Invariants of links and 3-manifolds that count graph configurations
[Invariants of links and 3-manifolds that count graph configurations]
Winter Braids X (Pisa, 2020), Winter Braids Lecture Notes (2020), Exposé no. 1, 35 p.

We present ways of counting configurations of uni-trivalent Feynman graphs in 3-manifolds in order to produce invariants of these 3-manifolds and of their links, following Gauss, Witten, Bar-Natan, Kontsevich and others. We first review the construction of the simplest invariants that can be obtained in our setting. These invariants are the linking number and the Casson invariant of integer homology 3-spheres. Next we see how the involved ingredients, which may be explicitly described using gradient flows of Morse functions, allow us to define a functor on the category of framed tangles in rational homology cylinders. Finally, we describe some properties of our functor, which generalizes both a universal Vassiliev invariant for links in the ambient space and a universal finite type invariant of rational homology 3-spheres.

DOI : 10.5802/wbln.33
Classification : 57K16, 57K31, 57K30, 55R80, 57R20, 81Q30
Mots clés : Knots, $3$-manifolds, finite type invariants, homology $3$–spheres, linking number, Theta invariant, Casson-Walker invariant, Feynman Jacobi diagrams, perturbative expansion of Chern-Simons theory, configuration space integrals, parallelizations of $3$–manifolds, first Pontrjagin class
Lescop, Christine 1

1 CNRS, Université Grenoble Alpes, Institut Fourier, F-38000 Grenoble, France
@article{WBLN_2020__7__A1_0,
     author = {Lescop, Christine},
     title = {Invariants of links and 3-manifolds that count graph configurations},
     booktitle = {Winter Braids X (Pisa, 2020)},
     series = {Winter Braids Lecture Notes},
     note = {talk:1},
     pages = {1--35},
     publisher = {Winter Braids School},
     year = {2020},
     doi = {10.5802/wbln.33},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/wbln.33/}
}
TY  - JOUR
AU  - Lescop, Christine
TI  - Invariants of links and 3-manifolds that count graph configurations
BT  - Winter Braids X (Pisa, 2020)
AU  - Collectif
T3  - Winter Braids Lecture Notes
N1  - talk:1
PY  - 2020
SP  - 1
EP  - 35
PB  - Winter Braids School
UR  - http://www.numdam.org/articles/10.5802/wbln.33/
DO  - 10.5802/wbln.33
LA  - en
ID  - WBLN_2020__7__A1_0
ER  - 
%0 Journal Article
%A Lescop, Christine
%T Invariants of links and 3-manifolds that count graph configurations
%B Winter Braids X (Pisa, 2020)
%A Collectif
%S Winter Braids Lecture Notes
%Z talk:1
%D 2020
%P 1-35
%I Winter Braids School
%U http://www.numdam.org/articles/10.5802/wbln.33/
%R 10.5802/wbln.33
%G en
%F WBLN_2020__7__A1_0
Lescop, Christine. Invariants of links and 3-manifolds that count graph configurations, dans Winter Braids X (Pisa, 2020), Winter Braids Lecture Notes (2020), Exposé no. 1, 35 p. doi : 10.5802/wbln.33. http://www.numdam.org/articles/10.5802/wbln.33/

[AM90] S. Akbulut & J. D. McCarthyCasson’s invariant for oriented homology 3-spheres, Mathematical Notes, vol. 36, Princeton University Press, Princeton, NJ, 1990, An exposition. | DOI | Zbl

[AS94] S. Axelrod & I. M. Singer – « Chern-Simons perturbation theory. II », J. Differential Geom. 39 (1994), no. 1, p. 173–213. | DOI | MR | Zbl

[BCR98] J. Bochnak, M. Coste & M.-F. RoyReal algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998, Translated from the 1987 French original, Revised by the authors. | DOI | Zbl

[BN95a] D. Bar-Natan – « On the Vassiliev knot invariants », Topology 34 (1995), no. 2, p. 423–472. | DOI | MR | Zbl

[BN95b] —, « Perturbative Chern-Simons theory », J. Knot Theory Ramifications 4 (1995), no. 4, p. 503–547. | DOI | MR | Zbl

[BT94] R. Bott & C. Taubes – « On the self-linking of knots », J. Math. Phys. 35 (1994), no. 10, p. 5247–5287, Topology and physics. | DOI | MR | Zbl

[CDM12] S. Chmutov, S. Duzhin & J. MostovoyIntroduction to Vassiliev knot invariants, Cambridge University Press, Cambridge, 2012. | DOI | Zbl

[FH01] E. R. Fadell & S. Y. HusseiniGeometry and topology of configuration spaces, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. | DOI | MR

[Fuk96] K. Fukaya – « Morse homotopy and Chern-Simons perturbation theory », Comm. Math. Phys. 181 (1996), no. 1, p. 37–90. | DOI | MR

[Gau77] C. F. Gauss – « Zur mathematischen Theorie der electrodynamischen Wirkungen, manuscript, first published in his Werke Vol. 5 », Königl. Ges. Wiss. Göttingen, Göttingen (1877), p. 601–630. | DOI

[GGP01] S. Garoufalidis, M. Goussarov & M. Polyak – « Calculus of clovers and finite type invariants of 3-manifolds », Geom. Topol. 5 (2001), p. . | DOI | Zbl

[GK04] S. Garoufalidis & A. Kricker – « A rational noncommutative invariant of boundary links », Geom. Topol. 8 (2004), p. . | DOI | Zbl

[GM92] L. Guillou & A. Marin – « Notes sur l’invariant de Casson des sphères d’homologie de dimension trois », Enseign. Math. (2) 38 (1992), no. 3-4, p. 233–290, With an appendix by Christine Lescop. | Zbl

[GMM90] E. Guadagnini, M. Martellini & M. Mintchev – « Wilson lines in Chern-Simons theory and link invariants », Nuclear Phys. B 330 (1990), no. 2-3, p. 575–607. | DOI | MR

[Hir73] F. E. P. Hirzebruch – « Hilbert modular surfaces », Enseignement Math. (2) 19 (1973), p. 183–281. | Zbl

[Hir94] M. W. HirschDifferential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994, Corrected reprint of the 1976 original.

