@article{CCIRM_2010__1_2_31_0, author = {Augot, Daniel}, title = {Les codes alg\'ebriques principaux et leur d\'ecodage}, booktitle = {Journ\'ees Nationales de Calcul Formel. 3 {\textendash} 7 Mai 2010}, series = {Les cours du CIRM}, pages = {31--74}, publisher = {CIRM}, number = {2}, year = {2010}, doi = {10.5802/ccirm.8}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/ccirm.8/} }
TY - JOUR AU - Augot, Daniel TI - Les codes algébriques principaux et leur décodage BT - Journées Nationales de Calcul Formel. 3 – 7 Mai 2010 AU - Collectif T3 - Les cours du CIRM PY - 2010 SP - 31 EP - 74 IS - 2 PB - CIRM UR - http://www.numdam.org/articles/10.5802/ccirm.8/ DO - 10.5802/ccirm.8 LA - fr ID - CCIRM_2010__1_2_31_0 ER -
%0 Journal Article %A Augot, Daniel %T Les codes algébriques principaux et leur décodage %B Journées Nationales de Calcul Formel. 3 – 7 Mai 2010 %A Collectif %S Les cours du CIRM %D 2010 %P 31-74 %N 2 %I CIRM %U http://www.numdam.org/articles/10.5802/ccirm.8/ %R 10.5802/ccirm.8 %G fr %F CCIRM_2010__1_2_31_0
Augot, Daniel. Les codes algébriques principaux et leur décodage, dans Journées Nationales de Calcul Formel. 3 – 7 Mai 2010, Les cours du CIRM, no. 2 (2010), pp. 31-74. doi : 10.5802/ccirm.8. http://www.numdam.org/articles/10.5802/ccirm.8/
[1] Implementation of a Hermitian decoder IC in 0.35 m CMOS, Custom Integrated Circuits, 2001, IEEE Conference on. (2001), pp. 297-300 | DOI
[2] Polynomial codes and finite geometries, Handbook of coding theory (Pless, V.S.; Huffman, W.C.; Brualdi, R.A., eds.), Volume II, North-Holland, 1998
[3] Algebraic coding theory, McGraw-Hill, 1968
[4] On the inherent intractability of certain coding problems, IEEE Transactions on Information Theory, Volume 24 (1978) no. 3, pp. 384-386
[5] Fast Algorithms for Digital Signal Processing, Addison-Wesley, 1985
[6] Algebraic Codes for Data Transmission, Cambridge University Press, 2002
[7] The hardness of decoding linear codes with preprocessing, IEEE Transactions on Information Theory, Volume 36 (1990) no. 2, pp. 381-385 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=52484
[8] Hard Problems of Algebraic Geometry Codes, http://arxiv.org/abs/cs.IT/0507026, 2005 | arXiv
[9] Complexity of Decoding Positive-Rate Reed-Solomon Codes, ICALP ’08 : Proceedings of the 35th international colloquium on Automata, Languages and Programming, Part I (Lecture Notes in Computer Science), Springer-Verlag, Berlin, Heidelberg (2008), pp. 283-293 | DOI
[10] Geometric Reed-Solomon codes of length 64 and 65 over , Information Theory, IEEE Transactions on, Volume 49 (2003) no. 5, pp. 1351-1353
[11] Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes, IEEE Transactions on Information Theory, Volume 10 (1964) no. 4, pp. 357-363 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1053699
[12] Ideals, Varieties and Algorithms, Springer, 1992
[13] Decoding algebraic-geometric codes up to the designed minimum distance, Information Theory, IEEE Transactions on, Volume 39 (1993) no. 1, pp. 37-45 | DOI
[14] A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes, IEEE Transactions on Information Theory, Volume 37 (1991) no. 5, pp. 1274-1287
[15] On decoding BCH codes, Information Theory, IEEE Transactions on, Volume 11 (1965) no. 4, pp. 549-557 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1053825
[16] Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes, Information Theory, 2006 IEEE International Symposium on (2006), pp. 287-291 | DOI
[17] Highly resilient correctors for polynomials, Information Processing Letters, Volume 43 (1992) no. 4, pp. 169-174 | DOI
[18] Codes that are associated with divisors, Problemy Pereda ci Informacii, Volume 13 (1977) no. 1, pp. 33-39
[19] On representations of algebraic-geometry codes, Information Theory, IEEE Transactions on, Volume 47 (2001) no. 4, pp. 1610-1613 | DOI
[20] Maximum-likelihood decoding of Reed-Solomon codes is NP-hard, Information Theory, IEEE Transactions on, Volume 51 (2005) no. 7, pp. 2249-2256 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1459041
[21] Algorithmic results in list decoding, Now Publishers Inc, 2007
[22] List Decoding of Binary Codes - A Brief Survey of Some Recent Results, Coding and Cryptology (Chee, Yeow M.; Li, Chao; Ling, San; Wang, Huaxiong; Xing, Chaoping, eds.) (Lecture Notes in Computer Science), Volume 5557, Springer Berlin Heidelberg, Berlin, Heidelberg (2009), pp. 97-106 | DOI
[23] Correlated algebraic-geometric codes : Improved list decoding over bounded alphabets, Mathematics of computation (2007)
