Complète réductibilité
Séminaire Bourbaki : volume 2003/2004, exposés 924-937, Astérisque, no. 299 (2005), Exposé no. 932, pp. 195-217.

La notion de complète réductibilité d’une représentation linéaire Γ𝐆𝐋 n peut se définir en termes de l’action de Γ sur l’immeuble de Tits de 𝐆𝐋 n . Cela suggère une notion analogue pour tous les immeubles sphériques, et donc aussi pour tous les groupes réductifs. On verra comment cette notion se traduit en termes topologiques et quelles applications on peut en tirer.

The notion of complete reducibility of a linear representation Γ𝐆𝐋 n can be defined in terms of the action of Γ on the Tits building of 𝐆𝐋 n . An analogous definition can be given for any reductive group. We shall see how this translates in topological terms, and what applications can be obtained.

Classification : 20-xx, 57M07
Mot clés : groupes réductifs, immeubles sphériques, complète réductibilité
Keywords: reductive groups, spherical buildings, complete reducibility
@incollection{SB_2003-2004__46__195_0,
     author = {Serre, Jean-Pierre},
     title = {Compl\`ete r\'eductibilit\'e},
     booktitle = {S\'eminaire Bourbaki : volume 2003/2004, expos\'es 924-937},
     series = {Ast\'erisque},
     note = {talk:932},
     pages = {195--217},
     publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France},
     address = {Paris},
     number = {299},
     year = {2005},
     language = {fr},
     url = {http://www.numdam.org/item/SB_2003-2004__46__195_0/}
}
TY  - CHAP
AU  - Serre, Jean-Pierre
TI  - Complète réductibilité
BT  - Séminaire Bourbaki : volume 2003/2004, exposés 924-937
AU  - Collectif
T3  - Astérisque
N1  - talk:932
PY  - 2005
SP  - 195
EP  - 217
IS  - 299
PB  - Association des amis de Nicolas Bourbaki, Société mathématique de France
PP  - Paris
UR  - http://www.numdam.org/item/SB_2003-2004__46__195_0/
LA  - fr
ID  - SB_2003-2004__46__195_0
ER  - 
%0 Book Section
%A Serre, Jean-Pierre
%T Complète réductibilité
%B Séminaire Bourbaki : volume 2003/2004, exposés 924-937
%A Collectif
%S Astérisque
%Z talk:932
%D 2005
%P 195-217
%N 299
%I Association des amis de Nicolas Bourbaki, Société mathématique de France
%C Paris
%U http://www.numdam.org/item/SB_2003-2004__46__195_0/
%G fr
%F SB_2003-2004__46__195_0
Serre, Jean-Pierre. Complète réductibilité, dans Séminaire Bourbaki : volume 2003/2004, exposés 924-937, Astérisque, no. 299 (2005), Exposé no. 932, pp. 195-217. http://www.numdam.org/item/SB_2003-2004__46__195_0/

[AS86] M. Aschbacher. Chevalley groups of type G 2 as the group of a trilinear form. J. Algebra, 109 :193-259, 1986. | MR | Zbl

[BMR04] M. Bate, B. M. S. Martin, and G. Röhrle. A geometric approach to complete reducibility. preprint, Univ. Birmingham 2004 ; à paraître dans Invent. math. | MR | Zbl

[BT65] A. Borel and J. Tits. Groupes réductifs. Publ. Math. Inst. Hautes Études Sci., 27 :55-150, 1965. | Numdam | MR | Zbl

[BT71] A. Borel and J. Tits. Éléments unipotents et sous-groupes paraboliques de groupes réductifs I. Invent. math., 12 :95-104, 1971. | MR | Zbl

[Br89] K. Brown. Buildings. Springer-Verlag, 1989. | MR | Zbl

[Ch55] C. Chevalley. Théorie des Groupes de Lie, volume III. Hermann, Paris, 1955. | MR | Zbl

[DG70] M. Demazure and A. Grothendieck. Structure des schémas en groupes réductifs (SGA 3 III), volume 153 of Lect. Notes in Math. Springer-Verlag, 1970. | Zbl

[Dy52] E. B. Dynkin. Sous-groupes maximaux des groupes classiques. Trudy Moskov. Mat. Obshch., 1 :39-116 (en russe), 1952. trad. anglaise : Selected Papers, American Mathematical Society, 2000, p. 37-170.