[KM99] R. Kirby & P. Melvin – « Canonical framings for 3-manifolds », in Proceedings of 6th Gökova Geometry-Topology Conference, vol. 23, Turkish J. Math., no. 1, 1999, p. 89–115. | Zbl

[Kon94] M. Kontsevich – « Feynman diagrams and low-dimensional topology », in First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120, Birkhäuser, Basel, 1994, p. 97–121. | DOI | Zbl

[Kri00] A. Kricker – « The lines of the Kontsevich integral and Rozansky’s rationality conjecture », , 2000. | arXiv | DOI

[KT99] G. Kuperberg & D. Thurston – « Perturbative 3–manifold invariants by cut-and-paste topology », , 1999. | arXiv

[Kui99] N. H. Kuiper – « A short history of triangulation and related matters », in History of topology, North-Holland, Amsterdam, 1999, p. 491–502. | DOI | Zbl

[Les02] C. Lescop – « About the uniqueness of the Kontsevich integral », J. Knot Theory Ramifications 11 (2002), no. 5, p. 759–780. | DOI | MR | Zbl

[Les04] —, « Splitting formulae for the Kontsevich-Kuperberg-Thurston invariant of rational homology 3-spheres », , 2004. | arXiv

[Les05] C. Lescop – « Knot invariants and configuration space integrals », in Geometric and topological methods for quantum field theory, Lecture Notes in Phys., vol. 668, Springer, Berlin, 2005, p. 1–57. | DOI | Zbl

[Les11] C. Lescop – « Invariants of knots and 3-manifolds derived from the equivariant linking pairing », in Chern-Simons gauge theory: 20 years after, AMS/IP Stud. Adv. Math., vol. 50, Amer. Math. Soc., Providence, RI, 2011, p. 217–242. | DOI | Zbl

[Les13] —, « A universal equivariant finite type knot invariant defined from configuration space integrals », , 2013. | arXiv

[Les20] —, « Invariants of links and 3–manifolds from graph configurations », , 2020. | arXiv

[Les15a] —, « A formula for the Θ-invariant from Heegaard diagrams », Geom. Topol. 19 (2015), no. 3, p. 1205–1248. | DOI | MR | Zbl

[Les15b] —, « On homotopy invariants of combings of three-manifolds », Canad. J. Math. 67 (2015), no. 1, p. 152–183. | DOI | MR | Zbl

[Let20] D. Leturcq – « Bott-Cattaneo-Rossi invariants for long knots in asymptotic homology 3  », , 2020. | arXiv

[LMO98] T. T. Q. Le, J. Murakami & T. Ohtsuki – « On a universal perturbative invariant of 3-manifolds », Topology 37 (1998), no. 3, p. 539–574. | DOI | MR | Zbl

[Mar88] A. Marin – « Un nouvel invariant pour les sphères d’homologie de dimension trois (d’après Casson) », Astérisque (1988), no. 161-162, p. 151–164, Exp. No. 693, 4 (1989), Séminaire Bourbaki, Vol. 1987/88.

[Mil97] J. W. MilnorTopology from the differentiable viewpoint, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997, Based on notes by David W. Weaver, Revised reprint of the 1965 original.

[Mou12] D. Moussard – « Finite type invariants of rational homology 3-spheres », Algebr. Geom. Topol. 12 (2012), p. 2389–2428. | DOI | MR | Zbl

[Oht96] T. Ohtsuki – « Finite type invariants of integral homology 3-spheres », J. Knot Theory Ramifications 5 (1996), no. 1, p. 101–115. | DOI | MR | Zbl

[Poi00] S. Poirier – « The configuration space integral for links and tangles in 3  », , 2000. | arXiv | Zbl

[Poi02] S. Poirier – « The configuration space integral for links in 3  », Algebr. Geom. Topol. 2 (2002), p. . | DOI | Zbl

[Pol05] M. Polyak – « Feynman diagrams for pedestrians and mathematicians », in Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math., vol. 73, Amer. Math. Soc., Providence, RI, 2005, p. 15–42. | DOI

[Saw06] J. Sawon – « Perturbative expansion of Chern-Simons theory », in The interaction of finite-type and Gromov-Witten invariants (BIRS 2003), Geom. Topol. Monogr., vol. 8, Geom. Topol. Publ., Coventry, 2006, p. 145–166. | DOI | Zbl

[Thu99] D. Thurston – « Integral expressions for the Vassiliev knot invariants », , 1999. | arXiv

[Vog11] P. Vogel – « Algebraic structures on modules of diagrams », J. Pure Appl. Algebra 215 (2011), no. 6, p. 1292–1339. | DOI | MR | Zbl

[Wal92] K. WalkerAn extension of Casson’s invariant, Annals of Mathematics Studies, vol. 126, Princeton University Press, Princeton, NJ, 1992. | DOI | Zbl

[Wat18] T. Watanabe – « Higher order generalization of Fukaya’s Morse homotopy invariant of 3-manifolds I. Invariants of homology 3-spheres », Asian J. Math. 22 (2018), no. 1, p. 111–180. | DOI | MR | Zbl

[Wit89] E. Witten – « Quantum field theory and the Jones polynomial », Comm. Math. Phys. 121 (1989), no. 3, p. 351–399. | DOI | MR | Zbl

Cité par Sources :