@incollection{AST_2009__326__321_0, author = {Ha{\"\i}ssinsky, Peter}, title = {G\'eom\'etrie quasiconforme, analyse au bord des espaces m\'etriques hyperboliques et rigidit\'es [d'apr\`es {Mostow,} {Pansu,} {Bourdon,} {Pajot,} {Bonk,} {Kleiner...]}}, booktitle = {S\'eminaire Bourbaki Volume 2007/2008 Expos\'es 982-996}, series = {Ast\'erisque}, note = {talk:993}, pages = {321--362}, publisher = {Soci\'et\'e math\'ematique de France}, number = {326}, year = {2009}, mrnumber = {2605327}, zbl = {1275.20046}, language = {fr}, url = {http://www.numdam.org/item/AST_2009__326__321_0/} }
TY - CHAP AU - Haïssinsky, Peter TI - Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités [d'après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner...] BT - Séminaire Bourbaki Volume 2007/2008 Exposés 982-996 AU - Collectif T3 - Astérisque N1 - talk:993 PY - 2009 SP - 321 EP - 362 IS - 326 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2009__326__321_0/ LA - fr ID - AST_2009__326__321_0 ER -
%0 Book Section %A Haïssinsky, Peter %T Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités [d'après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner...] %B Séminaire Bourbaki Volume 2007/2008 Exposés 982-996 %A Collectif %S Astérisque %Z talk:993 %D 2009 %P 321-362 %N 326 %I Société mathématique de France %U http://www.numdam.org/item/AST_2009__326__321_0/ %G fr %F AST_2009__326__321_0
Haïssinsky, Peter. Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités [d'après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner...], dans Séminaire Bourbaki Volume 2007/2008 Exposés 982-996, Astérisque, no. 326 (2009), Exposé no. 993, 42 p. http://www.numdam.org/item/AST_2009__326__321_0/
[1] Notes on word hyperbolic groups, in Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, Edited by H. Short, p. 3-63. | MR | Zbl
et al. -[2] Absolute continuity of quasiconformal mappings on curves, Geom. Funct. Anal. 17 (2007), p. 645-664. | DOI | MR | Zbl
, & -[3] Quasiconformal geometry of fractals, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc, Zürich, 2006, p. 1349-1373. | MR | Zbl
-[4] Quasisymmetric parametrizations of two-dimensional metric spheres, Invent Math. 150 (2002), p. 127-183. | DOI | MR | Zbl
& -[5] Rigidity for quasi-Möbius group actions, J. Differential Geom. 61 (2002), p. 81-106. | DOI | MR | Zbl
& -,[6] Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), p. 219-246. | DOI | EuDML | MR | Zbl
& -,[7] Quasi-hyperbolic planes in hyperbolic groups, Proc. Amer. Math. Soc. 133 (2005), p. 2491-2494. | DOI | MR | Zbl
& -,[8] Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), p. 266-306. | DOI | MR | Zbl
& -[9] Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, Enseign. Math. 41 (1995), p. 63-102. | MR | Zbl
-[10] Sur le birapport au bord des CAT (-1)-espaces, Publ. Math. I.H.É.S. 83 (1996), p. 95-104. | DOI | EuDML | Numdam | MR | Zbl
-,[11] Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal. 7 (1997), p. 245-268. | DOI | MR | Zbl
-,[12] Sur les immeubles fuchsiens et leur type de quasi-isométrie, Ergodic Theory Dynam. Systems 20 (2000), p. 343-364. | DOI | MR | Zbl
-,[13] Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc. 127 (1999), p. 2315-2324. | DOI | MR | Zbl
& -[14] Rigidity of quasi-isometries for some hyperbolic buildings, Comment. Math. Helv. 75 (2000), p. 701-736. | DOI | MR | Zbl
& -,[15] Quasi-conformal geometry and hyperbolic geometry, in Rigidity in dynamics and geometry (Cambridge, 2000), Springer, 2002, p. 1-17. | MR | Zbl
