The present paper is the notes of a mini-course addressed mainly to non-experts. Its purpose is to provide a first approach to the theory of mapping class groups of non-orientable surfaces.
@article{WBLN_2014__1__A3_0, author = {Paris, Luis}, title = {Mapping class groups of non-orientable surfaces for beginners}, booktitle = {Winter Braids IV (Dijon, 2014)}, series = {Winter Braids Lecture Notes}, note = {talk:3}, pages = {1--17}, publisher = {Winter Braids School}, year = {2014}, doi = {10.5802/wbln.4}, mrnumber = {3703250}, zbl = {1422.57049}, language = {en}, url = {http://www.numdam.org/articles/10.5802/wbln.4/} }
TY - JOUR AU - Paris, Luis TI - Mapping class groups of non-orientable surfaces for beginners BT - Winter Braids IV (Dijon, 2014) AU - Collectif T3 - Winter Braids Lecture Notes N1 - talk:3 PY - 2014 SP - 1 EP - 17 PB - Winter Braids School UR - http://www.numdam.org/articles/10.5802/wbln.4/ DO - 10.5802/wbln.4 LA - en ID - WBLN_2014__1__A3_0 ER -
%0 Journal Article %A Paris, Luis %T Mapping class groups of non-orientable surfaces for beginners %B Winter Braids IV (Dijon, 2014) %A Collectif %S Winter Braids Lecture Notes %Z talk:3 %D 2014 %P 1-17 %I Winter Braids School %U http://www.numdam.org/articles/10.5802/wbln.4/ %R 10.5802/wbln.4 %G en %F WBLN_2014__1__A3_0
Paris, Luis. Mapping class groups of non-orientable surfaces for beginners, dans Winter Braids IV (Dijon, 2014), Winter Braids Lecture Notes (2014), Exposé no. 3, 17 p. doi : 10.5802/wbln.4. http://www.numdam.org/articles/10.5802/wbln.4/
[1] J. S. Birman, D. R. J. Chillingworth. On the homeotopy group of a non-orientable surface. Proc. Cambridge Philos. Soc. 71 (1972), 437–448. | DOI | MR | Zbl
[2] J. S. Birman, H. M. Hilden. On the mapping class groups of closed surfaces as covering spaces. Advances in the theory of Riemann surfaces (Proc. Conf., Stony Brook, N.Y., 1969), pp. 81–115. Ann. of Math. Studies, No. 66. Princeton Univ. Press, Princeton, N.J., 1971. | DOI
[3] D. B. A. Epstein. Curves on -manifolds and isotopies. Acta Math. 115 (1966), 83–107. | DOI | MR | Zbl
[4] B. Farb, D. Margalit. A primer on mapping class groups. Princeton Mathematical Series, 49. Princeton University Press, Princeton, NJ, 2012. | DOI | Zbl
[5] A. Fathi, F. Laudenbach, V. Poénaru. Travaux de Thurston sur les surfaces. Séminaire Orsay. Astérisque, 66–67. Société Mathématique de France, Paris, 1979.
[6] M. Gendulphe. Paysage systolique des surfaces hyperboliques de caractéristique . Preprint. Available at http://matthieu.gendulphe.com/Gendulphe-PaysageSystolique.pdf
[7] A. Ishida. The structure of subgroup of mapping class groups generated by two Dehn twists. Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 10, 240–241. | DOI | MR | Zbl
[8] N. V. Ivanov. Automorphisms of complexes of curves and of Teichmüller spaces. Internat. Math. Res. Notices 1997, no. 14, 651–666. | DOI | Zbl
[9] M. Korkmaz. Mapping class groups of nonorientable surfaces. Geom. Dedicata 89 (2002), 109–133. | Zbl
[10] W. B. R. Lickorish. Homeomorphisms of non-orientable two-manifolds. Proc. Cambridge Philos. Soc. 59 (1963), 307–317. | DOI | MR | Zbl
[11] L. Paris, D. Rolfsen. Geometric subgroups of mapping class groups. J. Reine Angew. Math. 521 (2000), 47–83. | DOI | MR | Zbl
[12] M. Stukow. Dehn twists on nonorientable surfaces. Fund. Math. 189 (2006), no. 2, 117–147. | DOI | MR | Zbl
[13] M. Stukow. Commensurability of geometric subgroups of mapping class groups. Geom. Dedicata 143 (2009), 117–142. | DOI | MR | Zbl
[14] M. Stukow. Subgroup generated by two Dehn twists on nonorientable surface. Preprint, arXiv:1310.3033. | Zbl
[15] Wu Yingqing. Canonical reducing curves of surface homeomorphism. Acta Math. Sinica (N.S.) 3 (1987), no. 4, 305–313. | DOI | MR | Zbl
[16] H. Zieschang. On the homeotopy group of surfaces. Math. Ann. 206 (1973), 1–21. | DOI | MR | Zbl
Cité par Sources :