These notes are based on a mini-course given at CIRM in February 2018 as part of the workshop Winter Braids VIII.
@article{WBLN_2018__5__A3_0, author = {Brendle, Tara E.}, title = {Congruence subgroups of braid groups}, booktitle = {Winter Braids VIII (Marseille, 2018)}, series = {Winter Braids Lecture Notes}, note = {talk:3}, pages = {1--26}, publisher = {Winter Braids School}, year = {2018}, doi = {10.5802/wbln.23}, language = {en}, url = {http://www.numdam.org/articles/10.5802/wbln.23/} }
TY - JOUR AU - Brendle, Tara E. TI - Congruence subgroups of braid groups BT - Winter Braids VIII (Marseille, 2018) AU - Collectif T3 - Winter Braids Lecture Notes N1 - talk:3 PY - 2018 SP - 1 EP - 26 PB - Winter Braids School UR - http://www.numdam.org/articles/10.5802/wbln.23/ DO - 10.5802/wbln.23 LA - en ID - WBLN_2018__5__A3_0 ER -
%0 Journal Article %A Brendle, Tara E. %T Congruence subgroups of braid groups %B Winter Braids VIII (Marseille, 2018) %A Collectif %S Winter Braids Lecture Notes %Z talk:3 %D 2018 %P 1-26 %I Winter Braids School %U http://www.numdam.org/articles/10.5802/wbln.23/ %R 10.5802/wbln.23 %G en %F WBLN_2018__5__A3_0
Brendle, Tara E. Congruence subgroups of braid groups, dans Winter Braids VIII (Marseille, 2018), Winter Braids Lecture Notes (2018), Exposé no. 3, 26 p. doi : 10.5802/wbln.23. http://www.numdam.org/articles/10.5802/wbln.23/
[1] Tresses, monodromie et le groupe symplectique, Comment. Math. Helv., Volume 54 (1979) no. 2, pp. 318-327 | DOI | MR | Zbl
[2] On Congruence Subgroups of the Braid Group (https://people.math.gatech.edu/~dmargalit7/reu.shtml/Braided_Poster.pdf)
[3] A remark on the branching of hyperelliptic integrals as functions of the parameters, Funkcional. Anal. i Priložen., Volume 2 (1968) no. 3, pp. 1-3 | MR | Zbl
[4] Theory of braids, Ann. of Math. (2), Volume 48 (1947), pp. 101-126 | DOI | MR | Zbl
[5] Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg, Volume 4 (1925) no. 1, pp. 47-72 | DOI | MR | Zbl
[6] Einige endliche Faktorgruppen der Zopfgruppen, Math. Z., Volume 163 (1978) no. 3, pp. 291-302 | DOI | MR | Zbl
[7] The mapping class group of a genus two surface is linear, Algebr. Geom. Topol., Volume 1 (2001), pp. 699-708 | DOI | MR | Zbl
[8] On Siegel’s modular group, Math. Ann., Volume 191 (1971), pp. 59-68 | DOI | MR | Zbl
[9] Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974, ix+228 pages (Annals of Mathematics Studies, No. 82) | MR | Zbl
[10] On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. (2), Volume 97 (1973), pp. 424-439 https://doi-org.prx.library.gatech.edu/10.2307/1970830 | DOI | MR | Zbl
[11] Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at , Invent. Math., Volume 200 (2015) no. 1, pp. 263-310 | DOI | MR | Zbl
[12] Corrigendum to: The level four braid group (Preprint in preparation.)
[13] Point pushing, homology, and the hyperelliptic involution, Michigan Math. J., Volume 62 (2013) no. 3, pp. 451-473 | DOI | MR | Zbl
[14] The level four braid group, J. Reine Angew. Math., Volume 735 (2018), pp. 249-264 | DOI | MR | Zbl
[15] On braid groups and homotopy groups, Groups, homotopy and configuration spaces (Geom. Topol. Monogr.), Volume 13, Geom. Topol. Publ., Coventry, 2008, pp. 169-193 | DOI | MR | Zbl
[16] Papers on group theory and topology, Springer-Verlag, New York, 1987, viii+396 pages (Translated from the German and with introductions and an appendix by John Stillwell, With an appendix by Otto Schreier) | DOI | MR | Zbl
[17] Every curve is a Hurwitz space, Duke Math. J., Volume 59 (1989) no. 3, pp. 737-746 https://doi-org.ezproxy.lib.gla.ac.uk/10.1215/S0012-7094-89-05933-4 | DOI | MR | Zbl
[18] A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012, xiv+472 pages | MR | Zbl
[19] The high-dimensional cohomology of the moduli space of curves with level structures, J. Eur. Math. Soc. (to appear) | Zbl
[20] A generating set for the palindromic Torelli group, Algebr. Geom. Topol., Volume 15 (2015) no. 6, pp. 3535-3567 | DOI | MR | Zbl
[21] Braids and signatures, Bull. Soc. Math. France, Volume 133 (2005) no. 4, pp. 541-579 | DOI | Numdam | MR | Zbl
[22] On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2), Volume 9 (1974/75), pp. 160-164 | DOI | MR | Zbl
[23] Finiteness and Torelli spaces, Problems on mapping class groups and related topics (Proc. Sympos. Pure Math.), Volume 74, Amer. Math. Soc., Providence, RI, 2006, pp. 57-70 | DOI | MR | Zbl
[24] The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., Volume 84 (1986) no. 1, pp. 157-176 | DOI | MR | Zbl
[25] Generators for the mapping class group, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977) (Lecture Notes in Math.), Volume 722, Springer, Berlin, 1979, pp. 44-47 | DOI | MR | Zbl
