces iriangles ?
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Premiére solution ;

Par M. Biooxe, professeur de mathématiques & I'académie
de Turin.

Soit AA’A” un triangle ( fig. 10 ), et soient C, C/, C7
les centres de trois cercles dont chacun touche les deux autres et
un cote de ce triangle.

Je dis que, si le triangle AA’A” est le plus grand, parmi tous
ceux de son espéce , qui puisse étre circonscrit au systéme des trois
cercles dont les centres sont C, C/, C7, ces cercles seront, &
l'inverse, les plus petits de tous ceux qui, ayant leurs rayons dans
le mc¢me rapport que les leurs, puissent étre inscrits au triangle
AA’A | de maniére que chacun d'cux touche les deux autres et
un coté du triangle.

Si, en cflet, on pouvait , sous les conditions données , inscrire
au triangle AA’A” trois cercles plus petits que ceux dont les centres
sont C, C/, C”; cn faisant croitre proportionnellement les dimen-
sions de la figure, on parviendrait & rendre ces trois cercles égdux
a ceux dont les centres sont C, C/, C” 5 et alors le triangle , devenu
plus grand que AA’A’ se trouverait circonscrit comnme lui & ces trois
cercles , ce qui est contre 'hypothése.

Je dis, en sccond lieu, que réciproquement, si le systtme des
cercles dont les centres sont C, C/, C7 ¢st le plus petit de tous
ceux de méme espece qu’il soit possible d’inscrire, sous les conditions
données , aa triangle AA’A’”, ce triangle sera, & linverse, le plus
grand parmi tous ceux de son espice, quil soit possible de circons-
crire, sous les mémes conditions , au systcme de ces trois cercles,

Si, en effet, on pouvait, sous les conditions deundes, circonserira
a ce systtme un triangle plus grand que ANN7 en faisant -
creitre proportionnellement les dimensions de la figure , en parsiendrait

4 rendre ce triangle ¢gal & AN'A , et clors le systeme des trels
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cercles dent les centres sont C, €/, C//, inscrit & ce triangle , ce

qui est contre I'hypothese.

Il résulte de ces considérations , et de ce que, sur une ligne
donnée , on peut toujours construire unc figure semblable & une
figure donnée , que chacun des deux problémes que présente la
question proposce , peut, par de simples proportions , étre ramené a
Vautre. Or, comme un probleéme est réputé résolu, lorsqu'on en a
ramen¢ la solution a celle d'un autre probl-‘:me qu'on sait résoudre ,
ct comme d'aiileurs le dernier des deux problémes proposés permet
unc construction facile, c’est le seul dont nous nous occuperons ici.

Soient done ( fig. 10 ) C, €/, C” les centres de trois cercles
donnés, se touchant deux & deux ; et proposons-nous de circonscrire
3 leur systeme, un triangle donné d’espéce , dont chaque coté touche
un de ces cercles, ct qui soit le plus grand possible. Concevons que
le probleme soit résolu, ct que le triangle cherché soit AAZN”, Par
}es centres C, €/, C/ soient mendes les droites B/B/, B”B, BB/,
respectivement paralleles & A’A7, A”\ , AA/ et formant par leur
concours le triangle BB/B//, semblable a AA’A’. Soient enfin joints
les centres G, €/, C” par des droites qui formeront un triangle
CC/C” , inserit & BB/B.

Cela posé, je dis que le triangle BB/B” est le plus grand de
tous les triangles semblables & AA/A” qu'il soit possible de circons-
erire au triangle donné¢ CC'C”. Si, en effet, il n'en était pas ainsi,
on pourrait, au triangle CC/C, circonscrire un triangle semblable
4 AA/A” plus grand que BB/B/ 5 ct, en menant au cercle des tan-
gentes paralleles aux cotés de ce dernier triangle , ces tangentes
formeraicnt un nouveau triangle circonscrit aux trois cercles, sem-—
blable & AA’A”, et évidemment plus grand que lui; en sorte que,
contrairement & I'hypothése, ce dernier ne serait pas celui qui résout
le problime.

Le dernier des deux probleimes proposés, et conséquemment le
premier , se trouve denc ramené au suivant: A wn triungle donné,
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circonscrire un auire triangle , donné d'espice , qui soit le plus
grand possible ?

Or, on sait résoudre ce probléme (*), et on sait, de plus, quil
n’admet gqu’une solution, si I'on indique quel coté du triang'e
donné doit répondre chacun des angles du triangle cherché, quiil
en a six dans le cas contraire, et qu’alors conséquemment il donne
lieu & un maximum-maximorum qu'on obtiendra de la maniére sui~
vante, ainsi qu'il sera démontré plus loin.

