On the n!-conjecture
Séminaire Bourbaki : volume 2001/2002, exposés 894-908, Astérisque, no. 290 (2003), Exposé no. 898, 13 p.
@incollection{SB_2001-2002__44__103_0,
     author = {Procesi, Claudio},
     title = {On the $n!$-conjecture},
     booktitle = {S\'eminaire Bourbaki : volume 2001/2002, expos\'es 894-908},
     series = {Ast\'erisque},
     note = {talk:898},
     pages = {103--115},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {290},
     year = {2003},
     mrnumber = {2074052},
     zbl = {1083.14006},
     language = {en},
     url = {http://www.numdam.org/item/SB_2001-2002__44__103_0/}
}
TY  - CHAP
AU  - Procesi, Claudio
TI  - On the $n!$-conjecture
BT  - Séminaire Bourbaki : volume 2001/2002, exposés 894-908
AU  - Collectif
T3  - Astérisque
N1  - talk:898
PY  - 2003
SP  - 103
EP  - 115
IS  - 290
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/SB_2001-2002__44__103_0/
LA  - en
ID  - SB_2001-2002__44__103_0
ER  - 
%0 Book Section
%A Procesi, Claudio
%T On the $n!$-conjecture
%B Séminaire Bourbaki : volume 2001/2002, exposés 894-908
%A Collectif
%S Astérisque
%Z talk:898
%D 2003
%P 103-115
%N 290
%I Société mathématique de France
%U http://www.numdam.org/item/SB_2001-2002__44__103_0/
%G en
%F SB_2001-2002__44__103_0
Procesi, Claudio. On the $n!$-conjecture, dans Séminaire Bourbaki : volume 2001/2002, exposés 894-908, Astérisque, no. 290 (2003), Exposé no. 898, 13 p. http://www.numdam.org/item/SB_2001-2002__44__103_0/

[AB] M. Atiyah & R. Bott - A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc. 72 (1966), p. 245-250. | MR | Zbl

[BKR] T. Bridgeland, A. King & M. Reid - Mukai implies McKay: the McKay correspondence as an equivalence of derived categories, Electronic preprint, arXiv:math.AG/9908027, 1999.

[Ch] J. Cheah - Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998), p. 39-90. | MR | Zbl

[F] J. Fogarty - Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), p. 511-521. | MR | Zbl

[GH] A. Garsia & M. Haiman - A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), no. 8, p. 3607-3610. | MR | Zbl

[GH1] _, A remarkable q - t-Catalan sequence and q-Lagrange inversion, J. Algebraic Comb. 5 (1996), no. 3, p. 191-244. | MR | Zbl

[GP] A. Garsia & C. Procesi - On certain graded Sn-modules and the q-Kostka polynomials, Adv. Math. 94 (1992), no. 1, p. 82-138. | MR | Zbl

[H] M. Haiman - Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 5 (1994), no. 1, p. 17-76. | MR | Zbl

[H1] _, MacDonald polynomials and geometry, in New perspectives in geometric combinatorics (Billera, Björner, Greene, Simion & Stanley, eds.), vol. 38, M.S.R.I. Publications, 1999, p. 207-254. | MR

[H2] _, Hilbert schemes, polygraphs, and the Macdonald positivity conjecture, Journal of the A.M.S. (to appear), 2001. | MR | Zbl

[H3] _, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, preprint, 2001.

[IN] Y. Ito & I. Nakamura - McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 7, p. 135-138. | MR | Zbl

[M] I. G. Macdonald - A new class of symmetric functions, in Actes du 20ème séminaire lotharingien, vol. 372/S-20, Publ. I.R.M.A. Strasbourg, 1988, p. 131-171. | Zbl

[M1] _, Symmetric functions and Hall polynomials, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995. | MR | Zbl

[N] H. Nakajima - Lectures on Hilbert schemes of points on surfaces, American Math. Society, Providence RI, 1999. | MR | Zbl