Congruence subgroups of braid groups
Winter Braids VIII (Marseille, 2018), Winter Braids Lecture Notes (2018), Exposé no. 3, 26 p.

These notes are based on a mini-course given at CIRM in February 2018 as part of the workshop Winter Braids VIII.

DOI : 10.5802/wbln.23
Brendle, Tara E. 1

1 Tara E. Brendle, School of Mathematics & Statistics, University Place, University of Glasgow, G12 8SQ
@article{WBLN_2018__5__A3_0,
     author = {Brendle, Tara E.},
     title = {Congruence subgroups of braid groups},
     booktitle = {Winter Braids VIII (Marseille, 2018)},
     series = {Winter Braids Lecture Notes},
     note = {talk:3},
     pages = {1--26},
     publisher = {Winter Braids School},
     year = {2018},
     doi = {10.5802/wbln.23},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/wbln.23/}
}
TY  - JOUR
AU  - Brendle, Tara E.
TI  - Congruence subgroups of braid groups
BT  - Winter Braids VIII (Marseille, 2018)
AU  - Collectif
T3  - Winter Braids Lecture Notes
N1  - talk:3
PY  - 2018
SP  - 1
EP  - 26
PB  - Winter Braids School
UR  - http://www.numdam.org/articles/10.5802/wbln.23/
DO  - 10.5802/wbln.23
LA  - en
ID  - WBLN_2018__5__A3_0
ER  - 
%0 Journal Article
%A Brendle, Tara E.
%T Congruence subgroups of braid groups
%B Winter Braids VIII (Marseille, 2018)
%A Collectif
%S Winter Braids Lecture Notes
%Z talk:3
%D 2018
%P 1-26
%I Winter Braids School
%U http://www.numdam.org/articles/10.5802/wbln.23/
%R 10.5802/wbln.23
%G en
%F WBLN_2018__5__A3_0
Brendle, Tara E. Congruence subgroups of braid groups, dans Winter Braids VIII (Marseille, 2018), Winter Braids Lecture Notes (2018), Exposé no. 3, 26 p. doi : 10.5802/wbln.23. http://www.numdam.org/articles/10.5802/wbln.23/

[1] A’Campo, Norbert Tresses, monodromie et le groupe symplectique, Comment. Math. Helv., Volume 54 (1979) no. 2, pp. 318-327 | DOI | MR | Zbl

[2] Appel, Jessica; Bloomquist, Wade; Gravel, Katie; Holden, Annie On Congruence Subgroups of the Braid Group (https://people.math.gatech.edu/~dmargalit7/reu.shtml/Braided_Poster.pdf)

[3] Arnol’d, V. I. A remark on the branching of hyperelliptic integrals as functions of the parameters, Funkcional. Anal. i Priložen., Volume 2 (1968) no. 3, pp. 1-3 | MR | Zbl

[4] Artin, E. Theory of braids, Ann. of Math. (2), Volume 48 (1947), pp. 101-126 | DOI | MR | Zbl

[5] Artin, Emil Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg, Volume 4 (1925) no. 1, pp. 47-72 | DOI | MR | Zbl

[6] Assion, Joachim Einige endliche Faktorgruppen der Zopfgruppen, Math. Z., Volume 163 (1978) no. 3, pp. 291-302 | DOI | MR | Zbl

[7] Bigelow, Stephen J.; Budney, Ryan D. The mapping class group of a genus two surface is linear, Algebr. Geom. Topol., Volume 1 (2001), pp. 699-708 | DOI | MR | Zbl

[8] Birman, Joan S. On Siegel’s modular group, Math. Ann., Volume 191 (1971), pp. 59-68 | DOI | MR | Zbl

[9] Birman, Joan S. Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974, ix+228 pages (Annals of Mathematics Studies, No. 82) | MR | Zbl

[10] Birman, Joan S.; Hilden, Hugh M. On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. (2), Volume 97 (1973), pp. 424-439 https://doi-org.prx.library.gatech.edu/10.2307/1970830 | DOI | MR | Zbl

[11] Brendle, Tara; Margalit, Dan; Putman, Andrew Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at t=-1, Invent. Math., Volume 200 (2015) no. 1, pp. 263-310 | DOI | MR | Zbl

[12] Brendle, Tara E.; Margalit, Dan Corrigendum to: The level four braid group (Preprint in preparation.)

