Lefschetz Fibrations and real Lefschetz fibrations
[Lefschetz Fibrations and real Lefschetz fibrations]
Winter Braids IV (Dijon, 2014), Winter Braids Lecture Notes (2014), Exposé no. 4, 19 p.

This note is based on the lectures that I have given during the winter school Winter Braids IV, School on algebraic and topological aspects of braid groups held in Dijon on 10 - 13 February 2014. The aim of series of three lectures was to give an overview of geometrical and topological properties of 4-dimensional Lefschetz fibrations. Meanwhile, I could briefly introduce real Lefschetz fibrations, fibrations which have certain symmetry, and could present some interesting features of them.

This note will be yet another survey article on Lefschetz fibrations. There are excellent lecture notes/ survey papers/ book chapters on Lefschetz fibrations. You can, for example, look at [3], [11], [14], [20] among many others. In this note I intent to take my time on real Lefschetz fibrations as much as on Lefschetz fibrations in order not to repeat what was already done perfectly.

DOI : 10.5802/wbln.5
Salepci, Nermin 1

1 Institut Camille Jordan, Université Lyon I, 43, Boulevard du 11 Novembre 1918 69622 Villeurbanne Cedex, France
@article{WBLN_2014__1__A4_0,
     author = {Salepci, Nermin},
     title = {Lefschetz {Fibrations} and real {Lefschetz} fibrations},
     booktitle = {Winter Braids IV (Dijon, 2014)},
     series = {Winter Braids Lecture Notes},
     note = {talk:4},
     pages = {1--19},
     publisher = {Winter Braids School},
     year = {2014},
     doi = {10.5802/wbln.5},
     zbl = {1422.57057},
     mrnumber = {3703251},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/wbln.5/}
}
TY  - JOUR
AU  - Salepci, Nermin
TI  - Lefschetz Fibrations and real Lefschetz fibrations
BT  - Winter Braids IV (Dijon, 2014)
AU  - Collectif
T3  - Winter Braids Lecture Notes
N1  - talk:4
PY  - 2014
SP  - 1
EP  - 19
PB  - Winter Braids School
UR  - http://www.numdam.org/articles/10.5802/wbln.5/
DO  - 10.5802/wbln.5
LA  - en
ID  - WBLN_2014__1__A4_0
ER  - 
%0 Journal Article
%A Salepci, Nermin
%T Lefschetz Fibrations and real Lefschetz fibrations
%B Winter Braids IV (Dijon, 2014)
%A Collectif
%S Winter Braids Lecture Notes
%Z talk:4
%D 2014
%P 1-19
%I Winter Braids School
%U http://www.numdam.org/articles/10.5802/wbln.5/
%R 10.5802/wbln.5
%G en
%F WBLN_2014__1__A4_0
Salepci, Nermin. Lefschetz Fibrations and real Lefschetz fibrations, dans Winter Braids IV (Dijon, 2014), Winter Braids Lecture Notes (2014), Exposé no. 4, 19 p. doi : 10.5802/wbln.5. http://www.numdam.org/articles/10.5802/wbln.5/

[1] Artin, E. Theory of braids, Ann. of Math. (2), Volume 48 (1947), pp. 101-126 | DOI | MR | Zbl

[2] Auroux, Denis A stable classification of Lefschetz fibrations, Geom. Topol., Volume 9 (2005), p. 203-217 (electronic) | DOI | MR | Zbl

[3] Auroux, Denis; Catanese, Fabrizio; Manetti, Marco; Seidel, Paul; Siebert, Bernd; Smith, Ivan; Tian, Gang Symplectic 4-manifolds and algebraic surfaces, Lecture Notes in Mathematics, 1938, Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence, 2008, xiv+345 pages (Lectures from the C.I.M.E. Summer School held in Cetraro, September 2–10, 2003, Edited by Catanese and Tian) | DOI | MR

[4] Cannas da Silva, Ana Lectures on symplectic geometry, Lecture Notes in Mathematics, 1764, Springer-Verlag, Berlin, 2001, xii+217 pages | DOI | MR | Zbl

[5] Chakiris, Kenneth Nicholas The monodromy of genus two pencils, ProQuest LLC, Ann Arbor, MI, 1983, 133 pages Thesis (Ph.D.)–Columbia University | MR

[6] Darboux, Gaston Sur le problème de Pfaff, Bull. Sci. Math., Volume 6 (1882), pp. 1-35 | Numdam

[7] Degtyarev, Alex; Salepci, Nermin Products of pairs of Dehn twists and maximal real Lefschetz fibrations, Nagoya Math. J., Volume 210 (2013), pp. 83-132 | DOI | MR | Zbl

[8] Dehn, M. Die Gruppe der Abbildungsklassen, Acta Math., Volume 69 (1938) no. 1, pp. 135-206 (Das arithmetische Feld auf Flächen) | DOI | MR | Zbl