Sur les cotés du triangle CC/C”, pris pour cordes, et extéricure~
ment 4 ce triangle, soient décrits des ares de cercles respectivement
capables des angles donnés du triangle cherché BB/B/, de manitre
que larc capable du plus petit angle, réponde au plus grand des
trois cotés du triangle donné CC/C”, et que larc capable du plus
grand angle , réponde & son plus petit coté ; menant alors , par les
points C, €/, C”, des droites respectivement paralltles a celles qut
joignent les centres deces arcs, ces droites formeront , par leur rencontre,
le triangle cherché BB/B”.

Pour achever la solution du dernier des deux problémes proposés,
il sullira donc de mener aux cercles donnés des tamgentes respective-
ment paralléles aux cétés du triangle BB/B”; ces droites formeront ,
par leur rencontre , le triangle demandé AA’A”.

Si c’est, au contraire, le premier probléme qu’on veut résoudre,
on décrira d'abord arbitrairement trois cercles, se touchant deux a
deax , et ayant leurs rayons dans le rapport des droites données.
On circonscrira ensuite, par ce qui vient d’étre dit, au systeme de
ces trois cercies, un triangle semblable au triangle donné, et le plus
grand possible. Construisant enfin une figure semblable 3 celle qu'on
aura obtenue , mais dans laquelle le triangle circonscrit soit égal au
triangle denné, le probléme se trouvera résolu.

Dans le cas ol les rayons des trois cercles donnés ou cherchés
doivent éire dgaux , et dans celui ou le triangle donné ou cherché

(") VYoyez les pages 88 et suivantes de ce volume.
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doit étre équilatéral , il n'y a plus lieu au maximum-maximorum ,
niau miuium=-minimorum; parce que les six solutions du probleme
se réduisent alors a4 une solution unique.

Il reste & prouver qu'en construisant de la manidre qui vient d’étre
indiquée, on obtient, en effet, le minimum-minimorum , pour le
prewicr probléme, et consequement le maximum~-maximorum pour
le second.

Soit CC’/C” ( fig. 11 ) un triangle donné , dont les angles soient
v, o, o soient décrits, sur les cotés de ce triangle , pris pour
cordes , et extéricurement , des arcs de cercles respectivement capables

des trois angles g, g7, g7 d'un triangle donné quelcongne ; soient
D, D/, D/ les centres de ces arcs, et soient joints ces p('mts par
des droites qui formeront le triangle DD/D/ 5 soit enfin circonscrit
au triangle CC/C” un triangle BB/B” dont les cotés soient respec-
tivement paralléles & ceux da triangle DD/D”.

Soient joints CD/, CD/ ; et des poinis D/, D’ soient abaissées
sur CC” ct CC/ les perpendiculaires D/m/ et D/m/’ ; les points m/
et m/’” scront les milieux de ces droites ; les angles m/D/C et
m//D”C seront respectivement égaux aux angles g/ et g/ ; et on aura

de plus D/D” moitié de B/B”. (*)
Nommant donc ¢ , ¢/, ¢” les trois cotés da triangle CC/C/ et
b, b/, b ccux du triangle BB/B” ; on aura, ¢ étant le quadrans,

DD/=1b, AngDV/CD/ =4 (g—&)+(g—p") | =8+~ ,

CD/: __t’._._ CD// - "

2Sin.g ’ 28in. g7

Or, le triangle D'CD” donne

DD/ =CD/ —CD/.CD".Cos.D/CD/+4CD” 3

substituant donc, il viendra

(") Voycz la page 24 de ce volume.
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b2 c': 2¢'c! (&
— -— ’ 4
— N " 0S. 3.—!—‘ E—
4 4Smeg 4Sin.g'.Sin,s" Cos-(3v) 4Sn.23r ?

\ .
c’est-a-dire,
c/2Sin.2 A —z=2¢'¢""Sin 3'Sin 3"(:05.’3—*-y}-}—c”’Sin.:‘Q’

b= .

