@incollection{AST_2000__261__103_0, author = {Jakobson, Michael and Newhouse, Sheldon}, title = {Asymptotic measures for hyperbolic piecewise smooth mappings of a rectangle}, booktitle = {G\'eom\'etrie complexe et syst\`emes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995}, editor = {Flexor Marguerite and Sentenac Pierrette and Yoccoz Jean-Christophe}, series = {Ast\'erisque}, pages = {103--159}, publisher = {Soci\'et\'e math\'ematique de France}, number = {261}, year = {2000}, mrnumber = {1755439}, zbl = {1044.37016}, language = {en}, url = {http://www.numdam.org/item/AST_2000__261__103_0/} }
TY - CHAP AU - Jakobson, Michael AU - Newhouse, Sheldon TI - Asymptotic measures for hyperbolic piecewise smooth mappings of a rectangle BT - Géométrie complexe et systèmes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995 AU - Collectif ED - Flexor Marguerite ED - Sentenac Pierrette ED - Yoccoz Jean-Christophe T3 - Astérisque PY - 2000 SP - 103 EP - 159 IS - 261 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2000__261__103_0/ LA - en ID - AST_2000__261__103_0 ER -
%0 Book Section %A Jakobson, Michael %A Newhouse, Sheldon %T Asymptotic measures for hyperbolic piecewise smooth mappings of a rectangle %B Géométrie complexe et systèmes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995 %A Collectif %E Flexor Marguerite %E Sentenac Pierrette %E Yoccoz Jean-Christophe %S Astérisque %D 2000 %P 103-159 %N 261 %I Société mathématique de France %U http://www.numdam.org/item/AST_2000__261__103_0/ %G en %F AST_2000__261__103_0
Jakobson, Michael; Newhouse, Sheldon. Asymptotic measures for hyperbolic piecewise smooth mappings of a rectangle, dans Géométrie complexe et systèmes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995, Astérisque, no. 261 (2000), pp. 103-159. http://www.numdam.org/item/AST_2000__261__103_0/
[1] Transversal Mappings and Flows. W. A. Benjamin, New York, N.Y., 1967. | MR | Zbl
and .[2] Afterword to R. Bowen, Invariant measures for Markov maps of the interval. Comm. Math. Phys., 69(1):1-17, 1979. | DOI | MR | Zbl
.[3] Quasi-random dynamical systems, I. Math, of the USSR, Sbornik, 5(1):73-128, 1968. | DOI | Zbl
.[4] On a class of special flows. Math. USSR IZV., 8:219-232, 1974. | DOI | Zbl
.[5] On the isomorphism of weak Bernoulli transformations. Advances in Math., 5:365-394, 1970. | DOI | MR | Zbl
and .[6] Ordinary Differential Equations, 2nd Ed. Krieger Publishing Co., 1980. | MR | Zbl
.[7] Stable manifolds and hyperbolic sets. Proc. AMS Symp. Pure Math., 14, 1970. | DOI | MR | Zbl
and .[8] A two dimensional version of the folklore theorem. American Math. Soc. Translations, Series 2, 171:89-105, 1996. | MR | Zbl
and .[9] Ergodic Theory, Randomness, and Dynamical Systems. Number 5 in Yale Mathematical Monographs. Yale University Press, New Haven, Conn., 1975. | MR | Zbl
.[10] Ergodic attractors. Transactions AMS, 312(1):1-54, 1989. | DOI | MR | Zbl
and .[11] Anosov flows with Gibbs measures are also Bernoullian. Israel J. Math., 17:380-391, 1974. | DOI | MR | Zbl
.[12] Global Stability of Dynamical Systems. Springer-Verlag, 1987. | MR | Zbl
.[13] Topics in Ergodic Theory. Number 44 in Princeton Mathematical Series. Princeton University Press, 1994. | MR | Zbl
.[14] Invariant measures and equilibrium states for some mappings which expand distances. Trans. AMS, 236:121-153, 1978. | DOI | MR | Zbl
.