@incollection{AST_2011__339__371_0, author = {Totaro, Burt}, title = {The {ACC} conjecture for log canonical thresholds [after de {Fernex,} {Ein,} {Musta\c{t}\u{a},} {Koll\'ar]}}, booktitle = {S\'eminaire Bourbaki, volume 2009/2010, expos\'es 1012-1026}, series = {Ast\'erisque}, note = {talk:1025}, pages = {371--385}, publisher = {Soci\'et\'e math\'ematique de France}, number = {339}, year = {2011}, mrnumber = {2906361}, zbl = {1356.14005}, language = {en}, url = {http://www.numdam.org/item/AST_2011__339__371_0/} }
TY - CHAP AU - Totaro, Burt TI - The ACC conjecture for log canonical thresholds [after de Fernex, Ein, Mustaţă, Kollár] BT - Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 AU - Collectif T3 - Astérisque N1 - talk:1025 PY - 2011 SP - 371 EP - 385 IS - 339 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2011__339__371_0/ LA - en ID - AST_2011__339__371_0 ER -
%0 Book Section %A Totaro, Burt %T The ACC conjecture for log canonical thresholds [after de Fernex, Ein, Mustaţă, Kollár] %B Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 %A Collectif %S Astérisque %Z talk:1025 %D 2011 %P 371-385 %N 339 %I Société mathématique de France %U http://www.numdam.org/item/AST_2011__339__371_0/ %G en %F AST_2011__339__371_0
Totaro, Burt. The ACC conjecture for log canonical thresholds [after de Fernex, Ein, Mustaţă, Kollár], dans Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Exposé no. 1025, 15 p. http://www.numdam.org/item/AST_2011__339__371_0/
[1] Two two-dimensional terminations", Duke Math. J. 69 (1993), p. 527-545. | DOI | MR | Zbl
- "[2] Boundedness and for Log Surfaces", Internat. J. Math. 5 (1994), p. 779-810. | DOI | MR | Zbl
, "[3] Singularities of differentiate maps. Vol. 77, Monographs in Math., vol. 82, Birkhäuser, 1985. | MR
, & -[4] Resolution of singularities and division of distributions", Comm. Pure Appl. Math. 23 (1970), p. 145-150. | DOI | MR | Zbl
- "[5] Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients", Funkcional. Anal, i Priložen. 5 (1971), p. 1-16; | MR | Zbl
- "Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients", translation in Funct. Anal. Appl. 5 (1971), p. 89-101. | DOI | MR | Zbl
- "[6] Ascending chain condition for log canonical thresholds and termination of log flips", Duke Math. J. 136 (2007), p. 173-180. | DOI | MR | Zbl
- "[7] On existence of log minimal models", Compos. Math. 146 (2010), p. 919-928. | DOI | MR | Zbl
, "[8] On existence of log minimal models II", to appear in J. reine angew. Math. | MR | Zbl
, "[9] Existence of minimal models for varieties of log general type", J. Amer. Math. Soc. 23 (2010), p. 405-468. | DOI | MR | Zbl
, , & - "[10] Mld's vs thresholds and flips", J. reine angew. Math. 638 (2010), p. 209-234. | MR | Zbl
& - "[11] Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds", Ann. Sci. École Norm. Sup. 34 (2001), p. 525-556. | DOI | EuDML | Numdam | MR | Zbl
& - "[12] Bounds for log canonical thresholds with applications to birational rigidity", Math. Res. Lett. 10 (2003), p. 219-236. | DOI | MR | Zbl
, & - "[13] Shokurov's ACC conjecture for log canonical thresholds on smooth varieties", Duke Math. J. 152 (2010), p. 93-114. | DOI | MR | Zbl
, & , "[14] Limits of log canonical thresholds", Ann. Sci. Éc. Norm. Supér. 42 (2009), p. 491-515. | DOI | EuDML | Numdam | MR | Zbl
& - "[15] Resolution of singularities of an algebraic variety over a field of characteristic zero. I", Ann. of Math. (2) 79 (1964), p. 109-203 . | DOI | MR | Zbl
- "Resolution of singularities of an algebraic variety over a field of characteristic zero. II", Ann. of Math. (2) 79 (1964), p. 205-326. | DOI | MR | Zbl
- "[16] Singularities of pairs", in Algebraic geometry - Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., 1997, p. 221-287. | DOI | MR | Zbl
- "[17] Lectures on resolution of singularities, Annals of Math. Studies, vol. 166, Princeton Univ. Press, 2007. | MR | Zbl
,[18] Which powers of a holomorphic function are integrable?", preprint arXiv:0805.0756.
, "[19] Rational and nearly rational varieties, Cambridge Studies in Advanced Math., vol. 92, Cambridge Univ. Press, 2004. | MR | Zbl
, & -[20] On log canonical thresholds of surfaces in ", Tokyo J. Math. 22 (1999), p. 245-251. | DOI | MR | Zbl
- "[21] Positivity in algebraic geometry II, Springer, 2004. | DOI | MR | Zbl
-[22] Threefold thresholds", Manuscripta Math. 114 (2004), p. 281-304. | DOI | MR | Zbl
& - "[23] Problems about Fano varieties", in Birational Geometry of Algebraic Varieties: Open Problems. The XXIIIrd International Symposium, Division of Mathematics, The Taniguchi Foundation, 1988, p. 30-32.
- "[24] Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips", Tr. Mat. Inst. Steklova 246 (2004), p. 328-351 | MR | Zbl
, "Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips", translation in Proc. Steklov Inst. Math. 246 (2004) p. 315-336. | MR | Zbl
, "[25] Desingularization of quasi-excellent schemes in characteristic zero", Adv. Math. 219 (2008), p. 488-522. | DOI | MR | Zbl
- "[26] Newton polyhedra and estimates of oscillatory integrals", Funkcional. Anal, i Prilozen. 10 (1976), p. 13-38 | MR
- "Newton polyhedra and estimates of oscillatory integrals", translation in Funct. Anal. Appl. 18 (1976) p. 175-196. | MR | Zbl
- "