Sin,25'Sin.28"

Mais, cn désignant par € laire du triangle CC/C”, on a
¢/?Sin.*p”’ = ¢/*Sin.p"’Sin.(3-4-2")
=¢”*Sin.sCos.8’Sin.s""—4-¢/>Cos.851n.6/Sin.g" ;
—2¢/¢’’8in.p’Sin. s Cos.(84-5) = —2¢/¢”/ Cos..Sin.8/.Sin.g" .Cos.
—2¢7¢/.8in.».Sin.gSin.a’Sin.g"’
==—2¢/¢"’Cos.8Sin.s’Sin.s”’Cos., 44 CSin.sSin.p’Sin.p”
¢/*Sin,2g’=¢/*Sin.p’Sin.(g4-4")
=¢//*Sin.68in.p’Cos.A/=-¢/’*Cos.Sin.A’Sin.A”
donc
¢/2Sin.2g/—2c/c" Sin.p'Sin, 8" Cos. (B4 )4-c"/2Sin.> g/
==¢"2Sin,2Cos.#'Sin. g/""~~c"2Sin. ASin. g’ Cos. B~} (c'?*—2¢'c"Cos.y-4c"2)Cos. £Sin. £'Sin, 57
~-4CSin.aSin, g/'Sin.g"”
=¢2Cos.aSin. 5/Sin.p"4-¢'25in.8Cos.£'Sing"—4-c"72Sin.ASin. 8’ Cos. #/-4-4CSin, Sin g Sin. 3,
Posant donc
¢ *Cos.s Sin.8’Sin.p/”
M= { ~-¢’ *Sin.# Cos.#’Sin.A"/4-4CSin.8Sin.s’Sin.A"”
g ~-¢/*Sin.£Sin.A/Cos.5/”

it viendra

M M M
= — / e R l//: ——
Sin.p'Sin.g/" Sin.#"S8in.g Sin.aoin.a’

St l'on désigne par B laire du triangle BB/B” , on aura
b%'Sin.p” M2

2 28iu.85in.2'Sin. 87

et par conséquent
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¢2Cos, 35in 3'8in.3"+4-¢"28in.3Co0s.3'Sin. 3”42 Sin. 85in.8’Cos. 87

B=2>C+H - .

25111.35in, 8'Sin. 3"

Présentement pour que cc triangle soit un maximum absolu , il
fat qu'on ne puisse faire subir aux angles 8, 3/, 8" aucune per-

mutation sans en diminuer la surface: il faut donc qu’on ait

¢2Cos 3Sin.3'Sin 3"4-/28in.2C0s.8'Sin 87—~ "28in. 8Sin.8'Cos g/’
2S811.38in.3'Sin 3”7

¢2Cos.35in.2'Sin 3'4-¢'2Sin. 3C0s.8"Sin, 8'4~ "28in.38in.8"Cos. 8/

20+

>20+ ;

2Sin 2501,3"Sin. &’
inégalité qu;, en remargquant que Sin.,s ’ S'm.,B’ ’ Sin.a” sont essentiel -
lement positifs , devient, en transposant , réduisant ct chassant lc
dénominateur ,
(¢"*—c*)Sin.(8""—¢", >0 ;
il faut donc que
C/—c// et ﬁ//_ﬁ/ ,
soient de mémes signes, ou quen supposant ¢/>¢”/ on ait g/ < p”;
ainsi langle s étant déterminé & correspondre au coté G, il faut
que le plus petit des deux autres angles corresponde au plus grand
des deux autres cotés, et ¢ice versd ; d'ou il est facile de conclure
la constraction indiquée ci-dessus.
Nous croyons devoir faire remarquer, en passant, que la valeur
q s ?
de B peut étre mise sous cette forme trés-simple
B=2C+1{c*Cota~+c"*Cot.p/'+-c/*Cot.g’'}
Si 'on supposc, au contraire , donnés les cotés du triangle BB/B” et
les angles du triangle CC’C” , en posant, pour abréger
8 8 > P > I 3
b ICOS.'ySin.y/Sin.y//
N:= (¢ —+44/:8in.,Cos.’Sin.s"/4{BSin 4Sin.,/Sin.” ,
—+077Sin.5Sin.4’Cos.y "’
on trouvera

2BSin.y 2BSin./ 2B8m.y
c= 5 ¢ = - R =
N N ’ N

dou
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d’ott on conclura
2B
C=— — .
b2Coliy02Cotiy i 2Cet oy 4 3
de cette valeur de € et de celle de B resulte cette relation re-

2

marquable
c2Cot.A4-:"2Cot. 84~ Cot.3”

b2Col =" Cotuy 4-0"<Cot. 7

A Taide de ce qui précede, on parviendra facilement aux résul-

—

C
B

tats suivants.
I. Soient a, a’, a” les trois c6tés d'un triangle donné, A sen

aire, a, »/, a” des droites auxquelles les rayons des trois cercles
inscrits doivent étre proportionnels , et r, 7/, 7/ ces rayons ; en
posant , pour abréger ,
e
Q*=(41a" [ (V42— (a-27) |48 A/ 20/ 2 27
[t ]

il viendra

axA
r=
Aat-Aa'42"a!'4Q ’