[13] Brendle, Tara E.; Margalit, Dan Point pushing, homology, and the hyperelliptic involution, Michigan Math. J., Volume 62 (2013) no. 3, pp. 451-473 | DOI | MR | Zbl

[14] Brendle, Tara E.; Margalit, Dan The level four braid group, J. Reine Angew. Math., Volume 735 (2018), pp. 249-264 | DOI | MR | Zbl

[15] Cohen, F. R.; Wu, J. On braid groups and homotopy groups, Groups, homotopy and configuration spaces (Geom. Topol. Monogr.), Volume 13, Geom. Topol. Publ., Coventry, 2008, pp. 169-193 | DOI | MR | Zbl

[16] Dehn, Max Papers on group theory and topology, Springer-Verlag, New York, 1987, viii+396 pages (Translated from the German and with introductions and an appendix by John Stillwell, With an appendix by Otto Schreier) | DOI | MR | Zbl

[17] Diaz, Steven; Donagi, Ron; Harbater, David Every curve is a Hurwitz space, Duke Math. J., Volume 59 (1989) no. 3, pp. 737-746 https://doi-org.ezproxy.lib.gla.ac.uk/10.1215/S0012-7094-89-05933-4 | DOI | MR | Zbl

[18] Farb, Benson; Margalit, Dan A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012, xiv+472 pages | MR | Zbl

[19] Fullarton, Neil; Putman, Andrew The high-dimensional cohomology of the moduli space of curves with level structures, J. Eur. Math. Soc. (to appear) | Zbl

[20] Fullarton, Neil J. A generating set for the palindromic Torelli group, Algebr. Geom. Topol., Volume 15 (2015) no. 6, pp. 3535-3567 | DOI | MR | Zbl

[21] Gambaudo, Jean-Marc; Ghys, Étienne Braids and signatures, Bull. Soc. Math. France, Volume 133 (2005) no. 4, pp. 541-579 | DOI | Numdam | MR | Zbl

[22] Grossman, Edna K. On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2), Volume 9 (1974/75), pp. 160-164 | DOI | MR | Zbl

[23] Hain, Richard Finiteness and Torelli spaces, Problems on mapping class groups and related topics (Proc. Sympos. Pure Math.), Volume 74, Amer. Math. Soc., Providence, RI, 2006, pp. 57-70 | DOI | MR | Zbl

[24] Harer, John L. The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., Volume 84 (1986) no. 1, pp. 157-176 | DOI | MR | Zbl

[25] Humphries, Stephen P. Generators for the mapping class group, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977) (Lecture Notes in Math.), Volume 722, Springer, Berlin, 1979, pp. 44-47 | DOI | MR | Zbl

[26] Ivanov, N. V. Residual finiteness of modular Teichmüller groups, Sibirsk. Mat. Zh., Volume 32 (1991) no. 1, p. 182-185, 222 | DOI | MR

[27] Ivanov, Nikolai V. Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, 115, American Mathematical Society, Providence, RI, 1992, xii+127 pages (Translated from the Russian by E. J. F. Primrose and revised by the author) | MR

[28] Ivanov, Nikolai V. Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices, Volume 1997 (1997) no. 14, pp. 651-666 | DOI | MR

[29] Johnson, Dennis An abelian quotient of the mapping class group g , Math. Ann., Volume 249 (1980) no. 3, pp. 225-242 https://doi-org.prx.library.gatech.edu/10.1007/BF01363897 | DOI | MR | Zbl

[30] Johnson, Dennis The structure of the Torelli group. I. A finite set of generators for , Ann. of Math. (2), Volume 118 (1983) no. 3, pp. 423-442 https://doi-org.prx.library.gatech.edu/10.2307/2006977 | DOI | MR | Zbl

[31] Johnson, Dennis The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves, Topology, Volume 24 (1985) no. 2, pp. 113-126 https://doi-org.prx.library.gatech.edu/10.1016/0040-9383(85)90049-7 | DOI | MR | Zbl

[32] JSE The image of the point-pushing group in the hyperelliptic representation of the braid group (MathOverflow, https://mathoverflow.net/questions/105048/the-image-of-the-point-pushing-group-in-the-hyperelliptic-representation-of-the)

[33] Kordek, Kevin; Margalit, Dan Representation stability in the level 4 braid group (arXiv:1903.03119)

[34] Korkmaz, Mustafa Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology Appl., Volume 95 (1999) no. 2, pp. 85-111 | DOI | MR | Zbl

[35] Labruère, Catherine; Paris, Luis Presentations for the punctured mapping class groups in terms of Artin groups, Algebr. Geom. Topol., Volume 1 (2001), pp. 73-114 https://doi-org.ezproxy.lib.gla.ac.uk/10.2140/agt.2001.1.73 | DOI | MR | Zbl

