The definition of the Jones polynomial in the 80’s gave rise to a large family of so-called quantum link invariants, based on quantum groups. These quantum invariants are all controlled by the same two-variable invariant (the HOMFLY-PT polynomial), which also specializes to the older Alexander polynomial. Building upon quantum Schur–Weyl duality and variants of this phenomenon, I will explain an algebraic setup that allows for global definitions of these quantum polynomials, and discuss extensions of these quantum objects designed to encompass all of the mentioned invariants, including the HOMFLY-PT polynomial.
@article{WBLN_2019__6__A5_0, author = {Queffelec, Hoel}, title = {Polynomial link invariants and quantum algebras}, booktitle = {Winter Braids IX (Reims, 2019)}, series = {Winter Braids Lecture Notes}, note = {talk:4}, pages = {1--20}, publisher = {Winter Braids School}, year = {2019}, doi = {10.5802/wbln.30}, language = {en}, url = {http://www.numdam.org/articles/10.5802/wbln.30/} }
TY - JOUR AU - Queffelec, Hoel TI - Polynomial link invariants and quantum algebras BT - Winter Braids IX (Reims, 2019) AU - Collectif T3 - Winter Braids Lecture Notes N1 - talk:4 PY - 2019 SP - 1 EP - 20 PB - Winter Braids School UR - http://www.numdam.org/articles/10.5802/wbln.30/ DO - 10.5802/wbln.30 LA - en ID - WBLN_2019__6__A5_0 ER -
%0 Journal Article %A Queffelec, Hoel %T Polynomial link invariants and quantum algebras %B Winter Braids IX (Reims, 2019) %A Collectif %S Winter Braids Lecture Notes %Z talk:4 %D 2019 %P 1-20 %I Winter Braids School %U http://www.numdam.org/articles/10.5802/wbln.30/ %R 10.5802/wbln.30 %G en %F WBLN_2019__6__A5_0
Queffelec, Hoel. Polynomial link invariants and quantum algebras, dans Winter Braids IX (Reims, 2019), Winter Braids Lecture Notes (2019), Exposé no. 4, 20 p. doi : 10.5802/wbln.30. http://www.numdam.org/articles/10.5802/wbln.30/
[1] J. W. Alexander. Topological invariants of knots and links. Trans. Amer. Math. Soc., 30(2):275–306, 1928. | DOI | MR | Zbl
[2] A. Berenstein and S. Zwicknagl. Braided symmetric and exterior algebras. Trans. Amer. Math. Soc., 360(7):3429–3472, 2008. | DOI | MR | Zbl
[3] C. Blanchet, F. Costantino, N. Geer, and B. Patureau-Mirand. Non-semi-simple tqfts, reidemeister torsion and kashaev’s invariants. Advances in Mathematics, 301:1–78, 2016. | DOI | MR | Zbl
[4] G. Burde and H. Zieschang. Knots, volume 5 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1985.
[5] S. Cautis, J. Kamnitzer, and S. Morrison. Webs and quantum skew Howe duality. Math. Ann., 360(1-2):351–390, 2014. | DOI | MR | Zbl
[6] V. Chari and A. Pressley. A guide to quantum groups. Cambridge University Press, Cambridge, 1994. | Zbl
[7] S-J. Cheng and W. Wang. Howe duality for Lie superalgebras. Compositio Math., 128(1):55–94, 2001. | DOI | Zbl
[8] F. Costantino, N. Geer, and B. Patureau-Mirand. Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories. Journal of Topology, 7(4):1005–1053, 2014. | DOI | MR | Zbl
[9] P. R Cromwell. Knots and links. Cambridge University Press, 2004. | DOI | Zbl
[10] R. Dipper, S. Doty, and F. Stoll. The quantized walled Brauer algebra and mixed tensor space. Algebr. Represent. Theory, 17(2):675–701, 2014. | DOI | MR | Zbl
[11] S. Doty and A. Giaquinto. Presenting Schur algebras. Int. Math. Res. Not., 2002(36):1907–1944, 2002. | DOI | Zbl
[12] P. I Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, and E. Yudovina. Introduction to representation theory, volume 59. American Mathematical Soc., 2011. | DOI | Zbl
[13] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu. A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. (N.S.), 12(2):239–246, 1985. | DOI | MR | Zbl
[14] A. M. Garsia and C. Procesi. On certain graded -modules and the -Kostka polynomials. Adv. Math., 94(1):82–138, 1992. | DOI | Zbl