2.4

7/ =
Aa-Na/4=Na" )
22" A
Aa+A’a’+A”a/’+Q .
II. Si au contraire, les rayons r, r/, r// des trois cercles dtant
’ y s s
donnéds, on demande les cotés @, @/, a” du plus grand triangle
) E > o] g
circonscrit dont les angles soient « , &/, 4’/ ; en posant , pour abréger,

’

7l =

(r 4-r/)2Sin.«Sin.«'Cos.a”
2= (! 4-r")2Cos.aSin.a’Sin.«”—4Sin.aSin. «'Sin.a’/\/rr'r’ (141 '=~1 ")
( /)
("4 )2Sin.«Cos.«'Sin,a"
on trouvera
rSin.a-r'Sin.2'4-r"Sin «"P
Sin.e'Sin.a”

Tom. II, 52
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rSin.a—4-r"Sin.2’4-r"'Sin «"4-P
= Sin.aSin.z” ?

ol rSin.a=-r'Sin.2'4r"Sin.a’ 4P

Sin.aSin.«/

a’

Deuaxiéme solution

Par M. LHciLER , professeur de mathématiques & Tacadémie
impériale de Geneve.

Lemme connu. Soit un triangle donné de grandeur et d'espece.
Par les sommets de ce triangle soient mendes des droites qui for—
ment un triangle circonscrit au premier. Que ce sccond triangle soit
donné d'espéce sculement. On détermine , comme il suit , le plus
grand de ces triangles.

Sur les cotés du premier triangle soient dderits ( extéricurement
3 lui ) des segmens de cercles respectivement capables des angles
dounés du second triangle. Par chacun des sommets du premicr
triangle , soit mende unc droite parallele 4 la droite qui joint les
centres des cercles dont les jambes de cet angle sont les cordes. Ces
paralleles formeront le plus grand triangle demandé. (*)

PROBLEME 1. Soient trois cercles donnés de grandeur ct de
position , dont chacun touche les deux autres ( extéricurement ).
Mener 3 chacun de ces cercles une tangente , de maniére que le
triangle formé par ces trois tangentes ait ses angles donnds , ct soit
le plus grand possible

Soient ¢, ¢/, ¢’ les centres donnds de trois cercles qui se tou-
chent extéricurement ( fig. 12 ). Scient R, IV, I leurs rayons
donnes. Soient L', 17, "t/ les points de contact de ces trois cercles
et des droites qui , par leur rencontre , forment un  triangle

XXX dont les angles sent donnds et qui doit ¢ire le plus grand.

() Vores les pages 2==52 de ce volume; voves aussi mes Elémens d'unalise

"!Z'U,'.'u‘l A‘lI'J‘-' y tliey Phgts 2 Ve 5.
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Analise. Le triangle CC/C/ est déterminé. Par les centres C, C/,
C” , svient menées aux cétés du triangle XX/X” des paralleles
clles formeront un triangle ZZ/Z// semblable au triangle XX/X7*,

'

et circonscrit au triangle CC/C”.

Des sommets..... Z , Z 7z,
soient abaissées sur XX/, XX ; X/X7 |, X/'X ; XX , X/X/ ,
les perpendiculaires ZQ , ZP 3 2/Q/ , Z/P/ 5 77Q7 , 2P

Les quadrilateres ZPXQ, Z/P/X/Q/ , Z//P”X//Q" sont déterminces ,
puisque , dans chacun d’eux, on connait, outre les angles , deux
cotés adjacents, qui sont les rayons de deux des cercles donnés.

Les rectangles ZQP/Z/, Z/Q/P/Z/" , 2//Q/PZ , dans chacun des-
quels un des cotés est donné ( savoir le rayon de l'un des cercles
donnés ), croissent comme les cotés ZZ/, Z/7// , 77 du triangle
7171/ et, en particulier, le triangle XX/X/ est le plus grand ,
lorsque le triangle ZZ/Z/ est le plus grand. Partant, on détermine
comme il suit le plus grand triangle XX/X7,

Construction. Au triangle CC/C” soit circonserit ( Lemme ) le
plus grand triangle ZZ/Z/ ayant ses angles égaux aux angles donués
du triangle XX’X”. Soient menées aux cercles donnés des tangentes
respectivement paralléles aux cétés du triangle ZZ/Z//. Ces tangentes
formeront, par leurs rencontres, le triangle demandé XX'X".

PROBLEME II. A un triangle donné, inscrire trois cercles dont
les rayons soient entre cux dans des rapports donnés, de manicre
que chacun de ces cercles touche un des cotés du triangle donné,
gue chacun d’eux touche aussi les deux autres cercles ( extéricure-
mont ), et que le systtme de ces cercles soit le plus petit possible.

