@incollection{SB_1980-1981__23__243_0, author = {Lenstra, H. W., Jr.}, title = {Primality testing algorithms}, booktitle = {S\'eminaire Bourbaki : vol. 1980/81, expos\'es 561-578}, series = {S\'eminaire Bourbaki}, note = {talk:576}, pages = {243--257}, publisher = {Springer-Verlag}, number = {23}, year = {1981}, zbl = {0476.10005}, language = {en}, url = {http://www.numdam.org/item/SB_1980-1981__23__243_0/} }
TY - CHAP AU - Lenstra, H. W., Jr. TI - Primality testing algorithms BT - Séminaire Bourbaki : vol. 1980/81, exposés 561-578 AU - Collectif T3 - Séminaire Bourbaki N1 - talk:576 PY - 1981 SP - 243 EP - 257 IS - 23 PB - Springer-Verlag UR - http://www.numdam.org/item/SB_1980-1981__23__243_0/ LA - en ID - SB_1980-1981__23__243_0 ER -
%0 Book Section %A Lenstra, H. W., Jr. %T Primality testing algorithms %B Séminaire Bourbaki : vol. 1980/81, exposés 561-578 %A Collectif %S Séminaire Bourbaki %Z talk:576 %D 1981 %P 243-257 %N 23 %I Springer-Verlag %U http://www.numdam.org/item/SB_1980-1981__23__243_0/ %G en %F SB_1980-1981__23__243_0
Lenstra, H. W., Jr. Primality testing algorithms, dans Séminaire Bourbaki : vol. 1980/81, exposés 561-578, Séminaire Bourbaki, no. 23 (1981), Exposé no. 576, 15 p. http://www.numdam.org/item/SB_1980-1981__23__243_0/
1. On distinguishing prime numbers from composite numbers (abstract), Proc. 21st Annual IEEE Symposium on Foundations of Computer Science (1980), 387-406.
,2. On distinguishing prime numbers from composite numbers, preprint. | MR
, , ,3. Galois theory and Galois cohomology of commutative rings, Memoirs Amer. Math. Soc. 52 (1965), 15-33. | MR | Zbl
, , ,4. Separable algebras over commutative rings, Lecture Notes in Mathematics 181, Springer, Berlin 1971. | MR | Zbl
, ,5. How to factor a number, Proc. Fifth Manitoba Conf. Numer. Math., Utilitas, Winnipeg (1975), 49-89. | MR | Zbl
,6. The art of computer programming, vol. 2, Seminumerical algorithms, second edition, Addison-Wesley, Reading 1981. | MR | Zbl
,7. Cyclotomic fields, Springer, Berlin 1978. | MR | Zbl
,8. Euclid's algorithm in cyclotomic fields, J. London Math. Soc. (2) 10 (1975), 457-465. | MR | Zbl
,9. Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 76 (1974), 521-528. | MR | Zbl
,10. Über die Anzahl der Teiler einer natürlichen Zahl, welche die Form p - 1 haben, Monatsh. Math. 59 (1955), 91-97. | MR | Zbl
,11. Refined analysis and improvements on some factoring algorithms, to appear in: Automata, Languages and Programming, Eighth Colloquium, Haifa 1981, Lecture Notes in Computer Science, to appear. | MR | Zbl
,12. A fast Monte-Carlo test for primality, SIAM J. Comput. 6 (1977), 84-85; erratum, 7 (1978), 118. | MR | Zbl
, ,13. Primality testing on a computer, Ars Combin. 5 (1978), 127-185. | MR | Zbl
,