@incollection{AST_2008__317__141_0, author = {\.Zuk, Andrzej}, title = {Groupes engendr\'es par les automates}, booktitle = {S\'eminaire Bourbaki - Volume 2006/2007 - Expos\'es 967-981}, series = {Ast\'erisque}, note = {talk:971}, pages = {141--174}, publisher = {Soci\'et\'e math\'ematique de France}, number = {317}, year = {2008}, zbl = {1278.20047}, language = {fr}, url = {http://www.numdam.org/item/AST_2008__317__141_0/} }
TY - CHAP AU - Żuk, Andrzej TI - Groupes engendrés par les automates BT - Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981 AU - Collectif T3 - Astérisque N1 - talk:971 PY - 2008 SP - 141 EP - 174 IS - 317 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2008__317__141_0/ LA - fr ID - AST_2008__317__141_0 ER -
%0 Book Section %A Żuk, Andrzej %T Groupes engendrés par les automates %B Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981 %A Collectif %S Astérisque %Z talk:971 %D 2008 %P 141-174 %N 317 %I Société mathématique de France %U http://www.numdam.org/item/AST_2008__317__141_0/ %G fr %F AST_2008__317__141_0
Żuk, Andrzej. Groupes engendrés par les automates, dans Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981, Astérisque, no. 317 (2008), Exposé no. 971, 34 p. http://www.numdam.org/item/AST_2008__317__141_0/
[1] Finite automata and the Burnside problem for periodic groups, Mat. Zametki 11 (1972), p. 319-328. | Zbl
-[2] Elliptic operators, discrete groups and von Neumann algebras, in Colloque "Analyse et Topologie" en l'honneur de Henri Cartan (Orsay, 1974), Soc. Math. France, 1976, p. 43-72. Astérisque, No. 32-33. | Numdam | Zbl
-[3] Amenability via random walks, Duke Math. J. 130 (2005), p. 39-56. | DOI | Zbl
& -[4] Cheeger constant and algebraic entropy of linear groups, International Mathematical Research Notices 56 (2005), p. 3511-3523. | DOI | Zbl
& -[5] Croissance et moyennabilité de certains groupes d'automorphismes d'un arbre enraciné, Thèse, Université Paris 7, 2008.
-[6] Amenable semigroups, Illinois J. Math. 1 (1957), p. 509-544. | Zbl
-[7]The spectral measure of certain elements of the complex group ring of a wreath product, Geom. Dedicata 93 (2002), p. 121-137. | DOI | Zbl
& -[8] On uniform exponential growth for linear groups, Invent. Math. 160 (2005), p. 1-30. | DOI | Zbl
, & -[9] On groups with sub-exponential growth functions, J. Indian Math. Soc. (N.S.) 49 (1985), p. 249-256 | Zbl
& -On groups with sub-exponential growth functions, J. Indian Math. Soc. (N.S.) 49, p. 249-256 (1985). | Zbl
& -[10] On groups with sub-exponential growth functions. II, J. Indian Math. Soc. (N.S.) 56 (1991), p. 217-228. | Zbl
& ,[11] Algebraic theory of automata, Akadémiai Kiadó, 1972, Disquisitiones Mathematicae Hungaricae, 2. | Zbl
& -[12] Automata and square complexes, Geom. Dedicata 111 (2005), p. 43-64. | DOI | Zbl
& -[13] Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), p. 939-985. | Zbl
-[14] On a question of Atiyah, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), p. 663-668. | DOI | Zbl
, , & -[15] The lamplighter group as a group generated by a -state automaton, and its spectrum, Geom. Dedicata 87 (2001), p. 209-244. | DOI | Zbl
& -[16] On a torsion-free weakly branch group defined by a three state automaton, Internat. J. Algebra Comput. 12 (2002), p. 223-246, International Conférence on Géométrie and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000). | DOI | Zbl
& ,[17] Spectral properties of a torsion-free weakly branch group defined by a three state automaton, in Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001), Contemp. Math., vol. 298, Amer. Math. Soc., 2002, p. 57-82. | DOI | Zbl
& ,[18] Structures métriques pour les variétés riemanniennes, Textes Mathématiques, vol. 1, CEDIC, 1981, Edited by J. Lafontaine and P. Pansu. | Zbl
-[19] Hyperbolic groups, in Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, 1987, p. 75-263. | DOI | Zbl
,[20] Some infinite -groups, Algebra i Logika 22 (1983), p. 584-589. | DOI | EuDML | Zbl
& -[21] Full Banach mean values on countable groups, Math. Scand. 7 (1959), p. 146-156. | DOI | EuDML | Zbl
-[22] Beedehue e meopuιo aemomamoe (Introduction to automata theory), "Nauka", 1985. | Zbl
, & -[23] -invariants : theory and applications to geometry and -theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 44, Springer, 2002. | Zbl
-[24] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 17, Springer, 1991. | Zbl
-[25] Problems and Solutions : Advanced Problems : 5600-5609, Amer. Math. Monthly 75 (1968), p. 685-687. | DOI
-[26] Self-similar groups, Mathematical Surveys and Monographs, vol. 117, American Mathematical Society, 2005. | DOI | Zbl
-[27] Zur allgemeinen Theorie des Maßes, Fundamenta Mathematica 13 (1929), p. 73-116. | DOI | EuDML | JFM
-[28] Infinite periodic groups. I, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), p. 212-244, 251-524, 709-731. | Zbl
& -[29] Groupe d'Aleshin, mémoire de DEA, Paris VII, 2005.
-[30] Arbres, amalgames, , Société Mathématique de France, 1977, Astérisque, No. 46. | Numdam | Zbl
-[31] Periodic -groups of permutations and the unrestricted Burnside problem, Dokl. Akad. Nauk SSSR 247 (1979), p. 557-561. | Zbl
-[32] Self-similar walk on a self-similar group, prépublication, 2003.
-[33] On exponential growth and uniformly exponential growth for groups, Invent. Math. 155 (2004), p. 287-303. | DOI | Zbl
-[34] Automata groups, livre à paraître. | Zbl
-