@incollection{AST_2010__332__135_0, author = {Auroux, Denis}, title = {La conjecture de {Weinstein} en dimension 3 [d'apr\`es {C.} {H.} {Taubes]}}, booktitle = {S\'eminaire Bourbaki : volume 2008/2009 expos\'es 997-1011 - Avec table par noms d'auteurs de 1848/49 \`a 2008/09}, series = {Ast\'erisque}, note = {talk:1002}, pages = {135--159}, publisher = {Soci\'et\'e math\'ematique de France}, number = {332}, year = {2010}, mrnumber = {2648677}, zbl = {1220.53005}, language = {fr}, url = {http://www.numdam.org/item/AST_2010__332__135_0/} }
TY - CHAP AU - Auroux, Denis TI - La conjecture de Weinstein en dimension 3 [d'après C. H. Taubes] BT - Séminaire Bourbaki : volume 2008/2009 exposés 997-1011 - Avec table par noms d'auteurs de 1848/49 à 2008/09 AU - Collectif T3 - Astérisque N1 - talk:1002 PY - 2010 SP - 135 EP - 159 IS - 332 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2010__332__135_0/ LA - fr ID - AST_2010__332__135_0 ER -
%0 Book Section %A Auroux, Denis %T La conjecture de Weinstein en dimension 3 [d'après C. H. Taubes] %B Séminaire Bourbaki : volume 2008/2009 exposés 997-1011 - Avec table par noms d'auteurs de 1848/49 à 2008/09 %A Collectif %S Astérisque %Z talk:1002 %D 2010 %P 135-159 %N 332 %I Société mathématique de France %U http://www.numdam.org/item/AST_2010__332__135_0/ %G fr %F AST_2010__332__135_0
Auroux, Denis. La conjecture de Weinstein en dimension 3 [d'après C. H. Taubes], dans Séminaire Bourbaki : volume 2008/2009 exposés 997-1011 - Avec table par noms d'auteurs de 1848/49 à 2008/09, Astérisque, no. 332 (2010), Exposé no. 1002, 25 p. http://www.numdam.org/item/AST_2010__332__135_0/
[1] The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005), p. 771-793. | DOI | MR | Zbl
, & -[2] Four-dimensional symplectic cobordisms containing three-handles, Geom. Topol. 10 (2006), p. 1749-1759. | DOI | MR | Zbl
-[3] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993), p. 515- 563. | DOI | EuDML | MR | Zbl
-[4] An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. (JEMS) 4 (2002), p. 313-361. | DOI | EuDML | MR | Zbl
-[5] Rounding corners of polygons and the embedded contact homology of , Geom. Topol. 10 (2006), p. 169-266. | DOI | EuDML | MR | Zbl
& -[6] Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007), p. 43-137. | DOI | MR | Zbl
& -[7] The Weinstein conjecture for stable Hamiltonian structures, Geom. Topol. 13 (2009), p. 901-941. | DOI | MR | Zbl
& ,[8] The Seiberg-Witten invariants of symplectic four-manifolds (after C. H. Taubes), Séminaire Bourbaki, vol. 1995/96, exposé n° 812, Astérisque 241 (1997), p. 195-220. | EuDML | Numdam | MR | Zbl
-[9] Monopoles and three-manifolds, New Mathematical Monographs, vol. 10, Cambridge Univ. Press, 2007. | MR | Zbl
& -[10] Orbites périodiques et courbes pseudo-holomorphes, application à la conjecture de Weinstein en dimension 3 (d'après H. Hofer et al.), Séminaire Bourbaki, vol. 1993/94, exposé n° 786, Astérisque 227 (1995), p. 309-333. | EuDML | Numdam | MR | Zbl
-[11] Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, in The breadth of symplectic and Poisson geometry, Progr. Math., vol. 232, Birkhäuser, 2005, p. 525-570. | MR | Zbl
-[12] Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), p. 157-184. | DOI | MR | Zbl
-[13] On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000), p. 419-461. | DOI | MR | Zbl
-[14] The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (1995), p. 221-238. | DOI | MR | Zbl
-[15] J. Amer. Math. Soc. 9 (1996), p. 845-918. | DOI | MR | Zbl
: from the Seiberg-Witten equations to pseudo-holomorphic curves,[16] The geometry of the Seiberg-Witten invariants, in Surveys in differential geometry, Vol. III (Cambridge, MA, 1996), Int. Press, Boston, MA, 1998, p. 299-339. | MR | Zbl
,[17] : from pseudo-holomorphic curves to Seiberg-Witten solutions, J. Differential Geom. 51 (1999), p. 203-334. | DOI | MR | Zbl
,[18] The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007), p. 2117-2202. | DOI | MR | Zbl
,[19] The Seiberg-Witten equations and the Weinstein conjecture. II. More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009), p. 1337-1417. | DOI | MR | Zbl
,[20] Embedded contact homology and Seiberg-Witten Floer cohomology I, prépublication arXiv:0811.3985. | MR | Zbl
,[21] A proof of Weinstein's conjecture in , Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), p. 337-356. | DOI | EuDML | Numdam | MR | Zbl
-[22] On the hypotheses of Rabinowitz' periodic orbit theorems, J. Differential Equations 33 (1979), p. 353-358. | DOI | MR | Zbl
-