[Gu99] R. M. Guralnick. Small representations are completely reducible. J. Algebra, 220 :531-541, 1999. | MR | Zbl

[IMP03] S. Ilangovan, V. B. Mehta, and A. J. Parameswaran. Semistability and semisimplicity in representations of low height in positive characteristic. In V. Lakshmibai et al., editors, A Tribute to C.S. Seshadri. Hindustani Book Ag., New Delhi, 2003. | MR | Zbl

[JLPW95] C. Jansen, K. Lux, R. Parker, and R. Wilson. An atlas of Brauer characters. LMS Monographs. Clarendon Press, Oxford, 1995. | MR | Zbl

[Ja97] J. C. Jantzen. Low dimensional representations of reductive groups are semisimple. In Algebraic Groups and Lie Groups, pages 255-266. Cambridge Univ. Press, Cambridge, 1997. | MR | Zbl

[Ke78] G. R. Kempf. Instability in invariant theory. Ann. of Math., 108 :299-316, 1978. | MR | Zbl

[LS96] M. W. Liebeck and G. M. Seitz. Reductive Subgroups of Exceptional Algebraic Groups, volume 580 of Mem. Amer. Math. Soc. American Mathematical Society, 1996. | MR | Zbl

[Ma03a] B. M. S. Martin. Reductive subgroups of reductive groups in nonzero characteristic. J. Algebra, 262 :265-286, 2003. | MR | Zbl

[Ma03b] B. M. S. Martin. A normal subgroup of a strongly reductive subgroup is strongly reductive. J. Algebra, 265 :669-674, 2003. | MR | Zbl

[Mc98] G. J. Mcninch. Dimensional criteria for semisimplicity of representations. Proc. London Math. Soc. (3), 76 :95-149, 1998. | MR | Zbl

[Mc00] G. J. Mcninch. Semisimplicity of exterior powers of semisimple representations of groups. J. Algebra, 225 :646-666, 2000. | MR | Zbl

[Mo56] G. D. Mostow. Fully reducible subgroups of algebraic groups. Amer. J. Math., 78 :200-221, 1956. | MR | Zbl

[Mu65] D. Mumford. Geometric Invariant Theory. Springer-Verlag. 1965 ; third enlarged edit. (D. Mumford, J. Fogarty, F. Kirwan), 1994. | MR | Zbl

[Mue97] B. Mühlherr. Complete reducibility in projective spaces and polar spaces. preprint, Dortmund, 1997.

[No87] M. V. Nori. On subgroups of 𝐆𝐋(n,𝐅 p ). Invent. math., 88 :257-275, 1987. | MR | Zbl

[Ri88] R. W. Richardson. Conjugacy classes of n-tuples in Lie algebras and algebraic groups. Duke Math. J., 57 :1-35, 1988. | MR | Zbl

[Ron89] M. Ronan. Lectures on Buildings. Acad. Press, San Diego, 1989. | MR | Zbl

[Rou78] G. Rousseau. Immeubles sphériques et théorie des invariants. C. R. Acad. Sci. Paris Sér. I Math., 286 :247-250, 1978. | MR | Zbl

[Sei00] G. M. Seitz. Unipotent elements, tilting modules, and saturation. Invent. math., 141 :467-502, 2000. | MR | Zbl

[Se94] J-P. Serre. Sur la semi-simplicité des produits tensoriels de représentations de groupes. Invent. math., 116 :513-530, 1994. volume dédié à Armand Borel. | MR | Zbl

[Se97a] J-P. Serre. Semisimplicity and tensor products of group representations : converse theorems. J. Algebra, 194 :496-520, 1997. with an Appendix by Walter Feit. | MR | Zbl

[Se97b] J-P. Serre. La notion de complète réductibilité dans les immeubles sphériques et les groupes réductifs. Séminaire au Collège de France, 1997, résumé dans [Ti97], p. 93-98.

[Se98] J-P. Serre. The notion of complete reducibility in group theory. In Moursund Lectures Part II (Eugene, 1998). Notes by W.E. Duckworth, http://darkwing.uoregon.edu/~math/serre/index.html.

[So69] L. Solomon. The Steinberg character of a finite group with BN-pair. In Theory of Finite Groups, pages 213-221. Benjamin, 1969. | MR | Zbl

[Te95] D. M. Testerman. A 1 -type overgroups of elements of order p in semisimple algebraic groups and the associated finite groups. J. Algebra, 177 :34-76, 1995. | MR | Zbl

[Ti74] J. Tits. Buildings of spherical type and finite BN-pairs, volume 386 of Lect. Notes in Math. Springer-Verlag, 1974. | MR | Zbl

[Ti97] J. Tits. Résumé des cours de 1996-1997. In Annuaire du Collège de France, volume 97, pages 89-102. 1997.

[TW02] J. Tits and R. M. Weiss. Moufang Polygons. Springer-Verlag, 2002. | MR | Zbl