Classification of spherical varieties
Actions hamiltoniennes : invariants et classification. 6 – 10 avril 2009, Les cours du CIRM, no. 1 (2010), pp. 99-111.

We give a short introduction to the problem of classification of spherical varieties, by presenting the Luna conjecture about the classification of wonderful varieties and illustrating some of the related currently known results.

DOI : 10.5802/ccirm.5
Bravi, Paolo 1

1 Dipartimento di Matematica G. Castelnuovo, Università La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy
@article{CCIRM_2010__1_1_99_0,
     author = {Bravi, Paolo},
     title = {Classification of spherical varieties},
     booktitle = {Actions hamiltoniennes~: invariants et classification. 6 {\textendash} 10 avril 2009},
     series = {Les cours du CIRM},
     pages = {99--111},
     publisher = {CIRM},
     number = {1},
     year = {2010},
     doi = {10.5802/ccirm.5},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ccirm.5/}
}
TY  - JOUR
AU  - Bravi, Paolo
TI  - Classification of spherical varieties
BT  - Actions hamiltoniennes : invariants et classification. 6 – 10 avril 2009
AU  - Collectif
T3  - Les cours du CIRM
PY  - 2010
SP  - 99
EP  - 111
IS  - 1
PB  - CIRM
UR  - http://www.numdam.org/articles/10.5802/ccirm.5/
DO  - 10.5802/ccirm.5
LA  - en
ID  - CCIRM_2010__1_1_99_0
ER  - 
%0 Journal Article
%A Bravi, Paolo
%T Classification of spherical varieties
%B Actions hamiltoniennes : invariants et classification. 6 – 10 avril 2009
%A Collectif
%S Les cours du CIRM
%D 2010
%P 99-111
%N 1
%I CIRM
%U http://www.numdam.org/articles/10.5802/ccirm.5/
%R 10.5802/ccirm.5
%G en
%F CCIRM_2010__1_1_99_0
Bravi, Paolo. Classification of spherical varieties, dans Actions hamiltoniennes : invariants et classification. 6 – 10 avril 2009, Les cours du CIRM, no. 1 (2010), pp. 99-111. doi : 10.5802/ccirm.5. http://www.numdam.org/articles/10.5802/ccirm.5/

[A] D.N. Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), 49–78.

[AB] V. Alexeev, M. Brion, Moduli of affine schemes with reductive group action, J. Algebraic Geom. 14 (2005), 83–117.

[BC08] P. Bravi, S. Cupit-Foutou, Equivariant deformations of the affine multicone over a flag variety, Adv. Math. 217 (2008), 2800–2821.

[BC10] P. Bravi, S. Cupit-Foutou, Classification of strict wonderful varieties, Ann. Inst. Fourier (Grenoble) 60 (2010), to appear.

[BL09] P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type F4, J. Algebra, to appear.

[BP05] P. Bravi, G. Pezzini, Wonderful varieties of type D, Represent. Theory, 9 (2005), 578–637.

[BP09] P. Bravi, G. Pezzini, Wonderful varieties of type B and C, arXiv:0909.3771v1 .

[Bra] P. Bravi, Wonderful varieties of type E, Represent. Theory, 11 (2007), 174–191.

[Bri87] M. Brion, Classification des espaces homogènes sphériques, Compositio Math. 63 (1987), 189–208.

[Bri90] M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), 115–143.

[Bri] M. Brion, in this volume.

[C08] S. Cupit-Foutou, Invariant Hilbert schemes and wonderful varieties, arXiv:0811.1567v2 .

[C09] S. Cupit-Foutou, Wonderful varieties: a geometrical realization, arXiv:0907.2852v1 .

[DGMP] C. De Concini, M. Goresky, R. MacPharson, C. Procesi, On the geometry of quadrics and their degenerations, Comment. Math. Helv. 63 (1988), 337–413.

[DP] C. De Concini, C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982), Lecture Notes in Math. 996, 1–44, Springer, Berlin, 1983.

[HS] M. Haiman, B. Sturmfels, Multigraded Hilbert schemes, J. Algebraic Geom. 13 (2004), 725–769.

[Kn] F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), 153–174.

[Kr] M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129–153.

[Lo09] I.V. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 No. 2 (2009), 315–343.

[Lo10] I.V. Losev, Proof of the Knop conjecture, Ann. Inst. Fourier (Grenoble), 59 (2009), no. 3, 1105–1134.

[Lo] I.V. Losev, in this volume.

[Lu96] D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), 249–258.

[Lu01] D. Luna, Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161–226.

[LV] D. Luna, T. Vust, Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186–245.

[Mi] I.V. Mikityuk, On the integrability of invariant hamiltonian systems with homogeneous configurations spaces (in Russian), Math. Sbornik 129, 171 (1986), 514–534.

[P07] G. Pezzini, Simple immersions of wonderful varieties, Math. Z. 255 (2007), 793–812.

[P] G. Pezzini, in this volume.

[W] B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), 375–403.

Cité par Sources :