On the number of minimal surfaces with a given boundary
Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon, Astérisque, no. 322 (2008), pp. 207-224.
@incollection{AST_2008__322__207_0,
     author = {Hoffman, David and White, Brian},
     title = {On the number of minimal surfaces with a given boundary},
     booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (II) - Volume en l'honneur de Jean-Pierre Bourguignon},
     editor = {Hijazi Oussama},
     series = {Ast\'erisque},
     pages = {207--224},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {322},
     year = {2008},
     mrnumber = {2521657},
     zbl = {1184.53012},
     language = {en},
     url = {http://www.numdam.org/item/AST_2008__322__207_0/}
}
TY  - CHAP
AU  - Hoffman, David
AU  - White, Brian
TI  - On the number of minimal surfaces with a given boundary
BT  - Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon
AU  - Collectif
ED  - Hijazi Oussama
T3  - Astérisque
PY  - 2008
SP  - 207
EP  - 224
IS  - 322
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2008__322__207_0/
LA  - en
ID  - AST_2008__322__207_0
ER  - 
%0 Book Section
%A Hoffman, David
%A White, Brian
%T On the number of minimal surfaces with a given boundary
%B Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon
%A Collectif
%E Hijazi Oussama
%S Astérisque
%D 2008
%P 207-224
%N 322
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2008__322__207_0/
%G en
%F AST_2008__322__207_0
Hoffman, David; White, Brian. On the number of minimal surfaces with a given boundary, dans Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon, Astérisque, no. 322 (2008), pp. 207-224. http://www.numdam.org/item/AST_2008__322__207_0/

[1] D. Hoffman & B. White - "Genus-one helicoids from a variational point of view", Comment Math. Helv. 83 (2008), p. 767-813. | MR | Zbl

[2] D. Hoffman & B. White, "The geometry of genus-one helicoids", to appear in Comment. Math. Helv. | MR | Zbl

[3] D. Hoffman & B. White, "Helicoid-like minimal surfaces of arbitrary genus in S 2 ×R", in preparation.

[4] F. Tomi & A. J. Tromba - "Extreme curves bound embedded minimal surfaces of the type of the disc", Math. Z. 158 (1978), p. 137-145. | DOI | EuDML | MR | Zbl

[5] A. J. Tromba - "Degree theory on oriented infinite-dimensional varieties and the Morse number of minimal surfaces spanning a curve in 𝐑 n ", Manuscripta Math. 48 (1984), p. 139-161. | DOI | EuDML | MR | Zbl

[6] B. White - "Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals", Invent. Math. 88 (1987), p. 243-256. | DOI | EuDML | MR | Zbl

[7] B. White, "The space of m-dimensional surfaces that are stationary for a parametric elliptic functional", Indiana Univ. Math. J. 36 (1987), p. 567-602. | DOI | MR | Zbl

[8] B. White, "New applications of mapping degrees to minimal surface theory", J. Differential Geom. 29 (1989), p. 143-162. | DOI | MR | Zbl

[9] B. White, "Which ambient spaces admit isoperimetric inequalities for submanifolds?", to appear in J. Differential Geometry, 2008. | MR | Zbl