@incollection{AST_2008__322__23_0, author = {Chang, Sun-Yung Alice and Yang, Paul C.}, title = {The $Q$-curvature equation in conformal geometry}, booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (II) - Volume en l'honneur de Jean-Pierre Bourguignon}, editor = {Hijazi Oussama}, series = {Ast\'erisque}, pages = {23--38}, publisher = {Soci\'et\'e math\'ematique de France}, number = {322}, year = {2008}, mrnumber = {2521652}, zbl = {1182.53032}, language = {en}, url = {http://www.numdam.org/item/AST_2008__322__23_0/} }
TY - CHAP AU - Chang, Sun-Yung Alice AU - Yang, Paul C. TI - The $Q$-curvature equation in conformal geometry BT - Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon AU - Collectif ED - Hijazi Oussama T3 - Astérisque PY - 2008 SP - 23 EP - 38 IS - 322 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2008__322__23_0/ LA - en ID - AST_2008__322__23_0 ER -
%0 Book Section %A Chang, Sun-Yung Alice %A Yang, Paul C. %T The $Q$-curvature equation in conformal geometry %B Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon %A Collectif %E Hijazi Oussama %S Astérisque %D 2008 %P 23-38 %N 322 %I Société mathématique de France %U http://www.numdam.org/item/AST_2008__322__23_0/ %G en %F AST_2008__322__23_0
Chang, Sun-Yung Alice; Yang, Paul C. The $Q$-curvature equation in conformal geometry, dans Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon, Astérisque, no. 322 (2008), pp. 23-38. http://www.numdam.org/item/AST_2008__322__23_0/
[1] Concentration phenomena for Liouville's equation in dimension four", J. Eur. Math. Soc. (JEMS) 8 (2006), p. 171-180. | EuDML | MR | Zbl
, & - "[2] The decomposition of global conformal invariants: On a conjecture of Deser and Schwimmer", preprint arXiv:0711.1685. | Zbl
- "[3] curvature and volume renormalization of AHE metrics on 4-manifolds", Math. Res. Lett. 8 (2001), p. 171-188. | DOI | MR | Zbl
- "[4] Logarithmic potentials, quasiconformal flows, and -curvature", Duke Math. J. 142 (2008), p. 197-239. | DOI | MR | Zbl
, & - "[5] Bi-Lipschitz parameterization of surfaces", Math. Ann. 327 (2003), p. 135-169. | DOI | MR | Zbl
& - "[6] Differential operators canonically associated to a conformal structure", Math. Scand. 57 (1985), p. 293-345. | DOI | EuDML | MR | Zbl
- "[7] The functional determinant, Lecture Notes Series, vol. 4, Seoul National University Research, Institute of Mathematics Global Analysis Research Center, 1993. | MR | Zbl
,[8] Explicit functional determinants in four dimensions", Proc. Amer. Math. Soc. 113 (1991), p. 669-682. | DOI | MR | Zbl
& - "[9] The zeta functional determinants on manifolds with boundary. I. The formula", J. Funct. Anal. 147 (1997), p. 327-362. | DOI | MR | Zbl
& - "[10] Compactification of a class of conformally flat -manifold", Invent. Math. 142 (2000), p. 65-93. | DOI | MR | Zbl
, & - "[11] On the topology of conformally compact Einstein -manifolds", in Noncompact problems at the intersection of geometry, analysis, and topology, Contemp. Math., vol. 350, Amer. Math. Soc., 2004, p. 49-61. | DOI | MR | Zbl
, & , "[12] On renormalized volume on conformally compact Einstein manifolds", in Proceedings DFDE-2005, Contemporary Mathematics, Fundamental Directions, 2005 (Russian).
, & , "[13] Existence of conformal metrics with constant -curvature", preprint arXiv:math/0410141, to appear in Annals of Math.. | MR | Zbl
& - "[14] Conformal invariants", Astérisque numéro hors série "The mathematical heritage of Élie Cartan (Lyon, 1984)" (1985), p. 95-116. | Numdam | MR | Zbl
& - "[15] -curvature and Poincaré metrics", Math. Res. Lett. 9 (2002), p. 139-151. | DOI | MR | Zbl
& , "[16] The ambient metric", preprint, 2007. | MR | Zbl
& , "[17] Volume and area renormalizations for conformally compact Einstein metrics", in The Proceedings of the 19th Winter School "Geometry and Physics" (Srní, 1999), vol. 63, 2000, p. 31-42. | EuDML | MR | Zbl
- "[18] Conformally invariant powers of the Laplacian. I. Existence", J. London Math. Soc. 46 (1992), p. 557-565. | DOI | MR | Zbl
, , & - "[19] Holographic formula for -curvature", preprint, to appear in Advances in Math., 2006. | MR | Zbl
& - "[20] Scattering matrix in conformal geometry", Invent. Math. 152 (2003), p. 89-118. | DOI | MR | Zbl
& - "[21] A fully nonlinear equation on four-manifolds with positive scalar curvature", J. Differential Geom. 63 (2003), p. 131-154. | DOI | MR | Zbl
& - "[22] On subharmonic functions and differential geometry in the large", Comment. Math. Helv. 32 (1957), p. 13-72. | DOI | EuDML | MR | Zbl
- "[23] A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds", preprint, 1993. | MR | Zbl
- "[24] The divisor of Selberg's zeta function for Kleinian groups", Duke Math. J. 106 (2001), p. 321-390. | DOI | MR | Zbl
& - "[25] Uniqueness theorem for integral equations and its application", J. Funct. Anal. 247 (2007), p. 95-109. | DOI | MR | Zbl
- "