Solution. La solution de ce sccond probleme est ramence i celle
du premicr, par la méthode ordinaire de fausse position.

Remargue 1. Le cas particulier de 1'égalité des rayons des cercles
donnés rend équilatéral le triangle CC'C".

Remarque 11, Au liea de s’occupcer de la limite en grandeur du
triangle denné despeee, circonscrit au systeme des cercles donnés ,

on peut demander que ce triangle soit donné de grandeur. Lt réciproque-
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R4 QUESTION PROPOSEE.

ment, aa triangle denwe , on peut inscrire un systtme de cercles
donne de grandeur. Ces problemes sont clenientaires, et on peut
tirer de leur construction la liwite pour l'un et l'autre cas.

Remargue 111 Tout ce qui a cté dit sur le cas du contact des trois
cereles sapplique & un systeme de trois cercles dont les rayons ont
des rappeits donmes, soit entre eux soit aux drvites qui joignent
leurs cenir.s.

Envisagé sous ce point de vue général , le probléme preposé donne
licu & huit cas, suivant que les contacts des cercles et des eotés
du triangle , relativement a ce triangle, sont tous les trois interieurs,
deux intericurs et un exterieur, un intéricur et deux extéricurs, ou
enfin tous les truis extérieurs.

Troisiéme solution ;

Par M. Rocuar, professeur de navigation & St-Brieux.

M. Rochat, en traitant les deux problémes d’une maniére pure-
ment analitique , est parvenu a des formules assez simples, mais
dont il n’a pas indiqué la construction.

- —m —

re——

QUESTION PROPOSEE.

Théoréme a démontrer.

SI 4 une ellipse on circonserit un quadrilatére queleonque, le point
d’intersection des deux droites qui joindront les points de contact de
Vellipse avec les cotés opposés de ce quadrilatére, coincidera avec
le point d'intersection de ses deux diagonales.

Fin pu TOME SECOXND,
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ERRATA

Pour le tome second des Annales.
Pour les Planches.

Planche 1I, g 7.== 1l faut un @ au troisitme sommet du triangle circonscrit
a def ~
Planche V, lig. 5. = Il faut uync M A l'intersection de Cg et Nm.

.

Pour le Texte.

Page 32, dans I'énoncé du probléme de géométrie, supprimez ces mols : ¢qui-
valent & une surface donnde, et

Page 6o, ligne 3, en remontant. —le nombre, /isez : le grand nombre.

Page 70, ligne 8; pour la formule lx=etc., consultez la page 178.

Page 88, ligne 9. == cadran, lisez : quadrans.

Page 93, lignes 2 et 5.— Rochat : lisez : Pilatte.

Page 96, ligne 8 et 9, en remontant. — Les signes des termes du sccond mem-
bre de I'équation doivent étre alternatifs.

Page 153, équation (B). =— Au second terme du coefficient de y2 , il faut p, au
lieu de 2p ; et au second terme du coefficient de y, il faut 1pt, au licu de
2ptt. Celte erreur qui s'est reproduite dans les équations (C), (D), (E),
w'appartient point a l'auteur du mémoire.

Page 237, aux dernicres lignes du mémoire, substituez ce qui suit:

x,=-+16.1143ge=176+439c,
a=-23.11456c=2534506e ;

faisant donc e=—4, =3, —2, —1, 10, 41,...

xr =20, 59, 93, 137, 176, 213, ..

z =29, 85, 141, 107, 235, 300, e

Cette errear n'appartient pas & Pauteur du mémoire.

on trouvera g

Page 285, troisitme ligne de la note. == alors , lisez ensuite.

Page 305, & la note. == Supprimez ces promiers mots: » Clierchez une moyenne
» proportionnelle entre CA et CB/, et une autre cntre CB ¢t CA/ » ; et substituez-
leur les swivans :
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« Construisez un demi-cercle dont le diameétre soit plus grand que la plus
grande des quatre lignes données CA , CB, CA’, CB/, et portcz-y ces quatre
lignes comme cordes ,  partir de l'une des extrémités de son diametre, Cherchez
une moyenne proportionnelle entre les projections de CA et CB/ sur le diame-
tre , et une autre cnire les projections de CA’ et CB sur ce méme diamctre.»
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Page 338, ligne 9. = Ajoutez : et leurs extrémités.

Page 342, ligne 3. = 12.%, lisez 12.1.

n
Page 347, ligne 4, en remontant ; —— , lisez w= .
e 7 5 ’ m-n ! - m—n