[26] Residual finiteness of modular Teichmüller groups, Sibirsk. Mat. Zh., Volume 32 (1991) no. 1, p. 182-185, 222 | DOI | MR
[27] Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, 115, American Mathematical Society, Providence, RI, 1992, xii+127 pages (Translated from the Russian by E. J. F. Primrose and revised by the author) | MR
[28] Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices, Volume 1997 (1997) no. 14, pp. 651-666 | DOI | MR
[29] An abelian quotient of the mapping class group , Math. Ann., Volume 249 (1980) no. 3, pp. 225-242 https://doi-org.prx.library.gatech.edu/10.1007/BF01363897 | DOI | MR | Zbl
[30] The structure of the Torelli group. I. A finite set of generators for , Ann. of Math. (2), Volume 118 (1983) no. 3, pp. 423-442 https://doi-org.prx.library.gatech.edu/10.2307/2006977 | DOI | MR | Zbl
[31] The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves, Topology, Volume 24 (1985) no. 2, pp. 113-126 https://doi-org.prx.library.gatech.edu/10.1016/0040-9383(85)90049-7 | DOI | MR | Zbl
[32] The image of the point-pushing group in the hyperelliptic representation of the braid group (MathOverflow, https://mathoverflow.net/questions/105048/the-image-of-the-point-pushing-group-in-the-hyperelliptic-representation-of-the)
[33] Representation stability in the level 4 braid group (arXiv:1903.03119)
[34] Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology Appl., Volume 95 (1999) no. 2, pp. 85-111 | DOI | MR | Zbl
[35] Presentations for the punctured mapping class groups in terms of Artin groups, Algebr. Geom. Topol., Volume 1 (2001), pp. 73-114 https://doi-org.ezproxy.lib.gla.ac.uk/10.2140/agt.2001.1.73 | DOI | MR | Zbl
[36] Automorphisms of the complex of curves, Topology, Volume 39 (2000) no. 2, pp. 283-298 | DOI | MR | Zbl
[37] BIrman-Hilden theory, Celebratio Mathematica (To appear)
[38] The congruence subgroup problem for pure braid groups: Thurston’s proof, New York J. Math., Volume 18 (2012), pp. 925-942 http://nyjm.albany.edu:8000/j/2012/18_925.html | MR | Zbl
[39] Zur Theorie der Siegelschen Modulgruppe, Math. Ann., Volume 159 (1965), pp. 115-129 | DOI | MR | Zbl
[40] The Torelli groups for genus and surfaces, Topology, Volume 31 (1992) no. 4, pp. 775-790 https://doi-org.prx.library.gatech.edu/10.1016/0040-9383(92)90008-6 | DOI | MR | Zbl
[41] On Meyer’s function of hyperelliptic mapping class groups, J. Math. Soc. Japan, Volume 55 (2003) no. 1, pp. 117-129 | DOI | MR | Zbl
[42] Integral matrices, Academic Press, New York-London, 1972, xvii+224 pages (Pure and Applied Mathematics, Vol. 45) | MR | Zbl
[43] Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc., Volume 68 (1978) no. 3, pp. 347-350 | DOI | MR | Zbl
[44] Lectures on the Torelli group (https://www3.nd.edu/ andyp/teaching/2014SpringMath541/)
[45] The Torelli group and congruence subgroups of the mapping class group (https://www3.nd.edu/ andyp/notes/)
[46] Cutting and pasting in the Torelli group, Geom. Topol., Volume 11 (2007), pp. 829-865 | DOI | MR | Zbl
[47] An infinite presentation of the Torelli group, Geom. Funct. Anal., Volume 19 (2009) no. 2, pp. 591-643 | DOI | MR | Zbl
[48] Obtaining presentations from group actions without making choices, Algebr. Geom. Topol., Volume 11 (2011) no. 3, pp. 1737-1766 | DOI | MR | Zbl
[49] The congruence subgroup problem, Proc. Indian Acad. Sci. Math. Sci., Volume 114 (2004) no. 4, pp. 299-308 | DOI | MR | Zbl
[50] Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976, ix+439 pages (Mathematics Lecture Series, No. 7) | MR | Zbl
[51] Automorphisms and isometries of Teichmüller space, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) (Ann. of Math. Studies), Volume 66, Princeton Univ. Press (1971), pp. 369-383 | DOI | MR | Zbl
[52] Classification of the real discrete specialisations of the Burau representation of B3, Math. Proc. Cambridge Philos. Soc., Volume 168 (2020) no. 2, pp. 295-304 https://doi-org.ezproxy.lib.gla.ac.uk/10.1017/s0305004118000683 | DOI | MR | Zbl
[53] The Burau representation is unitary, Proc. Amer. Math. Soc., Volume 90 (1984) no. 2, pp. 199-202 | DOI | MR | Zbl
[54] Congruence subgroups of braid groups, Internat. J. Algebra Comput., Volume 28 (2018) no. 2, pp. 345-364 | DOI | MR | Zbl
[55] Presentations of the groups and , Canadian J. Math., Volume 24 (1972), pp. 1129-1131 | DOI | MR | Zbl
[56] Faithful linear representations of the braid groups, Astérisque (2002) no. 276, pp. 389-409 (Séminaire Bourbaki, Vol. 1999/2000) | Numdam | MR | Zbl
[57] A braidlike presentation of , Israel J. Math., Volume 76 (1991) no. 3, pp. 265-288 | DOI | MR | Zbl
[58] Toward a proof of the Cohen-Lenstra conjecture in the function field case (1996) (Preprint.)
Cité par Sources :