Combinatorics of the Teichmüller TQFT
Winter Braids VI (Lille, 2016), Winter Braids Lecture Notes (2016), Exposé no. 2, 16 p.

Based on the lectures given by the author at the School on braids and low dimensional topology “Winter Braids VI”, University of Lille I, 22-25 February 2016, we review the combinatorics underlying the Teichmüller TQFT, a new type of three-dimensional TQFT with corners where the vector spaces associated with surfaces are infinite dimensional. The geometrical ingredients and the semi-classical behaviour suggest that this theory is related with hyperbolic geometry in dimension three.

DOI : 10.5802/wbln.13
Kashaev, Rinat 1

1 Section de mathématiques, Université de Genève, 2-4 rue du Lièvre, 1211 Genève 4, Suisse
@article{WBLN_2016__3__A2_0,
     author = {Kashaev, Rinat},
     title = {Combinatorics of the {Teichm\"uller} {TQFT}},
     booktitle = {Winter Braids VI (Lille, 2016)},
     series = {Winter Braids Lecture Notes},
     note = {talk:2},
     pages = {1--16},
     publisher = {Winter Braids School},
     year = {2016},
     doi = {10.5802/wbln.13},
     mrnumber = {3707743},
     zbl = {1422.57077},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/wbln.13/}
}
TY  - JOUR
AU  - Kashaev, Rinat
TI  - Combinatorics of the Teichmüller TQFT
BT  - Winter Braids VI (Lille, 2016)
AU  - Collectif
T3  - Winter Braids Lecture Notes
N1  - talk:2
PY  - 2016
SP  - 1
EP  - 16
PB  - Winter Braids School
UR  - http://www.numdam.org/articles/10.5802/wbln.13/
DO  - 10.5802/wbln.13
LA  - en
ID  - WBLN_2016__3__A2_0
ER  - 
%0 Journal Article
%A Kashaev, Rinat
%T Combinatorics of the Teichmüller TQFT
%B Winter Braids VI (Lille, 2016)
%A Collectif
%S Winter Braids Lecture Notes
%Z talk:2
%D 2016
%P 1-16
%I Winter Braids School
%U http://www.numdam.org/articles/10.5802/wbln.13/
%R 10.5802/wbln.13
%G en
%F WBLN_2016__3__A2_0
Kashaev, Rinat. Combinatorics of the Teichmüller TQFT, dans Winter Braids VI (Lille, 2016), Winter Braids Lecture Notes (2016), Exposé no. 2, 16 p. doi : 10.5802/wbln.13. http://www.numdam.org/articles/10.5802/wbln.13/

[1] Jørgen Ellegaard Andersen and Rinat Kashaev. A TQFT from Quantum Teichmüller Theory. Comm. Math. Phys., 330(3):887–934, 2014. | DOI | Zbl

[2] Stéphane Baseilhac and Riccardo Benedetti. Quantum hyperbolic invariants of 3-manifolds with PSL (2,)-characters. Topology, 43(6):1373–1423, 2004. | DOI | MR | Zbl

[3] Rinat Kashaev, Feng Luo, and Grigory Vartanov. A TQFT of Turaev-Viro type on shaped triangulations. Ann. Henri Poincaré, 17(5):1109–1143, 2016. | DOI | MR | Zbl

[4] Rinat M. Kashaev. On realizations of Pachner moves in 4d. J. Knot Theory Ramifications, 24(13):1541002, 13, 2015. | DOI | MR | Zbl

[5] W. B. R. Lickorish. Simplicial moves on complexes and manifolds. In Proceedings of the Kirbyfest (Berkeley, CA, 1998), volume 2 of Geom. Topol. Monogr., pages 299–320 (electronic). Geom. Topol. Publ., Coventry, 1999. | DOI | Zbl

[6] S. V. Matveev. Transformations of special spines, and the Zeeman conjecture. Izv. Akad. Nauk SSSR Ser. Mat., 51(5):1104–1116, 1119, 1987. | DOI | MR | Zbl

[7] Sergei Matveev. Algorithmic topology and classification of 3-manifolds, volume 9 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2003. | DOI | Zbl

[8] John Milnor. Hyperbolic geometry: the first 150 years. Bull. Amer. Math. Soc. (N.S.), 6(1):9–24, 1982. | DOI | MR | Zbl

[9] Udo Pachner. P.L. homeomorphic manifolds are equivalent by elementary shellings. European J. Combin., 12(2):129–145, 1991. | DOI | Zbl

[10] Riccardo Piergallini. Standard moves for standard polyhedra and spines. Rend. Circ. Mat. Palermo (2) Suppl., (18):391–414, 1988. Third National Conference on Topology (Italian) (Trieste, 1986). | Zbl

[11] G. Ponzano and T. Regge. Semiclassical limit of Racah coefficients. In Spectroscopic and group theoretical methods in physics, pages 1–58. North-Holland Publ. Co., Amsterdam, 1968.

[12] V. G. Turaev. Quantum invariants of knots and 3-manifolds, volume 18 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1994. | DOI | Zbl

[13] V. G. Turaev and O. Ya. Viro. State sum invariants of 3-manifolds and quantum 6j-symbols. Topology, 31(4):865–902, 1992. | DOI | MR | Zbl

Cité par Sources :