[24] Explicit capacity-achieving list-decodable codes, STOC ’06 : Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, ACM, New York, NY, USA (2006), pp. 1-10 | DOI
[25] Extensions to the Johnson bound, http://theory.lcs.mit.edu/Emadhu/papers/johnson.ps, 2001 http://theory.lcs.mit.edu/Emadhu/papers/johnson.ps
[26] Error detecting and error correcting codes (1950) no. 2 (Technical report)
[27] On the decoding of algebraic-geometric codes, IEEE Transactions on Information Theory, Volume 41 (1995) no. 6, pp. 1589-1614
[28] Algebraic geometry codes, Handbook of Coding Theory, Volume I, Elsevier (1998), pp. 871-961
[29] Bounds on list decoding of MDS codes, IEEE Transactions on Information Theory, Volume 47 (2001) no. 4, pp. 1604-1609
[30] A fast parallel implementation of a Berlekamp-Massey algorithm for algebraic-geometric codes, IEEE Transactions on Information Theory, Volume 44 (1998) no. 4, pp. 1353-1368 | DOI
[31] The Theory of Error-Correcting Codes, North-Holland Mathematical Library, North Holland, 1983
[32] Shift-register synthesis and BCH decoding, IEEE Transactions on Information Theory, Volume 15 (1969) no. 1, pp. 122-127 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1054260
[33] Systolic array architecture implementing Berlekamp-Massey-Sakata algorithm for decoding codes on a class of algebraic curves, IEEE Transactions on Information Theory, Volume 51 (2005) no. 11, pp. 3856-3871
[34] The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes (2003) no. 42-153 http://www.ee.caltech.edu/EE/Faculty/rjm/papers/RSD-JPL.pdf (Technical report)
[35] Algebraic-geometric codes and multidimensional cyclic codes : a unified theory and algorithms for decoding using Grobner bases, Information Theory, IEEE Transactions on, Volume 41 (1995) no. 6, pp. 1733-1751 | DOI
[36] Fast decoding of algebraic-geometric codes up to the designed minimum distance, Information Theory, IEEE Transactions on, Volume 41 (1995) no. 6, pp. 1672-1677 | DOI
[37] Finding a Minimal Set of Linear Recurring Relations Capable of Generating a Given Finite Two-Dimensional Array, J. Symb. Comput., Volume 5 (1988) no. 3, pp. 321-337
[38] N-Dimensional Berlekamp-Massey Algorithm for Multiple Arrays and Construction of Multivariate Polynomials with Preassigned Zeros, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes 6th International Conference, AAECC-6 Rome (Mora, Teo, ed.) (Lecture Notes in Computer Science), Volume 357 (1988), pp. 356-376 http://www.springerlink.de/content/f0x1555h6j45434g/?p=d4bb0721df29430fa6e821864bf56c74&pi=29
[39] Finding a minimal polynomial vector set of a vector of nD arrays, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Mattson, H. F.; Mora, T.; Rao, T. R. N., eds.) (Lecture Notes in Computer Science), Springer-Verlag (1991) no. 539, pp. 414-425 http://www.springerlink.de/content/pg410014070155k3/?p=a12e1b268dae4dbe9e3c9d4400e8f0cf&pi=38
[40] Subspace Polynomials and List Decoding of Reed-Solomon Codes, FOCS ’06 : Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Washington, DC, USA (2006), pp. 207-216 | DOI
[41] Fast Probabilistic Algorithms for Verification of Polynomial Identities, Journal of the ACM, Volume 27 (1980) no. 4, pp. 701-717 | DOI
[42] A mathematical theory of Communication, The Bell system technical journal, Volume 27 (1948), pp. 379-423
[43] Decoding algebraic geometric codes, Proceedings of the IEEE Information Theory Workshop, 1998 (1998), pp. 40-41
[44] Algebraic Function Fields and Codes, Springer, 1993
[45] Decoding of Reed-Solomon Codes beyond the Error-Correction Bound, Journal of Complexity, Volume 13 (1997) no. 1, pp. 180-193
[46] Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound, Math. Nachr., Volume 109 (1982), pp. 21-28
[47] Algorithmic complexity in coding theory and the minimum distance problem, STOC ’97 : Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, El Paso, United States, ACM Press (1997), pp. 92-109 | DOI
[48] Modern Computer Algebra, Cambridge University Press, 1999
[49] Performance comparison of Hermitian and Reed-Solomon codes, MILCOM 97 Proceedings, Volume 1 (1997), p. 15-19 vol.1 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=648657
[50] Error correction for algebraic block codes, US Patent 4 633 470, 1986
[51] New List Decoding Algorithms for Reed-Solomon and BCH Codes, Information Theory, IEEE Transactions on, Volume 54 (2008) no. 8, pp. 3611-3630 | DOI
[52] Probabilistic algorithms for sparse polynomials, Symbolic and Algebraic Computation : EUROSAM ’79 (Ng, Edward W., ed.) (Lecture Notes in Computer Science), Volume 72, Springer (1979), pp. 216-226
Cité par Sources :