[15] N. Geer and B. Patureau-Mirand. An invariant supertrace for the category of representations of Lie superalgebras of type I. Pacific J. Math., 238(2):331–348, 2008. | DOI | MR | Zbl
[16] J. Grant. A generators and relations description of a representation category of . Algebraic & Geometric Topology, 16(1):509–539, 2016. | arXiv | DOI | Zbl
[17] R. Howe. Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In The Schur lectures (1992) (Tel Aviv), volume 8 of Israel Math. Conf. Proc., pages 1–182. Bar-Ilan Univ., Ramat Gan, 1995. | Zbl
[18] M. Jimbo. A q-analogue of u(gl(n+1)), hecke algebra, and the yang-baxter equation. Letters in Mathematical Physics, 11(3):247–252, 1986. | DOI | MR | Zbl
[19] V. F. R. Jones. A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. (N.S.), 12(1):103–111, 1985. | DOI | MR | Zbl
[20] C. Kassel. Quantum groups, volume 155 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. | DOI | Zbl
[21] L. H. Kauffman and H. Saleur. Free fermions and the Alexander-Conway polynomial. Comm. Math. Phys., 141(2):293–327, 1991. | DOI | MR | Zbl
[22] G. Lusztig. Introduction to quantum groups, volume 110 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1993. | Zbl
[23] M. Mackaay, M. Stošić, and P. Vaz. A diagrammatic categorification of the q-Schur algebra. Quantum Topol., 4(1):1–75, 2013. | DOI | MR | Zbl
[24] H. Mitsuhashi. Schur-Weyl reciprocity between the quantum superalgebra and the Iwahori-Hecke algebra. Algebr. Represent. Theory, 9(3):309–322, 2006. | DOI | MR | Zbl
[25] J. Murakami. The multi-variable Alexander polynomial and a one-parameter family of representations of at . In Quantum groups, pages 350–353. Springer Berlin Heidelberg, 1992. | DOI | Zbl
[26] G. Naisse and P. Vaz. 2-Verma modules and the Khovanov-Rozansky link homologies. 2017.
[27] J. H. Przytycki and P. Traczyk. Conway algebras and skein equivalence of links. Proc. Amer. Math. Soc., 100(4):744–748, 1987. | DOI | MR | Zbl
[28] H. Queffelec and A. Sartori. Mixed quantum skew Howe duality and link invariants of type A. Journal of Pure and Applied Algebra, 223(7):2733–2779, 2019. | DOI | MR | Zbl
[29] N. Y. Reshetikhin and V. G. Turaev. Ribbon graphs and their invariants derived from quantum groups. Comm. Math. Phys., 127(1):1–26, 1990. | DOI | Zbl
[30] D. Rolfsen. Knots and links, volume 346. American Mathematical Soc., 2003. | DOI
[31] D. E. V. Rose and D. Tubbenhauer. Symmetric webs, Jones-Wenzl recursions and -Howe duality. International Mathematics Research Notices, 2016(17):5249–5290, 2015. | DOI | MR | Zbl
[32] A. Sartori. The Alexander polynomial as quantum invariant of links. Ark. Mat., 53(1):177–202, 2015. | DOI | MR | Zbl
[33] A. Sartori. Categorification of tensor powers of the vector representation of . Selecta Mathematica, 22(2):669–734, 2016. | DOI | MR | Zbl
[34] M. Scheunert. Serre-type relations for special linear lie superalgebras. Letters in Mathematical Physics, 24(3):173–181, 1992. | DOI | MR | Zbl
[35] D. Tubbenhauer, P. Vaz, and P. Wedrich. Super -Howe duality and web categories. Algebr. Geom. Topol., 17(6):3703–3749, 2017. | DOI | MR | Zbl
[36] O.Y. Viro. Quantum relatives of the Alexander polynomial. St. Petersbg. Math. J., 18(3):391–457, 2007. | DOI | MR | Zbl
[37] E. Witten. Quantum field theory and the Jones polynomial. Comm. Math. Phys., 121(3):351–399, 1989. | DOI | MR | Zbl
[38] E. Witten. Fivebranes and knots. Quantum Topol., 3(1):1–137, 2012. | DOI | MR | Zbl
[39] Y. Wu and R. B. Zhang. Unitary highest weight representations of quantum general linear superalgebra. J. Algebra, 321(11):3568–3593, 2009. | DOI | MR | Zbl
[40] R. B. Zhang. Structure and representations of the quantum general linear supergroup. Communications in mathematical physics, 195(3):525–547, 1998. | DOI | MR | Zbl
[41] R. B. Zhang. Quantum enveloping superalgebras and link invariants. J. Math. Phys., 43(4):2029–2048, 2002. | DOI | MR | Zbl
Cité par Sources :