[9] Donaldson, S. K. Lefschetz pencils on symplectic manifolds, J. Differential Geom., Volume 53 (1999) no. 2, pp. 205-236 http://projecteuclid.org/euclid.jdg/1214425535 | DOI | MR | Zbl

[10] Earle, Clifford J.; Eells, James A fibre bundle description of Teichmüller theory, J. Differential Geometry, Volume 3 (1969), pp. 19-43 | Zbl

[11] Fuller, Terry Lefschetz fibrations of 4-dimensional manifolds, Cubo Mat. Educ., Volume 5 (2003) no. 3, pp. 275-294 | MR | Zbl

[12] Gayet, Damien Hypersurfaces symplectiques réelles et pinceaux de Lefschetz réels, J. Symplectic Geom., Volume 6 (2008) no. 3, pp. 247-266 http://projecteuclid.org/euclid.jsg/1224595247 | DOI | MR | Zbl

[13] Gompf, Robert E. Toward a topological characterization of symplectic manifolds, J. Symplectic Geom., Volume 2 (2004) no. 2, pp. 177-206 http://projecteuclid.org/euclid.jsg/1094072003 | DOI | MR | Zbl

[14] Gompf, Robert E.; Stipsicz, András I. 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, American Mathematical Society, Providence, RI, 1999, xvi+558 pages | MR | Zbl

[15] Kas, A. On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math., Volume 89 (1980) no. 1, pp. 89-104 http://projecteuclid.org/euclid.pjm/1102779371 | DOI | MR | Zbl

[16] Korkmaz, Mustafa Noncomplex smooth 4-manifolds with Lefschetz fibrations, Internat. Math. Res. Notices (2001) no. 3, pp. 115-128 | DOI | MR | Zbl

[17] McDuff, Dusa; Salamon, Dietmar Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, viii+425 pages (Oxford Science Publications) | Zbl

[18] Moishezon, Boris Complex surfaces and connected sums of complex projective planes, Lecture Notes in Mathematics, Vol. 603, Springer-Verlag, Berlin-New York, 1977, i+234 pages (With an appendix by R. Livne) | DOI | MR | Zbl

[19] Ozbagci, Burak; Stipsicz, András I. Noncomplex smooth 4-manifolds with genus-2 Lefschetz fibrations, Proc. Amer. Math. Soc., Volume 128 (2000) no. 10, pp. 3125-3128 | DOI | MR | Zbl

[20] Ozbagci, Burak; Stipsicz, András I. Surgery on contact 3-manifolds and Stein surfaces, Bolyai Society Mathematical Studies, 13, Springer-Verlag, Berlin; János Bolyai Mathematical Society, Budapest, 2004, 281 pages | DOI | MR | Zbl

[21] Salepci, Nermin Real Lefschetz fibrations, Université Louis Pasteur. Institut de Recherche Mathématique Avancée (IRMA), Strasbourg, 2007, ii+135 pages (Thèse, Université Louis Pasteur, Strasbourg, 2007) | MR | Zbl

[22] Salepci, Nermin Real elements in the mapping class group of T 2 , Topology Appl., Volume 157 (2010) no. 16, pp. 2580-2590 | DOI | MR | Zbl

[23] Salepci, Nermin Classification of totally real elliptic Lefschetz fibrations via necklace diagrams, J. Knot Theory Ramifications, Volume 21 (2012) no. 9, 1250089, 28 pages | DOI | MR | Zbl

[24] Salepci, Nermin Invariants of totally real Lefschetz fibrations, Pacific J. Math., Volume 256 (2012) no. 2, pp. 407-434 | DOI | MR | Zbl

[25] Siebert, Bernd; Tian, Gang On hyperelliptic C -Lefschetz fibrations of four-manifolds, Commun. Contemp. Math., Volume 1 (1999) no. 2, pp. 255-280 | DOI | MR | Zbl

[26] Siebert, Bernd; Tian, Gang On the holomorphicity of genus two Lefschetz fibrations, Ann. of Math. (2), Volume 161 (2005) no. 2, pp. 959-1020 | DOI | MR | Zbl

[27] Smith, Ivan Lefschetz fibrations and the Hodge bundle, Geom. Topol., Volume 3 (1999), p. 211-233 (electronic) | DOI | MR | Zbl

[28] Smith, Ivan Symplectic Geometry of Lefschetz Fibrations, University of Oxford, 1999 (Ph.D. University of Oxford)

[29] Steenrod, N. E. The classification of sphere bundles, Ann. of Math. (2), Volume 45 (1944), pp. 294-311 | DOI | MR | Zbl

[30] Thurston, W. P. Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc., Volume 55 (1976) no. 2, pp. 467-468 | MR | Zbl

Cité par Sources :