[36] Luo, Feng Automorphisms of the complex of curves, Topology, Volume 39 (2000) no. 2, pp. 283-298 | DOI | MR | Zbl

[37] Margalit, Dan; Winarski, Rebecca BIrman-Hilden theory, Celebratio Mathematica (To appear)

[38] McReynolds, D. B. The congruence subgroup problem for pure braid groups: Thurston’s proof, New York J. Math., Volume 18 (2012), pp. 925-942 http://nyjm.albany.edu:8000/j/2012/18_925.html | MR | Zbl

[39] Mennicke, J. Zur Theorie der Siegelschen Modulgruppe, Math. Ann., Volume 159 (1965), pp. 115-129 | DOI | MR | Zbl

[40] Mess, Geoffrey The Torelli groups for genus 2 and 3 surfaces, Topology, Volume 31 (1992) no. 4, pp. 775-790 https://doi-org.prx.library.gatech.edu/10.1016/0040-9383(92)90008-6 | DOI | MR | Zbl

[41] Morifuji, Takayuki On Meyer’s function of hyperelliptic mapping class groups, J. Math. Soc. Japan, Volume 55 (2003) no. 1, pp. 117-129 | DOI | MR | Zbl

[42] Newman, Morris Integral matrices, Academic Press, New York-London, 1972, xvii+224 pages (Pure and Applied Mathematics, Vol. 45) | MR | Zbl

[43] Powell, Jerome Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc., Volume 68 (1978) no. 3, pp. 347-350 | DOI | MR | Zbl

[44] Putman, Andrew Lectures on the Torelli group (https://www3.nd.edu/ andyp/teaching/2014SpringMath541/)

[45] Putman, Andrew The Torelli group and congruence subgroups of the mapping class group (https://www3.nd.edu/ andyp/notes/)

[46] Putman, Andrew Cutting and pasting in the Torelli group, Geom. Topol., Volume 11 (2007), pp. 829-865 | DOI | MR | Zbl

[47] Putman, Andrew An infinite presentation of the Torelli group, Geom. Funct. Anal., Volume 19 (2009) no. 2, pp. 591-643 | DOI | MR | Zbl

[48] Putman, Andrew Obtaining presentations from group actions without making choices, Algebr. Geom. Topol., Volume 11 (2011) no. 3, pp. 1737-1766 | DOI | MR | Zbl

[49] Raghunathan, M. S. The congruence subgroup problem, Proc. Indian Acad. Sci. Math. Sci., Volume 114 (2004) no. 4, pp. 299-308 | DOI | MR | Zbl

[50] Rolfsen, Dale Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976, ix+439 pages (Mathematics Lecture Series, No. 7) | MR | Zbl

[51] Royden, H. L. Automorphisms and isometries of Teichmüller space, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) (Ann. of Math. Studies), Volume 66, Princeton Univ. Press (1971), pp. 369-383 | DOI | MR | Zbl

[52] Scherich, Nancy Classification of the real discrete specialisations of the Burau representation of B3, Math. Proc. Cambridge Philos. Soc., Volume 168 (2020) no. 2, pp. 295-304 https://doi-org.ezproxy.lib.gla.ac.uk/10.1017/s0305004118000683 | DOI | MR | Zbl

[53] Squier, Craig C. The Burau representation is unitary, Proc. Amer. Math. Soc., Volume 90 (1984) no. 2, pp. 199-202 | DOI | MR | Zbl

[54] Stylianakis, Charalampos Congruence subgroups of braid groups, Internat. J. Algebra Comput., Volume 28 (2018) no. 2, pp. 345-364 | DOI | MR | Zbl

[55] Sunday, J. G. Presentations of the groups SL (2,m) and PSL (2,m), Canadian J. Math., Volume 24 (1972), pp. 1129-1131 | DOI | MR | Zbl

[56] Turaev, Vladimir Faithful linear representations of the braid groups, Astérisque (2002) no. 276, pp. 389-409 (Séminaire Bourbaki, Vol. 1999/2000) | Numdam | MR | Zbl

[57] Wajnryb, Bronislaw A braidlike presentation of Sp (n,p), Israel J. Math., Volume 76 (1991) no. 3, pp. 265-288 | DOI | MR | Zbl

[58] Yu, J.-K. Toward a proof of the Cohen-Lenstra conjecture in the function field case (1996) (Preprint.)

Cité par Sources :