& -,[16] Cohomologie et espaces de Besov, J. reine angew. Math. 558 (2003), p. 85-108. | MR | Zbl
& -,[17] A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998), p. 643-667. | DOI | MR | Zbl
-[18] Convergence groups and configuration spaces, in Geometric group theory down under (Canberra, 1996), de Gruyter, 1999, p. 23-54. | MR | Zbl
-,[19] The theory of negatively curved spaces and groups, in Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, 1991, p. 315-369. | MR | Zbl
-[20] The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), p. 155-234. | DOI | MR | Zbl
-,[21] Sufficiently rich families of planar rings, Ann. Acad. Sci. Fenn. Math. 24 (1999), p. 265-304. | EuDML | MR | Zbl
, & -[22] Recognizing constant curvature discrete groups in dimension 3, Trans. Amer. Math. Soc. 350 (1998), p. 809-849. | DOI | MR | Zbl
& -[23] Convergence groups and Seifert fibered 3-manifolds, Invent. Math. 118 (1994), p. 441-456. | DOI | EuDML | MR | Zbl
& -[24] Differentiability of Lipschitz functions on metric measure spaces, Geom. Fund. Anal. 9 (1999), p. 428-517. | DOI | MR | Zbl
-[25] Groups quasi-isometric to complex hyperbolic space, Trans. Amer. Math. Soc. 348 (1996), p. 1757-1769. | DOI | MR | Zbl
-[26] Minimal Lyapunov exponents, quasiconformal structures, and rigidity of non-positively curved manifolds, Ergodic Theory Dynam. Systems 23 (2003), p. 429-446. | DOI | MR | Zbl
-[27] Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993), p. 241-270. | DOI | MR | Zbl
-[28] Géométrie et théorie des groupes, Lecture Notes in Math., vol. 1441, Springer, 1990. | MR | Zbl
, & -[29] A proof of Thurston's topological characterization of rational functions, Acta Math. 171 (1993), p. 263-297. | DOI | MR | Zbl
& -[30] Visibility manifolds, Pacific J. Math. 46 (1973), p. 45-109. | DOI | MR | Zbl
& -[31] Convergence groups are Fuchsian groups, Bull. Amer. Math. Soc. (N.S.) 25 (1991), p. 395-402. | DOI | MR | Zbl
-[32] Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math., vol. 83, Birkhäuser, 1990. | MR | Zbl
& (éds.) -[33] Groups of polynomial growth and expanding maps, Publ. Math. I.H.É.S. 53 (1981), p. 53-73. | DOI | Numdam | MR | Zbl
-[34] Hyperbolic groups, in Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, 1987, p. 75-263. | DOI | MR | Zbl
-,[35] Rigidity of lattices : an introduction, in Geometric topology : recent developments (Montecatini Terme, 1990), Lecture Notes in Math., vol. 1504, Springer, 1991, p. 39-137. | MR | Zbl
& -[36] Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), p. 1-12. | DOI | EuDML | MR | Zbl
& -[37] Empilements de cercles et modules combinatoires, à paraître aux Ann. Inst. Fourier. | EuDML | Numdam | MR | Zbl
-[38] Thurston obstructions and Ahlfors regular conformal dimension, J. Math. Pures Appl. 90 (2008), p. 229-241. | DOI | MR | Zbl
& -[39] Coarse expanding conformal dynamics, à paraître dans Astérisque. | Numdam | MR | Zbl
& -,[40] A geometric characterization of negatively curved locally symmetric spaces, J. Differential Geom. 34 (1991), p. 193-221. | DOI | MR | Zbl
-[41] A capacity estimate on Carnot groups, Bull. Sci. Math. 119 (1995), p. 475-484. | MR | Zbl
-[42] Lectures on analysis on metric spaces, Universitext, Springer, 2001. | DOI | MR | Zbl
-,[43] Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), p. 1-61. | DOI | MR | Zbl
& -[44] Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), p. 87-139. | DOI | MR | Zbl
