[La conjecture de Mumford]
La conjecture de Mumford affirme que la cohomologie à coefficients rationnels de l’espace de modules stable des surfaces de Riemann est une algèbre de polynômes sur les classes de Mumford-Morita-Miller ; on peut la reformuler en termes de la cohomologie de l’espace classifiant
The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space
Keywords: conjecture de Mumford, espace de modules des courbes, groupe modulaire de Teichmüller, théorie de Morse, stratification
Mot clés : Mumford conjecture, moduli space of curves, mapping class group, Morse theory, stratification
@incollection{SB_2004-2005__47__247_0, author = {Powell, Geoffrey}, title = {The {Mumford} conjecture}, booktitle = {S\'eminaire Bourbaki : volume 2004/2005, expos\'es 938-951}, series = {Ast\'erisque}, note = {talk:945}, pages = {247--282}, publisher = {Soci\'et\'e math\'ematique de France}, number = {307}, year = {2006}, mrnumber = {2296421}, zbl = {1126.14032}, language = {en}, url = {http://www.numdam.org/item/SB_2004-2005__47__247_0/} }
TY - CHAP AU - Powell, Geoffrey TI - The Mumford conjecture BT - Séminaire Bourbaki : volume 2004/2005, exposés 938-951 AU - Collectif T3 - Astérisque N1 - talk:945 PY - 2006 SP - 247 EP - 282 IS - 307 PB - Société mathématique de France UR - http://www.numdam.org/item/SB_2004-2005__47__247_0/ LA - en ID - SB_2004-2005__47__247_0 ER -
%0 Book Section %A Powell, Geoffrey %T The Mumford conjecture %B Séminaire Bourbaki : volume 2004/2005, exposés 938-951 %A Collectif %S Astérisque %Z talk:945 %D 2006 %P 247-282 %N 307 %I Société mathématique de France %U http://www.numdam.org/item/SB_2004-2005__47__247_0/ %G en %F SB_2004-2005__47__247_0
Powell, Geoffrey. The Mumford conjecture, dans Séminaire Bourbaki : volume 2004/2005, exposés 938-951, Astérisque, no. 307 (2006), Exposé no. 945, pp. 247-282. http://www.numdam.org/item/SB_2004-2005__47__247_0/
[1] Introduction to differential topology, Cambridge University Press, Cambridge, 1982. | MR
& -[2] “A fibre bundle description of Teichmüller theory”, J. Differential Geom. 3 (1969), p. 19-43. | DOI | MR | Zbl
& -[3] “Teichmüller theory for surfaces with boundary”, J. Differential Geom. 4 (1970), p. 169-185. | DOI | MR | Zbl
& -
[4] “Mod
[5] “Mapping class groups and moduli spaces of curves”, in Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., vol. 62, Providence, RI, 1997, p. 97-142. | MR | Zbl
& -[6] “The second homology group of the mapping class group of an orientable surface”, Invent. Math. 72 (1983), no. 2, p. 221-239. | EuDML | MR | Zbl
-[7] -, “Stability of the homology of the mapping class groups of orientable surfaces”, Ann. of Math. (2) 121 (1985), no. 2, p. 215-249. | MR | Zbl
[8] Moduli of curves, Graduate Texts in Math., vol. 187, Springer-Verlag, New York, 1998. | MR | Zbl
& -[9] “Stabilization of the homology of Teichmüller modular groups”, Algebra i Analiz 1 (1989), no. 3, p. 110-126. | MR | Zbl
-[10] The classifying spaces for surgery and cobordism of manifolds, Annals of Math. Studies, vol. 92, Princeton University Press, Princeton, NJ, 1979. | MR | Zbl
& -
[11] “The stable mapping class group and
[12] “The stable moduli space of Riemann surfaces: Mumford's conjecture”, Preprint, 2004. | MR | Zbl
& -[13] “Homology fibrations and the “group-completion” theorem”, Invent. Math. 31 (1975/76), no. 3, p. 279-284. | DOI | EuDML | MR | Zbl
& -[14] “The homology of the mapping class group”, J. Differential Geom. 24 (1986), no. 1, p. 1-14. | MR | Zbl
-
[15] Lectures on the
[16] “Characteristic classes of surface bundles”, Invent. Math. 90 (1987), no. 3, p. 551-577. | EuDML | MR | Zbl
-[17] -, “Structure of the mapping class groups of surfaces: a survey and a prospect”, in Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, p. 349-406. | MR | Zbl
[18] -, Geometry of characteristic classes, Translations of Mathematical Monographs, vol. 199, American Mathematical Society, Providence, RI, 2001, Translated from the 1999 Japanese original, Iwanami Series in Modern Mathematics. | MR | Zbl
[19] “Towards an enumerative geometry of the moduli space of curves”, in Arithmetic and geometry, Vol. II, Progress in Math., vol. 36, Birkhäuser, Boston, MA, 1983, p. 271-328. | MR | Zbl
-[20] “Submersions of open manifolds”, Topology 6 (1967), p. 171-206. | DOI | MR | Zbl
-[21] “Elementary proofs of some results of cobordism theory using Steenrod operations”, Adv. in Math. 7 (1971), p. 29-56 (1971). | MR | Zbl
-[22] “Categories and cohomology theories”, Topology 13 (1974), p. 293-312. | DOI | MR | Zbl
-[23] Notes on cobordism theory, Math. Notes, Princeton University Press, Princeton, NJ, 1968. | MR | Zbl
-[24] “On the homotopy of the stable mapping class group”, Invent. Math. 130 (1997), no. 2, p. 257-275. | MR | Zbl
-[25] “Topology of spaces of functions without complicated singularities”, Funktsional. Anal. i Prilozhen. 93 (1989), p. 24-36. | Zbl
-[26] -, Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, vol. 98, American Mathematical Society, Providence, RI, 1992, Translated from the Russian by B. Goldfarb. | MR | Zbl