, , & -[45] Boundaries of hyperbolic groups, in Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math., vol. 296, Amer. Math. Soc, 2002, p. 39-93. | DOI | MR | Zbl
& -[46] Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), p. 1278-1321. | DOI | MR | Zbl
& -[47] The asymptotic geometry of negatively curved spaces : uniformization, geometrization and rigidity, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc, Zürich, 2006, p. 743-768. | MR | Zbl
-[48] Kontaktprobleme der konformen abbildung, Ber. Sächs. Akad. Wiss. Leipzig 88 (1936), p. 141-164. | Zbl
-[49] Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mém. Coll. in-8° 39 (1971), p. 44. | MR | Zbl
-[50] Invariants conformes globaux sur les variétés riemanniennes, J. Differential Geometry 8 (1973), p. 487-510. | DOI | MR | Zbl
-,[51] On the conformal capacity in space, J. Math. Mech. 8 (1959), p. 411-414. | MR | Zbl
-[52] The isometry of closed manifolds of constant negative curvature with the same fundamental group, Dokl. Akad. Nauk SSSR 192 (1970), p. 736-737. | MR | Zbl
-[53] The differential of a quasi-conformal mapping of a Carnot-Carathéodory space, Geom. Funct. Anal. 5 (1995), p. 402-433. | DOI | EuDML | MR | Zbl
& -[54] On Carnot-Carathéodory metrics, J. Differential Geom. 21 (1985), p. 35-45. | DOI | MR | Zbl
-[55] Quasi-conformal mappings in -space and the rigidity of hyperbolic space forms, Publ. Math. I.H.É.S. 34 (1968), p. 53-104. | DOI | EuDML | Numdam | MR | Zbl
-[56] Strong rigidity of locally symmetric spaces, Princeton Univ. Press, 1973, Annals of Mathematics Studies, No. 78. | MR | Zbl
-,[57] Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), p. 177-212. | DOI | MR | Zbl
-[58] Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), p. 1-60. | DOI | MR | Zbl
-,[59] Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. 54 (1996), p. 50-74. | DOI | MR | Zbl
-[60] An estimate for pseudoconformal capacities on the sphere, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), p. 315-324. | DOI | MR | Zbl
-[61] The density at infinity of a discrete group of hyperbolic motions, Publ. Math. I.H.É.S. 50 (1979), p. 171-202. | DOI | EuDML | Numdam | MR | Zbl
-[62] On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Riemann surfaces and related topics : Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., vol. 97, Princeton Univ. Press, 1981, p. 465-496. | MR | Zbl
-,[63] Discrete conformal groups and measurable dynamics, Bull. Amer. Math. Soc. (N.S.) 6 (1982), p. 57-73. | DOI | MR | Zbl
-,[64] Seminar on hyperbolic geometry and conformal dynamical systems, prépublication I.H.É.S., 1982.
-,[65] On quasiconformal groups, J. Analyse Math. 46 (1986), p. 318-346. | DOI | MR | Zbl
-[66] Homeomorphic conjugates of Fuchsian groups, J. reine angew. Math. 391 (1988), p. 1-54. | EuDML | MR | Zbl
-,[67] Convergence groups and Gromov's metric hyperbolic spaces, New Zealand J. Math. 23 (1994), p. 157-187. | MR | Zbl
-,[68] Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), p. 97-114. | DOI | MR | Zbl
& -[69] Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), p. 525-548. | EuDML | MR | Zbl
-[70] Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn. 5 (2001), p. 21-73. | DOI | MR | Zbl
-,[71] Lectures on -dimensional quasiconformal mappings, Lecture Notes in Math., vol. 229, Springer, 1971. | MR | Zbl
-[72] Quasi-Möbius maps, J. Analyse Math. 44 (1984/85), p. 218-234. | DOI | MR
-,[73] Quasi-isometric rigidity of Fuchsian buildings, Topology 45 (2006), p. 101-169. | DOI | MR | Zbl
-